
Improving the testing of Pro�t Software's insurance policy

database system

Kristian Nordman

Helsinki November 13, 2016

MSc Thesis

UNIVERSITY OF HELSINKI

Department of Computer Science

Faculty of Science Department of Computer Science

Kristian Nordman

Improving the testing of Pro�t Software's insurance policy database system

Computer Science

MSc Thesis November 13, 2016 68 pages + 1 appendices

testing, test strategy, automated testing

Pro�t Software's Pro�t Life and Pension (PLP) is an investment insurance management system.

This means that PLP handles investment insurances from the moment they are sold to when

they eventually expire. For a system that handles money, it is important that it can be trusted.

Therefore, testing is a required part of PLP's development.

This thesis is an investigation into PLP's testing strategy. In this thesis we analyse PLP's current

testing strategy to �nd �aws and impediments. We then o�er improvement suggestions to the

identi�ed problem areas as well as suggest additions which we found could be bene�cial.

ACM Computing Classi�cation System (CCS):

General and reference → Evaluation

Software and its engineering → Software testing and debugging

Social and professional topics → Quality assurance

Tiedekunta � Fakultet � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Background 3

2.1 Investment insurances . 4

2.1.1 Insurances in general . 4

2.1.2 Savings insurances . 6

2.1.3 Pension insurances . 6

2.2 Database-centric Systems . 7

3 Testing in general 9

3.1 Costs and bene�ts . 9

3.2 Testing strategy . 10

3.3 Continuous integration . 11

3.4 White-box and black-box testing . 11

3.5 Test automation . 12

3.6 Controlled natural languages . 13

4 Testing levels 15

4.1 Unit testing . 16

4.1.1 Manual unit testing . 16

4.1.2 Automated unit testing . 17

4.1.3 Design . 18

4.1.4 Contract Driven Development 19

4.1.5 Mutation testing . 20

4.2 Integration testing . 21

4.2.1 Testing philosophies . 21

4.2.2 Integration test order . 23

4.3 End-to-end testing . 23

iii

4.3.1 Database testing . 24

4.3.2 Automated test case design 25

4.3.3 REST interface testing . 27

4.4 Testing pyramid . 29

4.5 Usability testing . 30

5 Metrics to support testing 31

5.1 GQM . 32

5.2 Coverage . 33

5.3 Ripple e�ect . 34

5.4 Testing adequacy . 35

5.4.1 White-box testing criteria . 36

5.4.2 Black-box testing criteria . 37

6 The tools and methods currently used in PLP testing 37

6.1 The Pro�t Life & Pension system . 38

6.2 Current testing strategy . 39

6.3 Goals . 39

6.4 Unit testing . 40

6.5 Integration testing . 40

6.6 Manual end-to-end testing . 41

6.7 Automated end-to-end testing . 42

6.8 Communication . 44

6.9 Testing tools . 44

6.9.1 Tools for automation testers 45

6.9.2 Tools for manual testers and business analysts 47

6.9.3 Tools for developers . 48

6.9.4 Tools for managers . 48

7 Suggested improvements 49

iv

7.1 Designing automated end-to-end tests 49

7.1.1 Decreasing execution time by design 50

7.1.2 Standardising tests . 53

7.1.3 Gherkin and page object use case study inside the company . 53

7.1.4 Test failure rates . 55

7.2 Debugging end-to-end tests . 55

7.3 Additional metrics . 56

7.3.1 Goals for testing . 56

7.3.2 Suggested metrics . 57

7.4 Inserting data directly into the database 57

7.5 Domain knowledge in automated testing 59

7.6 Unit testing . 60

7.7 Documenting the testing strategy . 61

8 Conclusions and future work 61

Appendices

1 Questionnaires

1

1 Introduction

The testing strategy de�nes how a product is tested. It explains when, where, how

and how much testing is to be done. In this thesis, we intend to evaluate and o�er

improvement suggestions for the testing strategy used in Pro�t Software Ltd.

Pro�t Software is a software company established in 1992. It provides insurers,

such as banks or insurance companies, software to manage their insurance sales and

existing insurance policies. Pro�t Software's main product is the Pro�t Life and

Pension (PLP), an investment insurance sales and management system: it allows its

users � the insurance company employees � to create new investment insurance

policies and manage old ones. An investment insurance policy generally lasts for at

least �ve years. For simplicity, we split them into two groups: savings and pension

insurances. Unlike a risk-insurance � where the insurance is taken in case of death,

injury or theft � savings and pension insurances are taken in case the insured lives

long enough to redeem possible pro�ts. Such insurances are usually provided by

banks and insurance companies. The insurances themselves are actually wrappers

containing multiple funds or stocks into which the insurance money is invested in.

However, the insurance wrapper means the policies follow a di�erent legislation

compared to investing directly into those funds or stocks.

The Finnish law has its own chapter on insurance policies. For this reason an insur-

ance policy has more rules to follow than standard contracts. For example, a pension

policy is a special insurance policy in which the payments may be mandatory but

the payout taxation is lower within certain limits. Creating a system which man-

ages these policies will therefore require knowledge of insurance law and insurance

mathematics in addition to the technical knowledge.

An insurance policy database system is a system which can manage insurance poli-

cies and store them in a database. The system becomes increasingly complex as

companies using the system invent new products to sell within the legal framework.

This is because new products may operate very di�erently to previous ones in terms

of mathematics, investment targets or even client types. While the Finnish insur-

ance law forbids discrimination, it allows some manoeuvrability. This means that

such a system needs customisation, i.e. it is tailored to each insurers needs.

We call a system like this a database-centric system: a system where the database

plays a signi�cant role and in which redesigning the database requires using an

automatic tool to move the data from the old database to the new database as

2

doing so manually would take too long or would cost too much. This de�nition

is ours and while other de�nitions of a database-centric system may exist, they

will likely di�er from ours. PLP's database may contain records on the order of

108. A database-centric system can be split into two parts: the database and the

application. The application contains all logic, user interfaces and any other pieces

of software involved in the system's usage. PLP, the system whose testing strategy

we are evaluating, is a database-centric system.

We have divided our goal of evaluating and o�ering improvement suggestions for

Pro�t Software's testing strategy into these three research questions:

Q1 Does the current testing strategy contain problem areas?

Q2 How could we improve those areas?

Q3 How could we add to the current testing strategy to make it more comprehen-

sive and more e�ective?

To achieve our goals and answer our research questions, we start by analysing the

current testing strategy to �nd factors impeding the testing process. We then pro-

ceed, with the help of scienti�c literature, to o�er possible solutions to the imped-

iments and additional methods, methodologies, metrics and processes which have

been shown to be bene�cial but are not yet included in Pro�t Software's testing

strategy. Out of all the possible solutions and additions, we have selected the ones

that were viable in terms of costs and would, therefore, be more likely to be imple-

mented. The general guideline for acceptable cost is that an improvement should

not require discarding the current tests but should rather build on them or improve

them.

In our analysis, we describe how testing is currently being done in Pro�t Software.

This includes all four types of testing currently being done: unit testing, integra-

tion testing, manual end-to-end testing and automated end-to-end testing. We go

through them all but will focus on automated end-to-end testing as it is the main

driving force behind this thesis. Also, we analyse the most common tools being used

by all those involved in testing.

The knowledge of the target system, PLP, comes from our own experience as automa-

tion testers and interviews of persons from these four groups: developers, business

analysts, manual testers and managers. During our nearly two years of experience

we have worked on several long term projects within the company and have gained

3

an understanding on how testing is done and how it di�ers on a project to project

basis.

Our research methods are interviews and a literature study. We did two types

of interviews: scheduled ones with preprepared questions and occasional hallway

discussions. For the scheduled interviews we selected one person from each of the

aforementioned groups, excluding manual testers. Each scheduled interviewee had

worked at the company for at least six months and were able to point out weaknesses

in the testing strategy.

Our goal is to evaluate the testing strategy and to provide useful feedback and

improvement suggestions across the board. We achieve this by providing a set of

improvements and providing a reasoning for them either by referencing a study or by

providing a motivation based on how the improvement has worked in practice within

Pro�t Software. The most important feature of our suggestions is that they somehow

improve the testing process. This is followed closely by their cost e�ectiveness. I.e.

their cost of implementation should be within reason compared to the bene�t they

provide.

The structure of this thesis is as follows: in section two, we will give background

information on the target system and the type of data it handles � investment

insurances. In section three, we will explain testing from a general point of view.

In section four, we will describe the four testing levels on which testing is being

done in Pro�t. In section �ve, we will describe a few metrics used in testing and

introduce a goal-driven method for selecting additional metrics. In section six, we

go through the current state of testing in Pro�t and point out any problem areas

we detect. In section seven, we will suggest improvements on the detected problem

areas and o�er additional methods which would improve testing. Finally, section

eight outlines future work and concludes.

2 Background

To better understand our case study, PLP, we will brie�y explain some concepts

behind the system. We will describe two basic types of investment insurances and

some of their behaviour. We will also de�ne the term database-centric system, which

describes PLP accurately enough to follow the eventual description of its current

testing tools and methods, and the improvements we intend to suggest to it.

4

We will begin by brie�y going through the two main types of investment insurances:

savings and pension. We will then de�ne � what we call � a database-centric

system, which is a group of systems that includes PLP.

2.1 Investment insurances

To fully appreciate the complexity that goes into making an insurance sales and

management system such as the PLP, one should have a basic understanding of

the laws and rules governing over the insurance sales. The Finnish law contains a

special section devoted entirely to insurances. It dictates how and to whom they

may be sold, as well as a framework within which insurance providers must operate.

Since insurance legislation is only in the role of background information, we will

only consider insurances from the point of view of the Finnish law.

Finanssivalvonta (FIVA) [17] watches over various companies, banks and others of-

fering investment, insurance, pension and credit services. It was founded in the

beginning of 2009 and is a conglomerate of Rahoitustarkastus and Vakuutusvalvon-

tavirasto. In short, its goal is to make sure the aforementioned services are not

abused and are generally safe. What this means is that an insurance company

shouldn't be allowed to give out insurances which it cannot reasonably cover. FIVA's

rights are de�ned in the Finnish law. Basically, for any institution providing afore-

mentioned services, FIVA may inspect any documents related to the operation of

the institution, issue warnings and noti�cations, and forbid a person from acting

within a company for a maximum of �ve years.

An insurance agreement is a special contract between the insurance company and

the policyholder. It is sometimes referred to as a policy and we will use policy and

agreement interchangeably.

2.1.1 Insurances in general

Insurances can be split into two categories: mandatory and voluntary insurances.

The focus of this thesis will be on the latter. Mandatory insurances are insurances

like car insurance. While you do not have to get a car insurance if you only own a car,

you are not allowed to drive it without one. Voluntary insurances are insurances

like savings insurances and a supplementary pension insurances. These kinds of

insurances are not required by the law but can be used to improve one's �nancial

status. Essentially they are both investments but they have a few crucial di�erences.

5

Simply put, a savings insurance is in fact an investment and is taxed as such, whereas

a supplementary pension insurance is more complicated and is governed by laws that

have changed over the years. This is re�ected in taxation so that money paid into

the insurance is taxed based on the regulations which applied at the time of the

payment; these are known as tax bases. This adds to the complexity of calculating

optimal insurance payouts. For example, a pension insurance policy may dictate that

its holder is paid ¿500 monthly. However, the policy contains savings in multiple

tax bases, say, in two. One of the tax bases, tax base A, allows payments up to

¿200 tax free, while the other one, tax base B, allows unlimited tax free payments.

To avoid paying taxes, the optimal plan is to take ¿200 from A and the remaining

¿300 from B until one of the tax bases is depleted. In reality this may become even

more complicated as more tax bases may be available and the total sum as well as

the outpayment amount can change throughout the outpayment period.

To make a distinction between payments made to the policy and to the policy's

bene�ciary, the former is called a premium and the latter a payment.

During the lifetime of an insurance, a policy can enter various states. How it tran-

sitions between these states are de�ned in the insurance policy. For example, if

enough premiums are paid, the policy becomes a paid-up policy which is still in

e�ect, cannot be cancelled by the insurance company and for which no additional

payments have to be made. Another example would be cancellation which can be

done by the customer at any time but as the insurance company is considered to be

the stronger party, it will have a harder time cancelling a policy; having no money

left in the policy is a good enough reason, for example.

Each insurance policy is a risk for the insurance company and, in fact, the business

model is built heavily on risk management and mitigation. For example, the insured

person may die and might end up costing money for the insurance company and the

investments themselves may behave unpredictably and can sometimes fall rapidly,

especially in the short term. To mitigate health risks the insurance company may

require a health declaration which may a�ect the agreement negatively or may cause

the agreement to be revoked altogether. In the absence of a crystal ball, the policies

tend to span many years as it mitigates the negative e�ects of sudden sharp drops

in investment rates, however, the mathematics and science behind these methods

are beyond the scope of this thesis.

6

2.1.2 Savings insurances

Savings insurances are essentially investments but which act like insurances from a

legal standpoint. For example, they generally have an insured person. Rather than

making a direct investment to speci�c funds or stocks, a savings insurance acts as a

wrapper around those funds and stocks. Ultimately, the money paid as premiums

into a savings insurance will actually end up invested in stocks or funds but since

the money is split between multiple targets, the investment isn't as heavily a�ected

if a single target loses value.

Payments made for savings insurances are not tax deductible but if the policyholder

and the insured are the same person, only the payment yield is taxed, i.e. the

payment is tax free up to how much the premiums were. Additionally, the contract

may hold any number of fees and clauses a�ecting the amount paid and to whom.

Some common clauses are what happens in the event of the insured person dying

or becoming unable to pay premiums. When this happens, the premiums may be

taken from collected pro�ts, the policy may end or it may be renegotiated.

To put it simply, a savings insurance is an insurance agreement between two par-

ties and as such can have any number of clauses and exceptions. However, since

investment companies can have thousands of clients, the agreements they o�er are

predetermined and give the policy taker limited room for negotiation. This brings

some order into the otherwise chaotic insurance agreement space.

2.1.3 Pension insurances

The purpose of pension insurances is to supplement the normal pension. It allows

a policy taker to invest money for a fairly low pro�t, low risk investment instead

of simply saving it. These insurances, as supplementary pension, have special laws

that apply to them. For example, usually the pension holder or bene�ciary will not

be able to get the money, invested into the policy, before the pension time begins;

with very few exceptions such as in case the insured person dies. The pension time

is de�ned in the policy and it has a minimum age which is determined by the law

and the insurance company. In addition, the premiums are mandatory. In return for

this, pension payments are tax free up to a certain threshold and pension premiums

are tax deductible up to a sum determined by the law.

The way pension time works is that pension payments are made out of what we will

call pools of money. Each pool has an associated tax base which determines the tax

7

free threshold. During the premium period, when a premium is paid, the money

goes to a pool associated with the current tax base, i.e. the tax base determined

by current legislation. When a new tax base is legislated, the old pool closes and

new payments will be made to the pool associated with the new tax base. When

pension time arrives, the bene�ciary may choose from which tax bases they wish

to take the money from. For example, if the determined pension is ¿500 and the

policy has money in tax bases A, B and C with tax free thresholds at ¿50, ¿100

and unlimited, respectively; the bene�ciary may choose to take ¿50 from A, ¿100

from B and ¿350 from C for a total of ¿500 and thus avoiding taxes.

