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Abstract

Technology scaling and a continual increase in operating frequency have been the main
driver of processor performance for several decades. A recent slowdown in this evolution
is compensated by multi-core architectures, which challenge application developers
and also increase the disparity between the processor and memory performance. The
increasing core count and growing scale of computing systems furthermore turn attention
to communication as a significant contributor on application run-times.

Larger systems also comprise many more components which are subject to failures.
In order to mitigate the effects of these failures, fault tolerance techniques such as
Checkpoint/Restart are used. These techniques often rely on message-based commu-
nication and data transport stresses the local memory interface. In order to reduce
communication overhead it is desirable to either decrease the number of messages, or
otherwise to accelerate the execution of commonly used global operations. Finally,
power consumption of large-scale systems has become a major concern and the efficiency
of such systems must considerably improve to allow future Exascale systems to operate
within a reasonable power budget.

This work addresses the topics memory interface, communication, fault tolerance, and
energy efficiency in large-scale systems. It presents Network Attached Memory (NAM),
an FPGA-based hardware prototype that can be directly connected to a common
high-performance interconnection network in large-scale systems. It provides access
to the emerging memory technology Hybrid Memory Cube (HMC) as shared memory
resource, tightly integrated with processing elements.

The first part introduces the HMC memory architecture and serial interface, and
thoroughly evaluates it in an FPGA using a custom-developed host controller, which
has become an open-source initiative.

The next part describes the hardware architecture of the NAM design and prototype,
and theoretically evaluates the expected performance and bottlenecks. The NAM design
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was fully prototyped in an FPGA and the contribution also comprises a corresponding
software stack.

As a first use case NAM serves as Checkpoint/Restart target, aiming to reduce inter-
node communication and to accelerate the creation of checkpoint parity information.
Reducing checkpointing overhead improves application run-times and energy efficiency
likewise.

The final part of this work evaluates the NAM performance in a 16 node test system.
It shows a good read/write scaling behavior for an increasing number of nodes. For
Checkpoint/Restart with a real application, a 2.1X improvement over a standard
approach is a remarkable result. It proves the successful concept of a dedicated
hardware component to reduce communication and fault tolerance overhead for current
and future large-scale systems.



Zusammenfassung

Der kontinuierliche Anstieg der Mikroprozessorleistung wurde über Jahrzehnte hinweg
getrieben von immer feiner werdenden Halbleiterstrukturen sowie steigenden Taktraten.
Die kürzlich beobachtete Verlangsamung dieser Entwicklung wird durch Multi-core
Architekturen kompensiert. Diese erfordern parallelisierte Anwendungen und stellen
Anwendungsentwickler und die Prozessor-Hauptspeicher Schnittstelle gleichermaßen
vor große Herausforderungen. Der weiterhin fortwährende Trend zu immer größeren
verteilten Systemen und die damit einhergehende Zunahme an Einzelkomponenten stellt
insbesondere Anforderungen an das Verbindungsnetzwerk, sodass viele Anwendungen
bereits heute viel Zeit mit reiner Kommunikation verbringen.

Größere Systeme erhöhen zugleich die Wahrscheinlichkeit für Defekte. Um deren
negative Auswirkungen zu reduzieren und Defekte zu tolerieren, werden üblicherweise
Checkpoint/Restart Mechanismen eingesetzt. Da diese zumeist auf Kommunika-
tion zwischen einzelnen Knoten basieren und zusätzlich die Prozessor-Hauptspeicher
Schnittstelle belasten, ist es sinnvoll entweder den Umfang der benötigten Kommunika-
tion zu reduzieren oder deren Einfluss zu minimieren. Zu guter Letzt gewinnt auch
die Leistungsaufnahme verteilter Systeme immer mehr an Bedeutung. Im Hinblick auf
die Exascale-Ära ist es daher zwingend notwendig die Energieeffizienz bedeutend zu
verbessern um den Leistungsverbrauch dieser Systeme in einem vertretbaren Rahmen
zu halten.

Diese Arbeit geht auf die oben genannten Problematiken Speicherschnittstelle, Kommu-
nikation, Fehlertoleranz und Energieeffizienz ein und stellt Network Attached Memory
(NAM) vor. NAM ist ein Hardware Prototyp, der direkt an ein gängiges Hochleistungs-
Verbindungsnetzwerk in verteilten Systemen angebunden werden kann. Es bietet
Zugriff auf gemeinsamen Speicher, der durch die aufstrebende Hybrid Memory Cube
(HMC) Technologie realisiert ist.



Zusammenfassung

Der erste Beitrag umfasst die Vorstellung, Technologieanalyse und HMC Evaluation in
einem FPGA mithilfe einer eigens entwickelten Zugriffseinheit, die als Open-Source
Initiative frei zugänglich ist.

Der nächste Beitrag erläutert den Entwicklungsprozess und die Hardwarearchitektur
des NAM Designs und Prototypen und ermittelt die Leistung theoretisch. Das NAM
Design wurde hierfür vollständig in einem FPGA implementiert und durch die für den
Zugriff notwendigen Softwarekomponenten ergänzt.

In einem ersten Anwendungsfall dient der NAM als Beschleuniger für Check-
point/Restart Prozesse mit dem Ziel, Kommunikation zwischen Knoten zu verringern
und die benötigte Paritätsinformation schneller zu berechnen. Dies wird sich Vorteilhaft
auf Anwendungslaufzeiten und Energieeffizienz auswirken.

Der letzte Beitrag beinhaltet verschiedene Leistungsmessungen in einem realen 16
Knoten System. Diese zeigen optimale Skalierbarkeit für Lese- und Schreibzugriff.
Für Checkpoint/Restart wird eine bemerkenswerte, 2.1-fache Beschleunigung erreicht.
Dieses Resultat belegt das erfolgreiche NAM Konzept zur Reduktion von Kommunika-
tion und des Berechnungsaufwands für Fehlertoleranz in aktuellen und zukünftigen
Systemen.
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Introduction

For many years, the increase in processor and system performance was driven by
technology scaling which allowed to pack more transistors per area at a fixed power
budget. Increasing operating frequencies supported the improvements of single thread
performance accordingly. Since the early 2000’s, however, this continual increase has
slowed down due to excessive power dissipation, which is also caused by the leakage
current of today’s tiny transistor feature sizes. Multi-core architectures were developed
to keep up with the traditional growth rate, and system performance was scaled by
adding more and more components and nodes. Although these new architectures
pose challenges to application developers as it requires carefully parallelized codes, the
overall system performance kept increasing at a moderate rate. This is documented in
Figure 1.1 which shows the evolution of the number 1 systems of the TOP500 list of
supercomputers.

At a first glance the current trend gives no indication that there is something wrong at
all, especially not with the memory system. This is because the TOP500 LINPACK
benchmark in large parts is insensitive to memory performance and re-uses data that
remains in registers and caches instead [1]. In reality, however, memory access times
and bandwidth lag behind the historical evolution of CPU performance. This disparity
is well known as the memory wall [2] and the gap is widening with the recent and
ongoing increasing number of CPU cores per socket that operate on the same memory
interface.
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tr a or di n ar y p erf or m a n c e g ai ns. F u n d a m e nt al f or t his d e v el o p m e nt h as b e e n a st e a d y

i n cr e as e i n c o m p o n e nt a n d n o d e c o u nt, wit h t h e c urr e nt n u m b er 1 T O P 5 0 0 s yst e m

c o m prisi n g m or e t h a n 1 0 milli o n c or es 1 . C o m m u ni c ati o n b et w e e n t w o or m or e c or es is
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1 D at a c oll e ct e d vi a t h e T O P 5 0 0 st ati sti c s s u bli st g e n er at o r ( w w w.t o p 5 0 0. o r g / st ati sti c s / s u bli st).
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1.1 Motivation

number 1 TOP500 system. Unless the per-component MTBF will significantly drop,
systems will continue to fail even more frequently in the future. In order to properly
recover from failures, resilience and fault tolerance mechanisms play an important
part in modern large-scale systems. These features are typically implemented by
periodically storing the application’s or system state to disk. The checkpoint may
then be restored upon a system failure in order to reduce the amount of work lost.
The obvious disadvantage is that checkpoints are created whether or not there is an
actual failure. This process requires application time as well as memory and network
bandwidth, and can cause applications to execute more than 10 times slower [5].

Finally, power has become a main concern of today’s and future large-scale systems.
Main memory in particular is one of the largest consumers with up to 40 % for a
current system [6] and a projected 65 % at Exascale [7]. Inter-process communication
and fault tolerance mechanisms additionally reduce the actual work that can be done
within a given time period, which negatively impacts the system’s energy efficiency.
To allow future Exascale systems to operate within an economically and practically
reasonable power budget it was suggested to limit the power consumption of such a
system to 20 MWatt [7, 8]. As can be seen in Figure 1.1, the current number 1 system
already consumes more than 15 MWatt at less than 100 PFLOP/s peak performance.
The mandatory need for a change of the system architecture becomes clear when this
system was scaled to Exascale. At 1 Exaflop per second it would consume about 150
MWatt which exceeds the 20 MWatt goal by a factor of 7.5.

In summary, the challenges on the road to Exascale machines are best described by
the following quote:

The architectural challenges for reaching Exascale are
dominated by power, memory, interconnection networks,

and resilience.
— Richard C. Murphy et. al. (2010) [9]

1.1 Motivation

The motivation for this work is based on the following three key observations:

The Processor-Memory Gap
The memory interface is one of the last parallel buses and probably the most

3



Introduction

critical bottleneck in modern computing systems. The disparity between processor
and memory performance is ever increasing and the situation got worse with the
introduction of multi-core architectures. Since no technological breakthroughs
are expected in the near future, it is time to revisit the memory interface and
evaluate alternatives.

Inter-Node Communication
Large-scale systems typically communicate via message passing and data must be
transported between two or more nodes whenever the communicating processes
are spread across distinct nodes. While some applications mainly rely on point-
to-point communication, others spend a lot of time in processing and waiting
for the completion of collective operations. Most often the memory interface is
involved in collective operations as it holds the data elements that are placed
and retrieved by processors and the interconnection network. It is desirable to
either reduce the number of messages that are sent or otherwise to increase the
performance of point-to-point and collective communication.

Fault Tolerance
With an increasing number of components in large-scale systems, and without a
significant improvement in component reliability, the MTBF will continue to drop
and the frequency of catastrophic failures will increase. To mitigate the effects of
such failures, to reduce the amount of work lost, and to allow rapid system recovery,
today’s systems deploy fault tolerance techniques using Checkpoint/Restart.
Unfortunately, checkpointing introduces additional overhead and can take up a
large amount of the application runtimes. Parity checkpoints were introduced to
lower the overhead at the expense of computation and communication, which
heavily utilizes processors and the memory and storage system. It is therefore
necessary to investigate in innovative approaches to reduce the overhead in order
to speed-up the parity creation process.

1.2 Vision

As the types of hardware and interfaces in computing systems are standardized and
systems are built from commercial off-the-shelf components, the only way to achieve
improvements in the areas mentioned above is a dedicated hardware component. The
ideal candidate avoids slow memories, offloads processors from computing collective

4



1.3 Contributions
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Fig. 1.2 NAM Vision: Reduce communication and offload processor computation

operations, reduces communication and synchronization effort, and provides sufficient
bandwidth to serve as target for as many processes and nodes as possible. Figure 1.2
envisions how such a component, integrated with an existing interconnection fabric,
is meant to improve collective operations by reducing inter-node communication and
associated memory accesses. This general approach can be transferred to Check-
point/Restart which in large parts relies on these patterns.

1.3 Contributions

This work presents the implementation of the Network Attached Memory, a dedicated
component to serve as a global shared storage and to carry out collective operations in
large-scale systems. It therefore employs network interfaces that provide the ability to
connect it to available links within the EXTOLL high-performance interconnection
network.

Based on the motivation to replace the current parallel memory interfaces with a
flexible and serial one, the NAM prototype implements the emerging Hybrid Memory
Cube memory interface. The HMC performance and power efficiency is analyzed
and evaluated in an FPGA (Field Programmable Gate Array) using a custom host
controller. This contribution comprises conference publications [10, 11] and the well
adopted open-source initiative openHMC [12].
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The developed FPGA design implements links to the EXTOLL network and the HMC.
It provides modules for read and write operations from remote hosts from and to the
HMC memory on the NAM. A checkpointing module improves Checkpoint/Restart
mechanisms that are typically deployed in today’s systems. It aims to reduce the com-
munication and synchronization overhead between participating nodes and shall offload
processors from calculating the corresponding parity information. This contribution
has led to news articles [13, 14] and a conference poster [15].

Finally, the performance of the NAM for reading and writing, and for the
Checkpoint/Restart (CR) use case is evaluated in a 16 node test system. The re-
sults show that CR with the NAM outperforms a current approach by a factor of
2.1.

1.4 Outline

The remainder of this work is organized as follows: The next chapter covers the
three relevant topics memory, inter-node communication, and fault tolerance. The
discussion supports the need to revisit the memory interface and indicates that a
dedicated hardware may be able to mitigate the excessive overhead in communication
and fault tolerance. Chapter 3 presents the Hybrid Memory Cube (HMC) interface
and technology in detail. Using a self-developed host controller, the HMC performance
is characterized with real system measurements. Chapter 4 describes the development
of the Network Attached Memory (NAM) hardware prototype. It provides network
interfaces and integrates an HMC. The implemented FPGA design units are presented
and the theoretical NAM performance is evaluated. As a first use case, the NAM
improves the creation of parity checkpoints in the DEEP-ER (Dynamical Exascale
Entry Platform - Extended Reach) project. The chapter is concluded by a description
of the Checkpoint/Restart process and the developed software components. Chapter
5 evaluates the NAM in a 16 node real system setup with microbenchmarks and a
DEEP-ER application mockup. The last chapter summarizes and reflects the obtained
results and suggests improvements for a future NAM implementation.
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Today’s large-scale systems suffer from various limitations often caused by only very
few components. As this trend is expected to intensify in the future, and in order
to develop potential solutions, it is necessary to understand the reasons behind these
limitations.

The first section of this chapter describes the historical evolution and current trends in
the main memory development, and motivates the adoption of serial interfaces as one
solution for most of the issues presented. Next, based on the prevalent software and
hardware components, the communication in High Performance Computing (HPC)
systems is analyzed. The third section presents currently deployed fault tolerance
techniques which will gain even more importance with increasing system sizes. A final
summary that puts these three topics into context concludes this chapter.

2.1 Memory: Technologies and Interfaces

For many years the increase in CPU (Central Processing Unit) performance was
driven by Moore’s law which was initially formulated in 1965 [16]. It predicts that
the transistor count in microprocessors will double every 18 to 24 months, and this
prediction remained true for about four decades. Although recently a slowdown can be
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observed, device manufacturers found ways to keep increasing the transistor count at a
moderate rate.

One processor characteristic that has stopped scaling, however, is the internal operating
frequency. This is due to the reason that transistor power consumption is proportional
to frequency and the power density increases as more transistors are packed per area.
Also, with smaller transistors, leakage current becomes significant which causes the
processor to dissipate power and heat at an increasing rate. This has led to the end
of the well-known Dennard scaling [17] which states that power consumption remains
proportional to the chip area.

To keep up with the traditional performance growth rate of CPUs, multi-core architec-
tures were developed and current devices integrate as many as 72 cores on a single die
[18].

One component that historically lags behind processor performance is the Dynamic
Random-Access Memory (DRAM)-based main memory. Although it was formulated
more than 20 years ago, the current situation is very well summarized by the following
quote [19]:

Across the industry, today’s chips are largely able to execute code faster
than we can feed them with instructions and data. There are no longer

performance bottlenecks in the floating point multiplier or in having only a
single integer unit. The real design action is in memory

subsystems—caches, buses, bandwidth, and latency.
— Richard Sites: It’s the Memory, Stupid! (1996)

Similar to CPUs, DRAM obeyed Moore’s law for a long time and only recently a
slowdown in capacity growth is observed. Much more critical than the capacity,
however, is the access time for a memory reference to the off-chip main memory. While
the relative single core CPU performance increased by a factor of 10.000 in 30 years,
the vast increase in peak memory accesses outperforms the capabilities of the memory
interface. More specific, the DRAM access latency relative to the number of CPU
cycles it takes to serve a memory reference only improved by a factor of eight. Within
the same time period access times decreased from 250 ns in 1980 to 31 ns in 2012 [20].
Figure 2.1 illustrates this disparity in performance which is well-known as the memory
wall [2]. Although the historical development and current trend for the performance of
the number 1 system in TOP500 list of supercomputers gives only small indication
that memory performance may be critical at all, it is and will remain a serious matter.
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Fig. 2.1 Historical trend of the processor-memory gap [20]

The reason why in particular the TOP500 list is not suitable to discover a memory
bottleneck is because of the benchmark it uses to characterize systems. The LINPACK
benchmark is very insensitive to memory performance [1] which certainly does not
accurately reflect the majority of HPC applications. It was also shown that future
application codes will be much more memory sensitive [21].

2.1.1 Latency

The recognition of the memory wall led to the introduction of caches and hierarchies
of caches in many variants and with various levels to hide the latency from a processor
view. Caches rely on the concept of temporal (a memory reference is likely to be
used more than once) and spatial locality (multiple accessed memory references are
within relatively close storage locations). Hence, caching tries to avoid accessing the
relatively slow physical memory interface by holding data in processor-local structures.
Eventually, data still needs to be transported over the memory interface with potentially
many independent processor cores competing for access. This increases the probability
of cache misses and leads to additional, latency and bandwidth-wise expensive main
memory accesses. And even if there was only one process to access the memory it
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might be limited by the interface latency if an application is not able to exploit locality
for its memory references.

Although smaller and faster transistors typically help latency, the increasing number
of transistors per area and additional memory chips to maximize capacity also result
in longer channel distances. These longer traces and higher fan-outs naturally increase
the signal latency and limit the switching speed on these lines. Also, the focus of
the DRAM semiconductor process has shifted away from maximizing performance to
increasing the capacity and reducing the memory cell’s leakage current which is critical
with today’s small feature sizes. As the author in [22] states, the terms bandwidth and
capacity are much easier to sell than latency marketing wise, and yet another reason
why latency has been missing significant improvements.

2.1.2 Bandwidth

The situation with memory bandwidth is less critical than with latency although
Double Data Rate (DDR) as the most commonly used main memory interface also
lags behind the requirements of modern processors. For example, an Intel Core i7
CPU with four cores can generate memory references that require a peak bandwidth of
409.6 GB/s [20]. The actual requirement can be even higher as peripheral devices may
also request access to main memory via Direct Memory Access (DMA). In contrast, a
current DDR4 module provides 25 - 30 GB/s [20].

The main reason for this disparity is that the main memory interface has not seen
meaningful changes in more than 30 years. Although each new generation of DRAM
modules came with a slightly modified layout (which also required new processor
generations), it is one of the last parallel interfaces in modern computing systems.
Performance gains were achieved by widening the interface, increasing the pin speeds,
and the introduction of DDR signaling and prefetch mechanisms. Adding more
memory modules for multi-channel operation remains another viable option but its
scaling behavior is limited by the excessive use of processor I/O pins, Printed Circuit
Board (PCB) routing issues and a lack of physical space to place the additional
components on a board.

Other approaches examined the feasibility of memory latency reduction (which corre-
lates with a bandwidth increase) by either improving the memory access scheduling
for multiple cores [23] or asynchronously reorganizing the DRAM banks within a
memory chip [24]. And finally, to address the rapidly growing mobile and graphics card
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market, derivatives of the DDR interface were developed. These are tailored to the
varying requirements of the power oriented mobile market (Low Power Double Data
Rate (LPDDR) [25]) and bandwidth-hungry graphics cards (Graphics Double Data
Rate (GDDR) [26]). All of these variants, however, are still limited by the memory
interface bottleneck which needs to be revisited.

2.1.3 Power

Aside from the memory performance, power consumption of large-scale systems in-
creasingly moves into focus and the memory system plays an important role in this
observation. An analysis of a high-end IBM server in [6] showed that memory consumes
as much as 40 % of the overall system power and this trend is also observed with
current graphics cards [27].

To keep the power requirements of future Exascale systems within a reasonable budget it
was decided that such systems should not exceed a total of 20 MWatt [7, 8]. Projections
in [7] show that this goal is ambitious and challenging. The authors scale a current
large-scale system to Exascale size and predict the power consumption considering
technology improvements that enhance efficiency. The outcome of this experiment is
that such a system would consume 70 Megawatt. More interestingly, the memory is
the largest consumer with over 65 % of the total consumption.

Clearly, memory and in particular its interface will remain one of the most important
targets for optimization for current and future systems. To bridge the gap until a
new technology with the potential to replace DRAM as main memory hits the market,
memory manufacturers recently started proposing alternative interfaces. Additionally,
advances in the semiconductor manufacturing process have made layer stacking and
heterogeneous stacks a viable option.

2.1.4 Emerging Memory Technologies

The increasing demand for memory performance and capacity, and the I/O and area
scalability issues of DRAM DIMMs (Dual In-line Memory Modules) has led to vertically
stacked architectures, leveraging recent developments in fabrication process. Multiple
layers of DRAM can now be stacked on top of each other, linked via tiny connections
called Through Silicon Vias (TSVs) [28]. The ability to pack more memory arrays
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per area increases the capacity and results in shorter traces, hence reducing fan-out,
latency, and power consumption for signals on the memory interface channels.

Examples for stacked memories are HBM (High Bandwidth Memory) developed by
AMD and SK Hynix [29] (high-performance) and the WideIO standard [30] (low-power
mobile segment). Both memory types are DRAM based and still rely on a parallel
interface. Processor and memory components are typically placed and interconnected
on a common silicon interposer which is packaged in 2.5D technology. This brings the
two components closer to each other, thus further decreasing trace lengths and routing
effort. HBM for instance is already deployed in AMD graphics cards [31] and Altera
FPGAs [32].

Although these new technologies only recently entered the market and the cost is
relatively high, it is expected that they will continue to gain considerable market
shares as both significantly improve the memory performance and power characteristics
within their market segments. It must be noted that stacking is also utilized for
non-volatile storage class devices such as V-NAND from Samsung [33] as well as
3D-NAND [34] and the recently announced 3D XPoint [35] from Micron and Intel.

The second class of revolutionary packaging options is 3D integration. It benefits
from the additional advantage that TSVs enable different processes such as DRAM
and CMOS (Complementary Metal Oxide Semiconductor) to coexist within a single
stack. 3D integration allows to shift the complexity of a memory controller into a logic
layer at the bottom of a memory stack. Popular examples are Intel’s Multi Channel
DRAM (MCDRAM) and Microns HMC. Intel’s latest KNL (Intel Knights Landing)
CPUs connects multiple MCDRAM1 devices via a proprietary interface in a 2.5D
package [18]. An MCDRAM is a stack of multiple DRAM layers on top of a logic base
that integrates the actual memory controller functions. Similarly, Micron’s HMC [37]
stacks up to 4 layers of DRAM on top of a logic base that fully integrates up to 16
independent memory controller. The innovative part with HMC is that the traditional
parallel interface to the processor is replaced by high-speed serial links. The benefits
of such an interface are described next.

1 According to [36], MCDRAM is based on HMC with a modified logic base and interface.
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2.1.5 Serial Interfaces

Utilizing serial high-speed links to connect a memory breaks with the traditional
parallel interface, and there are several good reasons to examine this approach: A
serial interface

1. shifts the memory controller complexity into the memory stack. It decouples the
development of the memory interface from of the actual DRAM array and other
memory technologies.

2. likely operates on packets instead of transactions. This enables the existence
of potentially many outstanding requests which suits the demands of current
multi-core/multi-threaded CPUs with many independent request streams.

3. enables the use of application-specific packets and commands to integrate pro-
cessing capabilities close to the memory (see Section 2.1.6).

4. reduces I/O pin requirements and routing complexity. The interface itself consists
of several high-speed differential lanes and a few sideband signals.

The author in [38] formulated a motivation to adapt serial interfaces and in particular
highlighted the benefits of Micron’s HMC as a candidate. This motivation is extended
by a detailed description and evaluation of the HMC in Chapter 3.

To the best knowledge of the author, at the time of writing the only other device
that stacks memory on top of a logic base with a serial interface is the SRAM (Static
Random-Access Memory)-based Bandwidth Engine (BE) by Mosys [39]. Although BE
provides the lowest memory access latency on the market (≈ 16 ns for a full memory
reference) its maximum capacity is currently 1 Gbit which makes it unusable for most
applications and impractical as main memory replacement. The HBM specification
similarly defines an optional interface die (e.g. with a serial interface). At the time of
writing, however, there are no devices with such an interface available.

