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1 Introduction

With the rapid development of data collection techniques, the amount, source and
complexity of data receive explosive growth. One of the most thorny issues based on
such “big data” is how to extract and to analyze the essence of data escaping from the
data redundancy which commonly appears as too-high observation dimensionality.
Dimension reduction techniques have thus been drawing increasing interests since
they are capable to significantly reduce the difficulty for following research processes
in many science domains such as data visualization, exploratory analysis and multi-
perceptron training.

Relying on a simple assumption that, data points in high dimensional space exactly
or approximately lie on a lower dimensional manifold embedded in the high dimen-
sional space, a series of dimension reduction methods have been proposed. Principal
Component Analysis (PCA) [Hot33] considers a linear or approximate linear global
manifold and project the high dimensional data points to the axes that will max-
imize the variance. For its simplicity and efficiency, PCA is regarded as the most
popular dimension reduction method in decades. However, restricted by its linear
nature, PCA does not perform well in coping with the complicated high dimensional
manifold [vdM09]. To overcome this drawback, novel algorithms were proposed from
a non-linear view, not the same as PCA with linear matrix transformation and pro-
jection.

Multidimensional Scaling (MDS) [Tor52], which attempts to preserve the distances
in high dimensional space, allocates the low dimensional coordinates to minimize the
difference between the pairwise distances in both high and low dimensional space.
Sammon mapping [Sam69] adds higher weights on closer pairwise data points based
on the MDS cost function. Isomap [TDSL00] makes further improvement to retain
the manifold by replacing the direct Euclidean distance in MDS with the geodesic
distance after importing the k nearest neighbor graph to represent the manifold.
Local Linear Embedding (LLE) [RS00] develops a coordinate-free route to seek the
best matching of high and low configurations, based on the weighted “neighborhood”.
Other methods like Maximum Variance Unfolding (MVU) [WS06], Self-Organizing
Map (SOM) [Koh98], Laplacian Eigenmap (LE) [BN01] and so on all illustrate
insightful comprehension on dimension reduction.

Meanwhile, conventional non-linear dimension reduction methods have one or more
drawbacks. For instance, MDS and Sammon mapping are expensive to optimize and
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easily getting stuck at poor local optima; LLE encounters the collapse problem and
it’s cumbersome to deal with the outliers [LV07].

Later Hinton and Roweis proposed a non-linear dimension reduction method, Stochas-
tic Neighbor Embedding(SNE) [HR02], to produce a better dimension reduction
performance. It soon receives great popularity since it outperforms most of the di-
mension reduction approaches with plenty of following variants including Symmetric
SNE, Student t-distributed SNE [vdMH08] and weight symmetric SNE [YPK14] etc.

We study the NE framework and focus on weighted t-SNE which has not been
further discussed to evaluate its performance in data visualization. Meanwhile,
current conventional non-linear dimension reduction and visualization software tools
can not provide satisfying results. For us, it will be meaningful to develop an NE
package in statistic software, R, to achieve the scalability, efficiency and simplicity of
NLDR implementation. Conventional MDS algorithms are taken as the counterpart
of NE for the performance comparison, not only because of its popularity, but also
for Hinton’s interpretation of SNE as a probabilistic version of local MDS. Multiple
typical datasets in machine learning are utilized for the result evaluation. The
corresponding results clearly demonstrate the advantages of the proposed method
and software.

This thesis is outlined as follows. We review the NE framework and critical details
in Section 2. The optimization techniques are discussed in Section.3, following
a time line of its development. Section.4 explains the algorithm implementation
in R covering both R and C++ level. Section.5 introduces the datasets used in
experiment and illustrates the results visualization of NE and MDS. Conclusion and
discussion for future work are contained in Section 6.

2 Neighbor Embedding

In this section, we make a detailed introduction to neighbor embedding (NE) method
starting from presenting the most prevalent non-linear dimension reduction method,
MDS in Section 2.1. The framework of the original stochastic neighbor embedding
(SNE) method is introduced in Section 2.2. Later parts cover multiple components
managing to improve the performance of NE methods. Section 2.3 discusses the
techniques to characterize the high dimensional probabilities. Divergences and low
dimensional probabilities are introduced in Section 2.3 and 2.4 respectively.
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2.1 Multidimensional Scaling

Multidimensional Scaling (MDS) is a popular dimension reduction technique which
takes proximity data as input, containing the information of dissimilarities between
high dimensional pairwise data points. Conventionally, the proximity or dissimilarity
is expressed as distance of which the selection may form multiple variants of the MDS
method.

In general, MDS attempts to achieve a goal that, given the high dimensional data
points X = {x1,x2, · · · ,xN} ∈ Rk, obtain the mapped (configuration, embedding)
points y1,y2, · · · ,yN in low dimensional space Rd that would optimally maintain
high dimensional dissimilarities.

The original or the classical MDS was proposed by Togerson [Tor52]. Meanwhile,
classical MDS has a more complicated cost function named Strain based on the inner
products of low dimensional mappings 〈yi, yj〉 and requires a two-step transformation
process to utilize the information. Kruskal in 1964 developed the leading MDS
algorithm, a non-metric MDS [Kru64] which has a more trivial interpretation. The
main gap between these two methods is the setting of cost function. The leading
MDS has a cost function called Stress with the form

E = StressD(y1,y2, · · · ,yN) =
∑
i

∑
j

(dist(xi,xj)− ‖yi − yj‖)2

where dist(xi,xj) is commonly picked as a monotonic function to describe the high
dimensional dissimilarity. The dimension d for the low dimensional space is usually
set to d = 2 or d = 3 in order to operate the data visualization.

MDS variants can be divided into two subsets by either the high dimensional dissim-
ilarity measure or the low dimensional mapping description. For high dimensional
pairwise data points xi and xj, the dissimilarity can be metric or non-metric, where
for instance non-metirc applies the ranks. Meanwhile, low dimensional mapping
may take the Togerson inner products or Kruskal distance as a low dimensional dis-
tance measure. Buja et al. discussed further for the topic and gave the more general
forms of both metric and non-metric families including the power transformation
for metric MDS and isotonic transformation for the non-metric [BSL+08].

Although MDS overall produces popular output, it still has flaws. Two main types
are that (1) close data points in high dimensional space are mapped far apart in
low dimension, (2) dissimilar, far apart high dimensional data points are put closely
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in low dimension. Venna and Kaski defined these phenomenons as trustworthy and
continuity [VK06]. For MDS, multiple variants have been proposed to overcome or
reduce these mismatch.

Venna and Kaski proposed local MDS [VK06], which is inspired by another MDS
variant, curvilinear component analysis (CCA) [DH97], to improve the MDS perfor-
mance by seeking a balance between trustworthy and continuity. The cost function
of local MDS is as follows

E =
1

2
[(1− λ)(d(xi,xj)− d(yi,yj))

2F (d(yi,yj), σi)

+ λ(d(xi,xj)− d(yi,yj))
2F (d(xi,xj), σi)]

, (1)

where

F (d(yi,yj), σi) =

{
1 if d(yi,yj) ≤ σi

0 if d(yi,yj) > σi
.

Coefficient F represents the the influence zone of one data point in the low dimen-
sional space while σi would be adjusted for a certain containment. Parameter λ can
be tuned to achieve the optimal tradeoff between trustworthy and continuity. The
two parts of the cost function penalize the two kinds of mismatch respectively in
order to obtain a global balance of attraction and repulsion among the data points.
This reveals a significant similarity with NE framework.

In addition to mismatching, the optimization process also annoys the MDS users.
Classical and distance MDS just implement the simple straightforward gradient de-
scent methods to minimize the cost function which usually leads to a poor local
optima. A plenty of improvements were developed including random initialization
of output coordinates and stochastic gradient descent technique. Klock and Buh-
mann modified the annealing approach for the optimization task and receive satis-
fying result [KB00]. Such efforts just indicate the critical role for the optimization
techniques in dimension reduction practical work.

2.2 NE framework

Stochastic Neighbor Embedding (SNE), which applies the neighborhood among high
dimensional data points and emphasizes the local structure preservation, broadens
a new horizon for the dimension reduction techniques. A general comprehension
of NE is optimizing a divergence between neighborhoods in the input and output
spaces.
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In the original SNE algorithm, different from MDS using distance functions to eval-
uate the pairwise data points similarity, a conditional probability is chosen to assess
the probabilistic similarity between xi and xj meaning that conditional on point xi,
how probable the point xj will be chosen as xi’s neighbor representing the neigh-
borhood relation.

The conditional probability for high dimensional data point xi picking xj as neighbor
has the form of

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )

and
pi|i = 0.

SNE considers that the conditional neighborhood probabilities have already pro-
vided sufficient information to capture the embedded manifold in high dimensional
space. With the construction of high dimensional probabilities, the corresponding
low dimensional probabilities have an analogous form that

qj|i =
exp(−‖yi − yj‖2)∑
i 6=k exp(−‖yi − yk‖2)

and again
qi|i = 0,

where yi and yj are the mapped points of xi and xj respectively.

Now suppose that if the relation between xi and xj in high dimensional space is well-
preserved in low dimensional space by yi and yj, then the difference between pj|i and
qj|i should be infinitesimal. SNE takes advantage of Kullback-Leibler divergence as
the criterion to evaluate the goodness of preserving such relation and manifold. The
cost function of SNE is

C =
∑
i

KL(Pi‖Qi) =
∑
i

∑
j

pj|i log
pj|i
qj|i

in which Pi denotes all the conditional probabilities given data point xi and Qi

denotes the corresponding probabilities given yi in low dimensional space. In the
other word, for every pj|i, SNE attempts to find a qj|i as close as possible respectively.
Since the cost function developed from Kullback-Leibler divergence is asymmetric,
trustworthy and continuity defined in Section 2.1 are not equally preferred. In SNE,
trustworthy that close data points in high dimensional space are mapped far apart
will cause a high cost while continuity only brings a comparably very small cost
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due to the log term in the cost function. This indicates that SNE focuses more on
preserving the local structure of the manifold embedded in the high-D space.

SNE implements straightforward gradient descent method to minimize the cost func-
tion where the gradient has a form of

δC

δyi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj).

This gradient has a trivial physical interpretation as the composition of forces among
data points [HR02]. The interaction between pairwise data points can be simulated
by a spring giving a force as either attraction or repulsion depending on spring
extension which is yi − yj. Simultaneously, pj|i − qj|i + pi|j − qi|j determines the
stiffness of the spring. If p > q, points yi and yj will be attracted together. On the
contrary, p < q indicates that yi and yj will be repelled further.

