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Nearest neighbor search is a crucial tool in computer science and a part of many machine learning
algorithms, the most obvious example being the venerable k-NN classifier. More generally, nearest
neighbors have usages in numerous fields such as classification, regression, computer vision, rec-
ommendation systems, robotics and compression to name just a few examples. In general, nearest
neighbor problems cannot be answered in sublinear time – to identify the actual nearest data points,
clearly all objects have to be accessed at least once. However, in the class of applications where
nearest neighbor searches are repeatedly made within a fixed data set that is available upfront, such
as recommendation systems (Spotify, e-commerce, etc.), we can do better. In a computationally
expensive offline phase the data set is indexed with a data structure, and in the online phase the
index is used to answer nearest neighbor queries at a superior rate. The cost of indexing is usually
much larger than that of performing a single query, but with a high number of queries the initial
indexing cost gets eventually compensated.

The urge for efficient index structures for nearest neighbors search has sparked a lot of research
and hundreds of papers have been published to date. We look into the class of structures called
binary space partitioning trees, specifically the random projection tree. Random projection trees
have favorable properties especially when working with data sets with low intrinsic dimensionality.
However, they have rarely been used in real-life nearest neighbor solutions due to limiting factors
such as the relatively high cost of projection computations in high dimensional spaces. We present
a new index structure for approximate nearest neighbor search that consists of multiple random
projection trees, and several variants of algorithms to use it for efficient nearest neighbor search.

We start by specifying our variant of the random projection tree and show how to construct an
index of multiple random projection trees (MRPT), along with a simple query that combines the
results from independent random projection trees to achieve much higher query accuracy with faster
query times. This is followed by discussion of further methods to optimize accuracy and storage.
The focus will be on algorithmic details, accompanied by a thorough analysis of memory and time
complexity. Finally we will show experimentally that a real-life implementation of these ideas leads
to an algorithm that achieves faster query times than the currently available open source libraries
for high-recall approximate nearest neighbor search.

Some of the results have already been published in our paper [HPT+].
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Preface

This thesis is a result of research conducted for the Helsinki Institute for Informa-
tion Technology (HIIT) during the years 2015 and 2016. The approximate nearest
neighbor search method covered in this thesis is a joint effort of several colleagues
and myself. I would like to thank all those people who have been involved in the
research; most importantly Ville Hyvönen, who has been in the project from the
start and who has been involved in all parts of the work, Risto Tuomainen for his
work on sparsity and the voting in the MRPT context, and Elias Jääsaari for greatly
improving the C++ implementation of our algorithms and implementing the tests
presented at the end of the thesis. Researchers who also contributed to the research
include Sotiris Tasoulis, Teemu Roos, Jukka Corander and Liang Wang. Finally I
would like to thank all members of HIIT’s Information, Complexity and Learning
group for fruitful conversations during our daily meetings.

Contributions

A major part of this thesis consists of a summary of our research group’s earlier
findings on the approximate nearest neighbor search front. The MRPT approximate
nearest neighbor method was intially covered in Ville Hyvönen’s master’s thesis
[Hyv15], which includes an initial version of the MRPT index structure (section 2.4),
a defeatist search query (section 2.5), and a comprehensive memory and running
time analysis (section 2.6). Risto Tuomainen extended the method by exploring the
adaptation of sparsity (section 3.1) and voting (section 3.2) to MRPT in his master’s
thesis [Tuo16]. Our recent paper [HPT+] added extensive comparisons (section 4)
written by Elias Jääsaari. In addition, this thesis covers the following:

• Adapting a priority search strategy to MRPT (section 3.3).

• A discussion on defeatist search tuning parameters and analysis on the optimal
RP-tree depth (2.7).

• Additional tests and visualizations; all experiments except those in section 4
were written for this thesis.
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Notation

Linear algebra notation

Throughout the thesis vectors will be treated as row vectors and matrices will have
samples as rows and features as columns. Matrices will be denoted by uppercase bold
symbols such as M, vectors with lowercase bold symbols such as v, and scalars with
light symbols such as c or C. To index matrices and vectors we use a Pythonesque
syntax; M[i, j] refers to the jth element on the ith row of M. The indices can also
be a set of integers to refer to a subset of rows/columns of M, and : will denote
"all", as in M[:, k], the kth column. Array/vector/matrix indexing is expected to
start from 1.

Common variable names

The following symbols will have a fixed meaning throughout the thesis for improved
readability.

Symbol Section Explanation
A 1 The approximate nearest neighbors
a 3.1 The sparsity parameter of R
B 3.3 The number of extra leaves explored in priority search
D 1 The dimensionality of the data samples in X and queries q
d 2.4 The depth of random projection trees
K 1 The set of true nearest neighbors
k 1 The number of neighbors being searched for
M 2.5 An MRPT index, a collection of T RP-trees
N 1 The number of data samples (rows) in X

n0 2.4 Maximum leaf size of RP-trees, dN/2d − 1e with median split
P 2.1 The projection matrix P = XR

q 1 The query point
R 2.1 The random matrix, R = [rᵀ1, . . . , r

ᵀ
Td]

ᵀ

T 2.4 The number of trees in an MRPT index
V 3.2 The voting parameter
X 1 The data matrix, X = [xᵀ

1 . . . x
ᵀ
N ]ᵀ

xi 1 The ith sample (row in X)
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1 Introduction and related work

Nearest neighbor (NN) search, also called similarity search or closest point search, is
an optimization problem where the user inputs one query object at a time, and the
program’s task is to find the most similar objects from a set of previously collected
items. Nearest neighbors have countless uses in machine learning, statistics and data
analysis. Example applications include classification, regression, computer vision
[SDI06] [ML09] and face recognition [SKP15], vector quantization and compression
[GG91], recommendation systems [WTRK15] [Ber16] and even path planning in
robotics [Lav98].

Definition 1 (Nearest neighbors) Consider a metric space M, a data set X =

(x1, . . . ,xN) ⊆M and a distance metric m :M×M→ R+. The nearest neighbor
of object q ∈M in data set X is the sample within the smallest distance from q,

argmin
x∈X

m(x,q).

Similarly the k nearest neighbors of q in X are a subset K ⊆ X with |K| = k and

m(x,q) ≤ m(y,q)

for all x ∈ K,y ∈ X\K. If we assume all distances unique, these definitions are
unique as well.

In this thesis we consider the specific case whereM is the D-dimensional Euclidean
space RD and m is the Euclidean distance

m(x,q) =

√√√√ D∑
j=1

(xj − qj)2.

In this case objects inM can be represented as feature vectors of length D, and the
whole data set X can be represented as an N ×D matrix.

The conventional way to solve the nearest neighbor problem is a naïve brute-force
approach. The distances between the query point and samples in X are computed
one-by-one, and the data points corresponding to the shortest distances are then
picked. Although the approach is beautiful in its simplicity and requires no prepro-
cessing of the data, its running time is linear in the size of data matrix X which is
often too much for vast data sets of the present and applications that require real-
time responses. Due to its prevalence nearest neighbor search has sparked a lot of
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interest in research communities to develop methods that surpass the performance
of plain linear search.

In a number of applications nearest neighbor queries are performed repeatedly within
a data set X that is available upfront. If this is the case, we can speed up queries
by building an index data structure for X in an offline phase. In the online phase
we then use this structure to answer queries in superior, often sublinear time. Even
with the most advanced methods discovered the retrieval of exact neighbors gets
unbearably expensive for high-dimensional data, a phenomenon that is known as the
curse of dimensionality. However, in some applications fast retrieval of neighbors
is more important than exact accuracy. An example of this sort of applications are
recommendation engines such as KVASIR [WTRK15] and Spotify [Ber16]. This is
where approximate nearest neighbor search steps in.

Definition 2 (Approximate nearest neighbor search) Let K be the k nearest
neighbors of q in X. In approximate nearest neighbor search the task is to find a good
approximation for K, call it A ⊂ X. To measure the accuracy of the approximation
we use recall R, that is

R =
|K ∩A|

k
.

The approximate solution A can usually be found much faster than K. The plethora
of different algorithms for (approximate) nearest neighbor search can be roughly
classified into three general categories: hashing, graph, and space partitioning algo-
rithms.

In hashing approaches, namely locality sensitive hashing (LSH) [IM98], [GIM99],
[AIL+15], a hash function is used to map each data point into a bucket. The function
assigns nearby points to the same bucket with high probability, and points that are
far from each other with low probability. Therefore, the hash functions used in LSH
are quite the opposite to classical cryptographic hashing where the hash codes of
similar-but-not-equal objects are desired to be very different. To answer a query, a
simple exhaustive search can be carried out within data points in the same bucket
with the query. Practical approaches often use multiple hash tables that implement
different hash functions from the same family for improved accuracy.

Graph-based approaches [DML11], [AM93b] use a specific graph structure, the k-
NN graph, as the index. In this structure each data point in the index is represented
by a vertex, and each vertex is connected by an edge to nearby points, either its
nearest neighbors or an approximation. The graph is searched with an algorithm



5

called neighbor descent: We start from some point, and iteratively move along edges
that take us closer to the query object. Once such steps can no longer be taken, i.e.
the current vertex is closer to the query point than all its neighbors, the algorithm
terminates and the current node can be used as an approximation for the nearest
neighbor.

In space partitioning methods we build an index data structure that divides the
Euclidean space RD into cells. As in LSH, the index allows us to quickly select a
set of nearby points, those within the same cell, as candidates, and the approximate
neighbors A are chosen from the candidates by an exhaustive search. The space par-
titioning data structures are inherently represented as binary trees where each node
defines a rule that divides the data into two subsets, and hence the index structures
are often called binary1 space partitioning (BSP) trees. Two examples of BSP trees
are shown in Fig. 1. The most renowned example is the k-dimensional tree or k-d tree
[Ben75] in Fig. 1(a), where axis-aligned splits divide the space into hyper-rectangular
cells. Another notable BSP-variant is the vantage point tree (also referred to as VP-
tree, ball tree or metric tree) [Uhl91][Yia93] that uses spherical split boundaries.
The k-means tree [ML09] partitions objects based on a k-means clustering. The
random projection tree (RP-tree) (Fig. 1(b)), introduced by Dasgupta and Freund
in 2008 [DF08], partitions the space with randomly chosen hyper-planes. Random
projection trees will be the basis of our approximate nearest neighbor method.

x1

x
2

(a) A simple k-d tree
x1

x
2

(b) A simple RP tree

Figure 1: Two examples of space partitioning induced by BSP trees, a k-d tree in
1(a) and a random projection tree in 1(b).

In this thesis we introduce our new variant of the RP-tree, that requires less storage

1Three-way and higher order splits are also possible, although most successful methods use
binary.
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and allows us to construct index structures of even hundreds of trees with feasible
memory consumption. We represent new algorithms to efficiently use these data
structures for fast and accurate nearest neighbor search. We have developed a
working implementation and show experimentally that our method is the fastest
alternative to reach high recall in common benchmark data sets.

