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1 Introduction
This thesis is about score-based learning of Bayesian networks using heuristics,
therefore the learning is performed by heuristic algorithms, and the result
of learning is measured by scores, which are real numbers computed by
score functions. The learning methods in this thesis weigh computational
simplicity over scores, but this does not mean improving scores is out of
consideration. The result should be “good enough” meaning the scores of
the learnt Bayesian networks should be high enough. How high is “enough”
depends on the learning requirements. Given different requirements, different
methods may apply. In general, there are exact methods, which achieve
optimal scores at all costs; approximation methods, which guarantee certain
non-optimal scores; or heuristic methods, which achieve scores as high as
they get but provide no specific guarantee1. Choices are at the discretion of
users. Results are limited by the reality. This thesis focuses on heuristics.

This thesis covers a set of heuristic algorithms that is capable of, starting
from raw data, learning networks of about 30-40 nodes in a few seconds
and about 1000-2000 nodes in a few hours using mid-to-high-end personal
computers available in 2017. (A few assumptions apply.) These algorithms
do not guarantee Bayesian networks that meet specific quality requirements
such as “the scores have to be optimal” or “the scores have to exceed a
certain value”.

Achieving the same level of learning speed and quality might be difficult
using merely traditional heuristics. Traditional heuristic algorithms often
require capping the maximum in-degrees of the network structures, which does
not help avoid examining some evidently low-potential structures under the
caps. Traditional heuristic algorithms might also use topological orderings
as constraints in order to guarantee directed acyclic graphs as network
structures, but this comes with the price of excluding all structures that
have different topological orderings, some of which may be high-potential
structures.

Independence Selection and Acyclic Selection OBS [39] (OBS probably
stands for “Ordering-Based Search”, which was hinted but not confirmed in
the original paper) debuted in 2015 need no maximum in-degree and do not
work with ordering constraints, in spite of which they have the capacity of
learning Bayesian networks with a larger number of variables in reasonable
time for good scores. In this thesis, Independence Selection is called Insightful
Searching and Acyclic Selection OBS is called Acyclic Selection Obeying
Boolean-matrix Sanctioning (acronym ASOBS). Insightful Searching uses a
constant-time computable approximation to the score function of Bayesian
Information Criterion [40]. ASOBS does not work with ordering constraints

1 Approximation algorithms and heuristics may have intersections but I would like to
distinguish them by aims: guaranteed results or guaranteed resource budgets.
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and was shown outperforming Ordering-Based Search [44]—a peer algorithm
that does in several studies [39, 45, 26]. That being said, ASOBS also
requires an ordering, which is used as a queue, to work, and the supply
of orderings determines the quality of the result. This thesis includes an
ordering strategy—Randomised Pairing Greedy Weight (acronym RPGw)
that works better than supplying random orderings and computationally
simpler than another alternative strategy known as BestFirst-Based ordering
generation [45].

The key idea of this thesis is what I call stairs of approximation. Be-
cause both Insightful Searching and RPGw benefit from the idea of using
an additional degree of approximation to an already existing “chain” of
approximations. I would rather call the “chain” of approximations “stairs”
of approximation. Ascending the stairs, step by step, one may approximate
the truth but every step upwards will become more difficult. Therefore, one
may start from a lower stair that is easy enough to step on, the truth might
not be clear from a greater distance but it might be visible enough to guide
an easier walk of ascending.

1.1 Thesis Scope and Outline

Discussing a topic such as learning Bayesian networks is difficult without
specifying a few scopes to gain better focus and making many assumptions
to ease the discussion. The following two paragraphs include most scopes
and assumptions, but a few subject specific assumptions will appear in the
appropriate places in later sections.

This thesis focuses on heuristics for score-based learning. Methods that
are not heuristics for score-based learning will not be elaborated. I will
assume heuristics are necessary when a NP-hard problem has to be handled
under the condition that there is no applicable assumption on how big the
problem instance might be.

I will only discuss the cases of learning where the data are generated by
a constant set of variables: variables and their parameters do not change
midway when generating a data set. I will also assume that each instance
in any data set is independently sampled: the sampling of every instance
does not affect the sampling of every else. Moreover, the discussion and
presentation concern only discrete variables for the sake of convenience and
focus. I assume all data sets used for learning to be complete, which means
there is no missing datum or hidden variable. With this assumption, I need
not cover applicable methods for handling incomplete data sets, but this is
by no means suggesting those methods are not important. On the contrary,
handling incomplete data sets is very important since raw data sets are often
incomplete. The assumption also means the set of algorithms in this thesis
cannot yet handle incomplete data sets, thus it needs the corresponding
expansion to gain such capacity.
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The structure of this thesis is as follows. Section 2 is about the essen-
tial concepts necessarily for comprehending the rest of the thesis, they are
Bayesian network, score-based structure learning, and decomposed learning.
Section 3 is about the score function required by the heuristics in this the-
sis. Section 4 includes the heuristics with the corresponding algorithmic
implementation—Insightful Searching and ASOBS. Section 5 is about or-
dering strategies for ASOBS including RPGw. RPGw was tested. The
experiment results appear in Section 5.3. Finally in Section 6, I conclude
this thesis, discuss possible usages of the heuristics presented, and take a few
outlooks.

1.2 Bayesian Networks are for Knowledge Representation

Before I decided to take on my thesis topic, I hadn’t had much of an
impression on Bayesian networks, if any, it was bad. I had taken one or
two courses about Bayesian statistics and learnt some basics, but the most
indelible memory had come from a project, during which my partner had
tried compressing data using Bayesian networks,“what an awful and slow
tool” sums up my initial impression. Despite all of these, I took the topic
with delight and wrote this thesis.

My view of Bayesian networks shifted when I understood their purpose,
which is, in the fewest words possible, “knowledge representation”. Learning
Bayesian networks is about computers that acquire and present knowledge.
But, what is the knowledge?

For those who have ruminated, “What is knowledge?” they perhaps
would not be able to recollect a satisfying definition right away. I could think
nothing but a few examples. So I opened my digital version of Merriam-
Webster’s Collegiate Dictionary 11th Edition and entered “knowledge” -
as they appeared in the definition were all familiar words: information,
understanding, truth, and so on, each of which leads to another whole set of
ideas. Knowledge is a slippery concept that encapsulates many things.

Then, how to acquire knowledge? Children may be told that they should
study, read books, learn from others, and the children nowadays have also
the Internet. But think about it, where did the knowledge in books, in other
people’s mind, or on the Internet come from?

Human brains are able to turn what they see and think into knowledge,
but brains are only the start. With the help of symbols and writing, knowledge
is able to survive and propagate without a specific individual. Armed with
logic, mathematics, and science, humans have become an eccentric species
that creates knowledge for the sake of creating knowledge. About half a
century ago, the era of digital computers has arrived. People have started
digitalising their tools and transferring some “mental labours” incurred by
seeking knowledge to machines, then knowledge exploded. For the first time
in history, knowledge has become more than what people could handle. As a
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result, mankind gave birth to its first child—artificial intelligence and has
since been urging it to acquire knowledge in the name of “machine learning”.

There are two types of knowledge machine learning can handle: the
properties of things, such as “A is a red cube”, “B is a red ball”, and “C is a
yellow ball”; and, the dependencies among things, such as “a red cube is red
because it was made of red material or painted red” and “a red cube being red
has (probably) nothing to do with being cut into a cube”. A machine learning
system that learns properties can do classification. When there comes a
yellow cube, the machine can tell that it is in the same class of A by shape
and C by colour. A machine learning system that learns dependencies can
do inference. When there comes a yellow cube, the machine can infer that it
was probably made of yellow material or painted yellow, and it would still be
yellow even if it had been cut into a ball because its shape was independent
of its colour. Such knowledge of dependencies is what Bayesian networks
are capable of. (To be specific, Bayesian networks model dependencies with
Bayesian statistics.)

Knowledge of dependencies is not merely training material for artificial
intelligence. People want to know the answers to questions such as “Does
climate change have anything to do with food prices?” “Does my favourite
food have anything to do with my stomach problem?” “Was the increasing
salary the result of my hard working or just the inflation?” When people
have gotten enough observations on weather, health, economy, or anything
interesting, they may acquire some knowledge of dependencies useful for
inferring causes, analysing situations, making decisions, and so on. Nowadays,
observations represented as data are abundant, only if there are tools for
refining these data, turning them into useful knowledge of dependencies. The
computational tools that are able to learn Bayesian networks from data are
one genre of such tools that no one could afford to pass.

1.3 Bayesian Networks are Indispensable to Artificial Intel-
ligence

A machine that learns properties can do classification. A machine that learns
dependencies can do inference. What can a machine that is capable of both
do? It can solve puzzles, problems, manipulate things to fit your (or its own)
need. When there comes a yellow cube, you tell the machine: by colour or by
shape, whichever the rule is, put the yellow cube in the class of red cubes. If
the machine has a certain level of intelligence as we have hoped, the machine
will paint the yellow cube red to ensure that the request is fulfilled.

It would be impossible to build any forms of artificial general intelligence
without Bayesian networks, because an AI that has no knowledge of depen-
dencies can hardly be “general” in solving problems. Moreover, tools for
learning Bayesian networks are vital in pursuing AGI because dependencies
are so many, so complex, so disparate that handcraft and hard-coding hardly
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apply.
Learning Bayesian networks ought to be done efficiently in case of artificial

general intelligence. Because one cannot assume unlimited time or other
resources for solving a problem or making a decision. A robot is not supposed
to take actions only after it finishes its computation. A intelligent machine
should not take forever to give an answer, even if it has been asked of the
question of life, the Universe, and everything. The pioneers of artificial
intelligence have established since the birth of the field that heuristics will
always be an essential part of human-like general intelligence [30, 32, 31,
28, 29]. These are all good reasons for studying learning Bayesian networks
using fast heuristics.

2 Introducing the Key Concepts
This section is about a few key concepts necessary for understanding what
Bayesian networks, score functions, and score-based learning are. Score-based
learning is often split into two tasks, one of which is solving a combinatorial
optimisation problem. Section 2.3 is about the reasons behind approaching
score-based learning in such a way.

2.1 The Essentials of Bayesian Network

There are some real world entities that can be abstracted as discrete random
variables2. For example, someone may abstract the weather of a place as a
discrete variable weather, which may have states shiny, cloudy, rainy, and so
on, and the occurrence of each state is modelled by a probability distribution.
How comprehensive or detailed a variable representation of a real world entity
is may vary from case to case. The results of such abstraction—discrete
random variables are building blocks of Bayesian networks. Between every
pair of variables, there might exist a dependency. For example, humidity
might depend on weather.

A Bayesian network is for representing knowledge of dependencies as a
computational model [35, 36]. Given a set of discrete variables {x1, x2, . . . , xn},
let P denote the set of probabilities that measure the strength of the de-
pendencies and directed acyclic graph G represents variables as nodes and
dependencies as arcs, then the corresponding Bayesian network is the double
(G,P) where G is called a structure.