2.1.6 Processing in Memory

This section so far has only considered changing or improving the existing parallel
memory interface. Another approach that has recently become a well discussed topic
is to avoid data movement where applicable by shifting the actual processing into the
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memory array, or at least as close to it as possible. Among other acronyms that have
emerged, the most popular is Processing In Memory (PIM).

PIM describes the tight integration of CMOS logic and memory cells within a single
chip. This idea is not novel and several architectures that place combinational circuits
right next to the memory were proposed already in the 1990’s (e.g. [40, 41]). Their
functionality, however, was limited to very basic operations and only the recent
advancements in fabrication process have made PIM an interesting topic for researchers.
HMC can be categorized as PIM device as it supports atomic functions that can
autonomously add values to memory locations. The Active Memory Cube (AMC)
[42] takes this capability to a next level. Based on the HMC memory architecture it
integrates a full Instruction Set Architecture with caches and pipelines. Although AMC
is still a research project and the performance projections are based on simulations,
it gives a glimpse into the capabilities of PIM and how it can be used to reduce the
memory interface traffic.

2.1.7 Summary Memory

This section highlighted the reasons for the existing and ever increasing gap between
the processor and memory performance. It became clear that the main memory
interface must change in order to keep up with the increasing number of cores and
components that access it. Although recent developments led to performance and
capacity improvements they have not significantly changed the way how memory is
accessed. A technological breakthrough that is able to replace the DRAM cell is
currently not foreseeable, but at the same time seems inevitable to overcome the
proposed power budget of next-generation Exascale systems. To speed-up the adoption
of future memory technologies, the serial memory interface was introduced. It comes
with plenty benefits that have the potential to change the memory landscape. This
includes the possibility to rapidly develop and integrate complex processing units
within the memory stack without the need to change the interface itself.

2.2 Communication in HPC systems

Today’s HPC systems often comprise multiple thousand nodes and projections show
that this number will scale up to 260.000 nodes for Exascale machines [4]. Without
a significant change in how these systems are designed, future systems will more or
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Fig. 2.2 Energy cost for data movement across different layers [7]

less rely on the current prevalent communication scheme: An application uses MPI
(Message Passing Interface) to exchange messages between two or more processes. These
messages are physically transported via an underlying hardware, the interconnection
network (interconnect). This section introduces several types of commonly deployed
interconnects and summarizes the communication schemes and typical patterns of
current large-scale systems.

2.2.1 Interconnection Networks

To leverage the vast amount of processing capabilities of thousands of nodes, the jobs
that run on these systems need to be partitioned and parallelized as good as possible.
Unless a job (or the problem) is perfectly parallelized, and this often does not only
depend on the programmer but the on problem itself, inter-process communication will
take place. Sometimes, this communication occurs between two processes running on the
same node or even the same processor. Most often, however, inter-node communication
is inevitable which is expensive in terms of energy and latency. Figure 2.2 illustrates
the energy cost to move data through the different possible types of the interconnect
hierarchy.
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It can be seen that the required energy to transport an information becomes significant
when moving off-chip (e.g. to get data from local DRAM), and increases further when
using the local (processor-)interconnect or crossing node boundaries. Even worse,
whenever data is transported to a remote node this node is likely to be waiting for it.
This additional latency results in stall states where no useful computation is performed.
Hence, the interconnection network plays a vital role for the overall system performance
and energy efficiency. Assuming a perfectly parallelized application the interconnect
is often the most important component and a popular optimization target to keep
communication overhead at a minimum.

Out of several interconnect technologies, Ethernet and Infiniband [43, 44] have emerged
as the most prevalent solutions in HPC. According to the TOP500 list of supercom-
puters2 (June 2017 edition), 208 out of 500 systems run Ethernet3 (41 %) and 177
use Infiniband4 (35 %). The remaining systems use proprietary interconnects such as
Intel Omnipath [46] which gradually gains traction in the list since its introduction
in 2015. It must be noted that currently no machine within the 10 most powerful
supercomputers of the TOP500 list uses Ethernet or Infiniband. The leading spots are
held by non-standard, vendor specific interconnects tailored to these machines and the
LINPACK benchmark.

Most of the interconnection networks, including Ethernet and Infiniband, have in
common that they come as a PCI Express (PCIe) plug-in card for the corresponding
slots in today’s commodity hardware. These Network Interface Controllers (NICs)
provide host connectivity via PCIe and one link to the network fabric. One exception
to this is Intel Omnipath which integrates the NIC with the CPU and therefore removes
the often criticized PCIe connection as bottleneck.

A message that targets a remote node is first processed by the NIC and then sent
to the network. Switches and hierarchies of such are used to link all nodes together.
Unfortunately switches come at a price and limit the scalability as the network becomes
non-uniform. Also, physical space must be preserved to place these switches in a rack.

One approach to avoid these drawbacks is the emerging interconnect EXTOLL [47,
48, 49]. Just as with the other interconnects, the EXTOLL NIC plugs into a standard
PCIe slot, but it already integrates the switching functionality. Each NIC provides six
network links and therefore allows to directly create topologies such as a 3D torus,
2 The TOP500 list of supercomputers, established in 1993, is a half-yearly updated list that ranks

the 500 most powerful supercomputers using the LINPACK benchmark [45].
3 Ethernet, 1G Ethernet, 10G Ethernet (majority), or 100G Ethernet.
4 Infiniband QDR, FDR (majority), or EDR.
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Table 2.1 Interconnect performance comparison

Interconnect Latency [us] Bandwidth [GB/s]
Ethernet 1G [50] 47 0.112
Ethernet 10G [50] 12 0.875

Infiniband QDR [50] 1.6 3.23
Infiniband EDR [51] 0.6 12.5

EXTOLL [52] 0.6-0.8 12.5

maintaining scalability at all times. These are two of the main reasons why EXTOLL
has been selected to evaluate the NAM. Section 4.2 will present the technology in
detail.

Performance-wise, all of the interconnects mentioned above have significantly improved
over the past decade. As Table 2.1 points out, Infiniband EDR and EXTOLL are
superior to 1G and 10G Ethernet in bandwidth and latency. The reason why in
particular 10G Ethernet is still deployed that often (195 systems in the TOP500) is
because of its relatively low cost. State of the art HPC systems require thousands of
NICs and hundreds of switches to fully interconnect all nodes.

Whichever interconnect is used it still remains a tool for applications to facilitate
inter-process communication and the actual utilization of the interconnect depends
on the communication characteristics of the application itself. It is in particular
important to understand these characteristics in order to optimize the overall system
performance as simply improving the interconnect bandwidth and latency might not
pay off significantly in all cases.

2.2.2 Message Passing and Communication Characteristics

Message passing is the prevalent inter-process communication scheme in today’s large-
scale systems and has become the de-facto standard. It abstracts the underlying data
movements to a simple concept of messages that are sent and received between two
processes.

The most widely used message passing standard is MPI5 (first introduced in [54])
which itself is not a library, but rather a specification that defines how message passing
5 The full specification of the current MPI standard version 3.0 can be found in [53].
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Fig. 2.3 Example MPI operations (Legend: Orange - sender. Blue - receiver. ’+’: Logical
operation)

libraries should operate. Out of this standard, several implementations including
MVAPICH/MVAPICH2 [55] and the very popular open-source variant Open MPI [56]
have evolved.

Figure 2.3 depicts four MPI operation examples. These include, but are not limited to
asynchronous point-to-point messaging and collective operations such as Broadcast
(distribute data from one process to other processes), Reduce (move data from other
processes to one process and perform a logical operation; one process receives the
result), and Allreduce (apply logical operation on data from all processes; all processes
receive the result). In particular, the actual implementation of Allreduce and other
similar collective operations depend on the MPI library that is used. Data exchange for
such functions can be realized with all-to-all communication (Figure 2.3d) or various
other logical topologies such as a binary tree or a ring.

Apart from the actual scheme that is used for collective operations, an application
typically comes with predictable and well-known access patterns. It is essential to
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characterize applications by means of their communication behavior to determine
useful system optimizations for a specific use case. Naive approaches to simply improve
the performance of components such as the processors or the interconnect will not
necessarily lead to substantial speed-ups if the actual bottleneck is somewhere else.
For example, some applications heavily utilize point-to-point communication while
others spend most of their time performing collective operations. This depends on the
application itself and how it is implemented.

Recent work in [3] analyzed the MPI characteristics of application traces collected
by the U.S. Department of Energy (DOE) [57]. The analyzed dataset comprises 18
different applications with 10 up to 13.000 ranks. The key finding of this work is that
these applications spend 36 % on average of their time in MPI routines with a peak of
up to 60 %. Interestingly, while the vast bulk of data is transported via point-to-point
communication the average application spends most of its MPI time with collective
operations. Although it was shown that only small amounts of data are processed
with collective operations, synchronization overhead for a large number of processes
becomes significant. This insight is in particular important as it highlights that for
many applications the focus must be shifted to improving collective operations instead
of just focusing on increasing bandwidths.

This issue has already been identified and the latest MPI-3.0 standard foresees non-
blocking collective operations which allow to continue program execution while collective
operations take place. However, it also brings up the question of architectural changes
and encourages the use of dedicated resources to carry out these operations and to
reduce synchronization overhead.

2.2.3 Summary Communication

Current large-scale systems and applications rely on a message-based communication
schemes which send and receive messages via a physical interconnection network and
it is not expected that this general approach will change in the near future.

Although the various types of interconnects as important part for inter-node commu-
nication showed substantial progress over the past decade, simply improving these
components may not be sufficient. This is in particular the case for applications that
spend a large amount of their execution time waiting for completion of collective opera-
tions. The resulting processor stalling negatively impacts the application’s performance
and energy efficiency.
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Unarguably the interconnect will remain an important system component and needs
to be further optimized. For many applications, however, there is an obvious need
to rethink system design and a dedicated resource to mitigate existing application
bottlenecks appears reasonable and tempting.

2.3 Fault Tolerance in HPC Systems

Resilience has become a major concern for HPC systems. As systems continue to
grow in size, more and more components are added. Unfortunately, each additional
component is also subject to faults (e.g. a stuck bit) which are likely to result in errors
such as an incorrect value and false program execution. Errors on the other hand may
lead to incorrect system states or an application crash known as failure6. Previous
work in [59] showed that the number of failures per system is almost proportional
to its number of processors, which correlates with the amount of memory and other
components. Without an increase in component reliability the MTBF of future systems
will further decrease as it is expected that Exascale systems will comprise more than
260.000 nodes [4], 6 times more than the current number 1 ranked HPC system Sunway
TaihuLight7. The equation is easy: with 6 times more components at a given component
reliability, a system will fail 6 times more frequently.

In fact, the single component reliability even decreases with technology scaling and
design for power efficiency. Smaller transistors typically carry smaller charges and
also suffer from manufacturing variances, making them more error prone. The DRAM
soft error rate for example has been analyzed in two studies conducted in 2004 [60]
and 2009 [61] using respective state of the art memories. A comparison of the results
unveils a 25X increase in DRAM soft failure probability in only 5 years. Although
ECC (Error Correction Code) technology is able to correct a bulk of such errors their
occurrence will further increase.

Along with the obvious challenges caused by technology scaling, semiconductor devices
also become less reliable over their lifetime. This is known as aging and it gets worse
with smaller features sizes. Interestingly, the authors in [62] found a correlation between
the number of component failures and the day of the week and the hour of the day.
Hence, components are likely to fail more often under heavy workload.
6 For more information on the taxonomy see [58].
7 The Top500 list twice-yearly ranks the performance of the 500 fastest supercomputers in the

world. See www.top500.org for more information.
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Fig. 2.4 Hardware failure breakdown by component for three different and unrelated
systems [65]

Cause Hardware Software Network Human Facilities Unknown
Percentage 60.4 % 22.6 % 1.8 % 0.6 % 1.5 % 13.1 %

Table 2.2 Causes of failures by type collected by LANL from 1996 to 2007 [66]

For today’s large-scale systems, the MTBF ranges from a few hours to several days,
mainly depending on the system size [63]. Researchers predicted that an Exascale
system might fail in the order of every 30 minutes [64].

Fault avoidance techniques such as ECC and redundancy come at the expense of
more hardware and increased power consumption. Finally, the recent IC (Integrated
Circuit) development is mainly driven by cost-effective segments (e.g. mobile) that do
not demand high reliability and can easily tolerate certain errors. The vast majority of
available hardware focuses on these markets and high-performance systems built out
of commodity hardware especially suffer from a lower MTBF.

2.3.1 Failure Causes

The major cause for system failures is defective hardware, and as Figure 2.4 shows it
can be any component in a system. There are, however, several other possible causes
for system failures which are summarized in Table 2.2. Software, for example, is ranked
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on the second place and is responsible for about 23 % of all failures on the example
system. With more complex hardware architectures, hierarchies, and topologies, also
software increasingly becomes more complex. [59] observed that there is a relationship
between the software that runs on a system and its MTBF. Although software layers
are able to detect errors caused by lower layers this process can be very complex.
Furthermore, this information may not necessarily be trusted since the state of the
software may be corrupted. Sometimes it is even not easy to track down the cause of
an error, especially whether or not it was caused by software. For example, when the
job finishes but only the final result is incorrect.

Any of the failures mentioned above will likely cause an entire job to fail and fault
tolerance techniques were developed to mitigate the effects of system failures. The most
commonly used approach is to periodically backup the system state in order to reduce
the penalty for restarting jobs after a failure. This is known as Checkpoint/Restart.

2.3.2 Fault Tolerance using Checkpoint/Restart

Checkpointing was introduced to avoid restarting jobs from scratch. With checkpointing,
programmers define states (checkpoints) of their application the job can rollback to upon
recovery from a failure. Although applications can now restart from a more advanced
state, application based checkpointing has a significant characteristic: all processes will
roll back to the last well-known state even if only one of many processes has failed.
An additional drawback is that the checkpoints have to be stored somewhere. They
require extra storage and use I/O (Input/Output) and sometimes network bandwidth
to transfer the data. Traditionally, checkpoints were written to the Parallel File
System (PFS) which provides only very limited bandwidth since it is most often a
shared resource among multiple systems. In an extreme scenario where the time it
takes to write a checkpoint is close to or exceeds the MTBF, a job would spend most
of the runtime just to checkpoint its data without making progress in the actual task.

Finding the optimum time interval between two consecutive checkpoints is rather
complex and subject to intense investigation [67]. It requires a deep knowledge of the
system architecture and the application.

Recently exceptional effort has been put into the prediction and prevention of system
failures. The results in [68] show that under certain circumstances the failure prediction
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recall8 goes up to 50%. Proactive checkpointing [68] can then be used to back up
the system state right before a failure occurs, reducing the amount of work lost. The
authors also suggest spare nodes to replace other nodes that will fail soon, migrating
repair time.

All these approaches come at a certain overhead and they are currently complimen-
tary to periodic checkpointing which remains the prevalent fault tolerance technique.
Checkpointing inevitably leads to longer application runtimes and it is desirable to
reduce this overhead.

2.3.2.1 Mitigating Checkpointing Overhead

Several options to mitigate checkpointing overhead and to reduce its negative impact
on application runtimes are available:

Reduced checkpoint size
It is the responsibility of the programmer to identify the parts that need to be
stored in order to reduce data size but still allow for correct failure recovery.
Incremental checkpointing can be used to reduce the size of consecutive check-
points by only storing data that has changed since the last checkpoint. However,
current approaches such as in [69] require significant modification to operating
system kernels and may not be easily deployed.

Reduced checkpointing frequency
It is reasonable to decrease the checkpointing frequency to lower its overhead.
Since applications will lose more progress upon a failure in this case, checkpointing
frequency must be seen as a trade-off between MTBF and the time it takes to store
(and restore from) a checkpoint. Interestingly, the more frequent checkpoints are
created and written to the storage system, the more frequent specific components
such as Solid State Drives (SSDs) with limited durability will fail.

Multilevel checkpointing
Multilevel checkpointing approaches make use of intermediate levels of storage
that provide higher bandwidth than the slow PFS such as DRAM and local SSDs.
The checkpoint is written to this faster storage and then asynchronously flushed
to a higher storage layer via a dedicated thread [70] or an agent [71]. Meanwhile

8 The prediction recall is the ratio of correctly predicted errors to the number of actual detected
failures.
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the corresponding process can continue with its task. Typically, the last level of
checkpoint storage is still the PFS and not every checkpoint stored on a faster
storage will be transferred to the PFS, but instead 1 out of 10 checkpoints for
example.

Multilevel checkpointing and reducing the checkpoint size both allow to increase the
checkpointing frequency, which may also reduce the rollback penalty for restart. A
similar form of multilevel checkpoints is accomplished with burst buffers [72, 73], which
are intermediate destinations in front of the PFS but can be mounted as regular file
systems. Burst buffers exploit the bursty characteristic of checkpoint I/O where high
bandwidth is only occasionally requested, which gives enough time to forward it to
the PFS as final destination in between two checkpoints. Other approaches such as
In-memory checkpointing [74] rely on a memory only checkpointing scheme, avoiding
the relatively slow PFS. Although checkpointing to memory undoubtedly delivers the
best performance it also requires multiple copies of a single checkpoint and multiple
times more memory than required by the application. Moreover, when the memory is
non-volatile, a node failure such as a simple power outage will erase the checkpoint.

Multilevel checkpoints provide a good trade-off between traditional PFS-based check-
pointing and the in-memory approach. It allows for frequent, fine granular checkpointing
and keeps the requirement for additional memory low at a reasonable performance
degradation. One example implementation which has evolved as a de-facto standard is
provided by the Scalable Checkpoint / Restart (SCR) library [71, 75]. As an alternative
to SCR, the Fault Tolerant Interface (FTI) library [70] provides very similar features
and is also widely used. As SCR was used in the DEEP-ER project it serves as reference
and will be described more in detail.

One criteria that is often unnoticed is the effect of checkpointing on power consumption.
Research in [76] showed that there is only little difference between checkpointing
protocols and redundancy schemes. Moreover, the power consumption of computing
and checkpointing was measured to be close. Depending on the checkpointing interval
and duration, creating checkpoints can significantly influence application runtimes and
will increase the power footprint.

2.3.3 SCR: Scalable Checkpoint / Restart

The SCR library provides a multilevel checkpointing solution for MPI applications. It
is based on two key observations: First, only the most recent checkpoint is required
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to successfully restart. Second, a system failure only disables a small portion of the
system.
With these two observations SCR was designed to only store the most recent checkpoint
to node-local storage, discarding any previous checkpoints. It also implements a
redundancy scheme to support some node failures at reasonable network traffic and
computation overhead. Storing checkpoints to node-local storage ensures system
scalability since the checkpointing bandwidth scales with the number of nodes. However,
even with SCR checkpoints must be occasionally written to the PFS. It is still required
to recover from larger system or node-local storage failures. It must also be noted that
the node-local storage may have limited endurance and frequent checkpointing to e.g.
an SSD will limit its average lifetime to approximately 3 years. Additional techniques
based on a hybrid DRAM/SSD approach were developed to increase the SSD lifetime
[5].

Even though SCR manages checkpointing and restart by itself it is still up to the
programmer to identify the parts of the code that need to be saved, and to make use
of the respective function calls provided by SCR.

2.3.3.1 Redundancy Schemes

SCR provides three different checkpointing schemes:

Local Checkpoints are only written to the node-local storage. It is the fastest of the
three checkpointing schemes but cannot withstand node failures.

Storage required for a checkpoint of B Bytes: B

Partner Checkpoints are written to the node-local storage and additionally to the
local storage of a remote partner node (Figure 2.5). This scheme is slower than
’Local’ but can withstand node failures, and even multiple node failures as long
as a node and its partner do not fail simultaneously.

Storage required for a checkpoint of B Bytes: 2 ·B

XOR With XOR, all available nodes are split into sets with N nodes each. Using a
bit-wise XOR reduce operation, a parity information over all checkpoints in a set
is calculated. Each node receives only a fraction of the parity which can then
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Fig. 2.5 SCR-Partner checkpointing scheme

be used to recover from any single node failure within a set. XOR invokes more
computation but requires less storage than ’Partner’. It can withstand multiple
node failures as long as no more than one node within a set fails simultaneously.

Storage required for a checkpoint of B Bytes: B + B

N −1

Local checkpointing is not a viable option for most systems as a single storage outage
causes the scheme to fail. The Partner approach ensures the highest fault tolerance
and is trivial and easy to implement but it requires the most storage space as every
checkpoint is stored twice. SCR with XOR is a good trade-off in performance and
storage requirements between these two approaches. It will be examined in detail next.

2.3.3.2 XOR Redundancy

Figure 2.6 shows how SCR generates a XOR parity. As mentioned before, SCR with
XOR splits the available number of nodes into sets. In a set of N nodes, the checkpoint
file of each node is logically split into N-1 segments (Figure 2.6a). In the next stage,
zero-padded segments are inserted so that every checkpoint now consists of N segments.
All segments with the same index are then reduced via a bit-wise XOR operation
(Figure 2.6b). This process may be implemented as a typical MPI collective operation
which has been described in the previous section. Finally, one XOR parity information
segment is distributed (scattered) to every node (Figure 2.6c). SCR provides several
parameters to control the size of sets and the assignments of nodes to these. The
configuration in the example provides one XOR set and can only tolerate a single node
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Fig. 2.6 SCR XOR checkpointing example

failure. It is the responsibility of the user to create a reasonable number of sets to
allow withstanding multi-node failures.

SCR is also able to handle multiple processes per node. In this case it will automatically
select and create XOR sets so that every set has no more than one process of a particular
node. Also, when a process writes more than one file during execution, SCR will combine
these to a single checkpoint file. Finally, checkpointing files with arbitrary sizes are
managed by determining the size of the largest checkpoint in a set and padding the
remaining checkpoints with zeros up to this size.
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2.3.4 Summary Fault Tolerance

Every component in a computing system is subject to failures and the Mean Time
Between Failure decreases with an increasing number of components in large-scale
systems. As systems fail unexpectedly and will continue to do so, work will be lost
unless the accuracy of failure prediction models and migration strategies reaches 100%.
Until then, fault tolerance using periodic checkpointing is inevitable and remains the
prevalent fault tolerance technique.

To mitigate the checkpointing overhead, multilevel checkpointing libraries such as SCR
were developed. SCR provides multiple levels of tolerance and different redundancy
schemes to account for different checkpointing strategies, and SCR with XOR has been
identified as a reasonable trade-off between performance and storage requirements.

SCR with XOR, however, involves inter-node communication and computation of the
XOR parity result likewise. This will keep processors busy and increase the memory
references to move intermediate results to and from the memory. It is therefore desirable
to have an additional device that is able to offload computation, and at the same time
reduce communication among nodes. This communication overhead is identical to
MPI collective operations which has been identified as a major potential performance
bottleneck in the previous section.

2.4 Summary

This chapter highlighted the importance of the memory interface and inter-node
communication in today’s and future large-scale systems. It became clear that memory
has been and will remain one of the most critical bottlenecks with regards to performance
and power. For many applications, communication overhead is already a large part
of the overall application runtimes and the situation will become worse with growing
system sizes.

As future systems will comprise many more components this will also lead to more
frequent soft- and hard errors, increasing the importance of fault tolerance using
periodic checkpointing to reduce the penalty of such failures. Unfortunately, writing
checkpoints takes application time where no actual computation is performed. Since
the performance for writing checkpoints also depends on the memory interface, the
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interconnection network, and communication performance, it is desirable to improve
these key elements.

In conclusion this chapter provided a strong motivation to develop a device that is able
to mitigate the negative effects that were described above. Such a device must be able
to offload computation from a host processor and simultaneously reduce inter-node
communication.
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Hybrid Memory Cube

As an alternative to the DDR interface, to overcome its scalability issues (such as I/O
pin, area, and load limitations), and to increase channel bandwidth, Micron recently
proposed the Hybrid Memory Cube. The first section of this chapter introduces the
HMC and analyzes the impact of its novel architecture on performance. Section two
presents the implementation of the open-source HMC host controller openHMC. Section
three evaluates HMC performance and power efficiency in a real system using the
openHMC controller. A final summary concludes this chapter.

The findings of section one and three have been published in [11]. The implementation
of the openHMC host controller is detailed in [10].

3.1 Introduction and Architecture Analysis

HMC is leveraging recent 3D fabrication processes to stack multiple layers of DRAM on
top of a logic die. Its interface operates on a packet-based protocol utilizing high-speed
SerDes (Serializer / Deserializer). As opposed to DDR, the HMC interface is not a
JEDEC standard. Instead, Samsung Electronics and Micron Technology formed the
Hybrid Memory Cube Consortium (HMCC) in October 2011 [37] and released the
first HMC specification 1.0 in January 2013 [77]. It was later revised with the HMC
specification 1.1 (HMC Gen 2 devices) which is the reference for this work. HMC
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Fig. 3.1 HMC architecture overview

hardware engineering samples were available since 2013 and volume production started
in June 2017 with 2 GB devices.