As the earliest version in NE algorithm, SNE outperforms almost all the conventional
dimension reduction techniques. However, SNE still exposes several drawbacks such
as complexity in optimization and crowding problem in output. A series of vari-
ants inspired by SNE have been proposed with modification on different portions
of SNE framework like the selection of low-D probabilities and further divergence
exploration.

2.3 Similarity

NE methods replace distance functions with probabilities to represent the similari-
ties among high-D data points and low-D mapped points. The original SNE chooses
a Gaussian distribution for both pj|i and qj|i calculated by the exact value of vector
elements for vectorial data form. However, such Gaussian kernel yields huge com-
putation expense due to the exponential term especially when the size of dataset
is large. In fact, suppose two points i and j are excessively far apart in high-D
space, the probability for i and j being neighbors will be extremely small meaning
that evaluating every pairwise relations of high-D data points is not essential. Only
the points satisfying a threshold of “neighborhood” will be taken into the considera-
tion for similarity calculation. This scheme is achieved by constructing a k nearest
neighbor graph to significantly simplify the computation.
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2.3.1 k Nearest Neighbor Graph

k-Nearest Neighbor Graph(kNNG) [PS12] is developed from the classical k-Nearest
Neighbor algorithm by adding a process of graph construction. Consider n objects
existing in the space as a set P . For vertices pk and pj in P , evaluated by a certain
kind of metric such as Euclidean distance or cosine distance, if the distance between
pk and pl is among the kth smallest distances from pk to all the other vertices,
then pl is one of the k nearest neighbors of pk. Adding an edge between pk and
pl to represent such neighborhood, the k-Nearest Neighbor Graph is constructed if
all the corresponding edges are connected. Though kNN is commonly considered

as a classifier algorithm in machine learning, it also makes a great contribution
in reducing the complexity and expense of computing the SNE probabilities. The
scheme of preserving only the close neighbors naturally matches the emphasis of
local structure in SNE method. The implementation of kNN graph displays three
obvious advantages that are

1. The local structure gains better accuracy by removing the possible interactions
too far away.

2. The computation acquires better scalability. With only nearest neighbor
points reserved for a certain data point, it is simple to sparsify the data matrix
and utilized high performance methods for sparse matrix.

3. A variety of efficient and matured algorithms have been developed to generate
kNN graph, also available for big dataset.

These advantages motivate NE users to implement kNN graph for improvements
with a series of accessible construction methods. The most naive way to construct a
kNN graph is by brute forces which means for point pk , pick the k points with 1st
to kth smallest distances towards pk after calculating the pairwise distances between
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ALL pairwise data points. In most cases, it is not possible at all to carry out such
computation since it has a complexity at least O(N2). Thus efficient algorithms for
kNN graph construction are critical.

Nowadays, popular methods of kNN graph construction in general can be divided
into three schools that are space-partitioning trees, local sensitive hashing and neigh-
bor exploring techniques. We focus on introducing the most common-used and ma-
tured school, the space-partitioning tree school with subgroups as exact tree and
approximate tree.

2.3.1.1 k-Dimensional Tree

k-d tree [Ben75] is a binary tree with each node being a k dimensional data point.
Each non-leaf node can be regarded as a hyperplane that bisects the space of the k
dimensional dataset. Also every node in the tree corresponds to a hyperrectangle in
the space.

The idea of constructing the k-d tree is similar to the binary search tree while there
is a difference in how to decide the child node that one single data point belongs
to. k-d tree manipulates the bisection due to certain dimensions D with greatest
variances in order to perform the best separation. That is to choose one dimension
Dk at a time, then divide the k-dimensional space with a hyperplane vertical to
dimensional Dk. Values of all the k dimensional data points at one side of Dk are
smaller than the ones on the other side. Doing such bisection recursively, the k
dimensional space will be divided into smaller subspaces corresponding to deeper
nodes in the tree until no more bisection can be done meaning that we have reached
the leaf nodes. Two main questions of the k-d tree construction still remain (1) on
which dimension should we do the bisection and (2) how can we ensure that the
amounts of points in the two subspaces are equal or close.

The first one is done by doing the bisection on the dimension with max variance.
Before starting the recursive process, we can calculate the variance of every dimen-
sion and then sort. After that, following the sequence of dimensions with variances
from great to small, the recursive bisection can be done. And the second question is
solved by locating the bisection hyperplane vertical to the manipulated dimension
just at the median of values at this dimension. This attempts to construct a more
balanced tree. Figure 1 illustrates a simple example of k-d tree construction in a 2D
plane.
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Figure 1: k-d Tree Construction on 2-D plane

And the pseudo code for the construction is as follows
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Algorithm 1: k-d tree construction pseudo codes
Data: Dataset; Space
Result: k-d Tree

1 if Null Dataset then
2 Return null k-d tree;
3 else
4 1.Dimensions for Bisection: Calculate the variances of data on each dimension

and sort;
5 2.Bisection location: Sort the dataset by the value of kth dimension, pick the

median as the location for bisection on this dimension;
6 3.Start form the dimension with largest variance and its median;
7 while Subspace able to be bisected = TRUE do
8 Left_tree<- points that value smaller than the median on dimension;
9 Left_space<- space smaller than the median on located dimension bisected

by hyperplane;
10 Right_tree<- points that value greater than the median on dimension;
11 Right_space<- space greater than the median on located dimension

bisected by hyperplane;
12 Move to next bisection location;

13 end

14 end

2.3.1.2 Vantage Point Tree

Though k-d tree has the advantage of being simple to construct, it is only feasible
when the dimension is moderately high (usually k < 20). Because the depth of
the tree expands fast, it becomes difficult to find a good bisecting dimension if the
space dimension is high. Ball tree is suggested to overcome such drawback using
a hypersphere as one node containing a set of data points. However, it still relies
on the exact coordinates to determine the space splitting. A further step is called
vantage point tree (VP tree) [Yia93] taking only the distances into consideration
which brings much convenience in the tree construction.

The route to split the space of dataset is similar to k-d tree but not achieved by
splitting the space on certain dimensions. In VP tree, one data point (can be
randomly picked) is selected to be the vantage point, also the root node. then the
distances from the vantage point to all the other points are computed. And the space
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is divided into two parts due to the distances. The general process to construct a
VP tree is as follows.

1. Select point v as vantage point.
2. Compute the distance Di from other point xi to v.
3. Compute the median M of Di, allocate points with distance < M to

left child branch and others to right child branch.
4. Recursively build left and right branch until leaf nodes reached.

Figure 2: VP splitting illustration

2.3.1.3 Approximation Tree

VP tree improves the performance of kNN graph construction. However the dis-
tances are still based on the exact computation which brings much numerical work
hard to tackle. A natural perspective is to replace the exact methods with approxi-
mate ones so that datasets with much higher dimension can be coped with.

Recent years multiple prevalent approximation methods for kNN graph construc-
tion have been proposed such as FLANN [ML14], KGraph [DML11] and LargeVis
[TLZM16]. These methods have various starting points. FLANN is a popular library
consisting of a series of algorithms for fast kNN construction. It mainly implements
the k-d tree but emphasizes the local or nearest nodes by some random techniques
like random projection tree. Such randomization and local emphasis lessen the com-
putation burdens caused by those far and less important neighbors. KGraph applies
a delicate idea that “he neighbor of my neighbor is more likely to be my neighbor”.
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After randomly picking a small subset of data points, a neighbor graph is developed
by expanding from each of the data point within the subset. Repeating the process
we will obtain a global kNN if we compare and merge the generated graphs together.
LargeVis also gets inspiration from Kgraph. kNN graph is constructed in two stages.
First step is to do a space splitting by random projection tree obtaining a rough
kNN graph. Then, with the concept of "neighbor of my neighbor", implement the
neighbor exploring techniques to improve the tree.

In summary, by constructing kNN graphs, the number of pj|i we need to compute
is greatly reduced. Dealing with large datasets is a complicated procedure, and
efficiency is always critical in every phase.

2.3.2 Entropic Affinity

Notice that in original SNE, pj|i’s Gaussian kernel has a specific variance according
to data point i and variance of qj|i is set to 1

2
over all low-D points. To interpret

this intuitively, we assume variance σi being the radius of a hypersphere centered at
point xi containing a certain number of neighbors, suppose k neighbors. From a view
of information theory, a hypersphere holding more points contains higher entropy
which means that together with its neighbors, xi contains more information. To
ensure all the high-D points have equal entropy, the variance of each point need to
be properly tuned. In the zone where points are densely accumulated, σi should
be comparably small while in sparse zone, the variance should be large. Thus an
outlier may lead to a Gaussian kernel approximate to a uniform distribution with
too large variance.

SNE adopts the concept Perplexity as the parameter to control variance which is
the measure of entropy within neighborhood conditional on a data point. For the
probability distribution P (i) of data point xi specified by variance σi, perplexity
Perp(Pi)is defined as

Perp(Pi) = 2H(Pi)

where H(Pi) is the bits-measured Shannon entropy of Pi with the form

H(Pi) = −
∑
j

pj|i log2 pj|i.

van der Maaten [vdMH08] interprets perplexity as it smoothly determines how many
neighbors of a certain data point are effective.



13

In fact, with determined perplexity, the calculation of σi is expensive and tricky.
Hinton & Roweis [HR02] achieved an interval starting from [0, 1] via searching tech-
niques that are inefficient with large dataset. Vladymyrov & Carreira-Perpinán
proposed an efficient algorithm for the computation of entropic affinity, a more
generalized comprehension of σi [VCP13].

To introduce the entropic affinity, we start from a another perspective by Carreira-
Perpinán [VCP13]. For a given set of finite data points x1, · · · , xN in space Rd, the
conditional probability of xi choosing xj is

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )

Now with fixed xi, consider this probability as a function of input point x given the
scale parameter a.k.a width, σ. The probability can be rewritten as

pi(x;σ) =
K(‖x−xi

σ
‖2)∑N

k=1K(‖x−xk
σ
‖2)

=
K((di

σ
)2)∑N

k=1K((dk
σ

)2)

where dk = ‖x− xk‖. SNE is a special case that K is a Gaussian kernel.

With such transformation, the entropy H(x, σ) of pi(x;σ) is expressed as a function
of d1, · · · , dN

H(x, σ) =−
N∑
i=1

pi(x;σ) log pi(x;σ)

−
N∑
i=1

pi(x;σ) logKi + log
∑
i

Ki

(2)

In particular, the Gaussian kernel has the form

H(x, β) = β

N∑
i=1

pi(x; β)d2i + log
N∑
i=1

exp(−d22β)

where β = 1
2σ2

If we set a specific σk value for each data point xk to ensure entropy of each point
equalling to logK set by user, the corresponding pi(x;σ) can be implemented as
affinity between x and xi. Such pk(x;σ) values are entropic affinities for that the
affinities are sought by aligning the point-specified entropy.