If there exists a direct dependency between node xi and xp and xi depends
on xp; then, xp is called a parent of xi and xi a child of xp, and the arc
that represents the dependency goes from node xp to xi; in addition, the
dependency is quantified by conditional probabilities P (xi|xp).

2 Although some real world entities are represented as random variables in a Bayesian
network, they are not necessarily random.
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The set of all nodes that xi depends on is called the parent set of xi. In
this thesis, a parent set is denoted as Π with possible subscripts, for example,
the parent set of xi is Πi. If xi has no parent, then xi has an empty parent
set denoted as ∅. Structure G that contains every node and arc is a global
structure. A child and all of its parents together with all arcs in-between is a
local structure. Every node has a local structure.

A node may be both a parent and a child. A node’s parents’ parents and
so on are the ancestors of that node. In this thesis, an ancestor of a node is
not a parent of that node. A node’s children and the children’s children and
so on are the descendants of that node meaning a child is also a descendant.

All Bayesian network structures must be acyclic. If a cyclic relationship
indeed belongs to a set of variables, then Bayesian networks might be the
wrong type of model for them. For example, Bayesian networks are not
for modelling a feedback loop such as the one in Figure 1. In this thesis, I
assume no underlying cyclic relationship is present in the data sets used for
learning Bayesian networks.

Figure 1: If a cyclic relationship such as the example exists among variables,
then learning Bayesian networks might be the wrong approach.

If in a Bayesian network of n variables, every variable xi, assumed to be
discrete, has oi number of states, then the Bayesian network has o1·o2,. . . ,on
possible states, each of which is called a global configuration. Similarly, a
local structure has a number of local configurations and this number is the
product of the numbers of states of variables in that local structure. For
example, a local structure has a child x1 and two parents x2 and x3, thus
it has o1 · o2 · o3 local configurations. A parent set has a number of parent
set configurations which is product of the numbers of states of variables in
that parent set. This number is denoted as q with various subscripts. For
example, parent set Πi = {x2, x3} has qi = o2 · o3 parent set configurations.
The number of local configurations of node xi is often expressed as oi · qi.

A conditional probability of a variable xi is the probability of one of
the possible states of the variable conditioned on a possible parent set
configuration. For example, P (0|1, 2) = 0.34 is a conditional probability of
the child being in state 0 given that its two parents are in state 1 and 2

6



respectively, in which case (1, 2) is a possible parent set configuration and
(0, 1, 2) a possible local configuration. Nodes with no parent have probabilities
instead of conditional probabilities, for example, P (0) = 0.3.

Each node xi has a number of parameters presenting its probabilities
or conditional probabilities. A parameter is a probability or conditional
probability, but the required number of parameters at the minimum is
(oi − 1) or (oi − 1) · qi. A global configuration also has a probability and it is
the product of all probabilities and conditional probabilities of the nodes in
the states that constitute the global configuration.

Figure 2: This is an example of Bayesian network global structure, a local
structure, and three counter-examples of local structure.

Figure 2 serves as the example of this section. The Bayesian network
structure G has 6 nodes representing 6 variables. In the example, node xa
is a parent of xd and xe, but an ancestor of xf . Node xd, xf , and xe are
all descendants of xa, but xd and xe are also the children of xa. The local
structure of xe is illustrated in Figure 2. It has oa · od · oe local configurations.
The parent set of xe is {xa, xd} and it has qe = oa · od configurations. In
Bayesian network (G,P),

P = {P (xa), P (xb), P (xc),
P (xd|xa), P (xd|xb), P (xd|xc), P (xe|xa), P (xe|xd), P (xf |xd)} (1)

where each conditional P corresponds to an arc. Simplifying P gives

P = {P (xa), P (xb), P (xc), P (xd|xa, xb, xc), P (xe|xa, xd), P (xf |xd)} (2)

where each P corresponds to a variable or a local structure. Variable xe has
oa · od · oe conditional probabilities (the number of P (xe|xa, xd) is oa · od · oe )
and the corresponding node xe has oa · od · (oe − 1) parameters at minimum.
Node xa, xb, or xc has no parent, so each has a local structure of one node—
the node itself and zero arc. The three subgraphs of G shown are not local
structures because a local structure does not include ancestors and the arcs
between parents but all parents and all arcs between the parents and the
child.
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2.2 Scored-based Structure Learning

Dependencies are learnt from data—observations of variables. Given a set
of variables, a number of observations of them constitute a data set. Each
complete observation, where every relevant variable is present with a possible
state, is an instance and an instance can be one of the possible global
configurations.

There might exist a specific tangible Bayesian network. Its set of variables
is given and the dependencies among variables make the objective of learning.
If there is a tangible network, then recovering this network by recovering
all dependencies may be the goal. Such scenarios, for example, exist in the
pertinent researches, where researchers test learning methods using synthetic
data generated from existent Bayesian networks. However, one cannot take
tangible Bayesian networks for granted. If a tangible Bayesian network does
not exist, then, at what should we be aiming?

Bayesian networks are models of dependencies so dependencies are the
objective of learning. Dependencies are part of the reality, so one can imagine
an “ideal” or “perfect” model that is the closest representation of that reality.
Given a set of variables, if there existed a data set D∞ with infinite properly
sampled instances, the closest thing to the reality might be an ideal Bayesian
network3 Bideal and this Bideal might be the Bayesian network that had
optimised P (Bideal|D∞). Certainly, looking for Bideal is unrealistic. But it
is possible to make approximations with what is available.

With an already sampled and available data set, denoted as D, the closest
approximations come from learning a network that has the highest posterior
probability conditioned on D. This network can be called an optimal network.
Let B denote a Bayesian network, then P (B|D) is evaluated as follows

P (B|D) = P (D|B)P (B)
P (D) (3)

according to Bayes’ theorem. If B maximises P (B|D), then B is an optimal
network. There might be more than one B that have the highest posterior
probability, and an optimal network is not necessarily a good model because
one can deliberately manipulate prior probability P (B) to achieve the highest
posterior probability. I will assume prior probabilities are all reasonable—
there are proper reasons backing the evaluation of prior probabilities when

3 Phrases like “ideal Bayesian network” are not common. Publish literature may call it
“true” or “underlying” network/model, which are both unsatisfactory terms because there
might not be a “true” or “underlying” network. Making a model of the reality does not
mean the model already exists. Saying “optimal network” is also inappropriate because an
optimal network learnt with a specific optimisation procedure using a specific data set is not
necessarily a faithful representation of the reality and it is possible to have multiple optimal
networks. “Generating network” does not work either because it is a confusing term and
it also suggests that a network already exists. Some papers use the term “distribution”
rather than “network” but one cannot assume there are actual “distributions” that are
affecting the reality. Rather, we use distributions to describe the reality.
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such evaluation is necessary, such that finding an optimal network can be a
meaningful goal.

A Bayesian network consists of a structure and a set of parameters.
Structure learning precedes parameter learning because knowing the param-
eters depends on knowing the structure. A parameter is a probability or
conditional probability. Knowing a parameter of a node implies knowing the
local structure of the node. For example, knowing P (xa|xb, xc, xd) implies
knowing nodes xb, xc, and xd are the parents of xa hence knowing the local
structure of xa. Knowing all parameters implies knowing all local structures
hence the global structure. Therefore, it is impossible to know parameters
without knowing the structure in the first place.

Let G denote the structure of B and θ the parameters. Since the param-
eters depends on the structure, the prior probability of a Bayesian network
can be express as P (B) = P (G, θ) = P (θ|G)P (G), which can be plugged
into equation (3). In addition, the probability of the data set P (D) is a
constant when a data set D is given. Therefore, P (D) can be omitted. Also,
P (D,B) = P (D|B)P (B), so there come the following equations:

P (D,B) = P (D|B)P (B) = P (D|θ,G)P (θ|G)P (G) (4)

and P (D,B) is what to be maximised.
Since parameter learning depends on structure learning, learning Bayesian

networks, at its core, wraps the problem of Bayesian Network Structure
Learning or just structure learning. Learning the structure is the first
interest, so it is necessary to find the structure G that maximise P (D,G)
without knowing θ. P (D,G) is evaluated using the following integration:

P (D,G) =
∫
θ
P (D|θ,G)P (θ|G)P (G)dθ (5)

where parameters θ are unknown; therefore, the integration is unsolvable
at this stage. Other than parameters, there is also the problem of how to
evaluate P (G).

When the lack of knowledge of the parameters and the structure prior
probability hinders evaluating P (D,G), one may compute an alternative
function that indicates how high P (D,G) is. This alternative function is
called a score function or a metric4 (I will use both terms depending on
the context) and all approaches based on score functions are score-based
learning or score-based structure learning. Besides score-based learning there
is constraint-based learning. Constraint-based learning is not the concern of
this thesis.

A metric—a score function is denoted as M with possible subscripts
in this thesis. Given a set of variables V , let DAG denote the space of all

4 Since a “score” can mean both a score function and a numeric value score. In order
to avoid confusion, I shall use the term metric for score functions or the straightforward
score function. The term score is only for numeric scores.
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possible directed acyclic graphs over V and D the space of all possible data
sets from V , then a score function is a mapping

M : DAG× D 7→ R

Let D denote a data set originated from V and G a network structure (a
directed acyclic graph) where each node in G has to have corresponding data
present in D, M takes D and G as the input and returns a real number value
M(D,G), which is the score of G given D, as the output.

Metrics are different in how they approach an issue. The main issue is
evaluating structure prior probabilities. The differences in approaching this
issue divide metrics into two classes: Bayesian metrics and non-Bayesian
metrics. Bayesian metrics typically adopt Dirichlet distribution with cer-
tain assumptions in order to estimate structure prior probabilities while
non-Bayesian metrics circumvent the issue, typically by taking out prior
probabilities and performing maximum likelihood estimation with a term
that keeps structure complexities in check. Notable members of the former
are known as Bayesian Dirichlet metrics (BD metrics) which include: BDeu
[7] BD, and BDe [22]; and, the latter information theoretical metrics (infor-
mation criteria) which include: Akaike Information Criterion [1], Schwarz
Information Criterion [40], Minimum Description Length [37], Mutual Infor-
mation Tests [10], and factorized Normalized Maximum Likelihood [41]. This
thesis focus on Schwarz Information Criterion, which is more often called
Bayesian Information Criterion. Some general reasons that bolster this focus
appear in Section 3 and a heuristic specific reason appears in Section 4.

Two merits make an apt metric. A consistent metric helps learning
because it favours a structure that more accurately captures the dependencies,
or the simpler structure of two possible choices that both accurately capture
the dependencies, when a large and reliable data set is used [12]. A metric
is asymptotic if it approximates P (D|G) or, more usually, its logarithm
with errors bounded by O(1) when data set size goes to infinity [6, 20]. An
asymptotic metric helps learning because the difference between P (D,G)
and the score of G can be made insignificant using enough data as long as
P (G) is reasonable and non-zero.

With an apt metric, structure learning can be approached through scored-
based structure learning. It has two major components: a metric and a search
method. The search method finds structures for the metric to evaluate
then use the corresponding scores as feedback in order to improve new
findings. Score-based structure learning algorithms often consist of at least
two corresponding procedures.