Mandatory, tax deductible premiums and tax bases are the biggest di�erences be-

tween an insurance savings policy and a pension insurance policy. However, beyond

that they are very similar and equally modular yet often predetermined.

2.2 Database-centric Systems

We de�ne the term Database-centric System(DCS) as a system where the database

plays a signi�cant role and cannot be redesigned without using an automated tool to

move the data from the old database to the new one. In other words, the data within

the database cannot be discarded if the database is redesigned and the database

contains enough records that it would be infeasible to manually copy it. Other

examples of such systems would be Facebook [15], Twitter [54] and Reddit [27]. A

common feature for all the aforementioned systems is that they all provide multiple

interfaces to a single large database. Our de�nition of a DCS is not exact and

one must use discretion when deciding if a system contains database in such an

important role. However, it is accurate enough for our purposes.

While various architectures exist, usually a database-centric system has at least

three parts: the interface layer, business layer and the database itself as shown in

Figure 1. The interface layer may consist of multiple user interfaces, usually tailored

for speci�c devices such as tablets, phones or desktop computers. They may also be

targeted towards di�erent audiences. For example, a bank's system may provide a

desktop interface for its employees to create applications and transfer money, and a

phone interface for clients where they can check their balance or investments. Both

types of interfaces connect through the business layer into the database but the

client interface has restrictions to prevent theft and to stop clients from accidentally

breaking the system.

8

Figure 1: A simple database-centric system

The business layer contains most of the program logic and does most of the work. For

example, if an employee wishes to create a loan application for a client, the business

layer routines gather relevant information, such as the client's credit rating, and

in some cases might even make the decision automatically, e.g. the client has not

been paying back previous loans: in such situations the bank usually re-negotiates

the loan and a higher level user might be required to accept such a loan. The

business layer connects the user interfaces into the database through APIs. The

UI API may be split into multiple APIs for each user interface. The database API

serves to merely provide easier access to the database and to allow switching the

database without touching the business layer code. An example of an architecture

for a database API is the Data Access Object (DAO) [41]. A DAO wraps queries

and responses into objects which are usually easier to manage than raw strings or

tables.

The database layer is the heart of database-centric systems and is shared by all users

of the system. By database we don't necessarily mean a single computer running

software such as Oracle [42] or IBM DB2 [24], but rather that the layer provides

a service, which from the point of view of the business layer, looks like a single

database � even though, in reality, it may be distributed.

9

3 Testing in general

In pro�t-driven software engineering, testing is a tool used to mitigate the amount

of development work needed by detecting bugs early. Testing often manifests itself

as unit tests, integration tests, end-to-end tests, etc.; which help identifying bugs

by detecting failures in the program execution. Unfortunately, completely bug free

software is generally thought of as a myth rather than reality and testing can only tell

so much about a piece of software, but even so, testing can help software development

by detecting bugs early in the development cycle, hopefully before production.

In this chapter we will provide a motivation for a company to invest in testing as it

has been shown to improve quality and in doing so, saving money in the long run.

We will then introduce the concept of testing strategy � what it means and how it

manifests itself. Then, we will introduce the concept of continuous integration along

with a study showing its bene�ts. After that, we explain white-box and black-box

testing. Next, we will provide motivation for test automation in general as opposed

to pure manual testing. Finally, we will introduce controlled natural languages,

which provides a more formal way to de�ne the language used in creating automated

tests.

3.1 Costs and bene�ts

Finances are somewhat of a lifeline for all for-pro�t companies and projects, and as

such testing is something that will be in the books. Therefore, for a company to

have any motivation to test their software, there has to be a monetary incentive.

I.e. any decisions made should directly or indirectly increase the company's value.

This incentive can come from comparing the cost of testing to the cost of having a

bug end up in production. Slaughter et al. have de�ned the cost of quality [49].

The cost of quality can be further broken down into two main types: conformance

and non-conformance [49]. They break conformance down to prevention and ap-

praisal. Prevention contains the cost of preventing bugs before they happen, for

example, by training the sta�. Appraisal contains the cost of evaluating and audit-

ing the software. This include, for example, testing. The price of non-conformance

includes the costs when something goes wrong. These costs are made up of internal

failures, i.e. within the developer company, and external failures, i.e. in the client

company.

10

Slaughter et al conducted a study where they tracked the costs of quality in a big

company currently improving its development processes and thus, raising its confor-

mance costs.[49]. The results show that the overall quality costs went down while

having the greatest e�ect on development, management, operations and quality as-

surance. They found that conformance costs didn't change much throughout the

project, possibly due to the company having to keep certain processes in place [49].

They concluded that the project bene�ted the most from quality improvements at

its early stages and that the rest of the project bene�ted from these improvements,

that is, the cost of quality assurance at later stages was lower than what it would

have been had they not made the improvements early on. They deduced that mak-

ing larger investments into quality towards the end of the project would not be

advisable. The results and conclusions they made seem to suggest that development

models, which leave all testing to the end of the project, may not be as cost e�ective

as one would hope. An estimate made by Masticola [37] supports investing in risk

management which includes bug prevention.

3.2 Testing strategy

Testing strategy is a high level guide for testing. It should include any roles involved

in testing, the environments, the objectives, the standards and technologies, and

other resources needed for testing. Having studied it, testers should know what

they are supposed to test, how they will do it, when they will do it and how much

is enough.

The purpose of a testing strategy is to work as a framework so all testing is done

in a predictable manner. This is especially helpful in a project involving multiple

testers since everyone will know their roles and responsibilities which helps avoid

overlapping work. Such a large project will also bene�t from documenting which

technologies and standards are to be used as it allows a tester to design and im-

plement homogeneous tests which can easily be understood by the other testers as

well.

While the purpose of similar high level documents is that they shouldn't change too

often, a testing strategy should not be set in stone. It has such an important role in

testing that if a problem is discovered, it should be possible to change the strategy.

However, a change should be accompanied by a reasoning and a plan.

11

3.3 Continuous integration

Continuous integration(CI) is a concept, often attributed to Martin Fowler [18].

Various tools such as Jenkins [10] or Gitlab CI [26] exist for this very purpose.

While the tools may vary in their capabilities the idea behind them is the same:

at certain speci�ed intervals � be it a change in the code, a certain duration or

a manual trigger � all source code related to a module or a project is compiled,

deployed and tested. This allows for automatic and manual execution of end-to-end

tests.

The use of CI results in increased productivity without compromising quality ac-

cording to a study conducted by Vasilescu et.al [55]. Their study included 246

GitHub [25] projects which at some point had adopted the Travis-CI functional-

ity into their development process. The study concluded that the adoption of CI

showed an increase in accepted pull requests and a decrease rejected pull request by

non-core developers. They also noticed that the amount of bugs discovered by the

core developers increased while user reported bugs did not, meaning CI likely helped

developers discover more defects while having no negative e�ect on user experience.

A core developer is a developer working in the project and has the ability to merge

or reject pull requests.

3.4 White-box and black-box testing

White, clear or glass box testing means that the tests are being implemented and/or

designed by a person with knowledge of the source code being tested � usually a

developer. In essence this is the case for unit tests and integration tests in Pro�t.

One advantage in this approach is that the tester can test things that are only

apparent to the developer. For example, if the tester has knowledge of the execu-

tion paths, they could potentially create a test which is unintuitive but has a very

large coverage. A disadvantage is that in this approach the tests may not detect

misinterpretation of the speci�cation since the tester is likely the developer as well.

In black box testing the tester does not know how the underlying program works,

i.e. the system is a black box. In this type of testing, the tests are created based on

speci�cations. In Pro�t, this is the path usually taken in end-to-end tests.

12

3.5 Test automation

In terms of test execution, tests can be split into two types: manual and automated.

Manual testing is where a tester, a person, is given a task to test a speci�c feature. It

could mean modifying a program to force a certain execution path or, in the context

of acceptance testing, using the interface to achieve a certain goal; for example, add

a book into a library database using the provided software. An automated test aims

to accomplish the same task but is executed by a computer rather than a person.

An automated test is like a program, executing one instruction after another, but

aiming to be simple enough as to not require itself to be tested. It is immediately

clear that creating an automated test is slower than doing one manual test. However,

automated testing starts to show bene�ts over manual testing as time passes and

automated tests are executed repeatedly [32].

To �nd out if automation has any tangible advantages over manual testing, Karhu

et.al conducted an empirical study [32] by interviewing managers, developers and

testers on the subject of test automation. According to the study, the biggest

perceived advantage in test automation was increased test coverage as more testing

could be done in a shorter time. While the main disadvantage was the costs involved

in implementation, maintenance and employee training.

Not all products are equal when it comes to test automation; generic products seem

to be favoured over customised ones [32]. This observation would indicate that

products which are either entirely generic or share generic parts with their sibling

products, would bene�t from adapting test automation. On the other hand, a mostly

custom product may never break even in the price/performance ratio.

Test automation e�ciency is also a�ected by the need for human involvement[32].

This was especially apparent in customised systems requiring domain knowledge as

testers would have to put themselves in the end-user's position. Even if automating

such a test would be technically doable, it would still require training the automation

engineer so she would have the necessary domain knowledge.

A system's technological infrastructure can also threaten to make tests obsolete,

should it change often or quickly [32]. Such a behaviour would drive up the main-

tenance costs and may dissuade projects with a volatile technology stack from im-

plementing automated testing.

The �nal observation made was that test system reusability facilitates automa-

tion[32]. As in many programming languages, this is e�ectively the same as building

13

libraries that can be re-used in multiple parts of a project or possibly in multiple

projects. Much like those libraries, setting up an automated system takes e�ort and

is expensive, compared to a manual system.

With the observations gained from the study, one can conclude that test automation

provides quality through better testing coverage and the ability to test more in less

time but human involvement is necessary [32]. The main disadvantage is the cost

involving implementation, maintenance and training [32]. There is also, a link be-

tween implementation and maintenance cost: bigger investment in implementation

reduced maintenance costs [32].

3.6 Controlled natural languages

Domain Speci�c Languages are a set of languages constructed to help solve problems

in a speci�c problem domain. Many of these languages do not necessarily have a

name as they are created within organisations for a speci�c purpose and are never

meant to be released for outside use. In fact, to support this kind of behaviour some

programming languages, such as Scala [14], support DSLs. A subset of DSLs is

known as Controlled Natural Languages (CNL); a set of languages that attempt to

�nd the middle ground between formal languages, such as Prolog or C, and natural

languages such as English or Finnish.

The concept of CNLs has been around since the 1930's [33]. Basically, a CNL is

a language that is technical enough for a computer to process and yet expressive

enough for non-technical people to understand it. That is, the language has strict

rules � or grammar � which can be parsed easily by a computer yet allow enough

freedom to mimic natural languages. A survey was done by Tobias Kuhn [33] where

he listed 100 languages and classi�ed them based on Precision, Expressiveness, Nat-

uralness and Simplicity forming, what he called, the PENS classi�cation system.

Since many languages exist and not all of them could be described as a CNL, a more

precise de�nition is required. The de�nition provided by Kuhn has four requirements

that must be met before a language can be considered a CNL. First, a language must

be based on only one natural language. Second, it must be more restrictive than the

language it is based on in terms of lexicon, syntax and/or semantics. Third, it must

preserve most of the natural properties of its base language, i.e. native speakers

should be able to understand its words and sentence like structures, even if they

wouldn't understand the context. Fourth, it must be a constructed language, de-

14

signed and not the product of a natural process, e.g. slang. While these de�nitions,

especially second and third, are a bit vague, they are accurate enough to exclude

languages such as Esperanto and common formal languages. However, ultimately,

since a CNL is a language that should feel like a natural language, it is left for the

reader to decide where the grey area is and which languages should be considered a

CNL. For example, Kuhn has decided to exclude �ctional languages such as George

Orwell's 1984 newspeak, although it would technically �ll the requirements.

Each property, of the PENS system, is ranked between 1 and 5. Precision means

the language's ability to accurately convey messages. Natural languages are very

imprecise since they require a lot of context information to deduce the real meaning

and would rank at P1, whereas formal and fully speci�ed languages would rank

P5. Expressiveness means a languages ability to describe things. Natural languages

can describe anything that can be communicated between two people and therefore

rank E5, whereas E1 would include propositional logic which can be used to portray

simple binary relations. Naturalness is the measure of how much a language looks

like a natural language. Natural languages rank at N5 and languages such as ones

that use a lot of symbols or unnatural keywords, such as the programming language

Whitespace, rank at N1. Simplicity measures the ability to describe a language

using rules and de�nitions. Natural languages cannot be described in this manner

in a reasonable time and rank at S1. A language that can be described completely

in 700 or less words would rank at S5. Kuhn's classi�cation system also has nine

additional properties describing the language's goals, method of communication and

origin. However, these properties end up describing the environment more than that

actual language itself.

In addition to the classi�cation system, Kuhn evaluated whether CNLs actually

provide bene�t to their users. That is, do CNLs achieve the goal they were created

for. The evaluation is done by answering the following three research questions

which describe the goals of a CNL:

� (C) Does a CNL make communication among humans more precise and more

e�ective?

� (T) Does a CNL reduce overall translation costs at a given level of quality?

� (F) Does a CNL make it easier for people to use and understand logic for-

malisms?

He concluded, through multiple conducted studies, that CNLs can be bene�cial.

15

However, he notes that their usefulness depends on the problem domain and should

therefore be evaluated before adapting one. Our interest lies mostly in Behaviour

Driver Development (BDD) and Gherkin, and their suitability for describing tests.

Therefore, we are interested in C and F. We will describe BDD and Gherkin more

closely in chapter 4.3.2; for now it is enough to know that BDD is a development

style derived from test driven development and uses Gherkin � a CNL� to describe

use cases.

The creator of BDD, Dan North, de�nes one of goals of BDD to improve the com-

munication between testers, developers and analysts [40]. With this in mind, we

believe that BDD at least attempts to reach the goal C. However, we could not �nd

any studies about BDD where communication would have been the main goal.

Hoisl et.al conducted a study [22] involving 20 software professionals where the par-

ticipants were tasked with evaluating di�erent types of notations based on a number

of dimensions such as clarity and scalability. The study concluded that controlled

natural languages are recommended for scenario based testing. The notation types

in the study were: Gherkin, UML sequence diagrams and Epsilon. Gherkin was the

favoured choice and a CNL. UML sequence diagrams describe how the control �ow

moves between the tester and the various components of the program being tested.

Epsilon is a fully structured language, like Java. The results of the study seem to

indicate that Gherkin was easier to understand than the other two notations. This

leads us to believe that Gherkin does indeed make it easier for people to use and

understand logic formalisms (F).

4 Testing levels

A common way to split testing is to separate it into levels. We have divided it into

four levels: unit testing, integration testing, end-to-end testing and usability testing.

We will take a look at each of them but only to the extent we deem necessary to

explain PLP's current testing strategy and the improvements, later on.