With a clear definition, the problem of searching for point-individual σ or β is
transformed into a 1-D root finding problem of the equation

F (x, β,K) := H(x, β)− logK = 0
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with given perplexity K.

Vladymyrov and Carreira-Perpinán gave an explicit solution for the lower and upper
bound of β as

βL = max(
N log N

K

(N − 1)∆2
N

,

√
log N

K

d4N − d41
)

βU =
1

∆2
2

log(
p1

1− p1
(N − 1))

where p1 can be obtained by solving

2(1− p1) log
N

2(1− p1)
= log(min(

√
2N,K))

taking the solution within interval [3
4
, 1].

For each point, the complexity of searching for the bounds is O(1), and the total
cost is of O(N). A scalable and efficient algorithm is proposed by Vladymyrov and
Carreira-Perpinan. For proofs and algorithm details, see [VCP13].

2.4 Divergence

In general, NE methods achieve the dimension reduction by minimizing the dis-
crepancy between similarities among high dimensional data points and those among
low dimensional mapped points. Technically, the minimization is carried out by
optimizing the information divergence between neighborhoods of the input high-D
and output low-D spaces. Two major classes of NE methods are 1) combining a
non-separable divergence with normalized neighborhoods, e.g SNE; 2) combining
a separable divergence with non-normalized neighborhoods, e.g Elastic Embedding
[CP]. The definition of above separable divergence is a divergence as the sum of
pairwise terms where each term is only determined by the locations of one pair of
data points. Whether a divergence is separable results in different properties in NE
objectives[YPK14]. Separable divergence makes NE cost functions easier to design
and optimize while harder to resolve the tradeoff between the attraction and repul-
sion. On the other hand, non-separable based objective functions are scale invariant
and simpler to determine the tradeoff while the optimization will be cumbersome.
The main divergence families of both classes will be introduced in the following
part. Also a theorem which proves the optimization equivalence between separable
and non-separable divergences is displayed. It provides a guideline of divergence
selection and optimization.
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2.4.1 Divergence Family

Divergence D(P‖Q) a.k.a information divergence is defined to measure the discrep-
ancy between probability distribution P andQ with basic properties thatD(P‖Q) ≥
0 and D(P‖Q) = 0 iff P = Q. The concept can be promoted to more generalized
form like tensor or matrix. There are four important divergence families α, β, γ and
Rényi with abundant variants covering a lot of applications and they are defined as

Dα(P‖Q) =
1

α(α− 1)

∑
i

[pαi q
1−α
i − αpi + (α− 1)qi]

Dβ(P‖Q) =
1

β(β − 1)

∑
i

[pβi + (β − 1)qβi − βpiq
β−1
i ]

Dγ(P‖Q) =
ln(
∑

i p
γ
i )

γ − 1
+

ln(
∑

i q
γ
i )

γ
− ln(

∑
i piq

γ−1
i )

γ − 1

Dr(P‖Q) =
1

r − 1
ln(P r

i Q
1−r
i )

where pi and qi are non-normalized probability entries of P and Q respectively and
Pi = pi/

∑
k pk as well as Qi = pi/

∑
k qk are normalized ones. These families of

divergences contains multiple most popular divergences in machine learning such as

normalized Kullback-Leibler divergence

DKL(P‖Q) =
∑
i

Pi ln
Pi
Qi

transformed from Dr with r → 1 or Dγ with γ → 1

non-normalized Kullback-Leibler divergence

DI(P‖Q) =
∑
i

(pi ln
pi
qi
− pi + qi)

transformed from Dα with α→ 1 or Dβ with β → 1

Itakura-Saito divergence

DIS(P‖Q) =
∑
i

(
pi
qi
− ln

pi
qi
− 1)

transformed from Dβ with β → 1

Other special cases include Euclidean distance(β = 2), Chi-square divergence(α = 2)

and so on. All these variants of divergences play critical roles in multiple research
fields for instance DKL is popular in text processing and DIS is common in audio
signal analysis.
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2.4.2 Optimization Equivalence

The four major divergence families have clear pros and cons that meet the distinct
preferences depending on the implemented algorithms. α and β divergences are
separable divergences that are easy to obtain their derivatives indicating a mathe-
matical and computational simplicity in design and optimization for stochastic or
distributed computation. However, by the nature of additive terms, the separable
divergences are rather sensitive to the scale of P and Q. On the other hand, the
non-separable ones, γ and Rényi divergences, are scale invariant which is desirable in
various algorithms due to the log terms. However being non-separable brings extra
difficulty in optimization since the entries are messed together and it is also hard to
transform the divergence into a variant because of the complicated functional form.

Early research mainly concentrated on the internal relationships inside one family
rather than the relationships between two divergence families. Yang and Peltonen
proposed an optimization equivalence revealing the inter-relationships that connect
the four divergence families.

Theorem 1. [YPK14] For pi ≥ 0, qi ≥ 0, i = 1, · · · , N and τ ≥ 0,

arg min
Q
Dγ→τ (P‖Q) = arg min

Q
[min
c≥0

Dβ→τ (P‖cQ)]

arg min
Q
Dr→τ (P‖Q) = arg min

Q
[min
c≥0

Dα→τ (P‖cQ)]

The scalar c has an optimal value with closed form as

c∗ = arg min
c
Dβ→τ (P‖cQ) =

∑
i piq

τ−1
i∑

i q
τ
i

c∗ = arg min
c
Dα→τ (P‖cQ) = (

∑
i p

τ
i q

1−τ
i∑

i qi
)

1
τ

with a special case c∗ = exp(−
∑
i qi ln(qi/qi)∑

i qi
) for α→ 0. The proof is done in [YPK14]

and such equivalence holds for both global and local minima. The following propo-
sition ensures the property

Proposition 1. [YPK14] The stationary points of Dγ→τ (P‖Q) and Dβ→τ (P‖cQ)],
as well as of Dr→τ (P‖Q) and Dα→τ (P‖cQ)] in Theorem 1 are the same.

Theorem 1 and its proposition give us large flexibility by taking advantages of both
separable and non-separable divergences. When constructing a cost function for a
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certain algorithm by modifying a divergence, separable divergence will be a start
line with optimization and weighted techniques inserted. Then turn to the non-
separable form to achieve the scale invariant property. For an optimization task, we
can transform the problem to its corresponding separable counterpart for simplicity
and efficiency. Hinton used a physical graph of springs-net to describe the tradeoff
based on force-directed idea [HR02]. While Theorem.1 produces a mathematical
explanation for the attraction and repulsion tradeoff, displayed as c, that c is ad-
justed during the optimization process inside the separable divergence just in order
to make the divergence perform a scale invariant property like a non-separable as
good as possible [YPK14].

2.5 Selection of q

As mentioned in NE framework, the original SNE encounters two main drawbacks
that are optimization complexity and crowding problem, very common in dimen-
sion reduction research. Hinton reported that seeking an embedding of only 3000
data points will cost several hours with steepest descent method which is intolera-
bly expensive [HR02]. This is mainly caused by both the design of low dimension
probability q and the optimization framework [vdMH08]. Starting from the design
of q, great effort has been put into finding the optimal q expression.

2.5.1 Symmetric SNE

The first step is done by replacing the conditional probability qj|i with a joint prob-
ability qij in low dimensional space. It brings a symmetric version of probabilistic
description for similarities among data points, that is for ∀i, j, pij = pji and qij = qji,
still pii = qii = 0. Such symmetry reduces the difficulty to optimize the cost function.
The low dimensional probability has the form

qij =
exp(−‖yi − yj‖2)∑
k 6=l exp(−‖yk − yl‖2)

An instant imitation can be extended to high dimensional space that

pij =
exp(−‖xi − xj‖2/2σ2)∑
k 6=l exp(−‖xk − xl‖2/2σ2)

However, such intuition gives rise to another flaw. Suppose there exists an outlier
xk extremely far away from other points resulting that to all j 6= k, pkj is extremely
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small. This means no matter where its corresponding yk is mapped in low-D space,
it will not effectively influence the cost function. Thus, to avoid this flaw, the joint
probability in high-D space is defined as

pij =
pj|i + pi|j

2n

where n is the amount of data points. This definition assures the satisfaction of
symmetry and keeps pij above a lower bound that

∑
j pij >

1
2n

indicating every xk
can make considerable contribution to the cost function.

The symmetric probabilities simplify the cost function as

C = KL(P‖Q) =
∑
i

∑
j 6=i

pij log
pij
qij

and the gradient turns to be

δC

δyi
= 4

∑
j:j 6=i

(pij − qij)(yi − yj)

Compared with original SNE, symmetric SNE (SSNE) has a much simpler gradient.
van der Maaten [vdMH08] claims that SSNE slightly performs greater efficiency
than the original one. Thus further improvement is still necessary.

2.5.2 UNI-SNE

Besides the optimization complexity, a phenomenon called crowding problem also
bothers the users of SNE especially in the data visualization task in 2-D output
space.

• Crowding Problem [vdMH08]
The crowding problem is common in data visualization after reducing the
dimensions. In fact, crowding problem is not caused by a definite algorithm,
it is caused by the difference of the distance distributions between high and
low dimension spaces.
For example, in 2-D plane, we can find 3 equidistant points while in 10-D space,
there exist 11 equidistant points. However such high-D equidistant relations
cannot be faithfully and completely preserved and presented in much lower
dimensions say 2-D. This mean the room in low-D space for high-D dense
areas is not enough to unfold the relations honestly. Multiple clusters might
crush and mutually overlap. Thus no clear boundary dividing clusters can be
observed.
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Cook and Hinton [CSMH07] initiated resolving the crowding problem by adjusting
the expression of low-D probabilities. The key point is that by strengthening the re-
pulsion among mapped low-D points, the formed clusters can be further partitioned.
Extra background forces with uniform distribution are added into qij turning qij to

qij =
(1− λ) exp(−‖yi − yj‖2)∑

k 6=l exp(−‖yk − yl‖2)
+

2λ

N(N − 1)

where λ is the parameter balancing the background effect and points interactions.

With the background force addition, no matter how far apart the mapped points
are, qij is always greater than 2λ

N(N−1) . Thus, for those far apart points in high-D
space, their corresponding mapped low-D points received slightly stronger repulsion.
The distance in low-D space is expanded to reduce the larger qij in order to decrease
the difference between pij and qij.