In a way, score-based learning can be likened to standard tests for students.
In college or graduate school, the staff in charge of admission do not know
how well the applicants will be doing before they are admitted, the staff hence
ask for standard test scores that can serve as indicators of academic potential.
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In learning Bayesian networks, when accurate or precise estimations of
structure prior or joint probabilities are difficult or not available, scores given
by learning metrics are used as indicators.

2.3 The Two Tasks of Decomposed Learning

If a score function is composed in a way such that the global score—the
score of a global structure is the product or sum (if the score function is
logarithmic) of all of the local scores—the scores of the local structures in the
global structure, then this score function is decomposable. All score functions
discussed in this thesis are logarithmic (score functions being logarithmic
is indeed the mainstream), hence I will only say that the global score of a
structure is the sum of the local scores. Given data set D, global structure
G and local structures S1 . . . , Sn where G =

n⋃
i=1

Si, if M is a decomposable
score function, then the following equation:

M(D,G) =
n∑
i=1

M(D,Si) (6)

holds.
With a decomposable score function, score-based structure learning can

be approached in a way called decomposed learning5 in this thesis. From
this point, every “decomposed learning” refers to “decomposed score-based
structure learning” or “score-based structure learning using decomposable
score functions”.

Decomposed learning is about learning local structures first then com-
posing a global structure using the local structures learnt. There are two
incentives behind decomposed learning. For one, optimal or near-optimal
local structures are much more attainable than optimal global structures.
For two, decomposed learning transforms a part of score-based structure
learning into combinatorial optimisation problems—a well-studied class of
problems with numerous available approaches. How local structures are more
attainable and why the problem is only transformed but not resolved?

There can be a tremendous number of candidate global structures even
with a small number of nodes [38]. For example, 10 variables lead to
4175098976430598143 possible global structures6. Find a few optimal global
structures among such astronomical number of possibilities using merely
score functions would take eons.

Local structures are way more tractable. Given n variables, for every
variable, there exist 2n−1 possible local structures, thus the total number

5 Phrases such as “local (structure) learning” or “learning (with) local structure” are
perhaps more common in literature, but I will call score-based structure learning using
decomposable metrics “decomposed learning” in this thesis because global structures rather
than local structures are the objective of learning.

6 https://oeis.org/A003024
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of local structures is n · 2n−1. With decomposed learning, 10 variable lead
to “merely” 5120 local scores: a cake walk. However, the number of local
structures still grows exponentially. Exploring all local structures out of a
greater number of nodes, say 100, still ends up taking eons. Nevertheless,
decomposed learning is the lesser of two evils.

The problem is that finding local structures constitutes only half of
the work. Splitting score-based structure learning into two parts is what
decomposed learning is. The first part—the task of finding local structures, is
called cache construction in this thesis. A cache, denoted by C with possible
subscripts, is a list of doubles in the form of (local score, local structure).
A cache is very often associated with a node. For example Ci denotes the
cache of node xi. When a cache is associated with a node, the doubles in
the cache can also be (local score, parent set) because knowing the parent
set of a node is knowing the corresponding local structure of the node.

Cache Construction
Input: A set of n nodes V = {x1, . . . , xn}, a data set D consists

of independently sampled instances of V , an integer i ∈
{1, . . . , n}.

Output: caches C1, . . . , Cn where each Ci is the cache of xi and it
contains an indefinite number of doubles in the form of (local
score, parent set).

Although local structures are directed acyclic graphs, encoding arcs is
usually unnecessary because arcs always go from the parents to the child
in a local structure meaning distinguishing the child node form the parent
nodes preserves complete information on arcs.

The reason why cache construction rather than finding optimal local
structures becomes the first task is that the optimal local structures over
a set of nodes might not form an directed acyclic graph due to possible
imperfectness of the data sets (I did not assume arbitrarily large, noiseless,
or error-free data sets, and no one should). Moreover, the number of local
structures is exponential to the number of nodes meaning at least checking
all possible local structures one by one for the optimal will be impractical in
cases of a large number of variables. Cache construction is usually done under
a constraint to avoid checking all possible local structures and the optimal
local structures under the constraint might not form a valid structure.

After completing cache construction, the second task of decomposed
learning becomes a combinatorial optimisation problem called Optimal-
Structure in this thesis.
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OptimalStructure
Input: Caches C1, . . . , Cn, where each cache contains a indefinite

number of doubles in the form of (local score, local struc-
ture).

Output: A directed graph G =
n⋃
i=1

Si, such that G is acyclic and the

global score
∑n
i=1 si is maximised, where Si is one of the

candidate local structures in Ci and si the local score of Si.

Decomposed learning does nothing to diminish the hardness of score-
based structure learning, it converts a part of score-based structure learning
into a task more tractable and another more familiar. Decomposed learning
is the focus of this thesis. Non-decomposed score-based structure learning
does exist [11], but it is relatively new and outside the scope.

3 Stairs of Approximation
This section includes an overview of two metrics: Minimum Description
Length [37] and Bayesian Information Criterion [40], which are identical in
almost all aspects including linear asymptotic time complexity, not needing
prior probabilities, preventing unnecessarily complex structures, and so on.
Their properties are advantages in decomposed learning, especially when
taking heuristic approaches. Sometimes MDL and BIC are regard as one
metric because their score functions are the exact negative of each other
if details (parameter dimensionality, the logarithm, et cetera) are set to
be identical; however, I would like to introduce them separately for their
different perspectives in learning Bayesian networks.

3.1 Encoding Networks with Minimum Description Length

Minimum Description Length [37], when used in learning Bayesian networks,
is a metric that balances network fitness—how close does a network fit the
data sample and usefulness—how complex and hence hard to use the learnt
network is [25]. It also obviate the need for considering prior probabilities
[43, 25]. Understand Minimum Description Length help understand its
position in learning Bayesian networks. Moreover, the knowledge is essential
to encoding the network.

In the earliest pertinent work [43] in 1993, Joe Suzuki adumbrated the
essentials of applying Minimum Description Length Principle to structure
learning and showed that considering prior probabilities of Bayesian networks
is not necessary if MDL serves as the metric. At the same time, Wai Lam and
Fahiem Bacchus not only did similar work [25], but also argued convincingly
that, on the one hand, metrics that “balance accuracy and complexity”
provide practical value because they allocate due weight to simpler networks,
which are easier to understand and compute (as supported by the pertinent
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computation complexity result [14]) and hence more useful; on the other
hand, an iota of hope there is for a raw data sample to retain the information
adequate for recovering the “true underlying distribution” but much greater
chance for an approximation; therefore, learning a Bayesian network that
is faithful to the data sample may be less useful yet taking excessive tolls.
In addition to all above, Lam and Bacchus also regarded evading prior
probabilities as a benefit of using metric MDL.

Applying Minimum Description Length Principle to learning Bayesian
networks sets aside maximising joint probabilities. The goal has become
finding a network that minimises the description length of both the network
itself and the data.

Given a Bayesian network structure G of n nodes a data set D of N
instances and let xi be a node from a set of n nodes {x1, · · · , xn}, the
description length of the node’s local structure is

log2N

2 (oi − 1) (qi) (7)

where (oi − 1) (qi) is the number of parameters of xi and log2 N
2 the number

of bits required to encode a parameter [43, 19]. The number of bits used for
encoding nodes is a constant given that the number of nodes is a constant,
hence the description length of nodes can be omitted. The description length
of the part of the data that corresponds to the local structure of xi is

−
∑
j

∑
k

Nijk log2
Nijk

Nij
(8)

where Nijk is the occurrence of the kth local configuration, which includes
the jth parent set configuration, and Nij the occurrence of the jth parent set
configuration, thus Nijk

Nij
is the conditional probability of the kth state of xi

conditioned on jth parent set configuration (the kth state of xi makes the kth
local configuration). For example, if the local structure of xi has three nodes
including xi, if (0,1,2) is the kth local configuration and (1,2) the jth parent
set configuration, (0,1,2) appeared 250 times and (1,2) appeared 500 times
in the data set, then Nijk

Nij
= P (0|1, 2) = 0.5. The number of bits log2

Nijk

Nij
is

used for encoding a local configuration. The minimum description length of
the whole thing—structure plus data, which is denoted as MMDL(D,S), can
be evaluated as the following equation:

MMDL(D,S) =
n∑
i=1

 log2N

2 (oi − 1) (qi)−
∑
j

∑
k

Nijk log2
Nijk

Nij

 (9)

, and since knowing Nijk and Nij requires going through all instances in D
to count their frequencies and n is a constant, the evaluation takes O(N)
time .
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How does the MDL score function help balance fitness and complexity? A
more complex structure that fits the data better helps reduce the description
length of the data but the resulting greater number of parameters will increase
the description length of the structure. Therefore, the minimum description
length shall come from the best balance that minimises the description
lengths of the network and data together.

This thesis is not about minimising the description length, so the most
important ideas about metric MDL are it is a computationally simple metric
with no prior probability required and it keeps structure complexity in check.
Since metric MDL is the negative of metric BIC, metric BIC has all of the
properties metric MDL has.

3.2 BIC Score Function: an Approximation to Approxima-
tions

Bayesian Information Criterion7—firstly derived by Schwarz in 1978 [40] yet
another model selection criterion from information theory adapted to serving
as a metric in learning Bayesian networks, is the exact negative of metric
MDL in spite of details. They share the same properties yet judge Bayesian
networks from two different perspectives—minimum description length and
maximum joint probability. By presenting the essential rationale behind
metric BIC, the reasons are rendered lucid why it is indispensable to the
heuristics in this thesis.

Metric BIC is decomposable so I will present it in a “decomposed” fashion.
Since this section and the rest of the thesis are not about encoding (in bits),
I will use the natural logarithm instead of the logarithm to base 2 for
convenience.

Given a data set D with N instances and a structure G that consists of
n local structures Si, . . . , Sn, global score MBIC(D,S) is evaluated using the
following equation:

MBIC(D,S) =
n∑
i=1

Ml(D,Si) (10)

where each local score Ml(D,Si) is evaluated by

Ml(D,Si) =
∑
j

∑
k

Nijk ln Nijk

Nij
− lnN

2 (oi − 1)(qi) (11)

7 Should readers wonder why Schwarz’s information criterion [40] is called BIC, checking
the paper [1] about Akaike Information Criterion may lead to the source of the name. The
acronym BIC agrees with Akaike’s suggestion: “IC stands for information criterion and A
is added so that similar statistics, BIC, DIC etc., may follow”. So it is possible that, as
Akaike had suggested “B Information Criterion”, later literature started calling Schwarz
Information Criterion BIC.
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where oi, qi are known from Si and n, N , Nijk, Nij are known from D. The
evaluation takes O(N) time.

Metric BIC differs from metric MDL in the perspective. Metric BIC is
about maximising structure-data joint probabilities. David Heckerman [21]
presented a derivation for the case in 1995. The derivation also appeared
in a paper [20] co-authored by Heckerman that serves as expansion of other
earlier works about structure probabilities or metric BIC [23, 6].