3.1.1 Architecture

Figure 3.1 shows the basic HMC architecture. Multiple layers of DRAM are stacked
on top of a CMOS based logic layer using TSVs [28]. The stack is organized in 16
independent vaults where each vault connects the upper DRAM layers with a dedicated
memory controller (the vault controller) using 32 TSVs [78]. Every DRAM layer
comprises 16 partitions with 2 DRAM banks each. In [78], the HMC Gen1 DRAM
stack was introduced as a composition of 68 mm2 1 Gbit dies manufactured in 50 nm.
Initially four layers were stacked for a total capacity of 512 MB. Current HMC Gen2
devices [79] stack four 4 Gbit DRAM dies on top of the logic base which increased the
capacity to 2 GB (4 layers · 16 partitions · 2 banks = 128 banks). The capacity growth
from Gen1 to Gen2 is based on denser memory arrays with a bank capacity increase
from 4 MB (Gen1) to 16 MB (Gen2).

The HMC logic layer exposes four external links which can connect processors or other
HMCs. Hence, multiple HMCs can be ’chained’ together with varying routing options
to increase the capacity (see Section 3.1.4). A single link comprises 16 bidirectional
high-speed serial lanes. Every link is local to four vaults and a crossbar ensures that
all links can access all vaults and other links (Figure 3.2). The 4-Link HMC comes in
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Fig. 3.3 Close-up view of an HMC stack.
Image courtesy: Micron

a 31×31 mm package (896 balls)1. Figure 3.3 shows an HMC close-up view with four
DRAM layers.

3.1.2 DRAM Organization and Performance

HMC implements a DRAM closed-page policy, i.e. the row buffers become inactive
after each access. This is opposed to an open-page policy where a row stays active in
the sense amplifiers until it times out or another row is accessed. While an open-page
policy is in particular beneficial for applications with high locality (i.e. a high page

hit
miss ratio) it also increases power consumption since the sense amplifiers stay active
after a memory access. Additionally, an open-page policy introduces delay on a page
miss as pre-charge of the word-line does not occur immediately after the row has been
accessed. As a result, a closed-page policy theoretically performs better for random
access patterns.

The DRAM row or page size in HMC has been reduced to 256 Byte from 512 Byte - 2
KB for DDR4 [80] and to up to several kilobytes in DDR3 [81]. A smaller page size
reduces the probability for a DRAM over-fetch where only a fraction of the information
contained in an opened page is actually used, and therefore also reduces dynamic power
consumption. It also makes an open-page policy impracticable and is another reason
why the HMC developers preferred a closed-page policy.
1 Initially, a 2-Link device with equal characteristics was available (19.5x16 mm package). Devel-

opment and production of this device was canceled in late 2016 for unknown reason.
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Performance numbers can be obtained from many sources [78, 79, 82]. Most of them
highlight the potential link bandwidth of 240 GB/s (4 Links · 60 GB/s). The effective
bandwidth, however, is limited by the vault controllers. With 32 TSVs each and a
clock frequency of 1.25 GHz [83] a single vault can deliver 10 GB/s. With 16 vaults
the maximum effective bandwidth is 160 GB/s. It is reasonable to provide more
link bandwidth than the DRAM stack can deliver due to transaction layer (protocol)
overhead on the link. The protocol will be discussed in a later section. Experiments in
[83] showed that the maximum usable link bandwidth eventually flattens at 240 GB/s
for a given 160 GB/s TSV or DRAM bandwidth.

Finally, HMC can be configured to internally remap memory addresses which can be a
useful tool if the most commonly used access patterns are well-known. Per default,
sequential requests will be spread over vaults, then banks, and finally DRAM to involve
as many vaults as possible. This scheme has a simple, HMC specific background: the
more vaults are accessed, the higher the parallelism and the potential bandwidth can
get. Other access schemes may result in an imbalance of accessed vaults and address
remapping can be used to correct this situation. The impact of various address-mapping
modes on bandwidth at fixed access patterns will be evaluated in Section 3.3.3.

3.1.3 Link

A single HMC has four independent links, each comprised of 16 differential pairs (lanes)
per direction, i.e. data to and from the HMC can flow at the same time. Individual
links can be configured to run at 8 lanes (half-width) instead of 16 (full-width) if
required. Available link speeds are 10 Gbps, 12.5 Gbps, and 15 Gbps. That is a
maximum bandwidth of 16 lanes ·15 Gbps = 240 Gbps = 30 GB/s per direction or 60
GB/s bidirectional per link and 240 GB/s total. The maximum effective bandwidth is
limited to 160 GB/s due to the vault bandwidths. The polarity of individual lanes can
be inverted and the lane order can be reversed to simplify signal routing on a PCB.
Each link is complemented by two power state signals (RXPS and TXPS). Finally, each
HMC devices provides an active-low reset (PRST_N) and a unidirectional, HMC-driven
fatal error indicator (FERR_N). Both sides of a link, Host and HMC, share a common
reference clock which eliminates the need to transmit a dedicated clock along with the
data-lanes.
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access any memory region. Topology suggested in [79]

3.1.4 Chaining

One notable feature is the ability to directly connect (to chain) multiple HMC devices to
each other to increase the capacity (Figure 3.4). Also, multiple hosts can be connected
to a network of HMCs for a shared memory environment (Figure 3.5). Chaining
allows to create novel processor-memory architectures and communication schemes. It
does not only increase the overall capacity but also enables processors to communicate
through memory. Note that the HMC specification currently limits the total number
of HMCs in a single network to 7 devices.

Enhanced approaches foresee dedicated interconnects and switches that connect only
the memory modules for a large global or partitioned address space. Such an approach
is presented in [84]. The author suggests an interconnection network for NAND-based
flash chips. Such a memory subsystem provides a decent increase in capacity in
combination with a good overall power footprint and reasonable performance. Similar
memory subsystems could be created with HMCs. An intelligent interconnect with
routing features would furthermore allow for more than 7 HMCs to coexist in a single
memory subsystem. And lastly, if the interconnect provided additional interfaces to
e.g. non-volatile memory, heterogeneous memory subsystems become feasible (see
Figure 3.6).
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Fig. 3.6 HMC + NAND heterogeneous memory subsystem example. Topology with NAND
only suggested in [84]

3.1.5 Protocol

The HMC communicates over a packed-based protocol. It defines a request-response
communication with a granularity, or Flow Unit (FLIT) size, of 16 Bytes. The protocol
supports reading and writing data packet sizes ranging from 16 to 128 Bytes along
with command support for atomic operations and HMC configuration. Packets are
framed by a header and a tail (8 Byte each) which results in a 16 Byte overhead per
packet. Features such as CRC, a packet length check, and consecutive packet sequence
numbers ensure link integrity. Complemented by a retry mechanism the HMC link can
withstand bit errors that typically occur on serial high-speed links.

Responses are matched to non-posted requests using a 9 bit TAG field for up to 512
outstanding requests. Since the HMC logic die is able to reorder packets for faster
execution (e.g. if a specific vault is accessed more frequently), responses may return
out of order. However, HMC internally queues requests to the same vault/bank so that
accesses to a specific location accessed from one link are always processed in order.
Care must be taken when a memory location is accessed by more than one link since
there is no guaranteed order for request execution across links. A small set of atomic
operations is provided for computation offloading. These commands either add a single
16 Byte or two 8 Byte operands to a memory location via a read-modify-write operation.
The potential benefits of offloading computation to the HMC will be evaluated in
Section 3.3.6.

Flow control in both directions is achieved using tokens (credits), where one token
represents buffer space for one FLIT. The use of tokens prevents the input buffer of the
respective receiver from overflowing. Consequently, tokens are returned after packets
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are processed by the receiver and the corresponding buffer space is freed up. Every
packet that is transmitted also carries a pointer, the Forward Retry Pointer (FRP).
The FRP represents the position of the packet in the retransmit/retry buffer of the
sender. Flow packets are not subject to flow control and do not carry an FRP. As
soon as the packet has been processed at the receiver, this pointer will be returned as
Return Retry Pointer (RRP). The RRP signals the former requester that the packet
was received and the space in the retransmission buffer can be reused. This process is
depicted in Figure 3.7. Such flow control features can negatively influence performance
and pose significant challenges for a host controller design. This flow control barrier
will be described next.

3.1.6 The Flow Control Barrier

In order to maintain the best performance, the HMC specification defines two important
metrics associated with flow control: the retry pointer loop time and the token return
loop time. Both metrics originate from the fact that flow control is mandatory on a
serial link that runs a protocol, and critical when it comes to saturate the theoretical
link bandwidth. They will be described in the following.
Designers of a host controller should always keep these two metrics in mind. Especially
when targeting FPGAs with relatively low operating frequencies, processing pointers
and tokens can take up a large amount of the allowable return loop times.

3.1.6.1 Retry Pointer Loop Time

As mentioned earlier every packet that is sent on a link and subject to flow control
will also be placed in the retry buffer of the respective requester. In addition, an FRP
is also sent along with the packet, uniquely identifying the packet and its location in
this buffer. The FRP is then extracted by the remote link partner and returned on
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Table 3.1 Retry pointer loop time summary. The HMC internal clocking frequency is
independent of the link width and speed

Lanes Speed
[Gbps]

HMC Retry Buffer
Size [FLIT]a

Retry Buffer
Full Period [ns]b

HMC Delay
[ns]c

Max Host
Delay [ns]

8
10 192 307.20 26.5 280.70

12.5 256 327.68 25.9 301.78
15 256 273.07 22.3 250.77

16
10 192 153.60 26.5 127.10

12.5 256 163.84 25.9 137.94
15 256 136.53 22.3 114.23

a See Equation (3.1) and Equation (3.2)
b 16 lane values extracted from the HMC specification [79]

c Extracted from the HMC specification [79]

the response link as RRP, embedded in any packet that also carries valid flow control
fields. This is the case for any packet that is not NULL, IRTRY (used to request a
link retry or to clear error status), or erroneous. After the RRP has been extracted
the read pointer of the requesters retry buffer can be moved. This invalidates the
corresponding packet for potential retry and frees up its location for other packets.
While this process is ongoing the requester is able issue many more FLITs and packets
which fills up the retry buffer. Performance is throttled when the requester continues
to send packets and fills the retry buffer faster than the required space is freed up.
As a result, no more requests but NULL FLITs will be sent over the link, decreasing
the effective bandwidth. To avoid this situation the HMC specification defines the
maximum allowable time for the circulation time of the pointers, the retry pointer
loop time. Figure 3.8 identifies its contributors: host delay, transmission delay which
is negligible, and the delay through the HMC. In the figure, HMC acts as requester
but the scheme applies for the host likewise. Now that the contributors are known,
Table 3.1 summarizes the maximum values for the host delay portion of the retry
pointer loop time. It can be seen that retry buffer full period and the allowable host
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delay depend on the HMC link width and speed. Although not mentioned in the HMC
specification this leads to the following two observations:

1. The HMC retry buffer size for a link running at 10 Gbps is smaller
than for 12.5 Gbps and 15 Gbps.
Equation (3.1) calculates the retry buffer size for a half-width (8 lane) link at
10 Gbps and Equation (3.2) at 12.5 Gbps, respectively. It can be seen that the
retry buffer size increases from 192 to 256 FLITs for the faster configuration.

BW: 8 lanes / 10 Gbps 8 lanes · 10 Gbps = 80 Gbps

Time to process a bit tbit = 1 bit
80 Gbps = 1.25 ·10−11 s = 12.5 ps

Time to process a FLIT tF LIT = 128 · tbit = 128 · 12.5 ps = 1.6 ns

Retry buffer size [FLITs] Full period at 10 Gbps
tF LIT

= 307.2 ns
1.6 ns = 192

(3.1)

BW: 8 lanes / 12.5 Gbps 8 lanes · 12.5 Gbps = 100 Gbps

Time to process a bit tbit = 1 bit
100 Gbps = 1 ·10−11 s = 10 ps

Time to process a FLIT tF LIT = 128 · tbit = 128 · 10 ps = 1.28 ns

Retry buffer size [FLITs] Full period at 12.5 Gbps
tF LIT

= 327.68 ns
1.28 ns = 256

(3.2)

The reason for a smaller retry buffer at 10 Gbps is a decrease in the internal
HMC datapath-width to reduce power consumption by shutting down parts of
the logic, including the retry buffer2. In contrast, running at 12.5 or 15 Gbps
increases performance and in particular the 12.5 Gbps option provides the highest
allowable retry pointer host delay portion. It can ease the implementation of a
corresponding host controller.

2. The retry buffer full period is twice as high when operating in half-
width (8 lane) mode.
Table 3.1 highlights the retry buffer full period for all available HMC link
configurations. However, only the values for a 16 lane configuration are mentioned
in the HMC specification [79]. It is a reasonable expectation that the retry buffer

2 Further details are available under NDA with Micron.

39



Hybrid Memory Cube

full period doubles if only half of the bandwidth is provided, assuming the size
of the retry buffer is maintained. To prove this, hardware measurements were
conducted with 8 and 16 lanes. The host issued read requests without returning
RRPs so that the HMC will not free up any used retry buffer space. The results
showed that the retry buffer size is independent of the link width. This leads to
the conclusion that the time it takes to entirely fill the retry buffer is doubled
when a link is operated in half-width. In fact, HMC stopped responding although
theoretically there were a few tokens left. It is common practice to set such
thresholds lower than the actual limit suggests. It can ease the implementation
and save logic as the need for a fine-grain, FLIT or token based granularity is
eliminated.

3.1.6.2 Token Return Loop Time

The second important factor to avoid performance throttling is the time it takes to
consume, process, and return tokens for transmitted and received packets. Similar
to the retry pointer loop time, returning tokens too slow will throttle link packet
transmission. This is in particular the case when the input buffer in the host controller
or the HMC runs full. Processing tokens is different to pointers which may be returned
immediately after passing integrity checks. Packet tokens can only be returned after
a packet passed the receiver’s input buffer. In addition, current HMC devices only
provide a maximum of 219 tokens for the host to transmit packets which can cause
the host controller to run out of tokens even faster. Therefore, the token return time
constraint is potentially even harder to meet than the retry pointer loop time.

3.1.6.3 Mitigation Techniques

Several techniques can be applied to handle retry pointer and token loop time violations.
If tokens are the limitation, the HMC-supported open-response loop mode can be
entered. In this mode, HMC will not check for free space in the host’s input buffer
but instead immediately return responses. Consequently, the hosts input buffer can
run full if a user application is not able to receive data at the same speed. Host-sided
optimizations for both types of loops include removing link integrity checks to lower the
loop delay and a low latency transceiver design. Removing integrity checks, however,
is highly discouraged as bit errors may lead to undefined link states. Increasing the
host controllers internal operating frequency and moving from 10 Gbps to 12.5 Gbps
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may also be considered and both of these options require the least design modification
effort.

3.1.7 Summary HMC Architecture

In conclusion, the following advantages and disadvantages of the HMC interface can
be obtained from this section. The main performance and power characteristics will be
thoroughly evaluated in Section 3.3.

3.1.7.1 Advantages

• Bandwidth Due to the high parallelism inside the HMC the total theoretical
bandwidth sums up to 160 GB/s per device. The impact of protocol overhead is
alleviated by providing 240 GB/s link bandwidth.

• Average latency High parallelism and the ability to issue many in-flight trans-
actions decrease the average latency. This is opposed to DDR systems with pins
sharing transmit and receive direction and where the number of simultaneous
requests is limited by the number of banks connected to this channel.

• Heterogeneous die stacking Heterogeneous die stacking using TSVs enables
to combine multiple dies that were manufactured in a different technology, such
as CMOS and DRAM. The yield increases since single layers can be tested prior
assembly.

• Footprint and I/O requirements The HMC package significantly reduces
footprint requirements by 90% over DDR DIMMs [85]. The serialized links lower
the number of I/O pins required to connect a processor from several hundreds to
only 64 pins per link (16 differential lanes, two directions) and a few additional
sideband signals. Therefore, HMC can help to overcome the memory scaling
issues for processors and eases PCB development.

• Capacity Stacking multiple DRAM layers increases the memory density while
the footprint remains unchanged. It is one solution to delay the impact of the
upcoming end of the miniaturization process.

• Energy efficiency Shorter memory subsystem traces and reduced wire-loads
contribute to the overall power efficiency. HMC also provides a power-down
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mode to shut down one or more serial links and parts of the logic base, if desired.
Micron claims that HMC uses only 10% energy per bit of current memory systems
[85].

• Atomic operations HMC is able to carry out simple integer ADD operations
which can be utilized to offload such computations from the host processor. These
operations, implemented in a logic layer right next to the memory cells, can be
categorized as PIM.

• Interface abstraction The abstraction of the actual memory interface is another
key benefit of the HMC. Although the overhead through (de-)serialization and
the transaction layer increase the latency, an abstracted interface significantly
eases the implementation of a corresponding host controller. It is furthermore a
key element to accelerate future moves to other memory technologies by speeding
up their adoption.

3.1.7.2 Disadvantages

• Single access latency Serial links and protocol processing introduce additional
delay and therefore increase the single access latency. In order to benefit from
the HMC characteristics the link should be kept busy with as many in-flight
transactions as possible. This might require modifications to existing applications.

• Capacity The capacity of current HMC devices is 2 GB and therefore much
less than most systems and applications require. It is also approximately 5 years
behind the evolution of DDR capacities [86]. Although chaining seems to be a
viable way to increase the HMC capacity it comes with the major drawback:
the total available bandwidth available to the host will still be limited by the
link bandwidth of the ’local’ HMC. Also, to the best knowledge of the author,
chaining has not been evaluated in detail yet and the real performance remains
unclear.

3.1.8 Outlook

In 2014, the HMCC has announced the next-generation HMC Gen3 devices (HMC
specification 2.0 [87]). Along with a new very-short reach interface with up to 30
Gbps per link, Gen3 also supports quarter-width (4 lane) link operation. Initial cube
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capacities were reported with 4 GB and 8 GB. The protocol is enhanced to support
additional atomic and arithmetic operations. In addition, the maximum packet size is
increased to 256 Byte to match the HMC DRAM page size and further increase the
overall link efficiency.

As of July 2017, Gen2 devices have reached volume production status with 2 GB
densities while HMC Gen3 has been taken off the roadmap. Micron states that at least
for now there is no demand for HMC links that can provide twice the bandwidth of
Gen2 devices.

3.1.9 Lessons learned for an HMC host controller design

The lessons learned in this chapter are very important for the design of an HMC
host controller and corresponding applications. It is particularly helpful to note the
following key characteristics in order to achieve best performance and usability.

• Serial links in combination with memory abstraction using a communication
protocol require flow control and error handling mechanisms on both sides of a
link. The drawback here is that even though the maximum bandwidth could
be potentially delivered by raw link parameters, processing and the exchange
of pointers and tokens are subject to hard restrictions. A well designed host
controller must especially provide a short flow control loop to perform well.
While this does not seem to affect Application-Specific Integrated Circuit (ASIC)
implementations the relatively low frequencies in FPGAs can become a show
stopper. Another major contributor to the loop times is the delay through the
SerDes (see Section 3.3.5). Especially user-friendly SerDes instances created
by the FPGA design tools often use deep buffer structures which results in
unnecessary high delays.

• As opposed to a transactional interface (such as DDR) where no overhead is
transmitted on the link, a protocol-based communication requires packet framing
to exchange flow control items and to distinguish packets. These additional items
appear as pure overhead on the link and therefore lower the effective bandwidth.
In case of the HMC every packet results in additional 16 Byte not carrying
any data. Section 3.3 will highlight that the effective peak link bandwidth is
approximately 83 % of the theoretical bandwidth for 128 Byte requests. Smaller
requests will decrease the usable bandwidth even further as they increase the
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protocol overhead and can cause bank access conflicts. Application developers
and memory management units should be aware of that fact in order to optimize
link utilization.

3.2 openHMC Host Controller

As for any other memory interface, HMC requires a host controller it can be connected
to and the previous section has identified several requirements for such a controller.
Besides compliance with the transaction layer of the specification it became clear that
a low latency design is crucial for performance reasons. At the time of writing only
a few host controller solutions were available (e.g. [88, 89]) and none of them was
affordable. One low-cost solution was provided by Altera Corporation (now part of
Intel) in 2015, called HMC Controller MegaCore Intellectual Property (IP) [90]. This
core can be generated within the Quartus II or Quartus Prime software for use in the
Arria 10 FPGA series. A second alternative was made available by Xilinx by the end
of 2016. Their IP can be generated in the Vivado Design Suite targeting latest Xilinx
Ultrascale and Ultrascale+ devices. Since the target FPGA used in this thesis is a
Xilinx Virtex 7 and because the development itself started before either of these cores
was available, a custom host controller named openHMC was developed. This section
highlights the most important technical details. A full reference is available in [10] and
[91].

openHMC is a configurable, vendor-agnostic, and open-source HMC controller IP.
The first revision was released in September 2014. Meanwhile the fifth revision is
publicly available3 as a Verilog package including a custom simulation model along
with a detailed documentation [91]. It has also been presented and evaluated in [10].
openHMC is licensed under the Lesser General Public License (LGPL) version 3. The
LGPL states that the core may be used in proprietary projects without limitations but
any changes to the core itself must be made publicly available.

3.2.1 Configurations and Features

openHMC fully complies with the HMC specification 1.1 [79] and provides additional
valuable features such as:
3 http://www.uni-heidelberg.de/openhmc
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Table 3.2 Resource utilization for an 8x half-width link at 10 Gbps in a Xilinx Virtex
7 690T FPGA. Percentages reflect the overall usage in the respective device.
Xilinx and Altera core statistics provided as reference

Core IF width LUTs Registers BRAM DSPs

openHMC
standard

256 bit 11710 (2.7%) 12486 (1.4%) 8 (0.4%) 0
512 bit 25307 (5.8%) 23973 (2.7%) 10 (1.0%) 0
768 bit 48806 (11.2%) 36129 (4.1%) 23 (1.5%) 0
1024 bit 81412 (18.8%) 48885 (5.6%) 31 (2.1%) 0

openHMC
w/ XILINX

define

256 bit 7133 (1.6%) 7580 (0.8%) 8 (0.4%) 10 (0.3%)
512 bit 16426 (3.7%) 14346 (1.6%) 10 (1.0%) 10 (0.3%)
768 bit 35652 (8.2%) 21787 (2.5%) 23 (1.5%) 10 (0.3%)
1024 bit 63531 (14.7%) 29773 (3.4%) 31 (2.1%) 10 (0.3%)

Xilinx
IP [92]a 512 bit 18077 19367 36 0

Altera
IP [90]b 512 bit 24400

(ALMs) 48200 51
(M20K) –

Legend: BRAM = Block RAM (36 Kb memory unit)
DSP = Digital Signal Processor, IF = Interface, LUT = LookUp Table

a Device: Ultrascale XCVU190. Results reflect a full-width configuration
b Device: Arria 10. ALM = Adaptive Logic Module, M20K = 20 Kb memory unit

• A configurable, synchronous or asynchronous AXI4 Stream user interface with
256, 512, 768, or 1024 bit datapath

• Half-width (8x) and full-width (16x) HMC link support for all available datapath-
widths and link speeds (10, 12.5, 15 Gbps)

• No vendor specific components to target all types of FPGAs and ASICs

• Additional switch to turn selected building blocks into Xilinx specific components
to optimally use device resources. Refer to the openHMC documentation [91] for
more details

Depending on the selected datapath-width and whether Xilinx specific components
shall be used the openHMC resource utilization varies. The amount of device resources
required after place and route is shown in Table 3.2. The results were obtained
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using the default openHMC parameter set and default synthesis and implementation
strategies in Vivado 2016-2. These numbers will more or less slightly vary for other
settings or tool versions. It can be seen that doubling the datapath-width also doubles
the number of registers but almost quadruples logic complexity and the amount of
LUTs required. Using the XILINX parameter results in easy resource savings and more
efficient FPGA fabric utilization. There is no change in Block RAM usage because
Vivado automatically maps suitable register arrays such as FIFOs (First In - First
Outs) and RAM (Random-Access Memory) to Block RAM. Overall, the openHMC
controller is a very compact and easy to implement solution. Experience shows that a
512 bit datapath is most often the best trade-off between speed, design complexity,
and usability.

3.2.2 Operating Frequencies

The openHMC core provides 24 individual configurations (Table 3.3). The resulting
core clock frequency is calculated with Equation (3.3) where NUM_LANES is either 8
or 16, LINK_SPEED is 10, 12.5, or 15 Gbps and DATAPATH_WIDTH the width of
user interface in bit.

core clock [MHz] = NUM_LANES ·LINK_SPEED

DATAPATH_WIDTH ·106 (3.3)

All frequencies marked in gray were successfully implemented and tested in hardware.
The configuration that is used throughout this thesis is highlighted in boldface.

