
Variant Genotyping with Gap Filling

Riku Walve

M. Sc. Thesis

UNIVERSITY OF HELSINKI

Department of Computer Science

Helsinki, November 23, 2016

Faculty of Science Department of Computer Science

Riku Walve

Variant Genotyping with Gap Filling

Computer Science

M. Sc. Thesis November 23, 2016 59

structural variations, gap filling, variation calling

Although recent developments in DNA sequencing have allowed for great leaps in both the

quality and quantity of genome assembly projects, de novo assemblies still lack the efficiency

and accuracy required for studying individual genomes. Thus, efficient and accurate methods

for calling and genotyping structural variations are still needed.

Structural variations are variations between genomes that are longer than a single

nucleotide, i.e. they affect the structure of a genome as opposed to affecting only the content.

Structural variations exist in many different types. By finding the structural variations

between a donor genome and a high quality reference genome, genotyping the variations

becomes the only required genome assembly step.

The hardest of the structural variations to genotype is the insertion variant, which

requires assembly to genotype; genotyping the other variants require different transformations

of the reference genome. The methods currently used for constructing insertion variants are

fairly basic; they are mostly linked to variation calling methods and are only able to construct

small insertions.

A subproblem in genome assembly, the gap filling problem, provides techniques that

are very applicable to insertion genotyping. Yet there are currently no tools that take full

advantage of the solution space. Gap filling takes the context and length of a missing sequence

in a genome assembly and attempts to assemble the sequence.

This thesis shows how gap filling can be used to assemble the insertion variants by

modeling the problem of insertion genotyping as finding a path in de Bruijn graph that has

approximately the estimated length of the insertion.

ACM Computing Classification System (CCS):

Applied computing – Sequencing and genotyping technologies

Theory of computation – Graph algorithms analysis

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Burrows-Wheeler transform 4

2.2 BWT-index . 5

3 De Bruijn graphs 7

3.1 Bloom filter-based representations 8

3.1.1 Probabilistic de Bruijn graph 9

3.1.2 Exact de Bruijn graph 11

3.2 BWT-index-based representations 12

3.2.1 Frequency-aware de Bruijn graph 13

3.2.2 Frequency-oblivious de Bruijn graph 15

4 Gap filling 16

4.1 Problem definition . 18

4.2 Space complexity . 19

5 Read filtering for gap filling 21

5.1 Read alignment . 22

5.2 Insert size distribution inference 23

5.3 Problem formulation . 24

5.4 Implementation . 25

6 Structural variations 26

6.1 Maximal clique enumeration 28

6.1.1 Edge computation . 29

6.1.2 Enumerating maximal cliques 30

ii

6.1.3 Runtime analysis . 31

6.2 Split-read alignment . 32

7 Insertion genotyping 34

8 Results 35

8.1 Read filtering . 36

8.1.1 Effect on bacterial genomes 41

8.1.2 Effect on eukaryotic genomes 45

8.2 Insertion genotyping . 47

8.2.1 Simulated data . 47

8.2.2 Biological data . 50

9 Conclusions 52

References 53

iii

1 Introduction

DNA is sequenced by machines by cutting strands of DNA into short segments

and reading only the segments. The sections are generally around 100

basepairs long as the probability of correctly reading segments longer than

that gets impractical with current sequencing machines. The reads can be

complemented by cutting the strands of DNA into longer segments and

reading parts from both ends of the segment. These are called paired-end

reads.

Recently, the number of reads sequenced by a single machine has been

increasing fast enough that it has been becoming possible to construct de

novo genome assemblies of different sizes. Though, for now, the dream of

accurate de novo assemblies is not quite a reality [B+13]. Thus, for larger

genomes, such as human, we need to use more efficient ways to assemble a

donor genome.

Given a reference genome and reads of a donor genome, i.e. any individual,

instead of having to attempt to fully construct the donor genome, it suffices

to find the differences between the genomes directly from the reads. These

differences, or variations, are generally split into two groups based on size.

The larger variations are called structural variations.

Structural variations are often defined as any variations between two

genomes that are longer than a single nucleotide. This follows from the

observation that differences of single nucleotides are much easier to find

from the sequenced reads by aligning the reads and ruling out noise with

enough reads. In practice, insertions ands deletions of up to 30 nucleotides

are reliably found by standard aligners [MHS13].

There exists a fairly large array of different approaches to structural vari-

ation finding [CWM+09, LHAB09, HAES09, YSL+09, ESW+12, RGCL14]

1

with all having their own sets of pros and cons. This problem has been

somewhat sidestepped by biologists, by combining the results of multiple

tools rather than simply deciding on one [FMP+14].

It should be noted that the problems of finding the structural variations

and telling what the variations actually are, called genotyping, are two

different problems that are often very intertwined. Most tools do their best

at answering both problems, but in the case of insertions in the donor genome,

the genotyping problem gets closer to genome assembly as the length of the

insertion grows.

A similar problem faced in genome assembly is the gap filling problem.

In the gap filling problem, we attempt to construct a sequence of the donor

genome from the sequenced reads, such that it fills a gap of estimated length

between two known sequences. The problem of genotyping insertions can

be defined essentially equivalently to the gap filling problem; genotyping

insertions by assembling a sequence of estimated length is gap filling with

different expectations of difficulty.

Gap2Seq [SSMT15] is an implementation of an algorithm for solving the

gap filling problem by reducing it to the exact path length problem, i.e.

finding a path of a given length between two vertices in a graph. It manages

to fill gaps better than most other tools according to their results. However,

it fails to scale up to human data. The failure to scale up is largely due to

the amount of reads needed to cover large, human-sized, genomes.

In this thesis, we show that using read pair information of the reads we

can filter the reads down to a useful subset for a single gap and that we

can use the resulting workflow to efficiently genotype insertions that were

previously impossible.

2

2 Preliminaries

Strings are sequences S = s1s2 . . . sn of symbols si from an alphabet Σ =

{c1, c2, . . . cσ}, where σ = |Σ|. The alphabet is assumed to be ordered, i.e.

c1 < c2 < · · · < cσ. Though the alphabet can technically be anything that

can be ordered, within the context of DNA strings it comprises of the symbols

for the four nucleotides, Σ = {A,C,G, T}. We will also use the notation

c+ 1 and c− 1 to mean the next character larger and smaller than c in the

alphabet respectively.

We will use 1-indexed strings throughout, i.e. they start at position 1.

The notation S[i..j] is used to mean the substring of S that starts from i

and ends in j, i.e. S[i..j] = sisi+1 . . . sj . We will call substrings that starts

from the beginning of the string S[1..i], prefixes and substrings that end at

the end of the string S[j..n], suffixes. Strings can also be decomposed into

overlapping k-mers. k-mers are substrings of length k.

For example, the suffixes of ATGCATGC are,

A T G C A T G C

T G C A T G C

G C A T G C

C A T G C

A T G C

T G C

G C

C .

As the alphabet is ordered, we can compare any two strings S and T and

thus even order a set of strings. Sorting strings into the order of the alphabet

is called sorting into lexicographic order. String S is said to be smaller than

T if and only if, either S is a prefix of T , or at the first position i where the

two differ si < ti. A set of strings S = {S1, S2, . . . , Sn} is ordered if for all

strings Si < Si+1.

3

For example, the sorted set of suffixes of ATGCATGC is,

A T G C

A T G C A T G C

C

C A T G C

G C

G C A T G C

T G C

T G C A T G C .

2.1 Burrows-Wheeler transform

The Burrows-Wheeler transform was originally defined with sorted cyclic

permutations of a string [BW94]. A cyclic permutation is a permutation of a

string where the first symbol is moved to the last position. Sorting all the n

cyclic permutations of S and taking the last character of every permutation

gives us the Burrows-Wheeler transform of S.

Since we have to sort the n cyclic permutations of length n each, doing

this naively would take O(n2 logn) time. We can also define the transform

using a suffix array of a string.

Suffix arrays are used as the basis for many tasks involving string pro-

cessing. As such, they are very well studied and there exist multiple linear

time construction algorithms for them [PST07]. Entries in a suffix array

SAS [1..n] define the starting positions of the lexicographically sorted set of

suffixes of S.

Definition 1. Let S = s1s2 · · · sn be a string. The i-th element in the suffix

array SAS [i] = j corresponds to the lexicographically i-th suffix S[j..n].

When adding a special character $ to the end of the string, sorting all

the cyclic permutations reduces down to sorting the suffixes of the string.

Taking the last symbol from the permutations translates to taking the

4

symbol preceding the start of the suffix. More formally, we have the following

definition.

Definition 2. Let S = s1s2 · · · sn be a string, such that si ∈ Σ for all

1 ≤ i < n and sn = $ where $ < s for all s ∈ Σ. The Burrows-Wheeler

transform of S is then,

BWTS [i] =

 S[SAS [i]− 1], if SAS [i] > 1

S[n], otherwise

As only a single linear pass over the suffix array, which takes O(n) time

to construct, is needed, this takes only O(n) time in total.

For example, the Burrows-Wheeler transform of T = ATGCATGC$ is,

SAT BWTT T [SAT [i]..]

9 C $

5 C ATGC$

1 $ ATGCATGC$

8 G C$

4 G CATGC$

7 T GC$

3 T GCATGC$

6 A TGC$

2 A TGCATGC$.

2.2 BWT-index

As string ordering is solved at the string differences, if X ≤ Y lexicograph-

ically then cX ≤ cY for any character c ∈ Σ. If the i-th character in the

Burrows-Wheeler transform is BWT[i] = c is the j-th occurrence of c in BWT,

then cX is j-th suffix starting with c and X is the suffix starting at position

SA[i].

5

Finding the range [s..e] of suffixes that start with c1 consists of finding

the first and last suffixes that start with c1. Finding the first suffix is done

by finding the last suffix that starts with a character smaller than c1.

This could be done by counting the number of occurrences of characters

smaller than c1 in the text, but we can precompute the number for all

characters in an array C. Equivalently we can define C[c] to be the sum of

frequencies over the set of characters {c1c2 · · · c − 1} smaller than c. Note

that we will use C[c1] = 0 and C[cσ+1] = n

Now the first suffix starting with c1 is at position s = C[c1] + 1 in BWT.

