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Periménlaajuisten assosiaatioanalyysien avulla on loydetty satoja perimin kohtia, jotka ovat yh-
teydessd useisiin sairauksiin tai ominaisuuksiin kuten kolesterolitasoihin ja diabetekseen. Useimmat
naista tutkimuksista ovat kuitenkin tutkineet ainoastaan yhté ominaisuutta kerrallaan, vaikka tut-
kimus kasittelisikin useita toisiinsa liittyvid muuttujia. Kasvava naytto siitd, ettéd yksi perimén kohta
on yhteydessi useisiin ominaisuuksiin (pleiotropia) tukee ajatusta, ettd monimuuttujamenetelmét
voisivat olla tehokkaampia kuin yhden muuttujan menetelmét.

Tutkielmani paatutkimuskysymys on vertailla moniulotteista Waldin testia vastaavaan yhden muut-
tujan testiin, ja katsoa millaisissa tilanteissa on tehokkaampaa kayttdd monimuuttujatestausta.
Toinen tutkimuskysymykseni on vertailla moniulotteista Waldin testid toiseen monimuuttujame-
netelméén, kanoniseen korrelaatioanalysiin (CCA) ja katsoa tuottavatko ndmi menetelmét saman
tuloksen.
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tyyppid 1,000 henkil6lle. Témén lisdksi simuloin muuttujapareja, jotka ovat eri tavoin yhteydessa
toisiinsa, sekéd simuloituihin genotyyppeihin. Tein jokaiselle muuttujalle yhden muuttujan Waldin
testin jokaista genotyyppia vastaan, seké jokaiselle muuttujaparille moniulotteisen Waldin testin jo-
kaista genotyyppia vastaan. Tein my6s vastaavat kanoniset korrelaatioanalyysit jotta voin vertailla
néitd tuloksia moniulotteisen Waldin testin tuloksiin.
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Simulaatiotutkimusteni perusteella voimme sanoa, ettd monimuuttujatestaus on ldhes aina vihin-
tdan yhtd voimakas havaitsemaan yhteyksid kuin vastaavat yhden muuttujan testit, ja joissain
tapauksissa se on paljon voimakkaampi. Néin ollen ei ole mitd&n syyté olla suorittamatt moni-
muuttujatestausta ensin, kun on kyse useista toisiinsa liittyvistd muuttujista. Monimuuttujates-
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Chapter 1

Introduction

Years of Genome-wide association studies (GWAS) have successfully identified common vari-
ants at more than 1,000 genomic loci robustly associated with a wide range of human condi-
tions and quantitative traits [Price et al., 2015]. For example, around a hundred genetic loci
with genome-wide significant association on blood lipid levels have been identified [Surakka,
2014, Willer et al., 2013]. Despite this progress, one big limitation is that almost all GWAS
performed have focused on analysing a single trait at a time, even the studies involving multi-
ple related traits, such as blood lipid levels. Growing evidence for pleiotropy, where the same
genetic locus is associated with multiple traits, supports the idea that multivariate analysis of
multiple related traits can provide a remarkable boost in power for locus discovery, compared

to an univariate analysis of a single trait [Inouye et al., 2012].

My aim in this thesis is to demonstrate the nature of multivariate analysis compared to
the corresponding univariate analysis by comparing the multivariate Wald test to the corre-
sponding univariate Wald tests. In addition I will compare multivariate Wald test also to
another multivariate method, Canonical Correlation Analysis (CCA) to see if they yield the
same result. I will first introduce the univariate and multivariate Wald test and CCA and
statistical methods behind them in Methods. In Results I will introduce my results first from
simulation studies and later a few examples from real data to show how the multivariate
methods perform compared to the univariate methods in practice. The results I get from

these studies are further discussed in Conclusions.

In my examples I will use blood lipid levels of high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol and triglycerides as example traits to demonstrate the multi-
variate analysis compared to the univariate analysis. These blood lipid levels are appropriate
examples for this purpose because in addition to their interesting associations with cardio-

vascular diseases, and thus to the public health, they are correlated in different ways between



each other and also with different genetic loci. Therefore we will find lots of different com-
binations of correlation between traits, and directions of genetic effects for different traits to
show many examples how multivariate tests acts compared to univariate tests in these various

cases.

Cardiovascular diseases (disorders of the heart and blood vessels) are a leading cause of
death worldwide, and they have been under great interest for epidemiological studies [Webb
et al., 2013]. Back in 1971, the Framingham Heart Study offered the first bit of evidence
that elevated cholesterol levels are an important risk for heart disease [Kannel et al., 1961],
but still decades later the preventative actions for cardiovascular diseases are limited and are
mainly concentrated on lifestyle changes. In clinical practice the most often used biomarkers
for cardiovascular diseases are the circulating blood lipid levels (cholesterol and triglycerides),

which are well-established risk factors for cardiovascular diseases [Webb et al., 2013].

Levels of circulating blood lipids are largely affected by environmental factors such as diet,
body composition, smoking and alcohol usage. Therefore the risk for unfavourable lipid levels
caused by these factors can be lowered by individual’s behavioural and lifestyle changes.
However, only a bit less than a half of the variability in lipid levels is attributable to these
environmental factors and the remaining proportion is because of the genetic effects [van
Dongen et al., 2013]. Therefore, as the genetic factors explain around half of the population
lipid variation, it is crucial to understand the genetic mechanisms behind the lipid levels in

order to better understand the biological pathways behind cardiovascular diseases [Surakka,
2014].



Chapter 2

Background

2.1 Multivariate analysis

Multivariate analysis can be defined as the application of methods that deal with a reasonably
large numbers of measurements made on each object in one or more samples simultaneously.
The important point is that multivariate analysis deals with the simultaneous relationships
among variables. Multivariate techniques differ from univariate analysis by directing atten-
tion away from the analysis of the mean and variance of a single variable to the analysis of
the correlations which reflect the extent of relationship among several variables. [Dillon and
Goldstein, 1983] Advantages of using multivariate analysis are that it looks the phenomena
in a more general way and it can help control for Type 1 error (incorrect rejection of a true

null hypothesis, ”a false positive”) [Rencher and Christensen, 2011].

In practice, multivariate data sets are common, although they are not always analysed as
such. The exclusive use of univariate methods with such data is no longer excusable, given
the availability of multivariate techniques and inexpensive computing power to carry them
out. In the past, the computations were overwhelming even with smaller datasets, and so
multivariate analyses were typically avoided, but now this is not a problem any more. [Rencher
and Christensen, 2011]

Biological processes, such as metabolism and circulation of blood lipids, are very complex
by nature. As such it is rare that a single response variable is sufficient to describe a biological
system entirely. Rather, multiple response variables are often measured to gain a biological
insight. For example, in the case of circulating blood lipid levels it is common to measure
several cholesterol levels. Thus it seems intuitive that the multivariate methods would be

better suited to study biological processes, such as circulation of blood lipids.



2.2 Genetics

2.2.1 Human genome
Genome structure

In this section I will briefly introduce the basics of the human genome’s structure and function
as well as a widely used method for studying genetic associations with different traits and
diseases. This section is based on [Klug et al., 2012]. Genetic information of human is
encoded in the genome, which is all the DNA in a cell. DNA can be found in almost every
cell in the body inside the nucleus as 23 chromosome pairs (total of 46 chromosomes). Each
chromosome is a double stranded string built with smaller particles; nucleotides. There are
four different types of nucleotides in DNA: adenine (A), guanine (G), cytosine (C) and thymine
(T), depending on the base in nucleotide. These nucleotides form a string, and thus DNA
can be thought as a "two complementary string of letters”. The human genome consists of
approximately 3 billion base pairs of which only around 1.5% is covered by regions of the

genome that codes for proteins, called exons. [Klug et al., 2012]

Genome function

A gene is a piece of DNA that has promoter, exons and introns. Exons are the protein coding
parts of the gene, and therefore they define the amino acid structure in the resulting protein.
Introns are the parts of genes that do not directly code for proteins, but are integral to gene
expression regulation. The exonic DNA has triplets of nucleotides, called codons, each of

which has a corresponding amino acid.

In gene transcription the double strand of the DNA is splitted and the transcription (Fig.
2.1) is started. In case of a protein coding-gene, an enzyme called RNA polymerase starts to
move along the template strand (non-coding strand) of the DNA and copies it into precursor
messenger RNA (pre-mRNA) starting from a start codon and ending at a stop codon. The
structure of the resulting single stranded pre-mRNA is similar to that in the coding DNA

strand, except that base thymine is replaced with uracil (U).

Once the pre-mRNA is ready, the introns are spliced out from the sequence and the mRNA
moves outside of the cell nucleus to the cell cytoplasm where it binds to the ribosome. The
ribosome starts to translate the genetic code in the mRNA into amino acid code. Each of
these codons, except for stop codons (UAG, UGA and UAA), has one pairing amino acid. In

contrary, one amino acid can have multiple corresponding codons which allows a mutation to
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Figure 2.1: From DNA to protein. Demonstrative figure of transcription and translation of a
protein coding gene. Figure adapted from [Surakka, 2014].

occur in the genome without changing the protein structure.

Genetic variation

An allele is an alternative form of the DNA sequence in a region of the genome (a genomic
region is also called a locus, plural loci). Most multicellular organisms, like humans, are
diploid which means that they have two sets of chromosomes. Diploid organism have one
copy of each locus (and one allele) on each chromosome, a total of two alleles at each locus.
An individual that has a pair of identical alleles at a locus is said to be homozygous at that
locus and an individual that has two different alleles at a locus is said to be heterozygous for

that locus.

The process of mutation is the source of new alleles. For a new allele to be recognized by
observation of an organism, the allele must cause a change in the phenotype. Some mutations
can change the physical appearance, the phenotype, of the organisms, while some others may
have no apparent effect on the organism. Mutation can originate as an alteration in DNA
sequence occurring during meiosis or because of radiation or mutagens, that has escaped the
DNA repair system. Any base-pair change in any part of a DNA molecule can be considered

as a mutation. When a non-fatal mutation occurs in the germ line cells, it can be passed on



to the next generation and when the frequency of the mutated allele in the population rises

up to 1%, the mutation is called a polymorphism.

2.2.2 Genome-wide association studies (GWAS)

This section is based on [Pearson and Manolio, 2008]. Genome-wide association study (or
GWAS) is defined by the National Institutes of Health as a study of common genetic variation
across the entire human genome designed to identify genetic associations with observable
traits. In other words it is an examination of multiple genetic variants in different individuals
to see if any of those variants is associated with the trait under study. The idea is to search the
whole genome for small variations in the genome, called single nucleotide polymorphisms, or
SNPs, that occur more frequently in people with a particular disease than in people without
the disease, or in case of quantitative (continuous) trait to see if the trait under study is

distributed differently among the genotypes of SNPSs under study.

Briefly, the idea in GWAS is to search for genotype-phenotype associations that happens
when one or more genotypes within a population co-occur with a trait under study more
often than it would be expected by change. Identifying such associations is very important,
because they give us hints of biology behind the diseases and traits and thus GWA studies
can also give us hints of targets for therapeutics. Because GWAS examines SNPs across the
genome, they represent a promising way to study complex, common diseases and traits, in
which many genetic variations contribute to a person’s risk for the disease. GWA studies
typically perform the first analysis in a discovery cohort, followed by validation of the most

significant SNPs in an independent validation cohort.

Family-based linkage studies have been successful in identifying genes of large effect in
Mendelian diseases (diseases controlled by a single locus), such as cystic fibrosis, but have had
limited success in common, non-Mendelian conditions, such as asthma. Major limitations of
linkage studies are relatively low statistical power for complex diseases influenced by multiple
genes, and the large size of the chromosomal regions shared among family members, in whom
it can be difficult to narrow the linkage signal sufficiently to identify a causative gene. For non-
Mendelian conditions, GWA studies represent a valuable advance over family-based linkage
studies, in which multiple affected families are arduously assembled and inheritance patterns
are related to only a few hundred markers throughout the genome. [Pearson and Manolio,
2008]

The number of SNPs tested in GWA studies depends on the genotyping technology, but

is typically one million or more. There are multiple ways to test the significance of the



association between genotype and trait, depending on the type of the trait under study.
When studying a quantitative traits, such as blood lipid levels, statistical significance of the
association can be tested using simple linear regression where the genotype is the explanatory
variable and the trait is the response variable. The significance of the regression coefficient
in that model can be tested using univariate Wald test, for example. In that case the p-value

is calculated from standard normal distribution.

The most frequently used GWA study desing to date has been the case-control design that
is used to study a disease. In case-control design, for each of the SNPs it is investigated if
the allele frequency is significantly altered between the case and the control groups. Because
each individual carries two copies of each autosomal SNP, the frequency of each of the three
possible genotypes can be tested. In case-control set-ups, the fundamental unit for reporting
effect sizes is the odds ratio. The odds ratio is the ratio of two odds, which in the context
of GWA studies are the odds of disease for individuals having a specific allele and the odds
of disease for individuals who do not have that same allele. When the allele frequency in the
case group is much higher than in the control group, the odds ratio is higher than 1, and vice
versa for lower allele frequency. Additionally, a p-value for the significance of the odds ratio is
typically calculated using a simple x? -test. Finding odds ratios that are significantly different
from 1 is the objective of the GWA study because this shows that a SNP is associated with
the disease. [Pearson and Manolio, 2008]

The exact threshold for statistical significance varies by study, but the conventional thresh-
old is 5 x 1078 to be significant in the face of hundreds of thousands to millions of tested
SNPs. One of the biggest problems in the GWA analyses is the multiple testing dilemma;
when analyzing hundreds of thousans or even millions of SNPs simultaneously one must ac-
count for the fact that probability to detect at least one association by change (type 1 error)
rises with each independent test. However, as SNPs in the data are not truly independent

1

because of the linkage disequilibrium *, a simple Bonferroni correction that corrects for the

number of tests is highly conservative. [Surakka, 2014, Sham and Purcel, 2014]

The most powerful way to take the multiple testing challenge into account would be to use
permutation procedures; simulate the null distribution of the test statistics in the case of no
association. However, as the magnitude of SNPs in the GWA analyses can be in the millions,
the computational challenges have made it nearly impossible to use permutations in the large
GWA studies. Due to these problems, Bonferroni correction for one million independent
tests, p-value < 0.05/10° = 5 x 107%, is commonly used as a significance threshold in GWA
studies. This threshold has proven to work well in the published studies as most of the findings

'When two genetic loci are positioned close to each other in the genome, they are more likely to be inherited
together. Alleles that are not independently inherited are said to be linked with each other, and they are said
to be in linkage disequilibrium [Klug et al., 2012].



have been successfully replicated and it has thus become a general genome-wide significance
threshold. [Surakka, 2014, Sham and Purcel, 2014]
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Figure 2.2: Example Manhattan plot of genome-wide association analysis for serum C3 level.
X-axis shows chromosomal positions. Y-axis shows —log;y (p-values) from linear regression
adjusted for age, smoking, and log(BMI). The horizontal solid line indicates the present
threshold of p =5 x 107%. Figure from [Yang et al., 2012

After calculation of p-values for all SNPs, a common approach to examine and present the
results is to create a Manhattan plot of the results. In the context of GWA studies, this
plot shows the negative logarithm of the p-value as a function of genomic location. Thus
the SNPs with the most significant association stands out on the plot, usually as stacks of
points because of the correlation structure of the genome. Therefore in a good Manhattan
plot true signals are supported by many neighbouring SNPs and are not represented by only a
single dot that stands out. There is an example of Manhattan plot in the Fig.2.2 [Yang et al.,
2012]. In this example the trait under investigation is serum C3 levels. In the x-axis there
is the chromosomal position, and each of the chromosomes is drawn with different colours to
make it easier to distinguish them. In this example, the strongest associations are seen on
chromosomes 1 (CFH locus) and 18 (C3 locus). Both of these signals are supported by the

SNPs close by, which supports that these are true associations.

The GWA approach is revolutionary because it enables examination of the entire human
genome at levels of resolution previously unattainable, in thousands of unrelated individ-
uals, unconstrained by prior hypotheses regarding genetic associations with disease. How-
ever, the GWA approach can also be problematic because the massive number of statistical
tests performed presents an unprecedented potential for false-positive results, leading to new
stringency in acceptable levels of statistical significance and requirements for replications of
findings [Pearson and Manolio, 2008].



2.3 Circulating blood lipids

In this section I will introduce the very basics of blood lipids and their function as a motivation
for doing GWA studies on them. This section is based on [Surakka, 2014]. Blood lipids (or
blood fats) are lipids in the blood, either free or bound to other molecules. Blood lipids are
mainly fatty acids and cholesterol. The density of the lipids and type of protein determines
the fate of the particle and its influence on metabolism. The concentration of blood lipids

depends on intake and secretion from the intestine, and uptake and secretion from cells.

Cholesterol is made by the liver and it is an essential part of cell walls and nerves. Choles-
terol cannot dissolve in the blood. Therefore it must be transported through bloodstream by
carriers, called lipoproteins, which got their name because they are made of fat (lipid) and
proteins. Lipoproteins are named based on their size and density; the lower the density, the
larger the particle. There are total of five major groups of lipoproteins; chylomicrons, very
low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipopro-
tein (LDL) and high-density lipoprotein (HDL). Low-density lipoprotein delivers cholesterol
to cells for membrane production, and high-density lipoprotein scavenges excess cholesterol

for return to the liver.

LDL cholesterol, LDL-C, is what’s considered "bad” cholesterol, as it leads to a build-up of
cholesterol in arteries. LDL contributes to plaque, a thick, hard deposit that can clog arteries
and make them less flexible. This condition is known as atherosclerosis. If a clot forms and
blocks a narrowed artery, heart attack or stroke can result. Another condition called peripheral
artery disease can develop when plaque build-up narrows an artery supplying blood to the

legs.

HDL cholesterol, HDL-C, is what’s considered "good” cholesterol, as it carries cholesterol
from other parts of the body back to the liver, where it is broken down and passed from the
body. One-fourth to one-third of blood cholesterol is carried by HDL. A healthy level of HDL
cholesterol may protect against heart attack and stroke, and low levels of HDL cholesterol

have been shown to increase the risk of heart disease.