2 Nearest neighbor search with random projection

trees

2.1 Random projection

Random projection (RP) is first and foremost a dimensionality reduction technique,
where we compute the orthogonal projection of high-dimensional data to a lower-
dimensional random subspace. Random projections gained popularity in the late
1990s as a solution to perform computationally feasible analysis on ever growing data
sets where known alternatives such as principal components analysis (PCA) were
too expensive. Random projection has theoretical results to back its ability to pre-
serve distances in the projected space, most importantly the Johnson-Lindenstrauss
lemma [JLS86]. Empirical results, while scarce, have also shown promise. For in-
stance, Bingham and Mannila [BM01] find the distance-preserving properties of RP
to be on par with PCA with image and text data, with significant computational sav-
ings. Dasgupta [Das00] explored RP as a preprocessing step for learning Gaussians
with the expectation maximization (EM) algorithm with favorable results.

Definition 3 (Random projection) Assume data matrix X ∈ RN×D and a ran-
dom matrix R ∈ RD×d with orthonormal columns and with d � D. In random
projection the dimensionally reduced data P ∈ RN×d is obtained as the orthogonal
projection of the data to the subspace spanned by columns of R:

P = XR.

Creating a matrix R of random, orthonormal directions is quite straightforward. We
can generate each entry in R from the standard normal distribution and orthonor-
malize the columns. However, due to the following result (Lemma 1) the expensive
orthonormalization is often omitted:
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Definition 4 ((Approximate) orthogonality) Two vectors u,v ∈ RD are said
to be orthogonal, if u · v = 0. If |u · v| < ε for a fixed (small) ε > 0, u and v are
said to be approximately orthogonal.

Lemma 1 In sufficiently high dimensional spaces two independently chosen random
directions are almost orthogonal with probability 1.

Proof sketch Denote the random vectors by u and v. Due to rotational symmetry
we can assume u =

[
1 0 0 · · · 0

]
. Now u · v = u1 · v1. The expected value of

v1 is 0 due to symmetry; v was picked randomly from the unit sphere and for any
v the opposite −v is equally likely to be chosen. Now also E[u · v] = 0.

Because of the length constraint |v| =
∑D

j=1 v
2
j = 1, linearity of expectation and

symmetry, E[v2
1] = 1/D. Now also the variance σ2

v1
= 1/D, and thus also σ2

u·v =

1/D.

Applying Chebyshev’s inequality yields

Pr[|u · v| ≥ ε] ≤ 1

Dε2

For any ε there clearly exists a D big enough to drive the probability upper bound
effectively to 0.

Furthermore [Ach03] shows, that simple integer values −1, 0, and 1 can be used in
place of Gaussian variables with respective probabilities 1

6
, 1
3
, and 1

6
. This brings

additional gains through sparsity, and all projections can be computed with integer
arithmetic which is valuable especially to database applications. Li et al [LHC06]
go further to show that much higher sparsity, such as random matrices with only
one in

√
D elements non-zero can be used.

The use of random projection in applications that fundamentally rely on distances
is justified by the Johnson-Lindenstrauss lemma [JLS86], which states that high-
dimensional objects can be mapped into lower dimensional spaces with bounded
distortions in inter-point distances. Dasgupta and Gupta [DG03] provide the form
below with a lower requirement for the target dimensionality together with a sim-
plified proof.

Lemma 2 (Johnson-Lindenstrauss) For any 0 < ε < 1 and any integer N , let
d be a positive integer such that

d ≥ 4(ε2/2− ε3/3)−1 lnN.
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Then for any set X of N points in RD, there is a map f : RD → Rd such that for
all xi,xj ∈ X,

(1− ε)‖xi − xj‖ ≤ ‖f(xi)− f(xj)‖ ≤ (1 + ε)‖xi − xj‖.

Furthermore, this map can be found in randomized polynomial time.

Particularly interesting to us, the map f can be assumed to be a projection to a
random subspace [DG03].

2.2 Intrinsic dimensionality

Many data sets are convenient to represent as vectors in a high-dimensional Eu-
clidean space. For instance, common choices for the dimensionality of representation
are the number of pixels for images, the vocabulary size for text and the number
of different items for market basket data. However, these representations may al-
low unnecessary degrees of freedom – the samples are often located near a much
lower-dimensional manifold, and most of the space contains no actual samples. The
concept of intrinsic dimensionality refers to the dimensionality of this manifold, the
lowest dimensionality that is sufficient to describe the data. The most common
formal definition of intrinsic dimensionality is the Assouad dimensionality [Ass83].

Definition 5 (Assouad Dimension) For any point x ∈ RD and any r > 0, let
B(x, r) = {z : ‖x − z‖ ≤ r} denote the closed ball of radius r centered at x. The
Assouad dimension of X ⊂ RD is the smallest integer DA such that for any ball
B(x, r) ⊂ RD, the set B(x, r) ∩X can be covered by 2DA balls of radius r/2.

The definition is included here for completeness, although a general understanding
is sufficient for our purposes. Most importantly, Dasgupta and Freund show that
random projection trees have the ability to automatically adapt to the low intrinsic
dimensionality of data sets [DF08].

2.3 Random projection tree

A random projection tree is a binary tree structure that partitions RD by a hierarchy
of split rules. It was initially proposed by Freund et al. [FDKV07] as an alternative
for the k-d tree that automatically adapts to low intrinsic dimensionality. The
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original paper proposes RP-trees for vector quantization, and the application to
nearest neighbor search was later introduced in [DS15]. As a BSP-tree, an RP-tree
is utilized in approximate nearest neighbor search to map a query point to a leaf
node, which contains a set of data samples that are similar in the sense that they
produce the same outputs for the tree’s split rules. We can then solve the nearest
neighbors within the points in the leaf by a brute force linear search. Such search
methodology is sometimes called a defeatist search [DF08]. Notice that some nearest
neighbors may be located in other leaves and the result is just an approximation,
usually a very crude one if only a single tree is used.

In the offline phase, the tree is constructed by recursively partitioning the input
data into two by split rules. The split rules in RP-tree nodes are defined by one
dimensional random projection, i.e. a projection of the input data onto a single
random vector r chosen uniformly by random from the unit sphere. The samples
are then divided into two subsets based on these one-dimensional projection values.
A split value s ∈ R is chosen, and the samples whose projections were smaller or
equal to s are used to recursively construct the left subtree. The right subtree is
built from the remaining samples. In the original space RD the division is defined
by a D− 1-dimensional hyperplane that passes through point sr and whose normal
vector is r.

The general framework of an RP-tree leaves a lot of implementation specifics un-
defined. The split value s can be chosen in several ways, the most common choice
being the median of the projection values, a choice that yields a balanced tree. More
complicated criteria have been used and some approaches even mix multiple crite-
ria in one tree [DF08]. Another open design choice is the depth of the recursion –
it is hardly optimal to divide the data until each leaf contains just a single point,
usually the recursion stops once the node size is below some threshold n0, or all
tree branches are constructed to fixed depth d; with median split criterion the two
alternatives are almost equivalent.

A simple defeatist search in a single RP-tree (or BSP-tree in general) is unlikely to
produce very flattering results in approximate NN-search. In the unfortunate event
that the query point resides very close to a space-partitioning hyperplane, a lot of
its neighbors are likely to be sliced to the other half-space and will not be found by a
defeatist search strategy. High average recall values, e.g. R > 90%, can not usually
be reached at all, or they require extremely shallow trees, whose leaves have a high
number of samples, which in turn leads to unbearably long query times. Luckily a
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solution exists – we can build the same type of index several times, and combine the
results. In BSP-trees we can build multiple trees, and in LSH several hash tables can
be used almost equivalently. To get any advantage from the use of multiple index
structures some kind of randomization has to be present to ensure that the structures
do not yield identical results. In RP-trees this randomness is automatically built-in
in the randomized choice of vectors r. This is also the approach we will take; in
our method we construct the index structure of multiple identically-parameterized
RP-trees and call it a Multiple Random Projection Trees (MRPT) index.

2.4 MRPT index construction

Algorithm 1 Algorithm for MRPT index construction. X is the data set for which
the index is being built represented as an N ×D matrix, T is the number and d the
depth of the random projection trees.
1: function buildMRPTIndex(X, T, d)
2: R = RNG.gaussianRandomMatrix(shape=D × Td)
3: P = XR

4: trees = ∅
5: for t = 1, . . . ,T do
6: trees.append(buildTree([1, 2, . . . , N ], 1, t))

7: return trees

1: function buildTree(S, l, t)
2: if l ≤ d then
3: node = new InnerNode
4: node.split = median(P[S, (t− 1)d+ l])
5: node.left = buildTree({ i ∈ S : P[i, (t− 1)d+ l] < node.split }, l + 1, t)
6: node.right = buildTree({ i ∈ S : P[i, (t− 1)d+ l] ≥ node.split }, l+ 1, t)
7: else
8: node = new LeafNode
9: node.S = S

10: return node

In Algorithm 1 we present pseudo-code to build an index structure that consists
of multiple random projection trees. The algorithm follows the overview given in
section 2.3. In this section we discuss the various design choices that have been
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made to adapt the general framework given in e.g. [DF08] for an actual working
implementation. In Fig. 2 we visualize an MRPT index of four RP-trees that is
constructed for a simple two dimensional data set.

2.4.1 Sharing random vectors between branches

In existing literature every random projection tree node generates its own random
vector that is used to define a space-partitioning hyper-plane. To answer a query
the projections in all nodes on the path from root to leaf have to be computed,
and to that end we must have stored the random vectors. Furthermore, we cannot
know which paths the queries will follow, and thus all 2d− 1 D-dimensional random
vectors per tree have to be stored in the index structure. It is easy to see that for a
big number of trees and high-dimensional spaces this gets unbearably expensive.

In our version a tree has the same random vector shared in each node throughout
a level, i.e. for each tree t we have d random vectors rt,1, . . . , rt,d. This way the
number of vectors is at most logarithmic to sample size N . Trivially this change will
not affect the accuracy of the NN approximation – a query point will follow a single
path from root to leaf and is completely unaffected by the random vectors used in
nodes not on this path. Our experiments confirm this intuition.

Now when constructing an RP tree t, each sample in X will get projected exactly
once on each random vector rt,l, for all levels l ∈ {1, . . . , d}. We notice that the
random vectors can be collected into a random matrix

Rt =
[
rᵀt,1 rᵀt,2 . . . rᵀt,d

]
∈ RD×d,

which allows us to compute all projections needed to construct tree t in a single
matrix multiplication Pt = XRt ∈ RN×d; a single row contains each data point’s
projections at all tree levels, and a single column contains the projections of all data
points to the random vector used at the corresponding level. Furthermore, for an
MRPT index of multiple trees we can combine the random matrices of all trees to
a single matrix for the whole index by setting

R =
[
R1 R2 . . . RT

]
∈ RD×Td,

and compute all projections needed to create the entire index in just one matrix
multiplication; P = XR ∈ RN×Td. The result is called the projection matrix. A
single row now contains each data point’s projections at all tree levels in all trees.
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Figure 2: A visualization of an MRPT index for a simple data set in R2. The images
show four different RP-tree space partitionings for the same data set; together they
form an MRPT index of four trees. The colorful points represent the data set X and
an example query object is shown by the bright red marker. The black lines show
the split boundaries, with line thickness expressing the place in the tree hierarchy:
the thickest line represents the split at the tree’s root. We emphasize that the query
point does not affect tree construction, and could have been placed anywhere – it is
included here just to give an idea what kind of neighborhoods single RP-trees might
find for a query.
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The first block of d columns will correspond to the d levels of the first tree, the next
block of d columns to the second tree and so on.