The last suffix starting with c1 is at position e = C[c1 + 1]− 1. The range of

suffixes that start with c1 is thus [s..e].

Finding the range of suffixes that start with P = c2c1 then means finding

the positions of the first and last suffixes starting with c2. The range is then

offset from both sides by the number of suffixes that are smaller or larger,

respectively, than P .

As all the suffixes smaller than c1X have to be before s in BWT, we only

need to find suffixes smaller than c2c1X in BWT[1..s − 1]. We do this by

counting the number of occurrences of c2 in BWT[1..s− 1].

We will use the notation rankc(BWT, i) to mean the rank of c up to position

i in BWT, i.e. the number of occurrences of c in BWT[1..i]. The rank queries

can be answered in O(log σ) time when the Burrows-Wheeler transform is

stored in a wavelet tree structure [MBCT15].

We can thus update the range [s..e] of suffixes starting with c1 to the

range of suffixes starting with P by saying s = C[c] + rankc(BWT, s− 1) + 1

and e = C[c] + rankc(BWT, e). The range of suffixes that start with P is

then the range [s..e]. With this information we can say that the number of

occurrences of the pattern P is e−s+1. This is also described in Algorithm 1.

This technique of finding occurrences of a pattern P = c1c2 · · · cm in BWT

is called backward search and is named for the fact that the pattern needs to

6

be searched right-to-left. The technique is the basis for a lot of the tricks

that are used with Burrows-Wheeler transforms as we will see in the next

section. We will also use the BWT-index structure to mean we are given the

transform BWT and the array C.

Input : Burrows-Wheeler transform BWT of text
S = s1s2 · · · sn, count array C[0..σ], and a pattern
P = p1p2 · · · pm

Output : The number of occurrences of pattern P in text T

i← m;
(s, e)← (1, n);
while s ≤ e and i ≥ 1 do

c← pi;
s← C[c] + rankc(BWT, s− 1) + 1;
e← C[c] + rankc(BWT, e);
i← i− 1;

end
if e < s then

return 0;
else

return e− s+ 1;
end

Algorithm 1: Backward search for a pattern with a BWT-index

3 De Bruijn graphs

DNA cannot be sequenced in its entirety with a single read, as sequencers can

only read short sections while maintaining accuracy. Further, splitting the

DNA into short sections using a chemical process makes the splits at random

positions. This makes it difficult to tell where any single short section came

from. The well-studied problem of assembling the short sequences into the

full genome is called genome assembly.

Genome assembly is usually abstracted as the problem of reconstructing

a string from a set of its k-mers [IW95]. This is often done by way of de

Bruijn graphs. They are directed graphs G = (V,E) where vertices v ∈ V

7

correspond to k-mers present in the set of reads R and edges (v, v′) ∈ E

correspond to observed (k + 1)-mers in the reads starting with v and ending

with v′.

For example, the de Bruijn graph of T = ATGCATGC, and k = 2 is

AT TG

GCCA

Note that this definition is strictly speaking a subset of a traditional de

Bruijn graph; de Bruijn graph as used in other contexts refers to a graph

containing all possible k-mers. In genome assembly it makes sense to use this

subset of the graph to represent a given genome; not only is it more efficient

to work with the subgraph, it also makes solutions to problems specific to

the genome.

In practice, choosing a value of k is an act of careful balance; a large value

of k creates an untangled graph and reduces repeat collapsing, while a small

k avoids fragmentation of the graph. Some genome assembly algorithms

attempt to tackle this by using multiple different values of k [PLYC10].

Recently, there has been work on a few different approaches on general-

izing de Bruijn graphs around its parameter of k [BBG+15, LP14]. Mainly

the variable-order de Bruijn graphs, which allow for changing k on the fly,

have been shown to be practical to construct, but traversing them requires

further restrictions.

3.1 Bloom filter-based representations

The Bloom filter [KM06] is a space-efficient hash-based data structure, de-

signed to test whether an element is in a set. It consists of an array of m bits,

initialized as zeroes, and h hash functions. In order to insert an element into

8

a Bloom filter, h positions in the array are computed with the hash functions

and all positions are set to 1. Testing whether an element is in a set with the

Bloom filter is done by testing whether all of the h corresponding positions

in the array are set to 1.

Using Bloom filters is clearly faster than going through an entire set of

elements to test whether an element is in the set, as the number of elements

in the set n usually dominates over the number of hash functions h. The

main drawback is the fact that Bloom filters can give false positives, i.e.

saying an element is in the set when it is not, when encountering collisions

with the hash functions.

Considering hash functions that yield equally likely positions in the bit

array, the false positive rate F is [CR13]

F ≈
(
1− e−h

n
m

)h
.

With a fixed bits per element ratio r = n
m , minimizing the equation

gives the optimal number of hash functions h ≈ 0.7r, for which F ≈ 0.6185r.

Assuming the optimal h and solving the equation for m gives an optimal

array size of m ≈ 1.44 log2(1
F)n.

We will now look at two different approaches to representing a de Bruijn

graph with a Bloom filter. The first is a simpler method of inserting k-mers

in the text to a Bloom filter and querying for implicit overlaps of the k-mers.

The second one removes false positives from the overlap querying by building

a structure to hold all false positives overlaps of the k-mers.

3.1.1 Probabilistic de Bruijn graph

Constructing a probabilistic de Bruijn graph [PHCK+12] consists of inserting

all k-mers into a Bloom filter. Edges (u, v) between k-mers are then deduced

by querying the Bloom filter for the k-mer v that is prefixed by the k − 1

length suffix of u.

9

Note that as the reads contain sequencing errors at random positions,

we cannot guarantee all k-mers from the reads are genomic, i.e. exist in the

genome. A commonly used strategy to reduce the number of incorrect k-mers

in the de Bruijn graph is to count the occurrences of each k-mer and only

include ones that have a frequency above some threshold. The reasoning is

that as the read coverage grows the frequency of genomic k-mers grows.

Querying for (in-/out-) neighbors of any one k-mer can be done by

querying for all σ possible neighboring k-mers. This clearly takes O(σh)

time, thus does not theoretically slow down with growing graph sizes. This is

also a space-efficient representation of a de Bruijn graph, as it only requires

m bits of space, where m is a pre-determined size for a Bloom filter as

previously discussed.

For example, the 2-mers for T = ATGCATGC, a single simple hash

function, and a small array size m = 8 give the following probabilistic de

Bruijn graph,

AT TG

GCCA

TA

c1 . . . ck
∑k
i=1 c

i
i mod 8

AT 5

TG 4

GC 3

CA 2

TA 5

Even with this trivial example, the problem of over-approximation of the

graph becomes noticeable. The Bloom filter allows for following an edge from

AT to TA which does not exist in the graph. Handling the false positives in

a succinct manner is thus critical for using a Bloom filter-based de Bruijn

graph.

10

3.1.2 Exact de Bruijn graph

Removing the false positives from the probabilistic de Bruijn graph was

studied in [CR13]. This is done by extending the probabilistic representation

by adding another structure cFP which marks all false positive edges in the

de Bruijn graph.

Querying for neighbors in the graph is modified to only return neighboring

k-mers that the Bloom filter returns a true value for and that are not in the

cFP structure.

The cFP structure is constructed by enumerating all possible extensions

from k-mers in the graph, i.e. all the implicit edges for which the Bloom

filter gives a positive answer. For each such extensions, we check if it exists

in the actual graph. If an implicit edge in the graph leads to a non-existing

k-mer, the edge is false positive and is added to the cFP structure. This

algorithm and how it can partition the work sets to keep a low memory usage

11

are detailed in Algorithm 1.

Input : The set S of all vertices in the graph, the Bloom filter B
constructed from S, and the maximum number M of
elements in each partition

Output : The set of false positive edges cFP

i← 0;
for each k-mer m ∈ S do

for each extension n of m do
if n ∈ B then

Di ← Di ∪ {n};
end

end
end
while end of S is not reached do

Pi ← ∅;
while |Pi| < M do

Pi ← Pi ∪ { next k-mer in S};
end
for each k-mer m ∈ Di do

if m /∈ Pi then
Di+1 ← Di+1 ∪ {m};

end
end
delete Di, Pi;
i← i+ 1;

end
cFP ← Di;
return cFP ;

Algorithm 1: cFP structure construction. The memory usage is entirely
dependent on the number of elements allowed for each partition, as the
Bloom filter B can be freed after finding all extensions for which B answers
yes.

3.2 BWT-index-based representations

Using the previously described BWT-index, we can not only store de Bruijn

graphs efficiently, we can also efficiently construct the additional required

structures to represent the graphs.

12

In this subsection we will look at two different BWT-index-based ap-

proaches to representing the de Bruijn graphs. The first one is a straightfor-

ward structure that adds a bit vector to the BWT-index to mark repeated

runs of k-mers in the transform. The second approach, while actually un-

related, can be seen as an optimization over the first as it collapses all the

k-length repeats in the suffixes to more compactly store the de Bruijn graph.

3.2.1 Frequency-aware de Bruijn graph

Presented originally as a Compressed Gk array by Välimäki and Rivals [VR13]

the structure was later shown to be functionally usable as a de Bruijn

graph [MBCT15].

The structure exploits the fact that when we are sorting suffixes, we are

implicitly also sorting all the prefixes of the suffixes. When we consider all

the k-mers in the text to be the k length prefixes that are common between

the suffixes where the k-mers start, all the unique k-mers correspond to

intervals in the suffix array and thus the Burrows-Wheeler transform.

We simply mark all the starting positions of the intervals in a bit vector

first[1..n], where n is the length of the Burrows-Wheeler transform. There

is no need to mark the ending positions in the bit vector, as all intervals

end only when the next interval starts. Finding the starting positions for all

the k-mers is trivial to do in O(σk) time; we use backward searching on all

possible unique k-mers to find the interval of the transform they correspond

to, and mark the starting position in the bit vector.

This construction time can be improved by only searching for the k-mers

that exist in the text. The basic idea is that at each step of the backward

searching, all the possible extensions to the current pattern are the unique

characters in the search interval. With a wavelet tree representation of

the Burrows-Wheeler transform, the unique character query for an interval

[i..j] can be answered in O(σ log σ) time by computing the ranks for all

13

characters at the starting and ending positions of the interval and noting

that if rankc(BWT, i) 6= rankc(BWT, j) then c appears in the interval at least

once.