Since the goal is to find the structure G that maximise P (G|D) and
P (D) is a constant, maximising P (D,G) fulfills the same purpose. P (D,G)
is expressed as

P (D,G) =
∫
θ
P (D|θ,G)P (θ|G)P (G)dθ (12)

where parameters θ and structure prior probability P (G) might not be avail-
able. In order to proceed without considering the structure prior probability,
assuming G is not impossible and hence P (G) is non-zero, one can take it
away through division, thus acquire

P (D|G) =
∫
θ
P (D|θ,G)P (θ|G)dθ (13)

where parameters θ are to be handled with Gaussian approximation with
a few assumptions: 1. the data distribution is in an exponential family,
2. P (θ|G) and P (θ) are in the same family of probability distributions,
3. parameters are mutually independent, and 4. the data set is complete.
Besides, the data set has to be sufficiently large. Then, there is the following
approximation:

P (D|θ,G)P (θ|G) ≈ P (D|θ̂, G)P (θ̂|S)e−
1
2 (θ−θ̂H(θ−θ̂)T

(14)

where symbol θ̂ denotes estimators of parameters and H denotes the negative
of the Hessian matrix of function f and f(θ) = lnP (D|θ,G).

Plug approximation (14) into integration (13) gives

P (D|G) ≈ P (D|θ̂, G)P (θ̂|G)
∫
θ
e−

1
2 (θ−θ̂)H(θ−θ̂)T

dθ (15)

which can be approached using Laplace’s method for the multivariate case
to acquire the following approximation (Laplace approximation)

P (D|G) ≈ P (D|θ̂, G)P (θ̂|G)( 2πd

det|H|)
1
2 (16)

where, d is the dimensionality of θ̂ and det|H| is the determinant of H. As-
suming P (θ̂|G) is not zero, approximation (16) can be put into the logarithmic
form as the following

lnP (D|G) ≈ lnP (D|θ̂, G) + lnP (θ̂|G) + d

2 ln 2π − 1
2 ln det|H| (17)
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which is not simple enough.
Replacing 1

2 ln det|H| with d
2 lnN renders computing det|H| unnecessarily

(both increase with N). The term lnP (θ̂|G) and d
2 ln 2π can be omitted

because they can be made insignificant using enough data (they do not
increase with N). Parameter dimensionality is d =

∑n
i=1(oi − 1)(qi) in

learning Bayesian networks. Making changes accordingly to approximation
(17) yields the following approximation:

lnP (D|G) ≈ lnP (D|θ̂, G)− lnN
2

n∑
i=1

(oi − 1)(qi) (18)

which can be make more accurate with more data.
The derivation shown by David Heckerman stops here, but there are just

few steps left to reach the fully detailed BIC score function. At the right
hand side of approximation (18), the logarithmic posterior probability of the
data set can be expressed as follows

lnP (D|θ̂, G) =
∑
t

(N · ĝt) ln ĝt (19)

where ĝt are estimated probabilities of global configurations and N · ĝt the
occurrence of global configurations in the data set. It is unnecessary to
actually estimate ĝt because the right hand side is going to be decomposed
as follows ∑

t

(N · ĝt) ln ĝt =
∑
i

∑
j

(Nij

∑
k

ĉk ln ĉk) (20)

where ĉk are estimated probabilities of local configurations and also the
estimators of parameters. Estimators ĉk can be computed using the following
equation:

ĉk = Nijk

Nij
(21)

therefore,

∑
i

∑
j

(Nij

∑
k

ĉklnĉk) =
∑
i

∑
j

∑
k

Nijk ln Nijk

Nij
(22)

perform a cascade of plug-ins on equations (22), (20), (19), and approximation
(18) then it is clear that metric BIC is an approximation to lnP (D|G)

lnP (D|G) ≈
n∑
i=1

∑
j

∑
k

Nijk ln Nijk

Nij
− lnN

2 (oi − 1) (qi)

 (23)
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However, the ultimate purpose of metric BIC is to be an indicator for a
structure’s potential in maximising P (G|D). As the following approximation
shows,

lnP (G|D) ≈MBIC(D,S) + lnP (G)− lnP (D) (24)

as long as P (G) and P (D) are not some extreme values and the assumptions
behind the approximations hold, using enough data, metric BIC can be a
trustworthy indicator.

One of the biggest advantages of metric BIC (which is also MDL but
negative) over Bayesian metrics is that it obviates the concern for prior
probabilities, which is bolstered by both the developers [37, 40] in information
theory and the earliest adopters [43, 25, 22] in learning Bayesian networks.

The scores given by metric BIC should not be taken for granted even if
data are in abundance. One of the assumptions is particularly intriguing—
the assumption that the data distribution is in an exponential family. One
cannot assume that all data collected from the real-world scenarios agree
with the assumption; for examples, weather data—observations of chaotic
behaviours or ICU data—a hodgepodge of human elements, coincidences,
randomness, and so on.

Nevertheless, the pith of score-based learning is to avoid the hustle of
estimating structure probabilities. As long as the assumptions hold, metric
BIC can be very useful because it is not only a good indicator of structure
posterior or joint probability but also fast to compute. Moreover, it keeps
structure complexity in check.

From the reality, to the data sample, to the structure posterior probability,
to the BIC score one has to descend stairs after stairs of approximations.
But metric BIC is still not simple enough for the heuristics in this thesis, yet
the score function of metric BIC has already reached the simplest form it
might get without losing its properties. Therefore, there is one more stair
of approximation to descend. Another approximation to metric BIC shall
be used to build faster heuristic algorithms. But before that, I am going to
wrap up theoretical bases.

3.3 Recapitulation of the Theoretical Bases

The goal of learning Bayesian networks from data is to recover the knowledge
of dependencies among random variables abstracted from real world entities
and present them in the form of a Bayesian network. Learning Bayesian
networks includes parameter learning and structure learning but parameter
learning depends on structure learning. The goal of structure learning is to
recover a structure with the highest structure-data joint probability; however,
estimating probabilities might be difficult, so instead of which scores are used
as indicators of structures’ potential. Scores are computed by score functions
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that take a structure and a data set as the input. Learning structures using
score functions is called score-based structure learning.

Decomposed learning is a more tractable approach to score-based struc-
ture learning. It consists of two tasks: cache construction, which is about
learning local structures, and solving OptimalStructure, which is about
assembling the local structures in the optimal way. In the following sections,
I will show how to approach these two tasks using a few fast heuristics.

4 Decomposed Learning Heuristic
In Section 4, I am going to discuss a few heuristics for decomposed learning.
Section 4.1 is about the purposes and general aspects of heuristic. Section
4.2 is about a few essential heuristics used for decomposed learning. In
Section 4.3 and Section 4.4, I will introduce the heuristics focused with the
corresponding algorithmic implementations.

4.1 The Purposes of Heuristics

The adoption of heuristics is supported by established computational complex-
ity results [12]; and, in cases of decomposed learning, OptimalStructure—
a typical combinatorial optimisation problem is NP-hard [34]. However,
hardness is just one of the many reasons because heuristics have their value
even if the aforementioned hardness results were not true. To show their
value, the purposes of heuristics have to be made clear.

Given a problem and a method of checking the solutions given to that
problem, if a procedure is able to provide a correct solution in some but
not all problem instances, then that procedure can be called a heuristic
[30]. For example, A,H,W are three procedures that are able to provide
solutions to a problem, say OptimalStructure (non-optimal structures
are incorrect solutions), and A always finds optimal structures, H may or
may not find optimal structures, while W guarantees non-optimal structures;
therefore, H is a heuristic, A is an exact procedure, and W hardly exists
in real-life. By the definition, approximation algorithms are also heuristics.
This thesis, however, mainly discusses heuristics that are not required to
provide performance guarantees.

It is hard to discuss heuristics without introducing resource limits—
time, memory, steps, trials, electricity, and whatnot; because, once assumed
unlimited resources, there is no need to care about heuristics. Therefore,
in this thesis, I assume that all heuristics are working under tacit or stated
resource limits. The heuristics discussed in this thesis subject to time limits.

Heuristics differ from exact procedures that, for some instances of the
problem, it might not provide a correct solution even if resources were infinite,
while exact procedures are bound to find a correct solution. However, by
bringing resource limits into the picture, such difference is trimmed off. Exact
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procedures may also provide a (guaranteed) correct solution within a certain
resource limit. Therefore, there have to be a few other expectations for
heuristics.

Given the same problem and settings, we expect a heuristic to provide
a solution faster than exact procedures, and on top of which a heuristic
should be able to provide a solution faster than any procedure that provides
better solutions. As for the measure of “fastness”, asymptotic time com-
plexity should suffice. For example, a procedure with O(n2) complexity is
considered faster than one with O(n3). In addition, incorrect solutions from
a heuristic, albeit being incorrect, should have some value. What counts
as “value” depends on the motivations, purposes, or requirements behind
solving a problem. In cases of decomposed learning, what heuristics meet
the expectations? A heuristic that helps achieve the same level of scores
faster than counterparts may be considered meeting the expectations.

In order to fulfill the expectations, a heuristic has to reduce the workload
required for finding a solution. The space of all possible solutions to a
problem is the search space or problem space of the problem. According to
Herbert Simon and Allen Newell, a heuristic avoids traversing the entire space
but instead allocates a small part of the space for searching for a solution [29].
According to Marvin Minsky, a heuristic may need some structure knowledge
of the search space in order to locate the area that is worthy of searching
[28]8. Available structure knowledge varies from problem to problem. In
learning Bayesian networks, for example, valid structures in the search space
are all directed acyclic graphs and every directed acyclic graph has at least
one topological ordering are two pieces of available structure knowledge.
Minsky also suggested that a heuristic might need to learn patterns from
the solutions it has already tested in order to improve its future solutions.
What kind of patterns is available differs from case to case. In decomposed
score-based structure learning, for example, certain local structures that have
high scores may show patterns.

To sum up, the purpose of a heuristic is to give a solution fast, be it
correct or not, optimal or not, but the solution should have certain value.
A heuristic does not check all possible solutions but only a few of them. A
heuristic works towards good solutions using the knowledge that is available
from the problem’s search space. A heuristic may learn from its previous
solutions in order to improve future solutions.

4.2 Traditional Heuristics for Decomposed Learning

This section includes an overview of the traditional heuristics frequently used
in decomposed learning, some of which are for cache construction and some
are for OptimalStructure.

8 This paper has also one of the earliest appearances of the terms “Bayes net” and
“Bayes network model”.
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A procedure for cache construction is applied to all variables. Given n
variables, there are n · 2n−1 possible local structures in total. A heuristic
traverses only a small part of all possibilities. A good heuristic should have
a high chance in hitting optimal or at least high-score structures fast.

A very common “heuristic” is assuming a maximum in-degree k then
adding all possible local structures with k or less parents to caches. This
strategy indeed helps reduce the search space. However, not all local struc-
tures with k or less parents are worth keeping. Some local structures can be
pruned if their scores are worse than simpler local structures [9].