Triglycerides (TG) are fats from the food we eat that are carried in the blood, and they
are used to store excess energy from our diet. Most of the fats we eat are in triglyceride
form. Excess calories, alcohol or sugar in the body turn into triglycerides and are stored in
fat cells throughout the body. Triglycerides and cholesterol are both fatty substances, lipids,
but triglycerides are fats and cholesterol is not. An elevated triglyceride level is associated
with an increase in the risk of heart disease. High levels of triglycerides in the blood are

associated with atherosclerosis. Elevated triglycerides can be caused by overweight and obe-



sity, physical inactivity, cigarette smoking, excess alcohol consumption and a diet very high
in carbohydrates. Underlying diseases or genetic disorders are sometimes the cause of high
triglyceride levels. People with high triglyceride levels often also have a high total cholesterol
level, including a high LDL cholesterol level and a low HDL cholesterol level. Many people

with heart disease or diabetes also have high triglyceride levels.

Cholesterol metabolism plays a central role in cardiovascular diseases. The functions of
HDL and LDL particles explain why LDL-C levels have positive correlation with cardiovas-
cular events and HDL-C levels have negative correlations. The excess amount of LDL and
insufficient HDL lipid clearance in the blood stream can cause arterial inflammation leading to
an atherosclerotic plaque blocking the artery. This connection between circulating blood lipids
and cardiovascular disease risk has made lipids part of the most studied human traits. As the
different enzymatically measurable lipid traits, HDL-C, LDL-C, total cholesterol TC (which
can be calculated for certain units of measurements using Friedewald’s equation TC=LDL+
HDL+TG/5) and triglycerides (TG), also seem to be highly heritable, they have been under

great interest in genetic studies.
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Chapter 3

Methods

3.1 Multivariate Linear Regression

In this section I will introduce multivariate linear regression, and its parameter estimation
and testing. Theory in this section is based on chapter 10 in [Rencher and Christensen, 2011].
Simple and multiple linear models are used to study how a single quantitative variable Y
depends on one or more predictor variables X, respectively. Multivariate linear model is their
extension and it is used to study how multiple quantitative variables Y depend on one or
more predictor variables X. The predictor variables in this model may be quantitative or
qualitative. As simple linear regression can be used in parameter testing in GWA studies in
case of one trait, the multivariate linear regression can be used to test the significance of the

association between SNPs and multiple traits simultaneously.

3.1.1 Multivariate Linear model

In multivariate linear regression multiple Y’s are measured corresponding to each set of X’s
and each Y3,Y5,...,Y, is to be predicted by all of X;, Xy,...X,. The n observed values of

the vector of Y’s can be listed as rows in the following matrix:

Y11 Y12 .- Yig Y/1
v — Y21 Y22 .- Yoq _ YIQ
Yn1l Yn2 ... ynq ya

11



Thus each row of Y (y%) contains the values of the ¢ dependent variables measured on subject

7,1 =1,2,...,n and each column of Y consists of the n observations on one of the ¢ variables
Y1,Y,,....Y,.
The n values of predictor variables X, Xy, ..., X, can be placed in a matrix
I 11 12 ... @y
X — 1 xo1 xo9 ... @y
I @y o ... Ty

Since each of the Y’s depends on the X’s in its own way, each of them will need different

regression coefficients (4’s). Thus we have a column of §’s for each column of Y, and these

columns form a matrix B = (8, B,,...,8,):
Bor Poz - Bog
I
5101 Bp2 s 5pq

The multivariate model is therefore:
Y =XB+E, (3.1)

where Yisn x ¢, Xisnx (p+1), Bis (p+ 1) x ¢, and E is the residual error matrix. The

model can be written for each column ¢ = 1,2,...,q of Y separately as:
Y1i 1 21 212 ... @y Bo €14
Y2i _ 1 2o @ ... Top B " E2i (3‘2)
Yni 1 Zp1 Tp2 oo Ty Bpi Eni

There are some additional assumptions that lead to good estimates. First of these assump-
tions is that E(Y) = XB, or E(E) = 0. This assumption states that the linear model is
correct and that no additional X’s are needed to predict the Y’s. Second assumption is that
cov(y;) = X for all i = 1,2,...,n, where y/ is the ith row of Y. This assumption asserts that
each of the n observation vectors (rows in Y) has the same covariance matrix ¥. Third of
these assumptions is that cov(y;,y;)=0 for all ¢ # j, which declares that observation vectors
y; are not correlated with each other. Thus we assume that the Y’s within an observation

vector are correlated with each other but independent of the Y’s in any other observation
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vector.

The covariance matrix > mentioned in the second assumption earlier contains the variances

and covariances of y;1, iz, . . . , Yig in any y;:
011 012
021 022
Y =cov(y;) =
Uql 0'p2

The assumption 3 says that the covariances of each y;1, yi2, - - .

j) are zero:
COV(?/ﬂ,yﬂ) COV(?Jﬂ,yﬂ) COV(yilayjq)
COV(yzQayjl) COV(yi27yj2) COV(yi27yjq>
cov(Yig, Yj1)  €OV(Yig, Yj2) - COV(Yiq, Yjq)

Using vectorization the model in 3.2 can be re-written as

vecY = X*B* + &*,

0 0
0 0
00 . 0

Yoy (0 F

(3.3)

where X* =1, ® X is a gn x ¢(p + 1) block-diagonal matrix, 8 = vecB is a vector of length

q(p+ 1), and * =vec E is a vector of length gn.

3.1.2 Estimation of the parameters
Least Squares Estimation for B

The matrix B of §’s is estimated with

B = (X'X)'X'Y.

A A
P ) p—
bt [

(3.4)

B is the least squares estimator for B because it minimizes matrix E = 2’ that is analogous

to error sum-of-squares (SSE) in univariate case:

13



The matrix B minimizes E in the following sense: if we let By be an estimate that may
possibly be better than B and add XB - XBy to Y — XB, we find that this adds a positive
definite matrix to E = (Y — XB)’(Y — XB). Thus we cannot improve on B [Rencher and
Christensen, 2011].

Obtaining this least squares estimator can be done without imposing the assumptions
E(Y) = XB, cov(y;) = X and cov(y;,y;) = 0. However, when these assumptions hold, B has

the following properties:

e B is unbiased, that is, F(B) = B.

e All sz"s in B are correlated with each other, which is due to the correlations among
the z’s and the y’s. Because of the correlations among the columns of B, we need

multivariate test for hypotheses about B

e The least squares estimators §;; have minimum variance among all possible linear un-

biased estimators, i.e. B is the best linear unbiased estimator (BLUE) for B.

An estimator for X

An unbiased estimator of cov(y;) = X is given by

E Y - XB)(Y - XB
8627 — ( )( ) (35)
n—q—1 n—q—1
_ YY-BXY
N n—q—1

3.1.3 Model Corrected for Means

It is often convenient to "center” the X’s by subtracting their means, X, = > mi/n, X, =
>, xie/n, and so on. When the X'’s are centered by subtracting their means, we get the

centered X matrix ~ ~
ri1— X1 T2 — Xo

T1p — Xp
Tor — X1 oo — Xy Top — Xp

X =

xnl_Xl ZL‘nQ—XQ ZL'np—Xp

In terms of centered z’s, the model for each y;; in (3.2) becomes
Yij = o+ Bz — X1) + Baiwje — Xo) + -+ + Byi(wjp — Xp) + €53, (3.6)
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where @ = Bo; + B1: X1 + BoiXo + -+ + B X,

The matrix B can be partitioned as

601 502 50q

Bz(ﬂ6)= T 5)
Bl . N .
Bpl 6p2 qu

Now using the centered X’s in the matrix X, the estimates for B, and 3y are

B, = (X/X.) 4XLY), (3.8)

B, = Y -XB,, (3.9)
where Y = (Y1,Y,,...,Y,) an = (X1, Xy,...,X,). These estimates give the same results
as B = (X'’X)"'X'Y in (3. )

The estimate ]:%1 in (3.8) can be expressed in terms of sample covariance matrices S,, and
Suy- If (3.8) is divided and multiplied by n — 1 we get

. LXLY. (XX TN XLY.
— (3.10)

Bi = (n-1)(XiXe) o =

n—1 n—1

= S;xlsxy

where S, and S, are blocks from the overall sample covariance matrix of the vector (Y1,Y5,.. .,

}/;],XI,XQ’. .. ,Xp)ll
Sy, Syz
S = ( Syy sy ) : (3.11)
Ty xTxr

3.1.4 Statistical testing

In this section I will introduce univariate and multivariate Wald test which are used for
testing significance of regression coefficients. Theory in this section is based on chapter 5.2
in [Rencher and Christensen, 2011]. Univariate Wald test is used for testing significance of a
single coefficient, say 3, and the multivariate Wald test is used for testing the joint significance

of several components of a vector of coefficients 3.
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Univariate Wald test

Let us first consider testing the significance of just one particular coefficient, say [ in case of a
single response variable y and a single predictor variable x. In this case the model is Y=X/+z¢,
where X and Y are centered n x 1 vectors and (3 is a scalar. Under the univariate Wald test, the
maximum likelihood estimate (m.l.e.) 5 of 8 is compared with the proposed value 5y with the
assumption that the difference between the two will be approximately normally distributed.
For example when testing the significance of a genetic effect, it is tested whether the effect is

zero. The null hypothesis in that case is that 3 is O:
HO : 6 =0.

In more generally the null hypothesis is Hy : 5 = fy.

Under Hy : =0, the m.le. BA has a distribution with mean 0 and variance

var(f) = Var(j((;;,) = (XTlX)Qvar(XTY)

_ (X;X)Va(zxy) (3.12)

Y advar(y;)  var(Y)
(XTX)2  XTX
= AETX)

where o2 is the constant variance of the errors e. This is usually unknown and in practice it

is replaced by the unbiased estimate based on the residuals sum of squares.

Thus, we can base our univariate test statistic ¢ on the ratio

var(f3)
In more generally the test statistic is
t= M (3.14)
var()

Under the assumption of normality of the errors, the ratio of the coefficient to its standard
error ¢ has under Hy a Student’s t distribution with n — p degrees of freedom when o2 is

estimated, and a standard normal distribution if o2 is known.
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Under the weaker second-order assumptions concerning the means, variances and covari-
ances of the observations, the ratio has approximately in large samples a standard normal

distribution. This result provides a basis for approximate inference in large samples.

The t test can also be used to construct a confidence interval for a coefficient 5. It can be
stated with 100(1 — «)% confidence that /5 is between the bounds

B + tl,a/gyn,p\/var(ﬁ), (3.15)

where t1_,/2n—p is the two-sided critical value of Student’s ¢ distribution with n —p d.f. for

a test of size a, n is the sample size and p is the number of predictor variables in X.

Multivariate Wald test

The Wald test can also be used to test the joint significance of several coefficients, for example
testing the significance of an effect of a single locus on multiple phenotypes simultaneously.
In this case the model is Y = XB + E, where X is n x 1 matrix and both X and Y are

centered. If we have a vector of coefficients, say 3, of length ¢, then the null hypothesis is:
Hy: 8 =0, (3.16)

that is, all the 5’s in B are 0. The multivariate Wald statistic W to test this hypothesis is
calculated as follows:
W=83%;'8 (3.17)

where B is the m.l.e. of B and Xz is variance-covariance matrix of 3:

var(B)  cov(By, Ba) ... cov(Bi, By)
83

cov(Be, B1)  var(Bs) ... cov(Be, ) (3.18)
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where covariance of 3; and Sy is

- XTY, XY,
covldB) = eov( St )
|
= e (X X
1
- (XTX) COV<Z$Z%]7Z$Z%,€> (3.19)

=1 =1

_ XTX (zxcov( ))

— cov(¥}, Vi) (XTX)™!
= U?k(XTX)fl

Thus X5 = (XTX) ™'Y, where X is the covariance matrix of the error terms. As in univariate
case, also in the multivariate case the covariances of the coefficients depends on covariance
of the Y; and Y, szk- These are usually unknown and in practice we substitute the estimate

based on the residual sum of squares.

Asymptotic theory tells that under Hy the large-sample distribution of the m.l.e. B is
multivariate normal with mean vector 0 and variance-covariance matrix 3g (which is positive
definite matrix) i.e B ~N,(0,%). If we use the known result' concerning the multivariate
normal distribution and y?- distribution, we get that (B—O)’Eg_l(B—O) ~ X129 = B/Eﬁ_lﬁ ~
Xf,. This means that the large-sample distribution of the W = B/Eg_l B is chi-squared with

p degrees of freedom. This result holds whether the ¥3 is known or estimated.

Under the assumption of normality there is a stronger result: if 35 is known, the distribution
of W is exactly x? with p degrees of freedom. In the more general case where X5 is estimated
using a residual sum of squares based on n — p degrees of freedom, the distribution of W/p
is an F' with p and n — p degrees of freedom. As n approaches infinity (n — p approaches
infinity), the F' distribution times p approaches a x? distribution with p degrees of freedom.
Thus, in large samples it makes no difference whether one treats W as x% or W/p as an F

statistic, and often W is treated as x? as a large sample approximation.

3.2 Canonical Correlation Analysis (CCA)

In this section I will introduce the Canonical correlation analysis (CCA). Theory in this

section is based on chapter 9 in [Dillon and Goldstein, 1983]. Canonical correlation analysis

L According to this result Z ~ Ni(p, ) = (Z fu)’Zgl(Z — 1) ~ X2 (assuming that X is positive definite)
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is a well-established multivariate technique for detecting linear relationships between two sets
of variables, predictor and response variables. It should be used in analysing several predictor
and response variables simultaneously, and it is particularly appropriate when the response

variables are themselves correlated.

In CCA canonical variates are computed from both sets of variables. A variate in canonical
correlation analysis is analogous to a dimension or factor in a principal components analy-
sis. The difference is that a canonical variate consists of maximally correlated predictor and
response parts. A maximum of M variates can be extracted, where M is the number of vari-
ables in the smallest set, that is M = min(p, q), where p is the number of predictor variables,
and ¢ is the number of response variables. The M variates are extracted such that they are
independent of each other. To test the significance of the relationships between canonical
variates the data should meet the requirements of multivariate normality and homogeneity of

variance.

3.2.1 The Population Model

Let p be the number of predictor variables and ¢ be the number of response variables, and
assume that p > ¢. Denote by X' = (X3, X»,...,X,) the p dimensional vector of predictor
variables, X's, and by Y’ = (Y3,Y5,...,Y;) the ¢ dimensional vector of response variables,
Y's. Letting p, and p, denote the respective mean vectors associated with X and Y, the

population variance-covariance matrices can be defined as

She = B{X—p)(X—p,)}
Sy = B{(Y = )Y —p,)} (3:20)
Say = B{(X—p,)(Y —p,) '}

The objective of CCA is to find the linear combination of X’s that is maximally correlated

with some linear combination of the Y’s. If we denote the respective linear combinations by
X*=a'x = a1 + agwy + - + ap, (3.21)

and
Y* _ b/y _ blyl _'_ b2y2 _'_ e _|_ bqu’ (322)

then finding the linear combination of p predictor variables that are maximally correlated
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with the linear combination of the Y’s corresponds to finding vectors a and b that maximizes

(Xa)'(Yb) a'Y,,b (3.23)

r= = .
| Xal[[Yb]  a%,,a,/bE,,b

The maximized correlation r is called canonical correlation between X and Y. Since r is

invariant under scaling of a and b, we can make an arbitrary normalization of a and b. We
will require that a and b be such that X* and Y* have unit variance, that is, a Tyxa =
b'3y,b = 1, and that E(X*) = 0 and similarly £(Y*) = 0. This problem is equivalent to

solving the canonical equations:
(20202, By — ATJa=0 (3.24)

and
(3 2T By — A)b = 0 (3.25)

where 3., 8y, 8, and 2,, (= X)) are defined as before in (3.20), Tis the identity matrix,
and A is the largest eigenvalue for the characteristic equations
2, 20y X, By — M| =0 (3.26)

and
13, 2.2, 2y — M| = 0. (3.27)

Y

The largest eigenvalue of the product matrix 3,3, % '3, or X '3, 313, is the squared
2

canonical correlation coefficient r*. The eigenvectors associated with the eigenvalue A then
become the vector of coefficients a and b. There are two sets of eigenvectors, one for

¥, 3., %, 3y, and one for X, /X%, 315, It can be shown that

>-1s,b
a= Ty (3.28)

and .
Zyy Yyea
VA

which means that it is not necessary to solve for both characteristic equations, since the

b= (3.29)

eigenvectors a and b are themselves defined already when one of them is known.
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3.2.2 Sample-Based Canonical Correlation Analysis

So far I have been considering population variance-covariance matrices 3,,, ¥, 2,, and
Yyy- In most applications, however, these matrices are not known. A canonical correlation
analysis usually starts with a sample of n measurements on the (p + ¢) dimensional variable

Z=(X,Y), that is, with the data matrix

T T2 --- Tip Y11 Y12 .- Yig
Tor T22 ... T2p Y21 Y22 ... Yzq
Tnlt Tp2 ... ZL‘np Ynl Yn2 - .. ynq~

The components of the variance-covariance matrix generated from a data matrix like that
shown above are then used to estimate the coefficients of each pair of canonical variates.

That is, the two product matrices that are used in the analysis correspond to
S,15.,8,,S,0 (3.30)

and
S, SysSza Say (3.31)

where S,,, Sz, Sy and Sy, are, respectively, the sample-based estimates of 3., ¥,,, 3,
and X,,. Given the necessary inverses, the procedures followed here are precisely the same

as those described above for the population model.

Often the measurements collected have different properties, which means that they are not
comparable. In such cases the X and Y variables are first standardized to have unit variance so
that the variance-covariance matrix is a correlation matrix. Following the previous approach,

the two product matrices that become the input to the analysis are
R..R,R, R, (3.32)

and
R, 'R,.R. R, (3.33)

where R, is the correlation matrix formed from considering the X variables alone, R, is
the correlation matrix formed from considering the Y variables alone, and R,, (R,;) is the
correlation matrix obtained from considering both the X and Y variables together. The same
canonical correlation r? will be obtained whether one is using (3.32) and (3.33) or (3.30) and
(3.31).
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The sample-based estimates of the canonical weights a and b will be denoted by & and
b. When the sample-based estimates of the variance-covariance matrices (3.30 and 3.31)
are used, the elements of & and b will be in units proportional to those of the respective
responses in each set, and the dimensionality of the respective canonical variables will thus
have a meaning. In contrast, canonical variates based on the correlation matrices (3.32 and
3.33) are dimensionless, and thus in computing the correlation-based canonical variates one

should use the standardized scores of the original variables.

3.2.3 Statistical Testing

In CCA we want to test the null hypothesis that the g response variables are not linearly

associated with the p predictor variables, that is

Hy: 3y =0 (3.34)
H1 . ny 7& 0.