We will go through the topics from the bottom up. Meaning that we start from the

low level unit tests, go through integration testing and end-to-end testing. We will

then introduce the testing pyramid which shows how the tests should be distributed.

Finally, we cover usability testing. Most of our focus will be on unit testing and

end-to-end testing as they are the most used form of testing in Pro�t.

16

4.1 Unit testing

Unit testing is the practice of testing the smallest testable piece of software. This

small piece of software, a unit, could be a class, a function or a complicated al-

gorithm, however, there is no clearly de�ned unit and it could envelop the entire

program, e.g. a hello world! program. Unit testing can be done manually or auto-

matically.

Manual unit testing is a practice that often happens during development. Usually it

involves the developer forcing a certain execution path or manually setting variables

and parameters to achieve a particular state. Because these changes are momentary

and only made by the developer to herself, these tests are lost after they have served

their purpose. These tests represent lost potential regression tests and could possibly

provide a decent basis for regression testing [34].

In automated unit testing, the tests are not as integrated into the coding process

as they are in manual unit testing; instead they are designed separately. This

separation, while demotivating for a developer as it takes more time to implement

features [34], does in general improve the software's quality [12, 29, 57]. Since it

is important to keep the developers motivated, a lot of research goes into �nding

out how to make unit testing a more tolerable exercise. Eventually, some research

endeavours achieve concrete results as popular unit testing frameworks adopt their

proposed processes and methods.

Unit tests are the most common type of test. They are usually made by the devel-

opers as they write new code. Unit tests are usually very fast to execute and are run

frequently during the program's development. Unit tests are meant to catch errors

in a method's logic but not its interaction with other components. For example,

a component may be developed using Java 8 but the rest of the components using

Java 7. This could lead to a situation where the �nal software cannot be run on

neither Java 7 nor 8.

4.1.1 Manual unit testing

Manual unit testing is ad-hoc testing where test cases appear and disappear very

quickly while seamlessly integrating into the coding process. Very few studies have

been conducted on manual unit testing, possibly due to its bohemian nature, its

coupling with coding and simply because executing unit tests manually after each

code change would take too much time. As a result, any guidelines or methodologies

17

are hidden within coding guides and unit testing guides � which cover automated

unit tests. However, manual unit testing has been compared to randomly generated

unit tests [44] and the results seem to indicate that the randomly generated unit

tests support manual unit testing by detecting defects not found by manual testing.

Ramler et.al. predicted, based on the results, that the random tests may su�er from

diminishing returns as tester learn from the random tests' results [44]. The study

used a system resembling a legacy system, i.e. an outdated system whose original

developers are quite often unavailable.

4.1.2 Automated unit testing

Since unit tests are small and abundant in a software project, automated unit testing

is much more e�cient than manual unit testing at providing regression coverage.

Unit tests are almost always written by developers and are therefore white-box

tests. They let the developers prove that a particular unit works as intended and,

when done simultaneously with coding, support the development.

Unit tests are often built on top of existing frameworks such as JUnit [31] or CUnit

[13]. These frameworks provide reporting, input data factories, test tagging and

many other tools which allow developers to better understand test failures, avoid

duplicate code and control test execution. Frameworks will do all this and more

but come with a few caveats. Any framework comes with its limitations, be it the

inability to modify reports or decide the testing order, and in some cases they can

prevent the framework from being used. These limitations should be studied before-

hand, especially since adopting a framework takes time. While testing frameworks

may provide similar functionality, they do not do so in exactly the same way unless

the aim is to be backwards compatible as is the case with TestNG [4] which provides

most annotations of JUnit to allow for a smooth transition.

Due to the learning curve inherent in adopting a new testing framework, it is easier

to do with a new project [45]. Many projects are built on top of existing, possibly

completed projects which may already have their own obsolete unit testing frame-

works. If the new project is to have a new unit testing framework to go along with

it, the project management has three options: they keep the old framework and run

two frameworks side by side, they take the time to transfer the old tests into the

new framework or they simply discard the old tests altogether.

Having an old framework can have a few issues. An old, possibly deprecated, frame-

18

work might not have support from its original developers. If the testing framework

happens to be an open source project, the project management can hire developers

and provide the support themselves, however, the costs involved can be high de-

pending on the documentation, code clarity and the overall size of the framework.

Without support the framework can be left dead in the water and should it become

unusable in the future, the company using the framework will be forced to face the

original problem. However, assuming no new tests will be created using the old

framework, the management could simply let it be. The old framework and its tests

would continue to provide regression testing e�ectively postponing the need for any

decisions to a later date. This could be a valid option if the management simply

cannot a�ord the resources to migrate the tests but still want to keep the testing

coverage.

The amount of work required for transferring the tests to a new framework varies

wildly. For example, moving from JUnit to TestNG might be as simple as modify-

ing the con�guration �le and changing import sources. The group responsible for

TestNG also provides a plugin for Eclipse [52] which allows for nearly automatic

transition from JUnit. JUnit is in a peculiar position when it comes to Java testing

frameworks as it is very prevalent and is considered to be something of a lingua

franca of Java testing frameworks. For this reason many Java testing frameworks

support JUnit in one way or another. However, if the new testing framework uses a

DSL exclusively, porting may require rewriting the test cases completely.

The last option is to simply discard the old framework along with the tests it sup-

ported. This is quick and easy but might be costly should the old system fail at

some point. Unit tests could help detect such a failure early. Discarding the old

tests may be a good option if the system itself will be decommissioned very soon.

That is, soon enough that no changes will be made to it. The system should remain

frozen in time until it is ended.

4.1.3 Design

Unit tests have at least two factors which guide their design: who and when. The

person responsible for unit test design is almost always the developer who wrote the

unit being tested. He knows best how the unit is supposed to work and is therefore

the most suitable person to verify its behaviour. However, there is an advantage

in having someone else design the tests as it brings another interpretation of the

unit's purpose to the table and could possibly detect a wrong interpretation of the

19

speci�cations. However, detecting speci�cation misinterpretations should also be

the responsibility of a code review.

The design process for unit tests varies depending on if they were made before,

during or after the development. When made before, the tests are made based on

speci�cations and either on top of mock methods and functions or as a speci�cation

for a test. Creating unit tests before the actual program code is also know as Test

Driven Development (TDD). TDD has been shown to work [5] but only if it is given

the extra time it requires. Also, TDD is not a silver bullet and should be evaluated

for each project separately [46].

Designing tests during the development is a more relaxed form of TDD. In pure

TDD tests are always done �rst but a developer may wish to focus on the tests

separately rather than as a part of the development process. Like in TDD, the

developer still has a fairly good understanding of the unit's behaviour and can

therefore design the tests e�ciently. A downside is that the tests are more likely

to be implementation driven rather than speci�cation driven and will reinforce the

developer's interpretation of the speci�cation, irrespective of whether it is correct

or not.

Sometimes, a developer might create unit tests once a signi�cant amount of time

has passed since they worked on the unit. When this happens, the developer may

not remember exactly how the unit is supposed to work so verifying its behaviour

with tests will take additional time as the developer has to analyse the unit �rst.

Additionally, if someone modi�es the unit, they have no way to verify their changes

beyond their own intuition.

4.1.4 Contract Driven Development

According to a study conducted by Leitner et.al [34], unit testing is viewed by

many developers as arduous, time consuming and boring. However, the same study

found out that developers also believe unit testing to be useful. To combat these

issues and make unit testing easier they introduce a concept called Contract Driven

Development (CDD) and a software tool called Cdd. While the software tool was

developed for Ei�el [50], the concept is applicable to any language or style which

can provide contracts [43].

The basic idea behind CDD is that test cases are created automatically. Although

such tools already exist, Leitner et.al recognise three main problems with them:

20

� Automated tests are not very good at adapting to changes and they will not

spot errors they were not meant to catch, i.e. an automated test lacks the

insight of a developer.

� Assuming there are no accurate speci�cation tools, an automated test gener-

ator cannot distinguish between meaningful and meaningless input data.

� Measuring test set e�ectiveness is done using meters such as branch coverage

or number of bugs found, but picking the right meter can be di�cult for an

automated tool.

CDD looks to overcome these shortcomings by tapping into a resource not used

by frameworks such as Junit [31]: the implicit tests created by developers during

development. As developers develop a new feature, they often create short tests that

only exist for a little while. These tests are simple, require no maintenance and are

often just small variations of each other. The fact that they require no maintenance

and are easy to make, are probably the reason why developers use them [34]. There

are two main methods how the tests are created: by a developer providing the right

input or by changing parts of the program to force a speci�c execution path [34].

By monitoring these two changes, a CDD enabled system could extract tests from

these implicit tests to create a reasonably e�ective regression test base [34].

4.1.5 Mutation testing

In short, mutation testing is a method for checking how well your existing test set

can detect errors in the code, i.e. it is a method for testing tests. The idea is that

you introduce mutations into the program's source code. These mutations include,

but are not limited to, changing operators (+, -, *, /) to other operators, possibly

changing parameters to di�erent ones or removing a line of code altogether. However,

in order for mutation testing to be successful, the resulting mutant program should

still compile and should be syntactically correct. The idea is to produce errors

similar to those a developer might introduce.

Andrews et.al have written a paper concerning the viability of mutation testing [1].

In their paper they analysed if hand created faults and automatically generated

faults are representative of real faults. They concluded that not only are mutation

faults viable but may actually perform better than hand picked faults, as hand

picked faults tend to underestimate the test detection capabilities of a test suite.

21

4.2 Integration testing

Integration testing is where components are tested for interoperability. In terms

of scale it is broader than unit testing but narrower than end-to-end testing. Its

purpose is to take multiple components to form sensible groups and test those groups

and their interactions. A sensible group means a group of components that work

closely together. For example, a network component and an email component. When

choosing component groups, it helps to view the interactions as dependencies. In the

network-email example, the email component depends on the network component.

Integration testing has many philosophies by which the actual testing is done. Four

relatively famous ones are: top-down, bottom-up, big bang and sandwich. Solheim

et.al conducted a study [51] on which of these testing strategies produced the most

reliable systems.

On top of the general testing methodology or philosophy, one must consider the

testing order in which the various dependencies are tested, and the e�ort required

to simulate not yet implemented components, also known as mocking. The test-

ing order means picking the most fault prone dependencies and testing those since

testing all dependencies would be infeasible [6].

4.2.1 Testing philosophies

Integration testing philosophies help keep track of how much testing has been done

and how much is left to do. We will introduce top-down, bottom-up, big bang and

modi�ed sandwich philosophies brie�y and evaluate them based on Solheim's study

[51]. It is important to note that the study conducted by Solheim et.al used arti�cial

systems which are close to but not exactly like real systems in development [51].

In Figure 2 we have a simple architecture for a calculator. We will use this architec-

ture to visualise the di�erent testing strategies. In the example, each box represents

a collection of components which have been logically grouped together. The actual

components are not important, merely the groups they belong to.

Top-down

The top-down approach is one where the components are tested starting from the

highest level downwards � highest in terms of abstractions. This strategy involves

stubbing or mocking the lower level components. In our calculator example the

testing order would be: Calculator�(UI / Maths)�Functions.

22

Figure 2: Calculator architecture

A study [51] conducted by Solheim et.al concluded that a top-down approach is the

most of e�ective of the four in terms of defect correction. They also observed that

a top-down approach uses the greatest number of components. Another conclusion

was that top-down approach produces the most reliable systems.

Bottom-up

The opposite of the top-down approach is the bottom-up approach. Instead of start-

ing from the highest level components, the testing starts from the low level compo-

nents. In our calculator the testing order would be: Functions�(UI / Maths)�Calculator.

Solheim's study [51] determined that the bottom-up approach produces less reliable

systems than the other strategies, but they also note that it might be due to their

de�nition of reliability which emphasises the higher level components. They also

suggest that system height, the amount of layers it has, could have an e�ect on the

testing strategies' performance because bottom-up actually performed better than

big bang on a system with more layers.

Modi�ed sandwich

The modi�ed sandwich testing strategy is a combination of bottom-up and top-

down approaches. The idea is that each layer is tested separately starting from the

bottom and top. From there, testing advances towards the middle until the two

testing strategies meet, forming a sort of sandwich. Like the top-down approach,

subbing or mocking is used to test the top level. In our example the testing order

would be: Calculator�(UI / Maths)�Functions.

23

Solheim's et.al study [51] observed that a sandwich testing strategy yields moder-

ately reliable systems.

big bang

In essence, the big bang approach is where integration testing is done once all the

components are ready. All the components are brought together to form a com-

plete system which is then tested. This saves time during the development as no

integration testing needs to be done until at the very end.

According to Solheim's et.al study [51] the big bang approach produces reliable

systems, much like the top-down approach.

4.2.2 Integration test order

Since testing every possible dependency between each component would require too

many resources, it is important to decide on a testing order [6]. The testing order

describes the order in which each dependency is tested. Two important things to

consider in the test order is the importance of a given dependency and the amount

of simulation of un�nished components the testing would take [6].

By only considering the simulation e�ort, one could come up with an optimal testing

order. However, this approach may devote time to less important dependencies and

leave important ones untested. Borner et.al examined some of these approaches [6]

and added testing focus as a factor. They concluded that two heuristic algorithms,

simulated annealing and a genetic algorithm, faired best when considering test focus

and simulation e�ort [6].

4.3 End-to-end testing

A system can be described as a set speci�cations. Once all the functionality in

a speci�cation has been implemented, it can be tested as a whole. This is what

end-to-end testing is: testing a part of a system so all the required components

are available and complete, instead of being replaced by mock interfaces. However,

sometimes mocks are unavoidable if, for example, the system requires a service that

is not available during testing.

24

4.3.1 Database testing

Database data consistency

When conducting system testing, usually the user interface is tested. However, the

underlying database should be tested as well. Database applications can damage

the data inside the database, namely, actions which alter, delete or create records

can cause data corruption or simply store valid but nonsensical data. Setiadi and

Man have created a model [47] with which databases can be tested using special

consistency rules. These rules are derived from speci�cations and can be executed

as tests.

The main mechanic of their model is to look for inconsistencies. The tests to detect

inconsistencies are created in three steps: rule extraction, rule translation and query

execution. In rule extraction the designer goes through the speci�cation and the

business rules to �nd de�nitions for what is considered valid data and in what state

should the database be after each operation. This step is done manually and is error

prone [47].

The basic idea is to create consistency rules that are built from three parts: rule

domain, domain rule and rule formula. The rule domain represents the dataset that

the rule applies to, for example, a table or multiple tables joined together. The

domain rule speci�es where in the dataset this rule is appropriate, for example in

an SQL query, it could be the where statement: select * from students WHERE

average_grade > 3. Finally the rule formula speci�es what is being tested, e.g.

age > 21. As an example: a speci�cation of an animal registry de�nes that there

should be no ponies whom are older than 10 years old. The rule domain is the table

animals, the domain rule is that the column species should be a pony and the rule

formula is that the age column should be less than 11. These are the combined into

After-State Database Testing (ASDT) rules which have a strict form. From here

their ASDT tool can transform the rules into ASDT queries, which are just SQL

queries in the form SELECT * FROM domain WHERE (domain conditions) AND

-(rule formula) [47].