3.2.3 Flow Control and Performance

The requirements for retry pointer and token return loop times were mentioned in
Section 3.1.6. The openHMC specification highlights that the controller meets both
requirements for most configurations depending on the operating frequency. The
results, however, assume that the SerDes are optimized for low latency. In case a host
design experiences performance limitations through loop time violations the openHMC
controller provides several options to further decrease the delay. These options include
HMC open-response loop mode and deactivation/removal of link integrity features.
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Table 3.3 openHMC core clock frequencies [MHz] for various configuration. The config-
uration in bold is the reference for this thesis. Configurations marked in gray
were successfully implemented and tested in a Xilinx Virtex 7 690T FPGA

HMC Link Parameters Datapath-width
Width Speed in Gbps 256 bit 512 bit 768 bit 1024 bit

10 312.5 156.25 104.17 78.125
half-width (8x) 12.5 390.625 195.3125 130.208 97.65625

15 468.75 234.375 156.25 117.1875
10 625 312.5 208.33 156.25

full-width (16x) 12.5 781.25 390.625 260.147 195.3125
15 937.5 468.75 312.5 234.375

3.2.4 Comparison with other IPs

Table 3.2 compares the openHMC HMC IP to the Xilinx and Altera ones. It must be
noted that the Altera core has fixed user interface widths; 256 bit for a half-width (8x)
HMC link and 512 bit for a full-width (16x) link. The comparison highlights that the
openHMC controller requires about 50% less registers and only slightly more LookUp
Tables (LUTs) without the XILINX parameter set. With this parameter set, openHMC
requires only one-third registers and about two-thirds LUTs. In both cases it also
consumes about 60% less memory cells. Although the cores were mapped to a different
FPGA technology (Altera vs. Xilinx) the comparison of the two is reasonable. The
largest difference is the naming since both use 6-input LookUp Tables. In addition to
the difference in resource utilization the biggest advantage of the openHMC controller
is its flexibility. While the Altera core is limited to only two possible user interface
width/HMC link configurations, openHMC supports 24. One remarkable feature of
the Altera core is the ability to reorder incoming HMC responses but using this feature
will further increase the resources required by 10 to 20 percent.

The resource utilization of the Xilinx IP is comparable to openHMC. It also provides a
broader range of user interface widths, from 256 bit up to 2048 bit. Response reordering
and a multi-channel user interface are additional valuable features. Both of vendor IPs,
however, are based on evaluation-only licenses. The cost of purchasing an enhanced
license to integrate these cores into products is not known the author.
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Table 3.4 openHMC ASIC implementation results

Process Node Gates Area [mm2] % SRAM of area Fmax
65 nm general purpose 41900 0.921 75 (0.69 mm2) 415 MHz

28 nm high-performance 41600 0.223 62 (0.14 mm2) 1 GHz

3.2.5 ASIC Implementation

The openHMC controller was implemented with two different process nodes without
any additional optimizations. The configuration was set to a 256 bit datapath and
all other parameters were left at their standard values. Table 3.4 summarizes the
post-synthesis results with the Cadence Genus Synthesis Solution at the slowest process
corner (minimum voltage, -40°C). As can be seen, the estimated resource utilization
between the two processes remains comparable while the required area is significantly
smaller in 28 nm. The maximum operating frequency Fmax is expected to reach
approximately 415 MHz in a conservative, 65 nm general purpose process. The relatively
slow SRAMs prohibit higher frequencies. For the more advanced 28 nm node, however,
it scales up to 1 GHz. According to Table 3.3 it becomes clear that in 28 nm the
openHMC controller can be implemented with the fastest available link speed (15 Gbps)
at 16 lanes. It furthermore eliminates any concerns regarding flow control performance
aspects as processing pointers and tokens takes place much faster.

3.3 HMC Performance Evaluation

Since its introduction in 2011 [37], HMC has been research topic and investigation
target in various publications.

In [83] the author theoretically evaluates the HMC using preliminary data that was
available at that time. The evaluation is based on simulations and contains many
assumptions for a variety of parameters that affect performance and power. Since
then, several other simulation models were proposed, e.g. more general ones toward
3D stacked architectures [93] and cycle-accurate simulators [94]. Others presented
techniques to improve the HMC architecture by either optimizing the DRAM re-
fresh mechanism ([95, 96]) or reducing thermal dissipation through data compression
algorithms as in [97].
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[98] initially explores the HMC capabilities with application-near memory access traces.
The authors in [99] provide a more general study and highlight the importance of
request sizes and access patterns on performance. Another approach in [100] attempts
to give a more detailed characterization. In this work, however, the experimental setup
turns out to be a performance limitation as it only supports half-width (8x) HMC
links and uses the meanwhile discontinued 2-Link HMC device.

The following section extends the findings in [98],[99], and [100] by providing an
ultimate general overview about the impact of access patterns on metrics such as
bandwidth, latency, and power consumption. Understanding these characteristics is a
must for system engineers and application developers who want to optimally use this
new technology.

In order to provide solid results, the HMC is thoroughly evaluated in a real system
environment. The test setup and host controller can support the full HMC performance
in various link configurations. A comprehensible overview for various metrics will
determine whether or not HMC can satisfy the expectations.

3.3.1 Metrics

Only a few base metrics are required to qualify a memory device. In general, it is
important to clearly understand these to compare individual memory technologies and
to select the best candidate for a given scenario. The metrics evaluated in this section
are:

Bandwidth The bandwidth is one of the most important memory interface metrics.
One must distinct between two related bandwidth measures: the total and the
effective bandwidth.

• Total: The total (raw) bandwidth is the maximum number of information a
link can transport in a given time period.

• Effective: The effective bandwidth is the maximum number of payload a
link is capable to transport. The effective bandwidth is per definition equal
to or less than the total. Serialized links that run a protocol require certain
overhead to be transmitted along with the actual payload, e.g. 8b/10b
encoding and packet framing. Hence their effective bandwidth is less than
the total.
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Latency Generally, latency is defined as the time it takes to transport an information
from one point to another. In case of the HMC, the read latency defines the
time it takes for a request to become available on the host controller transmit
interface until a corresponding response is seen at the host receiving application.

Power Consumption The power consumption (or simply power) describes how much
energy a device uses (or generates) at any point in time. The two most common
measures are Joule per second (J

s ) and Watt (W) with W = J
s . Since power

increasingly moves into focus it is more important than ever to obey power
budgets. Power consumption limits can be identified on a system level and for
individual components such as 25 Watts for a PCIe connector (if no additional,
external connector is used).

Power Efficiency Power efficiency describes how much energy (not to be confused
with power) is required to transmit a given number of information measured
in Joule per bit ( J

bit). When referring to power efficiency only the effective
bandwidth is considered.

3.3.2 Test Setup

In order to obtain reliable numbers a test setup as shown in Figure 3.9 was created.
It comprises a Xilinx Virtex 7 690T FPGA that connects a 2 GB, 4-Link HMC4

with a full-width (16x) link at 10 Gbps and 12.5 Gbps. Implementing a 15 Gbps
link was not possible as such high lane speeds are not supported by the Xilinx 7
series. The openHMC controller is used as HMC host controller. A low-impedance,
high-precision resistor per individual power rail is used to measure the voltage drop via
a Linear Technologies DC1613A PMBus module. As the electric current is known this
leads to the power consumption. The HMC address-mapping mode is configured to
low-interleave and the maximum block size is set to 128 Byte. Address (re-)mapping
in the HMC core logic can be a useful tool to optimize performance for given access
patterns and will be discussed in Section 3.3.3.

Before the actual results are presented it is crucial to understand the impact of access
patterns on bandwidth. This will also help to avoid pitfalls in a host controller and
application design.
4 Logic revision 2, firmware 0.95A, part number MT43A4G40200NFA-S15 ES:A
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Fig. 3.9 Experimental test setup

3.3.3 Access Patterns

Traditional DDR interfaces operate on a single transactional data-bus to transmit and
receive data to and from the DRAM. Also, a single channel can only serve one command
at a time so that execution of subsequent commands requires the previous command
to complete first. In contrary, HMC comes with a bidirectional communication scheme
where requests and responses are transmitted on separate channels. This circumstance
requires well-balanced access patterns, i.e. an optimum read/write ratio in order to
efficiently utilize both link directions and to maximize bandwidth. The HMC access
granularity is 16 Byte and supported packet sizes range from 16 Byte up to 128 Byte.
Every transmitted packet also requires an additional protocol overhead of 16 Byte.
Therefore, a maximum-sized write request of 128 Byte comprises 8 FLITs payload and
1 FLIT overhead (=9 FLITs total) to be transmitted on the request channel. A read
request appears as 16 Byte overhead on this channel and returns one FLIT overhead
and up to 8 FLITs payload in response direction. Due to this fact the optimum HMC
read-to-write ratio is not 1read

1write as a single maximum-sized read+write results in 10
FLITs on the request channel while only 9 FLITs will be returned.

Figure 3.10a shows the impact of read-to-write ratio on the total request, response,
and combined bandwidth for maximum-sized, 128 Byte read and write requests. A
read ratio of 53 % maximizes the total bandwidth including packet overhead. Similarly,
Figure 3.10b presents the impact on the effective bandwidth. The figures represent the
bandwidth for a full-width (16x) link at 10 Gbps. The bandwidth increases linearly
with the lane speed and results for 12.5 and 15 Gbps can be obtained by multiplying
the bandwidth by 1.25 and 1.5 respectively. It can be seen that the maximum effective
bandwidth (i.e. excluding protocol overhead) in a 10 Gbps configuration is 33.5 GB/s
(≈83.5 % efficiency). Furthermore the actual optimum ratio depends on the request
sizes as shown in Figure 3.11. It can be seen that the optimum ratio shifts toward
more read requests as request sizes become smaller since the percentage of overhead
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Fig. 3.10 Impact of read/write ratio on bandwidth with 128 Byte requests
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Fig. 3.12 128 Byte request ratio sweep re-
sults: theoretical versus measured

per request increases. Table 3.5 summarizes the results for each of the possible request
sizes.

It is not only important to maintain the optimum ratio but also the ordering of requests
is relevant. In a worst case scenario instead interleaving reads and writes in a stream
of 100 × 128 Byte requests with the optimum ratio of 53 %, the user issues 53 reads
followed by 47 writes. This is referred to as bad request practice and its impact on the
overall bandwidth will be discussed in the following.

52



3.3 HMC Performance Evaluation

Table 3.5 Optimum ratio and maximum effective bandwidth per request size

Request Size [Byte] 16 32 48 64 80 96 112 128
Optimum Ratio [% Read] 66 60 57 55 55 54 53 53

Maximum
effective

BW [GB/s]

10 Gbps 14.93 22.2 26.2 28.6 30.3 31.75 32.6 33.54
12.5 Gbps 18.66 27.8 32.8 35.7 37.9 39.7 40.8 41.9
15 Gbpsa 22.4 33.3 39.3 42.85 45.5 47.6 48.95 50.3

a Listed only for reference. Not verified in hardware

3.3.4 Bandwidth

Several access pattern schemes were identified and tested. While some of them perform
best with the default address-mapping mode (low-interleave, see Section 3.1.2), others
will benefit from a different address-mapping or maximum block size setting. Bandwidth
and efficiency numbers in this section were rounded down to account for measurement
errors.

The first measurement is shown in Figure 3.12. It compares a sweep of the read ratio
for 128 Byte requests between expected and measured effective bandwidth. The results
very closely match the theoretical evaluation. Only a slight deviation appears for
higher read ratios, most likely due to measurement errors and/or the negative impact
of violating the retry pointer or token return loop times. The more reads are issued;
the more responses are generated. Consequently, the retry buffer fills up faster and
the loop time constraints are tightened. Several ways to alleviate loop time violations
were proposed earlier. The results for a 12.5 Gbps link are very similar and not shown.
They can be calculated by multiplying the 10 Gbps results by 1.25.

Figure 3.13 shows a plot of various access patterns for 128 Byte requests and their
impact on the measured effective bandwidth at 10 Gbps. It can be seen that linear
reading and writing deliver the theoretical maximum of 17.7 GB/s with an efficiency of
88.5 % per link direction (see Equation (3.4)). An additional experiment with strided
accesses unveils a drop in bandwidth for stride=16, where stride=1 represents linear
reading/writing throughout all vaults.

Read or write link efficiency: Effective bandwidth
Total bandwidth = 17.7 GB/s

20 GB/s = 88.5 % (3.4)
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With a stride of 16 and low-interleave address-mapping only 1 vault is continuously
accessed. The peak bandwidth for writing a single vault is 9.8 GB/s and 9.35 GB/s for
reading, respectively. These results closely reflect the maximum vault bandwidth of 10
GB/s, lowered by packet processing overhead. In general, increasing the stride will only
affect the bandwidth when the number of accessed vaults and therefore the provided
vault bandwidth is lower than the effective link bandwidth. For a given strided access
pattern changing the address-mapping mode can eliminate this limitation. In the
previous case, shifting vault and bank address segments to higher address bits will
improve stride=16 accesses. All other strided accesses, however, will negatively impact
performance due to vault congestion.

The optimum read ratio of 53 % gives the maximum effective bandwidth of 33.5 GB/s
for linear accesses (83.75 % efficiency, see Equation (3.5)) and 8.9 GB/s for a single
vault. A reasonable expectation would be that the efficiency stayed constant compared
to only reading or writing at a time, which was measured with an efficiency of 88.5 %.
Mixing reads and writes, however, increases the protocol overhead in request direction
which now carries 1 out of 9 FLITs overhead for writes and 1 FLIT pure overhead for
every read that is sent.

Combined R/W link efficiency: Effective bandwidth
Total bandwidth = 33.5 GB/s

40 GB/s = 83.5 % (3.5)

Random accesses do not show an impact when addressing all vaults while the single
vault bandwidth drops to 7.58 GB/s due to the increased probability of bank conflicts.
Increasing the lane speed to 12.5 Gbps does not improve the single vault performance
as shown in Figure 3.14. For all other access patterns, however, the results represent
what has been theoretically evaluated earlier.

The term bad request practice was introduced to describe bad ordering of requests in a
stream for a given read ratio. The negative impact of this bad request practice turns
out to be negligible in a stream of 100 requests. Restrictions in the FPGA design
prohibited the use of longer sequences which will decrease the achievable bandwidth.
Hence, although the HMC is capable to internally reorder independent requests, bad
request ordering over a longer period of time should be avoided. It will lead to inefficient
utilization of either of the two link directions. If required, host-sided reordering should
be performed in order to maintain highest link bandwidth.
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Fig. 3.13 Effective bandwidth for different access patterns with 128 Byte requests at 10
Gbps
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Fig. 3.14 Effective bandwidth for different access patterns with 128 Byte requests at 12.5
Gbps
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Fig. 3.15 Host to HMC read latency contributors

Table 3.6 Host-sided read latency contributors

Type / Delay Cycles at 10 Gbps at 12.5 Gbps
User application 2 6.4 ns 5.12 ns
openHMC 29 92.8 ns 74.24 ns
SerDes 19 60.8 ns 48.64 ns
Total non-HMC 50 160 ns 128 ns

10 Gbps: 312.5 MHz FPGA clock (tcycle = 3.2 ns)
12.5 Gbps: 390.625 MHz FPGA clock (tcycle = 2.56 ns)

3.3.5 Latency

The latency of individual requests (i.e. the latency of a randomly selected request in a
given request stream) for HMC is higher than for a transactional memory interface
such as DDR. Several contributors to this latency can be identified as depicted in
Figure 3.15. The delays for the user application and the openHMC controller are
well known. The SerDes internal loopback mode of the FPGA was run to quantify
the delay introduced through serialization and deserialization. It is assumed that
the transmission line is not contributing noticeably. The actual HMC read delay can
be estimated by subtracting all known delays from the overall latency. Table 3.6
summarizes the results for the individual contributors in the test design at 10 Gbps
and 12.5 Gbps. It can be seen that the overall latency can be significantly reduced
by increasing the FPGA logic frequency. To provide an application-near scenario the
overall read request latency was measured, starting from the point where a packet
is created in the user application until the corresponding response is received there.
Figure 3.16 and Figure 3.17 plot the latency over a read ratio sweep for 128 Byte
requests for linear addressing. Each ratio was applied for 20 seconds and the best,
worst, and average latencies were measured for randomly selected individual requests
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Fig. 3.16 Host to HMC read latency at 10 Gbps (tcycle = 3.2 ns)
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Fig. 3.17 Host to HMC read latency at 12.5 Gbps (tcycle = 2.56 ns)
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in the access stream. It can be seen that the initial read latency starts out with an
average of 224 ns (70 FPGA cycles) for 10 Gbps and 192 ns (75 FPGA cycles) for 12.5
Gbps, respectively. The latency then remains stable until the optimum ratio threshold
is reached. At this point, more reads are requested than the HMC and in particular
the response link can supply. The read latency continues to increase when more reads
are sent and goes up to several microseconds. This is because the HMC input buffer
runs full with unanswered requests and the response link is in bandwidth saturation.
This prevents the host to continue. The disparities between the best and worst case
latencies originate from corner cases where a corresponding read request enters the
openHMC controller right at the time that traffic is throttled. The request therefore
remains in buffers waiting to be transmitted, while this waiting time accounts for the
overall latency.

In summary it becomes clear that the single access latency gets much worse when
either of the link directions saturates. A low latency host design including SerDes, host
controller, and user application in combination with well-balanced access patterns are
the key elements to lower the HMC access latency. Increasing host (FPGA) operating
frequencies or HMC lane speeds are additional options. For the given test environment,
however, increasing the link speed to 15 Gbps was not an option because it could not
be implemented in the target FPGA.

3.3.6 Atomic Operations

The HMC protocol defines packet types for atomic operations that will be executed
by the HMC logic layer, eliminating the need for expensive read-modify-write cycles
on the host. The two available commands add either an 8 Byte value to a 16 Byte
memory operand (16-Byte immediate add) or two 4 Byte values to two 8 Byte memory
operands (dual 8-Byte immediate add). Each add operation is referred to as an
update. Figure 3.18 summarizes the maximum updates per second for accessing a
single address, a single vault, and up to all available vaults. This is represented by
the corresponding access stride, where stride=16 accesses only 1 vault with HMC
standard address-mapping. It can be seen that the maximum number of updates per
second increases proportionally with the number of accessed vaults and inverse with
the stride size for both types of atomics. Since the actual packet throughput remains
the same, dual 8-Byte add immediate commands can update as twice as many values
compared to 16-Byte adds. Figure 3.19 points out that increasing the lane speed
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Fig. 3.18 Megaupdates/second versus address range at 10 Gbps
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does not improve the maximum number of atomic operations since the HMC internal
operating frequency is maintained.

The key observation in these plots is that increasing the number of accessed vaults has
a positive impact on the total number of updates per second. This is in contrast to
regular read/write requests that already saturate with less vaults. The positive effect
of accessing more vaults concurrently, however, would also apply for regular reading
and writing when more than one link was used.

3.3.7 Power Consumption and Energy Efficiency

The HMC power consumption was measured for the workloads presented in Figure 3.13
and Figure 3.14 using the test setup shown in Figure 3.9. Power was measured via the
voltage drop over high-precision resistors. The following results represent experimental
measurements at best efforts and are furthermore subject to parasitic effects (e.g.
efficiency of the power source and other components) and deviation (e.g. temperature,
measurement error).

Figure 3.20 and Figure 3.21 plot the HMC power consumption at 10 Gbps and 12.5
Gbps. The values for HMC power-on/reset and idle states are included as a reference.
It can be seen that static and idle power make up a major fraction of the overall
consumption. While a link in idle already consumes about 5 watts, actual traffic does
not excessively contribute to the overall power footprint. One expected observation is
that dynamic power consumption increases as more bandwidth is requested. The main
contributors here are the sources for the DRAM and the logic core. Figure 3.22 and
Figure 3.23 show the measured power efficiency in [pJ/bit] for the individual workloads
at 10 Gbps and 12.5 Gbps. The efficiency is calculated as the power consumption
in [Watt] divided by the effective bandwidth. The figures point out an idle power
consumption (i.e. after the link has trained) of 5.1 Watt and the best energy efficiency
with 23.2 pJ/bit at the optimum read/write ratio for a 10 Gbps link. Similarly, the idle
power consumed for 12.5 Gbps is 5.6 Watt and the best efficiency was measured with
21.7 pJ/bit. All efficiencies are relative to the effective delivered bandwidth. There
are no values provided for reset, idle, and sleep as there is no data transmitted at
that time. Accessing random addresses does not affect power efficiency except when
bank conflicts occur which lower the effective bandwidth. Furthermore, there is no
difference between properly ordered request streams and the bad request practice
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Fig. 3.20 HMC power consumption for various workloads at 10 Gbps (lower=better)
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Fig. 3.21 HMC power consumption for various workloads at 12.5 Gbps (lower=better)
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(f or 1 0 0 r e q u ests) i ntr o d u c e d e arli er. As m e nti o n e d b ef or e it w o ul d r e q uir e v er y l o n g

str e a ms of dis or d er e d a c c ess es t o s e e a n e ff e ct h er e.

I n g e n er al, b ot h pl ots p oi nt o ut t h at t h e p o w er e ffi ci e n c y i m pr o v es (i. e. p J / bit dr o ps)

w h e n t h e li n k is k e pt b us y. I n c o ntr ast, st ati c p o w er c o ns u m pti o n d o mi n at es f or

i n e ffi ci e nt li n k utili z ati o n a n d t h e e ffi ci e n c y is r e d u c e d. It is e x p e ct e d t h at i n cr e asi n g

t h e n u m b er of a cti v e li n ks a n d t h eir l a n e s p e e ds will h a v e a p ositi v e e ff e ct o n e n er g y

e ffi ci e n c y as st ati c d e vi c e p o w er is a m aj or c o ntri b ut or t o t h e o v er all c o ns u m pti o n.

T h e H M C sl e e p m o d e c a n b e e nt er e d t o r e d u c e p o w er c o ns u m pti o n w h e n t h e li n k is

i n i dl e t o s a v e a b o ut 4 5 % at 1 0 G b ps a n d 4 9 % at 1 2. 5 G b ps. H o w e v er, it m ust b e

n ot e d t h at e nt eri n g a n d e xiti n g sl e e p m o d e t a k es ti m e a n d r e q uir es a n a d diti o n al li n k

i niti ali z ati o n s e q u e n c e.

3. 3. 8 S u m m ar y P erf or m a n c e E v al u a ti o n

T his s e cti o n pr o vi d e d H M C i n-s yst e m m e as ur e m e nts f or b a n d wi dt h, l at e n c y, c o m p ut a-

ti o n o ffl o a di n g usi n g at o mi c o p er ati o ns, a n d e n er g y e ffi ci e n c y f or a si n gl e, f ull- wi dt h

( 1 6 x) H M C li n k at 1 0 G b ps a n d 1 2. 5 G b ps. T h e k e y t a k e a w a ys c a n b e s u m m ari z e d as

f oll o ws:
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its elf. Li n k p erf or m a n c e, h o w e v er, is m ai nl y d e p e n d e nt o n t h e c orr es p o n di n g

h ost c o ntr oll er. A l o w l at e n c y o pti mi z e d c o ntr oll er is cr u ci al t o a v oi d a n y fl o w

c o ntr ol dr a w b a c ks t hr o u g h t h e cir c ul ati o n ti m e of p a c k et p oi nt ers a n d t o k e ns.

• R e a d l at e n c y is h e a vil y a ff e ct e d b y a c c ess p att er ns a n d i m b al a n c e d li n k utili z ati o n

s h o ul d b e a v oi d e d w h e n e v er p ossi bl e.
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t e n ci es. T h e r es ults, h o w e v er, r e fl e ct a n F P G A h ost i m pl e m e nt ati o n. A SI Cs wit h

hi g h er cl o c k s p e e ds a n d l o w l at e n c y S er D es i m pl e m e nt ati o ns w o ul d si g ni fi c a ntl y

r e d u c e t h es e n u m b ers.
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C o m pl e x o p er ati o ns, h o w e v er, will still r e m ai n a pr o c ess or t as k a n d t h er ef or e

r e q uir e d at a m o v e m e nt.
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Hybrid Memory Cube

• The results for energy efficiency prove that stacked memories and in particular
HMC are capable to reduce the power penalty for accessing memory. Additional
experiments with more links and higher lane speeds are required to ultimately
identify its full potential.

In conclusion it becomes clear that HMC indeed provides the performance it claims. It
furthermore contributes to meet the power and energy requirements for future systems.
3D integration of CMOS logic and processing elements will continue to gain importance
and memory makers will hopefully integrate advanced offloading capabilities along
with the memory device in the future.