To do that, we need to define a suitable test statistic called Wilks’s lambda A as follows:

A= ﬁa —\) = _sL (3.35)
=1 Szl |Syy]

where M = min(p, ¢), and \; is the jth largest eigenvalue for the characteristic equations (in

3.26 and 3.27). Bartlett’s x? approximation for the distribution of A is derived for
1
X?==[(n=1) = 5(p+q+DnA, (3.36)

which under the Hy in 3.34 follows X;Q)q distribution.

3.3 The relationship between Canonical correlation anal-

ysis and Multivariate linear model

Theory in this section is based on chapter 11.6 in [Rencher and Christensen, 2011]. To reveal
the relationship between multivariate linear model and CCA, let us examine the linear model
with one response variable X, and two predictor variables Y7 and Y5: X = a1 Y] + anYs + €.

In this model the proportion of the total variation in the response variable X that can be
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attributed to regression on the Y’s is denoted by R?%:

o regression sum of squares (SSR)

total sum of squares (SST)
AY'X —nX?
= — . (3.37)
X'X —nY?
This ratio R? is called the squared multiple correlation. This can also be expressed in terms
of sample variances, covariances and correlations:
2 s’mySy_yl Szy /I -1
R = —F— =1, R Iy, (3.38)
SQ"E

where S, S;, and S,, are defined in 3.31 and r,, and R, are from analogous partitioning

of the sample correlation matrix of the ¢y's and the z:

1 r
R = = e
| Tue Tyigr Tyrye | —

ryz Ry,

Tys,x Tyoyn Ty2,ue

The F-test for overall regression can be expressed in terms of R? as

n—qg—1 R?

F = )
q 1— R?

(3.39)

Canonical correlation can be defined as an extension of this multiple correlation R?. When
one of the two sets of variables has only one variable, canonical correlation reduces to multiple
correlation. For example, when p = 1, R,, becomes 1, and the single squared canonical
correlation reduces to r? = r’xngylrxy, which can be recognized as R%. As the statistical
testing in CCA is in practice testing the significance of the canonical correlation coefficient,
it is equivalent to F' test, which tests the significance of multiple correlation coefficient. It
can be shown that F' test and Wald tests are asymptotically equivalent, and since the Wald
test yields the same results no matter which way you treat the association (whether X is the
response variable or the Y’s), we can say that the Wald test and CCA are asymptotically

equivalent in case of one variable in the other group of variables.
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Chapter 4

Results

4.1 Simulations

In this section I will introduce the simulations I did, and the results I got from them. I had
two motivations to do these simulations: first I wanted to illustrate the nature of multivariate
Wald test compared to the corresponding univariate Wald tests i.e. in what kind of situations
the multivariate test is more useful than the univariate test. The second motivations was
to examine whether multivariate Wald test yields the same results as canonical correlation
analysis. Simulation scenarios are adapted from [Stephens, 2013]. The R code I used for these

simulations, and their statistical analyses is in Appendix A.

To illustrate these two things, I made bivariate simulations in which two phenotypes, Y;
and Y, are associated in varying ways with SNP genotypes g and with each other. Each
simulation scenario is defined by three parameters, (51, B2, p), which denote, respectively, the
effects of genotype g on Y; and Y5, and the correlation coefficient of Y; and Y,. I simulated
datasets of 1,000 individuals, where for each individual ¢ I simulated 1,000 genotypes from
the distribution g; ~ Bin(2,0.2), that is, the minor allele frequency for all of these 1,000
genotypes is 0.2.

After genotype simulations I simulated bivariate phenotypes (Y3,Y3) for every SNP from

p 1
fixed S = 0.2 (Y3 is associated with g) and considered two different levels of correlation

p = (0.3,0.7), 51 had three different values, (—0.2,0,0.2) (Y7 is associated, not-associated
and associated, respectively, with g.). Thus, there was total of 12,000 phenotypes for 1,000

1

individuals (6 bivariate phenotype-pairs for 1,000 individuals). The simulation scenarios were
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as follow:

1. simulation: §; = —0.2, 5 = 0.2 and p= 0.3 (opposite directions, small correlation)

2. simulation: f; =0, 82 = 0.2 and p= 0.3 (one effect, small correlation)

3. simulation: 5; = 0.2, 82 = 0.2 and p= 0.3 (same direction, small correlation)

4. simulation: 8; = —0.2, 53 = 0.2 and p= 0.7 (opposite directions, large correlation)

5. simulation: #; =0, 82 = 0.2 and p= 0.7 (one effect, large correlation)

6. simulation: 5, = 0.2, 82 = 0.2 and p= 0.7 (same direction, large correlation)
The non-genetic variance of every trait is simulated to be 1, thus the simulated standard
deviation of the traits are /1 = 1. If the genetic effect size (0.2 or -0.2) is compared to that,
we notice that it is one fifth of the trait’s non-genetic standard deviation, which is a quite

remarkable effect in GWAS, but it was chosen to demonstrate the methods using a sample

1,000 individuals.

o
o

oo
oo

o T

Signif.thresh.
=0.001

density
1.0

0.5
I

Power=0.613

Power=0.001

T T T 1

0.0

4 6
-logqo(p-value)
Figure 4.1: Demonstration of the power in the univariate tests with the significance threshold

of 0.001, and the effect of 0 and 0.2. The lines represents the density plots for 1,000 simulated
tests, x-axis being the -log;o(p-value).

The power of the test is the probability that when there is a true effect the test statistic

will reach the given threshold. Power depends on the sample size n, allele frequency f and
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the effect size 3. For quantitative traits power increases with nf(1 — f)3* [Sham and Purcel,
2014]. The power to detect the effect in these simulation scenarios (0.2 or -0.2) when used
significance threshold 0.001 is 0.613, and in the case of no effect (5 = 0) the power is 0.001.
That is illustrated in the Fig. 4.1.

4.1.1 Comparing univariate and multivariate Wald tests

I calculated univariate Wald test statistics for every simulated phenotype-SNP-pairs and then
I calculated corresponding p-values from standard normal distribution, and -log;o(p-values).
Distributions of -log;o(p-values) I got from univariate Wald tests are in Fig. 4.2 showing that
when there is an effect (0.2 or -0.2) the boxplots are very similar, and when there is no effect the
p-values are also very large (-logjo(p-values) are small), as would be expected. Boxplots with

the same colour represents the tests against phenotypes from the same simulation scenarios

Univariate Wald tests

= Simulation 1,p=0.3 Simulation 4,p=0.7
Simulation 2,p=0.3 Simulation 5,p=0.7
© - = Simulation 3,p=0.3 Simulation 6,p=0.7
@ o | Z 2 é ° o e ‘
2RI R L
(@)] 2 g o
S LS S A S A | S
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| | I I |
-02 02 0 02 02 02 -02 02 0 02 02 0.2
Simulated effect

Figure 4.2: Univariate Wald test -log;o(p- values). Each boxplot represents a -log;o(p- values)
for one genotype-phenotype pair, thus in each boxplot there is the results from 1,000 tests.



After univariate tests I calculated multivariate Wald test statistics for every simulated SNP-
bivariate phenotype- pairs, and calculated corresponding p-values from y2-distribution with
two degrees of freedom, and then -log;o(p-values). Distributions of -log;o(p-values) I got are in
Fig. 4.3, where one boxplot represents one phenotype-genotype pair (two in each simulation
scenarios). Thus in each boxplot there are -logio(p-values) for 1,000 tests. Colour of the
boxplots represents the relationship of the two effects (opposite direction, same direction or
single effect), and the simulated non-genetic correlation in each scenario is on x- axis. It can
be seen that the multivariate Wald test is most efficient in cases, where the two effects have
opposite directions (-0.2 and 0.2), especially when correlation between two phenotypes is large
(0.7, the fourth boxplot).

Multivariate Wald tests

B1m Opposite direction effects (-0.2, 0.2)
= Single effect (0, 0.2)
o Same direction effects (0.2, 0.2) .
Q-
;

—log1o(p)
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Correlation between traits

Figure 4.3: Multivarite Wald test -logio(p)- values. Every boxplot represents -logio(p values)
of one simulation scenarios, and thus in every boxplot there is 1,000 observations.

I compared the univariate tests, and corresponding multivariate tests in Fig. 4.4 showing
that multivariate test (blue boxplots) are most efficient compared to univariate tests (green
boxplots) when the two effects have opposite directions. When the effects have same direction,
it seems that the multivariate test is most efficient when the correlation between the traits is

small, and even then barely more efficient than either of the corresponding univariate tests.

When ¢ has effect only on the other phenotype the multivariate test is most efficient com-

pared to univariate test when the correlation between the traits is large. When the correlation
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Figure 4.4: Univariate vs. Multivariate Wald test results by simulation scenarios.

between the traits is small, the multivariate test is about as effective as univariate test for
the trait that genotype has effect on. From Fig. 4.4 can also be seen that the multivariate

test is never much worse in terms of power than corresponding univariate tests.

These same results can be seen from Table 4.1, where I have calculated the percentage of
the cases, where multivariate Wald test yields smaller p-value (larger -logo(p-value)) than
either of the corresponding univariate Wald tests. When effects have opposite directions, that
Table 4.1: Comparison of univariate and multivariate Wald tests. Percentages reported here

tells when the multivariate test yielded smaller p-value than either of the corresponding
univariate tests.

Simulation | % Effects Correlation
1 100 | Opposite directions 0.3
2 31.2 Single 0.3
3 60.4 Same direction 0.3
4 100 | Opposite directions 0.7
5 97.4 Single 0.7
6 2.4 Same direction 0.7

percentage is 100 in both small and large correlation cases. Thereby it seems that multivariate

Wald test is very useful compared to univariate tests when the effects have opposite directions.
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When g has effect only on the other trait, multivariate Wald test yields smaller p-value in
31.2% of cases when correlation between the traits is 0.3, and 97.4% of cases when correlation
between the traits is 0.7. When the two effects have same direction, multivariate Wald test
yields smaller p-value than either of the corresponding univariate tests in 60.4% of cases when

the correlation between the traits is 0.3, and 2.4% when that correlation is 0.7.

The small percentages seen here, such as 2.4 and 31.2 might give the impression that the
multivariate test in these cases is less efficient than corresponding univariate tests, but the
Fig. 4.4 shows that multivariate test in practice yields almost as small p-value as either of

the corresponding univariate tests.

Intuitive explanation for the pattern

The intuitive explanation for this pattern described above can be given by considering the
null models for the effects. In Fig. 4.5 are the 95% highest probability regions (areas inside
the ellipses) for the null model in case of both correlations in my simulations, 0.3 and 0.7. So
in case of no genetic effects (that is both 8; and Sy = 0), 95% of the cases would be expected

to be within these ellipses.

Correlation = 0.3 Correlation = 0.7
o | (0202) 0,0.2) (0.2,02) o | (0202) 0.0.2) (0202
S 7 p=1.11e-08 p=0.0008 p=5.25¢-05 S | p=2.55e-19 p=3.42¢-06 p=0.0005
S S
o O o O
e o e o
S S
o o
o 7 CI> 7
T T T T
0.2 -0.1 0.0 0.1 0.2 0.2 -0.1 0.0 0.1 0.2
B B1
(a) Small correlation (b) Large correlation

Figure 4.5: 95% highest probability regions for the null models. Each three different com-
binations of the genetic effects (opposite directions, same direction and single effect) are
demonstrated in the figure.

Fig. 4.5a shows the 95 % confidence ellipse of the null model for two genetic effects in
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case the correlation between the traits is 0.3. I also plotted the three dots to demonstrate
the effect pairs in my simulations, and the corresponding theoretical p-values for each of the
cases to also show the mathematical background for the pattern besides the figure. From this
figure it can be seen that the case of opposite directions (-0.2, 0.2) is most deviated from this
ellipse (which means it will give the smallest p-value as the idea in the test is to test how well
the result fits to the null model), and the single effect case (0, 0.2) is closest to this ellipse.
This demonstrates the results described earlier: multivariate test is most efficient in the case
of opposite directions, and least effective in the case of a single effect when the correlation

between traits is small.

Fig. 4.5b also shows the 95 % confidence ellipse for the null model, as Fig. 4.5a, but in
this case the correlation between the traits is 0.7. In this case the opposite direction effect
situation is again the most deviated from the ellipse, and the same direction effect situation
(0.2, 0.2) is closest to model. This demonstrates the results described earlier: multivariate test
was most efficient in the case of opposite directions, and least effective in the same direction

effect cases when the correlation between the traits is large.

When the correlation between the traits approaches to zero, the confidence ellipse gets more
and more close to circle. In extreme situation where the correlation is zero, and the confidence
ellipse is a circle, points (0.2, 0.2) and (-0.2, 0.2) would be equally deviated from the ellipse,
and in that case the multivariate test would be equally efficient in these two cases, and least

effective in the case of a single effect.

When the correlation between the traits approaches to 1, the confidence ellipse gets very
narrow, and eventually when the correlation is 1, it is a line. In that case the point (-0.2, 0.2)
would be most deviated from that line, and the point (0.2, 0.2) would be closest to that line.
In that case the multivariate test would be most efficient in the case of opposite direction

effects, and least effective in the case of same direction effects.

4.1.2 Comparing multivariate Wald test and Canonical correlation

analysis

The other motivation for these simulations was to compare multivariate Wald test and Canon-
ical correlation analysis and to see whether they yield the same results, that is, whether they
yield the same p-value for the significance of the association between genotype and pheno-
types. I executed the CCA for all the bivariate phenotype-genotype pairs as explained in
Methods. The -logio(p-values) I got from these calculations are in Fig. 4.6. It seems that

those results are similar to those of multivariate Wald test in Fig. 4.3. To check this more
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closely I plotted -logio(p-values) from both of these models against each other in Fig. 4.7.
From that figure it can be seen that they are not exactly the same, especially when p-values
get very small (-logjo(p-values) get large). These differences are most likely due to differences
in asymptotics of approximations in the two methods, and have very little practical conse-
quence. In genome-wide association studies, the most commonly used threshold for statistical
significance of the effect is 5x 107%, and from the figure we can see that the -log;o(p-values) are
the same until that threshold . Thus for all practical purposes it does not make a difference

if one is using multivariate Wald test or Canonical correlation analysis.

4.2 Data from The National FINRISK Study

In addition to simulation studies, to illustrate the nature of multivariate Wald test compared
to univariate Wald test and CCA I did the same analysis for real data as for simulated data
described in the previous section. I used data from The National FINRISK Study, which
is a large Finnish population survey on risk factors on chronic, non-communicable diseases
coordinated by National Institute for Health and Welfare (THL). The survey is carried out
every five years using independent, random and representative population samples across
Finland [FINRISK homepage].

The National FINRISK Study was earlier known as the North Karelia Project and it was
part of the World Health Organization MONICA Project (FINMONICA) in 1982-1992. The
research work of the project starting from 1972 is called The National FINRISK Study [FIN-
RISK homepage]. In my study, I had access to The National FINRISK Study 1992-2012
collections, with 20,626 individuals at the beginning. 1,792 individuals were excluded from
the analysis because 1,512 of them did not have any lipid measurements, and additional 280
individuals did not have LDL-cholesterol measurements available. Thus the final number of

individuals in my analyses was 18,834.

I considered 3 traits into my analysis, HDL-cholesterol, LDL-cholesterol and triglycerides
(TG), and I examined 157 SNPs that have been previously reported to be associated with
blood lipid levels in [Willer et al., 2013]. The use of genomic data for these 157 genomic regions
together with lipid measurements has been approved by the FINRISK Management Group
(Applicant: M. Pirinen; Project: #60/2015 "Fine-mapping genomics regions associated with
lipid levels”). The complete list of SNPs I used, and their features is in Table B.1. My traits
were inverse rank normalized, so the s in my analyses are directly comparable with standard

deviations. First I examined correlations between the three traits that are listed below:

e cor(HDL, LDL)= -0.0781
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e cor(HDL, TG)= -0.4334

e cor(LDL, TG)= 0.2049

For each of the 157 SNPs in the data I executed three univariate Wald tests againts each three
traits (HDL, LDL and TG), three bivariate Wald tests (HDL and LDL, HDL and TG and
LDL and TG), and one multivariate test against all three phenotypes, and also corresponding
CCA. In Figures 4.8-4.10 are the results for the univariate tests. In these figures the size of the
bar represents the significance of the SNP (—log;,(p-values)), the colour of the bar represents
the direction (with respect to minor allele) of the effect (red=negative and green= positive)
and the colour of the background represents the minor allele frequency, MAF (frequency of
the least common allele): dark grey= MAF >0.05 and light grey= MAF<0.05. These results

are also in Table C.1.

In all of these barplot-figures I have cut the -log(p-values) at 10 for clarity. That means

10" its -logyo(p-value) is in these figures still 10.

that if some p-value was smaller than 10e™
These results are sorted by p-value, and the name of the bar is the name of the gene that has

been reported for that particular SNP by [Willer et al., 2013].
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Figure 4.8: Results for univariate tests (HDL)
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Figure 4.10: Results for univariate tests (TG)
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After univariate tests I executed the multivariate tests for every trait-pairs (HDL-LDL,
HDL-TG and LDL-TG) and also for all three phenotypes. These results are in Figures 4.11-
4.14. In these figures the size of the bar represents, as in the univariate case, the significance
of the SNP, and the colour of the bar represents the relationship of the two effects (opposite
direction, same direction, single effect or no effect). In this case I have defined the § as an
effect, if it’s absolute value is larger than 0.02, so the case "no effect” means that both 5; and
(o are smaller or equal to 0.02. In the case of 3 traits, there is no colour coding for the bars.

In that case again, the size of the bar represents the the significance of the SNP.