Although theoretically the amount of computation stays intact when the computa-
tions are combined this way, in real life we see a huge speed-up due to cache effects.
Notice also that in the pseudo-code of Algorithm 1 the buildTree-function only
works with the projection matrix, with no access to the original data. This perspec-
tive also allows us to see the close relation that our RP tree has to k-D trees; when
working with P we are just doing coordinate-aligned splits, so basically the index
consists of k-D trees built on a data that was preprocessed with random projection.

A final note to be made on the random projection part of the algorithm is that
we do not normalize the random vectors r, i.e., the columns of R. In general, the
projections of the data set X on the line spanned by vector r is 1

‖r‖Xrᵀ, which equals
Xrᵀ if the random vector is normalized. Notice that if r is not normalized to unit
length, Xrᵀ will yield projections scaled by a factor ‖r‖, which does not affect their
relative order and the partitioning result does not change.

2.4.2 Split criterion

On line 4 of function buildTree we have to choose a split point to partition the
projections P[S, (t− 1)d+ l] into two subsets. As can be seen, our implementation
uses the median value of the projections, but the choice is by no means trivial. In
[DS15] Dasgupta and Sinha use a split point chosen uniformly at random from the
fractile range [1/4, 3/4], which was guided by the intent to prove better theoretical
results.2 Our approach was to find a criterion that works well in practice, and we
tested several criteria on benchmark data sets:

• median – The median of the projected values.

• mean – The mean of the projected values.

• longest interval between projected values – The middle of the longest
real interval that has some projection values on both sides.

• uniform random at the middle fractile [DS15] – A uniform random real
chosen from the [1/4, 3/4] fractile interval.

2Appendix C contains a simplification to a central lemma in Dasgupta and Sinha’s paper [DS15].
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• uniform random – A uniform random real chosen from the interval between
the smallest and greatest projection values.

We found the effect of split criteria to be minimal, and chose to use the median
criterion that allows for compact representation of the tree structures, provides
predictable query times and accuracy due to being balanced and having consistent-
sized leaves. When splitting an odd-sized input data set, we define that the ’extra’
object goes to the right subtree.

2.4.3 Fixed tree depth

We have defined the recursion for tree construction except for one crucial component,
the stopping criterion. Usually it is not sensible to keep splitting the data to the
end until each leaf contains just one sample, but to stop earlier when some stop
condition is met. A common formulation is to define a maximum leaf size n0 ∈ N+

– a node that has more than n0 samples will be split, and nodes with at most n0

samples will become leaves. This approach is taken for example in [DS15], [Hyv15],
[Tuo16] and [WTRK15].

We decided to use a fixed depth d ∈ N+ for each branch instead. We emphasize
that we use a convention where by depth we mean the number of edges on any path
from the root to a leaf, which is not to be confused with the level of leaves, which is
d + 1. The fixed depth criterion guarantees that our RP trees are full binary trees
which together with median split criterion introduces convenient properties in view
of both theory and practical implementation.

Lemma 3 Assume an RP tree constructed from N ∈ N+ samples and built to depth
d ∈ N+ using the median split. The following properties apply:

• The tree has 2d leaves L1, . . . , L2d.

• For any node at level l ≤ d + 1, the leaves in its subtree contain (indices of)
b N
2l−1 c or d N

2l−1 e objects.

• Specifically, every leaf contains bN
2d
c or dN

2d
e objects.

Proof. The first property follows directly from properties of full binary trees – level
1 has a single node and each node has two children, so the number of nodes doubles
at each level.
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The second property can be easily proven with induction; As the base case we point
out that a tree of depth 1 satisfies the claim – only a single split is performed,
and as per the definition of splitting at the median, the subsets are sized as the
lemma claims. Assume now that the claim holds for an RP-tree of depth d′. As the
induction step we show that then the claim holds also for a tree of depth d′+ 1. We
solve the problem in four parts.

Due to the assumption nodes at level d′ have sizes a = d N
2d′−1 e and b = b N

2d′−1 c.

• If N
2d′−1 is an integer, a = b, i.e. all nodes at level d′ have identical size.

– Furthermore, if N
2d′−1 is even, all nodes on level d′ + 1 will have the same

size N
2d′−1/2 = N

2(d
′+1)−1 = b N

2(d
′+1)−1 c = d N

2(d
′+1)−1 e.

– Otherwise for any node at level d′ its children will have sizes b N
2(d
′+1)−1 c

and d N
2(d
′+1)−1 e.

• If the result of N
2d′−1 is not an integer, on level d′ there exists nodes of two sizes

a and b, with a = d N
2d′−1 e and b = a− 1 = b N

2d′−1 c.

– If a is even, b = a − 1 is odd. Nodes of size a will have two children of
size a/2, and nodes of size b will have one child of size a/2 and one child
of size a/2− 1. Now a/2 = d N

2(d
′+1)−1 e and a/2− 1 = b N

2(d
′+1)−1 c.

– If b is even, a = b + 1 is odd. Nodes of size b will have two children of
size b/2, and nodes of size a will have one child of size b/2 and one child
of size b/2 + 1. Now b/2 = b N

2(d
′+1)−1 c and b/2 + 1 = d N

2(d
′+1)−1 e.

The third property of the lemma is simply a special case of the second.

2.5 Querying the MRPT index

In Algorithm 2 we present pseudo-code for querying the MRPT index to find the
approximate nearest neighbors of a new query object q ∈ RD. As briefly visited in
section 2.3, the algorithm consists of two phases; in the tree traversal phase we use
the RP-tree structures to find a candidate set of points that are "somewhat close"
to the query, and in the linear search phase we find the nearest neighbors within
the candidates with brute force.

Much like in section 2.4.1, we first compute all projections needed to route the query
point to a leaf in all trees in a single vector-by-matrix multiplication; p = qR ∈ RTd.
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Algorithm 2 An example approximate nearest neighbor query using an MRPT
index. q ∈ RD is the query point, k is the number of neighbors the user wants, and
M is an MRPT index, basically a collection of T RP-trees. Vector p ∈ RTd is a con-
catenation of T blocks of length d, where each block contains the projection values
needed for moving in a single tree. Parameter blockidx in RPTreeTraversal

identifies the first index of the block that contains the values for the tree that is
currently being traversed. Other variables as described in Algorithm 1.
1: function approximatekNN1(X,q, k,M)
2: p = qR

3: candidates =
⋃T

t=1 RPTreeTraversal(M [t].root,p, (t− 1)d)
4: return kNNLinearSearch(X[candidates],q, k)

1: function RPTreeTraversal(node,p, blockidx)
2: for l = 1, . . . , d do
3: if p[blockidx + l] < node.split then
4: node = node.left
5: else
6: node = node.right

7: return node.S

The projection vector p contains the projection values of q on random vectors of
each level in each tree, the block of first d entries corresponding to the first tree,
the next d entries to the second tree etc. Based on these projections and the split
points stored in the tree structures, we can route the query down to a leaf in every
tree in the index (function RPTreeTraversal). We construct the candidate set
by taking a union over all the samples that appear in the same leaf with the query in
any of the trees. Fig. 3 shows the candidate set for the example in Fig. 2. In Fig. 2
we see that the query resides fairly close to a split boundary in every single tree.
However, in this composite candidate set the query is not too close to the edges; for
example all of the query’s ten nearest neighbors are included in the candidates.

With reasonable parameters the size of the candidate set is a lot smaller than the
whole data set. This allows us to use an exhaustive linear search kNNLinearSearch
to find the nearest neighbors of q amongst these candidates to find the set of approx-
imate neighbors. The linear search algorithm simply computes distances m(q,x) for
all samples x ∈ X, and chooses the samples that correspond to the k smallest dis-
tances, i.e., all true neighbors that made it to the candidate set will be found.
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Figure 3: The green area shows which data points will be included in the candidate
set when performing a standard MRPT query in the example of Fig. 2. It is simply
the combined area of the leaves where the query resides in each tree.

2.6 Memory and running time analysis

As previously, consider a data set X ∈ RN×D and an MRPT index of T ∈ N+

random projection trees built for X to depth d ∈ N+. Our primary concern is to
produce an algorithm that can answer nearest neighbor queries in sublinear (in N)
time. Also the index construction time and storage size have to be feasible and
should be at most linear. As the following analysis shows, all these requirements
hold.

Looking first at index construction (function buildMRPTIndex in Algorithm 1),
we can see that the dominant operations are the computation of projections on line
3, and the T calls to recursive function buildTree on line 6. The projections are
computed by multiplying a N ×D matrix X with a D× Td matrix R, which takes
Θ(DNTd) time with the standard matrix multiplication algorithm.

During recursion, function buildTree is executed exactly once for each node in
each tree. We can see that the function clearly runs in linear time3 with respect to
the size of input array S. According to Lemma 3, when constructing a node on level
l, the size of the input array will be Θ(N/2l−1). In a full binary tree the lth level of

3See [CSRL01] for an algorithm to solve median in linear time, even in the worst case.



18

the tree always has 2l−1 nodes, and finally taking a sum over levels and trees we get
T∑
t=1

d∑
l=1

2l−1Θ(N/2l−1) = Θ(NTd)

as the time taken by the recursion. The time to compute the projections then
dominates index construction, and the whole construction process takes Θ(DNTd).

How about the memory consumption? For each of the 2d − 1 inner nodes we only
need to store the constant-size split value4, so in total for all trees we need to store
T · 2d − 1 = Θ(T2d) split points. In the leaf nodes we only have to store the
partitioning of the data samples. Because one sample always belongs to exactly one
leaf in each tree, this can be easily achieved in Θ(NT ) space5. Since depth d is at
most logarithmic to N , the storage required by the split points is insignificant in
comparison. In addition we need to store the random matrix R, which is of size
Θ(DTd). This sums up to a total memory complexity of Θ(NT +DTd).

Let us move on to the approximate NN queries, Algorithm 2. In the tree traversal
phase the projections p = qR are first computed in Θ(DTd). This is followed
by the routing process through the tree structure, which consists of constant-time
operations in a for-loop that is run d times.

To reason about the time requirement of the linear search phase we need to know
the size of the candidate set, which is an union of the outputs of multiple trees
and its size is thus nontrivial to predict exactly. However an upper bound is easily
obtained by assuming all trees return unique candidates. According to Lemma 3
the tree leaf size is Θ(N/2d), which results in candidate set size O(NT/2d). We
need to compute the distance between q and every candidate, which then takes
O(DNT/2d). Finally we can choose the candidates corresponding to the k smallest
distances using a linear-time selection algorithm.

