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Abstract

Yield curves are used to forecast interest rates for different products when their risk parameters are

known, to calibrate no-arbitrage term structure models, and (mostly by investors) to detect whether

there is arbitrage opportunity. By yield curve information, investors have opportunity of immuniz-

ing/hedging their investment portfolios against financial risks if they have to make an investment with

some determined time of maturity. Private sector firms look at yields of different maturities and then

choose their borrowing strategy. The differences in yields for long maturity and short maturities are

an important indicator for central bank to use in monetary policy process. These differences may show

the tightness of the government monetary policy and can be monitored to predict recession in coming

years. A lot of research has been done in yield curve modeling and as we will see later in the thesis,

most of the models developed had one major shortcoming: non differentiability at the interpolating

knot points.

The aim of this thesis is to construct a zero coupon yield curve for Nairobi Securities Exchange, and

use the risk- free rates to price derivatives, with particular attention given to pricing coffee futures.

This study looks into the three methods of constructing yield curves: by use of spline-based models,

by interpolation and by using parametric models. We suggest an improvement in the interpolation

methods used in the most celebrated spline-based model, monotonicity-preserving interpolation on

r(t). We also use operator form of numerical differentiation to estimate the forward rates at the knot

points, at which points the spot curve is non-differentiable.

In derivative pricing, dynamical processes (Itô processes) are reviewed; and geometric Brownian mo-

tion is included, together with its properties and applications. Conventional techniques used in estima-

tion of the drift and volatility parameters such as historical techniques are reviewed and discussed. We

also use the Hough Transform, an artificial intelligence method, to detect market patterns and estimate

the drift and volatility parameters simultaneously. We look at different ways of calculating derivative

prices. For option pricing, we use different methods but apply Bellalahs models in calculation of the

Coffee Futures prices because they incorporate an incomplete information parameter.
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Chapter 1

STUDY DEFINITION

1.1 INTRODUCTION

The main intention of this study is to develop a zero coupon yield curve (ZCYC) for Nairobi Securities

Exchange (NSE) and an associated model for pricing the coffee futures that are to be introduced in

the Kenyan market in 2017-2018, as requested by Capital Market Authority of Kenya. This modeling

task requires:

• the existence of zero coupon bonds in the market;

• continuous flow of data from the market;

• and historical prices of coffee futures.

Unfortunately, the required data and information is neither adequate nor available in the market. At

the NSE, only coupon bonds are traded; zero coupon bonds are not traded and therefore we need

to strip the coupon bonds to create hypothetical bonds associated with zero bond or risk-free rates.

Secondly, the bonds available for trade have only specific, European-type, maturities: 1, 2, 3, 4, 5, 7,

10, 15, 20, 25 and 30 years, and there is no information on several tenures. Therefore, it is necessary

for us to interpolate the data available so that we can estimate the rates for the missing maturities and

construct a yield curve. There are many interpolation methods in the literature so careful selection is

a significant part of this study.

There are two broadly different ways of constructing a yield curve: spline interpolation and parametric

modeling. Of the former, we analyze different interpolation methods, their strengths and weaknesses,

and finally develop a method that improves on the seeming best interpolation method: monotone

convex interpolation on r(t)t, which is currently applied at the Johannesburg Securities Exchange

when tenures are missing from historical data. As for the parametric models, we test the models

which many studies have concluded to be the best: the (Nelson, C. R., & Siegel, A. F. , 1987) model,

the (Svensson, L. E. , 1994) model and the (Rezende, R. B. , 2011) model, to decide which seems best

suited for Kenyan data. Finally, we compare the results from the spline interpolation model with the

best parametric model.
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Not only does the NSE not trade in coffee futures; coffee is actually not traded there as a commodity

at all. The real coffee beans are simply sold in weekly auctions and then exported to other countries

from which they are traded in the commodity exchanges or consumed. The only available NSE data

is the coffee beans prices from the auctions, we therefore have to look for alternative sources of data

for the coffee commodity prices and futures.

To found Nairobi auction prices on a traded commodity framework, we relate them to data from guide

countries that grow coffee and at the same time trade in coffee futures. The countries we consider

as guides of this nature are: Ethiopia, Cote dIvoire (Ivory Coast) and Brazil, and we relate their

economies to that of Kenya by fairly crude interest-rate comparisons. The basis of comparison that

we use is correlation analysis and Frechet distance: In correlation analysis, the country which correlates

most strongly with the Kenyan economy is taken as the best guide to starting an eventual commodity

exchange price for Kenya. In problem formulation section 1.2 of the thesis, we consider instantaneous

correlation of bank rates and also some correlations with a time lag because the economic conditions

driving auction bidding in Nairobi may well be those prevailing in the guide market at an earlier date.

The results, over a range of plausible time-lags, were consistent in showing that data from Ivory Coast

provides a better guide than those from the other two economies. Frechet distance is a measure of

similarity between two curves. It is defined as the minimum cord-length sufficient to join a point

traveling forward along one curve and one traveling forward along the other curve, although the rate

of travel for either point may not necessarily be uniform. The shorter the distance, the closely related

the curves are. Frechet distance strongly supports Ivorys interest rates being closely related to Kenyas

interest rates than the other two countries, Brazil and Ethiopia.

The coffee futures data to be used are available both at Trading Economics data platform

(http://www.tradingeconomics.com/ivory-coast/indicators as on 8th August 2016) and Bar Chart

Futures Market Overview data platform (http://www.barchart.com/futures/marketoverview as on

8th August 2016). These data are updated daily and will be available to the NSE.

To model option pricing, we begin with the simplest succession dynamical models of asset prices,

the Geometric Brownian Motion (GBM) applied by Black, Scholes and Merton to derive the option

pricing formula, the Black-Scholes formula, (see (Hull, J. C. , 2006)).

Generally, the option pricing formula assumes that the asset price evolves on a continuous time axis

as a continuous Markov chain, as shown by (Hull, J. C. , 2006) : one of the so-called Itô processes,

2



which is expressed as a stochastic differential equation:

dS(t) = µS(t)dt+ σS(t)dZ(t) S(0) = S0 (1.1.1)

where parameter µ is the instantaneous linear drift rate or risk-free rate of return, and σ > 0 is

the volatility of the underlying asset. Stochastic quantity Z(t) is the standard Wiener process with

Z(t) ∼ N(0,
√
t). The volatility of the underlying asset, σ > 0 and the risk-free rate of return, µ,

are assumed to remain constant during the life of the option. The advantage of this method is that

the asset price S(t) at time t, is the value of an exponential function and hence is non-negative at all

times.

From equation (1.1.1), we have:

dln(S(t)) = (µ− σ2/2)dt+ σdz(t) (1.1.2)

From equation (1.1.2), we see that the variable ln(S(t)) follows a generalized Wiener process. The

change in ln(S(t)) between time 0 and time T is normally distributed so that:

ln(S(t))− ln(S(0)) ∼ Φ[(µ− σ2/2)T, σ
√
T ]

where S(T) is the stock price at a future T; S(0) is the stock price at time 0 and Φ(m, s) denotes a

normal distribution with mean m and standard deviation s. From this it follows that:

ln

(
S(T )

S(0)

)
∼ Φ[(µ− σ2/2)T, σ

√
T ] (1.1.3)

and

ln(S(T )) ∼ [ln(S(0)) + (µ− σ2/2)T, σ
√
T ] (1.1.4)

Equation (1.1.4) shows that ln(S(T )) is normally distributed so that S(T) has a lognormal distribution.

1.2 PROBLEM FORMULATION

In a simple market without derivatives, the in-house construction of a yield curve might not have a far

reaching impact on the market as a whole; but the introduction of derivatives at the Nairobi Securities

Exchange makes urgent the need for a well-researched and formulated yield curve. Briefly, yield curve

construction using the spline based approach heavily relies on a good interpolation method to facilitate

accurate bootstrapping. According to Investopedia, a website devoted to investing information and

education based in New York, Bootstrapping is defined as the procedure used to calculate the zero

3



coupon yield curve from market figures. Because T-bills offered by the Kenyan government are not

available for every time period, the bootstrapping method is used to fill in the missing figures in order

to derive the yield curve. The bootstrap method uses interpolation to determine the yields for treasury

zero-coupon with various maturities (http://www.investopedia.com/terms/b/bootstrapping.aspo on

9th August 2016)

1.2.1 Selection of Interpolation Method

We begin by looking into traditional interpolation methods and their weaknesses. We then look at

the spline-based methods, moving from the earliest models proposed by McCulloch, Vasicek, and the

others, until we get to monotone preserving interpolation on r(t)t method proposed by Du Preez in

2013. Spline-based yield curve models typically involve minimizing the following function:

min

h(t)
=

N∑
i=1

(Pi − Pˆ
i)

2 (1.2.1)

where N is the number of securities used as inputs to the model, Pi are the observed security prices,

and h(t) is the chosen method of interpolation (the spline function) used to compute the fitted security

prices Pˆ
i.

We look at different interpolation methods h(t) used in the spline-based models. The interpolation

method currently used at Johannesburg Securities Exchange, the most developed financial market in

Africa, is known as monotone preserving interpolation on r(t)t, suggested by Du Preez. Unfortunately,

this method produces curves that are non-differentiable at the knot points. This makes it hard for

one to calculate forward rates (which are important in pricing derivatives) at the knot points, given

spot rates.

1.2.2 Estimation of Forward Rates

Forward rates are calculated from the spot rates as follows:

f(t) =
d

dt
r(t)t (1.2.2)

There are two ways of dealing with the non-differentiability at the knot points: first, we can use

operator form of numerical differentiation to estimate the derivative, or we can develop a method of

removing the non-differentiability at the knot points.
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Operator form of numerical differentiation is based on functions f(x) sampled at discrete points

f(x+ h), f(x+ 2h), f(x+ 3h), . . . , f(x+ nh).

Let us define the following:

Ef(x) = f(x+ h) as the shift operator

∆f(x) = f(x+ h)− f(x) as the forward difference operator (1.2.3)

∇f(x) = f(x)− f(x− h) as the backward difference operator (1.2.4)

δf(x) = f(x+ h/2)− f(x− h/2) as the central difference operator (1.2.5)

µf(x) = 1/2[f(x+ h/2) + f(x− h/2)] as the average operator (1.2.6)

Df(x) = f ′(x) as the differential operator (1.2.7)

where h is the difference interval. To link the difference operator with the differential operator, we

consider Taylors series:

f(x+ h) = f(x) + hf ′(x) + h2/2!f ′′(x) + . . .+ hn/h!f ((n))(x) + . . . (1.2.8)

In operator notation, we can write:

Ef(x) =

[
1 + hD +

1

2!
(hD)2 + . . .

]
f(x) (1.2.9)

The series in brackets is the expression for the exponential and hence we have (formally):

Ef(x) = ehDf(x)

E = ehD (1.2.10)

Substituting these expressions into the central difference approximation for the derivative, which can

also be expressed as f ′(x) ≈ f(x+h)−f(x−h)
2h we obtain:

f(x+ h)− f(x− h)

2h
=
ehDf(x) + e−hDf(x)

2h

5



=
ehD + e−hD

2h
f(x) (1.2.11)

Using Taylor series expansion for ehD and e−hD for small values of h, we obtain:

ehD = 1 + hD +
1

2
h2D2 +

1

6
h3D3 + . . .+

1

n!
hnDn + . . .

e−hD = 1− hD +
1

2
h2D2 − 1

6
h3D3 + . . .+

(−1)n

n!
hnDn + . . . (1.2.12)

Substituting the above equations into the following:

f(x+ h)− f(x− h)

2h
=
ehD + e−hD

2h
f(x)

We have in central difference form:

f(x+ h)− f(x− h)

2h
=

[
D +

1

6
h2D3 + . . .

]
f(x) (1.2.13)

Reorganizing the equation above, we get:

f ′(x)

[
D +

1

6
h2D3 + . . .+

hnDn+1

(n+ 1)!

]
f(x) (1.2.14)

thereby estimating the derivative at a point for tabular data.

The second way we deal with the non-differentiability at the knot points is by removing the mono-

tonicity constraint introduced by Hyman, on the FritschButland algorithm in the monotone convex

interpolation on r(t)t method.

We could also use parametric models to calculate the zero coupon yield rates; but since many re-

searchers have established three best models for this, in this thesis we investigate which, among the

parametric models is the best, and compare it to the performance of the differentiation methods dis-

cussed above. This comparison is done to ensure that we settle on the best method for constructing

ZCYCs for the NSE. We then apply the generated risk free rates to pricing of the derivatives.

The accuracy of the pricing models for the Futures will depend on the country that we chose as a

source of futures prices data.

1.2.3 Choosing the Lead Country

Here, we look at different methods of analysis taking into account the non-linear nature of the interest

rates data. The methods used include: Correlation analysis with time lags and Frechet distance.
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1.2.3.1 Correlation analysis with time lags

Correlation is a statistical measure that indicates the extent to which two or more variables fluctuate

together or are related to each other. A correlation coefficient is a statistical measure of the degree

to which changes to the value of one variable predict changes to the value of another. When the

fluctuation of one variable reliable predicts a similar fluctuation in a similar variable, theres often a

tendency to think that it means that the change in one causes the change in the other. However,

correlation does not imply causation.

For simple correlation, let there be n pairs of observations on two variables x and y, then the usual

correlation coefficient (Pearson’s coefficient of correlation) is:

r =

∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

(1.2.15)

Similar idea can be used in time series to see whether successive observations are correlated or not.

Given N observations x1, x2, . . . , xn on a discrete time series, we can form (n-1) pairs of observations

such as (x1, x2), (x2, x3), . . . , (xn−1, xn). Here, in each pair, the first observation is as one variable (xt)

and the second observation is as second variable (xt+1). So the correlation coefficient between xt and

xt+1 is:

r1 =

∑n−1
t=1 (xt − x̄(1))(xt+1 − x̄(2))√[∑n−1

t=1 (xt − x̄(1))2
] [∑n−1

t=1 (yt − ȳ(1))2
] (1.2.16)

where

x̄(1) =
∑n−1

t=1
xt
n−1 is the mean of the first n− 1 observations.

x̄(2) =
∑n−1

t=2
xt
n−1 is the mean of the last n− 1 observations.

Note that: The assumption is that the observations in autocorrelation are equally spaced (equispaced).

For large n, r1 is approximately:

r1 =

∑n−1
t=1 (xt−x̄)(xt+1−x̄)

n−1∑n
t=1(xt−x̄)2

n

(1.2.17)

or

r1 =

∑n−1
t=1 (xt − x̄)(xt+1 − x̄)∑n

t=1(xt − x̄)2
(1.2.18)

For k distance apart, i.e., for k lags, then:

r1 =

∑n−k
t=1 (xt − x̄)(xt+1 − x̄)∑n

t=1(xt − x̄)2
(1.2.19)

An rk value of ±2√
n

denotes a significant difference from zero and signifies an autocorrelation.
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The following results of the correlation with time lags (up to lag 7) between the interest rates of Brazil,

Ethiopia and Ivory Coast with Kenyas interest rates are shown in the table below. (See appendix B

for the R codes and output).

Table 1.1: Correlation of the Interest Rates Data with Time Lags (up to Lag 7)

KENYA LAGS AUTO CORRELATION

BRAZIL ETHIOPIA IVORY

1 0.883 0.824 0.966

2 0.777 0.649 0.932

3 0.658 0.473 0.898

4 0.545 0.297 0.863

5 0.464 0.285 0.829

6 0.388 0.274 0.795

7 0.303 0.262 0.752

From the analysis, Ivory Coast has the highest correlation with Kenya and this is consistent up to lag

7.

After running these tests at various lag times, Ivory Coast had the highest correlation of 0.9527

compared to Ethiopias 0.9328 and Brazils 0.8703. This led to this study using Ivory Coast Coffee

futures historical prices for development of Kenyas Coffee futures pricing model.

1.2.3.2 Frechet Distance

Frechet distance is a measure of the similarity between curves that takes into account the location

and ordering of the points along the curves. Let S be a metric space. A curve A in S is a continuous

map from the unit interval into S, i.e. A : [0, 1]→ S. A reparameterization α of [0, 1] is a continuous,

non-decreasing, surjection α : [0, 1]→ [0, 1]. Let A and B be two given curves in S. Then, the Frechet

distance between A and B is defined as the infimum over all reparameterizations α and β of [0, 1] of

the maximum over all t ∈ [0, 1] of the distance in S between A(α(t)) and B(β(t)). In mathematical

notation, the Frechet distance F (A,B) is defined by:

F (A,B) =
inf

(α, β)

max

(t ∈ [0, 1])
{d (A(α(t)), B(β(t)))} (1.2.20)
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where d is the distance function of S.

The results (the Frechet distance for the interest rates data), were generated using R programming as

shown in the table below. The R codes and output can be found in the appendices section.

Table 1.2: Frechet Distance for the Interest Rates Data

KENYA FRECHET DISTANCE

BRAZIL ETHIOPIA IVORY COAST

13.00839 4.113821 1.40443

Ivory Coast is again more related to Kenya, than to the other two lead countries, since it has the

shortest distance.

The model we use for pricing is a generalization of Black Scholes Model. The novel item in regard to

this study is that the parameters in the model are estimated using an artificial intelligence method,

the Hough Transform. However, this thesis still outlines the other parameter estimation methods.

1.3 RESEARCH GOALS AND OBJECTIVES

The broad aims of this project can be translated into the following objectives:

1. Construction of a Zero Coupon Yield Curve for the Nairobi Securities Exchange

2. Development of a model to be used to price Kenyan Coffee Futures

1.4 BASIC CONCEPTS

1.4.1 Yield Curve Construction

A yield curve is a graphical representation as a continuous function of the relationship between present

return (yield) of some type of financial instrument and the time remaining to its maturity. We can

construct a yield curve using either discrete data sampling returns or from a continuous Markovian

model. For discrete data points, interpolation between the sampled points is the most suitable method
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of constructing the yield curve. When using interpolation, the sampled returns are usually known as

’knot points’. If a Markovian model is used, the mathematical form of the yield curve is usually

known as ’the model function’ and these usually come in families with parameters to be fixed from

data connected to the instrument being modeled.

For yield curve construction, this thesis uses both spline based methods and parametric models.

Spline-based methods typically involve minimizing the following type of function

min

h(t)
=

N∑
i=1

(Pi − Pˆ
i)

2 (1.4.1)

where N is the number of knot points, Pi is an observed security price at the ith knot, h(t) is the

chosen method of interpolation (the spline function) and Pˆ
i is its value at the ith knot time.