Setiadi and Man conducted an empirical study of this model [48]. The study was

done on an example "Employees Sample Database" provided by Oracle's MySQL

[11]. The database has 6 tables and 4 million records. However, there is no speci�-

cation available and therefore they made their own assumptions about the possible

business rules [48]. The study revealed two business rule violations and two issues

25

that could be violations but since no speci�cations were provided with the database,

the two issues could not be declared as violations. The empirical study shows that

ASDT is, in fact, capable of detecting inconsistencies. Irrespective of, a more in-

depth study and possibly comparisons to other methods are required to evaluate the

model's viability.

4.3.2 Automated test case design

A good test case is such that it covers as much as possible, is easy to maintain and

understand, and is quick to execute. Unfortunately, there is no single methodology

or process which when followed would always produce perfect test cases. Therefore,

most testers use guidelines, rules of thumb and intuition when trying to �gure out

how and where to focus their testing e�orts.

Designer

When a test involves a system that requires a lot of business knowledge, the de-

signer is usually a business analyst or equivalent. A business analyst can accurately

translate use cases and documentation into meaningful test cases. However, as it

is not always necessary for a business analyst to know programming, they may not

be well versed in creating maintainable tests. This is relevant because tests are like

small programs; they behave like programs: they can crash, have bugs and are made

up of source code. This means that creating maintainable tests is as important as

creating maintainable source code for any program.

Behaviour Driven Development (BDD) was �rst introduced by Dan North [39]. His

motivation was that the traditional Test Driven Development (TDD) was somewhat

confusing. From his experience he knew that developers weren't always sure what

was to be tested and what was not. For this reason he introduced BDD which is a

modi�cation over the original TDD rather than a completely new methodology.

The main di�erence between TDD and BDD is that BDD aims to bring developers,

business analysts and testers together and to create a common language using which

they can agree on feature requirements. In practice this usually manifests as Gherkin

which is a DSL and very close to a natural language with only a few reserved words.

The original BDD merely added a 'should' word to each test to better describe what

behaviour the test is verifying. What this means that instead of writing tests like:

public class addCustomerTest {

26

testAddCustomer() {...}

testAddDuplicateCustomer() {...}

}

The tests are transformed into:

public class addCustomerBehaviour {

shouldSucceedWhenAddingACustomer() {...}

shouldFailWhenAddingDuplicateCustomer() {...}

}

This is not quite the modern Gherkin keywords used in Cucumber [36] or Robot

Framework [19] but it still conveys the idea behind BDD: instead of testing for

inputs, we are testing behaviour. This level of abstraction distances the tests from

the actual source code making it more accessible for non-technical people.

Robot Framework

Robot Framework [19] (RF) is a testing framework which allows testers to write tests

so they mimic a natural language such as English. Writing tests like this has the

added bene�t of being readable by non-technical people as well. RF is primarily

used in acceptance and end-to-end testing and has built-in support for Gherkin. For

this reason, BDD behaviour scenarios double as RF test case descriptions so a tester

need not design the test case from the ground up but can focus on implementation

instead.

Tests in RF are contained within test suites; each suite containing one or more tests.

Each test is built from keywords which are essentially functions: they can have

parameters, a return value and can invoke other keywords. A keyword generally

does not have a state associated with it, however, it is possible.

Page objects

Page objects are a tool for test automation frameworks and programs which wish to

access a view in a program. The view can be anything that can be displayed on a

computer monitor. In our examples, all user interfaces will be made up of web pages

and so each view will be a page. The idea is to build an interface on top of each

web page or view which then provides access to the web page so the tests no longer

directly access the web page but use the interface instead. In the case of RF, page

objects can be written at least in Java, Python and as RF keywords. The e�ect of

27

page objects is that any maintenance attributed to UI changes will be moved from

test code to the page object code.

The role of page objects is shown in Figure 3. Our Java-like page object contains

methods which can access the user interface. The methods may, for example, use

Selenium to access a web page.

Figure 3: Page object's role

Leotta et.al conducted a case study [35] on the use of page objects and their e�ect

on test maintenance. The study was conducted in a single company by having

two versions of their test set: one built with page objects and one without. They

then proceeded to make changes to the program which would cause some elements

to be realigned or had their ID's changed so the automated tests would no longer

work. Leotta et.al would then measure the time and e�ort it took to �x the tests.

The results indicated that realigning the tests using the page objects pattern was

65.32% faster [35]. Peculiarly, the test showed lower productivity when using the

page object pattern and using the measurement Lines Of Code / Time. However,

this was attributed to testers copying and pasting solutions from one test to another

rather than real productivity. Based on the study, the page object pattern seems to

make automation testing more e�cient as less time is spent �xing broken tests.

4.3.3 REST interface testing

Interfaces allow chopping up a big system into smaller components and has the

advantage of allowing the use of external libraries. An interface may be anything

from a programming language speci�c feature, such as Java's interface classes, to a

simple text �le where two programs read and write messages from and to. We will

introduce here a fairly popular interface type that is used, also, in database-centric

systems: REST.

28

REST

The Representational State Transfer (REST) is an architectural style originally in-

troduced by Fielding et.al [16]. It was created to rede�ne the Hypertext Transfer

Protocol (HTTP) and the Universal Resource Identi�ers (URI) while still preserving

what made WWW so popular. In e�ect, REST places constraints on architectures

in an e�ort to minimise latency and network communication while allowing for in-

dependent components and scalability.

Structure

Originally REST was designed to provide an interface for a heterogeneous set of

devices exchanging various types of data, ranging from pictures to binary �les [16].

It was originally used in universities by scientists and researchers.

REST architectures are client-server architectures. The basic idea behind one is that

it maps identi�ers to resources and that it is stateless [16]. Being stateless, from the

server's point of view, means that each interaction consists of a single request and

a response, this provides several advantages [16]:

� No need to store state data.

� Since requests are made up of sequences, interactions can be parallel.

� Requests can be understood by an intermediary without causing excessive

latency.

� All information is present in each request and response allowing for easy

caching.

The server does not need to store state data. This frees up resources which might

otherwise be taken by an inactive client. It also mitigates a Denial of Service (DoS)

attack in which an attacker starts up sessions to hog all of the server's resources,

however, should the server operate on TCP it is still vulnerable against opening

TCP connections.

Since requests are self contained, interactions can be parallel. Quite often a client

wishes to make multiple requests in a sequence to achieve a goal. For example, in

order to get the names of every person in a group, a client might �rst have to ask a

group for person identi�ers � like keys in a database � and then request the name

of each person one by one. But from the point of view of the server, each of these

29

requests � for a group or a person � is not tied to any particular sequence and so

the server can handle any number of these requests at the same time.

Requests can be understood by an intermediary without causing excessive latency.

This is advantageous in an environment where messages are routed based on content.

If the request would be in a sequence, the intermediary would have to remember

any previous requests, possibly inde�nitely.

All information is present in each request and response allowing for easy caching.

The server can store responses to the most common requests and update them as

necessary saving processing time.

Contracts

To create a meaningful test, a speci�cation is required; a speci�cation which ade-

quately describes all the inputs, actions and outputs of a system. This speci�cation

is sometimes called a contract and it is created early on in the development process.

While agile methodologies allow and even promote change during development, an

interface contract is what keeps multiple modules, and thus the end product, in

coherence. For example, it is not uncommon for two interacting modules to be

developed by entirely di�erent teams.

RESTful API Modeling Language or RAML [56] allows developers to describe REST

interfaces in a manner which can easily be interpreted by programs. RAML is a

subset of YAML, a data serialisation language. It allows developers to list resource

paths, responses and payloads both ways, and a list of JSON or XML schemas

depicting the contents of the payloads. RAML speci�cations are readable by humans

and allow for meaningful testing of the REST APIs described. It is also possible

to automatically generate the REST APIs directly from a RAML so the testers can

focus on overall correctness rather than implementation details.

4.4 Testing pyramid

The testing pyramid is a model introduced by Cohn [9] shown in Figure 4. The

purpose of the pyramid is to divide di�erent types of tests into layers; each layer's

size then corresponds to the portion of all tests a particular type should take. The

idea behind the pyramid is that once the lower components have been properly

tested, the higher level components can be built on a solid foundation.

Starting from the bottom, the lowest layer represents tests for a single module, also

30

Figure 4: Test distribution pyramid

known as unit tests. These tests create the basis for a stable system [9]. As the

individual units get tested, it is easier to build a reliable system on top of them.

The assumption behind the testing pyramid is that all systems can be thought of

as a collection of services. The de�nition of a service is very broad; for example,

a library class or even a collection of services could be considered a service. This

means that the service layer of the pyramid contains all testing which is not unit

testing or UI testing.

The top layer, UI, should require the least amount of tests. The bene�t of UI testing

is that the system is tested as a whole, as if a user were using it. However, a UI

test is generally slower than a test which can invoke methods and functions, or even

just RESTful interfaces, directly. Other problems include higher response times

and the volatility of a representation, such as a UI, especially in the beginning of a

project. The result of excessive UI tests are extended built times which slow down

development.

4.5 Usability testing

The goal of usability testing is to �nd out how intuitive and satisfying the software

is. It should be done on actual users or people who can act as if they were a user. A

general rule of thumb is that the developer of a system cannot be a usability tester

since their vision of what is good UI design may di�er from the average user.

Some popular methods of usability testing are: remote usability testing, expert

31

review and A/B testing. Remote usability testing is required when the user and the

usability evaluators are far away from each other, for example in di�erent countries.

It involves setting up su�cient [53] monitoring systems such as a shared screen and

audio recording. Expert review means bringing in a company which specialises in

usability reviews. In A/B testing users are given two work�ows to accomplish the

same task. The feedback is then used to select the better option. Other methods

exist, for example the hallway testing method in which seemingly random people

are asked to participate in a usability test.

5 Metrics to support testing

A software metric is a tool used to measure di�erent aspects of software. They can

be used to show the e�ect a change has on the software being measured. Our interest

is in metrics which can show how testing a�ects software and metrics which can show

the testing itself is a�ected by changes in the testing strategy or the adoption of

new technologies, methods and methodologies.

The metrics we are going to use will be chosen with the aid of the Goal Question

Metric (GQM) [3] approach. The idea behind it is that: organisations have goals

and metrics should be used to help achieve those goals.

A popular metric is code coverage and its various forms. We will brie�y describe

them and provide a use for them. We will also show why it is not a su�cient metric

for measuring quality when used on its own.

To support code coverage, we will introduce the ripple e�ect in the context of Java.

The ripple e�ect allows an automatic tool to analyse which classes are most prone to

bugs by evaluating their connections to other classes. The basic idea behind it is that

when a class is changed, each class using it may produce a failure. Therefore, a class

with multiple connections is more likely to produce failures the more connections it

has.

With the help of code coverage, we will do a brief explanation on testing adequacy.

That is, how much testing is required until the test set is deemed adequate.

We will begin by brie�y describing GQM. It is followed by coverage where we will

go through a few common types of code coverage. Next, we will explain the ripple

e�ect which can be used to target testing. We will close o� this chapter with testing

adequacy.

32

5.1 GQM

Originally de�ned in NASA, the GQM approach allows organisations and projects

to �nd meaningful metrics to support their operation. Before it can be used, an

organisation should have set goals for its projects. For each goal, a set of questions

is derived. Questions, which when answered, should be enough to show if a goal has

been reached. The answers come in the form of metrics, measuring some aspects of

the project.

GQM is a hierarchical structure as displayed in Figure 5. At the very top are the

goals. They are themselves derived from the organisation's and/or project's goals

and should clearly de�ne the purpose of the measurement, the target object, target

issue and the viewpoint. The purpose of the measurement should describe what the

organisation or project is hoping to achieve. The target object is one of: products,

processes or resources. Target issue is the target object's property or a feature which

we wish to address in our goal. The �nal part of the goal is the viewpoint which

de�nes from which angle we look at the measurement. For example, the client or

the food taster. Once the goal has been de�ned, it is split into relevant questions.

Figure 5: GQM [3]

In Figure 5, the middle layer contains questions which, when answered, should clearly

indicate whether the goal has been reached or not. This means the questions should

at least describe the current situation and whether the project is moving towards

the goal. It is possible for multiple goals to have the same question, however, the

viewpoint will likely change the answers � metrics.

The bottom layer in Figure 5 contains the metrics. The metrics are chosen so they

provide answers to the middle layer questions. Each question may have multiple

metrics attached to it and a single metric can serve a partial answer to multiple

33

questions.

5.2 Coverage

Code coverage (or test coverage) is a metric for measuring how much of the source

code is being invoked by the test set. The main types are [38]: function, statement,

branch and condition. Function coverage tracks that each function or method is

called at least once. Statement coverage is more meticulous and tracks that each

statement has been executed at least once. Branch coverage means tracking that

each path branching o� of decisions is taken. For example, if-clauses redirect the

program execution depending on if it evaluates as true or false. Condition coverage

is a broader version of branch coverage: it tracks that every boolean sub-expression

is evaluated true and false each at least once. Code coverage is almost always tracked

automatically using tools such as Jacoco [23].

While measuring code coverage is a good way to �nd untested parts of the system,

it is not a good measurement of quality, nor is high coverage an indication of an

e�ective test suite [28]. This makes code coverage a somewhat deceptive metric as

it easy to conclude, that if a part of the code gets executed without failures then it

is bug free. However, it is easy to show that this may not be the case. For example,

take the following library function which, according to its documentation, calculates

the absolute distance between two numbers:

int difference(int a, int b) {

return b - a;

}

The program works �ne as long as b ≥ a but produces a negative number otherwise.

A single test, such as verifying that di�erence(1, 3) == 2 will result in a 100% code

coverage but will not �nd the failure induced when b < a.

To truly prove that a function is bug free, one would need to employ tests which

call the function with every possible input and compare the output to an expected

value, that is, 100% input coverage. However, even our simple di�erence function,

when assuming 32 bit signed integers, would require 262 tests; clearly infeasible.

Therefore, testers usually create tests where the input parameters form signi�cant

n-tuples. What this means is that there are input ranges for the parameters and all

tests with parameters in a speci�c range will likely pass or fail together.

34

In our example function, a and b range from −231 to 231−1. We are also aware that

a di�erence is calculated using subtraction; therefore, if a, b ∈ [−(231 − 1)

2
,
231 − 1

2
],

then any calculation using a and b will not over�ow. The absolute distance does

not have any special inputs to consider, such as division by zero. With this we

only need to consider the relative sizes of the parameters as long as they are within

the speci�ed range. Therefore, we only test a < b, a = b and a > b when a, b ∈

[−(231 − 1)

2
,
231 − 1

2
] to cover all the inputs in the range. Similar deductions can be

used to cover rest of the ranges but in practice there is no time to construct such

formalisms and testers need to rely on "rules of thumb": try the highest and lowest

value, try one above the highest and one below the lowest, and so on.

In conclusion, a high code coverage is not a good indicator for software quality. It

is possible that a correlation between input coverage and software quality exists,

however, this has not been studied well enough as of now. While code coverage

may not be a good indicator for quality, it can show which parts of the system go

untested and where more tests are potentially required.