From these figures it can be seen that the p-values seems to be smaller in multivariate
cases than in univariate cases (the bars are longer), especially in the case of 3 traits. It can
also be seen from the results for 2 traits that the most significant results seem to arise from
either opposite direction effects cases, or single effect cases, which supports the results from

my simulations studies.
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HDL and LDL, p =-0.0781
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Figure 4.11: Results for multivariate tests for 2 traits (HDL and LDL)
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Figure 4.12: Results for multivariate tests for 2 traits (HDL and TG)
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LDL and TG, p = 0.2049
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Figure 4.13: Results for multivariate tests for 2 traits (LDL and TG)
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Figure 4.14: Results for multivariate tests for 3 traits (HDL, LDL and TG)
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Next I looked the 157 SNPs in the data individually to examine how multivariate tests
act compared to univariate tests and chose a couple of them as examples. First example is
rs1532085 (in LIPC gene) in Fig. 4.15a, which has the same direction of effect on HDL and
TG. The correlation between HDL and TG was -0.4334 (negative and quite large). In this
case we can see that the multivariate test against HDL and TG is much more efficient than
either of the univariate tests. This case is the same as if there was a positive correlation
between traits and the effects would have opposite directions, because in the case of negative

correlation the null model ellipse would be a mirror image of the ones in Fig.4.5.

o rs1532085 (LIPC) rs174546 (FADS1-2-3)
R
4 Univariate AHDLTG HDL LDLTG A Univariate
o | A Multivariate, 2 traits A Multivariate, 2 traits HDL,LDL,TG
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(S © 4
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‘Q 4
ATG ALDLTG
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(a) Example for the case of same direction effect (b) Example for the case of opposite direction
on HDL and TG effect on LDL and TG

Figure 4.15: Examples from The National FINRISK Study

The other example is rs174546 (in FADS1-2-3 gene), which has opposite direction effects on
LDL and TG (in Fig. 4.15b). The correlation between these traits was 0.2049 (positive and
quite small). It can be seen that in this case the multivariate test against LDL and TG is more
efficient than either of the corresponding univariate cases. This supports the results already
seen in the simulation study: even with quite small positive correlation between traits but
in case of opposite direction effects the multivariate test is more efficient than the univariate

tests.

To illustrate the nature of multivariate test compared to univariate tests more generally
I plotted all the —log,,(p-values) from the three dimensional multivariate tests against the
minimum of the corresponding univariate tests (that is the one of the three univariate tests
that yields the largest p-value), and also for the minimum of the corresponding multivariate

tests against two traits. These plots are in Fig. 4.16.

In these figures the x-axis and the y-axis have been cut from value 30. It can be seen
that the multivariate test for three traits has never higher p-value than the least effective

corresponding univariate test, or least effective multivariate test for two traits.
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3 traits vs. min(1 trait)

3 traits vs. min(2 trait)
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Figure 4.16: Multivariate test for 3 traits vs. minimum
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multivariate tests for 2 traits on -log;o scale.
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Figure 4.17: Multivariate test for 3 traits vs. maximum of univariate tests and maximum of
multivariate tests for 2 traits on -log;o scale.

This same thing can be seen from Fig. 4.17. In that figure I have plotted all the -log(p-

values) from the multivariate tests for all three traits against the maximum of the corre-

sponding univariate tests, and also for the maximum of the corresponding multivariate tests
against two traits. From that figure it can be seen that the multivariate test for 3 traits is not
noticeably less efficient than the corresponding univariate test, or multivariate test against

two traits that yields the most significant results. And in some cases it can be more efficient

than the corresponding univariate test that yields the most significant result. So based on
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these results we can say that there is no reason not to do the multivariate test first.

I also checked the relationship between multivariate Wald test and CCA. In figure 4.18 are
plotted all multivariate Wald tests against two traits and against 3 traits against corresponding
CCA results. From that figure it can be seen the same thing as earlier; that those two
methods yields the same results. This time they are exactly the same all the way through,
which is propably due to the fact that in this data there is approximatley 19 times more
individuals (18,834 vs 1,000) and thus the differences in approximations seen in previous

section disappears.

80 100 120
| | |

60
|

Wald

T T
0 20 40 60 80 100 120
CCA

Figure 4.18: CCA and Multivariate Wald test -logio(p-values) comparison from The National
FINRISK Study.
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Chapter 5

Conclusions

There were two main goals in this thesis: to demonstrate the nature of multivariate test
compared to the corresponding univariate tests, and to see if two multivariate methods, mul-
tivariate Wald test and CCA yield the same results. Based on my simulation studies and
examples from The National FINRISK study we can say that multivariate test is never much
worse in terms of power to detect associations than the corresponding univariate tests but in
some situations it can be much more efficient. In genetic association studies multivariate anal-
ysis of genomic regions and correlated traits can provide new insights to genetic mechanism
behind complex, non-Mendelian diseases such as cardiovascular diseases. For example, for
correlated lipid traits using multivariate tests we can detect more genomic regions associated
with blood lipids, than we would by using only univariate tests. Finding these associations
and the genetic mechanism behind blood lipid levels is important, as they are well-established

risk factors for cardiovascular diseases, the most common cause of death worldwide.

The multivariate test is (in case of two traits) especially efficient when the correlation
between the traits is large and its direction is opposite to the direction of the genetic effects
on them. This happens when the correlation between the traits is positive and the effects
have opposite directions, or the correlation is negative and the effects have same direction.
Based on Figures 4.16 and 4.17 it seems that in general adding traits to analysis does not
decrease the power to detect the significant effects. For example, the multivariate tests for
three traits in practice always yields at least as small p-value as the one for only 2 traits.
Thus, when testing for example the association of a SNP and multiple correlated traits there
is no reason not to do the multivariate test first and after that, if one is interested, carry out

the corresponding univariate tests.

The other main goal in this thesis was to look the relationship of Mutivariate Wald test and

CCA and see if they yield the same results. Based on the simulation studies and examples
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from The National FINRISK Study we can say that these two methods yield the same results,

with some small differences probably due to slightly different approximations.

The differences with smaller sample sizes have very little practical consequence in locus dis-
covery, because when finding statistically significant SNPs for some trait, the most commonly
used threshold in GWA studies for significance is 5 x 1078, and until that value these two
methods yields the same results. Thus for all practical purposes, we can say that in case of
testing the statistical significance of the the genetic effects of one genotype on multiple traits,
it does not make a difference if one uses multivariate Wald test or CCA. There is, however, a
limitation in multivariate Wald test compared to CCA: Wald test cannot be used to test the
significance of multiple SNPs and traits, which can be done using CCA.

In this thesis I examined only cases of two or three traits and one genomic loci at a time. I
think that it would be really interesting to look how these patterns shown in this thesis could
be generalized into cases of tens of traits simultaneously. Because many biological processes
consist of much more than two or three separate measurements, examining even more traits
would provide even more useful tools to study complex diseases. Based on future results it
could be possible to create an algorithm to estimate beforehand if one should use multivariate
test instead of multiple univariate tests based on the effect sizes and correlation structure of
the traits.
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Appendix A

R script for simulations

n<-1000 #number of "individuals"
g<-1000 #number of genotypes

m<-6 #number of bivariate phenotype-pairs

#simulation of genotypes
G <- lapply(1l:n, function(x) (rbinom(n, 2, 0.2)))
GT<-lapply(l:g, function(x) rep(G[[x]],each=2))

#simulation of phenotypes

betal<-c(-0.2,0,0.2,-0.2,0,0.2) #effects on the first phenotype
beta2<-c(rep(0.2, times=m)) #effects on the second phenotype
Beta<-lapply(l:m, function(x) rep(c(betal[x],beta2[x]),times=1000))

#covariances between the phenotypes

Cov<-c(rep(0.3,times=3) ,rep(0.7,times=3))

#covariance matrices

Sigma<-lapply(1:m, function(x) matrix(c(1,Cov[x],Cov([x],1),ncol=2))

#XB-matrix

XB<-lapply(1l:m, function(x) sapply(l:n, function(y) GT[[yl]l*Betall[x]]))
library(MASS)

#Epsilon-matrix

epsilon<-lapply(l:m, function(x) mvrnorm(n=1000, c(0,0), Sigmal[x]]1))
#Phenotypes

Yi<-lapply(l:m, function(x) sapply(l:n, function(y) XB[[x]][,y][c(TRUE,FALSE)]
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+epsilon[[x]]1[,11))

Y2<-lapply(1:m, function(x) sapply(l:n, function(y) XB[[x]1[,y][c(FALSE,TRUE)]
+epsilon[[x]1][,2]))

FT<-c(Y1,Y2)

#X and Y matrices, centered for means

X<-lapply(l:n, function(x) matrix(c(G[[x]]-mean(G[[x]])),ncol=1))
Y<-lapply(1l:(m*2), function(x) (sapply(l:n, function(y) FT[[x]][,yl-
mean(FT[[x]]1[,y1))))

#Beta-estimates
betaHat<-lapply(1: (m*2), function(x) (sapply(l:n, function(y) solve
Xyl D %*%XCIyl1) %x% t(XCLyll) %%Y[[x110,y1)))

#Variances of beta-estimates
var_betaHat<-lapply(1:12,function(x) (sapply(1l:n, function(y) var(FT[[x]]1[,y]l)*
solve(t (X[[yll) %x*% X[lyl1))))

#univariate test statistics
Z<-lapply(1l: (m*2), function(x) (sapply(l:n, function(y) betaHat[[x]] [y]
/sqrt (var_betaHat [[x]][y]))))

#univariate p-values
pvaluesuv<-lapply(1l: (m*2), function(x) (sapply(l:n, function(y)
2*pnorm(-abs(Z[[x]1]1[[yl1)))))

#univariate -loglO(p)- values
logpvaluesuv<-lapply(1l:(m*2), function(x) (sapply(l:n, function(y) (-loglO
(pvaluesuv[[x]][y]l)))))

#Multivariate Wald test
#covariances of the estimates
covariance<-lapply(l:m, function(x) (sapply(1l:n, function(y) (cov(FT[[x]][,y],

FT[[x+m]1[,y]))*solve(t(X[[yll) %% X[[yl1))))

#multivariate test statistics

ZM<-lapply(1l:m, function(x) (sapply(l:n, function(y) (c(betaHatl[[x]][y],
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betaHat [[x+6]] [y]))%*%(solve(matrix (c(var_betaHat [[x]] [y],covariance[[x]] [y],
covariance[[x]] [y],

var_betaHat [[x+6]] [y]) ,ncol=2)))%*% (matrix(c(betaHat [[x]] [y],

betaHat [[x+6]] [y]), ncol=1)))))

#multivariate p-values
pvaluesmv<-lapply(l:m, function(x) (sapply(l:n, function(y) pchisq(ZM[[x]][y],2,
lower.tail=FALSE))))

#multivariate-loglO(p)-values
logpvaluesmv<-lapply(l:m, function(x) sapply(l:n, function(y) (-loglO(pvaluesmv[[x]]
(yl))))

#CCA
sigma_xx<-lapply(l:n, function(x) matrix(c(var(G[[x]])),1,1))

sigma_yy<-lapply(l:m, function(x)(lapply(l:n, function(y) matrix(c(var(FT[[x]][,y]),
cov(FT[[x]][,y],FTLx+6]][,y]),cov(FTLIx]][,y] ,FTL[x+6]]1[,y]),var(FT[[x+6]1]1[,y]1)),
2,2))))

sigma_all<-lapply(l:m, function(x) (lapply(l:n, function(y) matrix(c(var(FT[[x]]
[,y1),cov(FT[[x]1[,y],FTL[x+6]1]1[,y]),cov(FTL[x]][,y],GlLyll), cov(FT[[x]]1[,y],
FT[[x+6]1]1[,yl),var (FT[[x+61]1[,y]),cov(FT[[x+6]1]1[,y],Gllyl]),cov(FTLIx]11[,y]l,G[[yll),
cov(FT[[x+6]]1[,y],Gllyl]),var(G[lyl])),3,3))))

Lambda<-lapply(l:m, function(x) (sapply(l:n,function(y) det(sigma_all[[x]][[yl]l)/
((det(sigma_xx[[y]1]1))%*%(det(sigma_yy[[x1]1[[y]11))))))

Chi_appro<-lapply(1l:m, function(x) (sapply(l:n, function(y) -((n-1)-0.5%(2+1+1))*
log(Lambda[[x]1][yl))))

#CCA p-values
pvaluescca<-lapply(1l:m, function(x) (sapply(1l:n, function(y) pchisq(Chi_approl[[x]][y],
2, lower.tail=F))))

#CCA -log(p)-values

logpvaluescca<-lapply(1l:m, function(x) (sapply(l:n, function(y) (-loglO(pvaluescca
(Ix]1]10y1)))))
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Appendix B

List of SNPs used in analysis of The
National FINRISK Study

Table B.1: List of SNPs used in analysis [Willer et al., 2013]

Gene Rsid Chr | Reported associated traits | Al | A2 Position Al freq
ASAP3 rs1077514 1 TC t c 23766233 0.8707
LDLRAP1 rs12027135 1 TC,LDL t a 25775733 0.5343
PIGV-NROB2 rs12748152 1 HDL,LDL, TG c t 27138393 | 0.92876
PABPC4 rs4660293 1 HDL a g 40028180 0.7639
PCSK9 rs2479409 1 LDL, TC a g 55504650 0.6675
ANGPTL3 rs2131925 1 TG,LDL, TC t g 63025942 0.69
EVI5 rs7515577 1 TC c a 93009438 0.1939
SORT1 rs629301 1 LDL, TC g t 109818306 0.2124
ANXA9-CERS2 rs267733 1 LDL g a 150958836 | 0.1372
HDGF-PMVK rs12145743 1 HDL g t 156700651 0.3311
ANGPTL1 rs4650994 1 HDL g a 178515312 0.5172
ZNF648 rs1689800 1 HDL a g 182168885 0.6728
MOSC1 rs2642442 1 TC,LDL t c 220973563 | 0.7282
GALNT2 rs4846914 1 HDL, TG a g 230295691 | 0.5844
IRF2BP2 rs514230 1 TC,LDL t a 234858597 0.7
APOB rs1367117 2 LDL,TC g a 21263900 0.7124
GCKR rs1260326 2 TG, TC c t 27730940 0.5871
ABCG5/8 rs4299376 2 LDL,TC t g 44072576 0.7032
EHBP1 rs2710642 2 LDL g a 63149557 0.3813
INSIG2 rs10490626 2 LDL,TC a g 118835841 | 0.07916
LOC84931 rs2030746 2 LDL, TC c t 121309488 | 0.6016
RAB3GAP1 rs7570971 2 TC a c 135837906 | 0.4908
COBLL1 rs12328675 2 HDL ¢ t 165540800 0.1491
ABCBI11 rs2287623 2 TC g a 169830155 0.405
FAM117B rs11694172 2 TC a g 203532304 | 0.7836
CPS1 rs1047891 2 HDL c a 211540507 | 0.6979
FN1 rs1250229 2 LDL t c 216304384 0.2111
IRS1 rs2972146 2 HDL, TG g t 227100698 | 0.3773
UGT1A1 rs11563251 2 TC,LDL t c 234679384 | 0.1253
ATG7 rs2606736 3 HDL c t 11400249 0.3945
RAF1 rs2290159 3 TC g ¢ 12628920 0.82
CMTM6 rs7640978 3 LDL,TC t c 32533010 0.1055
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Table B.1: List of SNPs used in analysis [Willer et al., 2013]

Gene Rsid Chr | Reported associated traits | Al | A2 Position Al freq
SETD2 rs2290547 3 HDL g a 47061183 0.7889
RBM5 rs2013208 3 HDL t c 50129399 0.5053
STAB1 rs13326165 3 HDL a g 52532118 0.1873

PXK rs13315871 3 TC g a 58381287 | 0.91953
GSK3B rs6805251 3 HDL t c 119560606 | 0.3813

ACADI11 rs17404153 3 LDL,HDL t g 132163200 0.1438
MSL2L1 rs645040 3 TG g t 135926622 | 0.2309
LRPAP1 rs6831256 4 TG, TC,LDL a g 3473139 0.591
C4orf52 rs10019888 4 HDL a g 26062990 0.8364
KLHLS8 rsd42177 4 TG g t 88030261 0.4472
FAMI13A rs3822072 4 HDL g a 89741269 0.5119
ADH5 rs2602836 4 HDL a g 100014805 0.4274
SLC39A8 rs13107325 4 HDL c t 103188709 | 0.92216
ARL15 rs6450176 5 HDL g a 53298025 0.7216
MAP3K1 rs9686661 5 TG c t 55861786 0.8232
HMGCR rs12916 5 TC,LDL c t 74656539 0.4314
CSNK1G3 rs4530754 5 LDL,TC a g 122855416 | 0.5818
TIMD4 rs6882076 5 TC,TG,LDL c t 156390297 | 0.6662
MYLIP rs3757354 6 LDL,TC t c 16127407 0.2098
HFE rs1800562 6 LDL,TC g a 26093141 | 0.95383
HLA rs3177928 6 TC,LDL a g 32412435 0.1807
C6orf106 rs2814982 6 TC ¢ t 34546560 0.8931
KCNK17 rs2758886 6 TC g a 39250837 0.715
VEGFA rs998584 6 TG,HDL ¢ a 43757896 0.4855

FRK rs9488822 6 TC,LDL a t 116312893 0.7
RSPO3 rs1936800 6 HDL, TG c t 127436064 | 0.5277
HBS1L rs9376090 6 TC t c 135411228 | 0.7282

CITED2 rs605066 6 HDL t c 139829666 0.562

LPA rs1564348 6 LDL, TC t c 160578860 | 0.8549

GPR146 rs1997243 7 TC g a 1083777 0.1306
DAGLB rs702485 7 HDL g a 6449272 0.4499
SNX13 rs4142995 7 HDL g t 17919258 0.6161
DNAH11 rs12670798 7 TC,LDL t c 21607352 0.7757
MIR148A rsd722551 7 LDL, TG, TC c t 25991826 0.1702
NPCI1L1 rs2072183 7 TC,LDL g c 44579180 0.7625
IKZF1 rs4917014 7 HDL g t 50305863 0.3404
TYWI1B rs13238203 7 TG t c 72129667 | 0.03562
MLXIPL rs17145738 7 TG,HDL t c 72982874 0.1174

MET rs38855 7 TG g a 116358044 | 0.4736

KLF14 rsd731702 7 HDL t c 130433384 | 0.4604
TMEMI176A rs17173637 7 HDL t c 150529449 | 0.90237
PPP1R3B rs9987289 8 HDL,TC,LDL g a 9183358 0.9248

PINX1 rsl1776767 8 TG g c 10683929 0.5937
NAT2 rs1495741 8 TG, TC a g 18272881 0.7493

LPL rs12678919 8 TG,HDL g a 19844222 0.1214

SOX17 rs10102164 8 LDL, TC g a 55421614 0.8259

CYP7A1 rs2081687 8 TC,LDL t ¢ 59388565 0.3522
TRPS1 rs2293889 8 HDL g t 116599199 0.5871
TRIB1 rs2954029 8 TG, TC,LDL,HDL t a 126490972 | 0.4683
PLEC1 rs11136341 8 LDL, TC g a 145043543 | 0.3694
VLDLR rs3780181 9 TC,LDL a g 2640759 0.94723
TTC39B rs581080 9 HDL, TC c g 15305378 0.8206
ABCA1 rs1883025 9 HDL, TC c t 107664301 | 0.7573
ABO rs635634 9 - t c 136155000 | 0.1873
AKR1C4 rs1832007 10 TG a g 5254847 0.8681
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Table B.1: List of SNPs used in analysis [Willer et al., 2013]