For parametric models, we use the Nelson-Siegel (NS) class of models. These models were first

developed by Charles Nelson and Andrew Siegel from the University of Washington in 1987, improved

by Svensson in (1992-1994) who added a second hump and by Rezende and Ferreira in 2011 who

introduced the third hump. Their modeling is based on various possible shapes of yield curve: such

as flat, hump, and S- shapes, (Nelson, C. R., & Siegel, A. F. , 1987). The model is presented as:

f(m) = β0 + β1exp

(
−m
τ1

)
+ β2

(
m

τ1

)
exp

(
−m
τ1

)
+ β3

(
m

τ2

)
exp

(
−m
τ2

)
+ β4

(
m

τ3

)
exp

(
−m
τ3

)
(1.4.2)

where fm is the forward rate of government bond in i where i = 1, . . . , n; n is number of bonds, m

is time to maturity. τ = τ1, τ2, τ3 reflects the scale parameter that measures the rate at which the

short term and medium term components decay to zero. For example, small value of τ result in rapid

decay in the predictor variables and therefore they will be suitable for curvature at low maturities.

Corresponding, large volumes of produce slow decay in the predictor variables and will be suitable

for curvature over longer maturities, (Christofi, A. C. , 1998).

β is a linear parameter vector; i.e. β = β0, β1, β2, β3; in which β0 is a constant value of forward rate

function, β1 determines the initial value of the curve (short term) in various terms of abbreviations,

the curve will be negatively skewed if parameter is positive and vice versa. β2 determines magnitude

and direction of the first extremum of the curve at time τ1 (if β2 is positive then the extremum is a

hump , if β2 is negative then U shape will occur at τ1,) and β3 determines magnitude and direction of

the second local extremum at time, hump or U-shape according to sign. In (Nelson, C. R., & Siegel,

A. F. , 1987), β3 = β4 = 0 and τ2 = τ3 = 0. In (Svensson, L. E. , 1994), β4 = 0 and τ3 = 0.
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1.4.2 Financial Derivatives Pricing

Financial derivatives are contracts used to buy or sell an underlying asset at a future time, at a price,

quantity and maturity defined today. The more common examples of derivatives include forwards,

futures, call and put options, caps, floors, swaps, dollars and many others [see (Hull, J. C. , 2006)

chapters 1 to 5]. The underlying asset classes include interest rates, equity, foreign exchanges (FX),

credit, energy and others. Derivatives are traded in organized exchanges as well as over the counter

(OTC). The payoff function could be either continuous or discrete. Derivatives are used to hedge the

risk of owning underlying assets that are subject to unexpected price fluctuations, (Hull, J. C. , 2006).

In this study, we are going to apply continuous time models on stock prices (coffee futures) from the

Ivory Coast, our selected external guide market. Stock prices are stochastic in nature. Any variable

whose value changes over time in an uncertain way is said to follow a stochastic process. Stochastic

processes are classified as discrete time or continuous time. A discrete-time stochastic process is one

where the value of the variable can change only at certain fixed points in time, whereas continuous-time

stochastic process is one where changes can take place at any time. Stochastic processes can also be

classified as continuous-variable or discrete-variable. In a continuous-variable process, the underlying

variable can take any value, whereas in a discrete-variable process only certain discrete values are

possible.

In practice, we do not observe stock prices following continuous-variable, continuous-time processes.

Stock prices are restricted to discrete values and changes can only be observed when the exchange is

open and a bargain is struck. Nevertheless, the continuous-variable continuous-time processes are the

ones used most for pricing and modeling purpose. We build the modeling step by step until we get to

the pricing model, starting with the Markov processes.

A Markov process is a particular type of stochastic process where only the recent history is relevant

for predicting the future. A Markov process is memoryless. It does not matter how it got to the

current state or for how long it has been staying there. The more remote history of the variable and

the way that the present has emerged from this past are irrelevant. Stock prices are usually assumed

to follow Markov process, where predictions for the future are uncertain and must be expressed in

terms of probability distributions. The Markov property implies that the probability distribution of

the price at any particular future time is not dependent on the particular path followed by the price in

the past. The Markov property of stock prices is consistent with the weak form of market efficiency,
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which states that the present price of a stock impounds all the information contained in a record of

stock prices. A Markov chain of higher order is a Markov model with memory, that is, a Markov chain

that depends on, not only the current state, but also m-1 states before, where m is the order and is

finite. For example, a second order Markov process depends on its current state and also the one just

visited state, a third Markov process depends on its current state and the two previous states.

Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , Xn−m = xn−m)

If the weak form of market efficiency were not true, technical analysts could make above-average

returns by interpreting charts of the past history of stock prices. It is competition in the market that

tends to ensure that weak-form market efficiency holds. There are many investors watching the stock

market closely. Trying to make profits from it leads to a situation where a stock price, at any given

time, reflects the information in past prices. Suppose that it was discovered that a particular pattern

in stock prices always gave a 65% chance of subsequent steep price rises. Investors would attempt

to buy a stock as soon as the pattern was observed, and demand for the stock would immediately

rise. This would lead to an immediate rise in its price and the observed effect would be eliminated,

as would any profitable trading opportunities.

An instance where we see market inefficiency is at New York Stock Exchange, Wall Street, during

the liquidity crash in 2007, as explained partly by Michael Lewis in the book The Big Short: Inside

the doomsday machine (Gorton, G., Lewis, M., & Zuckerman, G. , 2011). In his book, Lewis speaks

of a group of people, who we are going to refer to as the protagonists and follows their financial

decisions. The protagonists bet against subprime collateralized debt obligations (CDOs). A CDO is

formed by pooling a large number of mortgages and tranching the pool that is, imposing a seniority

structure on it. In an ordinary pool of securities, a mutual fund for example, there is no seniority

structure and everybody gets an equal share of the revenues. But in CDOs, the super-senior tranche

might get 80% of the revenues before anyone else gets anything, the senior tranche gets the next

10%, the mezzanine 5% and the last tranche, the equity tranche, gets whatever is left over, say 5%,

if all revenues (mortgage payments) come through. The super-senior tranches and often the senior

tranches too were rated AAA by S& P and Moodys. Sometimes, the lower-rated mezzanine tranches

were re-pooled and re-tranched into new CDOs and their super-senior tranches were rated AAA too.

The protagonists in The Big Short wanted to short the wobbliest of these CDOs.

Initially, there was no way to do it until the Credit Default Swaps (CDSs) were made. CDSs on

CDOs were essentially insurance on the CDOs. For a very small premium paid quarterly, one could

12



buy insurance that would make their investment whole if their CDO tranche default, in whole or in

part. And one did not even need to own the CDO to buy the insurance. The protagonists bet against

subprime CDOs chiefly by purchasing the credit default swaps that insure them. The CDSs values

would go up as the CDOs values went down. What actually used to happen is that the CDO seller,

who has promised to make good up to the face value of the CDO, can now pool the premiums received

on the sell-side of the bunch of the CDSs, tranche them and turn around and sell this to someone

else. To the buyer, its virtually indistinguishable from having bought a mortgage CDO. One makes an

investment, and gets periodic payments in return. These tranched pools of CDSs that simulated CDOs

were called synthetic CDOs. And the more CDSs the protagonists bought, the more the dishonest

sellers could create synthetic CDOs. Plenty of investors were convinced they were onto a sure thing

and this overconfidence caused market inefficiencies since CDOs and CDSs lack the Markov property.

Next we would like to discuss the Wiener process, denoted by Z = {Z(t) : t ≥ 0}, [Z usually denotes

the standard Wiener process with σ = 1, can be specified by a stochastic differential equation] and

is a particular type of Markov stochastic process index by continuous time and taking real values,

generated by independent increments. The cumulative output of incremental Z(t)−Z(s) is normally

distributed with mean 0 and variance (t− s), for some constant σ and any 0 ≤ s < t. It is sometimes

referred to as Brownian motion and is a cornerstone of modern theory of random processes and its

application. Wiener process was developed from a concept widely known as the Random Walk.

The term random walk was first used by Karl Pearson in 1905. He proposed a simple model for Itô

infestation in a forest: at each time step, a single Itô moves a fixed length at a randomly chosen angle.

Pearson wanted to know the Itôs distribution after many steps. It is also believed that the theory of

random walks was developed a few years before (Bachelier, L. , 1900) in the PhD thesis of a young

economist: Louis Bachelier. He proposed the random walk as the fundamental model for financial

time series. Bachelier was also the first to draw the connection between discrete random walks and the

continuous diffusion equation. In the same year of the paper of (Pearson, K. , 1905), Albert Einstein

published his paper on Brownian motion which he modeled as a random walk, driven by collisions

with gas molecules. Einstein did not seem to be aware or the related work of Pearson and Bachelier.

In 1906, Smoluchowski also published very similar ideas.

A Wiener process is characterized by the following properties:

1. W0 = 0
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2. W has independent increments: Wt+1 −Wt is independent of σ(Ws : s ≤ t) for u ≥ 0

3. W has Gaussian increments: Wt+1 −Wt is normally distributed with mean 0 and variance t:

Wt+1 −Wt ∼ N(0, t)

4. W has continuous paths: with a probability of 1, Wt is continuous in t

The increments mean that if 0 ≤ s1 < t1 ≤ s2 < t2 then Wt1 −Ws1 and Wt2 −Ws2 are independent

random variables, and the similar condition holds for n increments. We show some properties of a

Wiener process using the random walk example.

The walker starts at position x = 0 at the step t = 0; at each time-step the walker can go either

forward or backward of one position with equal probabilities of 0.5. We need the probability P (x, t),

to find the walker at the position x at the time step t.

P(x,t) = no. of sequences that take to x in t steps× prob of any given sequence of t steps

Number of sequence that take to x in t steps= steps taken in the

positive direction × steps taken in the negative direction

P (x, t) =
t!(

t+x
2

)
!
(
t−x

2

)
!
×
(

1

2

)t
∼
√

2

πt
e−

x2

2t (1.4.3)

If we are looking at a stochastic process experiencing normal noise, finite variance and in one dimension,

then we have:

x(t+ 1) = x(t) + η(t) (1.4.4)

According to central limit theorem, the sum of independent identically distributed variables with finite

variance will tend to be normally distributed. Therefore, the average distance travelled is calculated

as:

x(t)

t∑
τ=1

η(τ) (1.4.5)

(x)t = (η)t = 0 (1.4.6)

P (x, t) ∼ 1

2πt(η2)
e
− x2

2t(η2) (1.4.7)

√
((x2)t − (x)t) =

√
((η2)t) ∝

√
t (1.4.8)
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A generalized Wiener process for a variable x can be defined as follows:

dx = adt+ bdz (1.4.9)

where a and b are constants and ∆z = ε
√

∆t which is the change during a small period of time, ∆t.

An Itô Process is a further generalization of the generalized Wiener process where the parameters a

and b are functions of the value of the underlying variable, x and time t. It is often implied that a

stock price follows a generalized Wiener process; that is, that is has a constant expected drift rate and

a constant variance rate. However, this model fails to capture a key aspect of stock prices. This is the

expected percentage return required by the investors from a stock is independent of the stocks price.

This model also shows that when the variance rate is zero, the stock price grows at a continuously

compounded rate of µ per unit of time. In practice, the stock does exhibit volatility.

The model that considers this volatility of stock price behavior is known as Geometric Brownian

motion. The discrete-time version of the model is:

∆S

S
= µ∆t+ σε

√
∆t (1.4.10)

or

∆S = µStσt+ σSε
√

∆t (1.4.11)

The variable ∆S is the change in the stock price, S in a small interval of time ∆t; and ε is a random

drawing from a standardized normal distribution (i.e., a normal distribution with a mean of zero and

standard deviation of 1.0). The parameter µ is the expected rate of return per unit of time from the

stock and the parameter σ is the volatility of the stock price. Both of these parameters are assumed

constant. The ∆S
S is the return provided by the stock in a short time ∆t. The µ∆t is the expected

value of this return and the term σε
√

∆t is the stochastic component of the return. The variance of

the stochastic component is σ2∆t.

It is from the Brownian motion that the Black-Scholes Pricing Model is derived. This option pricing

formula was initially derived in 1973 by Fisher Black and Myron Scholes for asset options and later

refined by Black in 1976 for options written on futures. The primary inputs in the formula are the

underlying asset price, the strike price, time to expiration, risk-free rate of return, and the standard

deviation of the underlying asset return. One of the core assumptions in the derivation of this model

is the no-arbitrage principle. In brief, this principle states that in an efficient financial market, it

should not be possible to make profits with zero investment and without bearing any market-risk.
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One important task with using this formula is the estimation of the key parameters, and those are

the drift rate and the volatility rate. In this study, we intend to use an artificial intelligence tool, the

Hough transform, to estimate the two parameters.

The Hough Transform (HT) is a popular and robust method of extracting analytic curves from edge-

enhanced noisy digital images. The principal concept of HT is to define a mapping between an image

space and a parameter space of a class of curves. Each feature point or pixel in an image is mapped to

the parameter space to vote for the parameters whose associated curves pass through the data points.

The votes from all edge pixels along a curve are accumulated in a histogram and all the peak of the

histogram corresponds to the parameters of the curve in the image. The curve path in image space

therefore becomes a peak detection problem in the parameter space.

1.5 BACKGROUND INFORMATION

1.5.1 Coffee in Kenya

One of the main intentions of this study is to develop a model for pricing coffee Futures which are

to be introduced in the Kenyan market in 2017-2018. The coffee sector in Kenya is an important

economic activity in terms of income generation, employment creation, foreign exchange earnings and

tax revenue: the coffee sector ’cash cow’. Over the years, the economic performance of coffee has

had repercussions on all spheres of life in Kenya; affecting farm input suppliers, the transport sector,

savings and investment intermediation, consumption of goods, and households ability to pay for ed-

ucation, health and other services. Even politics is affected by ’gravy trains’ derived from the coffee

market.

Kenya produces some of the best coffee in the world. Being the more flavourful Coffee Arabica rather

than Coffee Canephora (Robusta), the fully washed mild belongs to the top quality group called

Colombian milds. Kenya is able to produce the best coffee due and deep red volcanic soils in high

altitude regions (1,500-2,000 meters above sea level) where well-distributed rainfall and moderate

temperatures (averaging 20 deg centigrade Celsius), couple with characteristically high equatorial ul-

traviolet sunlight diffusing through thick clouds.

Coffee producers involves about 45 per cent of Kenyas total population (currently about estimated
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at 42 million 1). Since some of these people are as much as 40 per cent income-dependent on coffee,

their lives revolve around the pricing of coffee. Coffee production increased rapidly in ripples in the

two decades after independence. As shown in figure 1.5.1 below; total production for both estates

and cooperative sub-sectors rose from 43,778 tons in 1963-64 to 128,941 tons in 1983-84. Since then,

however, the coffee industry has been on a downward trend except for a brief spell in 1999-2000.

As a result, coffees contribution to incomes, employment creation and foreign exchange earnings has

declined.

Figure 1.1: Coffee production trends, 1963-2006

Source: Task Force Report on Coffee Marketing, Ministry of Agriculture August 2003, p.158; Economic

Survey, 2006, Government of Kenya; and the Coffee Quarterly, Kenya Coffee Traders Association, No.

2/2006, p.9.

Coffee production undergoes different steps which are normally depicted in a value chain. The value

chain in coffee production in Kenya involves the following steps:

1. Farm-level operations - nursery operations to produce seedlings, planting, weeding, fertiliz-

ing, pruning, spraying, picking/harvesting of red cherry and transportation of cherries to the

1Economic survey, Central Bureau of Statistics, 2006, Nairobi, Kenya
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pulpier/coffee factory;

2. Factory primary processing - pulping, fermenting, washing and drying to produce parchment

coffee, either at a cooperative facility or in a farm-based pulpery; curing for milling (removing

parchment/peeling, cleaning and polishing the beans to produce green coffee beans);

3. Milling plant operations: hulling, cleaning/polishing, sorting, grading, bagging, e.g. by Kenya

Planters Cooperative Union (KPCU) and Thika Coffee Mills;

4. Auctioning at the Nairobi Coffee Exchange (NCE) where dealers, roasters, marketers and

exporters buy various grades of green coffee Auctioning at the Nairobi Coffee Exchange (NCE)

where dealers, roasters, marketers and exporters buy various grades of green coffee. The coffee

may be bought by either local consumers (example coffee houses like Nairobi Java House and

Dormans Coffee), where they roast, grind, blend and package the coffee for local consumption. It

can also be bought by exporters and international dealers who will market and sell it regionally

and globally to consumers.

Figure 1.2: Coffee Value Chain

Source: Final Report on Assessment of the Value-adding Opportunities in the Kenyan Coffee Industry,

European Commission, April 2004

If exported coffee is not processed and packaged for consumption, it is traded in the international

markets; and it is here that the international prices of coffee are determined. There are two types of

market: the physical market and the financial market (sometimes known as the futures market).
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In the physical market traders buy coffee from exporters. Physical coffee moves between market par-

ticipants and payments are made for the physical coffee. Often there will be a variety of profit-seeking

intermediaries through whom the coffee passes: for example, secondary cooperatives, processors, re-

exporters, etc. The intermediaries constitute a supply chain of physical volumes of coffee leading

ultimately to the consumer who drinks the coffee.

Futures markets are very different from this physical market both in how they function and in their

purpose. Their underlying asset is imported coffee held in a bonded warehouse like a precious metal.

There is a holding cost in addition to the Nairobi auction price, transport, insurance, spoilage rate

etc. For the purpose of this study, we do not examine such micro-economic matters, assuming the

importer can factor them into the price levels at which he chooses to strike futures contracts - his

macro-economic concern. Unlike the physical market, in the financial market contracts will only result

in physical delivery of coffee at a completion date. These contracts are held for financial purposes and

the contracts complete at (for a European option), or prior to (for an American option) the matu-

rity date of the contract. Because such contracts are offset from the physical exchange at a bonded

warehouse, they are often referred to as paper contracts. The vast majority of contracts traded on

the exchange are traded as a means of providing sellers/importers and buyers and of coffee (in the

physical market) with hedging opportunities to manage their exposure to future price risk.

Futures markets are accessed by participants from all over the world, which results in an extremely

large number of transactions every day. By having so many market players trading coffee contracts

in one location, the demand and supply for these contracts help buyers and sellers determine an ag-

gregate price for coffee which is commonly known as the world price of coffee: in other words, price

discovery. This price is used by producers, traders, exporters, and roasters around the world as the

reference price for coffee on any given day. Of course there are different reference prices for different

types and origins of coffee.

Comparing these features of the physical market to those of the financial markets shows that the main

differences between the two markets are:

• Location the physical market exists in coffee producing countries, with buyers and sellers trad-

ing physical or green coffee. There will also be a physical coffee market in importing countries,

where physical coffee is traded between importers and coffee roasters. The financial market on

the other hand is a global (often electronic) exchange where futures and options (representing

coffee for delivery in different months) are exchanged.
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• Activities in the physical market, the primary activity is the buying and selling of green coffee

between businesses that earn money from trading and moving coffee. In the financial markets,

coffee contracts are traded with very little expectation of delivery of coffee.

• Delivery in physical coffee markets, delivery is usually by shipment from the port of expor-

tation. All contracts on the futures are based on delivery of coffee stored in exchange-licensed

warehouses in the US and Europe.