The total running time of an MRPT approximate nearest neighbor query is the sum
of the running times of the tree traversal and linear search phases,

Θ(DTd) +O(DNT/2d) = O(DT (d+N/2d)).

Notice the similarities in the terms corresponding to the two query phases – the tree
traversal phase running time has a linear dependency on tree depth d, and the linear
search phase has a dependency on the leaf size N/2d instead.

4Indeed, the pointers to child nodes need not be stored. See the reference implementation in
appendix B. However, this does not affect the asymptotics.

5Notice that we are only storing the sample indices, not the samples itself and thus no depen-
dency in dimensionality D.
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To reason about the memory requirements, we exclude the space taken by the data
matrix X – it will not be manipulated at all and the copy the user is likely to already
have in memory is sufficient. In index construction we need space for matricesR and
P, Θ(DTd) and Θ(NTd), respectively. In addition we need space for the split values
and index partitionings in RP-tree leaves, Θ(TN) and Θ((2d − 1)Td), respectively,
but the storage of the aforementioned matrices dominates. Once construction is
finished, the projection matrix P is no longer needed. In the online phase we will
only need additional memory to temporarily store the projected vector and the
candidate set. The complete complexity analysis is summarized in the table below.

The number of neighbors being searched for, k, is often a relatively small number
that can be treated as a constant, and is for that reason excluded from the analysis
above. With the other parameters fixed, k does not change tree construction or the
tree traversal phase of queries at all, and thus all changes will be in the linear search
in the online phase. There distances between the query point and all points in the
candidate set will have to be computed regardless of k, but in the end choosing
the k shortest distances and storing the result will have a linear dependency on k
– for example, using a max-heap will allow us to choose the k smallest values in
O(k + N log k) time. However, we point out that the value of k often affects the
choice of other parameters, and thereby has an indirect effect on the running time
and memory complexity.

TIME MEMORY

Index construction Θ(DNTd) Θ(NTd+DTd)

Index storage N/A Θ(NT +DTd+ (2d − 1)Td)

Tree traversal phase Θ(DTd) Θ(D) +O(NT/2d)

Linear search phase O(DNT/2d) O(N/2d)

Query total O((d+ N
2d

)DT ) Θ(D) +O(NT/2d)

Table 1: Asymptotic memory and time complexity of MRPT.

2.7 On tuning parameters

The MRPT approximate nearest neighbor search method, as discussed thus far, has
two free tuning parameters, the number of trees in the index T ∈ N+ and the depth
of the trees d ∈ N. Assume we are given some initial parameters (T0, d0), and that
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we need to increase the query recall. This can be achieved by either making the
trees shallower or constructing the index of a bigger set of trees. Both approaches
have their pros and cons; making shallow trees slows down the linear search phase of
queries exponentially, whereas adding more trees slows down both linear search and
tree traversal, but only by a linear factor. In addition both parameters have effects
on memory complexity and index construction time. In the following subsection we
start building an intuition for choosing parameters through a simple experiment.

2.7.1 Experiments with bounded candidate set size

Assume we have T0 = 1, an index that consists of just a single tree. To reach
acceptable performance, we need the tree to be very shallow as discussed in section
2.3, which in turn leads to a big leaf size (Lemma 3). Specifically, we end up in a
situation with d� N/2d. In section 2.6 we analyzed the time requirement of MRPT
approximate nearest neighbor queries and found out that the tree traversal phase
takes Θ(DTd) and the linear search phase takes O(DTN/2d). With this knowledge
we see that, with our choice of parameters, the time spent in the tree traversal phase
becomes insignificant in comparison to the linear search phase. Would it have been
a better choice to use a bigger number of trees to balance the time spent in the two
phases? Let us seek intuition through simple experiments on a synthetic data set.

Let us define a process that updates the MRPT index parameters in a way that
keeps the candidate set size bounded by a constant value C with C = N/2d0 for
some tree depth d0 ∈ N:

1. First build one tree (T0 = 1) to depth d0, ie. the tree has leaf size C.

2. For i = 1, 2, 3, . . .

(a) Double the number of trees.

(b) Increase tree depth by one, i.e. the leaf size will be approximately one
half of the previous iteration.

Because the candidate set size remains bounded by C and at step 0 it is exactly
C, the computational cost of the linear search phase never exceeds that of the first
step. Contrarily, when the number of trees increases, it becomes likely that the
some candidates are redundantly in the query’s leaf in several trees, which leads
to a smaller candidate set and correspondingly faster linear search. Since the time
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spent in tree traversal in a single tree was negligible, we can expect that to be the
case also if we use a few trees instead of just one. Thereby, we can expect the total
query time to remain unaltered for the iterated parameters, at least for a small
number of iterations. The discussion this far does not allow us to draw conclusions
on how many iteration steps we can take until this observation breaks, an issue that
will be addressed by experiments in this section.

Now we test the parameters at each iteration of this process to build an index for
approximate nearest neighbor search in a synthetic data matrix (N = 32 768, D =

50), whose each entry is sampled from the standard normal distribution. We start
with C = 4096 (d0 = 3), and run 10 iterations of the above process to update
parameters. A query object was generated from an identical distribution with the
data set, and the recall in 10-NN search and its standard deviation were reported.
The results are averages over 100 iterations.

Fig. 4 shows the effect that the parameter updates have on the average recall. Clearly
the more trees with correspondingly smaller leaves we use, the more accurate the
queries will get. A single tree had a recall less than 0.3; after just five iterations the
recall has more than doubled, and at the 10th iteration we get more than 9 out of
10 neighbors correct on average. The standard error of the mean (SEM) was less
than 0.02 for all parameter combinations, which tells that the values used to draw
the curve are likely very close to the underlying true values.

In addition to high average recall, a user would likely value consistent performance;
it seems likely that a method whose recall is consistently between 0.7 and 0.8 is more
usable than one where the recall changes arbitrarily between queries in the range
from 0 to 1, even if the average recall is the same for both methods. This is why
the figure also shows the standard deviation of recall values. The more trees we use,
the smaller the deviation between trials gets, and thus the multiple tree approach
seems preferable also due to more consistent performance.

The query time can be expected to remain somewhat unaltered, but the iteration
increases index construction time and size in memory exponentially. Even though
our main concern is to attain a good recall/query time ratio, the index construction
still has to be feasible.

Based on these results we want to perform iterations to update the parameters at
least as long as the query time is unaffected, i.e. tree traversal time is no longer
insignificantly small compared to the linear search. In the second experiment we
start the iteration from six different parameter combinations, T0 = 1, d0 = 1, 2, . . . , 6,
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Figure 4: The average recall of approximate nearest neighbor queries for parameters
produced by the iteration described in section 2.7.1.

and run ten iterations. The parameters are again used to build an index on the same
data set, and the performance is tested in 10-NN search for 100 queries. This time
we record both average recall and query time. The results are shown in Fig. 5,
where a curve corresponding to the iteration that started from parameters of the
previous experiment (T0 = 1, d0 = 3) is highlighted with a solid line. As discussed
in the previous experiment, the standard error of mean for the average recall of
100 queries is fairly low, and we may assume that the results would be similar in a
repeated experiment.

The results reflect the theory well. We can see that each curve starts with an almost
upright improvement in accuracy, or even have a decrease in query time thanks to
duplicates in the candidate set which speeds up linear search. This corresponds
to the first few iterations, where the number of trees remains small enough to not
affect query time noticeably. Notice that here we can use as many as approximately
a hundred trees before the tree traversal time becomes an issue. After the saturation
point the recall improvement slows down and the curves bend to the right.

Now our goal should obviously be to reach an as-high-as-possible recall in as-low-as-
possible time, i.e. be as close to the upper left corner as we can. We can see that no
single candidate set size upper bound (curve) is optimal everywhere; the highlighted
curve with candidate set size bounded by C = 4096 is fastest to reach recall around
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0.7 to 0.8. We can use an index with this candidate set size also to reach a higher
recall, but as the figure shows, using a bigger candidate set will provide the same
recall in less time. The iteration where the tree depth is 9 is pointed by a circle
marker on each curve. As we can see these points are on the optimal performance
curve shown with the green shade. This phenomenon is to be discussed in section
2.7.2.
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Figure 5: The average recall and query time in approximate 10-NN search in a
synthetic data set (N = 32 768, D = 50) for various parameters. Each curve starts
with a single tree with depths d0 = 1, 2, . . . , 6, and the curves represent the changes
in performance when the initial parameters are updated with the process described
in section 2.7.1. The green shade gives the performance with optimally chosen
parameters.
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2.7.2 Optimal tree depth

As suggested by the examples in figures 4 and 5, the optimal parameters would
be such, that the time spent on the tree traversals is of the same scale with the
linear search phase: If the time spent on traversals is insignificant, we can improve
accuracy with minimal effect on running time by using more and deeper trees. On
the other hand, when the tree traversal time starts to dominate, it seems to be faster
to accept a bigger set of objects in the linear search phase.

From section 2.6 we have that the linear search phase runs in O(DNT
2d

). Although
this is just an upper bound, our experiments show that it is reasonably tight. For
the linear search phase to maintain its status as the dominating factor we want this
to also be an upper bound for the running time of the tree traversals, which was
analyzed to be Θ(DTd). We get

DTd = O(
DNT

2d
)

d2d = O(N).

Now let us for a while ignore the O-notation and solve d2d = N for d. Although
the closed form solution is hard to obtain, both d and 2d increase monotonically as
functions of d so the solution is always unique and can be found easily by numerical
methods. For the synthetic data set used in the previous subsection (2.7.1) where
N = 215, this yields solution d ≈ 11.48. For d = 11 the time requirements of the
tree traversals and linear search would be approximately equal – actually that is
not what we want but the tree traversal time to be insignificant in comparison,
and should thereby use a slightly smaller value of d, like 9 or 10. Now we have to
emphasize that the treatment is by no means rigorous in the sense that it ignores all
constant factors and non-dominant terms. With this in mind the result turns out
to be astoundingly useful; Going back to Fig. 5 the points where d = 9 (for 32, 64,
128, 256, 512 and 1024 trees) are marked on each curve, and we can see that these
mark the spots where the curves start to bend. These points are connected by the
thick green line, which we can see basically gives us the optimal query time/accuracy
ratio. We can then simply use this fixed depth parameter and choose the number of
trees to address our needs when it comes to query time and accuracy. Notice also
that the number of trees does not have to be a power of two but any positive integer
value can be used, allowing us to choose the desired query time/recall flexibly from
the optimal curve.
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In any potential use cases, the user will probably want either as accurate queries as
possible within a given time, or as fast queries as possible with a given accuracy.
Unfortunately our analysis does not allow to directly estimate the number of trees
to satisfy these requirements. However, as any optimal MRPT index will consist of
similar RP tees, just a varying number of them, we can define an easy process of
finding the optimal parameters that requires the index to be built just once:

1. Build an unnecessarily large set of (e.q., 1000) optimal depth trees.

2. Test queries using subsets of trees of sizes between 1 and T to find the right
balance of accuracy and query time.

3. Discard the extra trees.

3 Improving MRPT performance

In the previous section, we described how to build an efficient index structure of
multiple random projection trees and how to combine the search results from trees
in a simple way that achieved far superior performance to a single RP-tree. However,
as we will see in section 4, some other methods still achieve superior performance.
To improve even further we can introduce several clever augmentations to the core
algorithmic idea of MRPT from existing NN literature – sparsity is a common way to
speed up linear algebra operations, and many BSP-variants support priority search
(which also has similarities to multi-probing in LSH), both to be covered in this
section. Furthermore, we showcase a novel voting scheme [Tuo16] that combines
the search results of single RP-trees in a more selective way to choose a smaller
candidate set of higher quality, and thus achieves faster query times through faster
linear search phase.