This shrinks the construction time to only O(n log σ) as all overlapping

k-mers are searched for only once and the combined length of the k-mers is

bounded by the length of the text. Note that the algorithm also simulates a

traversal on the suffix link tree [MBCT15].

Querying for (in-/out-) neighbors of a k-mer given the corresponding

interval can be done in O(σ log σ) time by taking all σ possible backward

steps on the Burrows-Wheeler transform.

For example, the frequency-aware de Bruijn graph for T = ATGCATGC

and k = 2 is,

AT TG

GCCA

first BWTT T [SAT [i]..]

1 C $

1 C ATGC$

0 $ ATGCATGC$

1 G C$

1 G CATGC$

1 T GC$

0 T GCATGC$

1 A TGC$

0 A TGCATGC$.

Using the full Burrows-Wheeler transform also allows us to answer queries

on the number of occurrences of each k-mer in the original text as the length

of the interval is the frequency of the k-mer. These queries are less often

used though, thus not supporting them also makes sense as it allows to have

a more compact representation of the graph.

14

3.2.2 Frequency-oblivious de Bruijn graph

Similar to the frequency-aware de Bruijn graph, the BOSS [BOSS12] (from

the authors’ initials) structure is based on a structure similar to the BWT-

index. Unlike a BWT-index, where we store characters preceding sorted

suffixes, here we store the characters following each sorted k-mer, effectively

storing the unique edges of the de Bruijn graph. It thus, compared to the

frequency-aware representation, throws away the frequency information of

the k-mers in order to save space.

Since the structure stores the edges of the graph, we need to technically

consider the (k + 1)-mers of the text during the construction to maintain

similarity with the other methods. Structures that store edges are called

edge-centric in general.

To construct the BOSS structure, we need to find all the k-mers that

have a frequency above a given threshold and sort them into co-lexicographic

order. In a co-lexicographic order, the strings are sorted in lexicographic

order from right to left. Note that we can use either the Bloom filter based

k-mer counting or the frequency-aware de Bruijn graph of the text to count

and sort the k-mers.

For each of the sorted k-mers v, we will need to take the character

following it in the text and store it in an array as W [v]. We will also need

an bit vector L[0..m] to mark all unique vertices, i.e. L[e] = 1 means e is

the first edge from the corresponding k-mer, and a position array F [0..σ]

encoding the positions for the first vertex of ending with each character.

For example,

15

A T

GC

AT

TG

GC

CA

L k-mer W

1 $$ A

1 $A T

1 CA T

1 GC A

1 TG C

1 AT G

The space required by the structure is m bits for L, σ log2m bits for F

andm log2 σ forW , and given the DNA alphabet this equals a total of 4+o(1)

bits for each of m edges. Thus, even though of the four representations of a

de Bruijn graph, this is the most complex, it is also the most succinct.

4 Gap filling

Gap filling is the process of reconstructing the missing sequence between

contiguous sections, called contigs, of a genome assembly that have a gap of

either an estimated or an unknown length between them.

The gaps are simply sections that proved difficult for the genome assembler

to assemble. The difficulty comes mainly from two things, either the section

has been sequenced with a low coverage or contains too much repetitive

sequences to unambiguously assemble.

Many genome assemblers, such as Allpaths-LG [GMP+11] and

ABySS [SWJ+09], include a gap filling module in their pipelines. There

are also standalone gap filling tools available, e.g. SOAPdenovo’s

GapCloser [LLX+12], GapFiller [BP12], Gap2Seq [SSMT15], MindThe-

Gap [RGCL14] and Sealer [PWV+15].

All these tools attempt to do a local genome assembly with a set of reads

16

of the donor genome. The methods used in the tools vary somewhat between

using overlaps within a subset of the reads in Allpaths-LG, using a k-mer

based method in GapFiller, and the de Bruijn graph based methods used

in GapCloser, Gap2Seq, MindTheGap and Sealer. As the commonly used

implementations of de Bruijn graphs have improved in recent years, the

graph based methods tend to be more efficient and yield better sequences.

The major issue with the de Bruijn graph based methods is how to choose

a value of k for the graph. Gaps stemming from low read coverage can

generally be assembled with shorter k-mers, as the graph is more likely to

contain all required k-mers. Repetitive sequences are easier to fill with longer

k-mers as the graph is less tangled. To get around the problem, Sealer finds

paths using multiple graphs with different values of k.

In this section, we present the formal definition for the gap filling problem

used by Gap2Seq, and show how it can be efficiently implemented with the

succinct de Bruijn graphs previously shown. Gap2Seq is chosen here for

the robustness of its problem definition. Two key reasons for which are as

follows.

First, rather than directly using a de Bruijn graph to fill the gap, MindThe-

Gap attempts to construct a graph of assembled contigs from which it finds

a path over the gap. The problem of this is that the contigs should have

already been considered by the genome assembly method leading up to the

gap filling. Gap2Seq and Sealer both find paths in the de Bruijn graph

directly instead.

Second, MindTheGap and Sealer both discard the gap length estimate in-

formation. Sealer considers all paths between the two gap-flanking sequences

and builds a consensus of those. Whereas Gap2Seq finds only paths with a

length close to the estimated gap length.

Although robust, the path finding method employed by Gap2Seq does

not scale up to large de Bruijn graphs. We will consider using read filtering

17

to construct smaller de Bruijn graphs later in this thesis.

4.1 Problem definition

With a general graph of strings, the gap filling problem can be defined as

finding a path from a starting string s to an ending string t, such that the

length of the path is approximately the known length of the gap. The strings

s and t are chosen such that they correspond to parts of the contig right

before and after the gap respectively.

Definition 3. Gap Filling problem. Given a directed graph G = (V,E), two

vertices s, t ∈ V , a cost function c : E → Z≥0, and an interval of path costs

[d′..d], find a path P = v1v2 · · · vn such that v1 = s, vk = t, and

Cost(P) =
k−1∑
i=1

c(v1, vi+1) ∈ [d′..d].

With a de Bruijn graph, we can define the cost function to be 1 when

two vertices have edge, as they overlap by k − 1 symbols, and ∞ everywhere

else, as such an edge in the path is impossible. This makes the cost of the

path the number of vertices in the path that are not s or t. An example of

gap filling with a de Bruijn graph is given in Figure 4.

This can be solved in O(d |V |) time with a simple dynamic programming

pattern. This is a pseudo-polynomial time complexity as it depends on the

cost of the path which could be arbitrarily large but as we will see later in

the results, the size of the graph clearly dominates the runtime.

18

. . . TGCA

AT TG

GCCA

CATG . . .

Figure 4: An example of filling a gap using a path through a de Bruijn graph.

The path CA-AT-TG-GC-CA, where CA on both sides of the path are the

flanks, connects the two contigs with a cost of 3.

We need to fill a matrix M [v][i], where v ∈ V and i ∈ [1..d], such that

M [v][i] tells the number of paths that reach v from s, by following i edges.

This can be done with a breadth-first search in G where we incrementM [v][i]

when we reach v from any vertices v′ where M [v′][i− 1] > 0. We then trace

some path back from any M [t][i] > 0 where i ∈ [d′..d] and output the labels

of the vertices in the path.

4.2 Space complexity

We will add an artificial limit to the number of paths to a vertex for two

reasons. First, we are only interested in biologically viable sequences, thus

abusing a cycle in the de Bruijn graph to produce an arbitrarily lengthy se-

quence is not useful. Second, a simple limit will greatly reduce the complexity

of the following analysis of the space requirements.

Storing the dynamic programming matrix, M naively is going to take

d log2m|V | bits of space, where m is the maximum number of paths to any

vertex. Since the vertices in used in a path is going to be far less than the

vertices in the overall graph, we know that the matrix is going to be very

sparse, so we can store it in a more compact way. We can store only the

non-zero rows of the matrix by associating each row with the corresponding

k-mer. With the BWT-index based de Bruijn graphs the k-mers are ordered,

19

so we can use the k-mer ordering to associate the row to the k-mer. With

the Bloom filter de Bruijn graphs, we need to use hashing.

Note that rather than storing the number of paths, we could store boolean

values answering only whether we can reach a vertex v with i edges. In fact,

assuming the rows are sparse as well, we could even store the booleans more

compactly by storing only the indices of all 1s. This would take dn log2 d

bits of space, where n is the number of non-zero rows in the matrix. Though,

now we cannot use the number of path information to filter out highly cyclic

paths.

Since we are filling the matrix in a breadth-first search, we are only ever

accessing either the number of paths to a vertex in i− 1 edges when filling

the i-th column of the matrix, or whether the number of paths is non-zero

when tracing back the path. Thus we only need to store the number of paths

for the previous and current columns of the matrix at each step. This would

get us down to dn log2 d+ n log2m bits of space.

Each row in the matrix can be stored more efficiently by noting that

they consist of strictly increasing integers. Thus it suffices to store only the

differences between every two elements. The rows are also only being read

or appended to at the end; the rows can be represented as stacks and each

integer can be decoded from the differences by keeping track of the top most

integer and subtracting the last difference from the top gives the previous

integer.

Still, storing the differences as such does not really help as the largest

possible difference is still d− 1 and each element in the stack still requires

log2(d − 1) bits of space. We can use Elias gamma coding [Eli75] to store

the variable length differences as a sequence of bits. Gamma coding is done

by taking the N -digit binary representation of an integer and adding N − 1

zeroes to the beginning. For example, γ(5) = 00101, since 52 = 101.

Any gamma coded integer can then be decoded by first counting the

20

number of zeroes in the beginning, and taking the corresponding number of

bits as the binary representation of the integer. Though, this also means

that we are adding some additional overhead to the path tracing portion of

the algorithm.

Now, even in the worst case, where the graph is a complete graph

and thus every vertex is reached at every step, we will only need at most

|γ(d)| = 2 log2(d) + 1 bits to store each row in the matrix. The total space

required by this increasing stack structure is

∑
v∈V

|M [v]|∑
i=1
|γ (M [v][i]−M [v][i− 1])|

≤
∑
v∈V

|M [v]|∑
i=1

2 log (M [v][i]−M [v][i− 1])

≤
∑
v∈V

2 log d+ d

≤ 2n log d+ dn.