• Export Terms Local traders operating in the physical market will have contracts based on

Free on Board (FOB) export terms whereas the financial market contracts are priced in store

(also called ’ex dock’ or delivered licensed warehouse) , meaning that the coffee is presumed to

have been bought FOB, shipped from origin and discharged into a licensed or bonded warehouse.

• Units of Measurement Local markets utilize their own units of measurement (for example

Kilograms for East Africa, Quintiles for Central America, pounds in New York; but futures mar-

kets use pounds in the New York Arabica exchange and tons in the London Robusta exchange).

Each of these differences will affect the basis (the differential between FOB and in store prices), as

they each involve different costs. Basis refers to the difference between the FOB price (the futures

price) and the in store price. Many traders know this more commonly as the differential’, and they

speak of ’basis risk’ or differential risk the two meaning the same thing. This basis is determined

by several different factors such as quality differences between one country and another, the costs of

transportation, interest and insurance. Basis can be either positive or negative. Positive basis occurs

when the local market price for coffee expressed in FOB terms is greater than the in store international

price. Basis is readily calculated from unit prices:

FOB unit price in store unit price = Basis

The following figure shows the coffee price differential for five coffee exporting countries. We note

that Kenyas differential is very high compared to the other countries sampled, thus the motivation

to introduce a coffee futures exchange in Kenya with lower in store price, which it hoped will lead to

better prices for the farmers.
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Figure 1.3: Coffee Price Differential on New York Stock Exchange

Accordingly, the government of Kenya announced in the June 2010 budget the introduction of a Coffee

Futures Exchange. The regulatory framework for this was completed in 2014. The next steps include:

• Infrastructure expansion, for example construction of warehouses for coffee beans storage;

• Charging the Capital Market Authority with the development of pricing tools a ZCYC for the

NSE, and a pricing model for coffee future contracts;

• Assistance to the shift from auctioning of coffee at the Nairobi Coffee Exchange to paper trading

at the NSE.

This follows the historical precedent set during the evolution of the NSE from an auction-based stock

exchange for East African enterprises established early in the nineteenth century and shifted to the

continuous paper-trading NSE in the early 1990s. The lessons to be learned from this introduction of

yield-curve based trading are outlined below.

1.5.2 Nairobi Securities Exchange and Market Yield Curve

The Nairobi Securities Exchange (NSE) started trading in shares while Kenya was still a British

colony in the 1920s, according to International Finance Corporation and Central Bank of Kenya re-

port, (Kenya, C. B. of. , 1986). Share trading was initially conducted in an informal market that
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would facilitate access to long-term capital by private enterprises and also allow commencement of

floating of local registered Government loans. In 1954, the Nairobi Stock Exchange was constituted

as a voluntary association of stockbrokers registered under the Societies Act, (Exchange-NSE, N. S.

, 1997). The newly established stock exchange was charged with the responsibility of developing the

Securities market and regulating trading activities.

The government adopted a new policy with the primary goal of transferring economic and social

control to citizens, in 1963-1970. By 1968, the number of listed public sector securities was 66, of

which 45% were for Government of Kenya, 23% Government of Tanzania and 11% Government of

Uganda, while the rest were sold to limited companies registered in East Africa. During this period,

the NSE operated as a regional market in East Africa where a number of the listed industrial shares

and public sector securities included issues by the Governments of Tanzania and Uganda (the East

African Community). Changing political regimes finally ultimately led to the delisting of companies

domiciled in Uganda and Tanzania from the NSE.

The development path of securities in the NSE indicates an evolutionary process where changes in in-

stitutional infrastructure and the policy environment were witnessed as efforts were made to facilitate

the growth of the securities market. The evolutionary process is characterized by a shift in trading

system from a periodic auction system to a continuous trading system. Trading systems define the

price discovery process or the transformation of latent demand of investors into realized transactions,

according to (Madhavan, A. , 1992). Generally, the evolutionary process of trading systems indicated

a shift from manual and decentralized settlement clearing systems to electronic and centralized set-

tlement clearing 2. Such a trading system enhances efficiency in the price discovery process, provides

liquidity at low costs, and has no excess volatility, thus is more desirable for the development of the

securities market; (Amihud, Y., Mendelson, H., & Lauterbach, B. , 1997) and (Bessembinder, H., &

Kaufman, H. M. , 1997). High liquidity enhances long-term investment by reducing the required rate

of return and lowering the cost of capital to the issuers of securities. An efficient price discovery pro-

cess enhances the role of the market in aggregating and conveying information through price signals,

therefore making prices more informative.

The development of the institutional and policy changes which have affected this market can be sum-

2(Garman, M. B., & Klass, M. J. , 1980) observes an evolutionary pattern in adoption of trading system for the

US stock market in response to growth in trading volume; this saw a shift from periodic to continuous trading system.

(Amihud, Y., Mendelson, H., & Lauterbach, B. , 1997) note the tendency for emerging markets to shift from periodic to

continuous trading in the revitalization process.
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marized as an evolutionary process with three stages of development. The initiation stage was mainly

characterized by lack of formal rules and regulations and was dominated by foreign investors. In the

formalization stage, a self-regulatory system was adopted while attempts were made to increase the

participation of local investors by the post independence Government. In the third stage, enhancement

stage, various institutional and policy reforms were implemented to enhance the growth of the market.

Two main factors that shaped the development path were first, the political environment both at the

national level and in the East African region where changes in the policy and in the composition of

market participation had an impact; and second the macroeconomic environment where a demand for

locally-mobilized long term capital to enhance economic development became significant.

Considering the developments in various aspects of the market, the following patterns were evident.

First, the Securities brokerage industry expanded and diversified with the number of Securities bro-

kers increasing from 6 (in 1950s) to 23 (as at 12th March 2016: source NSE website), and licensing of

Securities dealers and investment banks also increased. However, Securities brokerage is yet to be fully

negotiable while the role of Securities brokers remains predominately that of an agent. Second, the

composition of market participants shows a shift from a market dominated by foreign investors in the

initiation stage to increased participation of local investors in the formalization stage (especially in the

post-independence period), re-entry of foreign investors, though at limited level and mass education

on Securities market operations and assets, in the revitalization stage. Third, the NSE served as a

regional market for the East African states in the initial stages but the Securities Exchange lost a

significant proportion of its market scope due to the political changes in these states. Attempts are

however underway to establish a regional market to facilitate expansion of the NSE market. Fourth,

though the diversity of securities traded is still minimal, the reform period saw efforts made to attain

market depth with introduction of new instruments such as the planned introduction of derivatives.

Fifth, while a discriminative tax policy that penalized share investors heavily was adopted in the

post-independence period, an incentive-based tax policy regime was adopted in the reform period to

enhance the competitiveness of the financial assets and reduce the barriers to listing new issues. Sixth,

in an effort to strengthen the regulatory framework, the regulatory system has witnessed a shift from

the non-formal system to self-regulatory and statutory regulatory framework. Finally, the trading

system shows a shift from the coffee-house forum to floor trading, and there were attempts to intro-

duce the delivery versus payment system with the introduction of the Central Depository System and

automation of the trading cycle. The main aim was to enhance efficiency in the price discovery process

and liquidity of the market. These changes mimic development paths of other Securities markets in

23



both the developed and emerging markets.

Healthy development paths in many markets around the globe has led to a number of Futures Ex-

changes springing up in Latin America, Asia and Africa during the last decade, based on the premise

that there is a need to manage price volatility and provide price discovery. In June 2010 Budget

speech, the government of Kenya, through a policy pronouncement by the then Deputy Prime Min-

ister and Minister of Finance, announced that steps would be made towards developing institutional

and legal frameworks to introduce a Commodities and Futures exchange in Kenya. This has created

a need to design tools that will be used by the market to price the derivatives properly. Examples of

tools needed are a yield curve and pricing models.

Currently, the NSE does not have a known existing yield curve as indicated by (Ngugi, R., & Agoti,

J. , 2007). According to (Ngugi, R., & Agoti, J. , 2007), leading stockbrokers, a group of bank traders

and institutional fund managers were working with Reuters Limited in 2006 towards developing an

acceptable, credible market yield curve. This was driven by the requirement of International Ac-

counting Standard (IAS) 39, which requires that there should be a standard yield curve to facilitate

investors in fixed income instruments to value their portfolios at fair market values. However, the

market participants identified limitations in prices reported on the NSE and decided not to use the

yield curve created at the time to value their portfolios.

It was then agreed that the yield rates applied to the market were to be derived from a cross-section

of key market players. These key market players were required to post their quotes on Reuters as-

signed pages, out of which aggregate yields are derived. The yield curve, which was primarily available

through Reuters, which is a media channel dedicated to providing market data in the international

financial market and disseminating that information locally.

In 2011, Cannon Asset Managers (CAM), a Kenyan based Asset Management company, created a

yield curve for the NSE using the rates given by the Central Bank of Kenya (CBK), according to

CAM (2011). They used logarithmic linear interpolation method to calculate the yield rates at the

periods missing from the CBKs bonds. Unfortunately, logarithmic linear interpolation has a tendency

of implying discontinuities in the forward rate curve, a weakness depicted by all variations of linear

interpolation methods, as shown by (Hagan, P. S., & West, G. , 2006) We intend to construct a

yield curve for the NSE by overcoming the limitations experienced by the group working on the yield

curve in 2006. The main limitation of their method was using the bonds dirty prices, as quoted at

the NSE. To improve on this, we will use raw bond data from CBK, which is the primary issuer of
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the bonds in Kenya. This way, we will construct a yield curve which is based on clean bond prices

(without accruals of interest, as is the case in secondary market). In addition, we intend to use an

improvement of monotone preserving interpolation on r(t)t method for the scenario where we might

need an interpolation model; otherwise, we are going to use numerical approximation methods when

needed to determine derivatives of spot rates where we need forward rates. We will use coupon paying

bonds data from the Central Bank of Kenya.

1.5.3 Yield Curves

For Kenyas Futures Exchange to take off, among other things, there has to be a yield curve that is

going to be accepted and used by the majority of NSEs market players. A yield curve is a graphical

representation of relationship between return (yield) of same type of financial instruments and its day

to maturity. In other words, in yield curves, all the differences in terms of types, credit risks and

liquidity are removed from bonds and just the path of interest rates according to maturity rate is

represented.

Yield curves can be grouped into two, in terms of coupons: coupon bearing yield curves and zero

coupon yield curve. A coupon bearing yield curve is obtained from observable bonds market at various

times to maturity, with the bonds having the same coupon rate. Most of the government securities

having long maturity dates usually have coupons. When the bond itself and the coupons traded

separately we have what is called STRIPS (Separate Trading of Registered Interest and Principal of

Securities), in finance literature.

The zero-coupon yield curve is also known as the term structure of interest rates. It measures the

relationships among the yields on default-free securities that differ only in the term to maturity. By

offering a complete schedule of interest rates across time, the term structure embodies the markets

anticipation of future events. In bond-valuation, the term structure of interest rates refers to the

relationship between bond prices of different maturities in general. When interest rates of bonds are

plotted against their maturities, this is called the yield curve. The term structure of interest rates and

yield curves are used interchangeably in literature.

Yield curves can also be grouped into nominal yield curves, spot yields curves, and forward yield

curves. Nominal yield curves take place in primary bond markets, and it is the graph of yields of

bonds which are transacted at nominal prices. Spot yield curve is another definition of zero coupon
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yield curve. Forward yield curve is the curve representing the connection between the forward rate

and its corresponding maturity where the forward rate is the interest rate implied by the zero coupon

rates for periods of time in the future.

1.5.3.1 The Uses of Yield Curves

The relationship between yield and maturity has critical importance for policy makers, investors and

economists. Yield curve can be used for a range of purposes. For example:

• Yield curves are used in forecasting interest rates for different products when their risk param-

eters are known.

• Yield curves are used mostly by investors to see the differences in yields of different maturities,

and to detect if there is arbitrage opportunity.

• By yield curve information, investors can have opportunity of making immunization of their

investment portfolios against financial risks if they have to make investment on some determined

time of maturity.

• Private sector firms look at yields of different maturities and then choose their borrowing strategy

according to information gotten from the yield curve.

• The differences in yields for long maturity and short maturities are an important indicator

for central bank to use in monetary policy process as shown by (Akinci, O., Gurcihan, B.,

Gurkaynak, R., & Ozel, O. , 2006). These differences may show the tightness of the government

monetary policy. The differences can be monitored to predict recession coming in next years.

• Yield curves are also used to calibrate no-arbitrage term structure models like the models of (Ho,

T. S., & LEE, S.-B. , 1986); (Hull, J., & White, A. , 1990); which are used in pricing different

financial products, (Place, J. , 2000).

1.5.3.2 Theories Explaining the Yield Curve

The characteristic shapes of yield curves have been related to attempts to seek rationality in investor

behavior - to theorize about their choices of instrument. Three such are described here:
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• Expectation theory concerned with expected annual returns on preferred bonds, which empiri-

cally are much the same for long and short term maturities [e.g. (Cox, J. C., Ingersoll Jr, J. E.,

& Ross, S. A. , 1985)].

• The market segmentation hypothesis concerned with the grouping of investors according to their

maturity preferences, longer or shorter [e.g. (Munasib, A., & Haurin, D. , 2004)].

• Liquidity preference theory concerned with signs of preference for holding long-term bonds

amongst some risk-averse investors (Pacific Investment Management, , 2004).

1.5.3.2.1 Expectation Theory

There are various versions of expectation theories. These theories place predominant emphasis on the

expected values of future spot rates or holding-period returns. In its simplest form, the expectation

hypothesis postulates that bonds are priced so that the implied forward rates are equal to the expected

spot rates. Generally, this approach is characterized by the following propositions: (a) the return on

holding a long term bond to maturity is equal to the expected return or repeated investment in a

series of the short-term bonds, or (b) the expected rate of return over the next holding period in

the same for bonds for all maturities (Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. , 1985). The

key assumption behind this theory is that buyers of bonds do not prefer bonds of one maturity over

another, so they will not hold any quantity of a bond if its expected return is less than that of another

bond with different maturity. Bonds that have this characteristic are said to be perfect substitutes.

Note that what makes long term bonds different from short term bonds are the inflation and interest

rate risks. Therefore, this theory essentially assumes away inflation and interest rate risks, (Munasib,

A., & Haurin, D. , 2004).

Another version of expectations theory holds that the slope of the yield curve reflects only investors

expectations for future short-term interest rates much of the time, (Fisher, M. , 2001). Investors

expect interest rates to rise in the future, which accounts for upward slope of the yield curve. If the

expectations hypothesis were correct, the slope of term structure could be used to forecast the future

path of interest rates. For example, if the yield curve were to slope upward at the short end, it would

be because the interest rate is expected to rise. One problem with this version of the expectations

hypothesis is that in fact, yield curves slope upward at the short end on average even though interest

rates do not rise on the average. One way to explain divergence is to assume that investors are simply

wrong on average 3.

3Another way to explain the divergence is to assume that investors give some weight to very large increases in the

interest rate that have not yet been observed. This is sometimes called a peso-problem. But a good theory should not
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The expectations hypothesis can easily be modified to account for this persistent upward slope in a

way that does not require systematic errors on the part of investors. Since bond prices do fluctuate

over time, there is uncertainty (even for default free bonds) regarding the return from holding a long-

term bond over the next period. Moreover, the amount of uncertainty increases with maturity period

of the bond. If there were a risk premium associated with uncertainty, then the yield curve could slope

upward on average without implying that interest rates increase on average. If the risk premium were

constant, the changes, in the slope of the yield curve would forecast changes in the future path of the

interest rate. For example, if the slope of the yield curve were to increase, then it would have to be

because the path of futures interest rates is expected to be higher. This increase in the slope would

imply that future bond yield would be higher.

Another feature of the yield curve that the expectations has difficulty explaining is that the zero-

coupon yield curves slopes downward on average at the long end, typically over the range of twenty to

thirty years bond. In other words, the yield on a thirty-year zero-coupon bond is typically below the

yield on a twenty-year bond. The expectations hypothesis would suggest that that this slope is due

to either (1) a persistently incorrect belief that the interest rate will begin to fall about 20 years from

or (2) a decrease in the risk premium for bonds with maturities beyond twenty years, even though the

uncertainty of the holding-period return for thirty-year bonds. Neither of these reasons is sensible 4.

There is, however, a sensible explanation, for the persistent downward slope for the term structure

at the long end. The explanation has to do with uncertainty regarding the future-path of short-term

rates. This uncertainty underlies the risk of holding bonds (if there were no uncertainty regarding

the future paths, there would be no risk of holding default-free bonds.) Increases in this uncertainty

lead to 1) increases in risk premia that increase the slope of the yield curve at the short end and

2) decreases in the slope of the yield curve at the long end via the effect of convexity. Convexity

(technically known as Jensen’s inequality) arises from the non-linear relation between bond yields and

bond prices. As a consequence, a symmetric increase in uncertainty about yield raises the average

price of bonds, thereby lowering their current yields. This effect is trivial at the short end of the yield

curve where it plays no significant role, because it becomes noticeable and even dominant at the long

end. The overall shape of the yield curve involves the trade-off between the competing effects of risk

imply that investors are wrong on average
4There is another explanation (not related to the expectations hypothesis) that is sensible. The downward slope at

the long end of the yield curve could, in principle, reflect a substantial demand for the longest-maturity (default free)

zero coupon bond (for example, to insulate the value of insurance companies’ long term liabilities from interest -rate

risk).
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premia (which cause longer term yields to be lower). Typically, the maximum yield occurs in the

fifteen to twenty-five maturity range of the zero coupon yield 5.

1.5.3.2.2 The Market Segmentation hypothesis

Culbertson hypothesized that individuals have strong maturity preferences, and bonds of different

maturities trade in separate markets. In its purest form, segmentation theory assumes that markets

for different-maturity bonds are completely segmented. The interest rate for each bond with a different

maturity is then determined by the supply of and demand for the bond with no effects from the

expected returns on other bonds and other maturities. In other words, longer maturity bonds that

have associated with the inflation and interest rate risks are completely different assets than the

shorter bonds and are used by different types of investor. Thus, bonds of different maturities are not

substitutes at all, so the expected returns from a bond of one maturity has no effect on the demand for

a bond of another maturity. Because bonds of shorter holding periods have lower inflation and interest

rate risks, segmented market theory predicts that yield on longer bonds will generally be higher, which

explains why yield curve is usually upward sloping. However, since markets for different-maturities

bonds are completely segmented, there is no reason why the short and long yield should move together.

And, because of the same reason, the segment market theory also cannot explain why the short-term

yield should be more volatile than longer-term yields, as pointed out by (Munasib, A., & Haurin, D.

, 2004).

1.5.3.2.3 The Liquidity Preference Theory

This theory is an offshoot of the pure expectations theory and it asserts that long term interest

rates not only reflect investors assumptions about future interest rates but also include a premium

for holding long term bonds, called the term premium or the liquidity premium. This premium

compensates investors for the added risk of having their money tied up for a longer period, including

the greater price uncertainty. Because of the term premium, long term bond yields tend to be higher

than short-term yields and this gives yield curves an upward slope, (Pacific Investment Management,

, 2004).