Gene Rsid Chr | Reported associated traits | Al | A2 Position Al freq
VIM-CUBN rs10904908 10 TC g a 17260290 0.4538
MARCHS-ALOX5 rs970548 10 HDL, TC c a 46013277 0.277
JMJD1C rs10761731 10 TG t a 65027610 0.37
CYP26A1 rs2068888 10 TG a g 94839642 0.4908
GPAM rs2255141 10 TC,LDL a g 113933886 | 0.3193
AMPD3 rs2923084 11 HDL a g 10388782 0.847
SPTY2D1 rs10128711 11 TC c t 18632984 0.719
LRP4 rs3136441 11 HDL c t 46743247 0.1372
ORA4C46 rs11246602 11 HDL ¢ t 51512090 0.1332
FADS1-2-3 rs174546 11 TG,LDL,TC,HDL c t 61569830 0.6425
KAT5 rs12801636 11 HDL a g 65391317 0.2243
MOGAT2-DGAT2 rs499974 11 HDL ¢ a 75455021 0.8245
APOA1 rs964184 11 TG, TC,HDL,LDL c g 116648917 0.78
PHLDBI1 rs11603023 11 TC t c 118486067 | 0.4512
UBASH3B rs112302432 11 - c t 122522375 | 0.3971
ST3GAL4 rs11220462 11 LDL,TC g a 126243952 | 0.8575
PHC1-A2ML1 rs4883201 12 TC a g 9082581 0.8865
PDE3A rs7134375 12 HDL a c 20473758 0.4169
LRP1 rs11613352 12 TG,HDL t c 57792580 0.1913
MVK rs7134594 12 HDL t c 110000193 | 0.5554
BRAP rs11065987 12 TC,LDL a g 112072424 0.5778
HNF1A rs1169288 12 TC,LDL c a 121416650 | 0.3338
SBNO1 rs4759375 12 HDL t ¢ 123796238 | 0.09367
ZNF664 rs4765127 12 HDL, TG t g 124460167 0.3628
SCARB1 rs838880 12 HDL c t 125261593 | 0.3259
BRCA2 rs4942486 13 LDL c t 32953388 0.5383
NYNRIN rs8017377 14 LDL g a 24883887 0.5409
ZBTB42-AKT1 rs4983559 14 HDL g a 105277209 | 0.3773
CAPN3 rs2412710 15 TG g a 42683787 | 0.97757
FRMD5 rs2929282 15 TG a t 44245931 0.85
LIPC rs1532085 15 HDL,TC,TG a g 58683366 0.3668
LACTB rs2652834 15 HDL g a 63396867 0.7652
PDXDC1 rs3198697 16 TG t c 15129940 0.3826
CTF1 rs11649653 16 TG g c 30918487 0.36
FTO rs1121980 16 HDL, TG g a 53809247 0.5528
CETP 153764261 16 HDL,LDL,TC,TG a | ¢ | 56993324 | 0.2942
LCAT rs16942887 16 HDL a g 67928042 0.1332
HPR rs2000999 16 TC,LDL a g 72108093 0.1847
CMIP rs2925979 16 HDL c t 81534790 0.7045
DLG4 rs314253 17 TC,LDL c t 7091650 0.3351
STARD3 rs11869286 17 HDL c g 37813856 0.6755
MPP3 rs8077889 17 TG a c 41878166 0.7559
OSBPL7 rs7206971 17 LDL, TC a g 45425115 0.4723
APOH-PRXCA rs1801689 17 LDL a c 64210580 | 0.96306
ABCAS rs4148008 17 HDL c g 66875294 0.6913
PGS1 rs4129767 17 HDL a g 76403984 0.5237
LIPG rs7241918 18 HDL, TC t g 47160953 0.8232
MC4R rs12967135 18 HDL g a 57849023 0.7691
INSR rs7248104 19 TG a g 7224431 0.4169
ANGPTIL4 rs7255436 19 HDL a c 8433196 0.5435
LDLR rs6511720 19 LDL, TC t g 11202306 | 0.09763
ANGPTLS rs737337 19 HDL t c 11347493 0.9314
CILP2 rs10401969 19 TC, TG,LDL c t 19407718 | 0.07124
PEPD rs731839 19 TG, HDL a g 33899065 0.6583
APOE rs4420638 19 LDL, TC,HDL a g 45422946 0.814
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Table B.1: List of SNPs used in analysis [Willer et al., 2013]

Gene Rsid Chr | Reported associated traits | Al | A2 Position Al freq
FLJ36070 rs492602 19 TC a g 49206417 0.5699
HAS1 rs17695224 19 HDL g a 52324216 0.7612
LILRA3 rs386000 19 HDL c g 54792761 0.1992
SPTLC3 rs364585 20 LDL g a 12962718 0.6332
SNX5 rs2328223 20 LDL a c 17845921 0.7507
ERGIC3 rs2277862 20 TC c t 34152782 0.8681
MAFB rs2902940 20 TC,LDL a g 39091487 0.7586
TOP1 rs6029526 20 LDL,TC t a 39672618 0.36
HNF4A rs1800961 20 HDL, TC c t 43042364 0.9657
PLTP rs6065906 20 HDL, TG t c 44554015 0.8021
UBE2L3 rs113359481 22 - ¢ t 21932068 0.8008
MTMR3 rsh763662 22 LDL t ¢ 30378703 0.02507
TOM1 rs138777 22 TC a g 35711098 0.3483
PLA2G6 rs5756931 22 TG c t 38546033 0.3641
PPARA rsd253772 22 TC,LDL c t 46627603 0.8813
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Appendix C

Results
Study

from The National FINRISK

Table C.1: Results for univariate Wald tests

B s.e.(B) Z p-value

Gene HDL LDL TG HDL LDL TG HDL LDL TG HDL LDL TG
ASAP3 -0.0512 -0.0253 0.0266 0.0156 0.0158 0.0151 -3.2812 -1.6065 1.762 0.001 0.1082 0.0781
LDLRAP1 -0.0135 -0.0533 -0.02 0.0102 0.0103 0.0099 -1.325 -5.1812 -2.0338 0.1852 2.2e-07 0.042
PIGV-NRO0B2 -0.0503 0.0429 0.0351 0.019 0.0192 0.0184 -2.6444 2.2302 1.9054 0.0082 0.0257 0.0567
PABPC4 -0.0171 -0.0239 0.0184 0.0123 0.0124 0.0119 -1.3881 -1.9251 1.5505 0.1651 0.0542 0.121
PCSK9 -0.0173 0.058 0.0061 0.0112 0.0113 0.0108 -1.5485 5.1282 0.5626 0.1215 2.9e-07 0.5737
ANGPTL3 -0.0059 -0.0361 -0.0729 0.0116 0.0117 0.0112 -0.506 -3.0728 -6.4918 0.6129 0.0021 8.5e-11
EVI5 -0.0233 -0.0302 0.0064 0.0122 0.0124 0.0118 -1.9026 -2.4467 0.5408 0.0571 0.0144 0.5887
SORT1 0.0389 -0.1592 0.0071 0.0123 0.0125 0.0119 3.151 -12.7752 0.5975 0.0016 2.3e-37 0.5502
ANXA9-CERS2 0.0128 -0.0305 -0.0098 0.0146 0.0147 0.0141 0.8808 -2.071 -0.6968 0.3784 0.0384 0.4859
HDGF-PMVK 0.0055 3e-04 -0.009 0.0108 0.0109 0.0104 0.5098 0.0252 -0.8601 0.6102 0.9799 0.3897
ANGPTL1 -0.0447 0.0089 0.0138 0.0103 0.0104 0.0099 -4.354 0.861 1.3892 1.3e-05 0.3892 0.1648
ZNF648 -0.0372 0.0248 -0.0022 0.0115 0.0116 0.0111 -3.242 2.143 -0.1976 0.0012 0.0321 0.8433
MOSC1 -0.0211 -0.0299 0.0071 0.0112 0.0113 0.0108 -1.8879 -2.6424 0.6522 0.059 0.0082 0.5143
GALNT2 -0.0604 0.0269 0.0627 0.0103 0.0104 0.01 -5.8675 2.587 6.2994 4.4e-09 0.0097 3e-10
IRF2BP2 -0.0242 -0.0564 -0.0268 0.0103 0.0104 0.0099 -2.3549 -5.4294 -2.6934 0.0185 5.7e-08 0.0071
APOB -0.0372 0.149 0.0329 0.0114 0.0115 0.011 -3.2701 12.9799 2.9903 0.0011 1.6e-38 0.0028
GCKR -0.0226 0.0356 0.0858 0.0107 0.0108 0.0104 | -2.1133 3.2918 8.2867 0.0346 0.001 1.2e-16
ABCG5/8 -0.0015 0.0734 0.0133 0.0124 0.0126 0.012 -0.1244 5.8464 1.103 0.901 5e-09 0.27
EHBP1 0.0089 -0.0308 0.0019 0.0104 0.0105 0.0101 0.8571 -2.9307 0.1914 0.3914 0.0034 0.8482
INSIG2 0.017 -0.0658 -0.0204 0.0203 0.0205 0.0196 0.84 -3.2197 -1.0407 0.4009 0.0013 0.298
LOC84931 -0.0318 0.0172 0.0044 0.0107 0.0108 0.0103 -2.98 1.5955 0.4253 0.0029 0.1106 0.6706
RAB3GAP1 0.0064 0.0274 0.0017 0.0103 0.0104 0.01 0.6261 2.6373 0.1719 0.5313 0.0084 0.8635
COBLL1 0.0576 0.0284 -0.0232 0.0172 0.0174 0.0166 3.3481 1.6379 -1.3927 8e-04 0.1014 0.1637
ABCBI11 0.0228 0.0078 -0.0059 0.0102 0.0103 0.0099 2.2342 0.7519 -0.6015 0.0255 0.4521 0.5475
FAM117B 0.024 -0.0311 -0.0104 0.014 0.0142 0.0136 1.71 -2.1974 -0.7653 0.0873 0.028 0.4441
CPS1 -0.0191 0.016 -0.0039 0.0108 0.0109 0.0104 -1.7716 1.4721 -0.379 0.0765 0.141 0.7047
FN1 0.0186 -0.0255 -0.0334 0.0127 0.0129 0.0123 1.4576 -1.9807 -2.7163 0.1449 0.0476 0.0066
IRS1 0.0338 0.0016 -0.0305 0.0106 0.0107 0.0102 3.1986 0.1539 -2.9798 0.0014 0.8777 0.0029
UGT1A1 -0.0128 0.0382 0.0311 0.0168 0.017 0.0163 -0.7621 2.2506 1.9135 0.446 0.0244 0.0557
ATGT 0.0055 -0.0094 0.0098 0.0103 0.0104 0.01 0.536 -0.9058 0.9832 0.5919 0.365 0.3255
RAF1 -0.0117 -0.0178 -0.032 0.0118 0.012 0.0114 -0.9844 -1.4928 -2.7975 0.3249 0.1355 0.0052
CMTM6 0.0362 -0.0318 -0.0178 0.0182 0.0184 0.0176 1.9853 -1.7273 -1.0095 0.0471 0.0841 0.3127
SETD2 -0.023 0.0077 -0.0308 0.0121 0.0122 0.0117 -1.9044 0.631 -2.6411 0.0569 0.5281 0.0083
RBM5 -0.0247 0.0025 -0.003 0.0102 0.0103 0.0098 -2.4305 0.2403 -0.3078 0.0151 0.8101 0.7582
STAB1 0.0136 0.0041 -7e-04 0.0133 0.0134 0.0128 1.0212 0.3091 -0.0512 0.3072 0.7572 0.9591
PXK 0.0127 -0.052 -0.045 0.0172 0.0174 0.0167 0.7348 -2.9873 -2.6978 0.4624 0.0028 0.007
GSK3B 0.0286 0.0078 0.0053 0.0105 0.0106 0.0101 2.7313 0.737 0.526 0.0063 0.4611 0.5989
ACAD11 -0.0171 -0.007 0.0254 0.0134 0.0135 0.0129 -1.2781 -0.5152 1.9597 0.2012 0.6064 0.05
MSL2L1 0.0331 -0.0249 | -0.0409 0.0146 0.0147 0.0141 2.2705 -1.693 -2.9034 0.0232 0.0905 0.0037
LRPAP1 -Te-04 0.0204 0.0329 0.0108 0.0109 0.0104 | -0.0675 1.8807 3.1633 0.9462 0.06 0.0016
C4orf52 -0.0377 -0.0049 0.0166 0.015 0.0151 0.0145 -2.5104 -0.326 1.1472 0.0121 0.7444 0.2513
KLHLS8 0.0129 -0.0253 -0.0362 0.0102 0.0103 0.0099 1.2654 -2.4597 -3.67 0.2057 0.0139 2e-04
FAM13A 0.0126 -0.0089 -0.0246 0.0102 0.0103 0.0099 1.2346 -0.867 -2.492 0.217 0.3859 0.0127
ADH5 0.0143 0.001 -0.0054 0.0102 0.0103 0.0099 1.4019 0.0992 -0.5469 0.1609 0.921 0.5845