3.1 Sparsity

One weakness of RP trees is that in every tree node we need to compute a Θ(D)-
time distance computation. In comparison, k-D tree nodes only compare values of
single features that can be done in constant time. On the other hand, each split in
a k-D tree considers just a single feature, whereas in RP-trees a linear combination
of all features is considered, which usually leads to a higher accuracy. The usage of
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sparse random vectors in RP trees seems to provide a way to balance the positives
and negatives of both approaches.

To construct the random matrix R with spherically random columns for random
projection, we usually sample the entries from the standard Gaussian distribution.
Achlioptas [Ach03] shows, that each entry rij of the random matrix R can be gen-
erated i.i.d. from

rij =


+1 with probability 1

2a
,

0 with probability a−1
a
,

−1 with probability 1
2a
,

and a = 3 instead, without any decrease in the quality of the random projection.
This allows the random projections to be computed with database-friendly oper-
ations, and more importantly to us, reduces the number of computation through
sparsity since only a third of features needs to be considered for projection compu-
tations. Li et al. [LHC06] introduce very sparse random projections, where a � 3.
They show that for normal-like distributions sparsity as high as a = D

logD
can be

used, although a less aggressive choice such as a =
√
D is recommended for robust-

ness.

Remember that in section 2.4 we learned that our variant of the RP-tree is actually a
k-D tree applied on data pre-processed with random projection. In our version of the
RP-tree the preservation of distances is clearly an important property. Obviously
the smaller the distortions random projection causes in pairwise distances, the better
the k-D tree will be able to find the neighbors. In our experiments we have found
the sparsity of a =

√
D as suggested in [LHC06] to be near optimal, and we will

from here on fix this value to get rid of one tuning parameter.

With an expected a =
√
D non-zero elements in each column, the random projection

computation in each NN query can now be computed in Θ(
√
DTd) expected time.

As in section 2.7.2 we can compare the asymptotic complexity of the query tree
traversal phase and come up with formula

d2d = O(
√
DN),

which when solved for d provides the optimal tree depth. When compared to the
dense case the only difference is the

√
D factor on the right hand side of the equation.

This makes perfect sense: using sparse random vectors for random projection cuts
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down the tree traversal cost, but does not affect the linear search phase complexity
at all, so we should be able to afford deeper trees. The added factor in the equation
clearly yields a higher value for d.

3.2 Voting

Algorithm 3 An approximate nearest neighbor query using voting. Parameter V
tells how many votes are required for a sample to be included in the candidate set
for linear search. Other variables and parameters as in Algorithms 1 and 2.
1: function approximatekNN2(X,q, k,M, V )
2: p = qR

3: votes = zeros(N)
4: for t = 1, . . . , T do
5: for i ∈ RPTreeTraversal(M [t],p, td) do
6: votes[i] = votes[i] + 1

7: candidates = {i : votes[i] ≥ V }
8: return kNNLinearSearch(X[candidates],q, k)

Assume an MRPT index that consists of T trees of depth d built to index data set
with X ∈ RN×D. Remember that a tree of depth d has 2d leaves. Let

Lt : RD → {1, . . . , 2d}

be a function that maps an object in RD to the index of the leaf that represents the
cell in RD where the object resides in tree t. In other words, the function corresponds
to the tree traversal process. Also let

ft(x;q) = 1{Lt(x) = Lt(q)},

i.e. ft is an indicator whether q and x reside in the same leaf in tree t. This allows
us to denote the total number of trees where x and q reside in the same leaf by

F (x;q) =
T∑
t=1

ft(x;q).

In the basic MRPT query as described in section 2 we include x in the linear search
phase if F (x;q) ≥ 1. In this process we lose information; is a candidate that is in
the query’s leaf in just a single tree as good as one that appears in the same leaf
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Figure 6: A visualization of voting in an MRPT index (50 RP-trees, depth 5). The
query point is shown in red, and the area of the 50 leaves (one per tree) where it
resides are shown with semi-transparent green polygons. Because of transparency,
areas where multiple leaves overlap get darker. For reasonable k, the k nearest
neighbors are located within the roughly spherical dark-green cloud around the
query. The darker area thus represents a good input for linear search, and points in
the light-green (and white) areas can be omitted.

10 times? Fig. 6 shows, how the points that are actually close to the query point
appear often in the same leaf with it, whereas points that are very far from the
query point may still be in the same leaf in a few trees. The voting scheme taps into
this frequency information and allows us to cherry-pick the candidates that appear
in the same leaf often and thereby seem most likely to be actually close. In this
analogy the appearance in the same leaf with q counts as a vote for x. A new vote
requirement parameter V ∈ N is introduced, and only samples with V or more votes
are included in the linear search. The candidate set for linear search is thus

C = {x ∈ X : F (x;q) ≥ V }.

The NN query adapted to support voting is shown in algorithm 3.

Now it is obvious that, all other parameters fixed, the basic MRPT (V = 1) achieves
the highest accuracy, since the induced candidate set is a superset of the candidate
sets for any greater V . However, for larger V the candidate set will be substantially
smaller which improves speed. What we are interested in is whether the computa-
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tional savings outweigh the loss of accuracy, that is, if the voting scheme achieves
recall/query time ratios that are above the plain MRPT optimal performance curve.

Fig. 7 shows a simple experiment, where we compare the performance of plain MRPT
to the voting variant. We are again working with the 32 768× 50 synthetic data set.
We use an MRPT index with optimal depth trees (d = 9), a dense random matrix
R (a = 1). We plot the performance of plain MRPT for number of trees T between
1 and 500. For voting, we pick one point from the plain MRPT optimal curve
(T = 380). Case V = 1 is identical to the plain MRPT query, and from there we
experiment with higher values of V . For V ∈ {2, 3, 4} the performance of the voting
queries is clearly above that reachable by means of plain MRPT. Furthermore, the
MRPT index optimal for the plain queries is not optimal for voting. We can use
much shallower trees and retain competitive performance, when the candidate set
is pruned with voting before linear search. A formula to choose optimal parameters
for voting is not known, and a grid search is currently required. A more thorough
comparison of MRPT with and without voting will follow in section 4.
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Figure 7: The reachable performance of plain MRPT and the performance of some
parameters for voting. Some voting parameters are clearly capable of achieving
superior performance to plain MRPT.
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3.3 Priority search

In all of the approaches covered in the thesis this far, the final candidate set for
linear search is constructed by using only a single leaf per tree. However, in any tree
it is possible that the query resides very close to a space partitioning hyperplane
that separates it from its true neighbors. In our approaches the use of multiple trees
mitigates the issue, since such unfortunate hyperplane is unlikely to exist in all trees,
nor even in sufficiently many to interfere with voting. Another solution that has been
employed in space partitioning tree variants such as k-D trees [AM93a], balanced
box-decomposition (BBD-) trees [AMN+98] and hierarchical k-means trees [ML09],
is the use of multiple leaves per tree via priority search strategies. In addition to
the single leaf where the query point resides, we include additional leaves in the
order of increasing distance from the query point. This is also somewhat analogous
to multi-probing in LSH [LJW+07], [AIL+15], where slightly perturbed versions are
queried in addition to the query point itself, in order to find additional hash buckets
that are likely to contain more neighbors. In this section we adapt a priority search
strategy to the MRPT index.

Consider a tree t. When only a single leaf per tree is utilized, we choose the leaf
where the query point resides according to the split criteria, Lt(q). If we were
allowed to pick an additional second leaf, which one would we choose? With the
target of finding the query’s nearest neighbors, we would like to pick the leaf that
contains points closest to the query point. However, to have an advantage over
a basic exhaustive search, this should be achieved without evaluating the actual
distances between q and the data points. Remember the interpretation of the space
partitioning induced by an RP-tree as cells (i.e., leaves) bounded by hyperplanes in
the D-dimensional space. We pick the leaf whose cell contains area closest to the
query, i.e., the leaf that the space partitioning induced by the tree would allow to
contain a point closest to the query, although such point may not actually exist.

In the following, a distance between q and a leaf L is the shortest distance between
q and any point in RD that would be routed to leaf L,

m(q, L) = inf
x∈RD:Lt(x)=L

m(q,x),

and the distance between q and an RP-subtree S is the smallest distance between
q and a leaf in that subtree,

m(q, S) = min
L∈S

m(q, L).
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Now, being allowed to pick a second leaf we would choose

argmin
L:L6=Lt(q)

m(q, L).

Similarly, if even more leaves were allowed to be picked, we would choose them in
the order of increasing distance from q. In section 3.3.1 we will see how we can
compute distances between subtrees and q and store them in a priority queue that
will allow us to quickly select the next closest leaf.

The priority search seems alluring to our method specifically for some key reasons.
As we will see, to pick multiple leaves we do not need any additional projection
computations. For this reason picking an extra leaf from an existing tree is much
less expensive than choosing the first leaf from a completely new tree. Secondly,
when the number of trees is incremented, the memory requirement grows linearly.
Especially with huge data sets this is bound to be a limiting factor when choosing
MRPT tuning parameters. With priority search, we can expect better contribution
from individual RP-trees to the MRPT candidate set, and hopefully reach a better
accuracy with a smaller set of trees.

3.3.1 Tree traversals and the priority queue

Consider first a single RP-tree t. Assume the random vectors r1, . . . , rd used to
construct the tree are orthonormal; this will be required for the geometric arguments
to be presented to hold. This can be satisfied if the depth of the tree is smaller or
equal than the original dimensionality of the data d ≤ D, which is satisfied always
if log2N ≤ D, a condition that usually holds in potential use cases of MRPT. 6

The priority search is enabled by a priority queue that will contain RP-subtrees with
their squared distances from the query point q as their priorities. The contents of
the queue are thus query point dependent, and a new queue is used to answer each
nearest neighbor query. We use a variant where the entry with the smallest priority
value has the highest priority, i.e. will be dequeued first. At the start of a new
query, the queue is initialized to contain the root of the RP-tree. A full RP-tree
always contains a single leaf where the query point resides, and thus the (squared)
distance between the query point and the tree’s root is 0, which will be used as the
root’s priority.