5It should be stressed that the yield curve typically reported in the newspaper is not the zero-coupon yield curve and

may display a somewhat different shape owing to a variety of factors (Fisher, M. , 2001).
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1.5.3.3 Shapes of Yield Curves

As we have seen in the above section, the theories of yield curve try to explain the shapes of the yield

curve. Yield curves reflect the market expectations and may take one of the three main patterns:

normal, flat or inverted curves. Each shape provides different information for market.

1.5.3.3.1 The Normal Yield Curve

As the name indicates, this is the yield curve shape that forms during normal market conditions.

Normal market conditions occur when investors generally believe that there will be no significant

changes in the economy, such as in inflation rates, and that the economy will continue to grow at a

normal rate. During such conditions, investors expect higher yields for fixed income securities with

long-term maturities that occur farther into the future. This is a normal expectation of the market

because short-term instruments generally hold less risk than long-term instruments; the farther into

the future the bond’s maturity, the more time, and therefore, uncertainty, the bondholder faces before

being paid back the principal. To invest in one instrument for a longer period of time, an investor

needs to be compensated for undertaking the additional risk.

Figure 1.4: A Normal Yield Curve
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1.5.3.3.2 The Flat Yield Curve

These curves indicate that the market environment is sending mixed signals to investors, who are

interpreting interest rate movements in various ways. During such an environment, it is difficult for

the market to determine whether interest rates will move significantly in either direction into the

future.

A flat yield curve usually occurs when the market is making a transition that emits different but

simultaneous indications of what direction the interest rates will take. In other words, there may be

some signals that short term interest rates will raise and other signals that long-term interest rates

will fall. This condition will create a curve that is flatter than its normal positive trade off by choosing

fixed-income securities with the least risk, or highest credit quality.

Figure 1.5: A Flat Yield Curve

1.5.3.3.3 The Inverted Yield Curve

An inverted yield curve indicates that investors interpret an inverted curve as an indication that the

economy will soon experience a slowdown, which causes future interest rates to give even lower yields

before a slowdown, thus creating a need to lock money into long-term investments at present prevailing

yields, because it is expected that future yield will be even lower.
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Figure 1.6: An Inverted Yield Curve

1.5.3.4 Yield Curves and Bond Prices

Given a set of zero-coupon bonds, spot rates can be derived directly from observed prices. For coupon-

bearing bonds usually their yield to maturity or par yield only is quoted. The yield to maturity is its

internal rate of return, that is, the constant interest rate rk, that sets its present value equal to its

price, and the equation is expressed as:

Pk =
n∑
i

CFi
(1 + rk)ti

(1.5.1)

where Pk is the price of bond k which generates n cash-flows (CFs) at periods ti (i = 1, 2, . . . , n), rk

are the spot rates applicable on this bond and ti depicts the maturity dates.

These cash flows consist of the coupon payments and the final repayment of the principal or face value.

Yields to maturity on coupon bonds of the same maturity but with different coupon payments are not

identical. Nevertheless, if the cash flow structure of a bond trading at the market (at par) is known,

it is possible to derive from estimated spot rates, the coupon bonds theoretical yield to maturity, i.e.

the rate the bond would require in order to trade at its face value (at par). Drawing on the spot rates

st,m the price equation can be expressed as:

Pk =
C

(1 + rt1)
+

C

(1 + rt2)2
+ . . .+

C

(1 + rtn)n
+

V

(1 + rtn)n
=

i=n∑
i=1

C

(1 + rti)
i

+
V

(1 + rtn)n
(1.5.2)

where C represents the coupon payments, V represents the repayments of the principal, tis and ris as

before. The yield to maturity of a coupon-bearing bond is therefore a geometric average of the spot

rates which, in general, varies with the term to maturity.
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1.5.3.4.1 Extraction of Yield Curve from Bond Prices

To derive the yield curve, the discount function is estimated by applying a (constrained) non-linear

optimization procedure to data observed on a trade day. More important than the choice of a partic-

ular optimization method (e.g. maximum likelihood, non-linear least squares, generalized method of

moments) is the decision whether the yield or price errors should be minimized. If one is primarily

interested in minimizing the yield rates errors, they should minimize the deviation between the esti-

mated and observed yields. The estimation proceeds in two stages: the discount function D(t) is used

to compute estimated prices and, secondly, estimated yields to maturity are calculated by solving the

following equation for each coupon-bearing bond k (Svensson, L. E. , 1994):

Pk =

m∑
i=1

Cexp(−rki) + V exp(−rkm) (1.5.3)

where rk is the risk free rate. In practice, only a finite set of income securities trade, very few of which

are zero-coupon bonds (Anderson, N. , 1996). Practitioners are therefore forced to use yield curves

from coupon-paying bonds to extract zero-coupon yield curve.

Knowledge of historical and current values of yield rates is not enough for making sound investment

decisions. The ability to transform this data into knowledge of patterns reliable to forecast future

values is much more important. The ability to make reliable forecast is determined by the traders ex-

perience, intuition and intelligence. However, even a trader with the aforesaid qualities cannot always

provide highly accurate forecasts perfectly, and this thesis explores decision-support possibilities.

In Kenya, methods of determining yield rates vary from one company to another. This is because there

is no agreed method by the industry to generate similar rates, and the lack of standardization has led

to non-uniform valuation of investment and development projects, creating loopholes in accountability

whether using public or private resources.

Even in developed markets, we see the use of two distinct methods of generating yield rates:

spline-based methods (which are heavily affected by the type of interpolation used) and

parametric models. In the latter case, the entire yield curve is modelled using a single parametric func-

tion, with the parameters typically estimated through the use of least-squares regression technique.

With spline-based models, on the other hand, the yield curve is made up of piecewise polynomials,

where the individual segments are joined together continuously at specific points in time (called knot

points). A good yield curve should have the following key properties:

1. It should be continuous and in some sense differentiable at all points;
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2. It should exhibit monotonicity property in normal economic circumstances;

3. It should produce positive forward rates during normal economic conditions

The decision on whether to use parametric models or spline-based methods to generate the yield curve

depends on the intended use of the yield curve. Parametric methods, particularly the (Svensson, L.

E. , 1994) model, are very popular amongst Central Banks. This is because Central banks, when

determining monetary policy, typically do not require yield curves to prices-back all products exactly.

On the other hand, Investment Bankers usually prefer spline-based models because they are able to

price-back all financial products.

1.5.3.4.2. Bond Pricing Formula

The prices of the set of trading instruments in the market from which the yield curve is calibrated

are related to a discrete set of points along the yield curve. The instruments which are ideal to be

used for Kenyan yield curve construction are the government bonds. Before calibration, we need to

understand how the prices of these instruments are related to these points along the curve.

Elementary Relations

Let F (t) represent the value that one unit of currency invested at time t0, would be worth at time t.

From elementary calculus it follows that:

F (t) =
lim

n→∞

(
1 +

rt
n

)nt
= e(1+rtt) (1.5.4)

Let D(t) represents the value at time t0 of one unit of currency to be received at time t. D(t) is thus

the inverse ofF (t) and is referred to as the present value at time t0, of the zero-coupon bond maturing

at time t. It follows from equation (1.5.4) that:

D(t) = e−rtt (1.5.5)

Assume that an investor can invest D(t1) today, in a zero-coupon that pays one unit currency at time

t1. Furthermore, assume an investor can invest D(t2) today, in a zero-coupon bond that pays one unit

of currency at time t2. From the law of one price it must follow that:

D(t1) ? D(t0; t1, t2) = D(t2) (1.5.6)

where D(t0; t1, t2) represent the price at time t0, of a zero-coupon bond to be purchased at time t1,

for maturity at t2.
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The discount factor D(t0; t1, t2) is called the forward discount factor from t1 to t2. If f(t1, t2), repre-

sents the continuously compounded rate of interest, as observed at t0, that an investor can earn from

t1 to t2 then equation (1.5.5) implies that:

D(t0; t1, t2) = e−f(t1,t2)(t2−t1) (1.5.7)

Equation (1.5.6) implies that:

D(t0; t1, t2) =
D(t2)

D(t1)
(1.5.8)

From equations (1.5.5), (1.5.7) and (1.5.8), it follows that:

f(t1, t2) =
rt2t2 − rt1t1
t2 − t1

(1.5.9)

The forward rate f(t1, t2) is called the discrete forward rate observed at time t0 applicable to the

period from t1 to t2. Consider rewriting t1 and t2 in equation (1.5.9), as t and t+ ε respectively. We

then define f(t), taking the limit as ε→ 0, and obtain that:

f(t) =
d

dt
rtt, (1.5.10)

or equivalently: rt =
1

t

∫ 1

0
f(τ)dτ (1.5.11)

The forward rate f(t) is called the instantaneous forward rate observed at time t0, applicable to time

t. Finally, note that if t ∈ [ti−1, ti) then it follows from equation (1.5.11) that:

rtt =

∫ ti−1

0
f(τ)dτ +

∫ t

ti−1

f(τ)dτ

= rti−1ti−1 +

∫ t

ti−1

f(τ)dτ (1.5.12)

This relationship allows us to calculate rti given rti−i . This relationship also shows us how to calculate

forward rates given the spot rates, and vice versa. The other formula that is important is D(t) = e−rtt

which shows us the relationship between the spot rates and the discount rates, D(t).

In conclusion, given the spot rates, one can calculate the forward rates and the discount rates, and

given the forward rate, one can calculate the spot and consequently the discount rates, and finally,

given the discount rate one can calculate both the spot and forward rates. We see that for us to

be able to calculate the forward rate from the spot rates, we will need to have a spot curve that is

differentiable at all points. The curve will assist us in generating the other two rates, which are used

in pricing derivatives, and in this case, different options and coffee futures.
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1.6 OUTLINE OF THIS THESIS

This thesis is divided into six chapters:

• Chapter 1 contains study definition, problem formulation, research goals and objectives, basic

concepts which cover background information on yield curves construction and approaches used

in pricing financial derivatives. We also have background information on coffee in Kenya, Nairobi

Securities Exchange. Yield curves are discussed and we conclude the chapter with bond pricing

formula.

• Chapter 2 introduces the improvement of monotone preserving interpolation on r(t)t method

which is done by removing the non-differentiability introduced by Fritsch Butland Algorithm

at the knot points. We calculate forward rates using numerical differentiation and compare

the performance of monotone preserving interpolation on r(t)t method with both the numerical

differentiation method and our new interpolation function.

• Chapter 3 surveys existing parametric models for yield curve construction and recommend the

best among them, by testing the smoothness and accuracy of the models.

• Chapter 4 compares the best parametric model against our suggested improvement of mono-

tone preserving interpolation on r(t)t method, and using smoothness and accuracy in order to

conclusively suggest the best method for constructing ZCYC for the NSE.

• In Chapter 5, we present the application of the concepts of yield curve construction together

with derivative pricing to construct a model for pricing coffee futures for the NSE. We apply the

Hough Transform to estimate drift and volatility and the L-BFGS-B algorithm to estimate the

other parameters.

• Chapter 6 contains general conclusions of the thesis, and possible directions for further research.

We expound further on the L-BFGS-B algorithm in appendix A. Appendix B contains Data used in

the thesis, and the curves generated from different analysis of this data. Appendix C contains a list

of papers presented at seminars and conference workshops and derived from this thesis.

All references in the text are listed in the References.
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Chapter 2

IMPROVEMENT OF MONOTONE CONVEX INTERPOLATION

METHOD ON r(t)t

There is no agreed-upon method used to construct yield curves at the Nairobi Securities Exchange.

The existing practice is that each financial company uses in-house methods to construct the yield

curves for their pricing and decision making. The most common yield curve used in the market was

the one constructed by the Cannon Asset Managers Limited (CAM), a Kenyan company, in 2011.

CAM used linear interpolation on the logarithms of the interest rates as their interpolation function.

This method is not ideal because studies have shown that all variations of linear interpolations produce

discontinuities in the forward rate curve.

To improve on the shortcomings of linear and cubic interpolations by ensuring not only a positive

and (mostly) continuous forward rate curve but also a strictly decreasing curve of discount factors,

the monotone convex interpolation method was introduced by (Hagan, P. S., & West, G. , 2006).

Unfortunately, the model not only depends heavily on an appropriate interpolation algorithm but also

produces discontinuity of f(t) under specific conditions. The monotone preserving r(t)t method was

introduced to improve on the monotone convex method by ensuring that the knot points are estimated

in the manner which ensures positivity and continuity in f(t) besides preserving the geometry of

r(t)t. Unfortunately, monotone preserving method has the undesirable characteristic of not being

differentiable at the knot-points.

In this chapter, we introduce an improvement on monotone preserving r(t)t interpolation method.

We do this by removing the monotonicity constraint introduced by Hyman in the Fritsch Butland

algorithm which introduces min/max functions in the interpolation model thus making the knot

points nondifferentiable. In our model, we introduce new definitions within the function that ensure

that the integrity and validity of the interpolation model are maintained, at the same time improving

on the continuity of the resulting forward curve.
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2.1 BACKGROUND INFORMATION

The Nairobi Securities Exchange (NSE) started trading in shares while Kenya was still a British colony

in the 1920s, according to IFC/CBK. Share trading was initially conducted in an informal market that

would facilitate access to long-term capital by private enterprises and also allow commencement of

floating of local registered Government loans. In 1954, the NSE was constituted as a voluntary as-

sociation of Securities brokers registered under the Societies Act (Exchange-NSE, N. S. , 1997). The

newly established Securities Exchange was charged with the responsibility of developing the Securities

market and regulating trading activities. Despite its long presence, the securities market is yet to make

a significant contribution to the countrys development process, perhaps due to its slow development

path.

The development path of Securities markets in both the emerging and developed world indicates an

evolutionary process where changes in institutional infrastructure and the policy environment are wit-

nessed as efforts are made to facilitate the growth of the Securities market. The evolutionary process

is also characterized by a shift in the trading system from a periodic auction system to a continuous

trading system.

Trading systems define the price discovery process or the transformation of latent demand of investors

into realized transactions (Madhavan, A. , 1992). The evolutionary process of trading systems also

indicates a shift from manual and decentralized settlement clearing systems to electronic and central-

ized settlement clearing 1. It is argued that such a trading system enhanced efficiency in the price

discovery process, provided liquidity at low costs, and had no excess volatility, thus was more desir-

able for the development of the Securities market ((Amihud, Y., Mendelson, H., & Lauterbach, B. ,

1997)(Bessembinder, H., & Kaufman, H. M. , 1997)). High liquidity enhances long-term investment

by reducing the required rate of returning and lowering the cost of capital to the issuers of securities.

An efficient price discovery process enhances the role of the market in aggregating and conveying

information through price signals, therefore making prices more informative.

Since the initiation of the Nairobi Securities Exchange in the 1920s, the development of the insti-

tutional and policy changes which have affected the market can be summarized as an evolutionary

process with three stages of development. The initiation stage was mainly characterized by no for-

1(Amihud, Y., Mendelson, H., & Lauterbach, B. , 1997) note the tendency for emerging markets to shift from periodic

to continuous trading in the revitalization process.
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mal rules and regulations and was dominated by foreign investors. In the formalization stage, a

self-regulatory system was adopted while attempts were made to increase the participation of local

investors in the post independent Government. In the third stage, various institutional and policy

reforms were implemented to enhance the growth of the market.

Two main factors that shaped the development path were first, the political environment both at the

local level and in the East African region which saw a change in the policy environment and changed

the composition of market participation; and secondly the macroeconomic environment which insti-

gated the demand for locally-mobilized long-term capital to enhance economic development.

Considering the developments in various aspects of the market, the following patterns were evident.

First, the Securities brokerage industry expanded and diversified with the number of Securities brokers

increasing from 6 to 21 (as at September 2014), and licensing of Securities dealers and investment

banks also increased. However, Securities brokerage is yet to be fully negotiable while the role of

Securities brokers remains predominately that of an agent.

Second, the composition of market participants shows a shift from a market dominated by foreign

investors in the initiation stage to increased participation of local investors in the formalization stage

(especially in the post-independence period), re-entry of foreign investors, though at limited level and

mass education on Securities market operations and assets, in the revitalization stage.

Third, the NSE served as a regional market for the East African states in the initial stages, but the

Securities Exchange lost a significant proportion of its market scope due to the political changes in

these states. Attempts are however underway to establish a regional market to facilitate the expansion

of the NSE market.

Fourth, though the diversity of securities traded is still minimal, the reform period saw efforts made to

attain market depth with the introduction of new instruments. Fifth, while a discriminative tax policy

that penalized share investors heavily was adopted in the post-independence period, an incentive-based

tax policy regime was adopted in the reform period to enhance the competitiveness of the financial

assets and reduce the barriers to listing new issues.

Sixth, to strengthen the regulatory framework, the regulatory system has witnessed a shift from the

non-formal system to self-regulatory and statutory regulatory framework. Finally, the trading system

shows a shift from the coffee-house forum to floor trading, and there were attempts to introduce the
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delivery versus payment system with the introduction of the Central Depository System and automa-

tion of the trading cycle. The main aim was to enhance efficiency in the price discovery process and

liquidity of the market. These changes mimic development paths of other Securities markets in both

the developed and emerging markets.

Many securities markets in emerging markets are on a healthy development path. This has led to some

Futures Exchanges springing up in Latin America, Asia, and Africa, during the last decade, based on

the premise that there is a need in the specific countries for a platform to be used to manage price

volatility and provide price discovery. However, despite governments and donor agencies support, 2

out of 3 contracts traded in these markets fail as they have not been designed properly, according to

the Capital Market Authority report. In June 2010 Budget speech, the government of Kenya, through

a policy pronouncement by the then Deputy Prime Minister and Minister of Finance, announced that

steps would be made towards developing institutional and legal frameworks to introduce a Commodi-

ties and Futures Exchange in Kenya. This will create a need to design a tool that can be used by the

market to price the derivatives properly.

Currently, the NSE does not have a known existing yield curve as indicated by (Ngugi, R., & Agoti,

J. , 2007). According to (Ngugi, R., & Agoti, J. , 2007), leading stockbrokers, a group of bank traders

and institutional fund managers were working with Reuters Limited (a media channel dedicated to

providing market data in the international financial market and disseminating that information lo-

cally) in 2006 towards developing an acceptable, credible market yield curve. This was driven by the

requirement of International Accounting Standard (IAS) 39, which requires that there should be a

standard yield curve to facilitate investors in fixed income instruments to value their portfolios at fair

market values. It was then agreed that the yield rates applied to the market were to be derived from

a cross-section of key market players. These key market players were required to post their quotes

on Reuters assigned pages, out of which aggregate yields are derived. The yield curve was primarily

available through Reuters. This method had major limitations, one of which was the use of bonds

dirty prices as a component in yield curve construction. The market participants identified limitations

in prices reported on the NSE and decided not to use the yield curve created at the time to value

their portfolios.

In 2011, Cannon Asset Managers (CAM), a Kenyan based Asset Management company, created a yield

curve for the NSE using the rates given by the Central Bank of Kenya (CBK), according to CAM.