Although this already brings the memory cost quite low, we still need to

deal with the relatively high running time, especially with long paths and

large graphs. There is not much that can be done about the long paths but

the size of the de Bruijn graph can be dealt with using filtering.

5 Read filtering for gap filling

When solving the genome assembly problem by finding paths in de Bruijn

graphs, we end up with long contigs that are connected by the unresolved

gaps we were attempting to find with gap filling. The gaps are there because

of uneven representation of k-mers in the graph, which is a consequence of

either missing vertices (and edges) in the graph or repeats in the genome

that are longer than the read length.

21

...ATGCATGC ATGCATGC...

Alignment Region

Read pairs

Gapped genome assembly

(a)

(b)

Figure 5: The alignment region defined by the minimum and maximum

starting positions for gap-covering read alignments.

For filling a gap, we would intuitively want to only use the subset of

reads that cover the given gap. By restricting the set of reads to those that

cover the gap, we can give stricter assumptions about the distribution of the

k-mers. To find all the reads that cover a region of the scaffold, we are going

to use read alignment.

In this section we will first go over the read alignment problem and then

present a method using the read alignments to find all gap-covering reads.

5.1 Read alignment

Read alignment is a well studied problem in bioinformatics [LD09]. The

basic idea is to find, for a set of reads, the positions where they could have

been sequenced from in a reference genome. This is greatly complicated

by the fact that not only do the reads contain sequencing errors, they also

were not sequenced from the reference genome. We can generally solve the

problem by allowing each read alignment to have a certain edit distance.

The edit distance of two strings ed(S, T) is defined as the minimum

number of edit operations to transform S into T . One of the most common set

of edit operations are the Levenshtein edit operations: insertions, deletions

22

and substitutions. For example, the Levenshtein distance of the strings

ACTGACTG and CTCGACTGC is 3, as shown by the alignment

A C T G A C T G

- C T C A C T G C.

Aligning a single read to a reference genome can then be done by finding

the substring of the genome that minimizes the edit distance. Similarly

aligning a set of reads is done by minimizing all edit distances between the

reads and substrings of the genome.

Definition 4. Read Alignment problem. Given reads R, and a reference

genome G = g1g2 · · · gm, find all alignment positions A(r) = (x, y) for reads

r ∈ R such that
∑
r∈R ed(r,G[x..y]) is minimized.

The problem has been solved in multiple ways in the past [LD09, MS13].

One way is to construct a Burrows-Wheeler transform of the reference genome

and use the backward search algorithm to find exact matches for parts of

the reads and attempt then extend them such that the edit distances are

kept minimal. This is essentially what the commonly used Burrows-Wheeler

Aligner [LD09] does.

Read pairs could also be taken into consideration here; for some estimated

insert size between two reads the possible positions for alignments that

minimize the edit distance to a reference genome are greatly reduced.

The reverse application for read pairs is also useful: insert sizes for read

pairs can be observed by aligning all reads and calculating the distances

between read pairs. In fact, the entire distribution of insert sizes for a

sequencing read library can be inferred from an alignment, though some care

needs to be taken when doing so.

5.2 Insert size distribution inference

The insert sizes of a read library can mostly be assumed to be distributed

according to the normal distribution N (µ, σ) [MCC+12]. The mean µ and

23

deviation σ that define the distribution can be inferred from the mapped

alignments.

In the case of the fragmented assemblies considered here, there is a bias

that has to be taken into account; the reads with longer insert sizes can be

expected to span across contigs [SFA15].

By inferring the parameters for the entire distribution of insert sizes,

we can estimate a lot of the properties of the read library and its insert

sizes. For example, we can give more accurate estimates for insert sizes to

refine the read alignment of read pairs. Or, in fact as we will see in the next

subsection, we can also use the parameters to estimate the minimum and

maximum insert sizes for a given percentage of the distribution.

5.3 Problem formulation

The read filtering problem can be defined formally as,

Definition 5. Read Filtering problem. Given an interval of a gap [s..e]

and read alignments A(R) for reads R, find the reads r ∈ R such that A(r)

overlaps with [s..e].

Finding all the reads whose mate would be in a region R = [s..e] can be

seen as finding all the reads that map to a region that is defined symmetrically

on both sides of R by the first and last possible positions a read could start

from to have a mate belong to R. The regions Rleft and Rright can be defined

using the parameters of the original region and the combined length of both

the read length ` and the expected insert size. The regions can be defined as,

Rleft = [s− (max +2`)..e− (min +`)],

Rright = [s+ (min +`)..e+ (max +`)],

where max and min are the maximum and minimum insert sizes respec-

tively.

24

The values for max and min can computed from the distribution of insert

sizes. For example, choosing the insert sizes to be within the 95% confidence

interval of the distribution, i.e. P (|X| ≥ I) ≤ 0.05, gives us a maximum and

minimum insert sizes of µ± 1.96σ.

Though the use of the traditional 95% confidence interval is prevalent in

statistics, in a filtering context, we want to allow the minimum and maximum

insert sizes be as far apart as possible. The tradeoff here is between letting

too many incorrect reads through the filter and leaving the correct reads out.

We will use a default of µ ± 4σ to compute max and min. It should

also be noted that the insert sizes are not necessarily even symmetrically

distributed, so using a different multiplier for max and min could be useful

in some cases.

Now finding all the possible reads to contribute to the gap can seen as

finding all the mapped reads that overlap with R and all the mates of reads

that map with either Rleft or Rright.

As the sequenced reads can be assumed to be read from random positions,

we can further assume that all positions should be sequenced with equal

coverage. Thus we can calculate the expected coverage C = |reads|
|genome| and

expect the set of filtered reads to have the same coverage |filteredreads||region| ≈ C.

Now if the read filtering gives a coverage that is significantly smaller than

expected, we are likely to be missing reads that are unmapped. All the

unmapped reads can then be added to the set of filtered reads.

5.4 Implementation

Since the alignments can technically be given in any order, there are some

issues with finding all the alignments that overlap a given region. With an

unordered set of alignments finding all the ones that overlap with a region

requires going through all the alignments and checking if they do overlap.

To efficiently iterate through all the alignments, they are often first sorted by

25

their mapped position and then indexed into bins. This allows us to find the

bins that overlap the region in time that is linear in the number of bins and

then find only the reads that overlap with the region in time that is linear in

the number of reads in the bins.

Finding mates of reads poses another problem because the reads are now

ordered by their position rather than by their name. Assuming that there is

going to be more reads to find by position, this is the better way to order

the input. We can find the mates by using a pair of hash functions, the first

computes the hash of a read’s name and whether the read is first or second

in the pair, the second one uses the opposite of the read’s order in the pair.

We can then iterate through the reads and find all the mates in O(kmn)

where k is the length of the read identifiers, m is the number of alignments

and n is the number of reads that overlapped with either Rleft or Rright.

Since we can expect m to dominate here, the time can further be optimized

by only iterating through all the reads that did not map.

As we are simply filtering out reads that would not contribute to the gap,

we need not to worry about possible false positives. So a Bloom filter can be

used to more efficiently find all the mates of the reads that are mapped to the

regions. As the filter has a lookup time that is independent of the number of

alignments are added to the set. For matching to the corresponding mates

of the found reads, we can achieve a time complexity of O(kmh) where k

and m are as previously set and h is the number of hashing functions.

6 Structural variations

Structural variations are variations between genomes that are large enough to

affect the structure of the genome. This distinction exists only to differentiate

the problems of finding and genotyping the structural variations and the

much easier problem of finding and genotyping single nucleotide variations.

Structural variations exist in many different, similar to the usual edit

26

operations insertions, we have the insertions and deletions. Due to biological

reactions, there are three additional variations, inversions, which inverts a

region of the genome, and translocations, which swaps two regions of the

genome, and copy-number variations, which duplicates a region of the genome

multiple times.

The hardest of the variations to genotype is the insertion variants. Geno-

typing an insertion in a donor genome can be defined similarly to the gap

filling problem [MBCT15]: finding the starting and ending positions of an

insert and filling the gap with something that is approximately the expected

length of the insert.

There are four basic approaches to finding structural variations.

1. Insert size based

2. Split-read alignment based

3. Coverage based

4. De novo assembly

Insert size-based approaches [MCC+12, CWM+09] attempt to take the

short paired-ended reads of a genome and align them to the reference and

find any abnormalities in the observed and expected insert sizes of the reads.

The main problem here is how to find all the alignments that support each

abnormality.

Split-read alignment-based approaches [YSL+09, MS13, ESW+12] at-

tempt to align reads across the insertions and deletions. This approach gives

an accurate prediction of breakpoints but mostly for insertions and deletions

up to around 30bp.

Coverage-based approaches aim at finding deletions and duplications by

finding areas that get abnormal amount of reads mapped to them. They

only work for very large deletions and duplications.

27

De novo assembly-based approaches to finding structural variations are

barely relevant as the quality of de novo assembly is not currently sufficient

for finding variations between individuals.

The basic approaches can also be combined to create hybrid approaches

[MHS13, RZS+12, JWB12]. The power of combining the basic approaches

can be seen from how the different approaches can find variations with

different lengths. The optimal hybrid approach would thus be to use a

split-read aligner to find short variations, insert size-based approach to find

medium length variations and a coverage-based approach for long variations.

In the following subsections we describe in more detail the state-of-the-art

for the two approaches to finding structural variations that are suitable for

insertion calling, insert size and split-read alignment.

6.1 Maximal clique enumeration

Finding structural variations using paired-end reads and the insert sizes of

the reads is a fairly standard method. Basically it entails looking for read

pairs that have an insert size that deviates too much from the mean of the

distribution. The main problem arises from trying to figure out which of

these pairs are just noise.

This approach is usually accompanied with the assumption that the

paired-end reads that do map to the reference genome represent the entirety

of the distribution of insert sizes. Sahlin et al. [SFA15] showed that this

assumption does not in fact hold and introduces bias. An improved null

hypothesis showed promising results with simulated data.

CLEVER [MCC+12] (CLique-Enumerating Variant findER) creates a

graph of read alignments and finds maximal cliques in the read alignment

graph. If these cliques are large enough, there could then be a deletion

or insertion. This approach is easiest to grasp by splitting it into two

subproblems that the authors solved in their paper. First is the construction

28

of the read alignment graph and the second is the enumeration of maximal

cliques in the graph.