UNI-SNE usually outperforms the original SNE. However UNI-SNE needs special
tricks to optimize otherwise poor result will be given that two clusters may depart
in very early stage and expand to nonsense mapping after optimization iterations
[vdMH08].

2.5.3 t-SNE

Taking a big step forward to dealing with crowd problem, t-SNE absorbs the perspec-
tive of UNI-SNE to produce stronger low-D repulsion. Instead of adding uniformly
distributed background influence, t-SNE adopts heavy-tailed Student-t distribution
to determine the low-D probabilities. qij is set as

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

The Student-t distribution is chosen for multiple reasons [vdMH08]. First, t distri-
bution is tightly correlated with Gaussian distribution as it can be decomposed into
infinite Gaussian summation. Then the kernel (1 + ‖yi − yj‖2)−1 follows an inverse
square law of low-D distance resulting in a larger gap between mapped points of
dissimilar data points. Furthermore, the Student-t kernel displays a critical prop-
erty as being approximately scale invariant to the change of low-D mapping. And
at last, t-SNE is computationally cheaper since it contains no exponential terms.

In summary, the natural property of t distribution promotes t-SNE to outperform
the original SNE. For outliers, t distribution’s heavier tails guarantee the robustness
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of low-D probabilities. And principle of weakening the crowding problem can be
interpreted as follows. Suppose Gaussian distribution corresponds to the probability
in high-D space and t distribution corresponds to low-D one. We make the best effort
to minimize the difference between high-D data manifold and low-D mapping which
is to make pij and qij as close as possible. For distant pairwise data points i and j in
high dimensional space, high-D probability pij is smaller than qij taking normalized
distance as variable. Thus in order to realize pij = qij, as pij is fixed by high-D data
points, a smaller qij is reached corresponding to a further distance that repels low-D
mapped points further. Inversely, the close data points xi and xj are also attracted
closer. Figure 3 illustrates a rough simulation of this pattern between normal and t
distributions.

Figure 3: Influence of tails for close and far apart data points

The cost function of t-SNE is the same as Symmetric SNE

C = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

and its gradient is

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1.

van der Maaten discussed further in the following work to alter the t-SNE for high
efficiency [vdM14]. A kNN graph was implemented to capture most valuable local
data structures in order to reduce the computation expense. He also made clearer
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interpretation of t-SNE by decomposing the gradient of cost function into the at-
traction and repulsion terms. Since the gradient with respect to yi was considered as
the composition of forces affected on yi, he made the transformation on the gradient
that

δC

δyi
=4
∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1

=4
∑
j

(pij − qij)qijZ(yi − yj)
(3)

where Z =
∑

k 6=l(1 + ‖yk − yl‖2)−1 is the normalization term.

One step further, it turned out to be

δC

δyi
= 4(Fattr + Frep) = 4

(∑
i 6=j

pijqijZ(yi − yj) +
∑
i 6=j

q2ijZ(yi − yj)
)
.

The decomposition of gradient inspired van der Maaten to implement tree-based
methods such as Barnes-Hut method for optimization acceleration and obtained
significant improvements [vdM14]. The related optimization techniques will be in-
troduce in Section 4.

t-SNE acquires great popularity since it is proposed for its superiority in data visu-
alization splitting crowding clusters to view the unfolded manifold clearly. However,
t-SNE also needs careful tuning of multiple parameters. The optimization process
of t-SNE cost function is still tedious and cumbersome with space for promotion.
On the other hand, the crowding problem is not perfectly solved by t-SNE yet. This
both prompt more innovation on NE algorithm family.

2.5.4 Elastic Embedding

Similar with van der Maaten’s work in t-SNE, Carreira-Perpinán [CP] proposed
a generic form of NE cost function decomposing the target into attraction and
repulsion terms with a parameter λ indicating the tradeoff. The generic form of cost
function is

C = E(Y, λ) = E+(Y ) + λE−(Y )

Combining the main notion of NE with the implementation of spectral method,
Perpinán also developed a bridge called Elastic Embedding (EE) [CP] between SNE
and conventional spectral methods by applying graph Laplacian. For EE, the exact
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cost function is

E(Y, λ) =
N∑
i,j

pij‖yi − yj‖2 + λ

N∑
i,j

exp(−‖yi − yj‖2)

And the corresponding gradient is

∇E(Y ) = 4Y (Lp − λLq)

with graph Laplacian terms

Lp = Dp −Wp Lq = Dq −Wq.

Here Wp and Wq represent the affinity matrices where elements at ith row and jth
column are pij and qij = exp(−‖yi − yj‖2) respectively. D is the diagonal degree
matrix in which the ith element of Dp is D(p)ii =

∑
j pij. Dq has the same pattern

that D(q)ii =
∑

j qij.

Yang [YPK14] proved EE being a separable divergence variant of symmetric SNE
plus a constant being independent of low-D mappings with Theorem 1 and also
gave the best λ value that λ∗ =

∑
ij pij/

∑
ij qij controlling the tradeoff between

attraction and repulsion. The spectral nature of EE also allows an out-of-sample
plugging-in that is very precious in NLDR.

2.5.5 Weighted Symmetric and t-SNE

At the same time when Theorem 1 is proved, Yang proposes a new variant [YPK14]
of symmetric SNE that is closely related to the EE method. This variant starts from
modifying the EE method to make the method able to deal with both vectorial data
and graph layout. In this variant [YPK14], the edge repulsion strategies borrowed
from Noack’s work[Noa07] in graph drawing domain are plugged into the EE [CP]
cost function because of its pairwise separable property. Weights M are inserted
into the repulsive term in the EE cost function, thus the EE cost function becomes

Cweighted−EE =
∑
ij

pij‖yi − yj‖2 + λ
∑
ij

Mij exp(−‖yi − yj‖2)

whereMij = didj and vectors di, dj are centrality measures indicating how important
the points i and j are. Options of centrality measures include closeness, betweenness,
degree centrality and eigenvector centrality. Here the degree centrality is selected
to represent the point importance. Two disadvantages of weighted EE method are
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that the cost function are sensitive to the scale of p and parameter λ need a manual
tuning. By the flexibility from divergence optimization equivalence, Yang gave a
simpler solution that can avoid such disadvantages.

Proposition 2. [YPK14] Weighted EE is a separable divergence minimizing method
and its non-separable variant is weighted symmetric SNE (ws-SNE).

Thus a novel variant of SNE can be established with a cost function

Cws−SNE = −
∑
ij

pij ln qij + ln
∑
ij

Mijqij + const

where const is a constant with none respect to low-D mapping. The selection of
qij is also flexible. Gaussian kernel leads to the weighted symmetric SNE (ws-SNE)
while t-distribution kernel turns it to the weighted t SNE (wt-SNE).

ws-SNE and wt-SNE do not treat all the data points equally important, which
is very different from original SNE and its early variants. Based on such equal
importance assumption, early SNE methods often perform well on vectorial data
in neighborhood form for example with pij calculated from kNN graph. However,
for graph or network layout of data where there exists highly imbalanced degree
centrality, SNE usually displays distorted result. SNE has a tendency to place the
more important points of different natural clusters closer which is not proper in
reality [YPK14].

Suppose each cluster as a galaxy in the universe space, data points as stars should
accumulate tightly in their own galaxy around the galaxy mass core, the center.
Meanwhile, there should also exist clear gaps among galaxies. ws-SNE realizes a
similar pattern using edge repulsion to divide the clusters more clearly. The gradient
of ws-SNE

δC

δyi
=
∑
j

pijq
θ
ij − cdidjq1+θij (yi − yj)

where c =
∑

ij pij/(
∑

ij didjqij) is the connection scaler where θ = 0 for Gaussian
q, θ = 1 for Student-t q. The first term denotes the attraction composition and the
second term for the repulsion with weights dj and dj. This provides extra repulsion
if the data points are more important. The center of one galaxy with greater mass
gains greater repulsion from other galaxy centers leading to a farther place. This
offers a more significant solution to the crowding problem than the t-SNE using
heavy tail shown in [YPK14]. We make a further step combining the heavy tail t(1)

a.k.a Cauchy qij with ws-SNE method to explore the performance of this modified
setting. The result is shown in Section 6.
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3 Objective and Gradient Approximation

Neighbor embedding methods display better results than the linear and spectral
methods but optimization process of NE used to be a great agony since the cost
functions and gradients usually are non-convex and computationally expensive. Gen-
erally, NE methods attempt to minimize the cost function controlling the mismatch
between high-D input data points and low-D mapped points. The mismatch is trans-
formed to achieving a balance between the attraction and repulsion forces among
the low-D mapped points with optimal tradeoff. In this optimization framework, the
exact solution is to compute the the interactions between every pair of mapped data
points. Such exact solution is direct but unfeasible since that for N data points, the
exact computation has an O(N2) complexity which is easy to cause an overload in
memory or a extreme long-run computation. For example, a typical MNIST dataset
with 70000 entries may cost 70000 × 70000 × sizeof(double) = 36.5 GB space in
memory which is intolerably expensive. Pioneers in NE research applied indirect
technique to avoid the O(N2) complexity by only randomly picking a subset of the
data so that a genral exploration of big dataset can be carried out [vdMH08]. The
random subset in summary is not feasible in most cases since it omitted too much
information [VCP12]. Thus solution that can accelerate and attack the computa-
tion is vital. Fortunately, methods from multiple views have been developed for the
improvement and acceleration for the optimization. The first intuition is to avoid
computing the exact cost function and gradient.

One common view is applying the methods according to N-body problems in as-
trophysics dealing with the gravitational interactions between particles. N-body
methods attempts to minimize the potential energy by balancing the particle inter-
actions where NE methods has a similar situation trying to minimize the mismatch
by getting the optimal tradeoff between attraction and repulsion. All N-body meth-
ods with high efficiency are approximate algorithms where tree-based techniques are
powerful tools for the acceleration. Two common used methods will be introduced,
the Barnes-Hut tree (BH) and Fast Multipole Method (FMM).
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3.1 Barnes-Hut

The cost functions and gradient of NE methods have general form as

C =
n∑
i=1

n∑
j=1

Aij,
δC

δyi
=

n∑
j=1

Bij(yi − yj)

where Aij and Bij are scalar terms computed between pairwise data points i and j
[YPK13]. These terms usually involve coordinates and pairwise distances in output
space that vary during the optimization. Considering the summation form in cost
function and gradient, one may utilize an approximation solution to reduce the
complexity. For data point i, summing up all the interactions between i and all
other j points can be divided into summing up multiple interaction subgroups.
Interaction produced by each subgroup is approximated by a representative point
such as a mass core or a mean.