In order to ensure the completion of cache construction within a given
time limit, one can start the search from adding the local structures with
empty parent sets to caches, then proceed to size-1 parent sets, size-2 parent
sets, and so on, until the time runs out. This “heuristic” has the same
drawback as using a maximum in-degree k. Not all local structures found
within the time limit are worth keeping. Pruning applies too.

The above two are clearly brute-force approaches with a stop condition,
which are too crude to be used in heuristics. In the spirit of heuristic,
evidently low-potential local structures should be evaded without the trouble
of checking them. That being said, “maximum in-degree k” and “stop at a
time” work with most decomposable metrics. If cache construction is done
with a clear idea of how complex local structures are supposed to be, the two
approaches could provide good chances of covering high-potential or even
optimal local structures.

If adopting certain information theoretical metrics, such as BIC, then
it is possible to use pre-pruning strategies from the work of Cassio P. de
Campos and Ji Qiang [8] to avoid checking evidently low-potential local
structures. Excluding low-potential local structures reduces the work of not
only cache construction but OptimalStructure as well. An algorithm
that handles OptimalStructure takes caches as the input. Smaller caches
lead to smaller problem instances of OptimalStructure.

Even with smaller caches, the search spaces of OptimalStructure are
still monstrous. Not all directed graphs made of local structures are acyclic.
So a topological ordering may be introduced as a constraint that allocates an
acyclic-only search space. If cycles are out of concern, then finding a global
structure may become much easier [23, 15]. Most ordering-based approaches
need ordering constraints, such as Ordering-Based Search [44], order MCMC
[18], partial order MCMC [33], and so on.

4.3 Guided Search using a Guiding Metric

This section is about managing caches construction using BIC∗—an approx-
imation to metric BIC derived by Scanagatta et al. in their recent work
[39].

In this thesis, I call BIC∗ a guiding metric and the corresponding output
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guiding scores. I would like to describe a guiding metric as the following. A
guiding metric of a metric is a function that provides a real number value as
a guiding score in constant time. Given the same structure and data set, the
difference between their score and guiding score should be bounded.

BIC∗ is a guiding metric of BIC. Let Ml denote the local score function
of metric BIC, and D denote a data set. Given a node xi, non-empty parent
sets Πi, Π′

i, and Π′′
i such that Πi = Π′

i∪Π′′
i and Π′

i∩Π′′
i = ∅, and three locals

scores s∅i = Ml(D, {xi}), s
′
i = Ml(D,S

′
i) and s′′

i = Ml(D,S
′′
i ) where parent

set ∅ belongs to local structure {xi} , Π′
i belongs to S

′
i , and Π′′

i belongs to
S

′′
i , then the guiding score of Πi, which is BIC∗(xi,Π

′
i,Π

′′
i ), is evaluated

using the equation:

BIC∗(xi,Π
′
i,Π

′′
i ) = s

′
i + s

′′
i + lnN

2 (oi − 1)(q′
i + q

′′
i − q

′
i · q

′′
i − 1)− s∅i (25)

and the evaluation takes constant time. Moreover, the difference between
BIC∗(xi,Πi) andMl(D,Si) is bounded byN ·ii(Π′

i; Π′′
i ;xi) where ii(Π

′
i; Π′′

i ;xi)
is the so-called Interaction Information [27].

The main purpose of a guiding metric is to help discover high-potential
local structures faster, which is fulfilled by giving high-potential structures
priorities that are measured by guiding scores. A guiding metric helps with
cache construction especially when there are time limits. However, a guiding
metric is not necessarily a heuristic by itself because it does not tell whether
certain structures should be discarded meaning all local structures will be
covered eventually if there is no time limit.

The value of BIC∗ comes from the fact that one can use BIC∗ to gain
insight into the potential of local structures, thus avoid traversing local
structures indiscriminately. BIC∗ is the most vital component of Insightful
Searching [39].

Insightful Searching is the epitome of heuristic algorithms for cache
construction. Multiple heuristics are implemented in Insightful Searching.
First, Insightful Searching is an anytime algorithm working under a time
limit. It uses BIC∗ for guidance and hence discovers better local structures
within the time limit. Second, it has both the pre-pruning [8, 39] and the
post-pruning procedures [9]. The pre-pruning procedure is customised to
work with BIC∗ and it averts cache construction from checking evidently low-
potential local structures. The post-pruning procedure deletes low-potential
structures overlooked by the pre-pruning procedure from caches. Last but not
least, Insightful Searching does not have to work with a maximum in-degree
k.

The input of Insightful Searching consists of a data set D of N instances,
a set of n nodes {x1, . . . , xn}; an positive real number t as the running time
limit. The output consists of n caches C1, . . . , Cn corresponding to the nodes
where each cache contains an indefinite number of triples in the form of (local
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score, parent set, entropy) which are sorted by the local scores in descending
order.

The Insightful Searching algorithm uses both BIC score function and
BIC∗ thus has two corresponding subroutines. The first subroutine is
denoted by LocalScore(data set, parent set), and its output—local scores
are denoted by s with possible subscripts. LocalScore also saves the
entropies of parent sets or nodes for pre-pruning decisions (Algorithm 1 line
18). Entropies are denoted by η with possible subscripts, for example, ηΠi is
the entropy of Πi and ηxi of xi. All output of LocalScore are added to
a closed list, which is a cache that saves entropies. The closed list of xi is
denoted by Ci. Generally speaking, LocalScore(data set, parent set) is
just a procedure that computes BIC scores with the additional instructions
on saving entropies. The second subroutine is BIC*(closed list, parent set,
parent set) that computes guiding scores, which may be denoted as s∗ with
possible subscripts. The output of BIC* are doubles in the form of (parent
set, guiding score).

Insightful Searching executes its procedure for each node xi. The proce-
dure has three stages as follows.

1. Initialisation and search preparation. (pseudo-code line 2-11)

2. Guided search. (line 12-25)

3. Prepare the result as the cache of xi. (line 26-31)

There are three major steps in Stage 1: initialisation and search prepara-
tion, which are as follows.

1. Initialise two lists: closed list Ci and open list Oi, and a variable time
of positive real number that records the time usage.

2. Compute the score of the empty and all size-1 parent sets of xi with
entropies saved, then add the parent sets together with their scores
and entropies to Ci.

3. Compute guiding scores using function BIC* and the data saved in
Ci for all size-2 parent sets, then add the size-2 parent sets and their
guiding scores to Oi

Up to this point, the algorithm has Ci with BIC local scores of empty
and all size-1 parent sets and Oi with the guiding scores of all size-2 parent
sets. From now on, the algorithm will proceed to Stage 2 without going back.

There are six major steps in Stage 2: guided search, which are listed as
the following. The algorithm will repeat these steps until Oi is exhausted or
the time limit is reached.
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Algorithm 1 Insightful Searching
INPUT: a data set D, a set of nodes {x1, . . . , xn}, a positive real number t
OUTPUT: lists C1, . . . , Cn where each Ci is the cache of xi and it contains
an indefinite number of triples in a structure such as (local score, parent set,
entropy)
1: for every node xi in {x1, . . . , xn} do
2: time is the time passed since starting the procedure for xi
3: initialise lists Ci and Oi
4: LocalScore(D, ∅) → (s∅, ∅, ηxi), N, oi where N is #instances in D,
oi is #states of xi, and ηxi is the entropy of node xi

5: Ci ← (s∅, ∅, ηxi)
6: for every node xj in {x1, . . . , xn} that is not xi do
7: Ci ← (s, {xj}, η{xj})← LocalScore(D, {xj})
8: end for
9: for every pair of nodes xj , xk in {x1, . . . , xn} that are not xi do
10: Oi ← (Π, s∗)← BIC*(Ci, {xj}, {xk}) where Π = {xj} ∪ {xk}
11: end for . size-2 parent sets’ guiding scores computed
12: while Oi is not exhausted and time < t do
13: Oi → (Π, s∗) where s∗ is the highest in Oi where Π = Π′ ∪ {x′}
14: Ci ← (s,Π, η)← LocalScore(D,Π)
15: for every node xk in {x1, . . . , xn} that is not xi and xk /∈ Π do
16: Ci → ηxi , ηΠ′ , η{x′} . extract entropies
17: make parent set Π+ = Π∪{xk} where Π+ has q configurations
18: if s∗ + lnN

2 (oi − 1) · q 6 N ·min{ηxi , ηΠ′ , η{x′}} then
19: if Π+ is not in Oi and Ci then
20: Oi ← (Π+, s

∗
+)←BIC*(Ci,Π, {xk})

21: end if
22: end if
23: end for
24: delete (Π, s∗) from Oi
25: end while
26: for every pair of triples (sa,Πa, ηa) and (sb,Πb, ηb) in Ci do
27: if sa 6 sb and Πb ⊂ Πa then
28: delete (sa,Πa, ηa) from Ci
29: end if
30: end for
31: sort Ci by scores in descending order
32: end for
33: return C1, . . . , Cn

24



1. Extract the parent set Π with the highest guiding score, denoted as s∗
from Oi, Π was constructed from the union Π′ ∪ {x′}.

2. Compute the BIC local score of Π and save the entropy of Π during
the computation, then add Π with its local score and entropy to Ci.

3. Expand Π by adding an extra node xk. Let Π+ denote expansion so
Π+ = Π ∪ {xk}.

4. Determine whether Π+ should be saved for consideration or discarded
using the following inequality:

s∗ + lnN
2 (oi − 1) · q 6 N ·min{ηxi , ηΠ′ , η{x′}} (26)

where q is the number of configurations of Π+ and entropies ηxi , ηΠ′ ,
and η{x′} corresponding to node xi, parent set Π′ and {x′} are extracted
from Ci. If the inequality is satisfied, the algorithm proceeds to checking
whether Π+ has been added to the two lists already. If Π+ satisfies the
inequality and is not present in the two lists, the algorithm computes
the guiding score of Π+ and adds the result to Oi; otherwise, Π+ will
be discarded.

5. Go to step 2 if there is still xk left for expanding Π, otherwise delete
the record of Π from Oi then proceed to the next step.

6. Go to step 1 if Oi is not yet empty or there is still time, otherwise
proceed to Stage 3.

There are three major steps in Stage 3: prepare the result as the cache
of xi, which are as follows.

1. For every parent set in Ci, if there exist a subset with a higher score,
delete the parent set.

2. Sort Ci by local scores in descending order.

3. Return Ci as the cache of xi.

Finally Insightful Searching return {C1, . . . , Cn} as the output. Entropies
can be deleted from caches if necessary. Deleting caches will use time but
save memory.

4.4 Using Orderings as Queues

This section is about ordering-based heuristics and how they find quick
solutions for OptimalStructure. The orderings discussed in this thesis
are not necessarily topological orderings because there are two different
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usages, one of which use orderings as queues. I will briefly introduce the
conventional usage first and proceed to detailed introduction and discussion
of the unconventional usage.