Read alignment graphs are graphs with alignments as vertices and the

edges represent two alignments that stem from the same allele. The edges

are computed with rigorous statistical testing based on the expected insert

sizes of the paired-ended reads. A maximal clique in a read alignment graph

then means that the group of read pairs all vote for the same observed insert

size.

The problem of enumerating all maximal cliques cannot be solved in

polynomial time on arbitrary graphs, since there can be an exponential

number of maximal cliques. Thus using a specifically engineered method for

read alignment graphs is necessary for efficient computation.

6.1.1 Edge computation

The first subproblem in the clique enumeration approach is the construction

of the read alignment graphs that are used later to find maximal cliques.

Definition 6. Read Alignment Graph Construction problem. Given align-

ments A(r) for reads r ∈ R. Compute the most likely edges E between

alignments in order to construct the read alignment graph G = (A,E).

Let A = (xA, yA) and B = (xB, yB) be two alignments that have the first

read end at position xA and xB and the second read start at position yA
and yB respectively. The empirical insert sizes of the reads based on the

alignments are defined as I(A) = yA − xA and I(B) = yB − xB respectively.

The amount of overlap between the two alignments is defined as O(A,B) =

min(yA, yB) − max(xA, xB) − 1. The mean interval length is I(A,B) =
1
2(I(A) + I(B)) and difference of the mean interval length and overlap is

defined as U(A,B) = I(A,B)−O(A,B).

Now the statistical testing for edges can be defined. Let variable X be

N (0, 1)-distributed and µ and σ the parameters of the insert size distribution.

29

Reference genome

(a)

(b)

Read pairs

Figure 6: The two possible variants found with CLEVER. The first case is

where the observed insert size is significantly shorter than expected. This

indicates an insertion in the donor genome. The second symmetrically

indicates a deletion in the donor genome. Figure adapted from [MCC+12].

An edge between A and B is added iff,

1. A 6= B,

2. O(A,B) ≥ 0,

3. P (|X| ≥ 1√
2
|I(A)−I(B)|

σ) ≤ 0.05, and

4. P (X ≥
√

2U(A,B)−µ
σ) ≤ 0.05.

6.1.2 Enumerating maximal cliques

The second subproblem is the enumeration of maximal cliques in the now

constructed read alignment graph. Cliques are sets of vertices that are

adjacent to all other vertices in the clique. Maximal cliques are cliques that

cannot be extended with any more vertices in the graph.

30

Definition 7. Maximal Clique Enumeration problem. Given a read align-

ment graph G = (V,E) and the endpoints xA, yA of alignment intervals

A ∈ A. Find the maximal cliques in G.

First the endpoints of alignment intervals need to be sorted in increasing

order. The endpoints are then scanned from left to right. We also need to

keep a record of all the active cliques being considered at the moment, i.e.

cliques that have not been extended enough to be maximal.

Assume l is the current endpoint being processed. The two possible

cases for endpoints are whether they are are a left or a right endpoint of the

alignment interval and they need to be handled differently.

If l is a left endpoint, the corresponding alignment A is added to the set

of active cliques. If the alignment is not adjacent to any active clique, it is

added as the start of a new active clique {A}. If the intersection of the open

neighborhood of A and an active clique C is exactly C, i.e. if A is adjacent

to at least all vertices in C, A is added to the active clique C. Otherwise if

A is adjacent to some vertices VC of a clique C, a new clique {A} ∪ VC is

added to the set of active cliques.

If instead l is a right endpoint of an alignment interval, the active cliques

that the corresponding alignment A is a part of, are considered to be maximal.

Now the maximal cliques can be outputted.

6.1.3 Runtime analysis

The problem of enumerating all maximal cliques in a general graph is not

solvable in polynomial time on arbitrary graphs. Thus it remains to be

shown that this specific method is in fact practical.

Computing the intersection of the neighborhood of the current vertex

with all active cliques can be done by first iterating over all vertices in active

cliques and intersecting the resulting neighborhood with each active clique

by iterating over all vertices contained in the clique. This takes O(kc) time,

31

where k is the upper bound on the local alignment coverage and c is the

maximum number of active cliques.

Detecting all duplicates and cliques that are subsets of other cliques can

be done by computing the intersections between all pairs of cliques that

are modified according to the algorithm. All pairwise intersections can be

computed in O(kc2) time.

Lastly, sorting the alignment intervals takes O(m logm) time, where m is

the number of alignment intervals. So the total running time is O(m(logm+

kc2) + s), where s is the size of the output.

6.2 Split-read alignment

Another approach to finding structural variations is allowing the reads to be

split when aligning them. A split-read can be thought of as being analogous

to the previous approach, where we implicitly assumed the paired-end reads

to split between the read-ends. This approach considers the case where reads

can also be split within the reads themselves.

Definition 8. Split-read Alignment problem. Given a set of reads R, find

reads that map to the reference with insertions or deletions added to the

reads.

Allowing reads to split at any position and aligning the parts to the

reference is clearly not feasible with any amount reads, as the number of

possible alignments for reads grows at an exponential rate. LASER [MS13]

gets around this by aligning anchors for possible split-read alignments.

LASER [MS13] (Long-indel-aware Alignment of SEquencing Reads) uses

a split-read alignment approach to structural variation finding. The reads

are allowed to be split in some position; if enough of the split reads align to

non-contiguous positions, there could be an insertion or a deletion.

First we look for global anchors for alignments by first extracting M

length prefixes and suffixes from the reads. The fragments are then mapped

32

Reference Genome

(a) (b)

(c)

Figure 7: Overview of the method used in LASER. Figure adapted

from [MS13]. First the anchors are extracted (a), then aligned to the

reference (b) and finally extended to full split-read alignment (c).

to the reference sequence with any standard sequence aligner, for example

BWA [LD09].

Fragments that align to more than 25 positions are considered to be as

useless as ones that do not align to the reference at all. Thus we need to

choose M to be large enough to not produce false positives.

Now we can look for local anchors in the areas next to the global anchors

by using any standard exact pattern matching algorithm. If the global anchor

is the prefix of a read, we look to the right of the anchor. If the global anchor

is the suffix, we look to the left.

The anchors are then extended by adding characters from the reads until

a threshold for edit distance is reached. After that, anchors that are close

enough are joined to create split-read alignments.

We can further limit the number of required alignments by defining

33

regions of interest around the deletions we found earlier with CLEVER.

LASER also estimates the probabilities P (A) of alignment A ∈ A(r) being

the correct one among the alignments of a read r. This can be combined

with information obtained by CLEVER to further adjust the probability

that the variation is true.

Now, with the accurate insertions sites, we can can finally combine the

read filtering and gap filling methods to genotype the insertions.

7 Insertion genotyping

On an abstract level, genotyping an insertion variant can be seen as recon-

structing the missing sequence inside the donor genome.

Definition 9. Insertion Genotyping problem. Given a reference genome,

position p in the reference genome and length l of insertion, reconstruct the

sequence D[p..p+ l] in the donor genome D from the reads R.

This definition is clearly compatible with the definition of the gap filling

problem. The main difference is that there can be no guarantees about the

difficulty of the filling process. Gaps in the assemblies were due to repeats

that are difficult to reconstruct, whereas insertions can simply be random

sequences added to the genome. Though they can also be repeated sequences

from the genome in which case the difficulty is similar to gap filling.

An example of insertion genotyping with a de Bruijn graph is given in

Figure 8.

34

. . . TGCA CATG . . .

AT TG

GCCA

Figure 8: An example of insertion genotyping using a path through a de

Bruijn graph. Note the similarity to the gap filling example in Figure 4.

Similar to gap filling in Gap2Seq, we only need the right and left flanking

sequences and the length of the insertion. We can thus simulate a gap by

taking the flanking sequences D[p − k..p], D[p..p + k] from the reference

genome.

Although overlapping variations should be taken into consideration when

extracting the the sequences, doing so would require accurate knowledge of

all the surrounding variations. As we are interested in specifically assembling

insertion variants, we will assume no other variations overlap with the flanking

sequences. Note that Gap2Seq does attempt to overcome incorrect flanks by

letting the gap filling start or end on a different k-mer than the first possible,

which will mitigate the problem somewhat.

8 Results

All of the following experiments follow roughly the same ideas. For both read

filtering and insertion genotyping simulations, the reference genome used is

chromosome 17 from the latest version (GRCH38) of the human reference

genome. The Ns (ambiguous bases) in the sequence are replaced by random

nucleotides, as Ns are also used to mark gaps in the sequences.

35

Paired-end reads are generated from the reference using dwgsim 1 with a

read length of 100bp down to a coverage of 30x. All de Bruijn graphs are

built with a fixed k of 31. The core gap filling software used is the reference

implementation of Gap2Seq, which uses an implementation of the exact

Bloom filter-based de Bruijn graphs.

The data sets and experiment set up used in the biological data experi-

ments for gap filling with read filtering are the same as in [SSMT15]. The

different genome assemblies used are taken from GAGE [SPZ+11].

The reference genome in the biological data experiments for insertion

genotyping is the WS210 version of the C. elegans genome. The donor

genome used is the C. elegans Hawaiian strain CB4856, more specifically the

recent Illumina sequencing SRX523826.

The methodology and results are explained in more detail in the respective

subsections below.

8.1 Read filtering

The filtering is evaluated experimentally by generating assemblies from the

reference with gaps of varying lengths added. The reads are then mapped to

the assemblies and filtered based on the alignments. The filtering is compared

to a known truth by mapping the same reads to the reference genome without

the gaps and taking all the reads that overlap with a given gap.

The read filtering results can be partitioned into four groups: true

positives, reads correctly filtered in; false positives, reads incorrectly filtered

in; true negatives, reads correctly filtered out; and false negatives, reads

incorrectly filtered out. We then use the metrics precision and recall to

evaluate the filtering scheme,
1https://github.com/nh13/DWGSIM

36

https://github.com/nh13/DWGSIM

Precision = true positives
true positives + false positives ,

Recall = true positives
true positives + false negatives .

A fully lossless filter would have a recall of 1 since it would not be missing

any of the reads. As our approach relies on read alignment, which in practice

cannot be guaranteed to align all reads correctly, we also cannot guarantee a

a lossless filter. Though it does give a good goal for the filter.