3.4 HMC Summary

This chapter introduced the Hybrid Memory Cube and highlighted its most valuable
characteristics. Its abstracted processor interface not only forces application developers
to rethink how memory is used, but also requires a corresponding host controller.

openHMC has been presented as a no-cost alternative to other, commercially available
host controllers. It was shown that openHMC outperforms at least one comparable host
controller in terms of resource efficiency and flexibility, and at the same time maintains
the best link performance. Experiments showed that an ASIC implementation of the
same design can reach up to 1 GHz with a current process node.

A test setup comprising a 2 GB HMC and an FPGA was created to qualify the HMC
performance and power efficiency. It became clear that access patterns have major
influence on latency and bandwidth and also affect efficiency. However, if the loads on
the link are well-balanced, HMC can provide a powerful, energy efficient, and dense
memory alternative for many applications. Unfortunately, HMCs very limited capacity
of 2 GB currently limits its use for most applications. Although the next-generation
HMC devices were specified they have been taken off the roadmap and it remains to
be seen if the capacity of current devices will increase considerably.

HMC and the openHMC host controller are essential building blocks of the Network
Attached Memory which will be presented in the next chapter.
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Network Attached Memory

This chapter introduces Network Attached Memory (NAM)1, a novel and standalone
component with EXTOLL network interfaces. It provides access to a 2 GB HMC as
shared memory resource combined with tightly coupled processing units implemented
in an FPGA. As processing takes place in the FPGA and not the HMC memory itself,
the NAM can be categorized as Near-Data Computing (NDC) device and not a true
PIM architecture. The idea for the NAM originated from the desire to introduce a
network device with fast memory and processing capabilities in order to reduce network
traffic and speed-up collective operations.

The NAM is first used in the DEEP-ER (Dynamical Exascale Entry Platform - Extended
Reach) project where it can be connected to any EXTOLL NIC to provide system-
wide, high-performance DRAM access as an additional level in the memory hierarchy.
Scalability is preserved as the memory capacity and network bandwidth linearly increase
with the number of NAMs in the system. The first particular use case is to improve
the performance of the DEEP-ER resiliency features. The NAM therefore implements
a Checkpoint/Restart (CR) mechanism to speed-up the creation and reconstruction of
parity checkpoints. The decision to use the HMC memory interface is in particular
beneficial as it optimally suits the sequential access patterns of reading and writing
large checkpoint files.
1 The NAM concept has been prominently presented in various articles [13, 14] and as peer-reviewed

conference poster [15].
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Network Attached Memory

The following sections provide background information on DEEP-ER and the EXTOLL
network technology. The NAM prototype is presented and the functional units imple-
mented in the FPGA are described in detail. A theoretical performance analysis will
support characterization of the measurements conducted in the next chapter. Finally,
FPGA implementation results and the required software components to actually use
the NAM are presented.

4.1 DEEP-ER Project

DEEP-ER is a European Commission funded project under the Seventh Framework
Programme (FP7/2007-2013). It addresses I/O performance and resiliency as two im-
portant challenges in building an Exascale-ready architecture. Both problems correlate
since I/O performance also affects resiliency throughput. Within its predecessor DEEP,
an innovative cluster-booster architecture was developed. While the cluster part is
based on commodity Intel Xeon processors to execute complex, low to medium scalable
code, the booster is equipped with Intel Xeon Phi accelerators for compute-intensive
tasks. DEEP-ER extends this approach with upgraded components linked via the high-
performance interconnection network EXTOLL. In addition, to satisfy the increasing
demands to I/O performance, DEEP-ER attaches state of the art non-volatile memory
and NAMs. Figure 4.1 outlines the system architecture as a high level diagram.

To establish a running hardware platform as early as possible in the project the DEEP-
ER team created the Software Development Vehicle (SDV). It consists of 16 high-end
Intel Xeon processor nodes and 3 file servers on the cluster side, and 8 Intel Xeon
Phi accelerators as booster part. The early availability of the SDV helped software
developers to familiarize themselves with the new components, especially the NAM. It
was used to run all kind of application benchmarks including those for the NAM. The
final DEEP-ER prototype foresees to upgrade the booster part for a total of 72 Xeon
Phi accelerators. Although the project officially ended in March 2017, at the time of
writing work to establish the final prototype is ongoing.

4.2 Background: EXTOLL

EXTOLL [47, 48, 49] is a high-performance interconnection network developed by the
EXTOLL GmbH, a spin-off company of the Ruprecht-Karls University Heidelberg. Its
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Fig. 4.1 DEEP-ER System Overview: The cluster part is based on Intel Xeon processors.
The booster consists of Intel KNL nodes with one NIC and NVMe device each.
Two NAMs are attached to available EXTOLL links

switch-less (i.e. the switch is integrated with the NIC) architecture removes the need
for external switches and allows to create a variety of network topologies including mesh
and 3D torus. Hence the network scales linearly with the system size. The EXTOLL
ASIC named Tourmalet (Figure 4.2) comes with a PCIe Gen3 x16 host interface, 6
independent network links (+1 optional), the network switching architecture, and three
different functional units used to exchange data between NICs.

Fig. 4.2 EXTOLL Tourmalet ASIC. Image courtesy: EXTOLL
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Fig. 4.3 EXTOLL Tourmalet ASIC Block Diagram

4.2.1 Functional Units and Link Performance

Figure 4.3 shows a block diagram of the Tourmalet ASIC. The PCIe Gen3 x16 interface
connects a host processor. The three functional units for data transport (RMA, VELO,
SMFU) are connected via the network crossbar switch to any of the six network links
and via an additional on-chip network to PCIe. Out of these three units, the RMA
(Remote Memory Access or Remote Memory Architecture) [101] has been identified
as best candidate to communicate with the NAM, which in turn needs to implement
a compliant unit. RMA is a throughput oriented unit designed for middle to large
message sizes. Data is transferred and received via PUT and GET transactions and
data transport is offloaded via a DMA engine. EXTOLL furthermore provides a
low-overhead notification mechanism to inform a process whether data has been sent,
requested data has arrived, or to inform a remote process that a PUT or GET operation
has completed. The set of functional units is complemented by a Register File (RF)
that can be accessed from local or remote and an Address Translation Unit (ATU).

In terms of link performance, each of the six EXTOLL network links operates on 12
lanes with a maximum of 8.4 Gbps per lane. Note that EXTOLL links operate in
full-duplex mode, i.e. data can be transmitted and received simultaneously, doubling
the lane count per link to 24. The following sections consider unidirectional operation
and assume that bidirectional traffic results in approximately twice the bandwidth.
The total raw bandwidth per link and direction is 12 ·8.4 = 100.8 Gbps = 12.6 GB/s.
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Fig. 4.4 The EXTOLL Link gearbox converts from the 128 bit datapath to the 192 bit
link interface

Due to an 8b/10b coding scheme only 80 % of the link bandwidth is useful. The
maximum unidirectional link bandwidth is therefore:

BWLINK = 100.8 Gbps · 8b
10b = 80.64 Gbps = 10.08 GB/s (4.1)

The links are downward compatible to support smaller links (8 lanes / 4 lanes) and lower
link speeds (4.2 Gbps / 2.1 Gbps). When the NAM project started, EXTOLL Link
speeds were announced with 2.5/5/10 Gbps. For technical reasons the link speeds had
to be decreased, which influenced the reference clock selection on the NAM prototype.
It will be discussed in Section 4.3.

All EXTOLL functional units including the RMA operate on a 128 bit datapath at
630 MHz which matches BWLINK :

BWRMA = 128 bit ·630 MHz = 80.64 Gbps = 10.08 GB/s (4.2)

Note that the equation above is only valid for a link between two EXTOLL ASICs.
Although at this time the maximum RMA bandwidth with a NAM as link partner is
not calculated it is necessary to understand how data is passed from the EXTOLL
functional units to the link.

A 12x EXTOLL Link is subdivided into three quads with four lanes each, and every lane
takes 16 bit parallel data at a time. Hence, the width of the parallel data input to the
link is 12 · 16 bit = 192 bit. A gearbox is used to translate this interface to the 128 bit
datapath of the functional units in a 3-stage iterative process as depicted in Figure 4.4.
It can be seen that six 64 bit cells are processed within each iteration. It will be shown
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that this gearbox has a negative effect on the bandwidth when communicating with
the NAM.

4.2.2 From Software to Network Transactions

Every PUT or GET transaction carried out by the RMA is initiated by a user program.
The software places a descriptor into one of the descriptor queues of the EXTOLL
device. These descriptors contain information such as the destination node and process,
the amount of payload to be written or read, and where this payload shall be read
from or written to. For PUT operations, the source address is the start location of
the payload in the local memory and is either a virtual or physical address. In case
of a virtual address the ATU is requested to translate it to a physical one. Without
involving the host processor, the EXTOLL NIC fetches the payload via DMA. The data
is then packed into network packets and transmitted by the local RMA requester unit.
The transaction is directed to the RMA completer unit of the destination node which
forwards the data to its local target memory location (Figure 4.5a). GET operations
on the other hand will fetch data from a remote memory location and transfer it to the
local memory of the requesting node via GET Response transactions. In this case the
transaction is requested by the local RMA requester with the remote RMA responder
as turnaround unit. As the response returns to the local node it is eventually processed
by the RMA completer (Figure 4.5b).

The maximum amount of data movement initiated by a single software descriptor is
8 MB. Hence, to accommodate larger data transfers, multiple transactions must be
triggered by placing additional software descriptors.

A third command, PUT IMMEDIATE, is provided for small data transfers (72 bit)
without involving the local DMA engine. The payload is already embedded in the
software descriptor in this case and it can be useful to e.g. access a remote RF.

It must be noted that the EXTOLL RMA supports additional commands. They are
neither relevant for this work nor supported by the NAM.

4.2.3 Notification Mechanism

EXTOLL provides an optional notification mechanism as depicted in Figure 4.5. It
can be used to inform processes of the progress or completion of transactions. For
PUT transactions, notifications may be generated at the local nodes of the respective
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Fig. 4.5 EXTOLL PUT/GET operations and notification mechanism

RMA units involved in the process, i.e. the local RMA requester or remote RMA
completer. GET operations additionally involve a remote responder unit which may
generate notifications likewise.

4.2.4 Network Protocol

The EXTOLL network protocol operates on cells as transmission units. Each cell is 64
bit (8 Byte) in size and a network packet consists of multiple cells. The maximum size
of one packet is limited by the network Maximum Transmission Unit (MTU), which
is fixed to 512 Byte or 512/8 = 64 cells in this work. Every packet is furthermore
preceded by a network descriptor which accounts for the MTU: 16 Byte for PUT, PUT
IMMEDIATE, and GET Response commands and 24 Byte for GETs. GET operations,
however, do not carry any payload and PUT IMMEDIATE commands only transmit
very few data. Both transaction types are not subject to the MTU. PUT requests and
GET responses on the other hand may carry 512−16 = 496 Byte payload per packet at
most. This packet size limitation introduced by the network MTU also implies that a
single software descriptor with a maximum size of 8 MB may trigger multiple network
packets. The actual number is determined by splitting the software requested size into
496 Byte network packets. Within each subsequent packet the initial destination target
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address as provided by the software descriptor is incremented by the packet size of 496
Byte accordingly.

Beyond the RMA the EXTOLL network protocol frames each packet with two extra
cells. These cells (Start Of Packet (SOP) and End Of Packet (EOP)) contain additional
network information and ensure packet integrity implemented as a Cyclic Redundancy
Check (CRC) check, which will trigger a link retry mechanism if a corrupted packet is
received. The overhead through SOP and EOP adds another 16 Byte for a total packet
size of 512+16 = 528 Byte. According to the information above the RMA efficiency
can be calculated with:

EFFRMA = Data Bytes
Total Bytes = 496

512+16 = 93.4 % (4.3)

which gives the maximum effective RMA bandwidth of:

BW_EFFRMA = BWRMA ·EFFRMA = 80.64 Gbps ·93.4 %
BW_EFFRMA = 75.75 Gbps = 9.47 GB/s

(4.4)

4.2.5 Link Flow Control

Flow control between two EXTOLL links is handled via credits which reflect the local
retry buffer and remote input buffer space of the respective link partner likewise. A 496
Byte RMA packet consumes four credits in total, one per 128 Byte payload. After the
packet has passed the remote input buffer these credits will be returned in dedicated
flow control cells, freeing up the corresponding space in the local retry buffer.

The buffers were designed to accommodate payload for up to 128 credits, which are
shared among ten Virtual Channels (VCs). VCs can be used to create individual and
unrelated streams of traffic to prioritize certain types of traffic, often used to handle
routing congestion. Some of these VCs are dedicated to specific traffic classes such
as broadcasts. Every single VC gets assigned eight credits for exclusive use and the
remaining 48 are shared among these on a first-come-first-serve basis. Out of the
ten channels, four can be used for regular read/write commands. If packets were
distributed evenly on these four channels and no other traffic was flowing, a total of
4 · 8 + 48 = 80 credits would be available for reading and writing. For a single VC,
however, the maximum count is 56 (8 exclusive + 48 shared).
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Throttling of the link performance occurs whenever no more or too few credits are
available to transmit the next packet. This is the case when credits are consumed
faster than they are returned by the remote link partner or simply shared credits were
consumed by other VCs. In either event the flow control loop is too slow. A very
similar difficulty has been identified with the HMC token return loop time violation
in Section 3.1.6.2. A later section in this chapter will show how credits and the flow
control loop affect the NAM access performance, how it is currently handled in software,
and what needs to be done to improve the situation.

4.2.6 EMP: Network Discovery and Setup

EXTOLL devices can be connected in many different ways to create commonly used
mesh and torus or individual non-standard topologies. In any case, all network
device routing tables initially must be set up. The EXTOLL Management Program
(EMP) supports two types of network setup modes: discovery and topology file based
configuration. In discovery mode all EXTOLL links that show an active connection
are scanned and a topology is automatically created. Topology file based configuration
on the other hand may be used to verify that all devices are properly connected and
the desired topology was successfully created. In either of the network setup modes,
EMP assigns unique identifiers (Node ID) to every EXTOLL NIC and calculates and
sets the routing table entries according to the desired routing scheme. Eventually all
nodes are marked as active which unlocks the network for software usage.

4.3 NAM Hardware

The following section presents the NAM hardware prototype and functional modules
implemented in the FPGA. In order to estimate performance as early as possible in
the design process and to avoid unexpected bottlenecks, design decisions and their
potential impact on the achievable performance are evaluated.

4.3.1 Requirements

The first step in developing a new hardware device is to define its requirements. A
clear view of the physical interfaces and understanding their impact on the FPGA
design is mandatory and allows to develop a prototype early in the design phase. This
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lowers the risk of delays due to potential PCB manufacturing and bring-up issues. The
following physical and logical requirements for the NAM have been identified based on
the DEEP-ER use case, the available components such as HMC, the FPGA, and the
EXTOLL interconnect, and the physical size and form factor.

4.3.1.1 Components and Connectors

EXTOLL A Samtec HDI-6 connector as physical interface to connect up to two
EXTOLL NICs with 12 lanes per link.

PCIe The PCIe edge card connector is used to power the NAM board and allows to
easily integrate it with commodity systems. The connector could also be used to
establish host connectivity for management and/or data transport.

HMC-1 One or more HMC links, desirably in a configuration that matches or outper-
forms the total EXTOLL Link bandwidth (for available HMC link configurations
see Section 3.1.3).

HMC-2 A high-speed connector that interfaces one additional HMC link provides the
ability to chain HMCs to increase the memory capacity.

RAS Advanced RAS (Reliability, Availability and Serviceability) features require a
physical programming and debug interface.

FPGA A suitable FPGA must provide enough resources and I/O capability to im-
plement processing elements and modules for the physical interfaces described
above. Especially the total high-speed transceiver count to accommodate all
types of serial interfaces (PCIe, EXTOLL, HMC) is essential.

4.3.1.2 FPGA Design Functional Units

EXTOLL Link FPGA implementation The original EXTOLL Link is imple-
mented with a 128 bit datapath in the ASIC Tourmalet at 630 MHz. The
source code for this link was provided by EXTOLL. In order to maintain link
throughput while keeping the clock frequency within a reasonable region for an
FPGA implementation, the link must be extended to support a wider datapath.
The implementation must be able to support the maximum EXTOLL Link width
and speed.
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RMA compatible unit The NAM must be able to communicate with the native
EXTOLL RMA unit. A compatible unit implements the required subset of RMA
functions and accounts for a wider datapath.

HMC host controller The development of the HMC host controller openHMC was
already discussed in Section 3.2.

RMA to HMC (and reverse) protocol converter The most basic requirement,
reading and writing to the NAM, demands a module that converts EXTOLL
RMA network packets to HMC transactions and vice versa.

RAS One module to provide remote register file configuration and monitoring over
EXTOLL. A second module grants RAS access over an external debug connector.

CR The CR unit required to carry out the DEEP-ER resiliency features. It will be
discussed in Section 4.5.

4.3.2 Prototype ’Aspin-v2’

Figure 4.6 depicts the NAM hardware prototype Aspin-v2 developed as a standard
height PCIe form factor PCB. The Xilinx Virtex 7 FPGA utilizes 16 lanes at 10 Gbps
to connect a 2 GB HMC. Additional 16 lanes are connected to the 16x PCIe edge card
connector. Although the maximum link width of the Virtex 7 PCIe hard-IP2 blocks
is 8x, the eight additional lanes can be useful if the connector is used proprietary. It
is also possible not to use the hard-IP block to set up a 16x PCIe link. In this case,
however, PCIe Gen3 (8 Gbps per lane) will not meet timing in the FPGA, limiting the
capability of the FPGA PCIe core to Gen2 (5 Gbps) or even Gen1 (2.5 Gbps)3. The
set of high-speed connections to the FPGA is complemented by two 12x links on the
HDI-6 connector used to connect EXTOLL NICs.

The total transceiver count of 56 (16 PCIe + 16 HMC + 24 EXTOLL) narrowed down
the number of usable FPGAs from the Virtex 7 device family. Eventually the V7 690T
as second smallest device with at least 56 transceivers as a trade-off between logic cells
and cost was chosen.
2 FPGAs typically provide several fixed (hardened) logical blocks that implement specific functions

such as a PCIe endpoint/root-port complex. Hardened IP is superior to functions implemented
with standard registers and LUTs regarding achievable performance.

3 Besides the actual lane speeds, PCIe Gen3 uses an improved lane encoding which increases the
effective bandwidth per lane to ≈98 % compared to 80 % in previous generations.
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Fig. 4.6 NAM Prototype Board ’Aspin-v2’

A second HMC link is exposed to a dedicated connector which can be used to attach
additional HMCs to increase the capacity (chaining, see Section 3.1.3). RAS features
can be carried out through dedicated I2C (Inter-Integrated Circuit) and JTAG (Joint
Test Action Group) connectors. A set of general purpose LEDs is free to use. Power is
supplied via the PCIe connector and the required voltages are generated by on-board
power regulators. A flash memory chip stores the FPGA configuration so that it does
not need to be reprogrammed upon a power cycle.

FPGA and HMC are supplied by a single oscillator and clock distribution network. As
stated in Section 4.2, EXTOLL Link lane speeds were reduced for technical reasons.
This happened after the NAM prototype was already built. To maintain interoperability
with the clocking infrastructure of the Xilinx GTH transceivers, the former 125 MHz
shared reference clock was increased to 127.273 MHz. This option provides the least
significant change in the clocking infrastructure and leads to a static multiplier FMULT :

FMULT = 127.273 MHz
125 MHz = 1.018184 (4.5)

The increased reference clock results in overclocking the HMC link as the HMC
internally uses a fixed multiplier. The following paragraphs also describe the impact of
this design change on other modules.
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4.3.3 FPGA Design Partitions

The NAM FPGA design is depicted in Figure 4.7. It is divided into three main
partitions: Network, NAM, and HMC. The network partition integrates two 512 bit
EXTOLL FPGA links connected to the NAM logic via a Multiplexer (MUX). Note
that this MUX does not implement any routing and will not forward packets from one
link to another. Both links are therefore EXTOLL endpoints and only packets that
target the NAM as final destination may be received. The NAM partition translates
EXTOLL to HMC packets (and vice versa) and provides RF access to remote processes
via EXTOLL RRA (Remote Register File Access). It also integrates the CR unit which
will be described in Section 4.5. Finally, the HMC partition integrates the openHMC
controller and an autonomous HMC configuration module.

Many of the modules also provide a set of registers. These are embedded in a hierarchy
of Register Files and allow design control and monitoring at runtime, accessible via
RRA or the physical I2C connector.

Figure 4.7 also identifies the three main clock domains. clk_hmc is a 318.1825 MHz
clock derived from the HMC link configuration, based on a 312.5 MHz clock multiplied
by FMULT (see Section 4.3.3.1), so that the throughput of the 512 bit datapath matches
the HMC link bandwidth. The openHMC specification states that a connected user
application must operate at the frequency of clk_hmc or faster. To avoid additional
clock domain crossings and as it is unlikely that the NAM logic will meet timing
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constraints for even faster clocks it is also sourced from clk_hmc. The second main
clock domain is clk_extoll which drives the logic of both EXTOLL links. Although
there is no restriction on the frequency of this clock it will be shown that it has a major
impact on performance. The third clock domain is clk_cr which drives all CR related
parts of the design. Another clock domain crossing at this point became necessary
as it turned out that the CR logic could not be implemented with a clock as fast as
clk_hmc.

This section presents the individual design partitions and theoretically evaluates
bandwidth characteristics based on design decisions. Several potential bottlenecks
will be identified which will help to interpret the in-system measurements provided in
Chapter 5. As a naming convention, packets traveling from the network to the NAM
are referred to as requests while a response denotes the opposite direction respectively.

4.3.3.1 HMC Partition / openHMC

The HMC partition integrates the openHMC host controller with a 512 bit user interface
and a full-width (16x), 10 Gbps HMC link. In fact, through overclocking, the actual
speed per lane is 10 Gbps · FMULT = 10.18184 Gbps. Based on Equation (3.3) the
resulting operating frequency clk_hmc is calculated with:

clk_hmc = 16 lanes ·10.18184 Gbps
512 bit ·106 = 318.1825 MHz (4.6)

Using the unidirectional HMC bandwidth of 17.7 GB/s (see Section 3.3.4) and the
multiplier FMULT the new HMC read or write bandwidth BWHMC is:

BWHMC = 17.7 GB/s ·1.018184 = 18.02 GB/s (4.7)

It is the theoretical peak bandwidth for 128 Byte HMC read or write packets with a
sequential access pattern.

4.3.3.2 Network Partition / EXTOLL FPGA Link

The EXTOLL FPGA link has been derived from the native EXTOLL ASIC link
implementation which is based on a 128 bit datapath. The nominal EXTOLL ASIC
operating frequency is 630 MHz for a throughput of 128 bit ·630 MHz = 80.64 Gbps.
To match the throughput at a reasonable frequency in the FPGA the datapath-width
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had to be increased to 512 bit. Although a 256 bit datapath would have been a feasible
choice as well it would not integrate seamlessly with the remaining NAM logic. The
datapath-width here is dictated by the configuration of the openHMC controller and
has been set to 512 bit. A unified datapath-width throughout all modules considerably
simplifies logic design. The resulting minimum core clock frequency of the EXTOLL
FPGA link to support the RMA bandwidth of 80.64 Gbps is calculated with:

clk_extollmin = throughput
datapath-width = 80.64 Gbps

512 bit = 157.5 MHz (4.8)

At a first glance it seems sufficient to set clk_extoll to the minimum required frequency.
However, the performance measurements conducted in Chapter 5 will reveal a cor-
relation between clk_extoll and the overall NAM performance, with clk_extollmin

performing the worst. This behavior is associated with the EXTOLL network protocol
flow control features to support a retransmission scheme when errors were detected on
the serial link. Such link integrity features are common practice in serial link protocols.