They used logarithmic linear interpolation method to calculate the yield rates at the periods missing
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from the CBKs bonds. Unfortunately, logarithmic linear interpolation has a tendency of implying

discontinuities in the forward rate curve, a weakness depicted by all variations of linear interpolation

methods, as shown by (Hagan, P. S., & West, G. , 2006).

2.2 LITERATURE REVIEW

Interpolation is a method of constructing new data points within the range of a discrete set of known

data points (called knot points). The simplest method for interpolating between two points is by con-

necting them through a straight line. Some variations of linear interpolation are capable of ensuring a

strictly decreasing curve of discount factors. However, all the variations of linear interpolation imply

discontinuities in the forward rate curve.

To produce continuous forward rates curves, researchers introduced cubic methods of interpolation.

An example of cubic interpolation algorithm is the cubic Hermite spline. Under cubic Hermite splines,

the derivative of the data of each knot point is assumed to be known, and the interpolation function is

required to be differentiable. Often, these derivatives will not be known and will have to be estimated.

One method for estimating these derivatives, described by (De Boor, C., & Schwartz, B. , 1977) as the

Bessel method involves estimating the derivative though the use of a three-point difference formula.

Unfortunately, all the traditional cubic methods are incapable of ensuring strictly positive forward

rates, which are synonymous with non-decreasing discount factors, as shown by (Hagan, P. S., &

West, G. , 2006). Furthermore, some cubic methods have an inherent lack of locality in the sense that

a local perturbation of curve input data will cause changes in the data far away from the perturbed

data point as shown by (Anderson, L. , 2007).

All variations of linear interpolations were seen to produce discontinuities in the forward rate curve,

while all variations of cubic interpolations were seen to be incapable of ensuring strictly decreasing

discount factors. Non-decreasing discount factors imply arbitrage opportunities, while discontinu-

ous forward rates unacceptable from an economic perspective (unless the discontinuities occur on or

around meetings of monetary authorities).

To counter this, a monotone convex interpolation method was developed, which it is claimed to be

capable of ensuring a positive and (mostly) continuous forward rate curve (Hagan, P. S., & West, G.

, 2006). This method proposed by (Hagan, P. S., & West, G. , 2006), was specifically designed to
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interpolate yield curve data and involves fitting a set of quadratic polynomials to a discrete set of

estimated instantaneous forward rates. The method is designed such that f(t) preserves the shape of

the set of discrete forward rates. The monotone convex method was also seen to be capable of ensur-

ing a strictly decreasing curve of discount factors. Unfortunately, the model depends heavily on an

appropriate interpolation algorithm. Also, it was discovered that there were specific conditions under

which the interpolation function of the monotone convex interpolation would produce discontinuity

f(t). (Du Preez, P. F. , 2011)

This led Du Preez to the monotone preserving r(t)t method of interpolation (Du Preez, P. F. , 2011).

Essentially, this method involves applying cubic Hermite interpolation to the r(t)t at the knot points

thereby ensuring that the values of f(t) at the knot points, are estimated in a manner which ensures

positivity in f(t). Constructing an interpolating algorithm capable of preserving the monotonicity of

the discount factors, was thus sufficient for ensuring positive forward rates.

(Bingham, N. H., Goldie, C. M., & Teugels, J. L. , 1989) suggested that the convolution of regularly

varying probability densities is asymptotic to their sum, and therefore, also being regularly varying.

However, (Bingham, N. H., Goldie, C. M., & Omey, E. , 2006) shows that while the Monotone Density

Theorem allows us to ’diffrentiate asymptotic relations’ and the weakest possible condition relaxing

monotonicity is known, conditions of that type are awkward to handle in practice.

Monotone preserving r(t)t method is capable of ensuring a positive and continuous forward rate curve

and was designed to preserve the geometry r(t)t. Monotonicity in the discount factors implies mono-

tonicity in the r(t)t which is achieved by applying the work done in the field of shape preserving cubic

interpolation, by authors such as (Akima, H. , 1991; De Boor, C., & Schwartz, B. , 1977; Fritsch,

F. N., & Carlson, R. E. , 1980). Apart from being an improvement of the monotone convex method

where it ensured positive forward rates, the monotone preserving r(t)t method was also capable of

ensuring continuity of f(t).

In the study by (Du Preez, P. F. , 2011), they found that the monotone preserving r(t)t method to per-

form slightly better regarding stability, and continuity of f(t) than the monotone convex method. This

suggests that when bootstrapping, the monotone preserving r(t) method could be the ideal method of

interpolation. Unfortunately, monotone preserving method had the undesirable characteristic of not

being differentiable at the knot-points.
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2.3 METHODOLOGY

2.3.1 Extraction of Yield Curve from Bond Prices

To derive the yield curve, the discount function is estimated by applying a (constrained) non-linear

optimization procedure to data observed on a trading day. More important than the choice of a par-

ticular optimization method (e.g. maximum likelihood, non-linear least squares, generalized method

of moments) is the decision whether yield or price errors should be minimized. If one is primarily

interested in minimizing the yield rates errors, it is suggested to minimize the deviation between the

estimated and observed yields. In this case, the estimation proceeds in two stages: first, the discount

function dt,m is used to compute estimated prices and, secondly, estimated yields to maturity are

calculated by solving the following equation for each coupon-bearing bond k (Svensson, L. E. , 1994)

Pk =

m∑
i=1

Cexp(−rki) + V exp(−rkm) (2.3.1)

where rk is the risk-free rate.

In practice, only a finite set of income securities trade, very few of which are zero-coupon bonds

(Anderson, L. , 2007). Practitioners are therefore forced to use yield curves from coupon-paying

bonds to extract zero-coupon yield curve. Therefore , a nominal yield curve must exist from which the

ZCYC can be extracted. This chapter concentrates on the construction of the nominal yield curve,

with its novelty being in the improvement of the interpolation method used to the constructing the

curve.

2.3.2 Dealing with Non-Differentiability at the Knot Points

In this section, we deal with the issue of non-differentiability first by approximating the derivative

of a point on discrete data, using numerical differentiation method; secondly, we deal with this issue

by using a mathematical model where the non-differentiability at the knot points created by use of

Hyman monotonicity constraint in the monotone preserving interpolation on r(t)t method in (Du

Preez, P. F. , 2011), is removed.
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2.3.2.1 Numerical Differentiation

Little is usually taught about numerical differentiation. Perhaps that is because the processes should be

avoided whenever possible. The reason for this can be seen like polynomials. High-degree polynomials

tend to oscillate between the points of constraint. Since the derivative of a polynomial is itself a

polynomial, it too will oscillate between the points of constraint, but perhaps not quite so wildly. To

minimize this oscillation, one must use low degree polynomials which then tend to reduce the accuracy

of the approximation. Another way to see the dangers of numerical differentiation is to consider the

nature of the operator itself. Remember that

df(x)

dx
=

lim

∆x→ 0

f(x+ ∆x)− f(x)

∆x
(2.3.2)

Since there are always computational errors associated with the calculation of f(x) and f(x + ∆x),

they will remain as ∆x→ 0 and the ratio will end up being largely determined by the computational

error in f(x). Therefore numerical differentiation should only be done if no other method for the

solution of the problem can be found, and then only with considerable circumspection.

With these caveats clearly in mind, let us develop the formalisms for numerically differentiating a

function f(x). We have to approximate the continuous operator with a finite operator and the finite

difference operators described. We may approximate the derivative of a function f(x) by

df(x)

dx
=

∆f(x)

∆x
(2.3.3)

The finite difference operators are linear so that repeated operations with the operator lead to

∆nf(x) = ∆[∆n−1f(x)] (2.3.4)

This leads to the Fundamental Theorem of the Finite Difference Calculus which is ‘The nth difference

of a polynomial of degree n is constant (ann!hn), and the (n+ 1) difference is zero.’

The extent to which equation (2.3.4) is satisfied will depend partly on the value of h. Also, the ability

to repeat the finite difference operation will depend on the amount of information available. To find

a nontrivial nth order finite difference will require that the function is approximated by an nth degree

polynomial which has n+1 linearly independent coefficients. Thus one will have to have knowledge

of the function for at least n+1 points. For example, if one were to calculate finite differences for the

function x2 at a finite set of points xi, then one could construct a finite difference table of the form:

44



Table 2.1: A Typical Finite Forrward Difference Table For f(X) = x2

xi f(xi) δf(x) ∆2f(x) ∆3f(x)

2 f(2)=4

∆f(2) = 5

3 f(3)=9 ∆2f(2) = 2

∆f(3) = 7 ∆3f(2) = 0

4 f(4)=16 ∆2f(3) = 2

∆f(4) = 9 ∆3f(3) = 0

5 f(5)=25 ∆2f(4) = 2

∆f(5) = 11

6 f(6)=36

This table demonstrates the fundamental theorem of the finite difference calculus while pointing out an

additional problem with repeated differences. While we have chosen f(x) to be a polynomial so that the

differences are exact and the fundamental theorem of the finite difference calculus is satisfied exactly,

one can imagine the situation that would prevail should f(x) only approximately be a polynomial.

2.3.2.1.1 Approximating derivatives from data

Suppose that a variable y depends on another variable x, i.e. y = f(x), but we only know the values of

f at a finite set of points, e.g., as data from an experiment or a simulation: (x1, y1), (x2, y2), ..., (xn, yn).

Suppose then that we need information about the derivative of f(x). One obvious idea would be to

approximate f ′(xi) by the Forward Difference:

f ′(xi) = y′i ≈
yi+1 − yi
xi+1 − xi

(2.3.5)

This formula follows directly from the definition of the derivative in calculus. An alternative would

be to use a Backward Difference

f ′(xi) ≈
yi − yi−1

xi − xi−1
(2.3.6)

Since the errors for the forward difference and backward difference tend to have opposite signs, it

would seem likely that averaging the two methods would give a better result than either alone. If the

points are evenly spaced, i.e. xi+1 − xi = xi − xi−1 = h, then averaging the forward and backward

differences leads to a symmetric expression called the Central Difference

f ′(xi) ≈ y′i ≈
yi+1 − yi−1

2h
(2.3.7)
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2.3.2.1.2 Errors of approximation

We can use Taylor polynomials to derive the accuracy of the forward, backward and central difference

formulas. For example, the usual form of the Taylor polynomial with remainder (sometimes called

Taylors Theorem) is

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(c) (2.3.8)

Where c is some (unknown) number between x and x+h. Letting x = xi, x+h = xi+1 and solving for

f ′(xi) leads to

f ′(xi) =
f(xi+1)− f(xi)

h
− h

2
f ′′(c) (2.3.9)

Notice that the quotient in this equation is exactly the forward difference formula. Thus the error

of the forward difference is −h
2f
′′(c) which means it is O(h). Replacing h in the above calculation

by -h gives the error for the backward difference formula; it is also O(h). For the central difference,

the error can be found from the third degree Taylor polynomials with remainder (sometimes called

Taylors Theorem) is

f(xi+1) = f(xi + h) = f(xi) + hf ′(xi) +
h2

2
f ′′(xi) +

h3

3!
f ′′′(c1) (2.3.10)

f(xi−1) = f(xi − h) = f(xi)− hf ′(xi) +
h2

2
f ′′(xi)−

h3

3!
f ′′′(c2) (2.3.11)

where xi ≤ c1 ≤ xi+1 and xi−1 ≤ c2 ≤ xi. Subtracting these two equations and solving for f ′(xi)

Figure 2.1: The Three Difference Approximations of y′i

leads to

f ′(xi) =
f(xi+1)− f(xi−1)

2h
− h2

3!

f ′′′(c1) + f ′′′(c2)

2
(2.3.12)
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This shows that the error for the central difference formula is O(h2). Thus, central differences are

significantly better and so: It is best to use central differences whenever possible.

2.3.2.2 Using Interpolation Function to Deal with Non-differentiability

In this chapter, we have discussed the improvement of the interpolation method, starting with the

simple linear interpolation, moving onto cubic and spline interpolation, monotone convex interpolation

and finally to Du Preez’s monotone convex interpolation of r(t)t. The latter was considered to be the

best interpolation method so far, leading to its application and use at Johannesburg Stock Exchange.

This interpolation, however, has a weakness in that the curve generated is not differentiable at the

knot points. It is a fact that continuity does not imply differentiability, but differentiability does imply

continuity. In this section, we develop a new interpolation method which removes non-differentiability

at the knot point. This is done by removing the monotonicity constraint introduced by Hyman and

based on the Fritsch Butland algorithm. We concentrate on the forward rate function, whose knot

point values can be calculated by simple bootstrapping of spot rates at the knot points which are

given by the available tenures of bonds in the Kenyan market.

2.3.2.2.1 Definition of Forward Rate Function

We start with a mesh of data points {t1, t2, . . . , tn} (we will think of these x- values as time points

on the x-axis) and the corresponding y values are defined as {f1, f2, . . . , fn} for a generic but un-

known function f(t). Cubic splines are defined by the piece-wise cubic polynomial that passes through

consecutive points:

f(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 (2.3.13)

With t ∈ [ti, ti+1] and i = 1, . . . , n . We will use the following definitions

hi = ti+1 − ti (2.3.14)

mi =
fi+1 − fi

hi
(2.3.15)

With i = 1, . . . , (n− 1) The coefficients ai ,bi,ci and di depends on the details of the method, and are

related to the values of f(t) and its derivatives at the knot points. In general

ai = f(ti) ≡ fi, bi = f ′(ti), ci =
f ′′(ti)

2
and so on (2.3.16)

2.3.2.2.2 The Derivatives

In the equation (2.3.15) above, the prime denotes the derivative of the interpolating function f(t) w.r.t.
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its argument t . Moreover, given ai and bi , we can express ci and di as follows:

ci =
3mi − bi+1 − 2mi

hi
(2.3.17)

di =
bi+1 − bi − 2mi

h2
i

(2.3.18)

We note that ai,ci and di are defined using parameters which can easily be picked off tabular data of

rates, maturities, and the term bi. Now, given equation (2.3.16), how do we calculate the derivative

of f(x) with respect to the forward rate at point j?

f(t) = ai + bi(t− ti) + ci(t− ti)2 + di + (t− ti)3

∂f(t)

∂fj
=
∂ai
∂fj

+
∂bi
∂fj

(t− ti) +
∂ci
∂fj

(t− ti)2 +
∂ai
∂fj

(t− ti)3 (2.3.19)

Recall that:

hi = ti+1 − ti

mi =
fi+1 − fi

hi

ai = f(ti)

ci =
3mi − bi+1 − 2mi

hi

di =
bi+1 − bi − 2mi

h2
i

We have:
∂ai
∂fj

= δji (2.3.20)

∂mi

∂fj
=

1

hi
δji+1 −

1

hi
δji (2.3.21)

∂ci
∂fj

=
1

hi

(
3
∂mi

∂fj
− ∂bi+1

∂fj
− 2

∂mi

∂fj

)
(2.3.22)

∂di
∂fj

=
1

h2
i

(
∂bi+1

∂fj
− ∂bi
∂fj
− 2

∂mi

∂fj

)
(2.3.23)

We note that for us to complete this differentiation, we need to compute the element ∂bi
∂fj

. Here δji is

the Kronecker delta, which is equal to one if i = j and zero otherwise. Once we are able to calculate

the derivatives of thebi coefficients then we will be able to get the derivative of the function.
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This calculation is tricky if we use monotone preserving splines (or any other method which enforces

monotonicity where bi are non-differentiable functions of the fjs since they involve the min and max

functions. This bi are defined in such a way that they have min/max functions so as to enforce

monotonicity of the forward curve. This definition of this part of the function makes it possible for

the forward curve to be calculated using Fritsch Butland algorithm. This constraint was introduced by

Hyman and enforced by (Hagan, P. S., & West, G. , 2006) and passed down to Monotone preserving

interpolation of r(t)t. In this section, we will redefine bi in a manner that gets rid of this constraint.

There is a tradeoff, however, this means that the curve will not produce a decreasing curve, which

would indicate the presence of negative interest rates, both spot and forward rates. This trade off, we

feel, is realistic given some parts of the globe are already enforcing negative interest rates into their

monetary policies, example: Japan, Denmark and European Central Bank.

Let us start by recalling the formulas for the bis in the monotone preserving cubic spline method as

defined in the(Hagan, P. S., & West, G. , 2006). First of all, at the boundaries, we have:

bi = 0, bn = 0 (2.3.24)

For the internal data, if the curve is not a monotone at ti , i.e mi−1.mi ≤ 0, then the boundaries

become:

bi = 0 (ifmi−1.mi ≤ 0) (2.3.25)

So that it will have a turning point there. Instead if the trend is a monotone at ti , i.e. mi−1.mi > 0

, then one defines:

βi =
3mi−1.mi

max(mi−1,mi) + 2min(mi−1,mi)
(2.3.26)

and:

bi =

 min(max(0, βi), 3min(mi−1,mi)) ifmi−1.mi > 0

min(max(0, βi), 3min(mi−1,mi)) ifmi−1.mi < 0
(2.3.27)

The upper part of the definition of bi is made when the curve is increasing (positive slopes), while the

lower when the curve is decreasing (negative slopes). Equation (2.3.29) represents the

monotonicity constraint introduced by Hyman and based on the Fritsch Butland algorithm. Due to

the min/max condition in this equation, it was considered non-differentiable.