NE cost functions usually have a summation as∑
j

f(‖yi − yj‖2) =
∑
t

∑
j∈Git

f(‖yi − yj‖2) ≈
∑
t

|Gi
t|f(‖yi − ŷt‖2)

where i is the source point, js are the neighbors of i. Gi
t denotes the subgroup that

point j belongs to and |Gi
t| indicates how many points are in the subgroup.

Suppose gij = f
′
(‖yi − yj‖2), the gradient can also apply a similar approximation

that ∑
j

gij(yi − yj) =
∑
t

∑
j∈Git

gijyi − yj ≈
∑
t

|Gi
t|f
′
(‖yi − ŷit‖2)(yi − ŷit)

If the distance between i and subgroup Gi
t is far enough, the diversity of interactions

between i and points in Gi
t will not be significant. Hence all the points in Gi

t will be
approximated as one. The interaction complexity is reduced from point-to-point to
point-to-group. If we repeat the partition action and implement the approximation
to smaller subgroup until only one point left in the group, the interaction f(‖yi−yj‖2)
or gij is directly calculated between pairwise points. Such subgroup partition process
follows a route similar to constructing a tree hierarchy.

In practice, multiple techniques can be selected to perform above approximation. A
common choice is Barnes-Hut tree based on Quadtree for a 2-D output space. It is
quite straight forward to construct a Barnes-Hut tree. Notice that the tree depth is
correlated with point density that denser area has deeper tree branches. Each tree



26

Figure 4: A Barnes-Hut tree illustration

node contains a subgroup of data points where Gt indicates the points of subgroup
or tree node t inside the edge square. For each Gt, if Gt is far away from i, all
the interactions of points inside Gt will be composed as |Gt| × ŷit where |Gt| is the
number of points inside node t and ŷit is the mean of corresponding points.

One important parameter is θ determining the tradeoff between approximation pre-
cision and computational cost. θ achieves such function by deciding how far is far
enough for a distance between point i and tree node t with an inequality

θ · TreeWidth < ‖yi − ŷit‖

where TreeWidth is the edge length of node t’s square. The precision of approxi-
mation increases with growing up θ and a typical interval for θ is [1.2, 5] [BH86].

Yang successfully applied Barnes-Hut tree in t-SNE acceleration and displayed much
better and faster result than random subset method [YPK13]. Since Barnes-Hut has
a complexity level of O(N logN), there still exists space for further improvement.

3.2 Fast Multipole

Barnes-Hut tree generates significant simplification on the optimization complexity
from O(N2) to O(N logN) accompanying with some restrictions. First, also the
most cumbersome one is that the tree size grows exponentially with larger output
space dimension, Quadtree for d = 2, Octtree for d = 3, a 2p tree for dimension
d = p. Second, the error of approximation has no bound or estimation. In order to
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overcome such drawbacks, another N-body method Fast Multipole Method (FMM)
based on grid hierarchy is applied by Carreira-Perpinán [VCP14] combining with a
grid partition method.

FMM regards the N-body problem as this: with a given set X ⊂ Rd of N target
points, a given set Y ⊂ Rd of N source points, kernel function G(x, y), and a weight
set of source points {f(y) : y ∈ Y}, we want to calculate the potential function u(t)

with respect to every target point t ∈ X as

u(x) =
∑
y∈Y

G(x, y)f(y)

This generic form appears in many research domains, for example in astrophysics,
X = Y indicate the sets of N stars, G(x, y) = 1/|x−y| is the gravitational potential.
Direct computation of u(x) requires O(N2) and it’s rather expensive whenN is large.

FMM abandons the direct method of brute forces. It decomposes the interactions
among target and source points with a 3-stage process as (1)accumulation, (2)shift,
(3)expansion for an approximation. Suppose that the dataset distributes in a square
[0, 1] × [0, 1] with normalization and A, B are subsquares of same size without
overlapping. The three stage process is shown in Figure 5.

Figure 5: FMM 3 Stages

The first stage accumulation composes the source points in B to the center cB.
Then shift the composed effect to the center cA of target point in A establishing a
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square-square interaction. Finally, execute the expansion on cA for approximation.
Usually, the dataset is normalized in a square and a grid frame is established to
ensure the number of points in every square smaller than a threshold. Carreira-

Figure 6: Grid Establishment

Perpinán applied FMM to approximate the cost function and gradient in his work
[VCP14]. The Fast Gaussian Transform(FGT) is taken as a generic kernel form as

Q(yi) =
N∑
j=1

qj exp(−‖(yi − yj)/σ‖2)

Recall the cost function of Elastic Embedding that

C(Y) =
N∑

i,j=1

ωij‖yi − yj‖2 + λ
N∑

i,j=1

exp(−‖yi − yj‖2)

The kernels of cost function and its gradient can both be expressed with modification
of the FGT indicating the interaction kernel as G(x, y) introduced above.

Carreira-Perpinán first normalized the dataset to a unit box [0, 1] and partitioned
the box with grids. Instead of expanding the interaction form the source points
center to the target points center, Carreira-Perpinán did the series expansion locally
around EVERY point with a Hermite expansion

exp(−‖(t− s)/σ‖2) =
∞∑
k=0

1

k!
hk(

s− sc
σ

)(
t− sc
σ

)k

where t is the target point and s is the source point. hk(x) = e(−x
2)Hk(x) are

the Hermite functions with Hermite polynomials Hk(x). The parameter k controls
the tradeoff between precision and computation cost, for a greater k the precision
increases and it requires more computation.
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Compared with Barnes-Hut tree, though FMM is claimed being able to realize an
O(N) complexity, it still remains some suspicions. Suppose the uniform box [0, 1] is
partitioned into m subsquares, by Carreira-Perpinán’s method, each subsquare will
execute the 3-stage expansion on every point. The entire computation then gets a
complexity of O(mN). Though the complexity O(N logN) has not been strictly
proved for Barnes-Hut tree, O(mN) of FMM does not always outperform Barnes-
Hut tree. For example, the MNIST dataset with 70000 entries has a approximate
complexity of N logN ≈ 12×70000. While for FMM, the number of subsquares will
easily surpass 12 if the grids are tiny enough. Moreover, FMM for NE methods are
not feasible for heavy-tailed qij since the expansion is only applicable for light-tail
distributions and relies on their fast decaying property [YPK13]. So, for simplicity
and scalability, we apply the Barnes-Hut tree as the approximation techniques in
our following works.

4 Optimization

With the approximation of cost function and gradient, the complexity of optimiza-
tion process decreases to be acceptable. Early developed NE methods applied mul-
tiple variants of straight gradient descent methods with numbers of parameters to
tune such as the learning step size of gradient descent method and the momentum
of annealing simulation. However, it is quite tricky to get the optimal values for
such parameters and a long-run optimization may be repeated again and again.
Furthermore, the parameters usually highly rely on the certain dataset and are
not portable meaning that when the dataset changes, the parameters need to be
tuned again. Thus optimization techniques for NE with few or no parameters are
developed to avoid the tuning tricks. Three optimization methods that will be dis-
cussed in following parts are fixed point [YKXO09], partial Hessian [VCP12] and
majorization-minimization [YPK15]. All these methods can provide results that are
at least as good as gradient descent methods but much simpler to realize.

4.1 Fixed Point

Optimization based on fixed point borrows the concept of fixed point whose defini-
tion is that [GD13]: for a given function ϕ, if ϕ(x∗) = x∗, then x∗ is a fixed point
of ϕ. In the other words, the fixed point of ϕ is the intersection point of function
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curve ϕ(x) and straight line y = x.

The optimization of cost function by fixed point method is fundamentally a root
finding problem that is looking for the zero point of corresponding gradient repre-
senting the location of the optima. This can be done following the general path of
fixed point iteration which transforms a root-finding problem to a fixed-point finding
problem.

The basic setting of fixed point iteration is this: For target function f(x) = 0,
construct an equivalent function x = ϕ(x) where the root of f(x) = 0 is equivalent
to the fixed point of ϕ(x). And the iteration follows the procedure as for an arbitrary
initial value x0, compute

xk+1 = ϕ(xk) k = 0, 1, 2, · · ·

hence an iterative series x1, x2, · · · , xn, · · · is obtained approaching the fixed point.

Figure 7: Brief illustration of fixed point iteration

Figure 7 shows an illustration of fixed point iteration. However, in practical work,
the convergence of such iteration is not always assured. It requires certain conditions
to perform the convergence following a theorem as

Theorem 2. [GD13] Assume ϕ(x) ∈ C[a, b] and satisfies
(1) for ∀x ∈ [a, b], there is ϕ(x) ∈ [a, b]

(2) there exists a constant L that for ∀x, y, it satisfies

|ϕ(x)− ϕ(y)| ≤ L|y − x|

Then for arbitrary initial value x0, the fixed point xk+1 = ϕ(xk) converges and has
the bounds as

|xk − x∗| ≤
L

1− L
|xk − xk−1| ≤

Lk

1− L
|x1 − x0|.



31

It has also been proved that the above convergence is a global property and in
general a smaller L brings faster convergence. Figure 8 shows a divergent process of
fixed point iteration that does not satisfy the convergence conditions.

The corresponding pseudo code for fixed point iteration is

Algorithm 2: Fixed point iteration
Data: function f(x) = 0

input : Function f(x) = 0

output: An approximate root x∗

1 Convert f(x) = 0 to the form x = ϕ(x);
2 Initialize x0;
3 while convergence criterion not met do
4 xi+1 = ϕ(xi)

5 end

Figure 8: Example of diverge fixed point iteration

Implementation in NE

The details of implementing fixed point method to optimize the cost function of NE
are interpreted in [YKXO09]. In this article, a general gradient function of different
heavy-tailed low-D probability distribution is proposed, which is not only restricted
to the t distribution with 1 degree of freedom. Recall the optimization task for
symmetric NE methods, the target or the cost function has the form

C(Y ) = DKL(P‖Q) =
∑
i 6=j

pij log
pij
Qij
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where Qij = qij/
∑

k 6=l qkl are the normalized low-D similarities. The cost function
can be transformed to an equivalent form as

maximize
q,Y

L(q, Y ) =
∑
ij

pij log
qij∑
k 6=l qkl

subject to qij = H(‖yi − yj‖2)

where H(τ) is the embedding similarity function which can be any function as long
as it is monotonically decreasing with respect to positive τ . By adding Lagrangian
multiplier to the equivalent cost function, we can get the gradient with respect to
yi as

∂C(Y )

∂yi
= 4

∑
j

(pij −Qij)S(‖yi − yj‖2)(yi − yj)

where h(τ) = dH(τ)/dτ and

S(τ) = −d logH(τ)

dτ

is the negative score function of H and we denote Sij = S(‖yi − yj‖2).