The EXTOLL Link parameters including the size of the retry buffer were tailored for
the ASIC and hence dimensioned to operate on a 128 bit datapath at a frequency of
630 MHz. The relatively low frequency of the 512 bit link implementation implies that
packets and credits in the NAM are processed much slower than in the ASIC. The
number of credits for reading from and writing to the NAM is fixed to a maximum of 80
using all four available Virtual Channels and 58 on one channel. For this fixed number of
credits and if bandwidth throttling comes in, the only mitigation strategy is to increase
the frequency of clk_extoll in the NAM. Increasing the frequency, however, significantly
complicates placement, routing, and timing closure in the FPGA. Eventually the link
logic was successfully implemented at 200 MHz with clean timing which lowered the
negative impact of the issues mentioned above.

clk_extoll = 200 MHz (4.9)

The difficulty with insufficient credits becomes even worse in response direction, with
traffic flowing from the NAM to an EXTOLL ASIC. Due to an unintended limitation
in the ASIC, the maximum credit count per Virtual Channel the NAM can use to send
traffic is 31.
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Gearbox, Alignment, and Flow Control

Apart from the operating frequency, the 512 bit link has additional negative side-
effects on the maximum achievable bandwidth with an EXTOLL ASIC link partner.
Section 4.2 introduced the gearbox that is used to pass data from a 128 bit functional
unit to the 192 bit link in the EXTOLL ASIC. Similarly, the 512 bit link implements a
gearbox that passes data from the 768 bit link layer (three quads with 256 bit parallel
data each, 4 lanes per quad with 64 bit per lane) on the receiving side. The result
is again a 3-stage iterative process. For the sake of design simplicity, it is required
that packets start at a 512 bit / 64 Byte boundary so that the very first cell (SOP) is
seen starting at bit position 0 in a parallel 512 bit cycle. It is the responsibility of the
sending side to ensure that packets meet this requirement. Therefore, the EXTOLL
ASIC gearbox will issue filler cells up to the next 64 Byte boundary whenever a packet
including protocol overhead is not a multiple of 64 Byte.

The use of filler cells for packet alignment limits the effective RMA bandwidth in the
EXTOLL ASIC. According to Section 4.2.4 the maximum RMA packet size is 528
Byte of which 496 Byte contain payload. The ASIC gearbox now appends additional
filler cells up to the next 64 Byte boundary, which is 576 in this case. This leads to
the RMA packet efficiency EFFRMA_P KT of:

EFFRMA_P KT = Data Bytes
Total Bytes = 496

576 = 86.1% (4.10)

Packets also consume credits, four in total for a full-sized RMA-to-NAM write packet
and one per read request. Likewise, a full-sized RMA GET Response will utilize
four credits on the EXTOLL Link in the NAM. These credits must be returned by
the remote link partner so that they eventually can be reused to transmit additional
packets. Dedicated credit cells are generated and sent to the former source node.

The threshold for the number of credits at which a credit cell is generated is configurable
and has been set to 10 credits on the NAM. This means the NAM will create a credit cell
for every 2.5 full-sized RMA write requests, and for every 10 RMA reads it has received.
These cells do not affect the request bandwidth for traffic flowing from EXTOLL to the
NAM as credit cells travel in opposite direction. Every received credit cell, however,
must be acknowledged by the local link4. This acknowledge is an eight Byte packet
which is again subject to packet alignment boundaries and occupies a full 64 Byte
4 Acknowledge cells may also carry credits that need to be returned and credit cells may implement

acknowledge counter likewise.
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of the transmission bandwidth. For writing, acknowledge cells add 64
2.5 = 25.6 Byte

overhead per packet which results in an actual total bytecount of 576+25.6 = 601.6
Byte per request. Given these results the actual RMA write efficiency for requests to
the NAM can be derived with:

EFFRMA_REQ = Data Bytes
Total Bytes = 496

601.6 = 82.4 % (4.11)

Using EFFRMA_REQ the maximum effective link RMA request bandwidth
BW_EFFRMA_REQ is:

BW_EFFRMA_REQ = BWRMA ·EFFRMA_REQ = 80.64 Gbps ·82.4 %
BW_EFFRMA_REQ = 66.48 Gbps = 8.31 GB/s

(4.12)

Read responses that return to the local EXTOLL device must also be acknowledged.
To reduce the amount of overhead at this point the EXTOLL Link is able to pack
several acknowledgments into a single cell. To approximate the performance, it is
assumed that credits are also embedded with acknowledge cells traveling back to the
NAM.

Read requests to the NAM, on the other hand, will generate a credit cell for every 10
request packets. This adds an average of 64

10 = 6.4 Byte overhead per packet in response
direction caused by credit cells, and the same amount of overhead in request direction
used for acknowledging these. Given this additional overhead the total bytecount is
576+6.4 = 582.4 for a packet traveling from the NAM to an ASIC. Hence the NAM to
ASIC response efficiency EFFRMA_RSP is:

EFFRMA_RSP = Data Bytes
Total Bytes = 496

582.4 = 85.1 % (4.13)

Using EFFRMA_RSP the actual maximum effective link RMA response bandwidth
BW_EFFRMA_RSP is:

BW_EFFRMA_RSP = BWRMA ·EFFRMA_RSP = 80.64 Gbps ·85.1 %
BW_EFFRMA_RSP = 68.67 Gbps = 8.58 GB/s

(4.14)

Note that communication between two EXTOLL ASICs must be aligned likewise, with
reduced packet boundaries at 128 bit / 16 Byte. Therefore, no filler cells are applied
for packets that come as a multiple of 16 Bytes such as the largest RMA packet and
for all other packets the overhead of alignment is significantly lowered.
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There are two ways to alleviate the impact of the gearbox. First, a smaller datapath
would reduce the packet boundaries and alignment overhead. The decision for a 512
bit link, however, was made for good reason. It seamlessly integrates with the rest of
the design. And second, a link layer design that operates on the datapath-width of the
functional units or an integer multiple (e.g. 256 bit link and 128 bit functional unit) of
it would significantly reduce the interface complexity.

4.3.3.3 Network Partition / EXTOLL Link MUX

The EXTOLL Link MUX connects both EXTOLL links to the NAM layer and acts as
clock domain crossing from clk_extoll to the faster clk_hmc clock domain. The clock
domain transition is realized with asynchronous buffers, one per link and direction.
The actual switching between links is then performed with the speed of clk_hmc to
eliminate the bandwidth of a single EXTOLL Link as bottleneck at this point. The
theoretical link MUX bandwidth in both directions, request and response, is linked to
the datapath-width, the operating frequency clk_hmc, and the RMA packet efficiency
EFFRMA_P KT (not the actual link RMA efficiency as flow control cells were removed
already). It is calculated with:

BW_EFFMUX = clk_hmc ·datapath-width ·EFFRMA_P KT

BW_EFFMUX = 318.1825 MHz ·512 bit ·86.1 %
BW_EFFMUX = 140.2 Gbps = 17.54 GB/s

(4.15)

In comparison the combined EXTOLL bandwidth that two links can deliver for requests
is:

BW_EFFRMA_REQ_T W O_LINKS = 2 ·BW_EFFRMA_REQ

BW_EFFRMA_REQ_T W O_LINKS = 2 ·8.31 GB/s = 16.62 GB/s
(4.16)

And for responses:

BW_EFFRMA_RSP _T W O_LINKS = 2 ·BW_EFFRMA_RSP

BW_EFFRMA_RSP _T W O_LINKS = 2 ·8.58 GB/s = 17.16 GB/s
(4.17)

It can be seen that link multiplexing is good enough to keep up with the performance of
both EXTOLL links in either direction. However, it will be shown that the aggregate
bandwidth of two EXTOLL links outperforms the capabilities of the subsequent NAM
logic units.
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4.3.3.4 NTL - Network Transaction Layer

The Network Transaction Layer (NTL) connects the EXTOLL links via the link MUX
to the NAM logic and operates in the clk_hmc clock domain. It decodes and distributes
incoming RMA packets targeting HMC as read/write request, the RF for configuration
or maintenance, or the NAM CR logic. It is the counterpart of the EXTOLL ASIC
RMA unit. For read requests, tag maps are used to retain information that is required
to generate corresponding responses. Packets are processed in cut-through mode, i.e.
data cycles are immediately forwarded to the next layer. This is opposed to store and
forward, where all cycles that belong to a packet are collected first and then forwarded.
Cut-through was chosen to enable subsequent layers to receive data faster instead
of waiting for an entire packet to become available by the network partition which
operates with the relatively slow clk_extoll. Obviously the forwarding mode is only
relevant for requests that spread over more than 1 parallel cycle which affects write
requests larger than 48 Byte (16 Byte network descriptor + 48 Byte payload in a 512
bit cycle). The 8 Byte SOP cell preceding the network descriptor is initially removed
by the NTL. A full-sized RMA packet that carries 496 Byte payload therefore stretches
over a total of eight cycles where the first cycle contains 48 Byte payload (+16 Byte
protocol overhead) followed by seven cycles with 64 Byte payload each.

Every packet is also subject to a variety of checks. It increases the NAM resistance
to false usage by applications or the EMP. Incorrect accesses may include the use
of commands other than mentioned in the description of the EXTOLL FPGA link
or packets that do not target the NAM. Especially in the initial bring-up phase of
the FPGA design and software components it is essential to rather catch exceptions
than to risk unexpected behavior. Consequently, the NAM drops any packets out of
specification and leaves some debug information in its Register File. The NAM access
granularity has been set to 16 Byte to match the granularity of the HMC protocol.
This decision reduces design complexity by eliminating various corner cases for packet
and address translation between the EXTOLL and HMC protocol.

The NTL strips the packet SOP and otherwise immediately forwards any incoming
cycles to the next stage. Its theoretical bandwidth is equal to the capability of the
MUX:

BW_EFFNT L = BW_EFFMUX = 17.54 GB/s (4.18)
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Fig. 4.8 NAM/EXTOLL notification mechanism for PUT and GET operations

Notifications

The concept of notifications which can be used to inform processes of certain events
has been introduced in Section 4.2.3. The NAM supports this notification mechanism,
with the following two modifications as depicted in Figure 4.8: For PUT operations,
the completer notification bit set will not generate any notification on the NAM as
there is no actual processor present. Instead, a notification directed to the requesting
process will be sent as the packet was accepted at the NTL and has passed integrity
checks. Similarly, such a notification can be generated when a GET request has been
processed in the NTL. Such notifications can be used to ease synchronization between
processes that share a common address space on the NAM.

4.3.3.5 HTL - HMC Transaction Layer

The HMC Transaction Layer (HTL) connects the NTL and CR logic to the HMC
partition and converts from the RMA protocol to HMC and vice versa. Several
properties of the various packet types complicate this protocol conversion. The
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following section analyzes these difficulties and presents the implemented translation
units. The request direction is examined first.

Requests

The HTL receives packets from either the NTL or the CR functional unit and converts
these to HMC packets. Protocol conversion at this point is non-trivial as HMC packets
must meet the following requirements:

The maximum packet size is 128 Byte The largest HMC packet that may be
transmitted is 128 Byte and an RMA packet can carry up to 496 Byte payload.
Hence, a single RMA transfer may trigger several HMC packets.

The memory access granularity is 16 Byte The HMC protocol defines requests
with a granularity of 16 Byte and packet sizes ranging from 16 to 128 Byte.
Although HMC preserves Byte access using BIT WRITE commands, these are
not supported by the HTL to keep the complexity and corner cases of packet
conversion at a minimum. This limitation also forces the use of 16 Byte aligned
addresses which must be handled in software.

Destination address plus bytecount must not cross a 128 Byte boundary
The HMC memory arrays are internally organized in 128 Byte blocks. An issue
arises when a request targets an address offset other than zero and the number
of Bytes to be read or written would cross a logical 128 Byte boundary. Such an
access would cause a wraparound within the block and wrong data would be
returned or false memory locations overwritten. This is depicted in Figure 4.9.
Hence, block-boundary crossing must be avoided in any case, and in addition
to the fact that larger RMA packets must be split regardless it furthermore
complicates the protocol conversion.

After all, the requirements mentioned above not only complicate protocol conversion
but also negatively affect the achievable bandwidth.

To greatly reduce the complexity of combinational logic it was decided to only utilize a
subset of the available HMC packet sizes for write requests. As stated earlier the NTL
passes data cycles of an RMA packet independently, and the HTL solely operates with
this cycle based approach. Hence, the largest amount of payload to be converted in
one conversion step is equal to the datapath-width (64 Byte).
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Fig. 4.9 HMC 128 Byte block-boundary crossing example. Left hand side: A request
writes the pattern 0-1-2-3 (128 Byte) to memory address 32 intended to overwrite
B-C-D-E. Right hand side: Start address plus bytecount cause a wraparound in
the upper block. A false memory location was written

The easiest way to perform conversion is to map an RMA request exclusively to 16
Byte HMC packets. This will generate 496 Byte

16 Byte = 31 HMC packets out of a full-sized
RMA transaction, packed in 16 parallel cycles with two 16 Byte packets per cycle at
most (i.e. 2 packets with 16 Byte payload and 16 Byte overhead each). On the one
hand this approach eliminates the probability to cross an HMC block-boundary. On
the other hand, it is desirable to decrease the number of HMC packets transmitted
as many smaller requests targeting a similar memory location limit parallelism and
are likely to cause access conflicts in the HMC DRAM. Smaller requests furthermore
increase the overhead on the HMC link as every HMC packet includes 16 Byte overhead
regardless of its size. 32 Byte HMC packets can be utilized to achieve a reduction in
most cases. Still, 16 Byte requests will be issued when approaching a block-boundary
or simply no more data is available. It is reasonable to consider 64 Byte packets as
the payload of a cycle can be directly mapped to a single packet. However, 64 Byte
HMC packets will span over two cycles due to the HMC protocol overhead and can
be substituted by a combination of 32B/32B or 48B/16B packets. 48 Byte requests
have an additional benefit. They can pack the first cycle of an RMA packet (which
has only 48 Byte payload, + 16 Byte RMA header) into a single packet and cycle on
the HMC side, whereas a combination of 32B/16B would span over two cycles. In
conclusion the three available HMC packet sizes 16B, 32B, and 48B, have been chosen
as trade-off between design complexity and resulting number of HMC packets that will
be generated.

The HTL first converts an RMA data cycle to HMC packets, one per output cycle,
before moving to the next RMA cycle. The obvious side effect of this scheme is that it
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increases the protocol overhead and some FLITs remain unused. In order to estimate
the implications on performance, Table 4.1 provides two examples of how packets are
split in response to the current address and the available HMC packet sizes. The
two example packets shown are layered packet A and packet B. The actual layout
of the conversion is determined within the first RMA cycle: either the full payload
can be packed into a single HMC cycle (packet type A) or it must be split due to
block-boundary crossing (packet type B). Hence, packet B type conversion is required
whenever the start address of an RMA transaction leaves only 16 or 32 Byte distance
to the next 128 Byte boundary as otherwise the full 48 Byte may be processed at once.

Due to the 16 Byte access granularity an RMA packet may target one of eight possible
address locations with regard to the 128 Byte block-boundary, i.e. the distance is 16B,
32B, ... up to 128B. Therefore, two out of eight packets will cause a packet B type
conversion which requires 16 cycles to complete, while the remaining six packets can
be represented by the packet A type and a cycle count of 15.

Using the information above it is possible to calculate the effective bandwidth of
the HTL layer for write requests. Out of eight packets, six will take a total of
6 · 15 = 90 cycles. The remaining two require 2 · 16 = 32 cycles to complete. This
results in an average of 90+32 cycles

8 packets = 15.25 cycles per packet. 15.25 cycles can carry
15.25 ·64 Byte = 976 Byte of which 496 Byte are actual payload. The resulting efficiency
EFFHT L_REQ is therefore:

EFFHT L_REQ = Data Bytes
Total Bytes = 496

976 = 50.8 % (4.19)

The effective write request bandwidth BW_EFFHT L_REQ is now calculated with:

BW_EFFHT L_REQ = clk_hmc ·datapath-width ·EFFHT L_REQ

BW_EFFHT L_REQ = 318.1825 MHz ·512 bit ·50.8 %
BW_EFFHT L_REQ = 82.85 Gbps = 10.35 GB/s

(4.20)

So far the conversion analysis between the two protocols has only considered write
requests. Read requests, however, are treated similarly as they have to obey the HMC
packet requirements described above, especially because a read request may also be
subject to block-boundary crossing. Luckily, the conversion effort is greatly reduced due
to one significant difference: HMC read requests are always 16 Byte in size regardless
of the requested payload size. Translation for a maximum-sized RMA request takes
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Table 4.1 HTL request packet splitting example. Two 496 Byte RMA packets are converted.
Depending on the packet start address the first RMA cycle might be split to
avoid a 128 Byte block-boundary crossing. Packets that do not require initial
packet splitting (type A) will take 15 cycles. These packets have a target
address to block-boundary distance of 48 Byte or more. All other packets (type
B) take 16 cycles to complete

RMA packet type A. 496 Byte. Start address 0. No split in the first cycle
RMA HMC Next Payload ActionCycle Cycle Address [Byte]

1 1 0 48 First cycle with only 48 Byte
2 2 48 48 Send 48 Byte. 16 Byte remain
2 3 96 16 Send remaining 16 Byte
3 4 112 16 Send 16 Byte to avoid boundary crossing
3 5 128 48 Send remaining 48 Byte
4 6 176 48 Send 48 Byte. 16 Byte remain
4 7 224 16 Send remaining 16 Byte
5 8 240 16 Send 16 Byte to avoid boundary crossing
5 9 256 48 Send remaining 48 Byte
6 10 304 48 Send 48 Byte. 16 Byte remain
6 11 352 16 Send remaining 16 Byte
7 12 368 16 Send 16 Byte to avoid boundary crossing
7 13 384 48 Send remaining 48 Byte
8 14 432 48 Send 48 Byte. 16 Byte remain
8 15 480 16 Send remaining 16 Byte

RMA packet type B. 496 Byte. Start address 496. First cycle must be split
1 1 496 16 Send 16 Byte to avoid boundary crossing
1 2 512 32 Send remaining 32 Byte
2 3 544 48 Send 48 Byte. 16 Byte remain
2 4 592 16 Send remaining 16 Byte
3 5 608 32 Send 32 Byte to avoid boundary crossing
3 6 640 32 Send remaining 32 Byte
4 7 672 48 Send 48 Byte. 16 Byte remain
4 8 720 16 Send remaining 16 Byte
5 9 736 32 Send 32 Byte to avoid boundary crossing
5 10 768 32 Send remaining 32 Byte
6 11 800 48 Send 48 Byte. 16 Byte remain
6 12 848 16 Send remaining 16 Byte
7 13 864 32 Send 32 Byte to avoid boundary crossing
7 14 896 32 Send remaining 32 Byte
8 15 928 48 Send 48 Byte. 16 Byte remain
8 16 976 16 Send remaining 16 Byte
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Fig. 4.10 496 Byte RMA read request to HMC packet mapping. Depending on the start
address distance relative to the next 128 Byte boundary four or five HMC read
requests will be generated

up three cycles at most and results in four to five HMC requests with up to 128 Byte.
This process is depicted in Figure 4.10. It shows that the determination of the actual
number of HMC requests is based on whether and at what point requests have to be
split to avoid reading through block boundaries. In a given request stream that requests
eight or more full-sized RMA packets, the translation process for each subsequent
RMA packet is deterministic as it iterates through the eight possible variations. All
of these have in common that three 128 Byte reads will be issued, complemented by
one or two reads to address the remaining 112 Byte of the 496 Byte RMA request.
Eventually, eight 496 Byte RMA packets will be translated to 24 128 Byte requests
and two additional requests for each of the remaining packet sizes (16 to 112 Byte).

Performance is not considered critical at this point. Although it can take up to three
cycles to request 496 Byte of data, neither the HMC nor the response path are able to
deliver the requested bandwidth. In fact, even if there was no protocol overhead at
all, three response cycles can carry only a maximum of 192 Byte payload (64 Byte per
parallel cycle). The response bandwidth will be examined later in this section.

As packets were converted they are sent to the openHMC controller and each read
request gets a sequence number assigned. These sequence numbers are stored in four
different tag maps as four read requests may be packed into a single cycle. The purpose
of tagging is to allow the response path to properly reorder HMC responses and to
reassemble these back into larger RMA packets.
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Fig. 4.11 Response packet sampling example: Three cycles were sampled at the openHMC
controller output. The second cycle contains a full packet PKT2 along with the
final FLIT of PKT1 and the first FLIT of PKT3
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Fig. 4.12 Packet serialization example. The second cycle contains one full and parts of
two other packets. Packets are separated using two additional cycles

Responses

The HTL response path receives HMC response packets from the openHMC controller.
HMC internally operates in a FLIT granularity and the FPGA will buffer four FLITs
to create a 512 bit cycle. A parallel cycle may contain (parts of) several packets
at a time as shown in Figure 4.11. To make decoding and processing easier for the
following stages, the incoming packets are first separated so that in any given cycle
only data from one packet is forwarded. Figure 4.12 depicts how extra cycles are
used to serialize the packet stream in Figure 4.11. Unfortunately, extra cycles will
also throttle the throughput. To properly estimate the achievable bandwidth at this
stage it is necessary to analyze how packets can be aligned within the parallel cycle.
Depending on this position and the packet length, the number of cycles required to
forward the packet varies. The four possible start positions and their implication on
the cycle count are depicted in Figure 4.13. As can be seen a 32 Byte HMC response
can have four different layouts and requires one cycle or spreads over two cycles equally
in 50% of the time assuming a uniform distribution. Its average required cycle count
is therefore 1.5. The splitting scheme shown applies to all other packet sizes likewise
and the results are summarized in Table 4.2. It lists the various packet sizes and their
minimum, maximum, and average cycle spread count for a single response. In a given
request/response stream, eight consecutive, randomly picked requests can be selected
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Fig. 4.13 Response packet layouts: A 32 Byte HMC response is embedded in a 48 Byte
packet (including 16 Byte protocol overhead). Depending on the FLIT start
position within the 512 bit word this packet is received in four different layouts
and spreads over one or two cycles

Table 4.2 HMC response packet serialization overview. The data highlights the average
cycle count that is required to forward a packet for each size. Translated to
the total number of packets and their average cycle count, the efficiency of the
HTL response path can be calculated

Packet Cycle counts Probability For eight 496 Byte RMA Packets
Size Min Max Min Max Avg Count Cycles Raw B Payload B
16B 1 2 3 1 1.25 2 2.5 160 32
32B 1 2 2 2 1.5 2 3 192 64
48B 1 2 1 3 1.75 2 3.5 224 96
64B 2 2 4 2 2 4 256 128
80B 2 3 3 1 2.25 2 4.5 288 160
96B 2 3 2 2 2.5 2 5 320 192
112B 2 3 1 3 2.75 2 5.5 352 224
128B 3 3 4 3 24 72 4608 3072
SUM - - - - - 38 100 6400 3968

to calculate the total number of cycles that will be spent. This cycle count, multiplied
by 64 Byte, gives the total (raw) number of Bytes that will be forwarded. The actual
number of Bytes that carry payload, however, is less than that. Eight 496 Byte RMA
read requests will generate 38 HMC packets that will take 100 cycles after serialization,
and only 3968 Bytes out of 6400 carry payload.

Since all of the following HTL stages will not delay the response stream any further
this information can now be used to calculate the HTL response efficiency with:

EFFHT L_RSP = Payload Bytes
Total Bytes = 3968

6400 = 62 % (4.21)
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Table 4.3 NAM design building blocks bandwidth summary: single EXTOLL Link operation.
For reading and writing, achievable bandwidth is limited by the EXTOLL Link

Functional Unit Request Bandwidth [GB/s] Response Bandwidth [GB/s]
EXTOLL 8.31 8.58
Link MUX 17.54 17.54

NTL 17.54 17.54
HTL 10.35 12.62

openHMC 18.02 18.02

which results in a maximum effective bandwidth of:

BW_EFFHT L_RSP = clk_hmc ·datapath-width ·EFFHT L_RSP

BW_EFFHT L_RSP = 318.1825 MHz ·512 bit ·62 %
BW_EFFHT L_RSP = 12.62 GB/s

(4.22)

The next step in response processing is to reorder HMC packets as they can return
out of order. This is done using the sequence numbers that have been placed in the
TAG maps by the HTL request modules. Finally, individual packets are recombined to
create their corresponding RMA GET responses. These are forwarded to either the
NTL if the request was a remote read/write or otherwise to the CR unit.

4.4 Summary Estimated Read/Write Performance

The previous section explained the individual NAM design building blocks and analyzed
their estimated performance. Table 4.3 summarizes the results for reading and writing
with one EXTOLL Link to easily identify existing bottlenecks. For both, reading and
writing, the EXTOLL Link bandwidth is the limiting factor. This is independent of
request sizes and access patterns since even in the worst case usage the HMC would
be able to deliver more bandwidth5. Therefore, the write bandwidth is expected to
peak at about 8.31 GB/s and the read bandwidth at 8.58 GB/s, respectively. Similarly,
Table 4.4 highlights the expected bottlenecks when writing and reading to and from
both EXTOLL links. It assumes that request addresses are somewhat distributed and
do not target the same memory location as in this case the HMC bandwidth could have
5 For more information on HMC access patterns and bandwidths refer to Section 3.3.4.
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Table 4.4 NAM design building blocks bandwidth summary: dual EXTOLL Link operation.
For reading and writing, achievable bandwidth is limited by the HTL

Functional Unit Request Bandwidth [GB/s] Response Bandwidth [GB/s]
2 × EXTOLL 16.62 17.16

Link MUX 17.54 17.54
NTL 17.54 17.54
HTL 10.35 12.62

openHMC 18.02 18.02

a negative impact6. Compared to Table 4.3 it becomes clear that the bottlenecks now
have shifted into the NAM logic, more specific into the HTL request path for writes,
and the HTL response path for reads. Hence the expected maximum bandwidth for
writes is 10.35 GB/s and 12.62 GB/s for reads, respectively.