In this study, we proceed by using the following deductions:

∂

∂fj
max(0, βi) =

 0 ifβi < 0⇔ mi−1,mi < 0

∂βi
∂fj

ifβi > 0⇔ mi−1,mi > 0
(2.3.28)
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∂

∂fj
min(0, βi) =

 0 ifβi > 0⇔ mi−1,mi > 0

∂β
∂fj

ifβ < 0⇔ mi−1,mi < 0
(2.3.29)

Suppose first that the trend is increasing, i.e. mi−1,mi, βi > 0. Using (2.3.29) we find:

∂bi
∂fj

=
∂

∂fj
[min(max(0, β), 3 ? min(mi−1,mi))] (2.3.30)

=

 ∂
∂fj
max(0, β) ifmax(0, β) < 3 ? min(mi−1,mi)

3 ? ∂
∂fj
min(mi−1,mi) ifmax(0, β) > 3starmin(mi−1,mi)

(2.3.31)

Let us now suppose that the trend is decreasing instead, i.e. mi−1,mi, β < 0 . By (2.3.31) we have:

∂bi
∂fj

=
∂

∂fj
[max(min(0, β), 3 ? max(mi−1,mi)] (2.3.32)

=

 ∂
∂fj
min(0, βi) ifmin(0, βi) > 3 ? max(mi−1,mi)

3 ∂
∂fj
max(mi−1,mi) ifmin(0, βi) < 3 ? max(mi−1,mi)

(2.3.33)

We see that for any i and j

∂

∂fj
max(mi−1,mi) =


∂mi−1

∂fj
ifmi−1 > mi

∂mi
∂fj

ifmi−1 < mi

(2.3.34)

∂

∂fj
min(mi−1,mi) =


∂mi−1

∂fj
ifmi−1 < mi

∂mi
∂fj

ifmi−1 > mi

(2.3.35)

With the above definitions, then we are able to find the derivative of the function as follows:

∂f(x)

∂fj
=
∂ai
∂fj

+
∂bi
∂fj

(t− ti) +
∂ci
∂fj

(t− ti)2 +
∂ai
∂fj

(t− ti)3

= δji +
∂bi
∂fj

+
1

hi

(
3
∂mi

∂fj
− ∂bi+1

∂fj
− 2

∂mi

∂fj

)
+

1

h2
i

(
∂bi+1

∂fj
− ∂bi
∂fj
− 2

∂mi

∂fj

)
(2.3.36)

= δji+
∂bi
∂fj

+
1

hi

(
3

(
1

hi
δji+1 −

1

hi
δji

)
− ∂bi+1

∂fj
− 2

(
1

hi
δji+1 −

1

hi
δji

))
+

1

h2
i

(
∂bi+1

∂fj
− ∂bi
∂fj
− 2

(
1

hi
δji+1 −

1

hi
δj
))

(2.3.37)

= δji +
∂bi
∂fj
− 1

hi

∂bi+1

∂fj
+

1

h2
i

[
3δji+1 − 3δji − 2δji+1 + 2δji −

∂bi
∂fj

+
∂bi+1

∂fj

]
+

1

h3
i

[
2δji+1 − 2δji

]
(2.3.38)

= δji +
∂bi
∂fj
− 1

hi

∂bi+1

∂fj
+

1

h2
i

[
δji+1 − δ

j
i −

∂bi
∂fj

+
∂bi+1

∂fj

]
+

2

h3
i

[
δji+1 − δ

j
i

]
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To complete the differentiation, we use the definitions of bi to find its derivative with respect to forward

rate at point j. Recall the earlier definition of bi is as follows: at the boundaries, we have: bi = 0,

bn = 0. For internal data at ti , i.e. mi−1.mi > 0 , then one defines:

βi =
3mi−1.mi

max(mi−1,mi) + 2min(mi−1,mi)
(2.3.39)

We take into account the monotonicity constraint, where:

bi =

 min(max(0, βi), 3min(mi−1,mi)) ifmi−1.mi > 0

min(max(0, βi), 3min(mi−1,mi)) ifmi−1.mi < 0
(2.3.40)

We are going to ignore the boundary values and concentrate on the internal values first, before taking

the monotonicity constraint into account. Using both quotient and product rules, we can calculate

the derivative as follows:

∂bi
∂fj

=


[
(max(mi−1,mi)+2min(mi−1,mi))?

mi−1
hi

(δji+1−δ
j
i )+

mi
hi−1

(δji−δ
j
i−1)

]
−
[
(mi−1∗mi)?

mi
hi−1

(δji−δ
j
i−1)+2

mi−1
hi

(δji+1−δ
j
i )
]

(max(mi−1,mi)+2min(mi−1,mi))
2[

(max(mi−1,mi)+2min(mi−1,mi))?
mi
hi

(δji−δ
j
i−1)+

mi−1
hi−1

(δji+1−δi−
j)
]
−
[
(mi−1∗mi)?

mi−1
hi−1

(δji+1−δ
j
i )+2

mi
hi

(δji−δ
j
i−1)

]
(max(mi−1,mi)+2min(mi−1,mi))

2

Calculation of the derivative of bi =

 min(max(0, βi), 3min(mi−1,mi)) ifmi−1.mi > 0

min(max(0, βi), 3min(mi−1,mi)) ifmi−1.mi < 0
is straight

forward using the following expressions:

∂

∂fj
max(mi−1,mi) =


∂mi−1

∂fj
ifmi−1 > mi

∂mi
∂fj

ifmi−1 < mi

∂

∂fj
min(mi−1,mi) =


∂mi−1

∂fj
ifmi−1 < mi

∂mi
∂fj

ifmi−1 > mi

Solving ∂bi
∂fj

enables us to solve the derivative of the forward function at the knot points, since it

enables to us to calculate the derivative of the other coefficients in the forward function. This solves

our problem of non-differentiability found in the monotone preserving convex on r(t)t.

2.4 COMPARISON OF THE CURVES IN TERMS OF STABIL-

ITY

In this section, we compare the curves generated by the methods discussed in this chapter, in terms

of stability. We would like to know by how much the interpolated yield curve values change in other
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sections if we change the value of an input of at ti. (Hagan, P. S., & West, G. , 2006) suggest measuring

this noise feature on spot and forward rate curves via the following norms:

||M(r)|| =
sup

t

max

i

∣∣∣∣∂r(t)∂ri

∣∣∣∣ (2.4.1)

||M(f)|| =
sup

t

max

i

∣∣∣∣∂f(t)

∂fi

∣∣∣∣ (2.4.2)

(Hagan, P. S., & West, G. , 2006) estimate these norms by calculating the maximum difference, in the

supremum norm, between the original curve and any of the 2n curves obtained by changing any of

the nodes up and down by one basis point. These differences can be estimated by testing at discrete

points along the entire curve. The estimated norms are then expressed n terms of basis points.

To gauge the stability of the interpolation methods considered in this section, we calculated ||M(r)||

and ||M(f)||, for a set of Kenyan bond curves spanning the period from 31 July 2005, to 4 February

2012. ||M(r)|| and ||M(f)|| were estimated by testing at discrete points along the entire curve, in

steps of one week each. For each of the curves under consideration, we used the same inputs as those

that were used to construct the corresponding perfect fit bond curves. The method that has a mean

of rates which reflect the market rates and the lowest standard deviation of the rates is deemed the

best for both ||M(r)|| and ||M(f)||.

Table 2.2: Statistics for ||M(r)|| obtained by bootstrapping a set of Kenyan bond curves, under various

methods of interpolation

Method Mean Std Deviation

Monotone Preserving Interpolation on r(t)t 26.51575 2.85714

Operator Form 19.27461 1.34142

This Thesis new interpolation Model 19.27461 1.34142
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Table 2.3: Statistics for ||M(f)|| obtained by bootstrapping a set of Kenyan bond curves, under various

methods of interpolation

Method Mean Std Deviation

Monotone Preserving Interpolation on r(t)t 28.95963 11.93328

Operator Form 23.84276 7.73945

This Thesis new interpolation Model 20.063951 3.81627

Table 2.4: Inputs in the Kenyan Bond Curve

Financial Instrument Rate

Kenyas Central Bank Lending Rate 17.960%

FXD2/2011/2 7.439%

FXD2/2010/10(R1) 9.307%

FXD1/2009/5 9.750%

FXD4/2008/5 9.500%

FXD2/2007/5 9.500%

FXD2/2006/6 11.500%

The tables 2.2, 2.3 and 2.4 show that using the operator form to calculate the forward rates and using

the model constructed in this thesis outperform the monotone preserving interpolation on r(t)t. Note

that in FXD2/2011/2, FXD refers to fixed income securities like bonds, the first 2 implies that it is

the second same-tenure bond issued in the year, 2011 is the year that the bond was issued by the CBK

and the last 2 is the tenure of the bond. The Central Bank lending rate is expressed as a simple annual

rate, whilst the yields on the set of bonds are nominal annual rates, compounded semi-annually. This

means, for example, the annualized rate of FXD2/2011/2 is i(2) = 14.878.

2.5 CHAPTER CONCLUSION

We introduce two ways of dealing with the non-differentiability at the knot points. We use numerical

methods to approximate the derivatives at the knot points and also develop the mathematical function

which removes the non-differentiability at the knot point. We then generate the forward rates using

the two methods and compare how closely they relate. This result is important for practical as well

as conceptual reasons.
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The non-differentiability model is important for those in the financial industry for generating forward

curves to price derivatives and risk management of interest rate derivatives, especially if they are not

well versed with numerical methods. We compare the models performance with monotone preserving

interpolation of r(t)t regarding stability, and the model developed in this thesis produces rates that do

not deviate far from the observed market data, even when the perturbation is introduced at a point.
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Chapter 3

FINDING THE BEST PARAMETRIC MODEL FOR THE

NAIROBI SECURITIES EXCHANGE

The main objective of this study is to construct a zero coupon yield curve (ZCYC) for the Nairobi

Securities Exchange (NSE). In this chapter, we use the classical Nelson-Siegel model, Svensson Model,

and Rezende-Ferreira models. These models have linear and nonlinear guidelines making them have

multiple local minima. This condition causes model estimation more difficult to estimate. We, there-

fore, use L-BFGS-B method as the optimization approach for estimating the models. Our contribution

is twofold: estimation of the parameters using the L-BFGS-B method and using Gauss-Newton numer-

ical method to develop a model for pricing the bonds given the forward and the rate curves equations.

We compare the models’ performance regarding continuity and differentiability of the ZCYC, positiv-

ity of the forward curve and accuracy in reflecting the observed market bond prices. We use bond data

from Central Bank of Kenya (CBK). The best parametric model to be used for the Kenyan securities

market and, consequently, the East African Securities markets is chosen if and only if it depicts the

aforementioned qualities.

3.1 INTRODUCTION

The definition of yield rate, also called Yield to Maturity (YTM), is the true rate of return an investor

would receive if the security were held to maturity. When the YTM is expressed as a function of

maturity, then it is known as the term structure of interest rates. A yield curve is the graphical

plotting of the yield rate function. The yield curve is one of the most important indicators of the level

and changes in interest rates in the economy and hence the interest in studying as well as accurately

modeling it.

The Yield to Maturity (YTM) can also be defined as the single discount rate on an investment that

equates the sum of the present value of all cash flows to the current price of the investment. However,

using a single discount rate at different time periods is problematic because it assumes that all future

cash flows from coupon payments will be reinvested at the derived YTM. This assumption neglects

the reinvestment risk that creates investment uncertainty over the entire investment horizon. Another
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shortcoming of YTM is that the yields of bonds on the maturity depend on the patterns of their cash

flows, which is often referred to as the coupon effect. As a result, the YTM of a coupon bond is not

a good measure of the pure price of time and not the most appropriate yield measure in the term

structure analysis.

In comparison, zero-coupon securities eliminate the exposure to reinvestment risks because there is

no cash flow before maturity to be reinvested. The yields on the zero-coupon securities, called the

spot rate, are therefore not affected by the coupon effect since there are no coupon payments. Also,

unlike the yield to maturity, securities having the same maturity have theoretically the same spot

rates, which provide the pure price of time. As a result, it is preferable to work with zero-coupon

yield curves (ZCYC) rather than YTM when analyzing the yield curve.

Various methods exist for estimating zero-coupon yield curves. The most adopted methods are by

(Nelson, C. R., & Siegel, A. F. , 1987) method or the extended versions of the same, as suggested by

(Svensson, L. E. , 1994) and (Rezende, R. B. , 2011). We are going to illustrate the application of

these models in deriving the zero-coupon yield curve for the Nairobi Securities Exchange (NSE).

3.2 BACKGROUND INFORMATION

Kenyan bonds and the T-bill market has a noticeably smaller trading volume and is not liquid. To

finance national developments projects, the government issues bonds to investors; this market has

traded more and more volume of these securities in both the primary and secondary markets as the

year’s progress. In 2005, the trading volume of bonds in the secondary market was Kshs. 246.57

billion, as compared to Kshs. 4.172 trillion in 2012, showing that the Kenyan bond market has truly

expanded. Figure 3.1 shows the movement of the value of Treasury bonds traded.
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Figure 3.1: Movement of bond value (in billions Kshs) traded from 2005 - 2012

Before 2000, only treasury bills were available at the primary market, and virtually no bond market

existed. The issuance of securities was not auction based, and there were no market development

initiatives. From 2001, the composition of debt portfolio changed to 76:24 the ratio indicating Treasury

bills to bonds. The average maturity of debt was at eight months. Then bonds were introduced with

the key objective of lengthening the maturity of securities and minimizing refinancing risk. Auction

based issuance was adopted to promote price discovery and development of a yield curve. In addition

to this, the Market Leaders Forum (MLF) was formed so as to support the development of the bond

market in Kenya.

This led to increased trading in bonds after 2013, the composition of debt portfolio reversed to 26:74,

T-bills to bonds. The average maturity of all securities moved to about seven years while bonds

maturity alone was five years. The longest bond in the market is 30-year, issued in 2011. A 20-year

was first issued in 2008, which was followed by a 25-year in 2010. Multi price auction method was

introduced which increased bond market activity, thus providing initial pricing for trading.

According to 2013 CBK report, the CBK plans to start what it dubs as Benchmark Bonds Programme.’

One of the objectives of the program is to eliminate bond fragmentation at the secondary market and

development of a firm, reliable yield curve. This study aims to be one of the tools the CBK will use

in meeting this objective by suggesting the best parametric model that should be used in the pricing

of the Kenyan bonds.
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3.3 LITERATURE SURVEY

Many estimation methods for yield curves have appeared in literature over the years. Generally speak-

ing, there are two distinct approaches to estimate the term structure of interest rates: the equilibrium

model and the statistical techniques.

The first approach is formalized by defining state variables characterizing the state of the economy

(relevant to the determination of the term structure) which are driven random processes and are re-

lated in some way to the prices of the bonds. It then uses no-arbitrage arguments to infer the dynamics

of the term structure. Examples of this approach include (Brennan, M. J., & Schwartz, E. S. , 1979;

Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. , 1985; Dothan, L. U. , 1978; Duffie, D., & Kan, R. ,

1996; Vasicek, O. , 1977).

Unfortunately, concerning the expedient assumptions about the nature of the random process driving

the interest rates, the yield derived by those models have a specific functional form dependent only

on a few parameters, and usually, the observed yield curves exhibit more varied shapes than those

justified by the equilibrium models.

In contrast to the equilibrium models, statistical techniques focusing on obtaining a continuing yield

curve from cross-sectional coupon bond data based on curve fitting techniques can describe a richer

variety of yield patterns in reality. The resulting term structure estimated from the statistical tech-

niques can be directly put into the interest rate models such as the, for pricing interest rate contingent

claims. Since a coupon bond can be considered as a portfolio of discount bonds with maturities dates

consistent with the coupon dates, the discount bond prices can thus be extracted from the actual

coupon bond prices by statistical techniques 1. These techniques can be broadly divided into two cat-

egories: the splines and the parsimonious function forms; see (Alper, C. E., Akdemir, A., & Kazimov,

K. , 2004). In this paper, we will concentrate on the latter.

Parsimonious models specify a parsimonious parameterizations of the discount function, spot rate

or the implied forward rate. Moving from the cubic splines, (Chambers, D. R., Carleton, W. T., &

Waldman, D. W. , 1984) introduced the parsimonious function forms by considering an exponential

1Once the discount function, P(t), is defined, the spot interest rate (the pure discount bond yield) can be computed

by:

R(t) =
−lnP (t)

t
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polynomial to model the discount function.(Nelson, C. R., & Siegel, A. F. , 1987) Followed shortly

after that by choosing an exponential function with four unknown parameters to model the forward

rate of U.S Treasury bills. By considering the three components that make up this function, (Nel-

son, C. R., & Siegel, A. F. , 1987) illustrated that it could be used to generate a variety of shapes

for the forward rate curves and analytically solve for the spot rate. Moreover, the advantage of the

classical Nelson-Siegel model is that the three parameters may be interpreted as latent level, slope

and curvatures factors. (Diebold, F. X., & Li, C. , 2006; Modena, M. , 2008; Tam, C.-S., & Yu, I.-W.

, 2008) employed the Nelson-Siegel interpolant to examine bond pricing with a dynamic latent factor

approach and concluded that it was satisfactory.

(Svensson, L. E. , 1994) Increased the flexibility of the original Nelson and Siegel model by adding two

extra parameters (Svensson, L. E. , 1994) model which allowed for a second hump in the forward rate

curve. Later, (Bliss, R. R. , 1996) introduced the Extended Nelson-Siegel method, which introduced

a new appropriating function with five parameters by extending the model developed by (Nelson, C.

R., & Siegel, A. F. , 1987). Bliss suggested that a six-parameter model can produce better results for

fitting the term structure with longer maturities.

The Nelson-Siegel model class has linear and non-linear parameters depending on the values assumed

fixed. Due to this, these models have multiple local minima making model estimation difficult. Previ-

ous studies have widely discussed the estimation of Nelson-Siegel model class, and they are: (Bolder,

D. J., & Strliski, D. , 1999; Rezende, R. B. , 2011; Gilli, M., Groe, S., & Schumann, E. , 2010; Maria,

L. M., Leanez, C., & Moreno, M. , 2009; Rosadi, D. , 2011), among others.

Previous literature indicates that although there are a lot of curve fitting models that have been suc-

cessfully applied to developed bond markets, comparatively little attention has been paid to emerging

markets 2; (Alper, C. E., Akdemir, A., & Kazimov, K. , 2004). To bridge this gap, a study by (Sub-

ramanian, K. V. , 2001) discussed the concept of weighted parameter optimization for the emerging

and developed markets. In an illiquid market like India where only about a handful of liquid securities

get traded in a day (which is very similar to Kenyan market), illiquid bonds must also be included

2The developed bond markets are well established and comprised of relatively liquid securities with short and long

maturities. However, in the developing economies with sparse bond market price data, a substantial portion of the

secondary market trading is contracted in a handful of bonds that the market perceives liquid; thus it is not meaningful

to estimate the term structure based on a small number of liquid securities. (Subramanian, K. V. , 2001) was the pioneer

in positing a model for the yield curve estimation based on liquidityweighted objective functions to ensure that liquid

bonds in the market are priced with smaller errors than the illiquid bonds.
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in the estimation procedure. Hence the estimation methods must incorporate the effect of liquidity

premiums on illiquid bonds 3.

3.4 EMPIRICAL METHODOLOGY

3.4.1 Model Selection

3.4.1.1 The Nelson-Siegel (1987) Model

The Nelson-Siegel model sets the instantaneous forward rate at maturity m given by the solution to

a second order differential equation with unequal roots as follows:

f(m) = β0 + β1exp

(
−m
τ1

)
+ β2

m

τ1
exp

(
−m
τ1

)
(3.4.1)

where m > 0, is the time to maturity of a given bond. Equation (3.4.1) consists of three parts:

A constant, an exponential decay functional and Laguerre function. β0 is independent of m and as

much, β0 is often interpreted as the level of long term interest rates. The exponential decay function

approaches zero as m tends to infinity and β1 as m tends to zero. The effect of β1 is thus only felt at

the short end of the curve. The Laguerre function on the other hand approaches zero as m tends to

infinity, and as m tends to zero. The effect of β2 is thus only felt in the middle section of the curve,

which implies that β2 adds a hump to the yield curve or a U if it is negative. The time constant τ1

is the scale parameter that measures the rate at which the short term and medium term components

decay to zero. For example, small value of τ result in rapid decay in the predictor variables and

therefore they will be suitable for curvature at low maturities. Corresponding, large volumes of τ

produce slow decay in the predictor variables and will be suitable for curvature over longer maturities,

(Christofi, A. C. , 1998).