57




Table C.1: Results for univariate Wald tests

B s.e.(B) Z p-value

Gene HDL LDL TG HDL LDL TG HDL LDL TG HDL LDL TG
SLC39A8 -0.0747 0.0102 0.0194 0.0476 0.0481 0.0461 -1.5678 0.2113 0.4208 0.1169 0.8327 0.6739
ARL15 -0.0013 -0.0086 -0.0066 0.012 0.0121 0.0116 -0.1088 -0.713 -0.5707 0.9134 0.4758 0.5682
MAP3K1 -0.0397 0.0109 0.0236 0.0146 0.0148 0.0141 -2.7114 0.7372 1.6669 0.0067 0.461 0.0955
HMGCR -0.0148 0.1046 0.031 0.0102 0.0103 0.0099 -1.4462 10.110 3.1301 0.1481 5e-24 0.0017
CSNK1G3 -0.0012 0.048 -0.0112 0.0102 0.0103 0.0098 -0.1135 4.6693 -1.1341 0.9097 3e-06 0.2568
TIMD4 0.0164 -0.0555 -0.0468 0.0109 0.011 0.0105 1.5056 -5.0528 -4.4508 0.1322 4.4e-07 8.6e-06
HFE -0.007 -0.0656 0.0031 0.0267 0.027 0.0258 -0.2637 -2.4316 0.1215 0.792 0.015 0.9033
HLA -0.0092 0.0409 0.0211 0.0125 0.0126 0.0121 -0.7359 3.2413 1.7448 0.4618 0.0012 0.081
C6orf106 -0.0638 -0.0281 0.0147 0.0137 0.0138 0.0132 -4.655 -2.0309 1.1118 3.2e-06 0.0423 0.2662
KCNK17 -2e-04 0.0041 -0.0067 0.012 0.0121 0.0116 -0.0177 0.3344 -0.5791 0.9859 0.7381 0.5625
VEGFA -0.0256 0.0188 0.0413 0.0102 0.0103 0.0099 -2.5047 1.8168 4.1812 0.0123 0.0692 2.9e-05
FRK 0.001 -0.0221 -0.0181 0.0105 0.0107 0.0102 0.0922 -2.0768 -1.77 0.9265 0.0378 0.0767
RSPO3 -0.023 0.0046 0.0121 0.0102 0.0103 0.0099 -2.244 0.4406 1.2258 0.0248 0.6595 0.2203
HBS1L -0.0103 -0.0225 0.0132 0.0108 0.0109 0.0104 -0.9605 -2.0696 1.2655 0.3368 0.0385 0.2057
CITED2 -0.0232 0.0187 0.0238 0.0102 0.0103 0.0099 -2.2759 1.8135 2.4167 0.0229 0.0698 0.0157
LPA 0.0044 0.0346 -0.0194 0.0147 0.0149 0.0143 0.2967 2.324 -1.3601 0.7667 0.0201 0.1738
GPR146 0.0309 0.0337 0.0388 0.0152 0.0154 0.0147 2.031 2.1926 2.6355 0.0423 0.0283 0.0084
DAGLB 0.0364 -0.0021 -0.0125 0.0102 0.0103 0.0099 3.5727 -0.208 -1.2655 4e-04 0.8352 0.2057
SNX13 -0.028 -0.0052 -0.0046 0.0112 0.0113 0.0108 -2.5017 -0.4614 -0.4278 0.0124 0.6445 0.6688
DNAH11 -0.0092 0.0404 0.0251 0.012 0.0122 0.0116 -0.7672 3.3208 2.1579 0.443 9e-04 0.0309
MIR148A 0.0056 0.0573 -0.0223 0.0122 0.0123 0.0118 0.459 4.659 -1.8968 0.6463 3.2e-06 0.0579
NPC1L1 -0.0095 0.0195 0.0028 0.0106 0.0107 0.0103 -0.8986 1.8195 0.2715 0.3689 0.0688 0.786
IKZF1 0.0166 -0.003 -0.0172 0.0112 0.0113 0.0108 1.4821 -0.2642 -1.5885 0.1383 0.7916 0.1122
TYW1B 0.0963 0.0234 -0.18 0.0447 0.0451 0.0432 2.1575 0.5182 -4.1671 0.031 0.6043 3.1e-05
MLXIPL 0.0512 0.0171 -0.1187 0.0153 0.0154 0.0148 3.3494 1.1099 -8.0244 8e-04 0.267 le-15
MET -0.0013 4e-04 -4e-04 0.0102 0.0103 0.0099 -0.1291 0.0369 -0.0371 0.8973 0.9705 0.9704
KLF14 0.0404 -8e-04 -0.0274 0.0102 0.0103 0.0099 3.9574 -0.0822 -2.77 7.6e-05 0.9345 0.0056
TMEM176A -0.0367 -0.003 -0.0029 0.0144 0.0145 0.0139 -2.5538 -0.2093 -0.2085 0.0107 0.8342 0.8349
PPP1R3B -0.0874 -0.0523 0.0153 0.0144 0.0145 0.0139 -6.0811 -3.6028 1.1011 1.2e-09 3e-04 0.2709
PINX1 0.0177 -0.0011 0.0047 0.011 0.0111 0.0107 1.6044 -0.0954 0.445 0.1086 0.924 0.6563
NAT2 0.0031 0.0498 0.0061 0.0117 0.0118 0.0113 0.2671 4.2077 0.5364 0.7894 2.6e-05 0.5917
LPL 0.1161 -0.0408 -0.1699 0.0181 0.0183 0.0175 6.4171 -2.2307 -9.706 1.4e-10 0.0257 2.8e-22
SOX17 -0.0108 0.0541 0.0141 0.0121 0.0122 0.0117 -0.8955 4.4223 1.2004 0.3705 9.8e-06 0.23
CYPT7A1 -0.0075 0.0399 0.0344 0.0105 0.0106 0.0102 -0.7179 3.7571 3.3896 0.4728 2e-04 Te-04
TRPS1 -0.0323 -0.0088 -0.0193 0.0112 0.0113 0.0108 -2.8786 -0.7753 -1.7749 0.004 0.4382 0.0759
TRIB1 0.0296 -0.0476 -0.0745 0.0102 0.0103 0.0098 2.9067 -4.632 -7.5744 0.0037 3.6e-06 3.6e-14
PLEC1 -0.0058 0.0274 0.0148 0.0106 0.0107 0.0102 -0.5463 2.5643 1.4419 0.5848 0.0103 0.1493
VLDLR -0.0055 -0.0546 -0.0243 0.0228 0.023 0.022 -0.2431 -2.3754 -1.1043 0.8079 0.0175 0.2695
TTC39B -0.0466 0.0061 -0.029 0.0145 0.0147 0.014 -3.2126 0.4141 -2.0659 0.0013 0.6788 0.0388
ABCA1 -0.0809 -0.0347 -0.0165 0.0131 0.0132 0.0126 -6.2005 -2.6343 -1.3047 5.6e-10 0.0084 0.192
ABO 0.0353 0.09 -0.005 0.0127 0.0128 0.0123 2.7782 7.018 -0.4093 0.0055 2.3e-12 0.6823
AKR1C4 -0.0209 -0.0323 -0.0086 0.0151 0.0153 0.0146 -1.3831 -2.1086 -0.5857 0.1666 0.035 0.5581
VIM-CUBN 0.019 0.0184 0.0078 0.0104 0.0105 0.0101 1.8246 1.7513 0.7768 0.0681 0.0799 0.4373
MARCHS8-ALOX5 0.0282 -0.0098 0.0191 0.0114 0.0115 0.011 2.4827 -0.8504 1.7347 0.013 0.3951 0.0828
JMJD1C 0.0306 0.0175 -0.0358 0.0105 0.0106 0.0102 2.9125 1.6524 -3.5227 0.0036 0.0985 4e-04
CYP26A1 0.0268 -0.0145 -0.0325 0.0102 0.0103 0.0099 2.6225 -1.4043 -3.2921 0.0087 0.1602 0.001
GPAM 0.0554 0.0448 -0.0163 0.0108 0.0109 0.0105 5.1135 4.0979 -1.5595 3.2e-07 4.2e-05 0.1189
AMPD3 -0.0128 -0.0053 0.0044 0.0145 0.0146 0.014 -0.8872 -0.3625 0.3175 0.375 0.717 0.7509
SPTY2D1 -0.0066 -0.0305 -0.0029 0.0104 0.0105 0.0101 -0.6295 -2.8978 -0.2885 0.529 0.0038 0.773
LRP4 0.0519 -2e-04 -0.0161 0.012 0.0121 0.0116 4.3329 -0.0162 -1.3914 1.5e-05 0.9871 0.1641
OR4C46 0.0417 -0.0197 -7e-04 0.0131 0.0132 0.0126 3.1869 -1.4958 -0.0555 0.0014 0.1347 0.9557
FADS1-2-3 -0.0511 -0.0686 0.0397 0.0104 0.0105 0.01 -4.9413 -6.5594 3.9665 7.8e-07 5.4e-11 7.3e-05
KAT5 0.0167 0.0092 -0.0278 0.0127 0.0128 0.0122 1.3209 0.7185 -2.2673 0.1865 0.4725 0.0234
MOGAT2-DGAT2 -0.0272 0.0171 -0.0078 0.0124 0.0125 0.012 -2.201 1.3679 -0.6496 0.0277 0.1713 0.5159
APOA1 -0.0999 0.0893 0.2427 0.0147 0.0148 0.0142 -6.8029 6.0265 17.0978 le-11 1.7e-09 1.5e-65
PHLDB1 0.0163 0.0202 -7e-04 0.0103 0.0104 0.01 1.5855 1.9459 -0.0704 0.1129 0.0517 0.9438
UBASH3B 0.0207 0.004 -0.0016 0.0105 0.0106 0.0102 1.9642 0.375 -0.1565 0.0495 0.7077 0.8757
ST3GAL4 -0.0015 0.0458 0.0028 0.013 0.0131 0.0126 -0.1144 3.4938 0.225 0.9089 5e-04 0.822
PHC1-A2ML1 -0.0374 -0.0253 -0.0086 0.0159 0.016 0.0153 -2.3592 -1.5797 -0.559 0.0183 0.1142 0.5762
PDE3A 0.0035 0.0064 0.0023 0.0103 0.0104 0.01 0.3343 0.6122 0.2319 0.7381 0.5404 0.8166
LRP1 0.0235 0.0034 -0.0153 0.012 0.0122 0.0116 1.9466 0.2834 -1.3137 0.0516 0.7769 0.1889
MVK 0.0327 -0.005 -0.0023 0.0102 0.0103 0.0099 3.1944 -0.4859 -0.2314 0.0014 0.627 0.817
BRAP -0.0233 -0.0224 0.0178 0.0105 0.0106 0.0101 -2.2217 -2.1221 1.7604 0.0263 0.0338 0.0783
HNF1A 0.0136 0.0504 0.0153 0.0105 0.0106 0.0101 1.2986 4.7648 1.5137 0.1941 1.9e-06 0.1301
SBNO1 0.0147 0.0489 0.0248 0.0157 0.0158 0.0152 0.9364 3.0922 1.6394 0.3491 0.002 0.1011
ZNF664 0.0368 -0.0054 -0.0197 0.0113 0.0114 0.011 3.2446 -0.4727 -1.8029 0.0012 0.6364 0.0714
SCARB1 0.0365 -0.0133 0.0058 0.0103 0.0104 0.0099 3.5577 -1.2845 0.5838 4e-04 0.199 0.5594
BRCA2 -0.0068 0.0017 0.0037 0.0103 0.0104 0.0099 -0.6598 0.1673 0.3715 0.5094 0.8671 0.7103
NYNRIN -0.0032 0.0202 -4e-04 0.0105 0.0106 0.0102 -0.3003 1.8992 -0.044 0.7639 0.0575 0.9649
ZBTB42-AKT1 0.0476 -0.0014 -0.0138 0.0104 0.0105 0.0101 4.5714 -0.131 -1.366 4.8e-06 0.8958 0.1719
CAPN3 -0.0372 -0.1023 -0.065 0.1008 0.1018 0.0975 -0.3695 -1.0055 -0.6664 0.7117 0.3146 0.5051
FRMD5 0.0135 -0.0435 -0.0439 0.0236 0.0238 0.0228 0.5721 -1.8252 -1.9272 0.5673 0.068 0.054
LIPC 0.1406 0.0104 0.0439 0.0103 0.0104 0.01 13.6071 0.9974 4.394 3.6e-42 0.3186 1.1e-05
LACTB -0.028 0.0055 0.0271 0.0124 0.0126 0.012 -2.254 0.4397 2.2576 0.0242 0.6601 0.024
PDXDC1 0.0092 0.0112 -0.0178 0.0104 0.0105 0.01 0.8889 1.0661 -1.7669 0.374 0.2864 0.0773
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Table C.1: Results for univariate Wald tests

B s.e.(B) Z p-value

Gene HDL LDL TG HDL LDL TG HDL LDL TG HDL LDL TG
CTF1 -0.0129 -0.013 -0.0055 0.0103 0.0104 0.01 -1.2533 -1.2509 -0.5486 0.2101 0.211 0.5833
FTO -0.0115 0.0322 0.0235 0.0103 0.0104 0.01 -1.1149 3.0867 2.3528 0.2649 0.002 0.0186
CETP 0.2517 -0.0556 -0.0203 0.0114 0.0115 0.011 22.0815 -4.8336 -1.8388 4.8e-108 1.3e-06 0.0659
LCAT 0.1137 -6.6e-05 -0.0354 0.0139 0.0141 0.0135 8.161 -0.0047 -2.6269 3.3e-16 0.9963 0.0086
HPR 0.0152 0.0702 0.006 0.013 0.0131 0.0126 1.1714 5.3431 0.4748 0.2415 9.1e-08 0.635
CMIP -0.0316 0.0079 0.01 0.011 0.0112 0.0107 -2.8631 0.7121 0.9381 0.0042 0.4764 0.3482
DLG4 0.0192 -0.0326 -0.026 0.0104 0.0105 0.0101 1.8484 -3.1066 -2.5874 0.0645 0.0019 0.0097
STARD3 -0.0356 -0.0173 0.0146 0.0111 0.0112 0.0107 -3.2235 -1.5515 1.3664 0.0013 0.1208 0.1718
MPP3 -0.0264 0.0265 0.0463 0.0126 0.0127 0.0121 -2.1032 2.0895 3.8132 0.0354 0.0367 le-04
OSBPL7 0.0051 0.0299 0.0073 0.0102 0.0103 0.0099 0.5014 2.9007 0.7379 0.6161 0.0037 0.4606
APOH-PRXCA -0.0516 0.0495 -0.1235 0.0542 0.0548 0.0525 -0.9504 0.9039 -2.3546 0.3419 0.3661 0.0185
ABCAS -0.0125 0.0285 0.0037 0.011 0.0111 0.0106 -1.1366 2.5709 0.3447 0.2557 0.0101 0.7303
PGS1 -0.0141 -0.0361 -0.0132 0.0106 0.0107 0.0102 -1.3387 -3.3875 -1.2921 0.1807 Te-04 0.1963
LIPG -0.0778 -0.0184 -0.0178 0.0137 0.0139 0.0133 -5.6698 -1.3301 -1.3443 1.4e-08 0.1835 0.1788
MC4R -0.0013 -0.0046 0.0022 0.0133 0.0135 0.0129 -0.097 -0.3408 0.1735 0.9227 0.7332 0.8622
INSR 0.0136 4e-04 -0.0057 0.0104 0.0105 0.01 1.3136 0.0344 -0.5713 0.189 0.9726 0.5678
ANGPTL4 -0.0293 -0.0152 0.0045 0.0103 0.0104 0.0099 -2.8531 -1.4638 0.45 0.0043 0.1433 0.6527
LDLR 0.0534 -0.2676 -0.0448 0.0163 0.0165 0.0158 3.266 -16.2122 -2.8334 0.0011 4.1e-59 0.0046
ANGPTLS8 -0.0834 -0.0461 -0.0271 0.0178 0.018 0.0172 -4.6768 -2.5625 -1.5723 2.9e-06 0.0104 0.1159
CILP2 0.0423 -0.132 -0.1544 0.0216 0.0218 0.0209 1.9622 -6.0621 -7.4042 0.0497 1.3e-09 1.3e-13
PEPD -0.0345 -0.0069 0.0093 0.0106 0.0107 0.0103 -3.2428 -0.6379 0.9014 0.0012 0.5235 0.3674
APOE -0.0525 0.1835 0.0498 0.0114 0.0115 0.011 -4.6061 15.9347 4.5173 4.1e-06 3.6e-57 6.3e-06
FLJ36070 0.0062 0.0011 0.0099 0.0105 0.0106 0.0102 0.5879 0.1052 0.9709 0.5566 0.9162 0.3316
HAS1 -0.0465 -0.004 -0.0011 0.0133 0.0134 0.0128 -3.5069 -0.2996 -0.0851 5e-04 0.7645 0.9322
LILRA3 0.0579 -0.0177 -0.0232 0.011 0.0111 0.0106 5.2699 -1.5972 -2.1834 1.4e-07 0.1102 0.029
SPTLC3 -0.0014 -0.0092 -4e-04 0.0107 0.0109 0.0104 -0.1285 -0.844 -0.0391 0.8977 0.3987 0.9688
SNX5 -0.0344 0.0187 0.0177 0.0124 0.0125 0.012 -2.7737 1.494 1.4761 0.0055 0.1352 0.1399
ERGIC3 0.0044 -0.0511 -0.0151 0.0178 0.018 0.0173 0.2489 -2.8344 -0.8741 0.8034 0.0046 0.3821
MAFB -0.0028 -0.0258 -0.0095 0.0124 0.0125 0.012 -0.2284 -2.0627 -0.7945 0.8194 0.0391 0.4269
TOP1 3e-04 -0.0434 -0.0125 0.0102 0.0103 0.0099 0.0312 -4.2184 -1.273 0.9751 2.5e-05 0.203
HNF4A -0.1494 -0.0874 -0.0117 0.0253 0.0255 0.0245 -5.9046 -3.4206 -0.4799 3.5e-09 6e-04 0.6313
PLTP -0.0542 -4e-04 0.0289 0.0143 0.0144 0.0138 -3.7968 -0.0308 2.095 le-04 0.9754 0.0362
UBE2L3 -0.044 0.0023 -0.0041 0.0109 0.011 0.0105 -4.0466 0.2069 -0.3935 5.2e-05 0.8361 0.694
MTMR3 0.032 0.0531 -0.0434 0.0291 0.0294 0.0281 1.0995 1.809 -1.5425 0.2715 0.0705 0.123
TOM1 0.0261 0.0276 0.0174 0.0106 0.0107 0.0102 2.4672 2.5833 1.6983 0.0136 0.0098 0.0894
PLA2G6 0.0278 -0.0159 -0.0075 0.0104 0.0105 0.01 2.6754 -1.5151 -0.7437 0.0075 0.1298 0.4571
PPARA -0.0068 0.0669 0.0415 0.0191 0.0193 0.0184 -0.3554 3.4712 2.2495 0.7223 5e-04 0.0245
MYLIP 0.005 -0.0189 0.0127 0.0116 0.0117 0.0112 0.4316 -1.6112 1.1312 0.666 0.1071 0.258