These results will be used as a reference for the real hardware measurements conducted
in Chapter 5.

4.5 Checkpoint/Restart

In DEEP-ER the NAM carries out XOR based checkpoint/restart as a potential
performance improvement to the existing SCR-Partner checkpointing scheme with
SIONlib. Compared to this partner approach where one checkpoint is stored at the task
local node and also transferred to another remote node, XOR checkpointing generates
a parity via a bit-wise XOR operation from the checkpoints of all participating ranks
in a group. The result is as large as the largest individual checkpoint and can then be
used to recover from any single rank failure within a group.

XOR checkpointing reduces the overhead in storage capacity required to perform
checkpoint/restart as every node holds only a fraction of the parity information,
compared to Partner checkpointing where checkpoints are simply duplicated and
distributed across nodes. It comes, however, at the expense of calculation overhead to
generate the parity. For more information on checkpointing and fault tolerance refer
to Section 2.3.
6 See Footnote 5.

93



Network Attached Memory

Local Node

Local
NVMe

1. Store locally

Buddy Node

Local

Buddy

Buddy

3. Receive from
buddy

2. Send to 
Buddy Checkpoint

Local

Fig. 4.14 SIONlib-Buddy checkpointing scheme with
two nodes

File

File
File

File

Node 3

Node 4

Node 1

Node 2

Fig. 4.15 SIONlib ring fashion
file exchange with
more than two nodes

The NAM carries out the parity computation and stores the result in the HMC. Each
NAM in the system is associated with a set of ranks (just like a set in SCR) and within
each set a single rank failure may be recovered. Therefore, a system can have as many
sets as there are NAMs in the system.

The following section documents the design process of the CR functional unit and
describes how the NAM creates the XOR parity, and how it can be used to restart
from a failure.

4.5.1 Buddy Checkpointing in DEEP-ER

The DEEP-ER resiliency scheme is based on SCR-Partner checkpointing which has
been extended to support the SIONlib [102] parallel I/O library. SIONlib allows to
merge I/O streams of multiple processes into one or multiple files, removing file system
congestion due to many smaller, unaligned data blocks. This process is applied to
checkpoint data on all processes on a node so that only a single file is written per
node. The SIONlib-Buddy checkpointing approach writes this file to the local NVMe
devices and also creates the same file on a remote buddy node. It then initiates a
receive routine to fetch the local checkpoint of a remote buddy which is also placed in
the local NVMe (Figure 4.14). Note that the buddy node where the local checkpoint
is written to is not necessarily the same node a remote checkpoint is received from.
SIONlib achieves an additional speed-up over standard SCR-Partner by overlapping
the write-out functions to local storage and the buddy node. If more than two nodes
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Fig. 4.16 XOR parity generation (left) and reconstruction of a missing checkpoint dataset
(right)

participate in the process, buddy nodes are assigned and files are exchanged in a ring
fashion (Figure 4.15).

4.5.2 Definitions

The following definitions may be helpful to understand the remainder of this section.

XOR Parity

A XOR (Exclusive OR) operation applied to several sets of data can be used to generate
a parity. The size of the parity is as large as the largest dataset. With the help of this
parity any single missing set of data can be reconstructed. Figure 4.16 depicts a simple
example of this process.

Segmentation

The NAM internally segments checkpoint data into smaller chunks, currently 496
Byte which is the EXTOLL network MTU and reflects a maximum-sized RMA packet.
Segment numbers are assigned since the XOR operation is applied on equal segment
numbers over all checkpoint data sets.

Rank

A rank may be a remote process or remote node with one or multiple processes
depending on the checkpointing granularity. For example, SIONlib merges checkpoints
of multiple processes on a node into a single file. In this context a rank equals one
node.
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4.5.3 Design Space Exploration

In order for the NAM to create a parity out of a group of checkpoints it has to receive
all participating datasets. There are three ways to do so:

1. The nodes unconditionally send their checkpoints to the NAM which acts as a
passive device. This approach requires the least hardware effort.

2. The nodes send their checkpoints to the NAM which acts as a semi-passive device.
All nodes send their checkpoints to the NAM upon request. Synchronization
between the nodes and the NAM is required to control data flow.

3. The NAM reads checkpoint data from the nodes. It is up to the NAM hardware
to decide when and how much data to fetch. The application will need signal
readiness and wait for a notification of completion.

Option 1: Nodes send data In the easiest approach all nodes send their checkpoints
whenever ready and without any further inter-process synchronization. If one
or more nodes delay the transmission it is not guaranteed that the NAM can
hold all relevant segments to generate the next XOR segment because the FPGA
buffer capacity might be insufficient. As a result, all currently available segments
would have to be XORed and the temporary result would be written to the HMC.
When all of the remaining and required segments have arrived, the temporary
result would need to be read again before the parity can be generated. There is
a high risk that data will be moved between FPGA and HMC multiple times.

Option 2: Nodes send data upon request by the NAM This approach elimi-
nates the risk of flooding the NAM with data from individual nodes. The NAM
requests every segment or a set of segments of defined size with notification PUTs
directed to the remote process. A disadvantage is the fact that processes stay
busy with waiting for these notifications, up to several million times for a 2 GB
checkpoint using 496 Byte RMA transactions. In addition, each transaction is
eventually sourced by a software descriptor which must be translated and might
involve address translation.

Option 3: NAM retrieves checkpoint data autonomously With this approach
the NAM has exclusive control over any data movement. It can autonomously
request segments in a way that the FPGA internal buffer space is optimally
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used. Remote nodes will need to inform that checkpoint data may be retrieved.
Completion of the checkpointing process is signaled by a notification to all
participating nodes which only have to check for this notification before a next
checkpoint may be created. Another advantage is the fact that no software to
network descriptor translation is performed, potentially increasing the overall
performance.

The dataset granularity must obey the NAM internal access granularity of 16 Byte.
It is the responsibility of the software to pad datasets with zeros up to the next 16
Byte boundary. Also the NAM must provide a reasonable amount of buffer space to
avoid frequent read/modify/write to the HMC (option 1) or to allow sufficient in-flight
transactions to exist (option 2 and 3). Buffer space must be partitioned to allow
holding segments of up to 44 nodes at a time to cover all 88 nodes with two NAMs in
the DEEP-ER prototype.

4.5.3.1 Summary of Design Decisions

Three approaches to transfer data were described above. Although option 3 requires
a higher hardware implementation effort, software complexity and processor-time to
transfer data is greatly reduced while providing the most resource efficient solution.
To optimally utilize available Block RAM memory of the Virtex 7 FPGA the NAM
will request a maximum of 128 in-flight segments with 496 Byte each per node. The
required number of nodes that must be handled by the NAM is 44, and the actual
number is slightly increased to 48 to allow for a small imbalance in node-to-NAM set
assignments.

4.5.4 Vision: NAM-XOR Checkpointing in DEEP-ER

Based on the design decisions for NAM-XOR checkpointing, Figure 4.17 depicts the
envisioned checkpoint creation flow with SIONlib. First, SIONlib writes a single file
from the checkpoints of all processes on a node to its local NVMe. The file is then
re-read into the node-local memory where it is ready to be fetched by the NAM.
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Fig. 4.17 NAM/SIONlib checkpoint creation example with one node

4.5.5 Configuration

Before the NAM CR feature can be used it must be configured by a root process.
RRA packets are used to read and write a set of CR registers in the NAM Register
File. The CR control unit expects the number of participating ranks (register C0) and
the unique EXTOLL NodeID + Virtual Process Identifier (VPID) (C2) of each rank
along with the size (C2) and remote memory start address (C1) of the corresponding
checkpoint, one rank per access. As shown in Figure 4.18 these steps are repeated until
all ranks have been configured. The configuration process and any misconfiguration are
monitored in dedicated status registers. As soon as all information has been written
the NAM is operational for CR.

Rank A NAM

RRA CR-C1

RRA CR-C2

RRA CR-C0

Repeat for 
all Ranks

Fig. 4.18 NAM CR configuration process
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Configuration and all subsequent processes are carried out by the libNAM library (see
Section 4.7.2), which provides interfaces to a higher layer such as SIONlib.

4.5.6 Generating a Checkpoint

Figure 4.19 depicts the checkpointing process on a network transaction level. The
checkpoint sizes are 5 segments for Rank A, and 4 segments for Rank B respectively. In
this example, the buffer sizes in the FPGA have been set to accommodate 3 segments
per rank at most. After configuration has been performed an application may be
executed. Whenever a rank is ready to have its checkpoint fetched by the NAM it
posts a flag into one of the CR control registers via RRA. This will trigger a burst of
RMA read requests up to 128 in-flight segments (only three in this example) to retrieve
data from the corresponding rank. As this process is ongoing, additional flags from
other ranks may be written which will cause the RMA read request scheme to alternate
through all currently flagged ranks. As GET responses return the NAM places these
segments into buffers, one per rank. The performance for GET responses from remote
nodes to the NAM is expected to be close to what RMA PUTs from an ASIC to the
NAM can achieve since both packet types look very similar.

When matching segments from all participating ranks have been received a XOR
operation on this set of segments is performed and the resulting parity is written to
the HMC. With every processed set, another segment from all nodes may be requested
as the buffer space is now freed up. Since checkpoint sizes can vary for each rank,
data fetch operations for some ranks may be ongoing while others are finished. The
NAM takes the largest available checkpoint as reference and internally pads all other
checkpoints with zeros so that the XOR result stays correct. The segment request
process is repeated until all checkpoints were fully transported and the last request to
each rank will have a notification bit set to signal completion.

For any subsequent checkpoints, step A in the sequence is obsolete when there is no
change in the configuration.

4.5.7 Restarting from a Checkpoint

When a rank has failed the root process is responsible to update the entries in the
NAM CR control unit accordingly. With completion of this update, the NAM will
start requesting segments from all remaining ranks. This process is very similar to the
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Rank A NAM

Freeze Checkpoint

RRA with RUN Flag

Get Segment A0

Rank B

Freeze Checkpoint

RRA with RUN Flag

Get Segment B1

Get Last Segment  A4 with NOTI

Get Last Segment B3 with NOTI

- Apply XOR on all segments
- Write result segments (parity) to HMC

Get Next Segment A3

Run Application

XO
R

- Got a segment #0
- Waiting for all segments #0

- Got all segments #0. Run XOR
- Request next segment(s)

Get Segment B0

Get Segment A1

Get Segment A2

Get Segment B2

Configuration

A0

A1

A2

A3

A4 B3

B2

B0

B1

-- Got a segment Got a segment ##00
- Waiting for all segments Waiting for all segments ##00

- Got all segments #0. Run XOR
- Request next segment(s)

XO
R

Fig. 4.19 NAM parity checkpoint creation example with two participating ranks A and
B. The rank A checkpoint is 5 segments in size and the rank B checkpoint
4, respectively. The resulting parity is as large as the largest checkpoint; 5
segments in this case. Segment GET requests are arbitrated among all currently
valid ranks
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checkpoint creation process with one main difference: the checkpoint of the failed rank
is replaced by the parity information that has been stored in the HMC. A low-level
diagram that highlights the individual sequences is depicted in Figure 4.20. The result
of the XOR operation on all remaining checkpoints and the parity is again written to
the HMC. This information reflects the missing checkpoint. The NAM informs the
failed (or newly configured) rank which then fetches the data via regular RMA reads.

A mandatory precondition to restart after a failure is that a parity checkpoint has been
written previously. In the unlikely case that a rank fails while a checkpoint creation
process is ongoing, the parity information may be invalid and no restart is possible.
One possible workaround to avoid this situation is to partition the HMC address space
into two equal-sized blocks. The NAM will then alternate between the blocks for each
subsequent checkpoint. A major drawback of this scheme is that the available capacity
is cut in half.

4.5.8 CR Functional Unit

The CR functional unit is depicted in Figure 4.21. The starting point for any CR
process is the control unit. After configuration, it receives the start CR flags which
triggers RMA read requests to be issued. Any packets arriving at the NTL completer
must be forwarded to the correct unit, depending on whether or not a packet/segment
belongs to a CR process. This data is shifted to the input stage which looks up the
corresponding buffer index of the remote process. The segment is then shifted into the
buffer array where it remains until the matching segments from all participating nodes
have arrived. Eventually, these segments are shifted into the XOR stage which creates
the parity. A final stage generates the HMC destination address, frames the packet
into a suitable format, and forwards it to the HTL layer.

4.5.9 Estimated Performance

The achievable CR performance depends on many factors and without actual mea-
surements it is not possible to make a prediction at this point. Benchmarks will have
to show if the dimensioning of the NAM internal buffers is sufficient, how well this
approach scales with the number of participating ranks, and if the newly created
software components are able to make use of this novel hardware architecture. For
the task of collecting checkpoints it is expected that the bandwidth is higher than for
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Rank A FPGA

Get Segment A2

HMC

Get Segment H1

Get Last Segment A4 with Noti

Get Next Segment H3

Notification

Wait for XOR to finish

Get Next Segment A3

Failed 
Rank B

GET Response

Mark Rank as Valid

Repeat until done

Get Segment A0

Get Segment A1

Get Segment H0

Get Last Segment H4

Configuration Update

FPGA HMC
NAM

A0
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A2
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H0Get Segment H2

H2

H3
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GET CP

H1

Fig. 4.20 NAM restart process. Rank B failed and its checkpoint is now replaced by the
parity which resides in the HMC. Similar to the checkpoint process the NAM
now collects the checkpoints from all remaining ranks and again applies a XOR
function. This operation results in the missing checkpoint of rank B
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EXTOLL Link 1 EXTOLL Link 2

CR Logic

NTL
HTLHMC 

Layer

Link MUX

Fig. 4.22 NAM design device view and floor plan

just reading or writing to the NAM. The main reason for this is that the bandwidth
limiting NAM HTL layer is mostly avoided except for writing or reading the XOR
parity from the HMC. However, this is only true when both NAM links can be accessed
and Section 4.7 will discuss how this requirement is influenced by the NAM software
stack.

4.6 Implementation Results

The full NAM design was implemented in the Virtex 7 690T FPGA. Figure 4.22 shows
that a floor plan was applied to partition the available space in the FPGA. In general,
a carefully applied floor plan can reduce routing congestion and place&route runtimes,
and will also lead to more reliable results. It can also be seen that the device is
reasonably utilized. The CR logic, for example, currently supports buffer space for up
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Table 4.5 NAM design resource utilization in a Virtex 7 690T FPGA. Percentages are
listed in reference to the total number of available resources of same type

Resource Type LUTs Registers BRAM DSP
Utilization 273k (63.0%) 199k (23%) 553 (37.6%) 214 (5.9%)

Per Functional Unit
One EXTOLL Link 66.8k (15.4%) 57.2k (6.6%) 30.50 (2.1%) 47 (1.3%)

EXTOLL MUX 3.8k (0.9%) 2.3k (0.3%) 30 (2%) 0 (0%)
HTL/NTL 24.8k (5.7%) 16.2k (1.9%) 42 (2.9%) 12 (0.3%)
CR Logic 87.2k (20.1%) 43.8k (5.1%) 404 (27.5%) 102 (2.8%)

HMC Layer 21.6k (5%) 19k (2.2%) 15.5 (1.1%) 2 (0.1%)

to 48 ranks at a time. A further increase of the number of ranks would increase Block
RAM usage in the specified device region, and significantly increase routing congestion
in this area. Routing congestion also comes in heavily when operating frequencies
are increased as the implementation tools start to replicate logic in order to reduce
trace lengths and fan-out. The modules that suffered most from routing congestion
are the EXTOLL links (fmax = 200 MHz) and the CR logic (fmax = 230 MHz). The
final utilization report can be found in Table 4.5.

4.7 NAM Software

Even the best hardware is useless without software that can actually use it. This section
describes the software components that were developed or modified to make use of the
NAM. There are three main components in this scope: a NAM-aware network setup
and management tool to seamlessly integrate this new device with EXTOLL ASICs.
An additional user-level Application Programming Interface (API) that provides access
to the NAM and implements the CR features. And finally, a service as central instance
to handle and manage NAMs and its allocations system-wide.
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4.7.1 EMP Extension

The EMP is a software component that is integrated with the EXTOLL software
stack. It is used to initially assign NIC identifiers and to setup routing to and between
EXTOLL devices in a network. In fact, EMP must be run anytime a system is powered
down or even a single node was replaced. In its original form, EMP does not support
NAMs as it expects that every connected device also provides routing tables and is
able to route through two links via the EXTOLL Crossbar (XBAR). The NAM is
an endpoint for any traffic and does not provide a routing table as routing from one
link to the other is not supported. Hence, the network must be properly configured
to ensure that only packets that actually target a specific NAM will be sent to it.
An additional hardware device type was added to the EMP which can now route to
and from NAMs but will not attempt to route through it. Currently only fixed and
deterministic routing is supported with exactly one path from one node to another.

4.7.2 The libNAM Library

The libNAM library operates on top of the existing EXTOLL RMA API. The function
calls provided by libNAM are very similar to libRMA so that existing user applications
can be modified without much effort. Listing 4.1 shows a code example to write and
read to and from the NAM. In the initial bring-up phase of the NAM hardware-software
interaction many of the features that were required to protect the NAM from false
usage were implemented in hardware (e.g. a violation of the 16 Byte granularity or
unsupported commands). These protection features were gradually shifted into the
software, hence reducing hardware and associated implementation complexity.

Reading and writing is realized with send and receive buffers organized in a ring
structure. The EXTOLL/NAM notification mechanism is utilized to handle the buffer
space, i.e. to free up locations when data has been transmitted (PUT) or received
(GET). The number and sizes of the elements a buffer can hold is configurable and at
the same time the limit for outstanding transactions.

Currently, data is sent and received on only one of four available EXTOLL Virtual
Channels. Measurements conducted in Chapter 5 will have to unveil if and how strong
this affects performance. A possible implementation that uses all VCs would require
libNAM to use dedicated buffers, one per VC to properly handle GET responses that
might return out of order.
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int main(int argc, char **argv)
{

nam_allocation_t *my_alloc;
char hello[] = "Hello NAM!";
char transferred[13];
//Allocate NAM for Read/Write
my_alloc = nam_malloc(sizeof(hello));
//PUT and GET data
nam_put_sync(hello, 0, sizeof(hello), my_alloc);
nam_get_sync(transferred, 0, sizeof(transferred), my_alloc);
printf("Transferred from NAM: <%s>\n", transferred);
//Release Allocation
nam_free(my_alloc);
return 0;

}

Listing 4.1 libNAM PUT/GET usage example

In subsequent libNAM implementations stages an MPI-based layer was added to
allow sharing a NAM allocation between processes. This layer furthermore allows to
coordinate checkpoint and restart processes for the NAM CR use case. As there may
exist multiple NAMs in a system, libNAM forms sets of participating nodes in a CR
process and assigns these sets to one of the NAMs. This assignment process is currently
implemented in a pseudo-random fashion that balances the number of nodes among
sets.

Unfortunately, assigning nodes to NAMs without additional information about routing
comes with obvious drawbacks. Figure 4.23 depicts various possible set assignments
for an example network with eight nodes and two NAMs. It can be seen that there
exist good mappings with potentially low routing congestion and short distances, but
also bad mappings that require more network hops and where only one NAM link will
be used. As routes are static the system behavior in response to NAM placement and
set configuration is predictable. It is therefore essential to assign sets in consideration
of the network topology and routing scheme. This task can either be offloaded to the
user, who must provide an appropriate mapping scheme, or to libNAM which could
use the information provided by EMP to optimally form sets.

It is also possible that the job scheduler selects a node combination that inevitably
leads to a similar condition. Figure 4.24 shows two possible node combinations for a
job running on two nodes. Assumed is a shortest-path routing algorithm with fixed
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Fig. 4.23 NAM-XOR set mapping examples
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accessed through both links
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(b) Suboptimal scheduling. Both NAMs can
only be accessed through one link

Fig. 4.24 Impact of node scheduling on NAM accessibility

routes and the best possible XOR set assignment. The figure points out that the
NAM checkpointing performance can be significantly affected by simply scheduling the
’wrong’ nodes. The impact of suboptimal mapping on performance will be evaluated in
Chapter 5.

For CR, libNAM is also responsible to pad data chunks with zeros up to the next 16
Byte boundary which would otherwise violate the NAM access granularity.

The NAM address space of 2GB per NAM can be allocated as a single or multiple
contiguous memory regions. Allocations are granted, managed, and released by a
dedicated NAM manager.

4.7.3 NAM Manager

Before a user application can access a NAM it must obtain an allocation. These
allocations are managed by the NAM manager. It is implemented as a system service
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NAM

Request Allocation

Allocation Credentials

Read Result

Write/Read

NAM 
ManagerJob 1.

2.

3. Release Allocation

Fig. 4.25 NAM manager interaction: A job requests space on a NAM via the NAM
manager. Allocations are either shared or exclusive and may be used to read
and write a NAM until released

which returns a handle upon a successful allocation request. This process is depicted
in Figure 4.25. Even if a checkpoint or restart process is running, any non-allocated
NAM address space can still be allocated and read or written when CR is not using the
full memory address space. However, only one CR process may be running at a time.

4.8 NAM Summary

This chapter introduced the NAM hardware prototype and described the implemen-
tation and individual functional units of the FPGA design in detail. A theoretical
analysis of the estimated performance identified the expected bottlenecks, and there are
several recommendations for improving these. In particular, the EXTOLL FPGA link
implementation for single link operation and the NAM protocol conversion units for
two link operation require optimization. The estimated performance will be validated
with in-system measurements using real hardware in the next chapter.

109





C
h

a
p

t
e

r

5
NAM Performance Evaluation

This chapter presents the performance of the NAM prototype using real hardware
setups. Various microbenchmarks were executed to characterize bandwidth and latency
for reading, writing, and Checkpoint/Restart. One example application was run on
the DEEP-ER SDV to cover the full set of functionality under real world conditions.

5.1 Read/Write Microbenchmark Results

A basic PUT/GET microbenchmark was executed to measure the read, write, and
simultaneous read/write performance. All of the figures below use a logarithmic base 4
scale on the x-axis. A comprehensible labeling is used for the message sizes from 16
Byte to 1 GB. To eliminate initial software overhead, each message size is requested
5000 times and the time between start and completion is measured. In reference to
the theoretical NAM performance evaluation in Section 4.4, the figures also depict
the theoretical bandwidth limit where applicable. The presented results highlight the
bandwidth and latency for a single NAM link, and the bandwidth for accessing both
NAM links at the same time, respectively.
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Fig. 5.1 Single link PUT/GET bandwidth

5.1.1 Single Link Performance

In a first measurements series one NAM was connected via one link to an EXTOLL
ASIC. The results for bandwidth are presented first.

5.1.1.1 Bandwidth

Figure 5.1 shows the PUT and GET bandwidth for one NAM link. It can be seen that
the achievable bandwidth is linked to the message size. Larger messages initiated by a
software descriptor lead to less software overhead and network descriptor translation
effort. The PUT bandwidth peaks at 8.25 GB/s, close to the theoretical limit of 8.31
GB/s. The performance of GET requests on the other hand is surprisingly low with 5.5
GB/s, about 3 GB/s less than the theoretical limit of 8.58 GB/s. To understand this
behavior, it is mandatory to recap some of the lessons learned in the previous chapter.

The operating frequency of the EXTOLL FPGA link in the NAM has been identified
as an important factor that affects performance. To quantify its impact on PUT and
GET bandwidth, two additional measurements were conducted with three different
frequencies. As Figure 5.2 shows the maximum bandwidth correlates with the frequency.
The impact on GET requests is slightly higher than on PUTs which is already close
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Fig. 5.2 Single link PUT/GET bandwidth in dependency of the NAM EXTOLL Link
operating frequency clk_extoll

to the theoretical maximum. The figures point out that decreasing the frequency of
the EXTOLL link which was implemented at 200 MHz does not substantially affect
bandwidth. This leads to the conclusion that increasing the frequency would not be
sufficient to take GET performance to a maximum here.

In a second measurement the NAM was configured to utilize all four EXTOLL Virtual
Channels (VCs) for GET responses. Figure 5.3 shows that using more VCs takes the
GET bandwidth close to its theoretical limit, still with a slight dependency on the
EXTOLL FPGA link operating frequency. The reason why PUT and GET are affected
unequally by the credit limitation is that the NAM may only use 31 credits per VC to
send packets (GET responses), while an ASIC has up to 58 for requests (PUTs) to the
NAM (see Section 4.2.5 and Section 4.3.3.2). Although the usage of multiple VCs is
highly recommended, the current implementation of libNAM is not capable to handle
more than one VC. It can cause responses to return out of order and must be handled
separately.