Following (McCulloch, J. H. , 1971) definition of the yield as an average of the forward rates, the spot

interest for maturity m can be derived by integrating equation (3.4.2) from zero to m and dividing by

m . The resulting function can be expressed as follows:

r(m) = β0 + β1
τ1

m

[
1− exp

(
−m
τ1

)]
+ β2

τ2

m

[
1− exp

(
−m
τ2

)]
− β2exp

(
−m
τ2

)
(3.4.2)

3We attempt to estimate the parameters by minimizing the mean absolute deviation between the observed and

calculated prices. The weights have been assigned according to the liquidity of individual securities.
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From equations (3.4.2) and (3.4.3) it follows that both the spot and forward rate function reduce to

β0 + β1 as m → 0. Furthermore, we have
lim

m→ 0
r(m) =

lim

m→ 0
f(m) = β0. Thus, in the absence

of arbitrage, we must have that β0 > 0 and β0 + β1 > 0.

Due to the local-minima problem which makes model estimation difficult in the Nelson-Siegel model

and the inadequacy of the calibration methods used so far, we propose Non-Linear Least Squares

(NLS) used to find parameter values for non-linear functions- estimation method with L-BFGS-

B optimization approach (see Appendix A for further information on L-BFGS-B algorithm). This

optimization method is an extension of the limited memory BFGS method (LM-BFGS or L-BFGS)

which uses simple boundaries model, according to (Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. ,

1994).

Using L-BGFS-B algorithm, we can estimate the above five parameters: ψ ≡ {β0, β1, β2, τ1, τ2},

embedded in the (Nelson, C. R., & Siegel, A. F. , 1987) model, and hence calculate the price of the

bond using the following nonlinear constrained optimization estimation procedure based the Gauss-

Newton numerical method:

Pi =
T∑

m=1

 CFim{
1 + β0 + β1

(
τ1
m

) [
1− exp

(
−m
τ1

)]
+ β2

(
τ2
m

) [
1− exp

(
m
τ2

)(
m
τ2

+ 1
)]}m

+ εi (3.4.3)

where Pi is the price of bond i.

3.4.1.2 The Svensson (1994) Model

To increase the flexibility and improve the fitting performance, (Svensson, L. E. , 1994) extends

(Nelson, C. R., & Siegel, A. F. , 1987) instantaneous forward rate function by adding a fourth term,

a second hump (or trough) β3
m
τ2
exp

(
−m
τ2

)
, with two additional parameters β3 and τ2. The forward

rate function is then set as:

f(m) = β0 + β1exp

(
−m
τ1

)
+ β2

(
m

τ1

)
exp

(
−m
τ1

)
+ β3

(
m

τ2

)
exp

(
−m
τ2

)
(3.4.4)

where the unknown parameters β0,β1,β2 and τ2 have the same economic interpretation as the Nelson

Siegel model and the two additional parameters β3 and τ2 denote the same meaning as β2 and τ1. The
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spot rate, derived by integrating the forward rate, is given by:

R(m) = β0 + β1

(τ1

m

)[
1− exp

(
−m
τ1

)]
+ β2

(τ1

m

)[
1− exp

(
−m
τ1

)(
m

τ2
+ 1

)]
+

β3

(τ2

m

)[
1− exp

(
−m
τ2

)(
m

τ2 + 1

)]
(3.4.5)

Similarly, using L-BGFS-B algorithm, we can estimate the parameters and calculate the price using

the following equation:

Pi =

T∑
m=1 CFim{

1 + β0 + β1

(
τ1
m

) [
1− exp

(
−m
τ1

)]
+ β2

(
τ1
m

) [
1− exp

(
m
τ1

)(
m
τ1

+ 1
)]

+ β3

(
τ2
m

) [
1− exp

(
m
τ2

)(
m
τ2

+ 1
)]}m


+ εi (3.4.6)

3.4.1.3 The Rezende-Ferreira (2011) Model

(Rezende, R. B. , 2011) decided to increase the accuracy of the (Svensson, L. E. , 1994) by adding a

fifth term, a third hump (or trough) β4
m
τ3
exp

(
−m
τ3

)
, with two additional parameters β4 and τ3. The

forward rate function is then set as:

f(m) = β0 + β1exp

(
−m
τ1

)
+ β2

(
m

τ1

)
exp

(
−m
τ1

)
+ β3

(
m

τ2

)
exp

(
−m
τ2

)
+ β4

(
m

τ3

)
exp

(
−m
τ3

)
(3.4.7)

where the unknown parameters β0,β1,β2 and τ2 have the same economic interpretation as the Nelson

Siegel model and the two additional parameters β3 and τ2 denote the same meaning as β2 and τ1. The

spot rate, derived by integrating the forward rate, is given by:

R(m) = β0 + β1

(τ1

m

)[
1− exp

(
−m
τ1

)]
+ β2

(τ1

m

)[
1− exp

(
−m
τ1

)(
m

τ2
+ 1

)]
+

β3

(τ2

m

)[
1− exp

(
−m
τ2

)(
m

τ2 + 1

)]
+ β4

(τ3

m

)[
1− exp

(
−m
τ3

)(
m

τ3 + 1

)]
(3.4.8)

Similarly, using L-BGFS-B algorithm, we can estimate the parameters and calculate the price using

the following equation:

Pi =
∑T

m=1

(
CFim{

1+β0+β1( τ1m )
[
1−exp

(
−m
τ1

)]
+β2( τ1m )

[
1−exp

(
m
τ1

)(
m
τ1

+1
)]

+β3( τ2m )
[
1−exp

(
m
τ2

)(
m
τ2

+1
)]

+β4( τ3m )
[
1−exp

(
−m
τ3

)(
m

τ3+1

)]}m
)

+ εi (3.4.9)
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3.4.2 Liquidity-Weighted Function

In yield curve construction, errors are caused by two reasons: (a) curve fitting mistakes and (b)

presence of a liquidity premium. The errors due to curve fitting arise from the calculations and can be

avoided. But an error due to the presence of liquidity premium reflects market conditions and cannot

be ignored.

Since the reliability of the term structure estimation depends heavily on the precision of the market

prices according to (Subramanian, K. V. , 2001), liquid and illiquid securities are a heterogeneous class

and including them both in the term structure estimation process poses problems. Illiquid Bonds are

traded at a premium to compensate for their undesirable attribute regarding a low price. Assigning

equal weights to both types of errors will give undue weight to the kind of error that creeps in due to

curve fitting.

(Subramanian, K. V. , 2001) suggests a liquidity weighted objective function, which hypothesizes that

a weighted error function (with weights based on liquidity) would lead to better estimation that equal

weights to the squared errors of all securities. We, therefore, model the liquidity using a function with

two factors: the volume of trade in a security and the number of trades in that security.

The weight of the ith security Wi is given by:

Wi =

[(
1− e

−vi
vmax

)
+
(

1− e
−ni
nmax

)]
∑

iWi
=
(

1− e
−vi
vmax

)
+
(

1− e
−ni
nmax

)
(3.4.10)

Wi =

[(
tanh

(
−vi
vmax

))
+
(
tanh

(
−ni
nmax

))]
∑

iWi
=

(
tanh

(
−vi
vmax

))
+

(
tanh

(
−ni
nmax

))
(3.4.11)

where vi and ni are the volume of trade and the number of trades in the ith security respectively,

while vmax and nmax are the maximum number of trades among all the securities traded for the day

respectively.

As given in the equations (3.4.10) and (3.4.11) above, it ensures that the weights of the relative liquid

securities would not be significantly different from each other. For the illiquid securities, however the

weights would fall quickly as liquidity decreased.

The final error-minimizing function, which should equal to zero, is given by:

Min
n∑
i=1

(
wi

(
Pi − Pˆ

i

)2
)

= Min
n∑
i=1

(
wiε

2
i

)
= 0 (3.4.12)
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3.4.3 Test Statistics

In academic literature, there are two distinct approaches used to indicate the term structure fitting

performance. One is the flexibility of the curve (accuracy), and the other focuses on smoothness of

the yield curve. Although there are numerical methods proposed to estimate the term structure, any

method developed has to grapple with deciding the extent of the above trade-off. Hence it becomes a

crucial issue to investigate how to reach a compromise between the flexibility and smoothness.

Three simple summary statistics which can be calculated for the flexibility of the estimated yield curve

are the coefficient of determination, root mean squared percentage error, and root mean squared error.

These are calculated as:

3.4.3.1 The Coefficient of Determination (R2)

This is the test statistic used to measure the accuracy of the curve, or in other words, how well the

model fits the data. The formula is as expressed below:

R2 = 1−
∑n

i=1((Pi − Pˆ
i)

2)/(n− k)∑n
i=1((Pi − Pˆ

i)
2)/(n− 1)

(3.4.13)

where Pi is the mean average price of all observed bonds, Pˆ
i is the model price of a bond i, n the

number of bonds traded and k is the number of parameters needed to be estimated.

Roughly speaking, with the same analysis in regression, we associate a high value of R2 with a good

fit of the term structure and associate a low R2 with a poor fit.

3.4.3.2 Root Mean Squared Error (RMSE) and Mean Squared Percentage Error (RM-

SPE)

Denoted as the RMSE and RMSPE, these two statistics test the flexibility of a curve. A low value

for these measures is assumed to indicate that the model is flexible, on average, and is able to fit the

yield curve, and vice versa.

Flexibility is also a measure of accuracy. The formulas for these tests are:

RMSE =

√√√√ 1

n

n∑
i=1

(Pi − Pˆ
i)

2 (3.4.14)
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RMSPE = 100 ?

√√√√ 1

n

n∑
i=1

(Pi − Pˆ
i)

2 (3.4.15)

3.4.3.3 Testing for Smoothness

To test the smoothness of the estimated yield curve, we use a modified statistic suggested by (Adams,

K. J., & Van Deventer, D. R. , 1994) to reach the maximum smoothness for forward rate curve, and

denote the smoothness (Z) for the estimated yield curve as:

Z =
n∑
t=1

([
f(t)− f(t− 1

2
)

]
−
[
f(t− 1

2
)− f(t− 1)

])2

× 1

2
(3.4.16)

Ideally, the value should equal to zero. In the test for smoothness model above, t stands for time, and

we use half-year intervals because the government of Kenyas treasury bonds pay half yearly coupons.

The model with the least Z value is deemed to be the best.

3.5 EMPIRICAL RESULTS OF PARAMETRIC MODELS

3.5.1 Data

In Kenya, nearly all bond transactions take place on the OTC market. The data used was supplied

by the Central Bank of Kenya. The sample period contains 417 weekly data from January 2005

to December 2012. Weekly prices (every Friday) for 108 Kenyan Government Bonds (KGBs) with

original maturity dates ranged from 2 to 30 years are obtained.

3.5.2 Parameter Estimation

3.5.2.1 Nelson-Siegel (1987) Model

Table 3.1 lists the summary statistics of estimated parameters for the (Nelson, C. R., & Siegel, A. F.

, 1987) model. It is seen that all estimated values for β̂1 and β̂2 are negative, which indicates that the

yield curves generated by this model are all positively and upward sloping without a visible hump.

65



Table 3.1: Results for estimated parameters for (Nelson-Siegel, 1987) model

Year Parameters

β̂0 β̂1 β̂2 τ̂1

2005 0.0587 -0.0115 -0.0040 4.6089

2006 0.0463 -0.0090 -0.0127 3.2148

2007 0.0454 -0.0133 -0.0388 1.8327

2008 0.0356 -0.0183 -0.0425 2.1674

2009 0.0358 -0.0164 -0.0493 1.0232

2010 0.0225 -0.0085 -0.0819 0.6237

2011 0.0225 -0.0085 -0.0819 0.6237

2012 0.0241 -0.091 -0.0213 1.0595

3.5.2.2 Svensson (1994) Model

Table 3.2 reports the summary statistics of estimated parameters for the (Svensson, L. E. , 1994)

model. We find that, in the particular years 2007, 2010, 2011 and 2012, the estimated β̂1 is negative

while the estimated β̂2 is positive, showing the yield curves would have a positively upward sloping

combined with a slightly humped shape.

Table 3.2: Results for the estimated parameters for (Svensson, 1994) model

Year Parameters

β̂0 β̂1 β̂2 τ̂1 τ̂2

2005 0.0590 -0.0138 -0.0010 2.1459 3.3983

2006 0.0473 -0.0121 -0.0068 2.5956 3.8261

2007 0.0425 -0.0182 0.0020 3.3964 5.4206

2008 0.0370 -0.0189 -0.0333 2.5649 8.1488

2009 0.0354 -0.0181 -0.0309 2.8238 7.6419

2010 0.0248 -0.0129 0.0025 8.0086 15.4666

2011 0.0248 -0.0129 0.0025 8.0086 15.4666

2012 0.0250 -0.0114 0.0072 3.3570 4.1933
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3.5.2.3 Rezende-Ferreira (2011) Model

Table 3.3 lists the summary statistics of estimated parameters for the (Rezende, R. B. , 2011) model.

From the years 2005, 2007 and 2008 the estimated β̂1 is negative while estimated β̂2 is positive, showing

the yield curves have a positively upward sloping combined with a slightly humped shape. And both

the estimated parameters β̂1 and β̂2 are both negative in the years 2006, 2009 to 2012 showing that

the yield curves are positively upward sloping.

Table 3.3: Results for the estimated parameters for (Rezende-Ferreira, 2011) model

Year Parameters

β̂0 β̂1 β̂2 β̂3 τ̂1 τ̂2

2005 0.0588 -0.0125 0.0316 -0.0365 2.4513 2.3036

2006 0.0477 -0.0152 -0.0034 0.0010 3.4306 3.4287

2007 0.0400 -0.0284 0.0701 -0.0410 3.8971 3.6562

2008 0.0355 -0.0293 0.0070 -0.0189 2.3245 2.1520

2009 0.0359 -0.0308 -0.0068 0.0115 3.2297 2.9008

2010 0.0232 -0.0022 -0.0074 -0.0110 1.1180 1.1183

2011 0.0232 -0.0022 -0.0074 -0.0110 1.1180 1.1183

2012 0.0279 -0.0061 -0.0074 -0.0055 3.7633 3.7498

3.5.2.4 Comparison of Fitting Performance in Terms of Accuracy

A direct comparison of the three models in Table 3.4 appears to favor the (Rezende, R. B. , 2011)

yield curve. The (Nelson, C. R., & Siegel, A. F. , 1987) shows the worst fitting performance among

the models. Hence, we conclude that in the illiquid bond market, based on a family of Nelson-Siegel

yield curve models, it does help to improve the flexibility of the yield curve if we add extra parameters

in the parsimonious yield curve model.
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Table 3.4: Summary statistics for fitting performance in terms of accuracy

RMSPE RMSE R2

Nelson Svenson Rezende Nelson Svenson Rezende Nelson Svenson Rezende

Mean 0.0144 0.0131 0.0122 1.6318 1.4914 1.4043 0.9654 0.9693 0.9738

Std. Dev 0.0066 0.0061 0.0051 0.7752 0.7299 0.6033 0.0357 0.0368 0.0299

Max 0.0413 0.0385 0.0281 4.6311 4.5345 3.3047 0.9973 0.9976 0.9979

Min 0.0050 0.0048 0.0041 0.5311 0.5109 0.4363 0.8015 0.7671 0.8219

3.5.2.5 Comparison for Fitting Performance in Terms of Smoothness

In the academic literature, it has been observed that when comparing alternative methods of term

structure fitting models, there is usually a trade-off between flexibility and smoothness. In Table 3.5,

the (Rezende, R. B. , 2011) seems to have the best fit in flexibility for fitting the term structure of

KGB market. However, as shown in table 3.5 below, the (Nelson, C. R., & Siegel, A. F. , 1987) Model

is superior to its counterparts, the (Svensson, L. E. , 1994) Model and the (Rezende, R. B. , 2011)

Model, which shows that the (Nelson, C. R., & Siegel, A. F. , 1987) results to a relatively smoother

yield curve, compared to the other two models.

Table 3.5: Summary statistics for fitting performance in terms of smoothness

With liquidity constraint

R2 Smoothness : (Z)× (10−6)

Nelson-Siegel (1987) 0.9654 4.9822

Svensson (1992) 0.9693 6.3840

Rezende-Ferreira (2011) 0.9738 10.7467

The possible explanation for the observed results in smoothness test is the over-parametization in

(Svensson, L. E. , 1994) and (Rezende, R. B. , 2011) models, making them less smooth compared to

the (Nelson, C. R., & Siegel, A. F. , 1987) model.

In addition to the tests indicated above, we decided to use two additional test tools to check the

adequacy of the (Nelson, C. R., & Siegel, A. F. , 1987) Model. These tools are a) the monotonicity

of the discount factors curve and b) the comparison between the observed bonds’ dirty prices and the
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model’s dirty prices. The following were the results achieved:

Figure 3.2: NS Discount Graph: Showing That the Discount Function is A Decreasing Function of

Time

Figure 3.3: Comparison of Dirty Market Price and Modelled Dirty Prices (Data Source: CBK)

We see that the (Nelson, C. R., & Siegel, A. F. , 1987) Model produces a monotonic discount curve;

i.e. it produces a decreasing discount curve which points towards the monotonicity of the curve. On

the other hand, the fitted price almost perfectly match the observed market prices, again indicating

the adequacy of the (Nelson, C. R., & Siegel, A. F. , 1987) Model.
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3.6 DISCUSSION OF RESULTS AND CONCLUSION

After investigating the three parametric models of Nelson-Siegel class, (Nelson, C. R., & Siegel, A. F.

, 1987) Model gave the best performance in terms of smoothness of the forward curve. However, it

performed poorer in terms of accuracy in pricing back the bonds, compared to the other two models.

This ZCYC resulting from this study will be used mostly by the Capital Markets Authority of Kenya

to guide on pricing of derivatives in the NSE. The individual investment banks and brokerage firms

will load the rate of return according to their policies. Therefore, we will choose smoothness over

accuracy in pricing back. In support of this decision, the Bank of International Settlements (2005),

which is a technical report on how central banks around the world calculate the ZCYC, reports that

central banks around the world do not typically require yield curve models that price back all the

inputs exactly, when determining monetary policy. A curve does not have to have 100% accuracy;

95% and above is deemed as adequate. We see that (Nelson, C. R., & Siegel, A. F. , 1987) Model has

96.54% accuracy level, which is above the required 95%.