5.3 Ripple e�ect

When a change is made to a class, any classes depending on that class may need to

adapt to the change which in turn may require changes in more classes; this is called

the ripple e�ect: how a change propagates through a system. We will examine it

from the perspective of a Java program.

From a testing perspective the interesting consequence of the ripple e�ect is that if

a class is prone to the ripple e�ect � i.e. it is tied to many classes � then the class

becomes a very likely source for bugs since changes to any of the classes it depends

on may a�ect its behaviour. Arvanitou et.al have proposed a method for measuring

the ripple e�ect: the Ripple E�ect Measure (REM) [2].

REM works by capturing the amount of dependencies of each class and the propa-

gation factor, unlike previous coupling metrics which do not take both into account

[2]. The propagation factor is a number x ∈ [0, 1], and describes a change's proba-

bility of propagating from the source class through a dependency into other classes.

A dependency is one of: generalisation, containment or association. Generalisation

represents a "is-a" relationship and is considered in three occasions: invocation of

the super method, accessing protected �elds and overriding abstract methods [2].

Containment represents a "has-a" relationship and means the use of a public in-

35

terface of the source class [2]. Association means the use of the source class as a

variable, parameter or a return type [2]. The formula for calculating REM (the

propagation factor) for the dependent class A and source class B is as follows [2]:

REMA(B) =
MC + P + PrA

M + At

MC The number of method calls made from the dependent class to the source class,

including the super method.

P If generalisation is being used, the number of protected methods in the source

class.

PrA If generalisation is being used, the number of protected attributes in the source

class.

M The number of all methods in the source class.

At The number of all attributes in the source class.

To calculate the propagation factor on a class level, one must take into account the

propagation factor P (Ai) for each pair (A,Bi), i ∈ N where A is the dependant class

and Bi is a source class. The way to do this is with the inclusion-exclusion principle:

P

(n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1

(∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩ Aik)

)
Once we have calculated the propagation factor for all classes, we can now focus

testing the classes which scored a high value. However, while the theory is sound,

there have been very few studies which would evaluate REM's e�ect on the quality

of the software. Also, when used in context of other languages, such as C++, one

needs to consider friend classes and methods, and similar functionalities [2].

5.4 Testing adequacy

Determining when enough testing has been done is no trivial task. However, a line

should be drawn somewhere lest testing costs go up to the point where �xing the

software afterwards becomes cheaper. Formally, the limit to testing is called test

adequacy criteria. Once the criteria is satis�ed, no additional testing is deemed

necessary.

Test adequacy criteria can be can be de�ned in many ways, including but not limited

to: detected faults, code coverage or use case coverage. We will introduce two types

36

of testing criteria: for high level black box testing and for low level white-box testing.

In black-box testing the tester does not know the underlying implementation and

will test based on given documentation which can be, for example, a use case or

a verbal description. In white-box testing, the tester is aware of the underlying

implementation. An example would be a developer creating unit tests for a unit he

has created.

5.4.1 White-box testing criteria

In 1975 in a book called The Mythical Man-Month [7] written by Brooks, he es-

timated that roughly 50% of development time in a software project is spent on

testing. This estimation still lives on as a rule of thumb for estimating development

time. In 1997 Hong Zhu et.al wrote a paper about testing adequacy [58]. In their

paper they present criteria for what is an adequate test and a test set. The �rst

thing they note is that there is no such method that could reveal all errors in a pro-

gram and that testing should instead aim for a reasonable goal. They present the

following criteria for testing coverage: statement coverage, branch coverage, path

coverage and mutation adequacy.

While we showed with a simple example why testing coverage can be misleading

in 5.2, it has been shown to be a decent indicator of test set quality. Speci�cally,

statement coverage [21] and branch coverage [20] have been shown to be of use.

However, Rahul Gopinath et.al [21] stated in their survey, that the other coverages

they examined � branch, path and block � seemed to also do well and may work

better depending on the project.

Another way to determine test set adequacy is by mutation adequacy. It is a well

studied topic and the tools have reached a mature state [30]. We covered mutation

testing in 4.1.5.

The conclusion we draw is that at least statement coverage, branch coverage and

mutation adequacy are decent indicators for test set quality, with the caveat that

forcing developers to up code coverage by any means necessary may lead to lazy

tests, which execute a lot of code but may not be very e�ective. In addition to

code coverage, one can employ mutation testing on the test set to measure the set's

adequacy.

37

5.4.2 Black-box testing criteria

Since a black-box tester has no knowledge of the underlying implementation, there is

very little motivation for coverage based test adequacy criteria. Instead, the tester

needs to rely on documentation which can vary depending on the project. One

way to use documentation to measure testing is to track which use cases have been

tested.

6 The tools and methods currently used in PLP

testing

In this chapter we will describe the current testing strategy of PLP. Our description

will be based on our experience as an automation tester with almost two years

of experience and on the knowledge gained through interviews and the occasional

discussion. In the company, there are �ve groups of people who actively engage in

testing: business analysts, manual testers, automation testers, developers and the

management. We interviewed members of the other four groups to gain insight on

how they participate in testing and how they �t into the testing strategy.

We had separately scheduled interviews with a business analyst, a developer and a

manager. We did not schedule a separate interview with a manual tester as business

analysts use the same tools and methods when testing. The interviewees had been

on the company for at least six months and had experience from previous, similar

occupations from other companies. We selected them so they could explain the tools

they need to participate in the testing process and would have improvement sugges-

tions or could point out weaknesses in the current testing strategy. The scheduled

interviews had a set of prepared questions which are included in appendix 1, but

we allowed the interview to �ow when the interviewees brought up ideas and points

of view we did not consider when making the questions. We recorded the interview

with a microphone and by taking notes and then afterwards extracted the tools the

interviewees used, the problems they pointed out and the improvement suggestions

they had, and included them in our analysis and improvement suggestions.

Our description of the testing strategy begins by describing our target system, PLP.

We will follow that with a brief description of the current testing strategy. Next,

we will examine the goals set on testing by Pro�t. After that, we will describe

how testing is done currently by describing unit testing, integration testing, manual

38

end-to-end testing and automated end-to-end testing. Next, we will describe how

communication plays into testing as a whole. Finally, we will describe the most

common tools used by people involved in testing.

6.1 The Pro�t Life & Pension system

Pro�t Software is a software company providing insurers tools and solutions for

managing insurance sales and management. Their �agship product, The Pro�t Life

& Pension (PLP), is a DCS intended for managing investment insurances from when

they are sold to the moment they eventually expire; i.e. when the money contained

within the policy runs out due to being claimed by the bene�ciaries or due to various

fees reducing it to zero.

PLP stores more information than just the insurance policies it manages. The

simpli�ed form of the PLP's database is shown in Figure 6. The �gure shows how a

policy should have at least one client attached to it. However, it is common for an

insurance policy to have a separate policyholder � the person taking the insurance

� and an insured � the person the insurance is for. In addition, it is possible to

have additional roles which may change throughout the policy's life. Other common

features of investment insurances are the investment targets, of which there should

be at least one, and any payments made.

Figure 6: Data within PLP

It is these common features that allow PLP to have a core product on top of which

Pro�t Software can add tailored features and modify the existing ones. Tailoring is

an important part of PLP and it can a�ect essentially all features and data within

it. In fact, PLP is built so that it can be con�gured to enable, disable or change

most existing functionalities without having to rebuild the system from the source

39

code; rebuilding is only required for new functionalities. The modularity is required

because all client versions will di�er from each other; at the very least, the insurances

being o�ered through PLP are di�erent for each client.

For testing this means that testing the core product alone will not guarantee that

any of the tailored versions will work. Additionally, the core product's tests may

not work in a tailored version which has lead to a situation where some tests have

to be written more than once since the di�erences between versions are so great.

6.2 Current testing strategy

PLP's current testing strategy is mostly undocumented and most of the information

is passed by word of mouth. Some of the agreed upon technologies and standards

can be found from the documentation but the information is somewhat spread out.

What makes matters worse, is that each tailored project has its own testing team

and the teams only communicate sporadically. Fortunately, Pro�t Software has less

than 50 testers which is likely why knowledge has spread reasonably well. I.e. the

projects use the same technologies for the most part. Regardless, each project has

its own version, a slight variation, of the testing strategy.

Recently, there has been initiative in bringing all projects to the same state in

terms of technology and design. In practice, this means sharing the currently used

technologies and tools between projects, and introducing BDD into projects which

do not use it currently. This has de�nitely had a positive e�ect but it may not last

for long once it is �nished and each projects continues to evolve on their own.

6.3 Goals

At Pro�t, testing is used to improve the quality of the software by making it easier to

maintain and by eliminating bugs as early as possible, preferably before a new feature

is even completely implemented and merged into the code base. Maintainability, for

each piece of code, is improved by creating regression tests which will detect some

of the possible bugs if the code is changed. This is left mostly to unit tests as they

take a relatively short amount of time compared to the end-to-end tests which can

take several hours. The current goal is to move towards a BDD type of development

where testers work alongside developers throughout the development of a feature.

True to BDD, analysts would also have to get involved but isn't pushed as hard as

40

getting testers to work with developers.

In addition to supporting development, testing is used to measure the integrity of

a release � internal releases more than others. There are two kinds of releases:

internal and customer releases. The former takes testing into account as a release

can simply be deferred if a test does not pass. The latter, however, is almost entirely

governed by other factors, mostly the client. That is not to say that testing results

wouldn't a�ect a customer release, rather, the e�ect is dependent on the customer

and any speculation or analysis on their decision process is beyond the scope of this

thesis.

6.4 Unit testing

Unit testing should provide a steady foundation for regression testing but in PLP,

they take a back seat to end-to-end tests. They are written by developers for new

features but old features have not been tested all that much. Partially, this is due

to the design which, in the past, has made testing di�cult. There is no consensus

on how unit testing is done; it is merely encouraged and each developer may choose

to write tests before, during or after development. The developers do acknowledge

the importance and usefulness of testing but sometimes testing is skipped in order

to save time. In addition, when making changes to legacy components, testing is

often omitted.

Unit tests are executed automatically once code is inserted into a repository. They

are also included in the build chain so that if a unit test fails, the build chain stops.

They may also be run locally at the developer's discretion.

The only metric in use for unit testing is code coverage � more accurately, statement

coverage. It is used to create goals for unit testing, such as reaching 80% code

coverage.

6.5 Integration testing

Integration testing is all testing not attributed as unit or end-to-end testing. This is

where a partial system is deployed for testing. In Pro�t its main use is when a new

module or a feature is being developed outside the main product. The new features

usually mock PLP and therefore do not qualify as end-to-end tests. However, once

the feature is merged into the main product, the integration tests start to run on top

41

of the actual system and change into end-to-end tests. Although, calling these tests

integration tests rather than end-to-end tests is merely an exercise in semantics.

Actual integration tests, which are reasonably far from unit or end-to-end tests,

are used very little. In fact, we have only observed their use once; and they are

not talked about very often when testing comes up. This leads us to believe that

integration testing is not seen as necessary or worth the time and could therefore be

an area of improvement.

6.6 Manual end-to-end testing

End-to-end testing comes in two forms: manual and automated. Manual testing

is most commonly used for verifying bugs and new features before an automatic

veri�cation, or test, is implemented. If a bug is discovered, manual testing happens

three times before automation: right after a bug has been discovered to verify it is

actually a bug, once the bug has been �xed and, in some cases, before the release

which ships with the bug �x. If a new feature is requested, manual testing is

done once the feature is ready and before its release. Automation generally follows

manual testing and is implemented as regression tests once a feature passes manual

testing. Although, sometimes manual testing is skipped and an automated tests

is implemented directly; this is especially true in a project where a BDD style of

development is used.

Manual tests are made by business analysts or manual testers themselves. The

process is started by a business analyst who creates a speci�cation for a feature.

A manual test �ow is then created from this speci�cation. In order to verify the

feature e�caciously and e�ciently, the test �ow is designed in such a way that it

attempts to test as much as possible with as few actions as possible; in other words,

the test is optimised with respect to speed while still proving a meaningful test.

Unlike automated tests, a manual tester does not necessarily have to stop if they

encounter a bug during testing. Instead, the tester may continue and thus, create

multiple bug reports over a single test �ow execution.

An example of a manual test �ow could be the following. Suppose there is a system

X with views A, B and C. as shown in Figure 7. Suppose further that each view

has an action to be executed which somehow changes the system and re�ects that

change in view A. A typical manual test �ow would be the following: Start from A,

move to B, execute action in B, move to A, verify changes from the action in B,

42

move to C, execute action in C, move to A, verify changes from the action in C.

Figure 7: System X

6.7 Automated end-to-end testing

Automated end-to-end testing is done mainly through the UI with the exception of

a few high level RESTful APIs. The test are based on three sources: speci�cations

(or use cases), which describe a feature accurately enough for a developer to create

an implementation based on it; manual test cases, which are a re�ned version of

speci�cations and portray, step by step, how a user would use the system; and free

descriptions which may vary in their accuracy. The speci�cations and use cases are

always written by business analysts whereas the free descriptions may be written

by anyone. Most automated tests are made for features but on a few occasions

automated testing has been used to verify bugs as well.

The tests o�er regression testing and play a signi�cant role in the testing strategy.

There aren't as many automated end-to-end tests as unit tests, but since the scope

of a unit test is very small they end up covering a smaller portion of the system.

However, the relative e�ectiveness of the unit tests when compared to end-to-end

tests is unknown as unit tests, unlike end-to-end tests, are fast enough to be executed

while a code change is still in the developer's own branch. For this reason, the bugs

caught by the unit tests rarely show up after a change has been merged.

The e�ectiveness of end-to-end tests is measured by counting and inspecting regres-

sion bugs reported by automation testers. There have been attempts at integrating

43

code coverage measurements into the end-to-end tests but thus far they have been

unsuccessful.

The process of creating automated end-to-end tests for a feature is the following. A

tester is given a speci�cation, a manual test or a free description. A speci�cation isn't

necessarily following a standard notation such as UML but is loosely standardised

within the company, that is, no formal guideline exists but the use cases follow

common patterns. From here, automated tests follow three schools of design: a

re�ected manual test case, Gherkin oriented test case or a merger of the two.

A re�ected manual test case, true to its name, attempts to mimic the manual test

case which it is based on. This will produce a test case which has been reviewed by a

business analyst and requires very little knowledge of the feature being tested but the

test case will be lengthy will be designed for a manual tester rather than automated

execution. One bene�t that a manual test case has, is that a manual tester can

continue working through the test case after they discover a bug � provided the

bug does not prevent it � and could potentially discover multiple bugs during a

single execution. However, an automated test should not continue once it discovers

a failure, and thus, this bene�t is lost. What we mean by this is that if we wanted an

automated test to continue after a failed assertion, it would have to be programmed

to switch to an alternative �ow and since the set of possible failures is very large

and mostly unknown, the test would quickly become convoluted.