99




60-°9 60-°7'9 G029V 90-°¢'T 9VE8'LE LOVL7LE 99G6°61 €88L°9C 80-°1°¢ 60-°¢"9 G0-2LV 90-°¢"1 91C8°LE 690L°LE TLV6°61 12LL9C VANILL
90-9¢'1T 90-°6"1 28210 G0-°8°1 cv8°9¢T 78€'9¢T €969°1 L9L8'1T 90-97'9 90-°6"1 28210 G0-98'1 7928°9¢C 799€°9¢ 7969°1 €998°1¢C EDTIMNSD
€C9¢ €C21°€ €L00°0 €C99V TTTL°€0T TLG9°€01 ¥928°6 TL16°C01 TT98'¢C €C99°¢ ¥.00°0 €219 86€V°€0T €€8E°E0T 67C8°6 €L79°201 HODNH
¥610°0 L6220 [ax4N0] 2T0°'0 TL88'L 6176°C T0TL°L €0€9°L ¥870°0 L6220 21200 2cc00 G988°L v6'c 760L°L 9629°L IMEdAVIN
18590 6S0L°0 806.L°0 169L°0 89€8°0 9969°0 ¥697°0 99€9°0 9078°0 6S0L°0 806.L°0 169L°0 69€8°0 9969°0 S697°0 99€S°0 STTUV
80820 8L06°0 G€8T'0 ¥162°0 c0vs'e VE€61°0 80C¢S'C 8G9V°C 897°0 8L06°0 G€8T°0 Y162°0 Yovs'e Y€61°0 60CS°C 6997°C 8V6EDTIS
299€°0 €178°0 vileo 299¢€°0 1600°C 9¢v€°0 L996°1 1600°C S0LS°0 €178°0 v.LE0 299€°0 2600°C 9¢v€°0 8996°1 2600°C SHAV
6070°0 6170°0 LEVO'O c9v€E0 6€6€°9 cEVE'9 20929 vicl'c ¥60°0 6170°0 LEVOO c97€’0 9€6€°9 8CTVE'9 66529 91IC1'C VETINVA
70-9¢ 70-2€ T100°0 TcLT0°0 7884791 8TS'9T TOSS €T 960T°L 70-°26 ¥0-°¢ T100°0 TcLT0'0 €€8S9°9T GcIe 9t LOVSET 6802 L S8THTM
79€0°0 v6€7°0 gcvoo €L€0°0 6929°9 IV’ 1T 791€'9 89L9°9 8%80°0 ¥6€7°0 gcv0'0 €LEO°0 96299 LYV9'T 91€°'9 €9L9°9 (452281 40
2100°0 €00°0 9200°0 TOLTO cTEV'ET SV6S°TT 6IL8'TT €Evee 8€00°0 €00°0 9200°0 TOLTO c6TYET TC6S'TT 7698°11 €evee TdVdyT
6€00°0 6.00°0 7,000 6£20°0 LLBO'TT 69°6 6808°6 TL9V L €T10°0 6L00°0 7.00°0 6€20°0 6980°TT G889°6 7,086 7997 L TTICTISIN
2€80°0 §760°0 498210 £€99€°0 9EL6'Y STL'Y ¥e0T'v ¥10°C LELT'O S§760°0 G98CT°0 €99€°0 GELE'Y 6LIL'Y ve0T'V vi0'c T1avov
8€00°0 280L°0 9700°0 28100 8LST'TT 66890 ¥§LL 0T L69¢°8 60T0°0 280L°0 9%00°0 CS10°0 9¢T'TT 69°0 G€LL 0T L89¢'8 aeMdMsd
T100°0 21000 200 20100 L829°€T 897°¢T TGS7°L 78LT'6 G€00°0 C100°0 200 ¢0T0'0 9629°¢T 9VIV'ET vvevL TLLT'6 MXd
€619°0 8976°0 [4cigcu] 20940 L0181 €60T1°0 §60C°T S6T'T 992L°0 8976°0 [4cigeu|] 20940 80T¢'T €601°0 960C°T TG6T'T 1dvas
vLT10°0 606°0 78100 12s0°0 ceor'e 8061°0 LT66°L T016°¢ v¥0°0 606°0 781070 1250°0 ST0T'8 6061°0 6T66°L 8606°9 SINGY
G0-27'9 6¥10°0 v0-°1 TSv1°0 962E 61 801¥'8 V0ER'LT 8098°¢ 70-9¢ 6¥10°0 v0-°1 TSvT°0 €8TE6T 86078 6€T8°LT 8098°¢ [4enFcEs)
70°0 86L1°0 v9€1°0 c0v0°0 6LET'9 TTEV'E 786°¢€ 68279 ce60°0 86.L1°0 v9€1°0 c0v0°0 9LET'9 cTEV'E 786°¢ G8¢¥'9 INLIND
70-°8 8C10°0 ¢100°0 €8LT°0 902 vl 960L°8 80LE°€ET (4147 9200°0 6C10°0 €T00°0 €8L1°0 12171 G80L°8 GL9¢°€T E8VV'E TavVyd
¥881°0 [4et4 0] G09¢°0 9690 6LEE’E q9ve'e €0v0°C €8€0°T veve o Teeeo S09¢°0 96970 18€€°¢€ 997C’C v0v0'e €8€0°T LOLV
792070 ¥920°0 2091°0 899070 9L9T°L v.L9T°L G299°¢ crLIv'g 6£90°0 ¥920°0 2091°0 899070 TL9T L 899¢°L G299°¢ T1v'g IVILDN
70-°6 L8000 T100°0 §G00°0 89CTV1 9067°6 8IVGEl TL6€°01 L2000 L800°0 1100°0 4g00°0 veecr vl T687°6 V8ESET 7496€°01 TSHI
1800°0 L800°0 ¥€20°0 665070 18€9°6 ¥967°6 9C1G°L cr€9°g 6120°0 L800°0 ¥€20°0 6650°0 69€9°6 G67°6 611G L 1€9°9 INA
¥.20°0 L992°0 9860°0 1¢80°0 TI6T°L 90¢9°C 8TEIV €806V 1990°0 L992°0 9860°0 1¢80°0 LO6T L L0€9°¢ LTE9V t8T6'V ISdD
L8200 678070 €1€T°0 TLT0°0 €€CEL 1266V 182¢6°C 1¢°L €290°0 6¥80°0 €1€T0 cLT0°0 622E"L 61€6'V T8T6°C 602" L dLTTINVA
9250°0 9649970 VLL0O0 g€s0'0 £888°¢ TI9T'1T 6LIT°G €9498°g TLIT'O 9649970 YLLO'0 g€g0°0 1888°¢ CI9T'1 8LIT'S ge8'g 11aodv
¥0-°9 ggo0’o L€£00°0 7029 9G86°V'1 T108°¢ 6T 1T 44t 8T00°0 4gg0'0 L€00°0 70-29 9I86°V1 80089 860C°TT TOV8' V1 11900
8120°0 8820°0 8V€L'0 8120°0 re9'L 9L60°L 2c919°0 L2S9°L LESO0 8820°0 8¥€L°0 8120°0 geg9’L L60°L €919°0 cS9'L 1dvDedvy
€200°0 98L2T°0 6.00°0 9%00°0 6811°CT 89GS'C 60L9°6 g0gL ot L00°0 98L2°0 6.00°0 9%00°0 99T1°CT 6999°C 7699°6 98¥%.L°0T TE€6¥8D0T
9%00°0 ¢<00°0 92s0 L¥00°0 €VL0T 6615701 678C'1 691L°0T 2E10°0 2s00°0 92S°0 L¥00°0 YivL ol 8TS¢°0T G8C'T GTL0T COISNI
LS00°0 8600°0 g8LS°0 CI10°0 60S€°0T 6¥V2'6 Lv60°T T.86'8 8ST10°0 8600°0 Gg8LG°0 CcI10°0 ¥67€°01 LEVT' 6 8760°T 6986°8 TddHH
80-9¢°¢ 80-9L°¢ 260970 80-°2G°¢ soceve 9LTT'VE 867VE'T 961€°7E LO®LT 80-98°¢ 260970 80-29°¢ 8E6T'VE c061°7E 667E"T [dstamg 8/¢DHDAV
9T-9T'T 91-°T°¢ 9T-9% 70-°8 CTSTG'EL E8VV 1L 9T68°0L 90€ 7T 91-°T'8 91-9¢°¢€ 9T-9€'7 70-28 LIBE €L G0Te 1L 6S9L°0L T20e¥v1 HMOD
8€-9T'T LEBLT 70-26 8E-9F'T GG6L° VLT 9€€E 69T 68C6°€T CGRE VLT LERLT LE-9GT 70-26 8€-9C 6600° VLT GT69'89T £€92C6°€T L86SELT d0dv
T1-96'8 L0-9T'T G098'T 60-98 GL8E 9V LOTT'CE 786.L°1¢C ¥T8T LE 0T-98'% L0911 G026'T 60-9C°'8 G9€€e9¥ 8980°C¢ T88L°1C v6vTLE cddeddl
TI9G'T 01-28'6 T1-98'¢ 60-97'¢ 166€°7S CTLLY 1V L699°CS 6120°6¢ T1-29'6 60-9T cl-9y 60-97'¢ 8L2EVS 9EV IV c09'cs 9486°8¢ CLNTIVD
1€00°0 S¥10°0 9991°0 €€00°0 £G9G'TT G0L7'8 av849'e 8L6E°TT 1600°0 $v10°0 9991°0 7€00°0 €€99'TT 9697'8 9v84'e 996€°1T TOSON
G0-9L'6 7180°0 C¢100°0 70-96 L6LY'8T 8910°¢ T9LE°€CT L90T' VT 70-9% 71800 2100°0 70-°6 TELY'8T LST0°G LTLEET €0T' VI 8V9ANZ
G0-9L°G ¥02e 0 G0-26"9 G0-29'9 968961 99.2°¢C EILT6T LLET6T ¥0-9¢ €02e°0 G0-26"9 G0-9L"9 I87S°61 L9.L2°C 9€9T°61 €T61 TTILdONY
6999°0 £€9.9°0 189°0 €9.8°0 T018°0 Te8L°0 €89L°0 cv9T 0 L¥8°0 €929°0 189°0 £€9.8°0 2c018°0 TT8LO £€89L°0 ¢y92 0 MANd-ADAH
£060°0 LTT1°0 8¥€9°0 €060°0 9608V L99€v 6806°0 7608V €981°0 L2110 8¥€9°0 £060°0 9608'% L99€v 606°0 €608V CSHHD-6VXNYV
Tv=aL"9 8€-°T'T 70-°8 LE®V'T YV19°681 LL8LVLT L66C°V1 GC09°891 0y-°¢'1 8€-99°T 70-°8 LE-9G'E 889'88T GL66G°ELT 8G6C V1 8L98°L9T TLHOS
7400°0 ¥82¢0°0 8LET1°0 4¢00°0 806701 80C1°L G€69°¢ ¢66¢€°01 T1¢10°0 ¥82¢0°0 LLSTO §g00°0 €677°01 €0C1°L 9€69°¢ VL6€°0T SIAA
€I-°1°¢ 01-o%'1 CI™7'1 L900°0 VE19°LS 1€9¢€°GV €9Ve L£00°0T c1-9¢ 0T-°%'1 CI-9G'1 L900°0 €€49°LS €ETE GV 691 VS 1200°0T €TLADNY
L0-9L°G 90-9L°T 700€°0 L0966 €L9L°8C 1€94°9C csor'e 11¥9°LC 90-°¢'¢ 90-°L°T 700€°0 90-°T T6V.L°8C cLYS 9T €907°C L€T9°LT 63SDd
8GT0°0 8120°0 8¥12°0 9.7v0°0 966¢C°8 9969°L 8GL0°€ 8809 20v0°0 8120°0 8¥1¢°0 LLV0°0 88678 679974 65L0°€ LL80"9 rOoddvd
7€00°0 8.20°0 7020°0 6€00°0 98LE'TT €V91°L T98L°L SVIT'TL 6600°0 8.20°0 ¥020°0 6£00°0 LOLE'TT LEIT'L Qg8.L’L LTIT 1T CHOUN-ADId
80-9L°¢ L0-26 7.00°0 L0-9€°€ 81SGE’€EE 88V8°LT 499086 CIL8'6C L0-9L°C L0-26 ¥.00°0 L0-9€°€ L9Te € CIER'LT G08°6 LGER6T TdVH1d1
¥0-29 1820°0 Z¥00°0 70-°8 6EC6° V1 LOVT'L 6796°01 €29 V1 6100°0 1820°0 Z¥00°0 ¥0-°8 661671 T9V1°L 6296°01 ¥84T V1 €dVSV
€ 1V DLIAT DL TIAH TdT11dH € 1V DLIAT DL TAH Td T 1dH € v DLIAT DL IAH TdT1AdH € v DLIAT DLIAH TdT1AdH QU9
VOO enyea-d uoryewrixoidde NX Premy onyea -d nmnuw 7

VDD PUR 159} P[eA\ 9YBLIBATIIN 10] SYNSAY 177 SR,

60



99-9¢°¢ 99-9L°€ ¥9-°1 LI9T'C 881V°'10€ vyve10€ L689°V6C T1,08°9L 79291 G9-92°1 v9-9C°€ LI-9€°C 6850°66C 8LL6°86C 6921°¢6C 88G9'9L IVOdVv
1900°0 66¥2°0 7020°0 2EV0°0 G10T°01 LELL'T 698L"L 9€8C'9 6910°0 86720 ¥020°0 [4534VNV] 100201 8€LL'T TG8L°L TEVT'9 CLVODA-CLVOOIN
6€£€0°0 89€0°0 10L0°0 9L62°0 LOLL 9 22099 TL1€°G vev'e 96L0°0 69€0°0 10L0°0 9L62°0 Y0LL™9 L1099 691€°9 vev'e SLVM
61-96°C 9I-°L'T L0-9€°¢ 91-°¢'1 v.LEG8 ¥96S°CL 8988°8C 8980°€L 81-97'¢C 91-°8'T L0-9%°¢ 91-°%'1T °61°¢8 €VOV'TL LL98°8C 6CS6°CL €-¢-1sdVvd
V0oL c91€°0 ¥200°0 8200°0 9897 V1T €0€°¢ €.80°C1 GTTL'1T €200°0 191€°0 ¥200°0 6200°0 il gt 1€0€°C L¥80°CT T0CL 1T 9IYOVHO
G0-9€"L 899€°0 G0-29°L G0-96"L 99€0°61 ST10°C LLLE'ST 7988°81 70-°€ 8G9€°0 G0-29°L G0-°8 962¢0°61 9110°C T0L6°8T 6L8'8T vdy1
70100 €V10°0 8€89°0 ¥010°0 89€1°6 €967°8 209L°0 €9€T°6 GL20°0 €¥10°0 8€89°0 ¥010°0 8GET'6 E€V67°8 209L°0 IvET'6 TACTALdS
Y190 €798°0 9€L9°0 V190 ggL6°0 9162°0 T06L°0 LVL6°0 L0080 €798°0 9€L9°0 Zv19°0 9¢L6°0 9162°0 206.L°0 8¥L6°0 EAdINV
TI29°L S0-°T'T 90-9L°T TI-98°L T€19°97 ¥T18°CC L6€S9°9T 618G 9¥ 01-°¢'¥ G0-°T'T 90-9L°T T1-°8 LT9G 9¥ 108°2¢ 8€TS'9C V667 9% NVdD
€100°0 7€00°0 LT00°0 98100 T92e°€T LS6ETT 8YGL'TT ggee’s 700°0 7€00°0 LT00°0 9¢10°0 ceTEET GE6ETT 8IGLTT ayce’s IV9CdAD
G0-9¢ 70-°1 ¥0-29 ¥200°0 8G6.L°0CT 600€°8T 169671 gIv0'cT 70-°1 70-°1 70-29 7200°0 TL8L 0T 6£6C°8T 809671 L8E0'CT OTIArnre
70-2¢ ¥01°0 70-2¢ 69€0°0 8¥96°91 cLTS'Y 8€°CT 9L6S°9 70-2L 7010 70-2¢ 69€0°0 7656°91 TLCS'V VELEST TL6S9 SXOTV-8HOHUVIN
9210°0 L6T°0 6570°0 T1€0°0 gogL'8 v6vC'€ TEIT'9 98€6°9 82¢€0°0 L6170 6570°0 11€0°0 LTGL'8 g6vC'¢ 6291°9 18€6'9 NAND-INIA
€220°0 L0T°0 TLT0 ¥2€0'0 7909°L LOLV'Y §gces'e LS89 6750°0 L0T°0 TLT0 72e0'0 6509°L LOLV'Y qees'e 9948°9 vOTaMV
v1-92°9 c1-9¢°¢ TST00 Y1-9%'L 7808°09 £€88°CY T8¢'8 L9L¥°09 €191V [ASia TIST0°0 VI-9L'L ¥81L°09 LY18°CS 18¢'8 198¢°09 ogav
vi-oT'e 6220°0 €I-9T'¢ T1-°9¢'¢ 881¢°¢9 L08¢°L 6129°99 T062'8¥ €I-9T°C 6220°0 €1-9¢°¢ T1-9%'¢ ¥verc9 9g'L 6CV7S 99 VEET 8V vodav
90-29'¢ 1¢80°0 90-9¥%°¢ L800°0 av0°sc 1000°¢ 6£9C° VT T67€°0T G0-9G'T 1280°0 90-97°¢ L5000 L1€0°9T g 80¥C'vT vLvE 0T d6€0LL
L9€0°0 8870°0 €¥07°0 €¥50°0 L4099 80%0°9 VIS8T LLT8°G 998070 887070 cvor o £¥50°0 7L09°9 S0v0'9 STIS'T VLT8G HTATA
vc0'0 vec0'0 T€S€°0 T¢€0°0 YvevL TESY L ce80'e 99699 88%0°0 v20'0 1€9€°0 ¢ge0’0 6€ST°L vesviL €280°¢C 19699 TOHTd
GI-9€'C GI-9€°¢C €1-9¢°¢ L0-97°8 V9EV'L9 8GRE™LI 691G°LG L886°LT VI-°9'1 G1-96'¢C €I-97'€ PR ] 8¥CE'L9 GTLT L9 CTYEV'LSG 60L6°LT TdId.L
G0-9¢°L G681°0 G0-98°L 9600°0 €0L0°61 cLee’e 1816°8T GV6C°6 70-°€ G681°0 G0-°8°L 9600°0 ¢€90°61 cLTE’E 90T6°8T TE6T'6 TSdY.L
G0-98'T G0-97'¢C ¥200°0 70-°8 T128°1¢ L88T'1T 1650°CT S00€ VT G0-°1°L G0-°7'¢ ¥200°0 70-°8 €T18°1¢C 68L2°1C g9go'ct 996C° V1 TVLdAD
G098V G0-97°¢ 1evv'o G0-°8'V 8GL8'61 €999°61 vTeE9'T G698°61 70-°9¢ G0-°1'¢ evv'o G026V 6L98°61 T.79°61 GTEI'T T198°61 LIXOS
€C9C°6 1g-2¢ €C9G9°6 01-9¢"¢ €LLYV 10T TE6V' V6 7807101 8VET VY TTo9'8 12-21'¢ [4anaint 0T-9¢"¢ 8L1C 10T G99C'v6 99V1° 10T 9L8T V¥ 1d1
Y0-°1 70-°1 967.L°0 v0-°1 LLLO'ST 1228 LT 99.9°0 L890°8T v0-°o% 70-°1 967.L°0 70-°1 GTL0°8T 9GTI8"LT G9.9°0 6190°8T CLVN
L8TT°0 7688°0 VIET0 9.2°0 croT'v €VE€T0 1650V 8V.LS'C L0520 ¥688°0 VIET0 9.2°0 €101’V E€VET0 16907V 6V.9°C TXNId
CI-9G'1 70-°€ 60-9L°C CI-21°¢ 6LV VS L1G9T 96€V°6¢€ vT8L ES C1-9G9'6 70-°€ 60-98°C ¢1-9C'¢ 907vE VS SI1S'91 gcov6€ VITL €S dediddd
¥¥10°0 7¥96°0 9¥10°0 Tge0’0 1678 ¥2L0'0 €LSV'8 80699 TL€0°0 ¥¥96°0 9V10°0 €9€0°0 €8LY°8 ¥TLO'0 €947°8 €069°9 VILINHINL
70-9¢ 1610°0 70-9¢ ¥0-°7 8VEV'LT 9616°L 9TIC LT VLILGT 70-29 1610°0 70-°2¢ v0-oF% 62V LT 8816°L gg0cT’LT gcrIL’gt VIATH
LG86°0 €866°0 8986°0 €166°0 L8200 ¥€00°0 9920°0 VL10°0 L866°0 €866°0 8986°0 €166°0 L8200 ¥€00°0 9920°0 VL10°0 LHN
9T-96"T 91-96"T G1-96'6 ¥100°0 88EV'TL LOVV'TL LY6V'V9 SVIT'ET ST-97'1 91-9¢ vi-ot ¥100°0 €60€°CL c60€°CcL €16€°79 VITTET TdIXTIN
G0-9L°¢ S0-2€"'9 ¥0-9¢ 69L0°0 6CSS°61 8LEE'6T T969°LT ¥621°9 ¥0-°¢ G0-2€'9 70-°¢ 69L0°0 €9749°61 €E€°61 868S°LT €6C01°9 dIMAL
LL8T'O 928T°0 6L81°0 862¢°0 vovee TL2S'C €eve’e g81C'C cIveE’0 92820 6L81°0 862¢°0 qovee TLTS'T vEVE€ 981T'C TAZMI
€6C1°0 6T°0 8€99°0 €EVI'0 L0607 112¢'€ 9618°0 T988°'¢ 8TSC°0 61°0 8€99°0 €EVI0 8060°% crce’e L6T8°0 T988°'¢ TTIDdN
L0-9¢°C L02L'C [4cia] G0-97'T cLE0E 9¥1C 0¢€ gogl'e €86€°CC 90-92'T L0-98'C ¢gse1’0 G0-97'T g1g€e’0¢€ 9€61°0€ q9gLe V.L8€°CT V8V THIN
€100°0 €100°0 9960°0 §€00°0 92Te’eT 760¢€°€T 9L9'¥ T68T'TT 700°0 €100°0 4§960°0 G€00°0 L6TEET 190€°¢T 69L9'V L8T'1T TTHVNA
€110°0 ¥8¥8°0 100 Tge0'0 9VL6'8 882€'0 vere'8 €€69'9 9620°0 ¥8¥8°0 100 2¢ge0'0 9€L6°8 882¢€°0 £V¥8’8 82699 ETIXNS
9100°0 78¥¥°0 9100°0 LT00°0 L2e8'Cl 09°'1 £€0C8'CT TTLLTT $00°0 ¥8¥¥°0 9100°0 LT00°0 8Tl Zv09'1T €61I8°CT T69L°CT a1ova
§0-9C'C §L00°0 G0-29'8 6,000 £487°1¢C 8L6L'6 6TL°8T £€689'6 G0-9%'8 §L00°0 G0-29'8 6L00°0 69LV°1C €96L°6 LTTL'ST 8.89°6 IPTIdD
T10°0 91100 66.L€°0 6650°0 S610°6 6126°8 Gge6’T cre9’s 620°0 9110°0 66L€°0 665070 981076 L0T6°8 9G€6°T T€9°¢ vd1
800°0 8120°0 ¢0c0°0 S610°0 6979°6 G69°L 6€08°L YTL8 L 8120°0 812070 20200 S610°0 LEV9°6 EVE9'L T€E08'L 9TL8 L cAdLID
8€20°0 €920°0 ¢007°0 €290°0 69L7°L v9c°L €TES'T 90699 28%0°0 4G920°0 20070 £€290°0 VILY L ve9C L VIES'T 70949 TISdH
8¥L0°0 €970 §9L0°0 8LL0°0 16819 ve'l Tev1 g 99019 L8SGT'0 €97°0 G99.0°0 8LL0°0 TG81°¢ TovS'T 6IV1'S G901°9 £0dsY
Gge0’o S¥0°0 €91°0 PST1°0 VLL9'9 70029 G829°¢ c81EV 6280°0 Sv0°0 €91°0 YE11°0 TLL9'9 2’9 G829°¢ c81EV Mdad
G0-98'9 G0-98'6 ¥0-°1 9110°0 9981°61 8TSY'8T GTTT'8T 1616'8 70-°€ G0-°6°6 70-°1 911070 €6L1°61 Lyvv'81 LV0T'8T 6L16°8 VADHA
¢6TL 0 L6SL°0 GTI8°0 9676°0 G1€9°0 967470 €91V°0 6ITT°0 T688°0 L6GL°0 GTI8°0 9EV6°0 9T€9°0 967470 vS1vo 6ITT°0 LIMNDM
L0266 9L€0°0 G0-°€'1 90-°T'T 69S9°LC 2999 9€8V°CT 196v°LT 90-°€V 9L€0°0 G0-°€'T 90-°T'T T6€9°LT Ga199'9 GqTLy'Ce 6EV°LT 90131090
8200°0 8200°0 8120 9%00°0 I8CL'TT TLCL'TT EVvo'e 12y, 01 7800°0 8200°0 8120 L¥00°0 9TL' 1T 9VCL 1T vvvo'e covL ot VTH
91v0°0 acrvoo L996°0 6970°0 ¢09¢€'9 cvie’9 L690°0 Y0219 £€960°0 92v0°0 L996°0 6970°0 €09€°9 8€1€E'9 L6900 cr'9 HAH
¢y50°0 9680°0 SETE0 S092°0 Vi€E8'S Vee8'v CcLST'T 69°'C 1021°0 9680°0 S€2e’0 <€092°0 €1€8'S €98’V €L9C°C 1069°'C dI'TAN
€1V DL 1AT DL TAH TdT11aH € 1V DL IAT DLIAH TdT11dH € 1V DLIAT DL IAH AT IAdH € v DLIAT DL IAH TdT11dH QU9
VOO enyea-d uorjewrixoxdde NX Presy onyea -d nmnuw 7