The different filtering schemes we are comparing are the simple read

pileup on the gap, here called overlap; using all the reads that are unmapped,

called unmapped; and filter is the use of pileups on the gap and the two

regions next to the gap to get the possible overlapping mates.

37

101 102 103 104

Gap Length

0.0

0.2

0.4

0.6

0.8

1.0
Filter (with unmapped)
Overlap
Unmapped

(a) µ = 150, σ = 15

101 102 103 104

Gap Length

0.0

0.2

0.4

0.6

0.8

1.0

(b) µ = 1500, σ = 150

101 102 103 104

Gap Length

0.0

0.2

0.4

0.6

0.8

1.0

(c) µ = 3000, σ = 300

Figure 9: Recall scores of the different read filtering schemes. The threshold

for using unmapped reads in the filtering is set to 25. The parameters for

the insertion size distribution simulations are given for each case.

38

The recall scores (see Figure 9) show that finding reads that map to a

gap in the genome assembly by simply taking all the reads the read aligner

placed close or over the gap works fine with small gaps. As the gaps get

longer the read aligner is no longer able to align reads to the gap.

Estimating read alignments by paired-end read pairs is then useful up to

a point. This method fails to find reads from a growing section in the middle

of the gap when the gap length exceeds the insert size and no reads can be

estimated to cover the middle of the gap.

The recall scores for different insert sizes shows that larger insert sizes

generally give better filtering results than smaller insert sizes. However,

increasing the mean insert size in practice also increase the standard deviation

of the insert size distribution. Thus it also affects the quality of the read

pair alignment position estimation.

39

101 102 103 104

Gap Length

0.0

0.2

0.4

0.6

0.8

1.0
Filter (with unmapped)
Overlap
Unmapped

101 102 103 104

Gap Length

0.0

0.2

0.4

0.6

0.8

1.0

101 102 103 104

Gap Length

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Precision scores of the different read filtering schemes. The

formatting is identical to the recall score figures (Figure 9). Note that the

precision score for unmapped is always 0.

40

Finally, combining the filtered reads with all unmapped reads when the

number of filtered reads goes under a given threshold boosts the recall score,

but at the same time it destroys the precision score for the filtering (see

Figure 10). This is due to unmapped reads always giving a precision score

of 0.

Finding a good threshold for using the unmapped reads means finding a

balance between either having too few reads to find a useful path over the

gap or having too many reads to find paths in the graph.

8.1.1 Effect on bacterial genomes

Practically all gap filling tools solve the problem of gap filling small bacterial

genomes with ease. The effect of read filtering on bacterial genomes should

thus be minimal.

ABySS SOAPdenovo Velvet ABySS2 Allpaths-LG MSR-CA SGA Bambus2

100

101

102

103

R
un

ti
m
e
(m

in
,
lo
g)

GapCloser
GapFiller
Gap2Seq
Gap2Seq (with filter)
BWA

Figure 11: Running times for the different gap filling tools on different

assemblies of S. Aureus. Time required to align the reads for filtering is

labeled as BWA.

41

ABySS SOAPdenovo Velvet ABySS2 Allpaths-LG MSR-CA SGA Bambus2
0.0

0.2

0.4

0.6

0.8

1.0
M
em

or
y
(G

B
)

GapCloser
GapFiller
Gap2Seq
Gap2Seq (with filter)

Figure 12: Maximum memory usage for the different gap filling tools on

different assemblies of S. Aureus.

Figures 11 and 12 show how much faster and memory efficient the gap

filling is when combined with read filtering. Even with the small bacterial

genomes, the time and space required for filling the gaps is brought down to

a surprisingly small amount.

Though, the speedup does come at a price. Table 3 shows how much the

gap filling can produce erroneous sequences at worst. Tables 1 and 1 give

show how well the method works at its best. However, the data set is still

too small to fully benefit from the read filtering, and in fact mostly suffers

from it.

The gap filling quality tables (Tables 1–6) are all split into three categories

based how well Gap2Seq with read filtering performs on the assemblies.

The methodology and formatting is similar to the one used in [SSMT15];

QUAST [GSVT13] is used evaluate alignments between the filled scaffolds

and reference genomes. The evaluation metrics used by QUAST are as

follows:

1. Misassemblies: The number of misassembled sequences in a scaffold

that are larger than 4000 bp, differentiating them from simply erroneous

sequences.

2. Erroneous length: Total length of all mismatches, indels and local

42

misassemblies.

3. Unaligned length: The total length of the unaligned sequence in an

assembly.

4. NGA50: The size of the longest scaffold such that the sum of the

lengths of all scaffolds longer than it is at least half of the reference

genome size, after scaffolds have been broken at every misassembly

position.

5. Number of gaps: The number of sites with one or more unknown

position.

6. Total gap length: The total length of the gaps.

SO
A
P
de

no
vo

Original GapCloser GapFiller Gap2Seq Gap2Seq (with filter)
Misassemblies 2 +0% +0% +0% +0%
Erroneous length 35433 -1.3% +0.7% +1.5% +3.1%
Unaligned length 4055 -100% -100% -100% -100%
NGA50 69834 +0% +0% +0% +0%
Number of gaps 9 -22.2% -33.3% -55.6% -100%
Total gap length 4857 -61.4% -34.6% -94.2% -100%

M
SR

-C
A

Misassemblies 10 -30.0% -30.0% -20.0% -30.0%
Erroneous length 17276 -2.7% +1.2% -4.5% +46.7%
Unaligned length 0 +0% +0% +0% +0%
NGA50 64114 +50.3% +20.4% +50.3% -7.7%
Number of gaps 81 -51.9% -30.9% -56.8% -100%
Total gap length 10353 -75.6% -39.4% -70.5% -100%

Table 1: Quality of the best filled gaps on S. Aureus data set. The results
are shown in relative differences to the original assemblies. The best and
worst scores are in highlighted by green and red text, respectively.

43

V
el
ve
t

Original GapCloser GapFiller Gap2Seq Gap2Seq (with filter)
Misassemblies 25 +8.0% +4.0% +8.0% +0%
Erroneous length 24160 -32.1% -19.4% -36.0% +83.1%
Unaligned length 1270 -49.4% -21.3% -49.4% -49.4%
NGA50 46087 +19.1% +49.0% +73.3% -6.6%
Number of gaps 128 -46.9% -40.6% -68.8% -98.4%
Total gap length 17688 -59.6% -47.9% -81.2% -99.9%

A
B
yS

S2

Misassemblies 5 +20.0% +20.0% +40.0% +0%
Erroneous length 10312 -4.6% +5.0% -27.2% +87.2%
Unaligned length 0 +0% +0% +0% +0%
NGA50 106796 +15.1% +0% +29.0% +0%
Number of gaps 35 -31.4% -37.1% -80.0% -100%
Total gap length 9393 -63.3% -60.5% -94.5% -100%

B
am

bu
s2

Misassemblies 0 0.0% +0% +0% +0%
Erroneous length 24570 -23.0% +13.9% -0.7% +98.5%
Unaligned length 0 +0% +0% +0% +0%
NGA50 40233 +39.0% +7.3% +17.2% -16.0%
Number of gaps 99 -68.7% -18.2% -69.7% -100%
Total gap length 29205 -77.1% -36.4% -84.1% -100%

Table 2: Quality of mediocre filled gaps on S. Aureus data set. Formatting
is identical to Table 1.

A
llp

at
hs
-L
G

Original GapCloser GapFiller Gap2Seq Gap2Seq (with filter)
Misassemblies 0 +0% 0.0% +0% +0%
Erroneous length 5991 +1.1% -0.3% +10.9% +183.0%
Unaligned length 0 +0% +0% +0% +0%
NGA50 110168 -8.2% +69.6% +35.9% -34.0%
Number of gaps 48 -100% -41.7% -70.8% -100%
Total gap length 9900 -100% -40.8% -94.7% -100%

A
B
yS

S

Misassemblies 5 +0% +0% +60.0% +60.0%
Erroneous length 10587 +27.7% +40.5% +72.0% +227.7%
Unaligned length 7935 -19.8% -11.0% -43.0% -43.0%
NGA50 31079 +0% +0.3% +0.3% -5.0%
Number of gaps 69 -17.4% -31.9% -87.0% -98.6%
Total gap length 55885 -25.2% -25.2% -94.5% -94.5%

SG
A

Misassemblies 2 +0% +0% -50.0% +50.0%
Erroneous length 13811 -42.7% -31.0% -22.2% +2423.4%
Unaligned length 0 +0% +0% +0% +0%
NGA50 9541 +148.1% +9.7% +214.6% -52.8%
Number of gaps 654 -74.8% -37.5% -80.1% -100%
Total gap length 300607 -53.8% -10.3% -72.1% -100%

Table 3: Quality of the worst filled gaps on S. Aureus data set. Formatting
is identical to Table 1.

44

8.1.2 Effect on eukaryotic genomes

The effects of read filtering should get more pronounced with a larger set of

read. This is evident in the results for gap filling the much larger human14

assemblies from GAGE. Tables 4– 6 show how applying the read filtering

affects the gap filling when working with large data sets.

Gap2Seq combined with read filtering is fills more gaps than regular

Gap2Seq in all cases, and in some cases is actually the best available tool

(the cases in Table 4). Though in most situations the filled sequence is

erroneous (especially the assemblies in Table 6). It is difficult to tell whether

the erroneous sequences come from the read filtering or if the read filtering

only allows for the gap more efficiently and it would be filled with the wrong

sequence anyway.