The Gherkin notation has been adopted quite recently. It is used as a stepping stone

while aiming for a BDD type development. The test cases written in this style are

usually short and simple. When they are being created, the speci�cation, manual

test case or free description is broken down into multiple small tests, each testing a

single action. In this approach, the other tests are not skipped even if one of them

fails. However, extracting the relevant parts of a speci�cation or a source requires

a better understanding of the feature in question. The short form and near natural

language test descriptions enable anyone to easily pick up what is being tested with

the caveat that some business knowledge is usually required.

The third form is a merger of the two. These types of tests only appear when

the testers are still learning the concept of BDD and are often plagued by the

shortcomings of both styles � i.e. the tests tend to be long and the descriptions

unclear.

In addition to UI tests, automation testers also write tests for some RESTful inter-

faces. These tests tend to use Java and sometimes resemble unit tests rather than

44

the other end-to-end tests. Java is mostly chosen due to the company having a

history with Java � and therefore a lot of expertise in it � but also because Java

has a broad selection of third party libraries speci�cally created for REST interface

testing, and is faster than the tools used for UI testing, even though those tools

could also be used.

6.8 Communication

There are �ve groups of people who actively engage in testing: business analysts,

manual testers, automation testers, developers and the management. The business

analysts build speci�cations and create the manual test case �ows. Manual testers

then follow those �ows to con�rm that a feature works as intended. Automation

testers usually follow manual testing and automate the test cases for regression

testing. Developers implement features based on speci�cations and then create unit

tests based on their implementations. They also work as consultants when a possible

bug is found or if an existing behaviour is not present in the documentation. The

management takes a bird's eye view of testing and allocate more testing to where it

is needed.

As of now, most communication about testing happens through a static medium:

documentation; and while it is reasonably comprehensive and somewhat formal, it

can still be interpreted in di�erent ways by di�erent people. Of course, documen-

tation in itself is a good thing but as long as the language and the style is created

by only some of the groups, the rest may �nd it di�cult to understand � or at the

very least it may be a hindrance. Since the managers use the documentation only a

little bit, only testers, developers and business analysts read the documentation on

a regular basis. However, the business analysts govern how it is written.

6.9 Testing tools

Testing can be though of simply running the program, giving it predetermined in-

puts, and checking the product results against expected results. However, in this

form, testing does not scale well as it requires the tester to spend a lot of time setting

up the environment, running the program and other related tasks. This is where

the tools come in. In Pro�t, there are tools for each group involved in testing: man-

ual testers, automation testers, developers, business analysts and managers. Out

of these groups, the automation testers are the most dependent on tools. Indeed,

45

the very de�nition of an automation tester requires the presence of a framework or

software which allows automated tests to be run. In this context, by tools we mean

any program, methodology or a process which somehow enhances testing e�ciency.

As a direct result, JUnit is as much a tool as the page object model. We will go

through the tools used by each group and explain where and how they are used.

6.9.1 Tools for automation testers

Automation testers operate on the UI level with the addition of select few RESTful

interfaces. Therefore, most of their tools assist in end-to-end UI testing. We will go

through the tools of an automation tester and then provide a plan which represents

how a UI test is implemented including all the tools involved.

Gherkin

Gherkin is the name given to a CNL used originally by Cucumber [36]. It was created

to go hand in hand with BDD. The grammar of the language is simple, reserving

only a handful of words and only when they are the �rst word in a sentence or a

paragraph. In pro�t, Gherkin is used mainly for automated tests and occasionally

for documentation. However, its current use does not re�ect the original purpose

where Gherkin is only a part of BDD.

The original implementation of Gherkin was introduced with the testing frame-

work Cucumber. It is a framework used for executing automated tests described

as features containing scenarios. The scenarios then contain test steps which are

implemented in Java, for example. This style of describing tests re�ects Cucumber's

strong support for BDD. However, Gherkin has been implemented in a number of

tools and one of them is currently in use in Pro�t.

The current implementation in use at Pro�t is the one provided by RF. RF does not

support BDD as strongly as Cucumber and instead of features and scenarios, RF

has � more traditional � test suites containing tests. They do have a one to one

correspondence so one can simply name test suites as features and tests as scenarios.

Our examples will use the implementation in RF.

Like other CNLs the purpose of Gherkin is to provide the means to write natural

language-like code. The language has very few reserved words and only three of them

are at the core: given, when, and then. While not necessary, some implementations

reserve and and but, to make the source code more �uent. Cucumber and RF also

reserve words for describing the structure of the test �le. Keywords such as feature or

46

scenario are reserved in the original, Cucumber, implementation while RF reserves

expressions like Test cases and Variables to separate di�erent sections of a test �le.

Here's an example test case written in RF's language:

*** Test Cases ***

Scenario: delete an account

Given an account exists

When I log in as the administrator

And I delete the account

Then the account is no longer found within the system

The test serves two purposes: an automated test and a documentation of the be-

haviour being tested. Since documentation is usually written before a test, using

this style for documentation provides test automation as a side e�ect, i.e. the au-

tomation tester need only to implement the test steps rather than trying to extract

the relevant �ows from a speci�cation. Furthermore, conforming to the given-when-

then pattern means that the tests are often simple since they can only test one

particular action, the when part. This in turn translates into easier maintainability.

As a side e�ect, using Gherkin in tests brings projects closer to using BDD which

could bridge the gap between tests and speci�cations.

Page objects

Page objects are in use in Pro�t but have mostly been written in RF keywords.

However, there have been fruitful instances where the page objects have been written

in Java. The advantages of Moving to Java are the expertise already present in

the company and the possibility to uncouple the current testing framework from

the page objects, thus allowing the page objects to be used elsewhere, with JUnit,

for example. However, rewriting the current RF keyword page object libraries in

Java would take time and, therefore, money. In addition, the bene�ts of such an

undertaking are questionable unless there is a need to switch from RF.

Support libraries

In addition to page objects, automation testers have libraries which provide useful

keywords for the RF tests. These libraries include parsers, HTTP request libraries,

SSH libraries, etc. They have been written using any of: RF keywords, Python or

Java. Out of which Python keywords have almost all been converted to Java. In

addition, RF keywords may execute Unix shell scripts.

47

Java support libraries tend to work well and have the advantage of a general purpose

programming language. This generality allows the Java libraries to handle all tasks

required by the tests and are therefore an adequate choice for a test support library

language. RF keywords, however, are not.

RF keywords were not built to be a general purpose programming language. Their

strength lies in their expressiveness but they, for example, lack the ability to do

basic arithmetic or parse JSON strings.

Database manipulation tools

Almost all data in PLP is stored in a database. Therefore, the state of the database

is e�ectively the state of the system. When creating tests for the more complex

scenarios, the database sometimes has to be brought to a certain state before the

actions being tested can be performed and checked. There are two ways to go about

this: interaction with the UI and directly accessing the database. Both are in use in

automated tests but the majority of tests use the former. The biggest disadvantage,

when using the UI for the set up, is the speed at which tests execute: UI adds

another layer which will invariably slow tests down. The problem is that setting up

the system takes a much larger portion of the total execution than the action being

tested and its assertions. For example, bringing the system to the desired state, so

the action can be performed, can take up to ten minutes, while the action and the

assertion may take less than ten seconds.

Modifying the database directly is done very meticulously and rarely as it requires

knowledge of the underlying system. Currently two types of tools are in use when

modifying the database state: importing and exporting tools. This �ts automated

tests fairly well because even if test data needs to be created through the UI, it only

has to be made once, exported and then imported when the test runs. However, a

tool for creating the test data, while bypassing the UI, would hasten test creation.

6.9.2 Tools for manual testers and business analysts

We will include manual testers and business analysts as a single group since their

tools are practically identical. The only di�erence is that business analysts tend

to focus more on the documentation unlike manual testers who focus on PLP. All

the documentation is stored using an external service. The service contains all

documentation except for the source code.

Manual testing is the most �exible type of testing as a tester can adapt to sudden

48

changes unlike an automated test but manual testing is also much slower than an

automated test � assuming we do not count the time it takes to create an automated

test. The biggest time sink in manual testing is setting up the system to a desirable

state. Therefore, the vast majority of the tools for manual testing should help

prepare the target system. Currently, the tools consist mostly of: scripts, some of

them integrated into web pages for anyone to use; virtual machines, running personal

copies of the software; GUI tools, for accessing databases; and the same exporting

and importing tools available for automation testers.

6.9.3 Tools for developers

Within pro�t, developers are responsible for unit testing and integration testing.

The former is more widely used and is the main form of testing done by developers.

The latter only happens occasionally. The current testing plan does not enforce

unit testing but merely encourages it. This leads to situations where sometimes

unit testing is skipped in order to save time.

Most unit tests are done using a testing framework such as JUnit or TestNG. The

�nished tests are then run at least during every build and every release, that is,

they become a part of continuous integration. A developer can freely choose their

environment and most development tools. There are a few mandatory tools includ-

ing: a dependency management tool, build tool, the testing framework and version

control. On one hand, having the freedom to choose their own tools has the bene�t

of not making developers use tools which they would dislike. On the other hand,

this heterogeneity means that you cannot create a plugin for a speci�c IDE and

expect it to work for everyone.

6.9.4 Tools for managers

The managers do not test directly. However, they are responsible for managing

projects and are are, therefore, interested in testing. They approach testing mainly

through reports and issues in the issue management software. The information

required for any reports come from testers and so, require no tools besides a mes-

saging application. The issue management software, however, is a tool which allows

managers to monitor how much time needs to be allocated to testing.

49

7 Suggested improvements

This chapter is a collection of improvement suggestions we are making to the PLP's

current testing strategy. The improvements in this chapter have been chosen on

purpose so that they are small, reasonably easy to implement and do not require

giving up the current tests. Our reasoning for this is that small changes are more

likely to be adapted than big ones.

In the �rst part of this chapter we will describe our suggestions pertaining to au-

tomated end-to-end test design. We will then continue with end-to-end testing by

describing the current issues with lacking debugging tools. Next, using GQM, we

will produce a set of metrics which would help tracking the goals of testing and

the e�ect our suggested improvements are having. After that, we will describe and

provide motivation for a tool which could be used to directly create test data. Then,

we make suggestions as to how testers could gain better domain knowledge and how

it would improve their testing e�orts. After that, we will o�er suggestions for unit

testing. Finally, we recommend adding the testing strategy into the documentation

so it can be easily found by all those concerned.

7.1 Designing automated end-to-end tests

The two biggest problems in the current set of automated tests are execution time

and complexity. The execution time is generally longer than 10 hours and therefore

cannot be leveraged by each developer in the development process. Rather, the test

set can only be run once a day. The second problem is test complexity. The test

set has gone through multiple frameworks and design patterns, some of which have

been automatically generated, which has resulted in a rather heterogeneous barrage

of tests and styles to design them.

We believe the best way to address these problems is by standardising the design

and providing a guideline to match so new tests, and refactored tests, will generally

look the same. Simply put, the standard we propose is to follow a Gherkin style

notation, whenever possible, while keeping the tests as small as possible. Small

tests are easier to read and understand which will reach our �rst goal of reducing

complexity.

The second goal of decreasing execution time has three parts to it: parallel execution,

test code optimisation and test tagging. Parallel execution from the point of view

50

of design means deciding on a smallest test unit, which cannot be split further

into smaller parallelisable units. Code optimisation can then be used to further

increase the execution speed of these units. Finally, test tagging can be used to

execute relevant tests only so a developer could conceivably use the automated tests

without having to run the entire 10 hour long test set.

7.1.1 Decreasing execution time by design

Parallel execution

The purpose of tests is to catch bugs as early as possible so future development isn't

built on top of misbehaving software. For this reason, all tests should be run as

often as possible. For end-to-end tests, there are at least two ample opportunities:

once a developer is ready to merge their changes to the main branch and when all

mainline components of the software are merged together. The former does require

that any changed components can be built and combined with the current version

of the system. Both opportunities allow for parallel execution but the developer's

own test run could also bene�t from test tagging.

Combining all the mainline components is done automatically and will therefore

have only one user, the build system. So, it requires only one set of environments on

which to perform a parallel test. However, if a developer wishes to test their changes

against the end-to-end test set, they'd need their own set of parallel environments.

This may not be feasible as it would bear additional costs and would not be wise as

the environments may only be used sporadically. Therefore, a shared set of parallel

environments would likely be a better alternative. This could o�er developers faster

feedback on their changes.

However, even with an optimal parallel test run with 10 environments, it would

still take more than an hour to complete the test run. This is way too long for a

developer to just sit around and wait. Therefore, we further suggest the use of tags

in tests. The tags could be used to indicate accurately which features a particular

test tests. Additionally, this is supported by the current testing framework.

Since all features are tied to a particular piece of documentation � a use case � the

use cases could be given unique IDs which could then be used as tags in the tests.

This would allow a developer to narrow the tests being run to a relevant subset and

would help discover bugs directly related to the changed component much faster

when the less critical tests are skipped. It is possible that a bug silently propagates

51

through a system and is only visible on a completely di�erent component, but we

believe this is an acceptable risk, as the bug would then be caught later in the

mainline merge � assuming the test set could catch it.

The mainline merge would bene�t from a parallel test run because, at the moment,

the test run takes a lot longer than the rest of the build chain. Right now, there

is only time for one test run per day, but with the decreased testing time of the

parallel test run, it is possible to do multiple test runs each day. The total time for

a parallel test run has been roughly
x

n
, where x is the total time for a normal test

run and n is the number of environments available for the parallel run. Although,

this trend will not continue inde�nitely as more environments are introduced and

will �nally come to a stop when the total execution time is the execution time of

the slowest test unit. Parallelism is already being used in some projects in Pro�t

and is in the process of being added to the other projects as well. Since all projects

use the same testing framework, most of the groundwork related to parallelising the

test run has already been done.

Optimisation

Another way to decrease execution time is to optimise the test code. Since optimi-

sations will vary depending on each situation we will introduce two very common

optimisations as examples. The optimisations are: combining test cases and return-

ing to a particular view.

When combining test cases, one should take care not to potentially hide bugs. What

this means is that if you have two consecutive assertions in a single test and the

former of those fails, the latter never gets executed as the test fails right there. This

is not a problem, however, if the two assertions depend on each other, i.e. the latter

cannot pass if the former fails. Take the following two test cases:

Scenario: search bar exists

Given a browser is open

When I type the address of my favourite search engine to the address bar

Then the page I'm looking for has a search bar

Scenario: search bar is editable

Given a browser is open

When I type the address of my favourite search engine to the address bar

Then I can type text into the page's search bar

52

The execution time for both test cases is quite short. Suppose, opening a browser

takes roughly �ve seconds, loading page takes a second and the rest of the actions

put together, when performed by a web driver, will take one second. In reality, the

durations may vary but these estimations will be enough for a relative comparison.

With these estimations the execution time for both tests together come up as roughly

14 seconds. However, since you clearly cannot type text into a search bar if the search

bar isn't there, you can combine the tests:

Scenario: search bar exists and search bar is editable

Given a browser is open

When I type the address of my favourite search engine to the address bar

Then the page I'm looking for has a search bar

And I can type text into the page's search bar

By combining the two, the execution time is reduced by almost half as now only one

browser is opened and the web page is opened only once. Additionally, the new test

case conforms to the Gherkin model. The trade-o� is that the new test is a little

bit longer than the �rst two.