An ordering is a list of nodes in a specific hierarchy, denoted as a lone
symbol ≺. In this thesis, I will call the position of a node in an ordering
a rank; therefore, an ordering is also a set of node-rank pairs. Given an
ordering ≺, if xa is the ith node in ≺, then node xa is paired with rank
ri; if two nodes, xa, which is paired with rank ri, and xb, which is paired
with rank rj are in a relative positioning such that i < j, then xa is called
a higher node of xb while xb a lower node of xa. Given a node as the point
of reference, the side where higher nodes reside is the higher side and lower
nodes the lower side. The ordering defined here should be discriminated
from a topological ordering that it does not specify the direction of arcs.

The following is an example ordering:

r1 r2 r3 r4 r5 r6 r7 r8
x3 x6 x1 x8 x7 x5 x4 x2

where the upper row shows the ranks listed from high to low, and the lower
row shows the nodes arranged in an arbitrary order. Node x3 has rank r1
meaning it is the highest ranked node. Node x1 has the rank r3 while x8
has the rank r4 meaning x1 is a higher node of x8 and x8 a lower node of
x1. Let node x7 be the point of reference, the higher side has nodes x3, x6,
x1, and x8, while the lower side has nodes x5, x4, and x2. Also, x3 has only
the lower side and x2 only the higher side. Later when I am going to discuss
ordering-based algorithms, I will use the rank of a node and symbols such as
ri or ∗ri to refer to the node in that rank. Consequently, I say “given (an
ordering of node) {r1,. . . ,rn}” instead of “{x1,. . . ,xn}” because nodes are
not necessarily in an order such as 1, 2, 3, . . . n.

The conventional usage of ordering is called ordering-as-constraint in
this thesis. Using orderings as constraints appeared as early as the earliest
literature about learning Bayesian networks [23, 15]. An ordering becomes a
topological ordering when combined with the following rule: arcs can only
go from a higher node to a lower node or the vice versa but not both. For
convenience, I will specify the rule as “only high to low” in this thesis. A
topological ordering can be used as a constraint—only the directed acyclic
graph that has the topological ordering may become a candidate structure.
Therefore, only the local structures that are compatible with the topological
ordering may be selected as parts of a global structure. A local structure is
compatible with a topological ordering if and only if the parent nodes are
all higher nodes of the child node in the ordering. Any learning method
that uses a topological ordering and can only produce topological ordering
compatible structures can be categorised as an ordering-as-constraint method.
Most ordering-based methods are ordering-as-constraint methods.
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An ordering constraint is able to narrow the range of search down to
acquire an acyclic-only space, and finding the best structure in this space
is not necessarily NP-hard [15]; however, the best structure in the narrower
space might not be as good, needless to say the optimal. Ordering constraints
are “quite restricting” Scanagatta et al. commented [39]. They proposed
ASOBS, which does not work with ordering constraints.

ASOBS adopts a different usage of orderings that I call ordering-as-
queue. I will firstly present the ASOBS algorithm and then proceed to
contrasting “ordering-as-queue” with “ordering-as-constraint” such that a
better apprehension of the former can be acquired. This paves the way to
finding an apt ordering strategy for ASOBS.

ASOBS differs from all ordering-as-constraint methods that it uses a
Boolean matrix, denoted as T , as the constraint. Given an ordering of nodes
≺ = {r1, . . . , rn} where r represent nodes of which the positions are not clear,
ASOBS always starts with the highest node r1 then proceeds one by one
to rn. For each node ri, ASOBS will select the best parent set sanctioned
by Boolean matrix T for T knows which node is which node’s parent or
ancestor. Every entry in T can be either True or False. If entry Tri,rj

is True, then ri has become either a parent or an ancestor of rj since the
previous selections and rj will not be permitted to become a parent or an
ancestor of ri in the later selections. The content of T is the constraint that
guarantees acyclic structures, and it will be updated after every selection.
Updating this Boolean matrix T appears to be the key to ensuring acyclic
structures.

The input of ASOBS consists of ≺ = {r1, . . . , rn} and caches C1, . . . , Cn
where each cache contains a indefinite number of doubles in the form of
(local score, parent set) sorted by local scores in descending order. (The
entropy data added by Insightful Searching can be ignored.) For convenience,
I assume the caches are already arranged according to the ordering such that
Ci is the cache of ri.

The output of the algorithm is a list of n triples in the form of (local
score, node, parent set).

ASOBS has two stages as follows.

1. Initialisation.

2. Acyclic selection.

In the first stage, the algorithm prepares the constraint for achieving
“acyclic selection”—a Boolean matrix T . It sets every entry in the Boolean
matrix as False because no node has parents initially and entries such as
Tri,ri will always be False since self-loops are not allow either. A list G of
triples (local score, node, parent set) will also be initialised. G will be the
output.
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Algorithm 2 Acyclic Selection Obeying Boolean-matrix Sanctioning
INPUT: a set of nodes in an ordering ≺ = {r1, . . . , rn} and corresponding
caches C1, . . . , Cn where each Ci is a list of doubles such as (score, parent
set)
OUTPUT: a list G of triples in the form (local score, node, parent set)
1: initialise n by n Boolean matrix T where all entries are set to False
2: initialise local structure list G
3: for every node ri in {r1, . . . , rn} do
4: Find the (si,Πi) from Ci such that score si is highest among the

parent sets that satisfy either Πi is empty or Tri,xP is False for every
node xp in Πi

5: G← (si, ri,Πi) where ri is the ith node but not the rank!
6: if Πi is not empty then
7: initialise list descendants
8: descendants← ri . add ri to the list
9: for every node rj in {r1, . . . rn} do
10: if Tri,rj is True then
11: descendants← rj . add all descendants of ri to the list
12: end if
13: end for
14: initialise list ancestors
15: AncestryTracing(G, ancestors,≺, ri, ri)
16: for every node xa in ancestors and xd in descendants do
17: if Txa,xd

is False then
18: Txa,xd

= True
19: end if
20: end for
21: end if
22: end for
23: return G

1: procedure AncestryTracing(G, ancestors,≺, xk, ri)
2: G→ Πk where Πk is the parent set of xk
3: for every node xp in Πk such that xp /∈ ancestors do
4: ancestors← xp . add an parent of xk to the list
5: for every node rj in {ri−1, ri−2, . . . , r1} do . rj has a parent set
6: if xp is rj then . if xp also has a parent set
7: AncestryTracing(G, ancestors,≺, xp, ri)
8: end if
9: end for
10: end for
11: end procedure
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In the second stage, the algorithm repeats the following steps for every
node ri one by one according to the ordering ≺, which acts as a queue here.
The steps are as follows.

1. The algorithm finds the (si,Πi) from Ci such that score si is highest
among the parent sets which satisfy either Πi is empty or Tri,xP is
False for every node xp in Πi, then adds the finding to G. If Πi is
empty, then it skips step 2-4 and proceeds to the selection for the next
node in the ordering. (pseudo-code line 4-6)

2. The algorithm initialises a descendants list and adds ri and all of its
descendants recorded by the Boolean matrix T to that list. (line 7-13)

3. The algorithm initialises an ancestors list, it adds the parents of ri to
the list (because the parents of ri are ancestors of the descendants of ri)
and searches for all of the ancestors of ri through Depth-First Search
by tracing the ancestry of each parent that is also a higher node of ri.
Only ri and its higher nodes have made selections hence gotten parents
so far. All ancestors of ri found will be added to the ancestors list.
This is the key step because new parent/ancestor-child relationships
have to be registered in Boolean matrix T in order to avoid cycles.
(line 14-15 and all lines of procedure AncestryTracing)

4. For every node ra in ancestors list and rd in the descendants list, the
algorithm sets Tra,rd

as True, if the entry is not True already. (line
16-20)

At last, ASOBS returns G as the output.
The algorithm takes O(nzc+n2) time so the asymptotic time complexity

is O(zc), where z represents the number of parent sets in a cache, the number
may differ from cache to cache; c represents the number of records in the
Boolean matrix to be checked before a parent set is sanctioned, t, too, varies
from selection to selection, n is the number of nodes (a constant), thus O(n2)
is time needed for ancestry tracing and updating the Boolean matrix.

ASOBS specifies what to do when an ordering is provided9, but nothing
about what kind of orderings may suit it or how to acquire them. What
makes a good ordering for ASOBS then? Ordering strategies for ASOBS is
one of the open questions to consider. The authors of ASOBS did not verify
in their paper [39] the ordering strategies that could have suited ASOBS.
Is it possible to use existent strategies devised for ordering-as-constraint

9 There appear to be confusion in published literature [26], suggesting that ASOBS
was used as a control group in the experiments about ordering strategies. The ASOBS
algorithm itself tells nothing about how to acquire orderings - it takes an ordering as a
part of the input. It is not appropriate to make a contrast between ASOBS with a system
that includes an ordering strategy.

29



methods? To investigate this matter, I will first contrast ordering-as-queue
with ordering-as-constraint.

The fundamental difference between ordering-as-constraint and ordering-
as-queue, as hinted by the nomenclature, is on how they use orderings. In
ASOBS, an ordering is a queue for commencing local structure selections,
hence the naming—ordering-as-queue. The ordering in the input only spec-
ifies the priority of each node - it is not a constraint! The real constraint
is the content of ancestor/parent-descendant-relationship Boolean matrix,
which will become stricter as more selections are done. The highest node
has the most freedom of choice meaning all local structures in its cache are
available, because the Boolean matrix is mostly “empty” (all entries are
False) at the beginning, while the lowest node might has the least freedom,
it might have only a few choices left in its cache. This constraint imposed
by the Boolean matrix is in a way similar, or I would rather say “opposite”,
to the constraint imposed by a topological ordering. In cases of ordering-
as-constraint, the highest node has the least freedom of choice—it can only
select the local structure with the empty parent set yet the lowest node has
the most freedom.

Boolean matrix constraints are dynamic while ordering constraints are
static. Boolean matrices develop and the search spaces converge. This is
best illustrated using animations. Since that is very difficult here, I will use
a series of van diagrams (Figure 3).

Figure 3: A search space in ordering-as-queue is not static - it is shrinking
(converging) while a global structure is emerging. An ordering determines
how the search space should shrink.

The dynamic-static contrast leads to the biggest difference in selecting
parent sets. In ordering-as-queue, the selections made for higher nodes will
shape the Boolean matrix, and how it is shaped affects the selections for
lower nodes. In order words, the selections made for lower nodes depend
on the selections made for higher nodes. In cases of ordering-as-constraint,
selections are mutually independent.

Selections being not mutually independent will attenuate the effectiveness
of all strategies that improve structures by making adjustment to orderings
while exploiting the decomposability of metrics. In cases of ordering-as-queue,
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after an ordering has been adjusted, all selections of the highest ranked of
which the node has been changed to the lowest rank in the ordering have to
be redone. Let ri be the highest rank changed—its node has been changed
from xa to xb, then the algorithm has to redo the selections from ri to
rn. Figure 4 illustrates an example, the initial ordering has had two nodes
swapped their positions. After the change, in cases of ordering-as-constraint,
only two nodes x8 and x1 need to have selections redone, since every node
else’s set of higher nodes stays the same meaning its best parent set under
ordering constraint stays the same; while in cases of ordering-as-queue, x8 as
well as all of its lower nodes have to go through re-selections, because after
x8 selects another local structure with a different set of parents, Boolean
matrix T will deviate from its past development.