B
am

bu
s2

Original GapCloser GapFiller Gap2Seq Gap2Seq (with filter)
Misassemblies 1584 +3.1% +4.4% +2.1% -0.8%
Erroneous length 11114542 -9.6% +0.6% -0.6% -64.1%
Unaligned length 161358 -42.7% -37.8% +2.5% -65.6%
NGA50 3045 +34.8% +16.8% +1.8% +76.1%
Number of gaps 11809 -16.4% -2.4% -6.6% -100%
Total gap length 10370362 -45.6% -27.1% -4.6% -100%

SO
A
P
de

no
vo Misassemblies 1250 +17.1% +6.1% +11.7% +5.4%

Erroneous length 8449941 -1.3% +3.1% -0.5% -7.5%
Unaligned length 1306173 -28.8% -27.2% -14.1% -90.1%
NGA50 6592 +17.4% +4.1% +4.0% +12.9%
Number of gaps 8544 -25.2% -5.2% -18.8% -99.9%
Total gap length 10255930 -21.3% -15.9% -6.3% -99.9%

V
el
ve
t

Misassemblies 9308 +26.3% +31.1% +13.3% +24.9%
Erroneous length 12531431 -10.4% +41.1% -0.5% +14.0%
Unaligned length 23484076 -58.4% -64.5% -20.7% -98.4%
NGA50 1793 +104.4% +62.2% +27.0% -20.9%
Number of gaps 51567 -43.4% -26.0% -26.6% -94.5%
Total gap length 63559964 -22.8% -19.2% -4.2% -94.4%

Table 4: Quality of the best filled gaps on Human14 data set. Formatting is
identical to Table 1.

45

C
A
B
O
G

Original GapCloser GapFiller Gap2Seq Gap2Seq (with filter)
Misassemblies 91 +16.5% +5.5% +7.7% -4.4%
Erroneous length 615239 +19.0% -0.2% -3.5% +22.1%
Unaligned length 2506 +0% +0% +0% +0%
NGA50 46665 +16.2% +64.7% +8.9% +12.8%
Number of gaps 3043 -18.9% -51.9% -13.8% -99.7%
Total gap length 231078 -50.3% -42.0% -22.6% -99.9%

M
SR

-C
A

Misassemblies 1110 +14.5% +17.6% +6.8% -1.0%
Erroneous length 5412965 +2.8% +9.6% -6.1% +81.9%
Unaligned length 318421 -30.5% -30.6% -13.1% -66.4%
NGA50 5704 +73.3% +78.2% +32.9% -34.6%
Number of gaps 30622 -34.9% -47.8% -27.8% -99.8%
Total gap length 6097928 -49.3% -45.4% -18.1% -99.7%

A
B
yS

S2

Misassemblies 99 +18.2% +3.0% +5.1% +23.2%
Erroneous length 555099 +15.9% +3.3% +3.5% +109.8%
Unaligned length 157759 -21.4% -36.4% -15.4% -89.2%
NGA50 11869 +4.1% +3.1% +2.4% -12.0%
Number of gaps 2820 -14.5% -38.5% -23.9% -100%
Total gap length 949137 -34.9% -25.3% -36.8% -100%

Table 5: Quality of mediocre filled gaps on Human14 data set. Formatting
is identical to Table 1.

A
B
yS

S

Original GapCloser GapFiller Gap2Seq Gap2Seq (with filter)
Misassemblies 3 +133.3% +0% +100% +100.0%
Erroneous length 190458 +18.2% +6.1% -9.4% +112.1%
Unaligned length 262068 -16.6% -34.2% -8.4% -50.6%
NGA50 1320 +1.0% +0.7% +1.3% -0.8%
Number of gaps 1061 -5.9% -32.5% -33.4% -86.1%
Total gap length 585628 -24.5% -27.6% -25.5% -79.9%

A
llp

at
hs
-L
G Misassemblies 95 -6.3% +10.5% +14.7% +136.8%

Erroneous length 667229 +34.5% +6.6% -3.0% +273.0%
Unaligned length 36941 -14.3% -11.5% +26.8% -99.8%
NGA50 34534 +48.3% +22.5% +23.3% -14.9%
Number of gaps 4307 -35.1% -20.6% -29.8% -100%
Total gap length 3227193 -37.9% -17.3% -16.0% -100%

SG
A

Misassemblies 8 +375% +112.5% +287.5% +450.0%
Erroneous length 1580489 +21.1% -14.6% -24.6% +783.8%
Unaligned length 1160159 -83.9% -86.5% -38.6% -98.2%
NGA50 2644 +244.2% +238.0% +149.1% -18.4%
Number of gaps 21459 -56.7% -49.9% -51.5% -100%
Total gap length 12840408 -53.5% -55.4% -30.2% -100%

Table 6: Quality of the worst filled gaps on Human14 data set. Formatting
is identical to Table 1.

46

8.2 Insertion genotyping

Genotyping efficacy was evaluated using both simulations and biological

data.

8.2.1 Simulated data

Evaluation with simulated data was done by simulating insertions of different

lengths and counting the number of insertions that were filled.

47

101 102 103 104

Gap Length (log)

0.0

0.2

0.4

0.6

0.8

1.0
1

-
N

or
m

al
iz

ed
E

di
t

D
is

ta
nc

e

All reads
Filter

(a) µ = 150, σ = 15

101 102 103 104

Gap Length (log)

0.0

0.2

0.4

0.6

0.8

1.0

1
-

N
or

m
al

iz
ed

E
di

t
D

is
ta

nc
e

(b) µ = 1500, σ = 150

101 102 103 104

Gap Length (log)

0.0

0.2

0.4

0.6

0.8

1.0

1
-

N
or

m
al

iz
ed

E
di

t
D

is
ta

nc
e

(c) µ = 3000, σ = 300

Figure 13: 1-Normalized edit distances for different simulated gap lengths,

i.e. higher score is better.

48

Figure 13 shows how the read filtering affects the quality of the gap

filling.

The read filtering should generally be expected to perform better with

read libraries that have a long insertions size. Though, the effect is not very

pronounced. This could be due to the fact that the unmapped reads are

added when the coverage of the reads is low.

Using all available reads is clearly better at accurately constructing

smaller insertions. However, with long insertions read filtering becomes a

requirement for the gap filling. Though even then, the gap filling is not

perfect.

Table 7 shows Gap2Seq with and without filtering compared against

MindTheGap [RGCL14], a tool for finding and constructing insertions. The

positions of the simulated insertion sites are also given as input for MindThe-

Gap, but it does not take length as input, rather it attempts to find the most

likely insertion regardless of length.

Length MindTheGap Gap2Seq Gap2Seq (filter)

0 – 100 0.585 0.586 0.483

100 – 300 0.563 0.459 0.504

300 – 500 0.642 0.522 0.637

500 – 1000 0.361 0.237 0.276

1000 – 10000 0.151 0.086 0.11

Overall 0.414 0.354 0.348

Table 7: Average 1-normalized edit distances over different length ranges for

insertions constructed by different tools against the simulated gaps. The

best and worst scores are in highlighted by green and red text, respectively.

While Gap2Seq is the best of the three at filling small gaps, using

49

read filtering improves the results for all other length ranges. However,

MindTheGap still beats both tools by a slim margin.

8.2.2 Biological data

The insertions were evaluated using two complementary strategies; using

experimentally validated insertions [VTGF+14], and comparing the lengths

of the genotyped insertions against the lengths estimated by the insertion

callers.

Using insertion sites found by Pindel [YSL+09], CLEVER [MCC+12],

and LASER [MS13]. Insertion breakpoints found by MindTheGap were

not used, as they do not have the corresponding length information for the

insertions. However, the combined insertion sites from the aforementioned

tools were separately given as input to MindTheGap.

Length Pindel MindTheGap Gap2Seq Gap2Seq (filter)

0 – 100 0.579 -0.968 0.224 0.109

100 – 300 0.018 0.321 0.31 0.376

Overall 0.361 -0.467 0.257 0.213

Table 8: 1-Normalized edit distances for insertions constructed by different

tools against validated insertions. The negative scores mean the tool produced

a result that was not only wrong, but also longer than the correct one. The

best and worst scores are in highlighted by green and red text, respectively.

Table 8 shows how on the validated insertions, Gap2Seq performs overall

better than MindTheGap, but slightly worse on insertions over 100bp long.

MindTheGap discards length information when constructing the insertions

and fails to get the lengths right when constructing the smaller insertions.

Both Pindel and Gap2Seq utilize the length information and show much

better results on the smaller insertions.

50

Pindel is the overall best tool in the data set, although this is mainly due

to the insertions being short enough; it is only able genotype insertions up

to around 200 bp.

With the read filtering scheme, Gap2Seq is the best performer at longer

lengths. Though that comes with the cost of slightly worse results at short

insertion lengths. Overall, at lengths only up to 300 basepairs long, it seems

not worth it to run Gap2Seq with filtering.

1791 16234847

MindTheGap Gap2Seq (with filter)

Figure 14: Venn diagram of the set of insertions genotyped by MindTheGap

and Gap2Seq with filtering from the set of insertions found by CLEVER,

LASER, and Pindel.

Figure 14 shows how much of the insertions genotyped are unique to

MindTheGap and Gap2Seq. Both tools are basically equals in terms of the

number of insertions genotyped. Pindel is not shown here, as it does not

take the insertions found by CLEVER and LASER as input and it would

51

thus be an unfair comparison. Gap2Seq without filtering takes too much

time to complete within any reasonable time and is not included.

Though Gap2Seq and MindTheGap are able to construct the same

number of insertions, the quality of the genotyped insertions are hard to

quantify. Table 9 shows how far the lengths of genotyped insertions are in

average from the estimated insertion lengths.

Insertions MindTheGap Gap2Seq (with filtering)

CLEVER and LASER 1281.436 -7.738

Pindel 114.296 -46.244

Table 9: The average differences in length between the insertions genotyped

by MindTheGap and Gap2Seq and the lengths estimated for the insertions

by CLEVER, LASER, and Pindel.

MindTheGap tends to go very long with its genotyping, while Gap2Seq

tends to go short. Gap2Seq is biased towards a smaller average difference, as

Gap2Seq is allowed to construct insertions with a negative lengths, i.e. make

them deletions. This happens when the best path through the de Bruijn

graph is one that skips parts of the flanks.

9 Conclusions

We have proposed a method for filtering reads for gap filling and shown it

to yield an unparalleled efficiency in gap filling. However, the quality of the

gap filling suffers, especially with short gaps and with small sets of reads.

More importantly, we have shown that fully utilizing the solution space

from gap filling gives promising results for insertion genotyping. The only

other method of using gap filling techniques in insertion genotyping, MindThe-

Gap, does not utilize the length information for the insertions and often

52

produces results with incorrect lengths.

Combining Gap2Seq with read filtering fills more gaps in all tested

assemblies, but as the method can produce erroneous sequences, filling more

gaps will inevitably lead to more erroneous filled sequences. Thus, being

more conservative with gap filling is for the best. Finding ways to accurately

estimate the probability of error for a filled sequence would thus be an

important step towards the future.