Sometimes it is not possible to combine tests without potentially hiding bugs. In

that case, you can decide that each test assumes it starts with the search engine

page already open. It would look like this:

Setup:

Open a browser

Type the address of my favourite search engine to the address bar

Scenario: search bar exists

The page I'm looking for has a search bar

Scenario: search bar is editable

I can type text into the page's search bar

The Setup is executed only once. The trade-o� here is complexity as the test no

longer starts from scratch. Additionally, if our tests were to change the current

web page, they would need to return the browser to the initial state, adding more

complexity into the mix.

53

7.1.2 Standardising tests

One of the reasons to adapt Gherkin was to reduce complexity in test cases, thus

making them easier to maintain and understand. Especially old test cases have prob-

lems with complexity, mainly because they are easy to chain. To explain chaining

we should consider this simple model for a test:

Initial state: The system is in a speci�c state

Actions: Actions are executed which a�ect the system somehow

Assertions: The results of the actions are checked

In and of itself this produces simple test cases which can be easily split into three

phases but the problem comes when one realises that the end state, after the ver-

i�cation, is actually the initial state of another test, whose end state is the initial

state of yet another test and so on. A chained test case such as this can become

exceedingly long. Chained test cases have at least three problems which make them

undesirable: added complexity, increased debugging time and the fact that a failure

causes all following assertions to be skipped.

Our recommendation is to solve this issue by creating all tests using Gherkin, when-

ever feasible. This leads to tests which have an initial state (Given), actions (When)

and assertions (Then), rather than a chained test case which would in result in,

by abusing Gherkin, Given-When-Then-When-Then-.... We acknowledge that this

requires testers to actually follow the idea behind Given-When-Then and do not

mix actions with assertions which would qualify as side e�ects.

We have discovered that some of the keywords used in tests introduce side e�ects.

That is, a keyword claiming to be an action keyword may actually perform assertions

and the other way around. Some of these are legacy code from years past and should

be removed as they no longer serve any known purpose. However, some of them have

been added to make debugging the tests easier. In our experience the new assertions

have not caused any problems but should be kept in check and have comments so

they will not eventually become legacy code.

7.1.3 Gherkin and page object use case study inside the company

While working at Pro�t software we were put on charge at automating the testing of

a new project. In addition to creating automated tests we had two additional goals:

54

evaluate the use of behaviour scenarios and the use of Java in test automation. To

reach the �rst additional goal, we designed all tests using behaviour scenarios and

reported how the other members of the project responded to it. The behaviour

scenarios were written using Gherkin, i.e. the Given-When-Then model described

in chapter 6.9.1. The second goal was reached by using Java to create page objects

and libraries for the automated tests.

We used technologies already in use in other projects � most prominent ones were

Robot Framework, Selenium and Java � but page objects, libraries and tests were

created from scratch. The project included a test automation engineer, two de-

velopers, an architect and a project manager. Testing was done incrementally, as

new features were implemented, with the help of developers whom would review the

Gherkin test cases and informed us if there were scenarios that weren't being tested.

We found, that Gherkin allowed the developers to understand the test cases without

the need to learn Selenium or Robot Framework and were easily able to verify our

test scenarios even though they had no previous experience with Gherkin. We con-

clude from this that Gherkin can be used as a common language between developers

and testers to describe functionality.

In previous projects, where most of the functionality was written using Robot Frame-

work, we have noticed that writing complex algorithms can be a very arduous task.

For example, even a simple calculation, such as a+b, where a and b are variables,

must resort to calling a separate Python expression as the Robot Framework's lan-

guage does not have such functionality. We found, isolating such algorithms and

expressions into Java made the Robot Framework tests much shorter and easier to

read.

While the tests were implemented using Robot framework and Selenium, we also

used a page object model to separate the user interface from the robot keywords.

This creates a three layer hierarchy in the test cases. The top layer consists of the

robot tests. The tests comprise of the Gherkin keywords written in documentation,

other robot keywords and the keywords from the page object library. The middle

layer is the page objects library, providing access to the browser for the robot tests.

This separation allowed us to easily �x test cases when they were broken by updates

to the user interface. For example, if a �eld changes its type from input to select,

only the page library needs to change as the keywords used by the tests remain the

same. However, in this case in the name of readability, we changed the keyword's

pre�x from insert to select, e.g. insertPhoneNumber to selectPhoneNumber, which

55

in turn did require a small change in the test cases. The bottom layer contains the

user interface, the browser and the Selenium API. These are being accessed in the

page objects library using the Selenium WebDriver.

7.1.4 Test failure rates

In optimal conditions, each failed automated test indicates a bug has been found.

However, automated tests are not perfect and can fail just like any piece of code.

Thus, when an automated test fails, a tester has to analyse the failure and determine

its source. The source is usually one of: a bug in the system, a bug in the test

due to a change in the speci�cation, an environment problem or an unstable test.

The �rst two require a bug report about the system or the test but only happen

once. Similarly, the environment issues are generally ignored unless they happen

constantly. However, an unstable test is harder to ignore. An unstable test is a

test which tends to fail either constantly or at random. This can make analysing

the test very di�cult and will continuously create extra work for testers unless it is

�xed. Furthermore, it may create work for others if the failure looks like a bug in

the system.

Our proposition for �xing this issue is to separate � or quarantine � these known

unstable tests from the other tests. This has already been done in some projects

but should spread to the others as well. The reasoning behind this is that randomly

failing tests cause a lot of work for testers but provide very little in terms of quality

assurance. This is because tests like these quickly lose credibility and their failures

will simply be ignored in subsequent test runs. We also propose a policy that an

issue is added into the issue tracker for each quarantined test case so there will be

a constant reminder to �x them.

7.2 Debugging end-to-end tests

When an unstable test fails, a tester may decide to �x it. The current method for

�xing a test case is the following: run the test, change the code, run again and repeat

until the bug is no longer present. The reason behind this method is because it is

often not possible to continue from where the previous run failed. Since it is very

common for the procedure to take multiple changes and test executions, chained

test cases pose a problem as it can take a long time to get feedback on the code

changes. Sometimes it is possible to run only a small part of a test which hastens

56

the procedure. Although, this is an exception to the rule. In short, test debugging

sessions usually take a fairly long time and more so for chained test cases.

We propose three solutions to shorten test code debugging session. First, we suggest

test cases be split into smaller pieces wherever applicable or at the very least break

chained test cases into its constituent parts. This would take potentially a lot of time

upfront but would make debugging much faster. Second, a tool for easily setting

the system to a desired state. We will look into this more in-depth in chapter 7.4.

The third is a debugging tool.

Two important features of a debugging tool are breakpoints and step-by-step execu-

tion. A breakpoint is a feature commonly available in IDEs. It allows a developer

to create a marker in the source code which will cause code execution to stop until

the developer allows it to continue, usually step by step all the while allowing the

developer to monitor data used by the program, such as variables and arguments.

Currently, breakpoints can be simulated by stopping execution. However, step-by-

step execution is only available for Java libraries and for all end-to-end tests when

using a special IDE for Robot Framework called RIDE. A tool like this may not

exist at the moment but even a rudimentary one would help the debugging process.

7.3 Additional metrics

Metrics can be used to monitor a software project at the expense of some overhead

work. They are presented as a sequence of measurements done during the project's

life. We will use GQM to select metrics which support the goals set for testing.

The current testing metrics are basically the same throughout all the projects in

Pro�t Software. The metrics are: number of test cases implemented, number of

failed test, number of passed tests, the total execution time of all tests and code

coverage (for unit tests only). Infrequently, there have also been reports done on

feature coverage but these have been rare as they require a fair bit of manual labour.

These metrics can provide insight into testing but without clearly set goals are not

as useful.

7.3.1 Goals for testing

Testing goals should support business goals and provide meaningful information for

decision making [8]. Since PLP is an investment insurance management system,

57

it must routinely handle calculations involving money. It is imperative that the

calculations are done accurately so policies do not get billed or paid too much or

too little. If such errors were to happen it would re�ect negatively on the insurance

company, and if PLP would be the cause of the error, the insurance company would

be less inclined to continue using PLP. Therefore, one goal for testing is to reduce

the number of defects reported by the client.

Within Pro�t, there have been issues with test maintenance taking too much time.

The maintenance is usually brought on by tests which fail on their own, even in the

absence of bugs. This is a good indication that such a tests should be properly �xed.

Therefore, the second goal � and the goal for our improvements � is to improve

the stability of the unstable tests from the testers' perspective.

7.3.2 Suggested metrics

With GQM we present Table 1 for tracking the overall goal of testing. To �nd out if

testing is reaching its goal, we have devised two metrics. Any valid bugs the client

reports on a delivery should be counted up until the delivery becomes obsolete. This

means that the metric M1 will not be available immediately. Once both metrics M1

and M2 have been measured for a delivery, they should be stored. Once more than

one pair of measurements have been stored, they can be compared to see how the

number of bug reports from a client changes as the time spent on testing, relative

to development, changes. We note that even if such a correlation exists, it does not

necessarily indicate causation. However, if there is a causation between time spent

on testing and bug reports, a correlation should exist as well.

In Table 2 we introduce metrics to track our improvements. The metrics are meant

to track the amount of time spent on unstable tests to provide motivation for �xing

them. We have also included a metric for the number of unstable tests so once they

are being �xed, the progress can be monitored.

7.4 Inserting data directly into the database

Because PLP needs to handle records on the order of 108, it requires a structured

database to store it all. In fact, the state of the database is e�ectively the state of

the system. During manual and end-to-end testing this state is changed through

the UI, with very few cases where the database is manipulated directly. Changing

the state through the UI is slow as it introduces an extra layer to the data, yet it

58

Goal Purpose: to reduce

Issue: the number of

Object: defects

Viewpoint: reported by the client

Question Q1 How many defects are reported after a delivery, relative to

the amount of development time?

Metrics M1
B

td

Question Q2 How much time was spent on testing relative to the amount

of development time?

Metrics M2
td
tt

Table 1: Tracking the overall goal of testing

B = Reported bugs in the last delivery

td = Time spent on development (only the time developers used)

tt = Time spent on testing

Goal Purpose: to improve

Issue: the stability

Object: of unstable tests

Viewpoint: from the testers' perspective

Question Q3 How much of the testers' time is spent on the unstable

tests?

Metrics M3 Total time spent on testing

Metrics M4 The testers' estimate on how much time is spent on unstable

tests

Question Q4 How many tests are a�ected?

Metrics M5 Testers' estimate on the number of unstable tests

Table 2: Tracking our suggestions

59

is necessary to test all the logic which resides between the UI and the database.

However, testing almost always aims to test a particular behaviour or functionality

which can only be invoked once the system has been brought to a speci�c state.

Achieving this speci�c state often takes more time than the target functionality and

any assertions associated with it. For example, we have observed automated tests

which take �ve minutes each from which only 10 seconds are spent on the target

functionality and assertions. This brings us to suggest a tool which could be used

to bring a system to the desired state by directly inserting data into the database.

Currently, Pro�t Software has tools which accomplish a similar task but are some-

what limited. There is a tool which allows users to import and export basic data

to and from the database. However, it is limited by the fact that it cannot create

new data and does only basic validations on the imports, such as checking data

types. Another, more powerful, tool called the conversion engine � which is used

when importing data to PLP from other systems � has better validations but is

also limited to importing existing data. If there was a tool, capable of creating input

�les for the existing tools, it would be possible to chain them to insert completely

new data into the database.

Such a tool would especially bene�t manual testers and business analysts if they

could easily instruct the new tool chain to create a policy, for example, rather than

clicking through the UI and running batches which can take more than an hour.

Automation testers might also bene�t from it but not as much since automated tests

are generally �ne with the import/export strategy. We acknowledge that creating a

tool like this would de�nitely take time, experienced developers, business analysts

and testers to build. But, the potential amount of time saved should at the very

least warrant an investigation as to whether it is worth it or not.

7.5 Domain knowledge in automated testing

If a test engineer were to be able to implement a test case de�ned only using Gherkin

and only using a few rows, e.g.

� Given An Ice Cream Product Exists

� When A User Orders An Ice Cream

� Then The Ice Cream Is Delivered To The User

60

The test engineer needs to know what it means for ice cream to exist in the system,

how a user can order ice cream and how can one know when the ice cream is delivered.

This is what is known as domain knowledge, i.e. knowledge of the underlying system

and how it operates. This knowledge may not be inherently available to the test

engineer but is, for example, known by a business analyst.

This creates a controversial situation where a test engineer is testing a feature she

does not understand. It is still possible to test it because the business analysts have

created a step by step instruction on how to manually test the feature. However,

now the test engineer may not be able to break the manual test into logical pieces

but instead automates a lengthy chained test case which we talked about in 7.1.2.

One possible solution is that the test engineer and the analyst discuss the matter or

possibly create the test case together. Though, this approach would mean that both

the tester and the test engineer should be available at the same time. Asynchronous

communication, such as email, would also be possible but might delay the test case.

Another possibility, and the one we recommend, is that the tester participates in

the meetings where the features are being designed. This way, the test engineer will

not only understand how to feature works but can also provide input about how

and what could be tested using automation.

7.6 Unit testing

The problems we uncovered in unit testing are the following: they are di�cult to

create for the old parts of PLP and there aren't enough of them. The former would

require more developer insight than we currently have and will leave it for future

work. For the latter, however, we can suggest an improvement.

Currently, the test distribution is not according to the testing pyramid. A lot of the

testing e�ort is put into the very top layer, the end-to-end, or UI, tests. This poses

a problem as they are too slow to be executed within a reasonable by a developer,

whereas unit tests are fast enough. We suggest that testing e�ort should be geared

towards unit testing. We know that some testers are able to understand and write

Java and could therefore be tasked with writing additional unit tests. This would

require some training as to how PLP works and how it is being developed, however.

Assuming more unit testing will be done, in order to target the testing e�orts, we

further suggest using the ripple e�ect to �nd error prone classes.

Simply adding more tests and increasing coverage is not necessarily a good way to

61

measure test set e�ectiveness. Therefore, we suggest the use of mutation testing on

the current unit test base to �nd out how well it can �nd faults � i.e. kill mutants.

7.7 Documenting the testing strategy

While studying the current testing strategy we discovered that there is no single

source of information and that a lot of the knowledge is passed by word of mouth

rather than having been documented. We suggest that the testing strategy is added

is added into the documentation so testing can follow common patterns and stan-

dards.

We acknowledge that many projects may have technological or other limitations

and restrictions imposed by the clients. Therefore, a company wide testing strategy

would have to be such that it would allow projects to accommodate these limitations

and restrictions. The details of a company wide testing strategy would have to be

agreed upon by a committee consisting of developers, managers and testers from

each project. In addition, we suggest that each project have its own testing strategy

document detailing the project speci�c details. We still recommend these project

speci�c strategies to be as similar as possible so testers can be moved from project

to project without having to learn everything from scratch.

8 Conclusions and future work

We set out to provide improvement suggestions for our target system, PLP. To help

determine if we reached that goal, we divided it into these three research questions:

Q1 Does the current testing strategy contain problem areas?