6In high-dimensional spaces random directions can be expected to be almost orthogonal even
without the orthogonalization process. In any case, normalized lengths are crucial for the priority
search to work; otherwise the presented distance computations between q and leaves will not hold.
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Assume a nearest neighbor query for query point q using tree t. After the priority
queue’s initialization the tree traversals begin. Instead of just once, the tree will
now be traversed multiple times where each traversal finds a single new leaf. Each
traversal starts from the highest-priority subtree (node) in the priority queue, and
thus the first traversal starts with the queue’s only entry, t’s root. The traversal
happens in the same way as in the earlier MRPT variants, but every time we descend
to a node we will add the node’s unvisited sibling to the priority queue.

How do we find the distances between the query point and RP-subtrees to be used
as priorities? Assume that while routing down q we visit node v on level l. Node v
corresponds to a single split value sv, and a single random vector rl (that is shared
with other RP-tree nodes on the same level). With rl and sv the node defines a
unique space partitioning hyperplane, whose normal vector is rl and that intersects
the normal vector at point svrl. We compute the projection q·rl to decide into which
child of v to descend. Since rl was the hyperplane’s normal vector, the difference

ε = |sv − q · rl|

directly gives us the distance between the query point and the hyperplane (see
Fig. 8). Like before we descend to the side of the hyperplane that contains the
query point, and the subtree corresponding to the other side is then known to be
ε away to the direction of rl. If this was the first traversal that started from the
tree’s root, the subtree corresponding to ’the other side of the hyperplane’ is added
to the priority queue with respective priority ε2. The squared value is used to
simplify mathematical operations, which will be explained later. For now it suffices
to point out that, because the ε-values are positive, the squaring preserves the order
of distances so it can be done. The same process is repeated at each level, and once
the first leaf is found the priority queue will contain d entries, one for each tree level.

With later traversals things get slightly more complicated. Assume we start a second
traversal, and dequeue subtree u on tree level l, that corresponds to the highest
priority p. Because this is the second traversal, u is not the tree’s root, l > 1, and
because the leaf where the query resides has already been found in the first traversal,
p > 0. We also know u is separated from q by a margin of width m(q, u) =

√
p, and

that this separation is to the direction of rl−1.

We route the query point down starting from u the same way as in the first traversal,
but to compute the priorities we have to also account for the separation at the higher
tree level contained in the priority value p. On the path from u to a leaf, assume we
are at node v on level j. We can compute the difference of the node’s split value and
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Figure 8: The difference of the projection of the query point and the split value,
ε = |q·rl−s|, gives the distance to the subtree, where the traversal will not go because
the query point is not on the same side of the split. ε thus gives a lower bound to
the distance between q and any point on the other side of the split hyperplane.

the query’s projection, the ε-value, as in the first traversal. In the computation, the
query’s projection value q · rl will be the same as in the first traversal, and does not
have to be computed again, providing a serious computational advantage. Only the
subtraction with the projection and the node’s split value, both of which are simply
one dimensional real numbers, has to be solved. Assume w is the node where we
do not visit, i.e. we descend from v to w’s sibling. Now we know that w is ε away
from q to the direction of rj. Additionally, w’s ancestor u and thus also w are √p
away from q to the direction of rl. Furthermore, we started with the assumption
that r1, . . . , rd are orthogonal; now we get the total distance between q and w from
the Pythagorean theorem:

m(q, w) =

√√
p2 + ε2 =

√
p+ ε2.

We use the squared distance

m(q, w)2 = p+ ε2.

as the priority, and see the reason for the use of squared distance values – a lot
of unnecessary operations can be avoided, since the squared Euclidean distance is
coordinate-wise additive.
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In the third and further traversals the priorities are computed in exactly the same
way; Assume an entry u at level l is dequeued with priority p. The priority p can
be interpreted as the squared distance between q and u (or any descendant of u) to
the directions of r1, . . . , rl−1, so we can express it as

p = p21 + p22 + · · ·+ p2l−1,

where p2i corresponds to the separation to direction of ri. Notice that any of the
terms may be zero. Now we traverse the tree down starting from u as normally, and
add the siblings of nodes visited on levels l + 1, . . . , d to the priority queue. The
sibling on level j ∈ {l + 1, . . . , d} is enqueued with priority

p21 + p22 + · · ·+ p2l−1 + ε2 = p+ ε2,

where ε is the difference of the split value and the query point’s projection at level
j − 1. As we can see the new priority is computed exactly the same way as in the
second traversal.

The additivity of the squared distances here requires that the directions of the
separations are orthogonal. The separations are always to the directions of the
random vectors r1, . . . , rd, which are orthogonal by definition. Furthermore, we
need to ensure that separation to the direction of the same random vector is never
added twice to the same priority value. It is easy to see that this holds; during any
traversal all entries added to the priority queue will be on lower tree levels than the
node where the traversal started. Thus, the priority value will always equal the sum
of squared distances to the directions of r1, ..., rl for some l ∈ {1, . . . , d−1}, and the
added term will be the separation to one of the directions rl+1, . . . , rd.

When the priorities are set and tree is traversed as described, each traversal will
find a new leaf in increasing order of distance from q. The reasoning goes as follows:
Initially, the priority queue contains the tree’s root, so all leaves belong to the only
(sub)tree that is in the queue. In any traversal we start by dequeuing a subtree S.
On the path to a leaf we enqueue the unvisited sibling node (subtree) at every level,
and finally find leaf L. Notice that the enqueued subtrees contain every leaf in the
subtree S except L. Thereby, all leaves of the tree either a) belong to a subtree
that is currently in the queue or b) have been found by an earlier traversal. When
dequeueing subtree S from the priority queue it has some priority p. To be dequeued
S must have been the subtree closest to q in the queue, which means it contains
the closest leaf to q, which is L. This is the leaf that the traversal started from S

will find, notice that m(q, L) = m(q, S) =
√
p. To summarize, in every traversal
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we pick the closest leaf that is still in the queue, and at the start of any traversal
the queue contains (ancestors of) all leaves except the ones that were picked in an
earlier traversal. Any leaf that was found in an earlier traversal has to be closer
to q than any leaf whose ancestor remains in the priority queue due to the same
argument. For a simple example see Fig. 9.

Algorithm 4 shows how the tree traversal function RPTreeTraversal from Al-
gorithm 2 and the voting query approximatekNN2 from Algorithm 3 can be
extended to support priority search in the MRPT index. In the presence of multiple
trees, only a single priority queue will be maintained. The roots of all trees are
initially enqueued with priority 0, so the first T traversals will find the leaves where
the query resides in each of the T trees (distance to any other subtree will be greater
than zero). After these initial traversals using a single queue will focus the traversal
efforts to the tree where the split hyperplanes bound space closest to the query point
automatically.

3.3.2 Performance of priority search

We test the performance effect of priority search in 10-NN search in the MNIST
data set (see section 4.1). We try 10 different values of the number of additional
traversals B, 0, 25, 50, 100, 150, 200, 250, 300, 400 and 500. For the other parameters,
we fix sparsity to a =

√
D = 28, and the remaining parameters were chosen optimally

using a grid search. Fig. 10 shows the average running time and recall in 100 queries.

We can clearly see that, with no additional constraints, priority search does not
bring further benefits to reach a fixed recall level faster – the higher the value of B,
the higher is the curve in the figure. Our hypothesis is, that the use of multiple trees
is a sufficient and more effective means to reduce the risk of missing neighbors due
to split hyperplanes that are located too near to the query point. Although priority
search can choose additional leaves without increasing the number of projection
computations, it always yields leaves that contain different objects than the leaf
chosen in the first traversal, so the result is different than what we would get from
choosing a new leaf from a completely new tree. This is a possible reason why
the computational advantage of fewer projections does not make the priority search
enabled variant faster.

However, the priority search variant still has use cases where it may prove advanta-
geous. On the red curve where B = 500, the optimal number of trees found via grid
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Figure 9: Priority search in a four-leaf RP-tree for query point q. In the start of the
first traversal the priority queue contains only the root node, corresponding to split
hyperplane 0, where the traversal will start. In the routing process we determine
distances between the query point and split hyperplanes 0 and 1.0, which are ε0
and ε1.0. The corresponding nodes are added to the priority queue with the squared
distances as weights. The first traversal finds leaf A where the query point q resides.
In the second traversal we dequeue node 1.1 (corresponding to the similarly named
hyperplane) from the queue, because its priority value ε20 is the smallest (out of two)
in the queue. We compare the query to hyperplane 1.1 and descend to leaf B. Leaf
C is added to the queue with priority ε20 + ε21.1, the squared distance between q and
C. In the third traversal we dequeue leaf C with priority ε20 + ε21.1, and finally in the
fourth traversal D with priority ε1.0. We see that the leaves were found in order of
increasing distance from q.

search is approximately half of what is required if B = 0. For this reason, the mem-
ory requirement for the index is much smaller with priority search. Furthermore,
for high recall, the curves get very close to each other, and the speed advantage
of the B = 0 variant gets insignificant. Another noteworthy point is, that priority
search does not require any changes to the index structure. For any MRPT index,
we can run queries either with or without priority search, with different values of
B if we wish, allowing for a lot of flexibility; queries with higher B will be more
accurate but slower. Last, the priority values allow us to infer extra guarantees on
the approximation accuracy, that will be discussed in the following section.
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Algorithm 4MRPT approximate nearest neighbor query with priority search. B is
a new parameter that tells how many additional traversals are performed in the index
after all trees are traversed once. Other variables and parameters as in algorithms
1, 2 and 3.
1: function approximatekNN3(q, k,M, V,B)
2: votes = zeros(N)
3: p = qR

4: Q = new PriorityQueue(order=smallest first)
5: for t = 1, . . . , T do
6: Q.enqueue((0,M [t], t, 1))

7: for iteration = 1, . . . , B + T do
8: leaf = prioritySearchTraversal(Q.dequeue(), p)
9: for i ∈ leaf do
10: votes[i] = votes[i] + 1

11: candidates = {i : votes[i] ≥ V }
12: return kNNLinearSearch(X[candidates],q, k)

1: function prioritySearchTraversal((priority, node, t, startlevel), p)
2: for l = startlevel, . . . , d do
3: ε = p[(t− 1)d+ l]− node.split

4: if ε < 0 then
5: Q.enqueue((priority + ε2, node.right, t, l+1))
6: node = node.left
7: else
8: Q.enqueue((priority + ε2, node.left, t, l+1))
9: node = node.right

10: return node.S

3.3.3 Additional guarantees with priority search

We saw that the priority values of a single RP-tree as set by Algorithm 4 can be
interpreted as the squared distances between the query point and subtrees that
contain all RP-tree leaves that were not added to the candidate set. For an MRPT
index of multiple tree only a single queue is maintained, but it can be thought of as
a merge result of the queues for all independent trees of the index. Thus after the
traversals end, the values remaining in the queue can be used to infer guarantees for
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Figure 10: A performance test of priority search 10-NN queries in an MRPT index.
The plot shows the average query time and recall for 100 queries in the MNIST data
set (see section 4.1) for details on the data set.

distances that the data points still in the queue must be away from the query point.