With the read filtering unable to find reads to construct small insertions

hints at a more hybrid method of using all reads for the small insertions,

where the path finding will not branch as much. Such a method would require

some balancing between the quality of using all reads and the performance

of filtering reads, which while sounds relatively minor, is out of the scope of

this thesis.

Of the space saving methods proposed in this thesis, the only one to

be implemented was the read filtering method. An interesting possibility

for future work would then be to experimentally validate the theoretical

savings provided by using the stack-like dynamic programming matrix and

the frequency-oblivious de Bruijn graph.

Using read alignment to find reads that cover a region of the reference

genome is not strictly required here. We could also attempt to find approxi-

mate matches between the substring defined by a region and the parts of the

reads. While this would theoretically be more efficient, we could not then

also exploit the fact that when a gap is long enough the gap-covering reads

are all unmapped.

References

[B+13] Keith R. Bradnam et al. Assemblathon 2: evaluating de novo

methods of genome assembly in three vertebrate species. Giga-

Science, 2(1):1–31, 2013.

53

[BBG+15] Christina Boucher, Alex Bowe, Travis Gagie, Simon J Puglisi,

and Kunihiko Sadakane. Variable-order de Bruijn graphs. In

Data Compression Conference (DCC), 2015, pages 383–392.

IEEE, 2015.

[BOSS12] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tet-

suo Shibuya. Succinct de Bruijn graphs. In Algorithms in

Bioinformatics, pages 225–235. Springer, 2012.

[BP12] Marten Boetzer and Walter Pirovano. Toward almost closed

genomes with GapFiller. Genome Biology, 13(6):1–9, 2012.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data

compression algorithm. Technical report, 1994.

[CR13] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de

Bruijn graph representation based on a Bloom filter. Algorithms

for Molecular Biology, 8(1):1–9, 2013.

[CWM+09] Ken Chen, John WWallis, Michael D McLellan, David E Larson,

Joelle M Kalicki, Craig S Pohl, Sean D McGrath, Michael C

Wendl, Qunyuan Zhang, Devin P Locke, et al. BreakDancer:

an algorithm for high-resolution mapping of genomic structural

variation. Nature methods, 6(9):677–681, 2009.

[Eli75] P. Elias. Universal codeword sets and representations of the

integers. IEEE Transactions on Information Theory, 21(2):194–

203, Mar 1975.

[ESW+12] Anne-Katrin Emde, Marcel H Schulz, David Weese, Ruping

Sun, Martin Vingron, Vera M Kalscheuer, Stefan A Haas, and

Knut Reinert. Detecting genomic indel variants with exact

breakpoints in single-and paired-end sequencing data using

SplazerS. Bioinformatics, 28(5):619–627, 2012.

54

[FMP+14] Laurent C Francioli, Androniki Menelaou, Sara L Pulit, Freerk

van Dijk, et al. Whole-genome sequence variation, population

structure and demographic history of the Dutch population.

Nature Genetics, 46:818–825, 2014.

[GMP+11] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J

Ribeiro, Joshua N Burton, Bruce J Walker, Ted Sharpe, Giles

Hall, Terrance P Shea, Sean Sykes, et al. High-quality draft

assemblies of mammalian genomes from massively parallel se-

quence data. Proceedings of the National Academy of Sciences,

108(4):1513–1518, 2011.

[GSVT13] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn

Tesler. Quast: quality assessment tool for genome assemblies.

Bioinformatics, 29(8):1072, 2013.

[HAES09] Fereydoun Hormozdiari, Can Alkan, Evan E Eichler, and S Cenk

Sahinalp. Combinatorial algorithms for structural variation

detection in high-throughput sequenced genomes. Genome

research, 19(7):1270–1278, 2009.

[IW95] Ramana M Idury and Michael S Waterman. A new algorithm

for DNA sequence assembly. Journal of computational biology,

2(2):291–306, 1995.

[JWB12] Yue Jiang, Yadong Wang, and Michael Brudno. PRISM: Pair

read informed split read mapping for base-pair level detection

of insertion, deletion and structural variants. Bioinformatics,

2012.

[KM06] Adam Kirsch and Michael Mitzenmacher. Less hashing, same

performance: Building a better Bloom filter. In Algorithms–ESA

2006, pages 456–467. Springer, 2006.

55

[LD09] Heng Li and Richard Durbin. Fast and accurate short read

alignment with Burrows–Wheeler transform. Bioinformatics,

25(14):1754–1760, 2009.

[LHAB09] Seunghak Lee, Fereydoun Hormozdiari, Can Alkan, and Michael

Brudno. MoDIL: detecting small indels from clone-end sequenc-

ing with mixtures of distributions. Nature methods, 6(7):473–

474, 2009.

[LLX+12] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua

Huang, Jianying Yuan, Guangzhu He, Yanxiang Chen, Qi Pan,

Yunjie Liu, et al. SOAPdenovo2: an empirically improved

memory-efficient short-read de novo assembler. GigaScience,

1(1):1, 2012.

[LP14] Yu Lin and Pavel A Pevzner. Manifold de Bruijn graphs. In

Algorithms in Bioinformatics, pages 296–310. Springer, 2014.

[MBCT15] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexan-

dru I. Tomescu. Genome-Scale Algorithm Design. Cambridge

University Press, 2015.

[MCC+12] Tobias Marschall, Ivan G Costa, Stefan Canzar, Markus Bauer,

Gunnar W Klau, Alexander Schliep, and Alexander Schönhuth.

CLEVER: clique-enumerating variant finder. Bioinformatics,

28(22):2875–2882, 2012.

[MHS13] Tobias Marschall, Iman Hajirasouliha, and Alexander Schön-

huth. MATE-CLEVER: Mendelian-inheritance-aware discovery

and genotyping of midsize and long indels. Bioinformatics,

29:3143–3150, 2013.

56

[MS13] Tobias Marschall and Alexander Schönhuth. LASER: Sensi-

tive long-indel-aware alignment of sequencing reads. arXiv,

(1303.3520), 2013.

[PHCK+12] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina

Howe, James M Tiedje, and C Titus Brown. Scaling metagenome

sequence assembly with probabilistic de Bruijn graphs. Proceed-

ings of the National Academy of Sciences, 109(33):13272–13277,

2012.

[PLYC10] Yu Peng, Henry C. M. Leung, S. M. Yiu, and Francis Y. L.

Chin. IDBA – a practical iterative de Bruijn graph de novo

assembler. In Research in Computational Molecular Biology,

volume 6044, pages 426–440. Springer, 2010.

[PST07] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A

taxonomy of suffix array construction algorithms. ACM Comput.

Surv., 39(2), 2007.

[PWV+15] Daniel Paulino, René L Warren, Benjamin P Vandervalk, An-

thony Raymond, Shaun D Jackman, and Inanç Birol. Sealer:

a scalable gap-closing application for finishing draft genomes.

BMC Bioinformatics, 16(1):230, 2015.

[RGCL14] Guillaume Rizk, Anaïs Gouin, Rayan Chikhi, and Claire

Lemaitre. MindTheGap: integrated detection and assembly of

short and long insertions. Bioinformatics, 30(24):3451–3457,

2014.

[RZS+12] Tobias Rausch, Thomas Zichner, Andreas Schlattl, Adrian M.

Stütz, Vladimir Benes, and Jan O. Korbel. DELLY: struc-

tural variant discovery by integrated paired-end and split-read

analysis. Bioinformatics, 28(18):i333–i339, 2012.

57

[SFA15] Kristoffer Sahlin, Mattias Frånberg, and Lars Arvestad. Cor-

recting bias from stochastic insert size in read pair data —

applications to structural variation detection and genome as-

sembly. bioRxiv, 2015.

[SPZ+11] Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, Daniela

Puiu, Tanja Magoc, Sergey Koren, Todd J. Treangen, Michael C.

Schatz, Arthur L. Delcher, Michael Roberts, Guillaume Marçais,

Mihai Pop, and James A. Yorke. GAGE: A critical evaluation of

genome assemblies and assembly algorithms. Genome Research,

2011.

[SSMT15] Leena Salmela, Kristoffer Sahlin, Veli Mäkinen, and Alexandru I.

Tomescu. Gap filling as exact path length problem. In Research

in Computational Molecular Biology, volume 9029, pages 281–

292. 2015.

[SWJ+09] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E

Schein, Steven JM Jones, and Inanç Birol. ABySS: a paral-

lel assembler for short read sequence data. Genome research,

19(6):1117–1123, 2009.

[VR13] Niko Välimäki and Eric Rivals. Scalable and versatile k-mer

indexing for high-throughput sequencing data. In Bioinformatics

Research and Applications, pages 237–248. Springer, 2013.

[VTGF+14] Ismael A. Vergara, Maja Tarailo-Graovac, Christian Frech, Jun

Wang, Zhaozhao Qin, Ting Zhang, Rong She, Jeffrey SC Chu,

Ke Wang, and Nansheng Chen. Genome-wide variations in a

natural isolate of the nematode Caenorhabditis elegans. BMC

Genomics, 15(1):255, 2014.

58

[YSL+09] Kai Ye, Marcel H Schulz, Quan Long, Rolf Apweiler, and Zemin

Ning. Pindel: a pattern growth approach to detect break points

of large deletions and medium sized insertions from paired-end

short reads. Bioinformatics, 25(21):2865–2871, 2009.

59

	Introduction
	Preliminaries
	Burrows-Wheeler transform
	BWT-index

	De Bruijn graphs
	Bloom filter-based representations
	Probabilistic de Bruijn graph
	Exact de Bruijn graph

	BWT-index-based representations
	Frequency-aware de Bruijn graph
	Frequency-oblivious de Bruijn graph

	Gap filling
	Problem definition
	Space complexity

	Read filtering for gap filling
	Read alignment
	Insert size distribution inference
	Problem formulation
	Implementation

	Structural variations
	Maximal clique enumeration
	Edge computation
	Enumerating maximal cliques
	Runtime analysis

	Split-read alignment

	Insertion genotyping
	Results
	Read filtering
	Effect on bacterial genomes
	Effect on eukaryotic genomes

	Insertion genotyping
	Simulated data
	Biological data

	Conclusions
	References