Q2 How could we improve those areas?

Q3 How could we add to the current testing strategy to make it more comprehen-

sive and more e�ective?

The �rst questions we answered by examining the current testing strategy in chapter

6. We managed to spot problem areas in all levels of testing, especially in automated

end-to-end testing as we worked actively on that across multiple projects.

62

The second question we answered in chapter 7. We took the problems we found

in chapter 6 and made suggestions on how to improve them. The most important

improvements we suggested were how end-to-end tests should be designed and im-

plemented. We suggested that end-to-end tests should follow the Gherkin design so

the tests would become easier to understand and maintain.

The third question we also answered in chapter 7. We pointed out possible processes

that were missing in the testing strategy and described how they could improve

testing. The most important missing feature we suggested is adding the testing

strategy into the documentation so it can be viewed by all.

For future work we found that a tool which could be used to directly insert data

into the database, bypassing the UI could be bene�cial but would require further

investigation as to its viability.

REFERENCES 63

References

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. �Is Mutation an Appropriate

Tool for Testing Experiments?� In: Proceedings of the 27th International Con-

ference on Software Engineering. ICSE '05. St. Louis, MO, USA: ACM, 2005,

pp. 402�411. isbn: 1-58113-963-2. doi: 10.1145/1062455.1062530. url:

http://doi.acm.org/10.1145/1062455.1062530.

[2] E. M. Arvanitou et al. �Introducing a Ripple E�ect Measure: A Theoretical and

Empirical Validation�. In: Empirical Software Engineering and Measurement

(ESEM), 2015 ACM/IEEE International Symposium on. 2015, pp. 1�10. doi:

10.1109/ESEM.2015.7321204.

[3] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. �The Goal Ques-

tion Metric Approach�. In: Encyclopedia of Software Engineering. Wiley, 1994.

[4] Cédric Beust. TestNG. 2016. url: http://testng.org (visited on 11/07/2016).

[5] Thirumalesh Bhat and Nachiappan Nagappan. �Evaluating the E�cacy of

Test-driven Development: Industrial Case Studies�. In: Proceedings of the 2006

ACM/IEEE International Symposium on Empirical Software Engineering. IS-

ESE '06. Rio de Janeiro, Brazil: ACM, 2006, pp. 356�363. isbn: 1-59593-218-

6. doi: 10.1145/1159733.1159787. url: http://doi.acm.org/10.1145/

1159733.1159787.

[6] L. Borner and B. Paech. �Integration Test Order Strategies to Consider Test

Focus and Simulation E�ort�. In: Advances in System Testing and Validation

Lifecycle, 2009. VALID '09. First International Conference on. 2009, pp. 80�

85. doi: 10.1109/VALID.2009.30.

[7] Frederick Brooks. The Mythical Man-Month. Addison-Wesley, 1975. isbn: 0-

201-00650-2.

[8] Yanping Chen, Robert L. Probert, and Kyle Robeson. �E�ective Test Met-

rics for Test Strategy Evolution�. In: Proceedings of the 2004 Conference of

the Centre for Advanced Studies on Collaborative Research. CASCON '04.

Markham, Ontario, Canada: IBM Press, 2004, pp. 111�123. url: http://dl.

acm.org/citation.cfm?id=1034914.1034923.

[9] Mike Cohn. The Forgotten Layer of the Test Automation Pyramid. 2009. url:

https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-

of-the-test-automation-pyramid (visited on 03/19/2016).

REFERENCES 64

[10] Various contributors. Jenkins. 2016. url: https://jenkins.io/ (visited on

11/07/2016).

[11] Patrick Crews and Giuseppe Maxia. Employees Sample Database. 2015. url:

https://dev.mysql.com/doc/employee/en/ (visited on 06/06/2015).

[12] L. Crispin. �Driving Software Quality: How Test-Driven Development Impacts

Software Quality�. In: Software, IEEE 23.6 (2006), pp. 70�71. issn: 0740-7459.

doi: 10.1109/MS.2006.157.

[13] CUnit. CUnit. 2016. url: http://cunit.sourceforge.net/ (visited on

11/13/2016).

[14] EPFL. Scala home page. 2016. url: http://www.scala-lang.org/ (visited

on 09/04/2016).

[15] Facebook. Facebook. 2016. url: www.facebook.com (visited on 11/07/2016).

[16] Roy T. Fielding and Richard N. Taylor. �Principled Design of the Modern

Web Architecture�. In: Proceedings of the 22Nd International Conference on

Software Engineering. ICSE '00. Limerick, Ireland: ACM, 2000, pp. 407�416.

isbn: 1-58113-206-9. doi: 10.1145/337180.337228. url: http://doi.acm.

org/10.1145/337180.337228.

[17] Finanssivalvonta. FIVA homepage. 2016. url: http://www.finanssivalvonta.

fi (visited on 08/29/2016).

[18] Martin Fowler. Continuous Integration. 2006. url: http://www.martinfowler.

com/articles/continuousIntegration.html (visited on 12/20/2015).

[19] Robot Framework. ROBOT FRAMEWORK. 2016. url: http://robotframework.

org/ (visited on 10/17/2016).

[20] Milos Gligoric et al. �Comparing Non-adequate Test Suites Using Coverage

Criteria�. In: Proceedings of the 2013 International Symposium on Software

Testing and Analysis. ISSTA 2013. Lugano, Switzerland: ACM, 2013, pp. 302�

313. isbn: 978-1-4503-2159-4. doi: 10.1145/2483760.2483769. url: http:

//doi.acm.org/10.1145/2483760.2483769.

[21] Rahul Gopinath, Carlos Jensen, and Alex Groce. �Code Coverage for Suite

Evaluation by Developers�. In: Proceedings of the 36th International Con-

ference on Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014,

pp. 72�82. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568278. url:

http://doi.acm.org/10.1145/2568225.2568278.

REFERENCES 65

[22] B. Hoisl, S. Sobernig, and M. Strembeck. �Comparing Three Notations for

De�ning Scenario-Based Model Tests: A Controlled Experiment�. In: Quality

of Information and Communications Technology (QUATIC), 2014 9th Inter-

national Conference on the. 2014, pp. 95�104. doi: 10.1109/QUATIC.2014.19.

[23] List of authors: https://github.com/jacoco/jacoco/graphs/contributors. Ja-

CoCo - Java Code Coverage Library. 2016. url: https : / / github . com /

jacoco/jacoco (visited on 10/15/2016).

[24] IBM. IBM DB2. 2016. url: https://www.ibm.com/analytics/us/en/

technology/db2/ (visited on 11/07/2016).

[25] GitHub Inc.Github. 2016. url: https://github.com/ (visited on 11/07/2016).

[26] GitLab Inc. GitLab Continuous Integration. 2016. url: https : / / about .

gitlab.com/gitlab-ci/ (visited on 11/07/2016).

[27] reddit inc. Reddit. 2016. url: www.reddit.com (visited on 11/07/2016).

[28] Laura Inozemtseva and Reid Holmes. �Coverage is Not Strongly Correlated

with Test Suite E�ectiveness�. In: Proceedings of the 36th International Con-

ference on Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014,

pp. 435�445. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568271. url:

http://doi.acm.org/10.1145/2568225.2568271.

[29] D.S. Janzen and H. Saiedian. �Does Test-Driven Development Really Improve

Software Design Quality?� In: Software, IEEE 25.2 (2008), pp. 77�84. issn:

0740-7459. doi: 10.1109/MS.2008.34.

[30] Y. Jia and M. Harman. �An Analysis and Survey of the Development of Mu-

tation Testing�. In: IEEE Transactions on Software Engineering 37.5 (2011),

pp. 649�678. issn: 0098-5589. doi: 10.1109/TSE.2010.62.

[31] JUnit. JUnit. 2016. url: http://junit.org/ (visited on 11/07/2016).

[32] K. Karhu et al. �Empirical Observations on Software Testing Automation�. In:

Software Testing Veri�cation and Validation, 2009. ICST '09. International

Conference on. 2009, pp. 201�209. doi: 10.1109/ICST.2009.16.

[33] Tobias Kuhn. �A Survey and Classi�cation of Controlled Natural Languages�.

In: Comput. Linguist. 40.1 (Mar. 2014), pp. 121�170. issn: 0891-2017. doi:

10.1162/COLI_a_00168. url: http://dx.doi.org/10.1162/COLI_a_00168.

REFERENCES 66

[34] Andreas Leitner et al. �Contract Driven Development = Test Driven Develop-

ment - Writing Test Cases�. In: Proceedings of the the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Sympo-

sium on The Foundations of Software Engineering. ESEC-FSE '07. Dubrovnik,

Croatia: ACM, 2007, pp. 425�434. isbn: 978-1-59593-811-4. doi: 10.1145/

1287624.1287685. url: http://doi.acm.org/10.1145/1287624.1287685.

[35] M. Leotta et al. �Improving Test Suites Maintainability with the Page Object

Pattern: An Industrial Case Study�. In: Software Testing, Veri�cation and

Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference

on. 2013, pp. 108�113. doi: 10.1109/ICSTW.2013.19.

[36] Cucumber Limited. Cucumber home page. 2016. url: https://cucumber.io/

(visited on 09/04/2016).

[37] S. P. Masticola. �A Simple Estimate of the Cost of Software Project Failures

and the Breakeven E�ectiveness of Project Risk Management�. In: Economics

of Software and Computation, 2007. ESC '07. First International Workshop

on the. 2007, pp. 6�6. doi: 10.1109/ESC.2007.1.

[38] Glenford J. Myers. The Art of Software Testing, 2nd edition. Wiley, 2004.

[39] Dan North. Introducing BDD. 2006. url: http://dannorth.net/introducing-

bdd/ (visited on 10/15/2016).

[40] Dan North. What's in a story? unknown year. url: https://dannorth.net/

whats-in-a-story/ (visited on 05/22/2016).

[41] Oracle. Core J2EE Patterns - Data Access Object. 2016. url: http://www.

oracle.com/technetwork/java/dataaccessobject-138824.html (visited

on 11/07/2016).

[42] Oracle. Oracle Database. 2016. url: https://www.oracle.com/database/

index.html (visited on 11/07/2016).

[43] JonathanS. Ostro�, David Makalsky, and RichardF. Paige. �Agile Speci�cation-

Driven Development�. English. In: Extreme Programming and Agile Processes

in Software Engineering. Ed. by Jutta Eckstein and Hubert Baumeister. Vol. 3092.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 104�

112. isbn: 978-3-540-22137-1. doi: 10.1007/978-3-540-24853-8_12. url:

http://dx.doi.org/10.1007/978-3-540-24853-8_12.

REFERENCES 67

[44] R. Ramler, D. Winkler, and M. Schmidt. �Random Test Case Generation

and Manual Unit Testing: Substitute or Complement in Retro�tting Tests for

Legacy Code?� In: Software Engineering and Advanced Applications (SEAA),

2012 38th EUROMICRO Conference on. 2012, pp. 286�293. doi: 10.1109/

SEAA.2012.42.

[45] P. Runeson. �A survey of unit testing practices�. In: Software, IEEE 23.4

(2006), pp. 22�29. issn: 0740-7459. doi: 10.1109/MS.2006.91.

[46] Giuseppe Scanniello et al. �Students' and Professionals' Perceptions of Test-

driven Development: A Focus Group Study�. In: Proceedings of the 31st Annual

ACM Symposium on Applied Computing. SAC '16. Pisa, Italy: ACM, 2016,

pp. 1422�1427. isbn: 978-1-4503-3739-7. doi: 10.1145/2851613.2851778.

url: http://doi.acm.org/10.1145/2851613.2851778.

[47] R. Setiadi and Man Fai Lau. �A Structured Model of Consistency Rules

in After-State Database Testing�. In: Computer Software and Applications

Conference Workshops (COMPSACW), 2014 IEEE 38th International. 2014,

pp. 650�655. doi: 10.1109/COMPSACW.2014.109.

[48] R. Setiadi and Man Fai Lau. �Identifying Data Inconsistencies Using After-

State Database Testing (ASDT) Framework�. In: Quality Software (QSIC),

2014 14th International Conference on. 2014, pp. 105�110. doi: 10.1109/

QSIC.2014.39.

[49] Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan. �Evalu-

ating the Cost of Software Quality�. In: Commun. ACM 41.8 (Aug. 1998),

pp. 67�73. issn: 0001-0782. doi: 10 . 1145 / 280324 . 280335. url: http :

//doi.acm.org/10.1145/280324.280335.

[50] Ei�el Software. Ei�el Software. 2016. url: https://www.eiffel.com/ (vis-

ited on 11/07/2016).

[51] J.A. Solheim and J.H. Rowland. �An empirical study of testing and integration

strategies using arti�cial software systems�. In: Software Engineering, IEEE

Transactions on 19.10 (1993), pp. 941�949. issn: 0098-5589. doi: 10.1109/

32.245736.

[52] TestNG. TestNG Eclipse plugin. 2016. url: http : / / testng . org / doc /

eclipse.html (visited on 11/13/2016).

REFERENCES 68

[53] Katherine E. Thompson, Evelyn P. Rozanski, and Anne R. Haake. �Here,

There, Anywhere: Remote Usability Testing That Works�. In: Proceedings of

the 5th Conference on Information Technology Education. CITC5 '04. Salt

Lake City, UT, USA: ACM, 2004, pp. 132�137. isbn: 1-58113-936-5. doi:

10.1145/1029533.1029567. url: http://doi.acm.org/10.1145/1029533.

1029567.

[54] Inc. Twitter. Twitter. 2016. url: twitter.com (visited on 11/07/2016).

[55] Bogdan Vasilescu et al. �Quality and Productivity Outcomes Relating to Con-

tinuous Integration in GitHub�. In: Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering. ESEC/FSE 2015. Bergamo, Italy:

ACM, 2015, pp. 805�816. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.

2786850. url: http://doi.acm.org/10.1145/2786805.2786850.

[56] RAML workgroup. RAML webpage. 2016. url: http://raml.org/ (visited

on 07/01/2016).

[57] N. Yahya and N.S. Awang Abu Bakar. �Test driven development contribution

in universities in producing quality software: A systematic review�. In: Infor-

mation and Communication Technology for The Muslim World (ICT4M), 2014

The 5th International Conference on. 2014, pp. 1�6. doi: 10.1109/ICT4M.

2014.7020666.

[58] H. Zhu, P. Hall, and J. May. �Software Unit Test Coverage and Adequacy�.

In: ACM Computing Surveys 29.4 (1997).

Appendix 1. Questionnaires

For all

� What are the tools you use when testing?

� What is the goal of testing in your opinion?

� Is there anything you dislike about testing and is there something you would

improve?

For manual testers

� What are the steps you take when testing a use case, bug, feature, etc. ?

� Are you ever instructed to do exploratory testing?

For developers

� Do you test your own code? (when unit testing)

� Do you create tests for all the code you write?

� What about legacy code?

For business analysts

� Besides verifying test cases, how are you involved in testing?

For managers

� Do you use testing to measure quality and how do you do it?

� What quality metrics do you use?

� Are there linchpins in testing?