Function S can be considered as the tail-heaviness function and H is the similarity
function. The heavy-tailed distribution family thus can be written as

H(τ) = (ατ + c)−1/α

where a larger α indicates heavier tails. Gaussian similarity takes α = −1, c = 0

and Student-t(1) has α = 1, c = 1.

With the above generic form of heavy-tailed SNE family, the iterative update solu-
tion is given by setting the partial derivative of cost function ∂C/∂yi = 0 as

Y
(t+1)
ki =

Y
(t)
ki

∑
j Bij +

∑
j(Aij −Bij)Y

(t)
kj∑

j Aij

where Aij = pijS(‖y(t)i − y
(t)
j ‖2) and Bij = QijS(‖y(t)i − y

(t)
j ‖2). The iterative update

for Y (t+1)
kj can be derived by setting ∂C/∂yj = 0.

Still the convergence of fixed point ietration is not guaranteed and Yang did a
deep discussion in [YKXO09] in which two theoretical justifications of algorithm
approximation were provided.
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4.2 Spectral Direction

Another popular technique to cope with such non-linear optimization problem is
Newton method. Different from the gradient descent methods with first order con-
vergence applied in early NE works, Newton method performs second order conver-
gence showing a much higher speed to converge. A lot of variants originated from
Newton method have achieved great successes in many research domains. The basic
idea of standard Newton method is that: at the current minimum value, we carry
out a second order Taylor expansion according to target function f(x) in order to
find out next closer location of global optima. Now suppose our current location is
xk, then we denote

ϕ(x) ≈ f(xk) +∇f(xk) · (x− xk) +
1

2
(x− xk)T · ∇2f(xk) · (x− xk)

as the second order Taylor expansion of f(x) around xk. Here ∇f(xk) is the gradient
and ∇2f(xk) is the Hessian matrix. For notation simplicity, ∇f(xk) is expressed as
gk and ∇2f(xk) as Hk.

Due to the essential condition of being an optima, ϕ(x) should satisfy ∇ϕ(x) = 0

which means by adding gradient operator on both sides of above expansion, the
following is obtained

gk +Hk(x− xk) = 0.

Furthermore, if Hk is non-singular, we can get a solution

x = xk −H−1k gk.

Hence the iterative procedure for optimization is constructed with a given initial
point x0 as

xk+1 = xk − ηk ·Hk · gk = xk + ηk · dk, k = 0, 1 · · ·

where dk = −Hk · gk is called search direction. ηk is the step size determined by a
line search to avoid the procedure falling into poor local optima or diverging. The
step size has the property that

ηk = arg min
η∈R

f(xk + η · dk).

In most cases, Hessian mstrix Hk or its inverse H−1k is very hard to be computed
directly. A compromise is to use the approximation of Hessian and the correspond-
ing Quasi-Newton method turns to be attractive. Prevalent Quasi-Newton methods
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include DFP [Dav91], BFGS [SK70] and L-BFGS [LN89]. DFP algorithm approx-
imates H−1k while BFGS and L-BFGS directly approximate Hk iteratively. BFGS
keeps the history of first order gradient during the iterations to obtain more accurate
result. L-BFGS is the realization of BFGS on huge dataset where how long would
the history be kept can be manually chosen to balance the memory consumption
and computation precision.

Implementation in NE

The notion of Quasi-Newton is also feasible in NE optimization because Hessian is
able to be well approximated by a graph Laplacian [BN01] with probabilistic prox-
imities encoded within. Carreira-Perpinán proposed specific way to carry out Quasi-
Newton for NE problems [VCP12]. Recall that Carreira-Perpinán decomposed the
cost function as

C = E(Y, λ) = E+(Y ) + λE−(Y )

where E+(Y ) is the attractive part and E−(Y ) denotes the repulsion.

In most cases a complete Hessian of cost function is not necessary and the spectral
direction (SD) is purely yielded from the Hessian of attractive part ∇2E+(Y ) =

4L+ ⊗ Id which is positive semi definite and consisting of d × d identical diagonal
blocks of N × N with d being the dimension of low-D space. Graph Laplacian L+

plays an important role in construction the search direction.

Even with the partial Hessian, implementing Quasi-Newton is still often cumber-
some. Perpinán in his work applied some more tricks for improvement. First, the
Hessian is sparsified to k nearest neighbors. Then small positive ε is added to the
diagonal of partial Hessian to guarantee the positive definiteness. At last, instead
of calculating search direction dk = −B−1k · gk where Bk is the partial Hessian, he
tried to solve a linear system Bk ·dk = −gk. For better performance, a Cholesky de-
composition is executed on Bk turning the system to RT

k ·Rk ·dk = −gk. After twice
backsolving, the search direction or the spectral direction is acquired. Then follow-
ing other Quasi-Newton steps, the optimization is carried out. For more details,
please see [VCP12] and its supplement.
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4.3 Majorization-Minimization

Besides Newton method, Majorization-Minimization (MM) [OR00] is also an op-
timization technique that can apply the second order convergence. The prevalent
Expectation-Minimization (EM) algorithm [DLR77] is just a special case of MM al-
gorithm. The main idea of MM algorithm is simple that if the target function J(x)

is hard to optimize, we will seek a replacement function G(x) which is simpler to
optimize. As long as G(x) satisfies the following three conditions, the minimum of
target function J(x) thus can be infinitely approximated by the minimum of G(x).
The conditions G(x) should satisfy are

• G(x) is easy to optimize.

• At step k, Gk(x) ≥ J(xk) for all x.

• G(xk) = J(xk)

For a minimization procedure, G(x) majorizes the target function J(x) and “slides”
on J(x) during the iteration. The iteration for optimization can be described as
below

1. Set k = 0, initialize x0.

2. Choose Gk such that Gk(x) ≥ J(xk) for all x and Gk(xk) = J(xk).

3. Set xk+1 as the minimizer of Gk(x).

4. Set k = k + 1 and go to Step 2.

Figure 9 illustrates the optimization iteration. From the above description we can
see the key point to apply MM method is whether we can construct a tight majoriza-
tion or bound of the target function. Many matured solutions have been proposed
including quadratic bound, Lipschitz upper bound, Jensen’s inequality etc.

Implementation in NE

The implementation of MM method in NE also relies on the decomposition of cost
function [YPK15]. Now assume the cost function can be divided into two parts

J(Ỹ ) = A(P, Q̃) +B(P, Q̃)
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Figure 9: Majorization-minimization iterative process

Here Y , Ỹ , and Y new denote the current estimate, the variable and the new estimate
respectively. The proximities Q and Q̃ are computed from the current estimate and
the variable respectively.

The A(P, Q̃) term can be upper bounded by a summation of quadratic pairwise
terms that A(P, Q̃) ≤

∑
ijWij‖ỹi− ỹj‖2+constant where the multipliers Wij do not

depend on Ỹ . Part B(P, Q̃) has an Lipschitz surrogate upper bound as 〈Ψ, Ỹ −Y 〉+
ρ
2
‖Ỹ − Y ‖2+constant where Ψ = ∂B

∂Ỹ
|Ỹ=Y and ρ is the Lipschitz constant.

With the above upper bounds based on quadratification and Lipschitzation, the
majorization function G(Ỹ , Y ) is thus constructed where

G(Ỹ , Y ) =
∑
ij

Wij‖ỹi − ỹj‖2 + 〈Ψ, Ỹ − Y 〉+
ρ

2
‖Ỹ − Y ‖2 + const

Setting the gradient of G(Ỹ , Y ) with respect to Ỹ to zero and solving for Y , we can
get the iterative update rule

Y new = (2LW+WT + ρI)−1(−Ψ + ρY )

where LW+WT denotes the graph Laplacian of matrix W +W T .

Taking the implementation of MM in t-SNE as an example. In t-SNE, A(P, Q̃) =∑
ij Pij ln(1 + ‖ỹi − ỹj‖2) and B(P, Q̃) = ln

∑
ij(1 + |ỹi − ỹj‖2)−1 where qij = (1 +

‖yi − yj‖2)−1 and Q̃ij =
(1+|ỹi−ỹj‖2)−1∑
kl(1+|ỹk−ỹl‖2)−1 . The corresponding update rule is

Y new = (LP◦q +
ρ

4
I)−1(LQ◦q +

ρ

4
Y )



37

where L again denotes the graph Laplacian and ◦ is the elementwise product oper-
ator.

In practice, MM is realized by two loops: an outer loop for the update of Y and an
inner loop to search for the Lipschitz constant ρ. Different from spectral direction
(SD) method where a small ε is heuristically added to ensure the positive definiteness
of Hessian, MM applies an adaptive process to determine ρ which brings greater
robustness and accuracy [YPK15].

5 Implementation

We manage to realize the Weighted t-SNE with majorization-minimization frame-
work (wtsnemm) method in statistic software R. Some works have been done to
perform NE method in R such as the tsne package developed by van der Maaten.
However most of these early works focus on a specific NE variant and are not well
improved. Thus we determine to realize the Weighted t-SNE which can provide
better visualization and apply majorization-minimization to achieve faster, more
accurate and robust output. Also, a package is built to wrap all the functions
and source codes in order to strengthen the portability. The details of NE method
implementation and package build will be shown in the following parts.

R, a.k.a GNU S, is a free and open source platform and language for statistical
computing and visualization. Hence it has active communities and users developing
extensions to accomplish a variety of statistical tasks. Besides directly sharing the
work by other users from official Comprehensive R Archive Network (CRAN), R
allows users to write their own extensions to cope with specific problems. Such
flexibility comes from the fact that R is able to communicate with multiple popular
programming languages such as Python, Java and Scala. Fortran and C/C++ can
be conveniently involved in R codes to achieve significant scalability and efficiency
improvements. In this article, our work is done by applying both R language and
C++ to acquire both high efficiency and easy manipulation. The R version used in
this work is 3.3.3.
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5.1 R Integration

Our source codes are mainly transplanted from a MATLAB package, NE, developed
by Zhirong Yang 1. The original package consists of multiple low dimension prob-
ability selections and optimization techniques. Most of the functions are written
in C/C++ and compiled by MATLAB function -mex. To realize our target, two
major tasks must be accomplished. First, the C/C++ files must be correctly com-
piled in R platform. Second, the communication between R and underlying C/C++
level should be well constructed so that the arguments and objects can be correctly
passed.