VDO PU® 159} P[EA\ 9YRIIBAIY U 10} SYNSAY 7' S[qRL

61



¥0-°1 70-°1 7E8€E'0 v0-°1 Yove 8t T9L6°LT TL16°T GI68°LT 70-°% 70-°1 7E€8€°0 70-°1 v€T'8T G696°L1 TLI6'T 6788°LT 1dOL
L260°0 60T1°0 L¥09°0 vO0T1°0 €99LY 166€V 900°T SLOV'Y S061°0 60T1°0 Lv09°0 Y0T1°0 €9GL'Y 166€7V 900°T SLOV'Y dAVIN
TL10°0 ¢L10°0 TLLI90 8T0°0 ger's vver's V6LL0 £€9€0°8 €€70°0 cL10°0 TLLIO 8100 EVET'8 gec1’8 G6LL°0 S¥€0°8 €0IDYUH
£€600°0 ¥091°0 200 ¥600°0 L6VE'6 L099°€ 9€T8°L 9€€°6 gco’o ¥091°0 200 ¥600°0 L8VE'6 8099°¢ 8TT8'L 9VEE’6 SGXNS
6589°0 6£69°0 L986°0 TL89°0 weLo 60€L°0 8920°0 2058L°0 ¥098°0 6£69°0 L986°0 TL89°0 cveL o 60€L°0 8920°0 €06L°0 €DTLdS
LO-®V'¥ c910°0 PARLA L0029 89¢C°6C VLVL'9 T68L°LT 1602°6¢C 90-9¢ €970°0 L0-2€°6 L0-29'¥% 6LET’6C Y19 LTILL LT 9g81°62 EVYTIIT
v0-2¢ 89S6°0 ¥0-°¢ 8100°0 €128T°S1 7060°0 9VST'GT 1ce9ct 9100°0 8¢S6°0 70-°¢ 8T00°0 TLIT ST 7060°0 TOST'ST °629°Cl ISVH
LEVE'O €129°0 987€°0 LT€8°0 69€T1°C 8166°0 [ 1A% G89€°0 iagen] €129°0 qgveo L1€8°0 T9€T'C 81S6°0 €9C1°C 989€°0 0L09€rT14d
65-98°6 9G-9%'1T LO-9¥ 65986 €IV1I'LI9C LTLT LST ¥847°6C TLET LIT LG-9T°¢ 9¢-9¢°€ LO2T'¥ 8G-9GC S062°99¢C £09¢°¢SC G8EV'6C ¥6L2°S9C HOdV
€€00°0 897°0 9%00°0 G€00°0 10TV 11T L8TIG'T TESL0T GLTE'TT L600°0 6L97°0 9%00°0 g€00°0 C8IV'IT 88TS'T CIGL 0T €91E°TT addad
LI9C'T LI®V'C €T-9L°G 60-°7°¢ T616°LL T6TS 9L L69€°99 €V10°6€ L1-9T°6 LI-29°C €1-29 60-°97°¢ G8I9L'LL T8E'9L 7162°99 T8L6°8€ cdTID
0T-9¢'8 1200 80-°T L0®¥'C VII8 1V LITL L cE9L'9E T61S°0€ 60297 21800 80-°T'T L0-9%°C 90LL TV 60TL L CIEL9E 9L6V°0¢ STLADNYV
69991 8G-9¢ €100°0 6997V 8C¥8°0LT 8C16°79C GLIECT 6LEL°89C 8G-9C'¢ 8G-9%"L €100°0 8GOT'T 76°89¢C 1980°€9¢C [44RR 38 LLG8799C q1at1
9€00°0 79420 ¥210°0 v00°0 9G¥T' 1T L6TL'C TL8L'8 S00'TT §0T0'0 ¥449T0 72100 1¥00°0 LEVT'TT L62L°C 98L°8 6200°TT VILdONY
€LIV'O £€6€8°0 81CV'0 8I7°0 LLVLT £€09€°0 ¥9TL1 TYvLT ¥929°0 £6€8°0 8120 81¥°0 8LYL'T 0S¢0 99TL°T SYYLL USNI
9716°0 67160 L¥86°0 79€6°0 98LT°0 8LT°0 60€0°0 gIe1'0 186°0 6716°0 L¥86°0 £€9€6°0 98LT°0 8L1°0 60€0°0 ST€T0 "rOIN
T1-29°1T L9220 T1-9L'¢C 80-°1°¢ T0TL 67 1896°C 1959°87 G6€€°9E 11-9G°6 L9220 T1-98°C 80-9¢'¢ T199°67 ¢896°C G86<°87 T0TE°GE DdIT
70-°€ L2000 ¢Ts0'0 70-26 1266°GT 80E8'TT 1L06°¢ GG90° 71T T100°0 L200°0 cTso’o 70-°26 GL86°GT V8V 11 8906°G 8T90° V1 sHd
S610°0 19€0°0 ¢614°0 9€20°0 86.L8°L 6¥79°9 T1e 1 ST67 'L 9870°0 T9€0°0 261570 9€20°0 T6L8'L v¥v9°9 TT1E°1T 8067°L |8VO4dV
¥200°0 6220°0 L9000 €0S7°0 vecLoCT T6G°L c0'01 LG6G9°T 1.00°0 622¢0°0 L900°0 £0S7°0 T0L0°Ct £089°L 781001 8G6G°T VOXdd-HOdV
T010°0 L¥10°0 [445<NV] VIT0°0 9481°6 99€V’'8 voge' 1 L8V6'8 6920°0 LV10°0 [4a8<N0] V1100 S¥81°6 9GET’'8 G0€e’T GLV6°8 LTddSsO
70-°¢ ¥0-°¢ 70-°9 L10°0 16L9°91 61€€°9T VIL8VT €E91'8 70-°8 ¥0-°¢ 7029 L10°0 L9°9T G92e91 1TL8 V1 vTer's eddIN

100°0 €890°0 G¢00°0 T100°0 TG18°€T 989¢€°9 8€6€°0T 9999°¢1 2€00°0 €890°0 G¢00°0 T100°0 6II8€ET ¥89¢°G ¢6€°01 €99°€1 €dYVLS
¥0-°8 T100°0 ¥¥20°0 2cco0'0 668€° V1 6929°€1 eyl vLve'cl ¥200°0 1100°0 ¥¥20°0 ¢c00°0 €98€ V1 VE€T9°ET GeTrL LYV el ¥oO1a
LETO'0 £€6499°0 910°0 PARNONY) c9LG’8 coT'1 12LT'8 T8EV'8 Gg€e0’0 €699°0 9100 LV10°0 yGLG'8 12911 crLT'8 TLEV'S dIND
L0281 L0-°1°¢ 8882°0 L0981 T0TT' 1€ 6896°8C 8E8Y'C 90TT'1€ L0-2T'8 L0-9C'¢ 888C°0 L0981 9880°1¢€ L6V6°8C 6E8V°C 7880°1¢€ HdH
GI-°1°¢ €420°0 GI-9€'¢C GI-9L°¢C 9€€9°L9 Z861°L LL6E" LY 89T11°L9 ViVl ¥.20°0 G1-969'¢ G1-98'¢C €1CS°L9 9L6T°L V¥82°L9 Sv00°L9 LVOT
LTI-9€'C 90-98"¢ ce12€'C OTT-9L°€ LVTT €8S €LTT'VT 60817099 €¥6°€09 VC1-29'¢ 90-°98"'¢ 0C1-2%'1 80T1-°T ST9€'VLS SYIT'VT ¥686° 199 GTIE L6V dLAD
8T00°0 8T00°0 290°0 8500°0 9679°C1 ¥619°C1 86499°9 €L62°01 gg00'0 8T00°0 1290°0 8¢00°0 Ly9ct G919°C1 96499°9 996201 OLA
Z8IT'0 VLEV'O 26220 9281°0 LTV 6€99°1 c976°C yiov'e 9€€T'0 VLEV'O °622°0 92810 LTV 7991 €976°C viov'e TALD
gTL0'0 ¥2L0'0 890¢2°0 Tcse0 TLLTG 11829 9IST'€ 9.80°¢C 92S1°0 v2L0°0 8902°0 1280 TLLTS 60SC°¢ LIST'€ LLBO'T 1Oaxad
¥.20°0 ¢8L0°0 ¥.20°0 19L0°0 6L6T°L GL60°9 6L6T°L LOST G 6590°0 g8L0°0 ¥.20°0 19L0°0 VL6T L €L60°9 €L6T L 908T'¢ dLOV'T
89-96"L S0-97'9 89-96"L [t T110°60€ Svce 61 G8T0°60€ 9¥9€°061 99-98°¢ S0-97'9 L9-9L°C cyovL c0€9°90¢€ 99TE61 €609°90€ LSTV 681 OdIT
¢Ts0'0 L€S0'0 VIST'O €TLT0 8G06°S L678°G 9GLL’E 6919°¢ €911°0 L€S00 VISTO €TLT0 L806°¢ 7678°S 9GLL'E L1S°€ SamNygd
Ty o 740 6229°0 [4si N0l 9GTL'T cTeT'1 6976°0 €Ic't cIE9°0 ¥<'0 8229°0 csveo LgTl'T €TET'T 6976°0 T€1T'T ENdVD
G0-9%'¢C 688€°0 S0-9%'C G0-98'C T99T'1C 688°T 9T¥e'1¢ 8896°0C G0-97'6 888€°0 §0-9¢'C G0-98'C LyT'1C 1688°T 62€2°1C £6¥6°0C TLMV-¢vdlLdZ
L6ET0 €6¥1°0 L6€6°0 8TI9T'0 69€6°¢ €08'¢ ¥ve1T0 £€0€9°¢ g892°0 €6¥1°0 L6€6°0 8C91°0 9€6°¢ €08°¢ ¥ve1 0 £€0€9°¢ NIINAN
96L°0 €626°0 L66.L°0 66L°0 79570 L9VT°0 LVV°0 88¥¥°0 £€826°0 £€626°0 L66L°0 66L°0 §997°0 L9VT'0 L¥V°0 88¥¥°0 cvoyd
G0-oL'V ¥10€°0 70-9T T100°0 €0T6°61 986€°C L69L°LT L6L9°€T 70-92 ¥10€°0 70-9T T1100°0 ¥C16°61 L86E°C TEIL'LT T9L9°¢T TdYVOS
Sv00°0 8G61°0 9¥00°0 <000 666L°0T L19T°€ cy8L70T LLLGOT 6C10°0 8G61°0 9¥00°0 T600°0 C86.L°0T L19C°€ €C8L°0T 8GLG0T 7994NZ
T100°0 6¥00°0 750°0 ¢¥00°0 969°€T 961901 99€8°9 £€096°0T 7€00°0 670070 740°0 ¢¥00°0 6169°€T 8L4T9°0T £9€8°9 T8SE6°0T TONGS
90-°T°T G0-°1 6£€0°0 90-96°¢ 8TSCE"LT LI9T0'€T 8G9L°9 LTS ac 90-°¢ G0-°1 7€0°0 90-°6°C GGEELT €S00°€T €99L°9 8C14°SC VIANH
£€200°0 480070 £950°0 900°0 Te91°Ccl 67€S°6 988L°G ve ot 690070 480070 £€650°0 900°0 L091°C1 GEES'6 €88L°G £€8€C0T dvyad
9200°0 9088°0 €00°0 6500°0 Z898°TT €¥92°0 vy Tt ¢c9e 01 6.00°0 9088°0 £€00°0 650070 T998°11 €V92°0 LIVO'TT G092°01 MAIN
G0TT°0 869€°0 L8T1°0 L9ET°0 [4el0iand S¥vo'e S00T'¥ 2°086°¢ 802¢T°0 869€°0 L8T1°0 L9ET0 €907V EladVd G001V 2086°¢ TddT1
98€L°0 cyes o G0.L8°0 Y0LL0 1909°0 998€°0 €LL2°0 L12S°0 G68°0 cve8o G0L8°0 v0LL O 1909°0 L98€°0 €LLT°0 812S°0 veddad
€00°0 6L2°0 6710°0 6C10°0 L16S°0T €€99°C 6ETV'S 1869'8 Zy10°0 6.2°0 6¥10°0 6C10°0 2065701 ¥€89'C 6217’8 L69°'8 TTINCV-TOHd
2¢00°0 200°0 LVL6°0 2c00°0 ce9v'Cl T19%°C1 ¢180°0 LVE€TCT 900°0 200°0 LVL6°0 2¢c00°0 8097°C1 €847°C1 ¢1%0°0 ceTTL PIVDELS
7€01°0 906°0 [4aNY) 29210 68€S'V VL61°0 68LE'V 16TV 8802°0 906°0 cITo 2921°0 6€9V YL61°0 68LEV 16TV deHSvVdN
61€0°0 ZyEL’0 €1€T°0 €€0°0 1688'9 G910V €8C6°C 6728'9 €gL0°0 cVEL'0 €1€2°0 €€0°0 L888'9 S910'¥% ¥8C6°C V¥28'9 TddTHd

€1V DL 1AT DL TAH TdT11aH € 1V DL IAT DLIAH TdT11dH € 1V DLIAT DL IAH AT IAdH € v DLIAT DL IAH TdT11dH QU9

VOO enyea-d uorjewrixoxdde NX Presy onyea -d nmnuw 7

VDO PU® 159} P[EA\ 9YRIIBAIY U 10} SYNSAY 7' S[qRL

62



7029 v0-oL ¢890°0 ¥200°0 cve8' vl 92Ce vl 8097°¢ L8G0°CT 6100°0 v0-9L ¢990°0 ¥200°0 €068 71 G8TIG VI 90979 19¢0°CT vavdd
4960070 8.18¢°0 86200 8T10°0 cle’6 €16v'C €81€"L 67.8°8 7420°0 L1820 84200 8T10°0 T1€°6 vi6v'e 9LTIE L 8€.L8'8 9DTVId
G0-°€V VL10°0 ¥0-°¢ T00°0 9021702 90018 €020°G1 LVPS'ET 70-9¢ VL1070 70-°G 10070 GCI1°0T 8660°8 6STOGT TI¥8'€T TINOL
9620°0 88200 8.92°0 L680°0 9€€E"L LE60°L 749€9°C 81C8'V 290°0 8820°0 LL92°0 L680°0 T€EE 'L T€60°L GG€9°C L1287V EHINLIN
G0-9¢ 7988°0 G0-°1°¢ 70-°€ 88G99°1C 11%C°0 €199°1¢C °6€°91 G0-°L°L ¥988°0 G0-°1°C 70-°€ c67v9°1¢C T1vC0 cIve'1c 998€°91 e1caHdn
7029 L6600 70-29 V0L L8V6 VT 2019’V TOSL VT 6L2S° V1 6100°0 8660°0 70-29 v0-°L LYV6 V1 c019'v 6SVL VT 6€TS VL dLT1d
€1-96°¢ 8200°0 0T-9¢'T TI1-9€°T 8¥¥'99 VELTT 68€C S¥ ¢880°0¢ CI99°¢ 8200°0 0T1-°G'T T1-9%'1 TLE°9¢ 9TIGL'TT V681°SY L20°09 VVANH

€1V DL 1AT DL TAH TdT11aH € 1V DL 1AT DL IAH T1ATIAH € 1V DLIAT DL IAH AT IAdH € v DL TAT DL IAH TdT11dH QU9

VOO enyea-d uorjewrixoxdde NX Presy onyea -d nmnuw 7

VDO PU® 3593 P[RA\ OYRLIBAIYIUI 10§ SYSSY 17D O[qBL

63