5.1.1.2 Latency

The NAM PUT and GET latency measurements are depicted in Figure 5.4. The
lowest NAM access latency starts with 1.8 µs for PUT and 2.8 µs for GET requests
respectively. The values are increasing with larger packet sizes accordingly. The actual
numbers and a breakdown of the individual latency contributors can be found in
Table 5.1. The values for the ASIC to ASIC communication reference were taken
from [49]. It can be seen that accesses to the NAM have a similar, yet slightly lower
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5.1 Read/Write Microbenchmark Results

Table 5.1 Overall ASIC-NAM and ASIC-ASIC PUT and GET latencies. Breakdown by
sub-operation and functional unit delays

Sub-operation /
functional unit

Delay
[ns]

# for PUT
ASIC-
ASIC

# for PUT
ASIC-
NAM

# for GET
ASIC-
ASIC

# for GET
ASIC-
NAM

Software Overhead 300 1 1 1 1
PIO Write 150 1 1 1 1

ATU Translation 70 2 1 2 1
DMA Read 350 1 1 1 0

RMA Unit Delay 50 2 1 3 2
Network Trip
ASIC-ASIC 650 1 0 2 0

Network Trip
ASIC-NAM 700 0 1 0 2

DMA Write 200 1 0 2 1
NAM Logic Delay 80 0 1 0 2

HMC Read 200 0 0 0 1
HMC Write 80 0 1 0 0

Overall Latency [ns] 1890 1780 2790 2780

latency than packets between two EXTOLL ASICs. The network trip latency for NAM
accesses is only slightly higher although the FPGA operating frequency is much lower.
The reason for this is that the NAM does not have a network crossbar which saves
parts of the delay that exists in the ASIC. For PUT request, an additional DMA write
and ATU translation are avoided but latency through the slow FPGA clock domains
is added. Although GET requests require two network trips to complete (round-trip,
to the NAM and back), their latency is by far less than for two PUTs. This can be
explained by the fact that several delay contributors such as the software overhead
appear only once. Unfortunately, the advantage of avoiding PCIe for DMA reads on
the NAM is nullified by the high delays in the FPGA.

5.1.2 Two Link PUT/GET Bandwidth

To measure the performance of both NAM links simultaneously, two EXTOLL ASICs
were connected with one link each to a NAM. The MPI benchmark executes sequential
reading and writing and the final result is calculated by aggregating the individual
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Fig. 5.5 Two link PUT/GET bandwidth

bandwidths. The results are depicted in Figure 5.5. While the PUT bandwidth peaks
at the theoretical limit of 10.35 GB/s, the GET Response bandwidth again suffers
from the credit limitation of the EXTOLL FPGA links. Eventually the total GET
bandwidth on two links settles to 10.15 GB/s, approximately twice the single link
bandwidth.

5.1.3 Analysis and Improvements

The estimated values and actual measurement results for PUT and GET operations are
summarized in Table 5.2. Based on this comparison and the findings in the previous
sections, two key observations and improvement recommendations can be derived.

PUT performance is as expected While the EXTOLL Link itself is the bottleneck
in single link operation, the bandwidth limiting component shifts to the NAM
internal HTL functional unit when using two EXTOLL Links. Both values
measured, however, match the theoretical estimation. Currently the HTL converts
a large RMA packet to multiple, smaller sized HMC packets and splitting is subject
to various restrictions. A possible solution to increase the HTL performance
is to substitute the packet conversion logic by a cache-like unit, for example a
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Table 5.2 NAM bandwidth comparison: estimated versus actual measured

Operation Bandwidth Estimated [GB/s] Bandwidth Measured [GB/s]
PUT 8.31 8.27

PUT 2 Links 10.35 10.35
GET 8.58 5.54

GET 2 Links 12.62 10.15

set-associative cache with a line size of 496 Byte. The NAM will then be able to
select and write-out larger HMC packets more efficiently. Other characteristics
such as the cache eviction strategy are implementation specific and can be set to
either optimize for area, bandwidth, or power consumption. The latter option
would not only reduce the FPGA power footprint but also HMC dynamic power,
which is a significant fraction of its overall consumption.

GET performance falls short of expectations For single link operation a band-
width drop of 3 GB/s over the theoretical limit can be observed. The cause
for this lack of performance has been identified with the FPGA EXTOLL Link
operating frequency, and even more critical, the number of credits available
for packet transmission. Hence, future link ASIC link implementations should
increase the credit count to enable best performance with FPGAs and other
devices that run on slower clocks. It is the easiest way to further scale the
bandwidth as increasing the operating frequencies will cause implementation
issues in the FPGA. Alternatively, the NAM could be implemented as an ASIC
to eliminate all of the issues mentioned above.

5.2 Checkpoint/Restart

The NAM CR functionality to speed-up the creation of parity checkpoints has been
evaluated in the DEEP-ER SDV. Here, two NAMs are connected with both links to
a 16-node torus type network. The logical NAM placement within the topology was
carefully chosen to balance out the distances from each node to the nearest NAM. A
set of microbenchmarks was implemented to independently evaluate the performance
of creating and restarting from checkpoints. These measurements are complemented
by an application benchmark with one of the DEEP-ER applications.
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5.2.1 Microbenchmark Results

The following set of microbenchmarks analyzes the bandwidth of the NAM CR and its
scaling behavior in the DEEP-ER SDV from 1 to 16 nodes with 4 processes each. The
checkpoint sizes range from 4 KB up to 2 GB per node. The benchmarks directly call
libNAM CR functions without involving an additional layer such as SIONlib, and each
process is treated as an independent rank. Hence a maximum of 64 checkpoints are
created and evenly assigned to both NAMs (maximum 32 checkpoints per NAM).

5.2.1.1 Checkpointing

The first benchmark measures the overall bandwidth for creating XOR parity check-
points. A root process configures the NAM CR unit and distributes the job to all
participating ranks. Each rank then creates a checkpoint and informs the NAM in
order to fetch the data and generate the parity. The bandwidth measurement is started
as soon as the MPI job starts and stopped when all ranks have received a notification
that the parity has been generated. The actual checkpointing bandwidth is calculated
using the total amount of data that has been processed divided by the time the process
took, which includes MPI start-up times and synchronization. The results of this
benchmark are depicted in Figure 5.6. It can be seen that the bandwidth scales with
the number of available nodes.

For one participating node, only one NAM is utilized and only one link of this NAM is
accessed since there is a static route between the two endpoints. The resulting peak
bandwidth is 6.2 GB/ which is less than what has been measured for PUT requests
from a node to the NAM. This surprises as the NAM issues GET requests, and GET
responses traveling back to the NAM are very similar to PUTs with respect to how
they are handled by the EXTOLL network. The reason for this disparity is software
synchronization overhead and the generation of the XOR parity which is then also
written to the HMC. It is reasonable to include this overhead in the measurements
since it is part of the overall CR process.

With two nodes the effective bandwidth is already more than doubled with 14 GB/s
as now both NAMs are involved and the software overhead remains at a comparable
level. Adding more nodes to the checkpointing process eventually leads to a bandwidth
saturation at 24.8 GB/s with 16 nodes. At a first glance this result surprises as it states
that the bandwidth per NAM, assuming an equal distribution, is 24.8 GB/s

2 NAMs = 12.4 GB/s.
This is higher than what has been measured for writing data to a NAM via both links.
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Fig. 5.6 XOR checkpointing bandwidth with 2 NAMs in the DEEP-ER SDV. 4 processes
per node with one checkpoint per process

However, the theoretical NAM bandwidth analysis in Section 4.4 pointed out that
the bottleneck for a two link operation sits in the HTL protocol conversion logic. In
case of Checkpoint/Restart this module is completely avoided except for the task of
writing out the XOR parity to the HMC. All other data is directed to the CR layer
which operates at a higher throughput (17.54 GB/s) than two EXTOLL links can
deliver (16.62 GB/s). Achieving even higher bandwidths for checkpointing remains
difficult due to natural overhead of generating and storing the XOR parity, and process
synchronization among participating nodes.

5.2.1.2 Restart

Benchmarking a restart requires that a XOR parity has already been generated. Hence,
a checkpoint is first created following the scheme presented in the previous section. The
bandwidth measurement is started as soon as the root process informs the NAM that
a rank failure has occurred and stopped after the failed rank has entirely retrieved its
missing checkpoint. Figure 5.7 shows that restart scales similarly to checkpointing for
an increasing number of participating nodes. The resulting bandwidths, however, are
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Fig. 5.7 XOR restart bandwidth with 2 NAMs in the DEEP-ER SDV. 4 processes per node
with one checkpoint per process

continually lower than for checkpointing. The reason for this behavior is the additional
read process to fetch the missing checkpoint after reconstruction has finished.

5.2.1.3 Impact of XOR Set Mapping on CR Performance

One important property that affects CR performance is the assignment of nodes to a
XOR set, or more specific the mapping of ranks to one of the two NAMs. The libNAM
library currently maps nodes to a set in pseudo-random fashion and the actual topology
and routing setup is not considered. As Section 4.7.2 highlighted there exist good and
bad mappings for the same node/routing/NAM setup. The measurements so far were
executed with manually assigned XOR sets. This is reasonable for a system such as the
DEEP-ER SDV. For larger systems and many different applications, however, it is up
to libNAM to form these sets. Therefore, it is necessary to measure the performance
impact of the mapping scheme.

Figure 5.8 compares the checkpointing bandwidth for two different mappings with
4 nodes. It shows that the potential performance loss for a bad mapping scheme is
significant. Therefore, with the current libNAM implementation and without any
additional effort it is not guaranteed that always the best mapping is provided. In
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addition, it can also be due to the job scheduler that a bad mapping is inevitable. In
this case the user is responsible to reserve nodes where the routing is guaranteed to
target all available NAM links.

5.2.2 Application Performance

One DEEP-ER application was selected to ultimately compare the NAM check-
point/restart approach with the existing SIONlib-Buddy checkpointing scheme.

iPic3D [103] is a space weather application developed by the Katholieke Universiteit
(KU) Leuven. It is meant to deepen the understanding and increase the forecasting
accuracy of the impact of sun solar emissions on the earth weather. The application
itself operates on two distinct items: computation-intensive particle operations, and
communication-dominated inter-particle field calculations. This perfectly suits the
cluster-booster architecture of the DEEP-ER system and makes iPic3D a perfect
candidate to proof its concept and also to evaluate the NAM as CR target.

In order to run benchmarks, the application code was modified to only execute the
checkpointing portion, leaving out actual computation because it is irrelevant for the
measurements. iPic3D operates on particle and cell datatypes, where each cell is
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approximately 64 KB in size and consists of 1024 particles. Each scenario, NAM-XOR1

and SIONlib-Buddy2, was run for various checkpoint sizes on 2 to 16 nodes with four
processes per node and a total of 2 XOR sets. Participating nodes were evenly assigned
to the two NAMs. Runs were executed 20 times, with 10 checkpoints per iteration,
and the total runtime was taken to even out measurement errors.

Two types of scalability were evaluated: weak scaling, which means that the problem
size linearly increases with the number of nodes, and strong scaling, where the problem
size stays constant but the number of processes and nodes varies.

5.2.2.1 Weak Scaling

The first set of benchmarks measures the weak scaling behavior. Checkpoint sizes
range from a total of 64 MB (16 MB per process) per node up to 2 GB (512 MB
per process), which is the maximum NAM checkpoint size. The results are depicted
in Figure 5.9 and the values reflect the average time out of 20 runs. The best case
runtimes are slightly better and the worst case runtimes may be significantly higher
due to file system and network congestion. Note that the Y-axis range changes.

The results clearly show an advantage with the NAM approach and the achievable
speed-ups range from 1.06X to approximately 2.1X, i.e. with two NAMs in the system,
checkpoints may be created 2.1 times faster than with SIONlib-Buddy. For a given
dataset size per node it can be seen that the runtimes on the NAM remain almost
constant. This is an indication that the NAM internal CR request mechanism is
well-balanced. It also shows that two links per NAM provide sufficient bandwidth
for at least 8 nodes. However, at a certain point only two NAMs will not be able to
support the link bandwidth of additional nodes and more NAMs should be added to
the system.

Noticeably, the speed-up continually increases with larger checkpoint sizes. The reason
for this is that with larger checkpoints, SIONlib-Buddy writes more and more data to
the local NVMe drives which is much slower than moving the data over EXTOLL to
the NAM. It is expected that the achievable speed-up will further increase for larger
datasets but such measurements were not feasible due to the NAM memory capacity
of 2 GB.

1 For more information on how the NAM creates checkpoints see Section 4.5.4 and Section 4.5.6
2 For more information on how SIONlib-Buddy creates checkpoints see Section 4.5.1
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Fig. 5.9 Xpic3d application performance comparison for weak scaling: NAM-XOR versus
SIONlib-Buddy. Note the variable Y-Axes
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Fig. 5.10 Xpic3d application performance comparison for strong scaling: NAM-XOR versus
SIONlib-Buddy. Note the variable Y-Axes

5.2.2.2 Strong Scaling

The strong scaling behavior was measured on 2 to 16 nodes on the SDV. Figure 5.10
depicts the results for 4 different dataset sizes, where the largest dataset is 4 GB in
total, or 2 GB per node. This limitation is again due to the limited NAM capacity.

As for weak performance, NAM-XOR performs better and achieves speed-ups from
1.37X to 1.9X. It can be seen that the runtimes for the NAM significantly decrease
from 2 to 4 nodes. The reason for this is that with two nodes, both NAMs with only
one link each may be accessed. Already with 4 nodes all NAM links are utilized3. From
this point the performance remains mainly constant with only a very slight decrease
since the inter-node MPI communication and NAM configuration overhead increases.
3 Node selection is often handled by the job scheduler. A proper selection is critical for the NAM

performance. See also Section 4.7.2.
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5.3 Performance Summary

This chapter evaluated the NAM prototype and software stack using micro- and
application benchmarks in real system setups. It was shown that read and write
operations to the NAM perform reasonably well, although several limitations as
discussed in the theoretical performance evaluation were discovered. It turns out that
the EXTOLL Link FPGA implementation has to be improved to further increase the
single link performance, in particular for GET requests. This affects the operating
frequency constraints, and more important the credit-based flow control mechanism.
Two-link read/write performance, on the other hand, suffers from protocol translation
requirements and overhead, and other approaches need to be developed to reduce this
penalty.

It was pointed out that the NAM access latency is very close, yet slightly better to what
can be achieved between two EXTOLL ASICs. Increasing the operating frequency in
all parts of the design would ultimately put the NAM at an advantage. For an ASIC
implementation it is expected that both, bandwidth and latency would significantly
improve.

An additional set of microbenchmarks was executed to measure the Checkpoint/Restart
performance. It became clear that checkpoint and restart with two NAMs in the 16
node SDV test system result in tremendous bandwidth and a good scaling behavior.
As NAMs can be attached to any unused EXTOLL Link in the system, the overall
memory capacity and bandwidth perfectly scale with the system size and the number
of NAMs attached to it. For future use, however, the libNAM library and EXTOLL
EMP application should be made aware of the topology to allow the best possible
node-to-NAM XOR set mapping.

Finally, application benchmarks with one of the DEEP-ER applications showed that
checkpointing using the NAM is superior to SIONlib-Buddy. With a maximum speed-up
of 2.1X for weak scaling and 1.9X for strong scaling, NAM-XOR is able to significantly
reduce the overhead of fault tolerance features of today’s and future large-scale systems.
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6
Conclusion and Outlook

The goal of this work was to develop a hardware prototype that is able to mitigate the
negative effects of three common problems in today’s and future large-scale systems.
These are the memory interface and performance, the rapidly increasing amount of inter-
process communication, and fault tolerance. Network Attached Memory was developed
and presented as an innovative solution. It is a dedicated device that speeds-up collective
operations and provides shared memory access at network bandwidth. As a first use
case the NAM serves as target for commonly deployed Checkpoint/Restart mechanisms.
The resulting hardware prototype provides high-performance interconnection network
interfaces and implements the emerging memory technology Hybrid Memory Cube.
The NAM design was fully prototyped in an FPGA and the excellent performance
results show that the NAM is able to speed-up the creation process of checkpoints in a
16 node test system by a factor of 2.1X.

The first contribution comprises an overview over memory technology and interface
evolution, and typical communication methods and patterns in distributed systems.
It became clear that the memory interface must be optimized in order to keep up
with the latency and bandwidth requirements of multi-core architectures. Inter-process
and in particular inter-node communication already today take up a large amount
of the overall application runtimes. Since the general message passing scheme is not
expected to change in the near future, it is either desirable to reduce the number
of messages that are sent or otherwise to speed-up messaging and commonly used
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collective operations. The overview is complemented by an introduction to fault
tolerance which has become a major concern in today’s and future large-scale systems.
Checkpointing introduces additional application overhead and most often stresses
the memory interface and the interconnection network due to communication and
synchronization. Hence, fault tolerance will also benefit from optimizing either of
these two components. Finally, power and energy play an increasingly important role,
especially since the total power budget for an Exascale system should not exceed 20
MWatt and today’s fastest supercomputers are already close to this limit. The NAM
can help to increase the energy efficiency, allowing systems to consume less power or
to execute more actual work in a given time period.

The next contribution presented the Hybrid Memory Cube technology and interface as
one approach to overcome the bandwidth, scalability, and power efficiency issues of
the parallel memory interface. The HMC architecture is thoroughly analyzed and the
obtained insights contributed to the development of an HMC host controller, which has
become a popular and widely used open-source initiative. This development enabled
the evaluation of HMC performance and power characteristics in an FPGA test system.
The results clearly emphasize the motivation to adapt serial and abstracted interfaces
to enable memory access parallelism and the independent development of memory
technology and its interface.

The development of the NAM prototype hardware and FPGA design was described in
detail. The PCB was developed as a standard height PCIe form factor card that can
be plugged into common PCIe slots. It provides interfaces to directly connect up to 2
EXTOLL high-performance NICs and integrates a 2 GB HMC device. This development
process was driven by the vision initially formulated in the introduction and the use
case as checkpointing target in the DEEP-ER project. The architectural contributions
comprise an FPGA implementation of the native EXTOLL ASIC network link, protocol
conversion logic, and an application-specific Checkpoint/Restart functional unit. The
NAM design operates in several clock domains with 200 MHz for the EXTOLL links,
220 MHz for Checkpoint/Restart, and 312.5 MHz for the remaining logic at more than
60 % LUT utilization in the Virtex 7 FPGA. A theoretical performance evaluation
identified potential bottlenecks and served as reference for the in-system validation.
NAM read/write access, allocations, and Checkpoint/Restart functions are orchestrated
by libNAM, a user-level API derived from existing EXTOLL libraries.

The final contribution of this work evaluated the presented hardware and software
components in a real 16 node system. Although the theoretical performance evaluation
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and microbenchmark results have identified existing bottlenecks for reading and writing,
checkpointing with the NAM shows an excellent 2.1X speed-up over the SIONlib-Partner
approach which is currently deployed in the DEEP-ER system.

In summary, the vision that has been formulated in the introduction of this work was
successfully transferred to a hardware prototype. The performance evaluation of the
developed hardware and software components undoubtedly prove that the presented
approach is able to reduce inter-node communication and to relieve the memory
interface in general, while improving state of the art fault tolerance mechanisms of
large-scale systems. These outstanding contributions were publicly recognized and
an enhanced NAM device will be developed in the follow-up DEEP-EST (Dynamical
Exascale Entry Platform - Extreme Scale Technologies) project.

6.1 Improvements

For a future implementation of the NAM, several possible improvements for the
following components were identified:

HMC Link

Due to the limited number of the available FPGA transceivers, the HMC evaluation
only covered accesses through 1 out of 4 possible links. A different FPGA with more
transceivers and a suitable PCB would be required to connect more than one link.
Also, the Xilinx Virtex 7 GTH transceiver do not support 15 Gbps line-rates and a
newer FPGA generation (e.g. Xilinx Ultrascale) device would be required. For both,
multi-link and 15 Gbps operation, it is expected that the achievable bandwidth and
energy efficiency will further improve.

NAM Hardware and FPGA Design

The NAM design unveiled only very few weaknesses, and especially the read performance
lags behinds the expectations. This is mainly due to the fact the credits in the EXTOLL
network protocol are exchanged too slow when communicating with an FPGA that
runs at relatively low operating frequencies. The complex FPGA logic prohibits faster
clock domains and the number of credits the EXOLL ASIC can provide is fixed. Hence,
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the only way to alleviate bandwidth throttling is to make use of all available traffic
classes as provided by the EXTOLL network protocol.

For writing and reading in 2-link operation, the FPGA design internal protocol conver-
sion units have been identified as performance limiting factor. Currently, EXTOLL
network packets are directly translated to (many smaller) HMC packets. The main
issue here are the different access and address granularities, and packet sizes. A
cache-like unit would allow writing ’cache-lines’ with a maximum size of the network
MTU to an internal buffer array, decoupling the HMC-sided access units which may
take data and return GET responses in a more efficient way. Although there are many
considerations left open, such as associativity and eviction strategies, this approach
would make protocol translation much easier.

For Checkpoint/Restart, a clear drawback of the NAM is the volatility of the memory
array. Hence a future NAM implementation should combine fast DRAM access (e.g.
HMC) and a second level, non-volatile storage such as NAND. It is also desirable
to partition the available address space into 2 equally sized regions so that even in
the process of checkpoint creation a copy of the stable XOR parity may always be
preserved.

NAM Software

In order to utilize the traffic classes mentioned above, a future libNAM implementation
should issue GET requests on alternating traffic classes. This results in a slightly more
complex software component as responses may return out of order. However, it also
unlocks the full network bandwidth. A second libNAM optimization is to use topology
and routing information provided by EMP. It could be used to always create the best
possible XOR set mapping for checkpointing.

6.2 Outlook

The NAM approach will soon be taken to its next level in the European funded
DEEP-EST project. Here, the existing NAM prototype will be extended by multiple
Terabyte of non-volatile memory. Additionally, a newer and larger FPGA to accom-
modate more complex processing capabilities will be introduced. A more general use
case toward MPI collective operations will motivate even more application developers
to make use of this novel concept. A performance boost is in particular expected for
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applications that make use of non-blocking collective operations which are supported
by the latest MPI 3 standard. These operations allow host processors to continue
program execution while the NAM collects the required information, carries out the
collective operation, and then re-distributes the results.
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Acronyms

AMC Active Memory Cube
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
ATU Address Translation Unit
BE Bandwidth Engine
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
CR Checkpoint/Restart
CRC Cyclic Redundancy Check
DDR Double Data Rate
DEEP Dynamical Exascale Entry Platform
DEEP-ER Dynamical Exascale Entry Platform - Extended Reach
DEEP-EST Dynamical Exascale Entry Platform - Extreme Scale Technologies
DIMM Dual In-line Memory Module
DMA Direct Memory Access
DOE U.S. Department of Energy
DRAM Dynamic Random-Access Memory
ECC Error Correction Code
EMP EXTOLL Management Program
EOP End Of Packet
FIFO First In - First Out
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FLIT Flow Unit
FPGA Field Programmable Gate Array
FRP Forward Retry Pointer
FTI Fault Tolerant Interface
GDDR Graphics Double Data Rate
HBM High Bandwidth Memory
HMC Hybrid Memory Cube
HMCC Hybrid Memory Cube Consortium
HPC High Performance Computing
HTL HMC Transaction Layer
I2C Inter-Integrated Circuit
IC Integrated Circuit
I/O Input/Output
IP Intellectual Property
JTAG Joint Test Action Group
KNL Intel Knights Landing
LED Light-Emitting Diode
LGPL Lesser General Public License
LPDDR Low Power Double Data Rate
LUT LookUp Table
MCDRAM Multi Channel DRAM
MPI Message Passing Interface
MTBF Mean Time Between Failure
MTU Maximum Transmission Unit
MUX Multiplexer
NDC Near-Data Computing
NIC Network Interface Controller
NAM Network Attached Memory
NAND NAND Flash Memory
NTL Network Transaction Layer
NVMe Non-volatile Memory Express
PCB Printed Circuit Board
PCIe PCI Express
PIM Processing In Memory
PFS Parallel File System
RAM Random-Access Memory
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Acronyms

RAS Reliability, Availability and Serviceability
RF Register File
RMA Remote Memory Access or Remote Memory Architecture
RRA Remote Register File Access
RRP Return Retry Pointer
SCR Scalable Checkpoint / Restart
SDV Software Development Vehicle
SerDes Serializer / Deserializer
SOP Start Of Packet
SRAM Static Random-Access Memory
SSD Solid State Drive
TSV Through Silicon Via
VC Virtual Channel
VPID Virtual Process Identifier
XBAR Crossbar
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