In early versions of R, such compiling and interface adjusting are quite tricky and
tedious. One might have to write a complicated makefile for correct compiling and
make sure that arguments are passed correctly in every C/C++ function. When
the amount of C/C++ source files is huge, the developer will get trapped in these
boring tasks. Fortunately, a matured development environment has been revealed to
liberate people into a very simple workflow that allows developers building a package
in several trivial steps.

5.1.1 Development Environment

The R package we build utilizes another powerful R package, devtools, and a
popular integrated development environment (IDE) of R called Rstudio. In general,
we need R and Rstudio installed in the computer and packages devtools, roxygen2,
Rcpp and testthat at the same time. Package devtools is a set of useful tools for
R package development, especially it can help to compile the C/C++ source codes
by simple manipulation. roxygen2 will generate documentations automatically by
a special type of code comment, and it also determines which C/C++ functions are
visible to R code layer. Rcpp provides tools for seamless R and C/C++ integration.
testthat is not always necessary. This package helps the developer to carry out
the unit test reducing the sorrow of updating.

With all the above mentioned components installed, to get started, a prototype of
package called project should be setup first in Rstudio. In Rstudio’s GUI, click the
Project button on the top right corner and properly set the configuration, then a
project e.g named wtsnemm is created with a certain structure.

1https://sites.google.com/site/neighborembedding/files/ne.zip
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5.1.2 Package Structure

Once the project is created, Rstudio immediately makes a directory with the same
name as the project containing two metadata files, DESCRIPTION & NAMESPACE, and
two subdirectories /R & /man. These are the basic components of an R package
while user can add more directories to realize more complicated goals. By default,
the directories and files that Rstudio will recognize are as follows:

• DESCRIPTION
DESCRIPTION is a pure text file without extension containing the metadata
describing the package. Notice that there are two important entries: Depends
and Imports indicating whether other packages or functions will be loaded
when the user installs our package. More details can be seen in official guidance
[Tea99]. For our package, it depends on R and imports package Rcpp.

• NAMESPACE
NAMESPACE is usually automatically created in the compiling and building pro-
cess with the help from package roxygen2 as long as the developer correctly
marks which functions will be exported and visible to users. This file is critical
since it ensures no conflicts will occur between our codes and other packages.
No manual writing or change is suggested in case of causing bugs.

• /man
Documentations of the package are located in /man folder, saved as *.Rd files.
If roxygen2 package is used in the developing process, this directory does
not need manual operation. The roxygen2 package applies special type of
comments in the codes to automatically generate the documents.

• /R
This directory contains the codes written in R language, including the func-
tions directly written in R and the wrappers for compiled C/C++ codes.

• /src
Directory /src consists of source codes of other programming languages such
as C, C++ and Fortran. During the compiling or installation, these codes
will be compiled into dynamic-link library files(wtsnemm.dll or wtsnemm.so).
Our package stores multiple C/C++ libraries and functions in this directory,
e.g Csparse library.
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Except the most important files and directories mentioned above, R package also
accepts other manually created directories for certain usage. /data may contain
some data file saved as *.Rdata. /demo directory includes some R codes to achieve
demonstration. All files in /inst will be copied to the package’s root directory
during the installation usually providing news and change logs. For more details,
see [Wic14].

The simplest structure of one R package can be just the DESCRIPTION file plus /R
directory containing some *.R script files. When facing with the complicated tasks
that need high performance based on C/C++, such simple structure is not sufficient.
The workflow to combine R with C/C++ is rather simple and is shown below.

5.1.3 Workflow

The workflow to build an R package can be divided to three main steps: process
the underlying C/C++ codes, works on the R codes and documentation. The first
two parts are usually confusing since the development framework has been changing
in recent decade due to the update of R and corresponding tools. Now suppose we
want to develop our wtsnemm package, the brief workflow is as follows.

Pre-work

1. Install software R, IDE Rstudio and packages devtools, Rcpp, roxygen2.

2. Create a project named wtsnemm and enter the development environment.

3. In console, run devtools::use_rcpp(). This instruction creates a /src di-
rectory in the project folder. Simultaneously, two roxygen tags that we have
to add to our package will be returned.

#’ @useDynLib wtsnemm

#’ @importFrom Rcpp sourceCpp

NULL

With the pre-work done, environment for package construction is established and
the next step is to deal with the C/C++ codes. With the powerful tool Rcpp, the
whole process becomes trivial and highly automated.

C/C++ Level
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1. Put all the C/C++ source codes into /src directory and determine which
functions will be exported.

2. Modify the functions that will be exported. Add statements before the func-
tion.

#include<Rcpp.h>

using namespace Rcpp;

//[[Rcpp::export]]

3. If external header files are included in the function, do the following operation

extern "C" {

#include "*.h"

}

4. Alter the arguments C/C++ received and the function returns to the data
type that can be passed between R and C/C++ levels.

5. Press CTRL+SHIFT+B or click Build & Reload in the Build pane in Rstudio
to compile the source codes.

6. Debug and repeat.

Behind the scenes, Rcpp constructs DLL and make it available to R. Notice that
running devtools::load_all() will also do the compiling work but it is not rec-
ommended. When dealing with C codes, loading and unloading may give a chance to
memory corruption. However, if the source codes get change, devtools::load_all()
with argument recompile=TRUE will bring convenience for an instant test.

All the exported functions will automatically get a rough wrapper in R while only
a simple wrapper will not satisfy the need in practical work such as error report
and argument check. It is better to write an R wrapper manually satisfying more
requirements.

R Level

1. Edit the wrappers for exported C/C++ functions.

2. Add the two roxygen tags generated in pre-work into any one of the wrapper.
Press CTRL+SHIFT+D to generate documents and edit the NAMESPACE file by
roxygen2 automatically.
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3. Run devtools::load_all in console or press CTRL+SHIFT+L to load all the R
scripts.

4. Inspect the codes in console.

5. Debug and repeat.

Now the main skeletons of our wtsnemm have been established. The roxygen tags will
automatically configure the NAMESPACE file declaring and linking to corresponding
components for users. The last important job left is the documentation writing part
which also relies on the powerful roxygen2 package. For more details, please check
the book by Hadley Wickham[Wic15] and manual of roxygen2 [WDE]. Instructions
of other extra parts like unit test and demo are also included in the book.

With every part ready, one can run devtools::check() to check whether there
are fatal errors for package compilation and installation. Once the project passes
the check, run devtools::build() to build the final bundle of package. The built
bundle is operation system specific if the parameter binary of devtools::build()
is FALSE. Windows will get a zip file and Linux will get a tar.gz one. If binary=TRUE,
a binary package will be build where the user need an extra compiling step but such
package is not sensitive to operation system.

5.2 Hierarchy

Our built wtsnemm package carrying out weighted t-SNE method with majorization-
minimization algorithm contains two functions that are fastkNN and wtsnemm avail-
able for users.

Table 1: Accessible Functions

Function Input Output

fastkNN
Data matrix with each row
as an entry

A symmetric sparse matrix intriplet
form indicating mutual kNN graph
with third column all equal to 0.

wtsnemm

The path of a text file stor-
ing the sparse matrix ob-
tained from fastkNN

Coordinates for the low dimensional
mapped points.

To carry out dimension reduction on a high dimensional dataset in matrix form,
fastkNN will be executed first to obtain the sparse similarity matrix in triplet form.
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Such sparse matrix is the simplified result based on k nearest neighbors graph.
The wtsnemm is called to solve the low dimensional mapped coordinates. The two
functions with parameters are interpreted in details below

• fastkNN(X, k, verbose)

– X

The data matrix that will be processed to generate kNN. Each COLUMN
as an entry of one data point.

– k

The number determining how many neighbors will be selected of one data
point to construct kNN graph.

– verbose

A boolean to determine whether extra information will be shown during
the kNN construction process.

• wtsnemm(input, output, attr, initial)

– input

The path of the input file storing sparse matrix of input data in triplet
form. The absolute path is suggested or R will only search for the file in
current working directory.

– output

The path of output file that the final result of low dimensional embedding
coordinates will be written in. Absolute path is still suggested and if the
file does not exit, a new file will be created for output storage.

– attr

A parameter controlling the intensity of attraction among low dimen-
sional points during optimization. Usually between 0.9 and 5, and 1 by
default.

– initial

An initial matrix for low dimensional data points deciding whether the
initialization will be carried out. NULL by default meaning no external
initialization will be done. If an initialization matrix is not given, wtsnemm
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will automatically initialize the low-D points with very small variances
around zero point following identical Gaussian distributions

Figure 10 illustrates the internal hierarchy of package wtsnemm. Within functions
fastkNN and wtsnemm, underlying C/C++ functions are called for higher efficiency.
Our package highly relies on three C libraries. vptree.h is in charge of kNN graph
construction. cs.h allows efficient sparse matrix computation, manipulation and
storage that significantly promote the performance. wtsne.h is the library developed
by Yang doing the main computation jobs of cost function and gradient. Multiple
functions written in C combined with sparse matrix techniques from cs.h guarantee
the high performance.

Algorithm 3 provides the pseudo codes of wtsnemm workflow. the search for Lipschitz
constant ρ is in an inner loop done by backtracking method.

Algorithm 3: wtsnemm function workflow
Data: Text file recording sparse matrix
input : Path of data file

1 Load input file and compress;
2 Initialize low-D coordinates Y;
3 Call wtsne_mm_opt to optimize target function;
4 Copy input matrix;
5 Remove diagonal;
6 Compute target function constant part;
7 repeat
8 Compute outer loop of MM;
9 Search for ρ by backtracking;

10 Refresh Y;
11 Compute change of Y;
12 if Y change is small enough then
13 break ;

14 until stopping criterion is met;
15 Pass Y to wtsne_mm.cpp;
16 Write Y into output file;

output: Text file of low-D coordinates
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Figure 10: Function hierarcy
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5.3 Interfaces

Rcpp builds up a bridge integrating R and C++ with simple and explicit interfaces.
Our package heavily relies on such convenience passing arguments between R and
C++ levels. Data types in R and C++ differ quite a lot and must be altered
carefully in order to get the codes smoothly compiled and avoid underlying bugs.