Figure 4: The amounts of work after the ordering adjustment are different.

Lastly, the known ordering-as-queue algorithm—ASOBS has a disadvan-
tage against ordering-as-constraint algorithms incurred by non-independent
selections. ASOBS has to run in serial: using orderings as queues is not only
its feature but also its restriction.

For all those stringent conditions one has to comply, an ordering strategy
for ordering-as-queue might not come easy. I will go through the key points
I have notices.

Where to start the optimisation is a tough question, because the higher
the rank changed, the greater the possibility of deviation from the past
development, the more computation may be incurred. To predict whether
this deviation will be a win or lose might require more work than what can be
done within polynomial time. It is like the science fictions where protagonists
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went back in time to alter history, the further back they had gone, the more
they subjected to Butterfly Effect, the more unpredictable the consequences
would have become.

An ordering in cases of ordering-as-queue contains much less useful
information. Since an ordering is not a constraint, it by itself tells nothing
about possible parent-child relationships, which is why all ordering strategies
that exploit such information, such as order MCMC [18] and its variants,
will be rendered useless. In ordering-as-constraint, a node’s higher nodes
are known to be its only pool of parents, hence adjusting the rank of that
node adjusts the pool. The adjustment is itself a piece of useful information
that is available before the new global score is computed. In ordering-as-
queue, adjustment leads to implicit changes in the Boolean matrix and the
result of the change—the global score becomes available only after all due
re-selections are performed. Peers who have also studied ASOBS remarked in
their paper that their ordering strategies for ordering-as-constraint algorithms
had provided merely “marginal” improvement when yoked with ASOBS [45].

The peculiar mechanism and confounding behaviour of ordering-as-queue
make it hard to agree with Scanagatta et al.’s arguments [39] that ASOBS will
always outperform Ordering-Based Search—an typical ordering-as-constraint
algorithm [44]. Their arguments were formalised as Theorem 3 and Theorem
4 in the corresponding paper. Theorem 3 says that ASOBS will outperform
Ordering-Based Search using the same ordering because there is no ordering
constraint to limit the pool of parent sets to one side of a node. However, this
is not necessarily true. Given the same ordering ≺ of two nodes as follows:

r1 r2 r3
x3 x2 x1

and with this ordering, one can construct a maximum in-degree 2 Bayesian
network where two independent node x2 and x3 are the parents of x1, the
original structure is the highest scored structure; however, the data set might
contains errors such that x3’s best parent set is {x1} and x2’s best the
empty set. In this case, OBS has a chance to find the best structure while
ASOBS has none. Theorem 4 says ASOBS works better with the greedy
swap strategy than Ordering-Based Search. However, considering the fact
that, in cases of ordering-as-queue, there are more due re-selections after
a swap. In a toe-to-toe competition between ASOBS and Ordering-Based
Search, it is not appropriate to assume that Ordering-Based Search will wait
for ASOBS to complete its re-selections before taking the next move.

Given that Theorem 3 and 4 in the paper [39] do not necessarily hold,
the assumption that an ordering that is good for Ordering-Based Search is
also good for ASOBS has lost its bolsters. This means an ordering strategy
customised for ASOBS is necessary. ASOBS has been shown to outperform
Ordering-Based Search in several empirical studies [39, 45, 26], which suggests
that ASOBS indeed has its potential. Therefore, investigating what orderings
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are good for ASOBS and how to find them will be the theme for the rest of
this thesis.

5 Ordering Strategies for Ordering-as-queue
Ordering strategies for ASOBS is an incipient research topic. The full
potential of ordering-as-queue is yet to be discovered. Because ordering-as-
queue works so differently, one has to also think differently in search of an
apt strategy. This thesis focus on heuristics, therefore I will think in the
spirit of heuristic.

This section includes a brief look at an published ordering strategy
[45] for ASOBS, then a presentation of a new ordering strategy with the
corresponding algorithms. Both strategies use the idea of score ranking but
work differently on other aspects. The new ordering strategy was tested with
results, which appear in Section 5.3.

5.1 A Strategy in Existence

This section includes a brief look at an existing ordering strategy—BestFirst-
Based ordering generation devised by Walter Perez Urcia and Denis Deratani
Mauá [45]. Published literature that discusses ordering strategies for ASOBS
is wanting.

Another concept—score ranking may be easily confused with ranks of
nodes, yet it is important for understanding the following content, so I will
elaborate it here. A ranking is a list of scores sorted in descending order,
which is similar to rankings in competitive games. The “score” here might
be a local score or a global score. Every score has a place in a ranking. For
example, in the ranking: {-96, -97, -98, -99}, score -97 has place 2 and score
-99 has place 4. For simplicity, I will not say “1st place”, “2nd place”, “3rd
place”, and so on, like people usually do in reporting a game.

BestFirst-Based ordering generation is an initialisation heuristic to be
specific. Its purpose is to construct a set of orderings for ASOBS in advance
of running ASOBS. The key idea is using inversed places. In constructing
an ordering, BestFirst-Based ordering generation selects local structures
according to scores and then add scores to a ranking. The place of each score
will be inversed to acquire a probability, the higher the place, the higher
the probability. The acquired probabilities are then used for generating
orderings.

BestFirst-Based ordering generation might be too complicated to be
used as an ordering improvement strategy. It needs a sorting subroutine, it
involves computing and using probabilities, it requires a cap on maximum
in-degree; and, its “parent set should not contain visited node” condition
is confounding. Its asymptotic time complexity is O(n2k) where k is the
integer specifying the maximum in-degree.
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Using probabilities might be a feasible idea for an initialisation strategy
but not an improvement strategy that aims at improving scores on the run.
Pairing a node with a rank using probabilities may bring conflicts because
two nodes might be appointed to the same rank. For example, a conflict
appears when a node xa had been assigned to rank ri, because it had had
the highest probability to be in ri, but later, xb was also assigned to ri for
the same reason. Certainly, it is possible to mark ri as occupied and let xb
reconsider its position; however, when probabilities are used thus drawing a
rank becomes a stochastic process, the next rank dawn for xb is unnecessarily
not ri, and if xb has the highest probability to be in ri, then there might
be a long wait until xb eventually finds an available rank. As available
ranks run out, conflicts might occur more and more often, compromising the
performance. Another possible counter measure is to reduce the probabilities
of all remaining nodes being paired with an occupied rank to zero. This
might require more computation on the re-normalisation of probabilities.

5.2 A Computationally Simple Strategy

Since optimising an ordering is tricky in ordering-as-queue, it might be better
to forsake the idea. Instead, an algorithm can test a large amount of orderings
then learn some patterns, so there comes the idea of Randomised Pairing
Greedy Weight. It uses inversed places of global scores, but as weights instead
of probabilities. Its purpose differs from BestFirst-Based ordering generation
that it is not an initialisation strategy that generates orderings in advance,
but an improvement strategy that makes improvements on the run. It can
be easily formulated as an anytime algorithm.

An ordering tells nothing about parent-child relationships does not mean
it contains no useful information. Each ordering leads to a score. With a
large amount of orderings tested, one can learn a set of node-rank pairs that
leads to a higher global score.

With n nodes and ranks here are n2 pairs. Each pair will be assigned a
weight computed with inversed average node places of the global scores of
the orderings where that pair has appeared. Pairing a rank with two nodes is
forbidden, thus finding an optimal set of pairs with the highest total weight
might be hard. Pairing will be done in a randomised order with the greedy
strategy. Therefore, I call the strategy and the corresponding algorithm
Randomised Pairing Greedy Weight with the acronym RPGw. That being
said, the algorithm uses the strategy only in half of the cases because it needs
some random orderings to learn from. Next, I will present the algorithm.

The input of the algorithm includes an ordering ≺, a real number
score, which is the score procured by the ordering ≺, a list Ranking where
scores automatically appear in descending order; two tables Frequency and
SumofP laces that records frequencies of pairs and summations of places,
for example, Frequency(xi, rj) = 3 means node xi has been paired with rj
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for 3 times, and SumofP laces(xi)(rj) = 4000 means the sum of the places
of the global scores procured when xi was paired with rank rj is 4000. The
algorithm returns no output, it can only manipulates the data in the input.

In the ordering, rj is the rank of the jth node but which one the jth
node is remains unclear, so notation ∗rj shall represent the jth node. For
example, in the following ordering

r1 r2 r3,. . . ,rn
xb xa xc,. . . ,xd

r1 is the rank of xb but ∗r1 represents xb.

Algorithm 3 Randomised Pairing Greedy Weight
This algorithm is for providing ASOBS with orderings. It manipulates the
data in the input and has no output. The symbol r in this algorithm refers
only to ranks and ∗r is used to represent nodes.
INPUT: a list Ranking, two n by n tables Frequency and SumofP laces,
a real number score, an ordering ≺ of nodes
OUTPUT: None.
1: insert score into Ranking and acquire the place of the score
2: for j = 1, . . . , n do
3: Frequency(∗rj , rj) += 1 . ∗rj is the node paired with rank rj in ≺
4: SumofP laces(∗rj , rj) += place
5: end for
6: initialise coin
7: flip coin
8: if coin shows head then
9: randomly shuffle ≺
10: else
11: initialise a queue of ranks Q = {r1, . . . , rn}
12: randomly shuffle Q
13: initialise list rankless = {x1, . . . , xn}
14: for each rank rj in Q do
15: search a xh in rankless that maximises wxh,rj = Frequency(xh,rj)

SumofP laces(xh,rj)
16: modify ≺ by pairing rank rj with node xh
17: delete xh from rankless
18: end for
19: end if

The algorithm has three major steps as follows.

1. The algorithm inserts score into Ranking, it thus acquires the place of
score. This step takes at most O(l) time where l is the number of scores
(same as the number of orderings tested) in Ranking. (pseudo-code
line 1)
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2. The algorithm uses the place of score and the ordering ≺, which has
full information on current node-rank pairs, to update the two tables.
This step takes at most O(2n2) time. (line 2-5)

3. The algorithm initialises a fair coin then then flips it(line 6-7). If
the coin lands on Head the algorithm randomly shuffles the ordering,
which takes O(n) time using the fastest shuffle algorithm (line 8-9). If
coin lands on Tail, the algorithm proceeds to the following two steps
(line 10-18) :

(a) The algorithm initialises another list of ranks Q called a queue of
ranks and shuffles it randomly. This Q will be used as the queue
for pairing nodes with ranks. The algorithm initialises another list
of nodes rankless to memorise which nodes have not yet gotten
an rank.

(b) For each rank rj from the first in Q to the last, the algorithm
selects the node xh from the node rankless with the biggest
weight. The weight wxh,rj of pair xh-rj can be computed using
the following equation:

wxh,rj = Frequency(xh, rj)
SumofP laces(xh, rj)

(27)

which is actually the inverse average place of pair xh-rj . The
algorithm then deletes xh from rankless. Shuffle takes O(n) and
pairing takes O(n2).