Denote the entries that remain in the queue after traversals as p1, p2, ..., pm, where
m is the total number of entries. Each entry in the queue is an RP-tre node that
belongs to a single tree, tree(pi) ∈ {1, ..., T}. We can assume, that for all trees there
is at least one entry in the queue. Now

gt =
√

min
pi:tree(pi)=t

pi

gives the guarantee range for tree t. Since gt is the shortest distance to a subtree
of t that was not found in the traversals, we can guarantee that all points within
gt belong to a leaf that was found. For a 2-d visualization of guarantee ranges see
Fig. 9. If only one traversal would be done, only leaf A would be found, and the
guarantee range would be ε0, the square root of the smallest priority value in the
queue. If the traversals were stopped after two iterations, a second leaf B would be
found, and the range would be the square root of the smallest priority value in the
queue,

√
ε20 + ε21.1, etc.
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With plain MRPT queries (voting for V = 1), that construct the candidate set by
taking a union of the leaves found by single trees this implies that the index can
guarantee the longest range that any of the trees in the index can guarantee, and
the range for index M would be

gM = max
t∈M

gt = max
t∈M

√
min

pi:tree(pi)=t
pi,

because for any data point it suffices for just one tree in the index to find it and
it will be included in the candidate set. For voting we require V > 1 trees to find
the points that will be included as neighbor candidates, and so to find the index
guarantee range for voting we have to find the V th greatest single-tree guarantee
range. To find the gt values to solve the index guarantee range we need to scan
through the priority queue until at least one entry corresponding to each tree has
been met. The priority queue can contain at most O((T + B)d) points and this
operation thus takes at most O((T + B)d) time, which will not affect the query’s
asymptotic time complexity.

Where can the index guarantee ranges be used? We can provide them as additional
information to the user, to show that there can not be non-found neighbors arbi-
trarily close to the query point. Maybe the range will be larger than the distance to
some of the approximate neighbors returned, in which case they can be confirmed
to be true neighbors. Additionally, with negligible changes we can provide two sorts
of exact neighbor algorithms that utilize a single RP-tree.

• We can answer exact range queries, where all neighbors within a user-specified
range will be returned. We build a single-tree MRPT index, and keep starting
new traversals until the square root of the priority at the head of the queue
is greater than the user specified range. Then we search all candidates in the
leaves found with an exhaustive search.

• We can also answer exact k-NN queries. We again build an index of a single
RP-tree. We have to alter the query so that the distance between q and a data
point in a leaf that is added to the candidate set is evaluated instantly when
the leaf is found. During traversals we keep count of the k nearest neighbors
that have been found thus far. We keep starting new traversals, until the
square root of the priority at the head of the queue exceeds the distance to the
kth nearest data point already found, at that point we know that the current
approximation is in fact exact.
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However, the algorithms are more of a theoretical curiosity than actually competitive
methods for exact neighbor search. This is because the distance guarantees that can
be given are in practice very small compared to the actual distances between data
points if the dimensionality is high. Consider, for example, a 1000-dimensional data
set. If we did a random projection to 1000-dimensional space, this would simply
be a random rotation of the data and the distances between data points would not
change. Now assume we are using a depth 20 RP-tree in the algorithm; in this
case the distances to subtrees are equivalent to being estimated just in the first 20
dimensions of the 1000-dimensional random projection! In practice we found that
the guarantee ranges have a usable length only for low-dimensional data, preferably
D ≈ d. With the exact RP-tree algorithms and higher dimensional data we have to
perform an extremely large number of traversals to provide the guarantees.

4 Comparisons

In this section we compare the performance of MRPT to other approximate NN
libraries. For the comparison we chose leading algorithms with efficient C++ im-
plementations from all three major categories (BSP-trees, LSH and k-NN graphs),
and measure the online-phase performance on data sets that represent typical use
scenarios for approximate NN search.

We test the search for different number of neighbors k ∈ {1, 10, 100}, which covers
the range used in typical applications. The performance in all cases is measured
by the average value of recall R over 100 queries. With K being the set of exact
k nearest neighbors and A the approximation returned, R = |A ∩ K|/k, i.e. the
fraction of true neighbors within the approximation result.

All experiments were performed on a single Dell PowerEdge M610 computer with
32GB of RAM and 2 Intel Xeon E5540 2.53GHz CPUs. No parallelization was
utilized beyond that achieved by the use of linear algebra libraries, such as caching
and vectorization of matrix operations.

4.1 Data sets

The data sets chosen for the comparison are listed in table 2 and they reflect real-
istic use-cases for nearest neighbor search. The only text data set, the News data
set [WTRK15] consists of news articles converted to feature vector representation
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using a bag-of-words model with term frequency-inverse document frequency (TF-
IDF) weights followed by a dimensionality reduction with latent semantic analysis
(LSA). MNIST7, Trevi and STL-10 represent raw image data: MNIST is a collection
of grayscale images handwritten digits, Trevi8 contains grayscale image patches of
images depicting three popular tourist attractions, and STL-109 [CLN91] is a com-
mon image classification benchmark set containing color photos of objects from 10
distinct classes. Data sets GIST and SIFT10 [JDS11], [JTDA11] contain image de-
scriptors extracted with similarly named algorithms, furthermore SIFT is a random
sample of N = 2 500 000 data points in the data set called BIGANN in the source.
Finally we also include a synthetic data set that consists of 50 000 data points sam-
pled uniformly by random from the 4096-dimensional unit sphere. We refer to the
included links for further details on the data sets.

Data set N D type

News 262 144 1000 text (TF-IDF & LSA)
MNIST 60 000 768 image
Trevi 101 120 4096 image
STL-10 100 000 9216 image
GIST 1 000 000 960 image descriptors
SIFT 2 500 000 128 image descriptors
Random 50 000 4096 synthetic

Table 2: Specification of data sets that were used in the performance experiments.

4.2 Libraries included in comparison

For completeness we picked algorithms from all three main categories of nearest
neighbor methods for the comparison. All these libraries are available open-source,
written in C++, support Euclidean distance and have been deployed in a lot of
real-life use scenarios.

• ANN 11 (Approximate Nearest Neighbor library) is one of the earliest approx-
7http://yann.lecun.com/exdb/mnist/
8http://phototour.cs.washington.edu/patches/default.htm
9https://cs.stanford.edu/acoates/stl10

10http://corpus-texmex.irisa.fr
11https://www.cs.umd.edu/~mount/ANN/
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imate NN libraries, being released originally in 1998. It implements a set of
algorithms based on k-d trees [Ben75] and balanced box-decomposition trees
[AMN+98]. We include the classic k-d tree algorithm mainly to be a baseline
of performance – the other libraries utilize decades of additional knowledge in
the field and expectedly reach better performance.

• FLANN [ML09], [ML12], [ML14] 12 (Fast Library for Approximate Nearest
Neighbor search) is another BSP-tree based library, which implements hier-
archical k-means trees and an optimized version of the classic k-d tree the
authors call randomized k-d trees. We test both methods separately.

• FALCONN [AIL+15] 13 (FAst Lookups of Cosine and Other Nearest Neighbors)
extends cross-polytope LSH with a multi-probe search strategy that utilizes
several hash buckets per table for each query. FALCONN is among the fastest
LSH-based libraries.

• KGraph 14 was chosen as a representative of the graph approach. It utilizes
a k-NN graph and uses a fast neighbor-descent algorithm [DML11] to search
the graph for approximate nearest neighbors.

We also include three different versions of our own algorithms

• RP-trees is the "plain" MRPT query introduced in section 2.5. The query
point is placed into a leaf in each tree in the index in a defeatist-search manner,
and the results are combined by taking a simple set-union before a brute-force
linear search.

• Sparse RP-trees improves upon the preceding by introducing the concept of
sparsity as described in section 3.1. We fix the sparsity parameter to the square
root of dimensionality,

√
D, to reduce the complexity of parameter search.

• MRPT is the complete algorithm that also utilizes the voting scheme from
section 3.2 to achieve a more strictly selected candidate set in order to reduce
the brute-force input size.

To choose the parameters for each method we use a grid search on the parameters
that the authors report as most important, in combination with default values where

12http://www.cs.ubc.ca/research/flann/
13https://falconn-lib.org
14http://www.kgraph.org
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applicable. For ANN, we vary the error bound ε, which controls the guaranteed
ratio of distances between the query point and the true and approximate nearest
neighbors. For FLANN’s hierarchical k-D tree algorithm we control the number of
trees used in the index structure, whereas for the k-means tree algorithm, where the
number of trees is always 1, we control the number of leaves chosen from that tree
(chosen from the tree similarly to our priority search strategy in section 3.3), and
the maximum number of iterations used in the recursive k-means clustering. The
optimal FALCONN index was searched by varying the number of hash tables and
functions (through the "number of hash bits" parameter) used in the index, and for
KGraph we try k-NN graphs of different degrees and varying values of the search
cost parameter. For our own algorithms, we vary the number of trees T , their depth
d, the voting parameter V and sparsity a. The voting parameter V was fixed to 1 for
(sparse) RP-trees, the sparsity parameter was fixed to a =

√
D for sparse RP-trees

and MRPT, and to a = 1 for RP-trees. Furthermore, we adjusted the ranges being
searched to each data set so that the best values are not close to the extreme values
tested. As an example, the parameters and ranges handled in the grid search for
the MNIST data are shown in table 3. More details on the parameter choices can
be found at the test suite’s GitHub page.15

In the grid search we build the index for each combination of parameters, and then
test the performance on a sample of 100 query points. This raises the concern,
whether the chosen parameters overfit to the set of query points that were used to
choose the best performing model. Due to this reason the real-life performance with
the parameters chosen via grid search may might be slightly lower that suggested
by the grid search process itself. The overfitting issue in the choice of approximate
NN algorithm tuning parameters requires further analysis, but is outside the scope
of this thesis.

4.3 Results

Figures 11, 12 and 13 show the comparison results for different values of k; 1, 10
and 100, respectively. The results are also listed in tables 4, 5 and 6 in appendix A.

Between different verisons of our own algorithms, we see that sparsity improves
performance especially when the dimensionality of the data is high. This is the case
with STL-10, Trevi and Random, with respective dimensionalities 9216, 4096 and

15https://github.com/ejaasaari/mrpt-comparison/
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Grid search parameters and ranges for MNIST

ALGORITHM PARAMETER RANGE TESTED

ANN error ε 1− 20.75

FLANN k-d trees trees 1− 32

FLANN k-means trees
branching 8− 256

iterations 15

FALCONN
hash tables 1− 200

number of hash bits 12− 18

KGraph
cost 1− 1600

graph degree k 1− 100

RP-trees

T (number of trees) 1 - 600
d (tree depth) 5 - 13
V (voting parameter) 1
a (sparsity) 1

Sparse RP-trees

T 1 - 600
d 5 - 13
V 1
a

√
D = 28

MRPT

T 10− 1000

d 5− 13

V 1− 100

a
√
D = 28

Table 3: The ranges of tuning parameters optimized in the grid search.

4096. For data sets of lower dimension, e.g. SIFT, the differences are minimal.
What really shines through though is the voting scheme; we achieve up to a 10-fold
speedup compared to the plain MRPT approach and a 5-fold speedup in several
occasions at the high (> 90%) recall levels.