In C++, we are familiar with a small set of basic data types including bool, char,
int, float, double and void. R has more complicated corresponding data types
communicating with C++ defined in Rcpp. These data types can be mainly divided
into three sorts:

• Scalar: int, double, bool, String

• Vector: IntegerVector, NumericVector, LogicalVector, CharacterVector

• Matrix: IntegerMatrix, NumericMatrix, LogicalMatrix, CharacterMatrix

Some advanced data types defined in C/C++ library are also applicable as long as
the name space is explicitly notified. In our package, both kinds of interfaces are
used.

• fastkNN(X, k, verbose) return NumericMatrix back to R

– X matrix of double elements received in R, NumericMatrix passed
to C++ level.

– k double received in R, int to C++ with forced conversion.

– verbose logical received in R, bool to C++.

• wtsnemm(input, output, attr, initial)

– input character in R, std::string to C++.

– output character in R, std::string to C++.

– attr double in R, double to C++.

– initial matrix of double elements in R, NumericMatrix to C++.

Such mixture of data types may cause bugs hard to detect. It is strongly recom-
mended to follow the Rcpp coding styles. The official manual [Tea99] for R package
development also provides thorough instructions.
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6 Demonstration

The performance of our wtsnemm implementation will be compared with the most
conventional and prevalent classic MDS methods in R. Eight publicly accessible
datasets are chosen to illustrate the low dimensional visualizations including vec-
torial form and graph layout. The superiority of wtsnemm method will be clearly
shown by multiple figures. Section 6.1 introduces the datasets we implemented. The
experiment setting will be shown in Section 6.2 and Section 6.3 demonstrates the
results of visualization.

6.1 Datasets

Th chosen datasets are: (1) the Five Phoneme dataset, (2) the optdigits dataset,
(3) the coil-20 dataset, (4) the pie dataset, (5) the MNIST70k dataset, (6) the 20

News group dataset , (7) the coil-100 dataset and (8) the worldtrade dataset.
Datasets (1)-(7) are datasets in vectorial form and (8) is in a graph layout.

The Five Phoneme dataset can be accessed in [JL10] online. It is extracted as a
subset from TIMIT database, which is commonly used in speech recognition. The
dataset contains 4509 data points where each data point has 256 dimensions as
a piece of voice record. All the data points belong to five classes indicating five
different phonemes.

Dataset optdigits consists of 5620 data points where each has 64 dimensions. Every
data point is in fact extracted from a bitmap of one hand-written digit. The bitmap
is encoded in the 64 dimensions and the vector element is between 0 and 16. Dataset
coil-20 contains 1440 images of 20 different objects expressed in grey scale with
1024 pixels as dimensions. The images are taken rotationally around the object with
equal rotation angle from 72 directions. Dataset pie is an image dataset expressed
in grey scale of human face. pie has 1166 face images with a change of illumination
conditions and it has a dimension of 32× 32 = 1024.

MNIST70k and 20 News group are two much bigger datasets. MNIST70k has 70000
grey scale images of hand-written digits with 784 dimensions. 20 News group is a
dataset of 20000 text documents in 20 classes. coil-100 is an updated version of
coil-20 dataset with 7200 images of 100 objects having a same number of pixels as
coil-20. The last dataset worldtrade is a weighted undirected graph with nodes
indicating 80 different countries and the edges represent the mutual trade amounts.
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6.2 Experiment Settings

2-D figures are drawn to illustrate the impressive performance of our wtsnemm

method. The figures are based on the dimension reduction results of all datasets
mentioned above for wtsnemm. Datasets Five Phoneme, optdigits and coil-20

are chosen to illustrate the results of MDS as comparison.

For MDS, the built-in function cmdscale in basic R session will realize the classical
multidimensional scaling method. It accepts a distance matrix being a data type
dist as input and gives out dimension reduction results being the coordinates of
data points in low dimensional space. Parameter k controls how many dimensions
will be reduced to for the target space. To get the distance matrix required by
cmdscale, function dist should be run to obtain the distance matrix where the
dataset is expressed as a matrix with each row indicating a data point. For more
details, users can check function manuals by typing ?dist and ?cmdscale in the
console.

For our wtsnemm method, the parameter need to be set is the number of nearest
neighbors in function fastkNN. This parameter is not constant and influences the
performance of dimension reduction. The numbers we chose can be seen in the
following table

Table 2: kNN selection

Dataset 5Phonemes optdigits coil20 pie MNIST70k 20NG coil100
No. of NN 5 6 3 50 10 30 3

Dataset worldtrade has already been in a neighborhood graph layout. It does
not require extra graph generalization process where only the symmetrization and
normalization are required.

Computing such distance matrix for MDS is rather expensive in R. Restricted by
the memory and CPU consumption, only three comparably smaller datasets Five
Phonemes, opdigits, and coil-20 can be computed. Thus the evaluation for MDS
and wtsnemm by visualizing the low dimensional output will only be carried out
on these three datasets. Other datasets will be visualized with just the results of
wtsnemm method.

All datasets except worldtrade experienced 2-stage processing in wtsnemm dimen-
sion reduction. First, an over attraction initialization is done which means the
dataset will receive a pre-processing with fewer iterations and larger attraction.
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This stage fast pushes the mapped low dimensional points to rough positions. Ap-
proximate low dimensional clusters will form and a refreshed initialization will be
exported for next stage. The second stage will be run with moderate attraction
parameter until it reaches the iteration limit or converges. In our experiments,
over attraction stage was set to be non-initialization and attr=3 for 30 iteration in
wtsnemm function. And the second stage took the result of last stage as initialization.
The attraction parameter was set to attr=1 with 300 iterations.

6.3 Demonstration

All the figures shown below are drawn by ggplot2 package [Wic16] in R. Figures 11,
12 and 13 compare the dimension reduction results by MDS and wtsnemm methods.
Figure 11 visualizes the result of hand written optdigits dataset. MDS gives
out an output more or less like a ball where only four classes at four corners are
somewhat separated. Other classes accumulate and get overlapped in the narrow
central area. No clear gaps can be observed in the 2-D visualization. In contrast,
wtsnemm produces a quite satisfying result that all classes are mapped rather dense
and clear gaps between classes appear indicating the crowding problem has been
well avoided.

Figure 12 shows the results of coil-20 dataset. MDS method does not successfully
separate the mapped data points according to their natural clusters. Data points
disperse in the area and no significant topologies or gaps can be seen. wtsnemm gives
an illustration where many circle-like topologies exist denoting the rotationally photo
taking process. The gaps among object classes are also clear enough and the tiny
overlapping in the central part is induced by four similar car-like objects in original
dataset [vdMH08].

For dataset Five Phonemes, MDS performs a little better. Classes "dcl" and "sh"
have been almost recognized. Though "ly" also forms a cluster, it is too close to
"aa" and "ao" causing some crowding. wtsnemm significantly outperforms MDS
where similar classes are kept close. Dissimilar classes are pushed far apart where
gaps shape between two classes. In the visualization by wtsnemm, "aa" and "ao"
classes are close and mutually infiltrated since "ao" and "aa" are quite similar in
pronunciation.

Besides the datasets with clear labels, wtsnemm is capable to align points without
labels. Figure 14 reveals the result of pie dataset where the variable is the illu-
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Figure 11: Dimension reduction results of optdigits

(a) MDS (b) wtsnemm

Figure 12: Dimension reduction results of coil-20

(a) MDS (b) wtsnemm
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Figure 13: Dimension reduction results of Five Phonemes

(a) MDS (b) wtsnemm

mination condition. Obvious change of light directions can be found in the plot.
Compare the left with right part of the plot, the light direction changes from left to
right. From bottom to top, the light is becoming weaker.

For those larger datasets, wtsnemm shows great capability to solve complicated di-
mension reduction tasks. Dataset coil-100 requires about 6.25 GB to get loaded
into memory. wtsnemm finishes the dimension reduction process in dozens of min-
utes with satisfying result. Figure 15 shows the visualization of coil-100. Those
typical circle structure are well preserved. Figure 16 demonstrates the result of 20
News Group. Though classes have been preserved, the gaps are not really visible.
The result of MNIST70k is shown in Figure 17. Ten classes of handwritten digits are
well separated without obvious overlapping. Figure 18 shows the dimensional re-
duction result of worldtrade, a dataset in graph layout. We can see that countries
of different continents are properly clustered.

The PR curves evaluating the performances of MDS and wtsnemm are presented in
Figure 19. Table 3 contains the corresponding AUC values. In all three datasets,
wtsnemm significantly outperforms MDS. In optdigits dataset, wtsnemm achieves a
result very close to the perfect point (1,1).

Table 3: AUC values
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Figure 14: Dimension reduction result of PIE dataset
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Figure 15: Dimension reduction result of coil-100
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Figure 16: Dimension reduction result of NG20
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Figure 17: Dimension reduction result of MNIST70k
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Figure 18: Visualization of graph layout dataset worldtrade
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Figure 19: PR curves of coil-20, optdigits and 5 phonemes

(a) coil-20 (b) optidigits

(c) 5 Phonemes

AUC coil-20 optdigits 5 Phonemes

wtsnemm 0.7929 0.8973 0.7984
MDS 0.3813 0.3756 0.608

7 Summary and Future Work

In this thesis, we have introduced the theoretical interpretation and statistic soft-
ware implementation of neighbor embedding (NE) method. The conventional MDS
method is reviewed together with original SNE framework. We have presented skills
of construction and simplification of probabilistic models have been introduced with
details of affinity determination, kNN graph and low dimensional probability selec-
tion. Cost function related parts cover the divergence transformation, approximation
imitating N -body problem and optimization techniques.

For the algorithm realization in statistical software, we have provided a general
introduction to R package structure. Then we have described the common workflow
of developing an R package utilizing both R and C/C++ level codes by explaining
the interfaces between R and C/C++ levels. Finally, we have realized the weighted
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t-distributed neighbor embedding method by majorization-minimization technique
in R and compared the results with conventional classic MDS. Results by visualizing
the output of both MDS and wtsnemm have been strongly proved that our wtsnemm
method is faster, more convenient and robust than the conventional MDS. The two
main drawbacks of original NE, computational complexity and crowding problem,
are better solved by wtsnemm.

There still remains space for improvements. For the R package, more options of
optimization techniques could be considered such as BFGS and DFP. Developing
parallel computing variant of NE would also be attractive and the deployment in
R could utilize R’s powerful parallel computing capability. Another topic would
be a parametric form of NE method in order to deal with the out-of-sample data
point which might make sense for broader application. Further consideration on
improving the metric learning, for example by learning similarity directly, instead
of learning it from distances, or how to expand the application of NE beyond plain
visualization (d>3) would be worth exploring in detail.
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