The algorithm takes at most O(3n2 +n+ l) time, giving asymptotic time
complexity O(n2 + l) (the size of the score ranking list is independent of the
number of nodes and it is possible or even more likely to have cases where
n2 < l).

Finally, RPGw joins forces with ASOBS (Algorithm 4). Together they
improve the solutions to OptimalStructure. It is formed as an anytime
algorithm. The input consists of n caches and a time limit t. The output is
a list G of local structures that constitute a global structure.

The combined algorithm can be easily parallelised. If there are multiple
processors available, each processor can run an instance of ASOBS using an
ordering provided by RPGw. After finishing the test of an ordering, RPGw
processes the result and provides a new ordering for the next test.

5.3 A Controlled Experiment on Ordering Strategies

It had been reported that “randomly generated ordering” was the recom-
mended strategy [45]. Therefore, generating random orderings would have
been served as the control group.

36



Algorithm 4 ASOBS+RPGw Combined Algorithm
This algorithm combines ASOBS and RPGw as a system that handles
OptimalStructure. Function ASOBS is Algorithm 2 and Function
RPGw is Algorithm 3
INPUT: caches C1, . . . , Cn
OUTPUT: a list G of local structures that consists a global structure
1: initialise time which records the time passed
2: initialise local structure lists G, S
3: initialise score list Ranking
4: initialise n by n tables Frequency and SumofP laces
5: initialise ordering ≺
6: initialise score, topscore = −∞
7: while time < t do
8: S = ASOBS(caches,≺)
9: score = the summation of local scores saved in S

10: if score > topscore then
11: topscore = score
12: G = S
13: end if
14: RRGw(score,Ranking, Frequency, SumofP laces,≺)
15: end while
16: return G

Algorithm 5 ASOBS using randomly generated orderings
This algorithm uses random orderings and ASOBS to compute solutions for
OptimalStructure. Function ASOBS is Algorithm 2.
INPUT: caches C1, . . . , Cn
OUTPUT: a list G of local structures that consists a global structure
1: initialise time which records the time passed
2: initialise local structure lists G, S
3: initialise ordering ≺
4: initialise score, topscore = −∞
5: while time < t do
6: S = ASOBS(caches,≺)
7: score = the summation of local scores saved in S
8: if score > topscore then
9: topscore = score
10: G = S
11: end if
12: randomly shuffle ≺
13: end while
14: return G
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The experiment was about comparing“ASOBS+RPGw” (Algorithm
4) with “ASOBS+random ordering” (Algorithm 5). The objective was
to compare their aptitudes for improving scores and their highest scores
achieved within a given time limit.

The software and hardware environments were identical for both groups.
The software—Balestasis10 used for the experiment had a complete imple-
mentation of all algorithms needed for the experiment, and it was running
in experiment mode during the experiment. The hardware environment in-
cluded a Virtualbox virtual machine running 64bit Linux, which was hosted
by a personal computer with an AMD 8-core CPU. The virtual machine had
access to all physical cores and 9600 Megabyte of random access memory.

Table 1 shows the experiment settings. The experiment had involved 6
data sets 11 from 5 Bayesian networks of different backgrounds and com-
plexities. They were: Alarm [5], ANDES [13], Diabetes [2], Munin [3],
Random2000-4-5000 (abbreviated as Rand2K in Table 1) [39]. Unfortunately,
it was unclear whether the experimental data were following the assumptions
required by metric BIC. However, this could not have affected the validity
of the experiment results since ASOBS and RPGw do not take raw data as
their input.

For each data set, the experiment software had first produced caches using
Insightful Searching. The implementation in the software was slightly different
from the original algorithm in the pre-pruning condition s∗+ lnN

2 (oi−1) ·q 6
min{ηxi , ηΠ′ , η{x′}} where there was no N multiplier. This could not have
affected the validity of the results because Insightful Searching had been
the same for both groups. The non-strict time limit (Table 1 Time limit
CC column) on cache production was 5 seconds per node (actual running
times could have been less than 5 seconds) for all data sets, except “Rand2K”
where the limit was 60 seconds (actual running times were around 77 seconds,
the last rounds of searching had started within the limit but finished 17
seconds later).

After cache construction, the software ran “random ordering + ASOBS”
and “ RPGw + ASOBS” each for 3 times. The strict time limit (Table 1
Time limit OS column) was the same for each run of the same data. These
time limits had been set so that they roughly scaled according to the network
sizes, which had assured that there would have been enough time for each
run to test enough orderings. These time limits were strict meaning only the
orderings that were found within the limits would have been saved.

Results were plotted as graphs (Figure 5). In the graphs, x-axes are scales
for the number of orderings tests. The reason for this presentation is, on the
one hand, time scales of testing orderings (the unit is second per ordering)

10 Currently available at Sourceforge https://sourceforge.net/projects/balestasis/
11 Alarm (10000 instances) and Diabetes (1000 instances) data sets were acquired

from https://www.cs.york.ac.uk/aig/sw/gobnilp/data/; Andes, Diabetes (5000 instances),
Munin, Random2000-4-5000 data sets were acquired from http://blip.idsia.ch/jobs/supp/
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Table 1: Experiment Settings

Network Network specifications #Instances Time limit(s)

n #θ MID N CC OS

Alarm 37 509 4 10000 5 8
ANDES 223 1157 6 5000 5 128
Diabetes 413 429409 2 1000 5 320
Diabetes 413 429409 2 5000 5 320
Munin 1041 80592 3 5000 5 1800

Rand2K 2000 ? 4 5000 60 3600
Symbol n stands the number of nodes and #θ the number of parameters.
“MID” stands for max in-degree of the network. Symbol N stands for the
number of instances. Column CC shows the per node time limits (not strict)
for running Insightful Searching and column OS the time limits (strict) for

running ASOBS+RPGw or ASOBS+random ordering strategy.

Table 2: Experiment Results

Network ASOBS+RPGw ASOBS+Random

Avg. #≺ Avg. score Avg. #≺ Avg. score

Alarm 63753 -106187 190217 -106194
ANDES 207388 -573938 1767648 -576290

Diabetes(1k) 296630 -556488 2138844 -559261
Diabetes(5k) 297630 -3966413 3327682 -3977037

Munin 215512 -5001171 2266433 -5040984
Rand2K 93692 -9506640 275027 -9542713

There were 3 runs for each setting. “Avg. #≺” stands for the average
number of orderings tested and “Avg. score” stands for the average score.
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had a huge range—-from 0.000001s/o to 0.1s/o and it was inconvenient to
track events happening in microseconds; on the other hand, computation was
supposed to concentrate on ASOBS, because ASOBS has O(zc) asymptotic
time complexity (z stands for the sizes of caches, which are exponential of
n in worst cases) while ordering strategies has O(n) (random) or O(n2 + l)
(RPGw); therefore, the amount of orderings tested should be adequate as a
speed indicator.

Figure 5: Experiment results plotted as graphs where RPGw (triangles) is
shown being able to learn from existing solutions in order make improvements.

RPGw is slower than random shuffling. Therefore, given the same set
of caches and time limits, RPGw cannot test as much ordering as random
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shuffling. However, as Table 2 shows, ASOBS+RPGw had achieved higher
scores with the same time limits in all settings in this experiment.

In the graphs (Figure 5), every point represents an event where an
improvement occurred. For example, a point (1000, -106200) suggests an
improved score -106200 were found at approximately the 1000th ordering
tested. If readers want to find out roughly the time used to reach an
improvement, it can be calculated this way: calculated the average speed of
testing orderings then used the speed value and a point in the plot to figure
out the time used for achieving the improvement that point is representing.
For example, if point (1000, -106200) represents an improvement by RPGw
achieved at the 1000th ordering tested, the average ordering testing speed
is roughly 64000/8 = 8000 (orderings per second), then the time used is
roughly 1000/8000 = 0.125s. (Beware of the inaccuracy of this estimation!)

The graphs show that RPGw indeed had a stronger tendency toward
making improvements. It had improved scores faster and more frequently
(triangular dots are denser) once it had started picking patterns out of pro-
cured solutions. As a contrast, randomised ordering strategy was susceptible
to stagnation.

6 Finale

6.1 Conclusion

In this thesis. I have shown essential theories and fast heuristics for learning
Bayesian networks. Among those, there are two algorithms, Insightful
Searching and ASOBS, that have brought two ideas into the picture: guided
search and ordering-as-queue, the latter of which remains deficient in apt
ordering strategies. In hope of complementing the set of heuristic algorithms
for fast learning, I proposed Randomised Pairing Greedy Weight strategy
with an algorithmic implementation, which has brought more or less potential
for further advancement—nothing but small steps.

6.2 Discussion

Now there is a set of heuristic algorithms that learns Bayesian networks
from raw data pretty fast. For what can it be used? Its results are not
accurate or precise enough for reliability-critical applications but it might
be useful in some time-critical applications, for example, robotics or video
game AI. The current set misses the component for handling incomplete
data sets. If anyone were to fill this gap, it would have had more practical
usages. Networks learnt from raw data might not be directly applicable to
real-world applications, but they can be used as references for more accurate
and precise learning approaches. For example, networks learnt from raw data
may be used for deriving prior probabilities required by Bayesian metrics.
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Table 3: Fast Learning by Insightful Searching+ASOBS+RRGw

Network Input BIC score and gap Time(s)

n N solution optimal gap

Alarm 37 1000 -11943 -11783 1.4% 1.11
Mildew 35 1000 -59048 -57238 3.2% 3.90
Water 32 1000 -14053 -13290 5.7% 1.00

At last, it can be used for learning networks of “thousands of variables” [39],
which is its original purpose.

6.3 Outlook

There is still much to be done. The entire algorithm set may become truly
useful after acquiring the capacity for handling incomplete data sets. Using
orderings as queues is in its early stage and requires more research. When
more apt ordering strategies are developed for an ordering-as-queue algorithm
such as ASOBS, we may expect a toe-to-toe competition between ordering-
as-queue and ordering-as-constraint factions. RPGw is a simple yet primitive
strategy - it has space for improvement. For example, using a fair coin might
not be the best choice.

At last, I am going to present a few more results (Table 3). These results
are not from a controlled experiment and hence have little scientific value.
They serve more as a demonstration.

Table 3 shows the performance of Insightful Searching, ASOBS [39], and
RPGw implemented in Balestasis software as a complete Bayesian network
learning system for learning three networks: Alarm [5], Mildew12, and Water
[24]. The running time column show the time taken from issuing learning
commands to the completion of encoding Bayesian networks (parameters
estimated) as files saved on the disk drive. The BIC scores were compared
with known optimal scores13 solved by Gobnilp[16, 17, 42] using caches
constructed during another work [4]. This was achieved with a personal
computer of 2017. After improvement, refinement and proper implementation,
the algorithms presented in this thesis may eventually help develop strong
artificial intelligence. A robot may be able to reveal dependencies and
perform inference with merely a quick glance.

12 Developed by Finn V. Jensen, Jørergen Olesen, and Uffe Kjærulff.
13 Optimal scores are available at https://www.cs.york.ac.uk/aig/sw/gobnilp/
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