MRPT also outperforms all other BSP-tree and hashing methods compared in six out
of seven data sets, with all values of k, with the SIFT data being the only exception
where FLANN’s BSP-algorithms seem to do a better job. It is important to notice
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that SIFT is also the lowest-dimensionality data set within the ones tested. Our
hypothesis is that the more efficient projection computations induced by sparsity
combined with the flexibility of a high number of independent RP-trees allows the
MRPT algorithm to thrive especially in the high-dimensionality scenario.

The KGraph library attains extremely fast queries for moderate recall, especially
for high values of k, and for recall levels below 90% it is the fastest method almost
consistently. However, in non-optimal problem settings its efficacy suffers dramati-
cally; For k = 1 the algorithm is slower than MRPT in most cases, and sometimes
its performance drops way below all BSP and hashing methods, see e.g. the k = 1

comparison for the Trevi data set in Fig. 11. Also when the query recall is increased
beyond 0.9 the query time starts to increase steeply, and for very high recall values
R > 95% MRPT is faster in a clear majority of cases. For extremely high recall,
above 99%, MRPT is the fastest method in all data sets for k = 1, in 6/7 data sets
for k = 10 and in 5/7 data sets for k = 100.

Overall, the results show admirable performance for MRPT – for high recall queries
it is the fastest method in most cases, and even for lower recall levels it is among
the fastest algorithms. The only notable exception was the lower-dimensional SIFT
data, where MRPT is consistently outperformed by KGraph and FLANN algo-
rithms.

5 Conclusion

We presented the novel MRPT index structure for fast approximate nearest neigh-
bor search. We started with a discussion on existing literature, and chose random
projection trees from the class of BSP data structures as the basis of our method.
We showed how to build an efficient index structure of multiple RP-trees, presented
a practical index construction algorithm, and several augmentations to existing work
to make our index structure practically viable.

The discussion on nearest neighbor queries using the MRPT index focused on al-
gorithmic details, which included a detailed analysis on the time and memory com-
plexities, and we found that our algorithm reaches the bounds that are commonly
required for approximate NN methods, most importantly linear index memory com-
plexity and sublinear query time. In addition to the common defeatist search strat-
egy we also showcased smart additions to the core idea, that utilize sparseness and
the frequency information inherent in the multiple tree approach for additional speed
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gains. Finally, we experimented with the addition of a priority search phase to the
algorithm, that was experimentally shown to offer no savings in computational time,
but is still beneficial to reach higher recall if memory is the limiting factor.

We also discussed the choice of the many tuning parameters that the proposed
method has. We observed that with the defeatist search strategy empirical evidence
suggests that balancing the computational time spent in tree traversal and the final
linear search within possible candidates yields an optimal depth for trees. The
derived optimal tree depth was shown to hold in an experimental setting.

To truly put the efficacy of our method to test, we also presented extensive compar-
isons between the MRPT algorithms and the leading competing approximate NN
libraries. These comparisons show, that MRPT is among the fastest, if not even
the fastest, algorithm for high-recall approximate nearest neighbor search in high
dimensions.

Still, the problem of approximate nearest neighbor search remains far from being
solved, and the open-ended research leaves a lot of directions for future work; The
probability bounds for the method’s success are only analyzed for 1-NN search and
were not extended to cover voting. Also our novel voting scheme is by no means
specific to the RP-tree setting, and would be an interesting addition to any other
BSP-method with sufficient randomness. Our library still misses some core features,
most importantly incremental updates to the index and auto-tuning of parameters,
both topics where also a lot of theoretic work still remains. The index structure
consisting of independent trees would also be ideal for a distributed implementation,
that would allow even larger data sets (i.e. big data) to be processed efficiently.
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Figure 11: Comparison results for k = 1.
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Figure 12: Comparison results for k = 10.
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Figure 13: Comparison results for k = 100.
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Table 4: Query times required to reach at least a given recall level for recall R = 80%,
90%, 95%, 99%, and for k = 1. Fastest times for each recall level are emphasized
with bold font.
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Table 5: Query times required to reach at least a given recall level for recall R
= 80%, 90%, 95%, 99%, and for k = 10. Fastest times for each recall level are
emphasized with bold font.
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1.76

0.68

22.15
0.90

14.77
18.73

3.84
1.49

0.38
4.01

2.81
1.06

0.95
21.67

21.46
5.83

2.06
1.24

5.53
3.78

1.5
0.99

23.81
25.42

-
4.21

-
8.93

7.02
2.97

ST
L
-10

0.80
36.1

22.89
7.55

3.44
-

8.99
6.11

2.06

49.43
0.90

47.02
29.74

13.95
5.04

0.61
13.05

9.75
3.5

0.95
53.24

36.67
21.54

6.4
1.94

17.62
13.55

4.94
0.99

59.13
47.34

42.75
9.39

-
25.84

22.26
9.19

R
andom

0.80
24.0

11.44
12.11

10.05
7.99

9.29
8.32

5.6

10.9
0.90

27.53
12.51

13.95
11.87

10.23
10.25

9.81
8.39

0.95
29.31

14.4
14.51

12.86
10.89

11.02
10.66

9.15
0.99

30.76
17.64

15.37
13.79

12.24
11.61

11.5
11.32

Table 6: Query times required to reach at least a given recall level for recall R
= 80%, 90%, 95%, 99%, and for k = 100. Fastest times for each recall level are
emphasized with bold font.



B A simple implementation in Python

We have implemented the MRPT algorithms into an optimized library written in
C++, available at https://github.com/teemupitkanen/mrpt. Here we
present a simpler version written in Python, that implements the basic MRPT index
construction (section 2.4), the plain query (2.5), voting (section 3.2) and priority
search (section 3.3). This is meant for demonstrative purposes, and users looking
for efficiency should look into the C++ version that also offers bindings for use with
the Python language.

1 import numpy as np

2 from scipy.spatial.distance import cdist

3 from Queue import PriorityQueue, Empty

4

5

6 class MRPTIndex(object):

7

8 def __init__(self, data, d, T):

9 """

10 The initializer builds the MRPT index.

11 :param data: The data for which the index is built.

12 :param d: The depth of the RP-trees.

13 :param T: The number of trees used in the index.

14 """

15 self.N, self.D = data.shape

16 self.data, self.d, self.T = data, d, T

17 self.R = np.random.normal(size=(self.D, self.T*self.d))

18 self.R /= np.linalg.norm(self.R, axis=0) # Normalize columns

19 self.splits = np.zeros((T, d, 2**d))

20 self.M = []

21 P = np.dot(data, self.R)

22 for t in range(T):

23 prev_level = [np.arange(len(data))]

24 next_level = []

25 for i in range(self.d):

26 for j in range(len(prev_level)):

27 idxs = prev_level[j]

28 split = np.median(P[idxs, t*self.d + i])

29 self.splits[t, i, j] = split

30 next_level.append(idxs[P[idxs, t*self.d + i] < split])

31 next_level.append(idxs[P[idxs, t*self.d + i] >= split])

32 prev_level = next_level

33 next_level = []

34 self.M.append(prev_level)

35

36 def ann(self, q, k, V=1, B=0):

37 """

38 The MRPT approximate nearest neighbor query.

39 :param q: The query point

40 :param k: The number of neighbors being searched for

41 :param V: The number votes required for candidates

42 :param: b: The number of additional traversals in priority search



43 :return: The approximate neighbors.

44 """

45 # Prepare for search

46 votes = np.zeros(self.N)

47 p = np.dot(q, self.R)

48 pq = PriorityQueue()

49 for t in range(self.T):

50 pq.put((0, 0, t, 0))

51

52 # Priority search / defeatist search if b == 0

53 for iteration in range(self.T + B):

54 try:

55 priority, node, t, startlvl = pq.get(block=False)

56 for l in range(startlvl, self.d):

57 epsilon = p[t*self.d + l] - self.splits[t, l, node]

58 if epsilon < 0:

59 node *= 2

60 pq.put((priority + epsilon**2, node + 1, t, l+1))

61 else:

62 node = node*2 + 1

63 pq.put((priority + epsilon**2, node - 1, t, l+1))

64 votes[self.M[t][node]] += 1

65

66 except Empty:

67 print (’Priority queue is empty’)

68

69 # Choose candidate set, voting if V > 1

70 candidates = np.array([i for i in range(self.N) if votes[i] >= V])

71

72 # Brute-force linear search within candidates

73 return candidates[np.argsort(cdist([q], self.data[candidates])[0])[:k]]

C A note on performance guarantees of RP-trees in

NN search from [DS15]

Probably the most central theoretical result for the NN search performance of RP-
trees is the upper bound for the failure probability to retrieve the nearest neighbor
with a single RP-tree by Dasgupta and Sinha [DS15]. However, the RP-tree struc-
ture used in the proof is slightly different from the trees used in MRPT. Instead of
performing the recursive partitioning in tree construction at the median of the pro-
jections, they also randomize the choice of the split point, which is chosen uniformly
at random from the projections’ [1/4, 3/4] fractile interval. The authors state that
the heavy use of randomness is necessary to avoid being tripped up by pathologi-
cal data configurations. We have confirmed that a similar proof structure with the
median split and without any additional assumptions on the data set leads to the
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trivial upper bound 1. Nevertheless, we found a way to simplify a central formula
in Dasgupta and Sinha’s paper, that may prove useful in future work on RP theory.
The proof in [DS15] builds on the following result.

Lemma 4 (Dasgupta and Sinha [DS15]) Pick any q,x,y ∈ RD with ‖q−x‖ ≤
‖q− y‖. Pick a direction r uniformly at random from the unit sphere. The proba-
bility, over the choice of r, that y · r falls strictly between q · r and x · r is

1

π
arcsin

(
‖q− x‖
‖q− y‖

√
1− cos2((q− x)^(y − x))

)
,

where

cos((q− x)^(y − x)) =

(
(q− x) · (y − x)

‖q− x‖‖y − x‖

)
i.e. it is the cosine of the angle between vectors (q− x) and (y − x).

We found out that this result can be simplified to a form that has also a more
intuitive interpretation.

1

π
arcsin

(
‖q− x‖
‖q− y‖

√
1− cos2((q− x)^(y − x))

)
=

1

π
arcsin

(
‖q− x‖
‖q− y‖

sin((q− x)^(y − x))

)
= . . .

Now the law of sines states that for any triangle with sides A,B and C and the angles
opposite to those sides a, b and c, it holds that A/ sin(a) = B/ sin(b) = C/ sin(c).
This yields sin(b) = B

A
sin(a), and we place A = ‖q − x‖, B = ‖q − y‖ and C =

‖y − x‖.

. . . =
1

π
arcsin

(
‖q− x‖
‖q− y‖

‖q− y‖
‖q− x‖

sin((q− y)^(y − x))

)
=

1

π
arcsin (sin((q− y)^(y − x)))

=
(q− y)^(y − x)

π

=
1

π
arccos

(
(q− y) · (y − x)

‖q− y‖‖y − x‖

)
.

Thus, the probability is simply the angle between vectors q−y and y−x, normalized
to a probability by division by π. The lengths of the vectors do not affect the
probability.