We, therefore, conclude that the (Nelson, C. R., & Siegel, A. F. , 1987) Model is the best parametric

model for the Nairobi Securities Exchange, and in extension, the East African Securities Markets.
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Chapter 4

CONSTRUCTION OF ZCYC FOR THE NSE: INTERPOLATION

FUNCTION VERSUS PARAMETRIC MODELS

We seek to determine which yield curve construction method produces the best zero coupon yield curve

(ZCYC) for the Nairobi Securities Exchange (NSE). The ZCYC should be differentiable at all points

and at the same time, should produce a continuous and positive forward curve at all knot points. A

decreasing discount curve is also expected from the resulting ZCYC, as an indication of monotonic-

ity. For the interpolation method, we will use an improvement of monotone preserving interpolation

method on r(t)t, while the (Nelson, C. R., & Siegel, A. F. , 1987) Model is the parametric model of

choice. This is because compared to other interpolation methods, the improvement of monotone pre-

serving interpolation method on r(t)t produces curves with the desirable trait of differentiability at all

points, while the (Nelson, C. R., & Siegel, A. F. , 1987) model is shown to produce the best-fit results

for Kenyan bond data. We compare the models’ performance regarding accuracy in pricing back the

fixed-income securities. For this study, we use bond data from Central Bank of Kenya (CBK). The

better of the two methods will be used for the Kenyan securities market.

4.1 LITERATURE SURVEY

Many estimation methods for yield curves have appeared in literature over the years. Generally speak-

ing, there are two distinct approaches to estimate the term structure of interest rates: the equilibrium

model and the statistical techniques.

The first approach is formalized by defining state variables characterizing the state of the economy

(relevant to the determination of the term structure) which are driven random processes and are re-

lated in some way to the prices of the bonds. It then uses no-arbitrage arguments to infer the dynamics

of the term structure. Examples of this approach include: (Brennan, M. J., & Schwartz, E. S. , 1979;

Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. , 1985; Dothan, L. U. , 1978; Duffie, D., & Kan, R. ,

1996; Vasicek, O. , 1977).

Unfortunately, regarding the expedient assumptions about the nature of the random process driving

the interest rates, the yield derived by those models have a specific functional form dependent only
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on a few parameters, and usually, the observed yield curves exhibit more varied shapes than those

justified by the equilibrium models.

In contrast to the equilibrium models, statistical techniques focusing on obtaining a continuing yield

curve from cross-sectional coupon bond data based on curve fitting techniques can describe a richer

variety of yield patterns in reality. The resulting term structure estimated from the statistical tech-

niques can be directly put into the interest rate models such as the (Heath, D., Jarrow, R., & Morton,

A. , 1992; Hull, J., & White, A. , 1990) models, for pricing interest rate contingent claims. Since

a coupon bond can be considered as a portfolio of discount bonds with maturities dates consistent

with the coupon dates, the discount bond prices can thus be extracted from the actual coupon bond

prices by statistical techniques.1 These techniques can be broadly divided into two categories: the

splines (interpolation methods) and the parsimonious function forms; see (Alper, C. E., Akdemir, A.,

& Kazimov, K. , 2004).

Interpolation is a method of constructing new data points within the range of a discrete set of known

data points (called knot points). The simplest method for interpolating between two points is by

connecting them through a straight line. However, all the variations of linear interpolation imply

discontinuities in the forward rate curve. To produce continuous forward rates curves, researchers

introduced cubic methods of interpolation. Unfortunately, all the traditional cubic methods are inca-

pable of ensuring strictly positive forward rates, which are synonymous with non-decreasing discount

factors, as shown by (Hagan, P. S., & West, G. , 2006). Furthermore, some cubic methods have an

inherent lack of locality in the sense that a local perturbation of curve input data will cause ringing

and cause changes in the data far away from the perturbed data point as shown by (Anderson, L. ,

2007). To counter this, a monotone convex interpolation method was developed, which it is claimed to

be capable of ensuring a positive and (mostly) continuous forward rate curve (Hagan, P. S., & West,

G. , 2006). Unfortunately, the model depends heavily on an appropriate interpolation algorithm.

Also, it was discovered by (Du Preez, P. F. , 2011) that there were specific conditions under which

the interpolation function of the monotone convex interpolation would produce discontinuity of f(t).

This led to the monotone preserving r(t)t method of interpolation, introduced by (Du Preez, P. F.

, 2011). Unfortunately, monotone preserving method had the undesirable characteristic of not being

differentiable at the knot-points. (Muthoni, L., Onyango, S., & Ongati, N. O. , 2015a) Introduced

a new method of interpolation, which is an improvement of monotone preserving r(t)t interpolation

method suggested by (Du Preez, P. F. , 2011). This was done by removing the non-differentiability

at the knot points in the method above.
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Parsimonious models specify parsimonious parameterizations of the discount function, spot rate or the

implied forward rate. Moving from the cubic splines, (Chambers, D. R., Carleton, W. T., & Waldman,

D. W. , 1984) introduced the parsimonious function forms by considering an exponential polynomial

to model the discount function (Nelson, C. R., & Siegel, A. F. , 1987) followed shortly after that by

choosing an exponential function with four unknown parameters to model the forward rate of U.S

Treasury bills. By considering the three components that make up this function,(Nelson, C. R., &

Siegel, A. F. , 1987) illustrated that it could be used to generate a variety of shapes for the forward

rate curves and analytically solve for the spot rate. Moreover, the advantage of the classical (Nelson,

C. R., & Siegel, A. F. , 1987) model is that the three parameters may be interpreted as latent level,

slope and curvatures factors. (Diebold, F. X., & Li, C. , 2006; Modena, M. , 2008; Tam, C.-S., & Yu,

I.-W. , 2008) employed the (Nelson, C. R., & Siegel, A. F. , 1987) interpolant to examine bond pricing

with a dynamic latent factor approach and concluded that it was satisfactory.

(Muthoni, L., Onyango, S., & Ongati, N. O. , 2015b) Estimated the Kenyan government bonds (KGBs)

term structure of interest rates based on the parsimonious functions specifications, i.e. the four pa-

rameters (Nelson, C. R., & Siegel, A. F. , 1987) model, the five parameters (Svensson, L. E. , 1994)

model and the six parameters (Rezende, R. B. , 2011) model, known as Nelson-Siegel-Svensson model.

The reason they chose the Nelson-Siegel family is that these models have the substantial flexibility

required to match the changing shape of the yield curve, yet they only use a few parameters. As noted

by (Diebold, F. X., & Li, C. , 2006), they can be used to predict the future level, slope, and curvature

factors for bond portfolio investments purposes. After comparing the Nelson-Siegel classes of models,

(Muthoni, L., Onyango, S., & Ongati, N. O. , 2015b) found (Nelson, C. R., & Siegel, A. F. , 1987) to

be the superior model.

4.2 EMPIRICAL METHODOLOGY

4.2.1 The Nelson-Siegel (1987) Model

The (Nelson, C. R., & Siegel, A. F. , 1987) model sets the instantaneous forward rate at maturity m

given by the solution to a second order differential equation with unequal roots as follows:

f(m) = β0 + β1exp

(
−m
τ1

)
+ β2

m

τ1
exp

(
−m
τ1

)
(4.2.1)

where m > 0, is the time to maturity of a given bond. Equation (4.2.1) consists of three parts:

A constant, an exponential decay functional and Laguerre function. β0 is independent of m and as
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much, β0 is often interpreted as the level of long term interest rates. The exponential decay function

approaches zero as m tends to infinity and β1 as m tends to zero. The effect of β1 is thus only felt at

the short end of the curve. The Laguerre function on the other hand approaches zero as m tends to

infinity, and as m tends to zero. The effect of β2 is thus only felt in the middle section of the curve,

which implies that β2 adds a hump to the yield curve.

The spot rate functions under the model of (Nelson, C. R., & Siegel, A. F. , 1987) is as follows:

r(m) = β0 + β1

(τ1

m

)[
1− exp

(
−m
τ1

)]
+ β2

(τ2

m

)[
1− exp

(
−m
τ2

)]
− β2exp

(
−m
τ2

)
(4.2.2)

r(m) = β0 + β1

(τ1

m

)[
1− exp

(
−m
τ1

)]
+ β2

(τ2

m

)[
1− exp

(
−m
τ2

)(
m

τ2
+ 1

)]
From equation (4.2.2) it follows that both the spot and forward rate function reduce to β0 + β1 as

m→ 0. Furthermore, we have
lim

m→ 0
r(m) =

lim

m→ 0
f(m) = β0. Thus, in the absence of arbitrage,

we must have that β0 > 0 and β0 + β1 > 0.

4.2.2 Improvement of Monotone Convex Interpolation On r(t)t

We start with a mesh of data points {t1, t2, . . . , tn} (we will think of the x-values as time points on

the x axis) and the corresponding y values are define as {f1, f2, . . . , fn} for a generic but unknown

function f(t) . Cubic splines are generally defined by piece-wise cubic polynomial that passes through

consecutive points:

f(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 (4.2.3)

We use equation (4.2.3) to compute the derivatives (which in our case we will use to construct the

forward curve):
∂f(t)

∂fj
=
∂ai
∂fj

=
∂bi
∂fj

(t− ti) +
∂ci
∂fj

(t− ti)2 +
∂di
∂fj

(t− ti)3 (4.2.4)

We have:
∂ai
∂fj

= δji (4.2.5)

∂mi

∂fj
=

1

hi
δji+1 −

1

hi
δji (4.2.6)

∂ci
∂fj

=
1

hi

(
3
∂mi

∂fj
− ∂bi+1

∂fj
− 2

∂mi

∂fj

)
(4.2.7)
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∂di
∂fj

1

h2
i

(
∂bi+1

∂fj
− ∂bi
∂fj
− 2

∂mi

∂fj

)
(4.2.8)

∂bi
∂fj

=


[
(max(mi−1,mi)+2min(mi−1,mi))?

mi−1
hi

(δji+1−δ
j
i )+

mi
hi−1

(δji−δ
j
i−1)

]
−
[
(mi−1∗mi)?

mi
hi−1

(δji−δ
j
i−1)+2

mi−1
hi

(δji+1−δ
j
i )
]

(max(mi−1,mi)+2min(mi−1,mi))
2[

(max(mi−1,mi)+2min(mi−1,mi))?
mi
hi

(δji−δ
j
i−1)+

mi−1
hi−1

(δji+1−δi−
j)
]
−
[
(mi−1∗mi)?

mi−1
hi−1

(δji+1−δ
j
i )+2

mi
hi

(δji−δ
j
i−1)

]
(max(mi−1,mi)+2min(mi−1,mi))

2

(4.2.9)

The curves generated are used to price bonds and the results compared with observed market prices.

4.3 EMPIRICAL RESULTS

4.3.1 Parameter Estimation: Nelson-Siegel (1987) Model

Table 4.1 lists the summary statistics of estimated parameters for the (Nelson, C. R., & Siegel, A. F.

, 1987) model. It is seen that all estimated values for β̂1 and β̂2 are negative, which indicates that the

yield curves generated by this model are all positively and upward sloping without a visible hump.

Table 4.1: Results for estimated parameters for Nelson-Siegel (1987) model

Year Parameters

β̂0 β̂1 β̂2 τ̂1

2005 0.0587 -0.0115 -0.0040 4.6089

2006 0.0463 -0.0090 -0.0127 3.2148

2007 0.0454 -0.0133 -0.0388 1.8327

2008 0.0356 -0.0183 -0.0425 2.1674

2009 0.0358 -0.0164 -0.0493 1.0232

2010 0.0225 -0.0085 -0.0819 0.6237

2011 0.0225 -0.0085 -0.0819 0.6237

2012 0.0241 -0.091 -0.0213 1.0595
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4.3.2 Parameter Estimation: Thesis Interpolation Model

Table 4.2 lists the summary statistics of estimated parameters for the improved monotone preserving

interpolation method on r(t)t Model.

Table 4.2: Results for Estimated Parameters for Thesis Interpolation Model

Year Parameters

ai bi ci di

2005 0.0588 -0.0125 0.0316 -0.0365

2006 0.0477 -0.0152 -0.0034 0.0010

2007 0.0400 -0.0284 0.0701 -0.0410

2008 0.0355 -0.0293 0.0070 -0.0189

2009 0.0359 -0.0308 -0.0068 0.0115

2010 0.0232 -0.0022 -0.0074 -0.0110

2011 0.0232 -0.0022 -0.0074 -0.0110

2012 0.0279 -0.0061 -0.0074 -0.0055

4.3.3 Comparison of the Models

4.3.3.1 In terms of Accuracy

A direct comparison of the two models in Table 4.3 appears to favor the (Nelson, C. R., & Siegel, A.

F. , 1987) if we consider accuracy and flexibility, but the improved spline method, also referred to as

the Thesis Model, has a higher coefficient of determination.
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Table 4.3: Summary statistics for fitting performance in terms of accuracy

RMSPE RMSE R2

Nelson-Siegel SplineMethod Nelson Spline-Method NelsonSiegel SplineMethod

mean 0.0144 0.0101 1.6318 1.115 0.9654 0.9493

Std. dev. 0.0066 0.0051 0.7752 0.6033 0.0357 0.0299

Max 0.0413 0.0281 4.6311 3.3047 0.9973 0.9979

Min 0.0050 0.0041 0.5311 0.4363 0.8015 0.8219

4.3.3.2 In Terms of Smoothness

When comparing alternative methods of term structure fitting models, there is usually a trade-off

between flexibility and smoothness. In Table 4.3, the spline seems to have the best fit in flexibility

for fitting the term structure of KGB market (in terms of RMSE and RMSPE). However, as shown

in table 4.4 below, the (Nelson, C. R., & Siegel, A. F. , 1987) Model is superior to the interpolation

method, where it results to a relatively smoother yield curve.

Table 4.4: Summary statistics for fitting performance in terms of smoothness

With liquidity constraint

R2 Smoothness : (Z)(×10−6)

Nelson-Siegel (1987) 0.9654 4.9822

Spline (interpolation) 0.9493 7.8423

4.4 DISCUSSION OF RESULTS AND CONCLUSION

In this chapter, we set out to compare the performance of the thesis interpolation function and the

(Nelson, C. R., & Siegel, A. F. , 1987) model when applied on Kenyan data. We find that In terms

of accuracy, the spline method does poorer than the parametric method in that it gives an accuracy

of 94.93% compared to an accuracy of 96.54% by the Nelson-Siegel model. When it comes to the test

of smoothness, Nelson-Siegel model also performs better with a lower Z value of 4.9822 compared to

the splines value of 7.8423.
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After considering all the factors at hand, we come to a conclusion that the parametric model (Nelson-

Siegel) is the slightly better than the model suggested by this thesis. However, we would like to point

out that the decision on whether to use parametric models or spline-based methods to generate the

yield curve depends on the intended use of the yield curve. Parametric methods are very popular

amongst Central Banks. This is because Central Banks, when determining monetary policy, typically

do not require yield curves that price-back all inputs exactly and they find parametric methods easier

to implement as compared to the spline models. On the other hand, Investment Bankers usually

prefer spline-based models because they can price-back all financial products (inputs) as compared

to the parametric models. The other factor is that parametric models might not completely reflect

the information on the ground as compared to the spline models. For this reason, we will use the

interpolation method suggested in this thesis for the purpose of pricing the coffee futures, which has

been shown to perform better than existing interpolation methods.

78



Chapter 5

PRICING OF FUTURES IN A MARKET WITH INCOMPLETE

INFORMATION

The objective of this chapter is to advise on the pricing model to be used in pricing coffee futures to

be traded on the Nairobi Securities Exchange (NSE) by the end of the year 2018, according to a report

given by the Capital Market Authority of Kenya in 2013. We apply Belallahs three-factor model with

modifications. The factors we consider are the rate of interest which is assumed to be mean reverting,

the convenience yield which is an adjustment to the pricing formula to reflect constraint in a market,

in this case, the cost of information, and the spot price. We include a liquidity constraint in our

pricing which reflects the illiquidity of the test market (Ivory Coast) and target market, the NSE. The

calibration method used in this study is the L-BGFS-B model which reduces the number of iterations

to be undertaken and also the attractive property of having boundary conditions. We use findings by

(Onyango, S. N., & Ingleby, M. , 2006) on Ivorian Coffee Futures prices data, the guide country, to

calculate grey-scale votes in each cell within the accumulator array used to store process knowledge

in the Hough formalism. This enables us to retrieve the drift and volatility of the price data. We

then compare the models prices with the observed market prices using correlation with time lags and

Fretchet distance to assess the suitability of the model to be used in pricing the futures.

5.1 THE GENERAL DERIVATIVE PRICING

In this section, we develop a general derivative pricing formula. In general, the underlying asset S

might not be treated. Interest rates, for example, are not traded assets while stocks and bonds are.

Suppose S evolve according to the Itô process given by

dS

S
= µdt+ σdZ (5.1.1)

where µ and σ may depend on S and t. Let f1(S, t) and f2(S, t) be prices of two derivatives with

dynamics:
dfi
fi

= µidt+ σidZ, i = 1, 2 (5.1.2)

For simplicity we assume that the derivatives share the same Wiener process, Z, as S. A portfolio

consisting of σ1f1units of the first derivative and σ2f2 units of the second derivative is instantaneously
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riskless because

σ2f2df1 − σ1f1df2 = σ2f2f1(µ1dt+ σ1dZ)− σ1f1f2(µ2dt+ σ2dZ)

= (σ2f2f1µ1 − σ1f1f2µ2)dt (5.1.3)

Equation (5.1.3) does not contain the Wiener process Z. Therefore,

(σ2f2f1µ1 − σ1f1f2µ2)dt = r(σ2f2f1 − σ1f1f2)dt (5.1.4)

or by simplifying we have
µ1 − r
σ1

=
µ2 − r
σ2

≡ λ for some λ (5.1.5)

Where r is the risk-less interest rate. The constant λ is referred to as the market price of risk, which

is independent of the specifics of the derivative. Generally, for any derivative whose value depends on

S and t and evolves according to the Itô process

df

f
= pdt+ qdZ (5.1.6)

must thus satisfy
p− r
q

= λ, or equivalently, p = r + λq (5.1.7)

Using Itô lemma on equation (5.1.2) and putting f = f(S, t) be a derivative that depends on S and t,

we have

p =
1

f

(
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

)
, q =

σ

f

∂f

∂S
(5.1.8)

If we substitute equation (5.1.8) in equation (5.1.7), we get

∂f

∂t
+ (µ− λσ)S

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf = 0 (5.1.9)

In general, suppose that assets S1, S2, . . . , SN pay no dividends and evolve according to the Itô process

dSi
Si

= µidt + σidZ. Let ρij be the correlation between dZi and dZj and f = f(S1, S2, . . . , SN , t) be a

derivative that depends on Si and t. Then equation (5.12.9) becomes

∂f

∂t
+

N∑
i=1

(µi − λiσi)Si
∂fi
∂Si

+
1

2

N∑
i=1

ρijσiσjSiSj
∂2f

∂Si∂Sj
− rf = 0 (5.1.10)

We refer, for example, to ((Wilmott, P. , 1998), Ch.23; (Hull, J., & White, A. , 1990), Ch.19; (Lyuu,

Y.-D. , 2001), Ch.15) for further analysis.
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5.2 ESTIMATION OF DRIFT AND VOLATILITY IN PRICING

FORMULAS

Volatility has been used in financial markets in the assessment of risk. Another measure of risk that

is now popular amongst investment managers is the Value-at-Risk (VaR). This measures the risk that

a portfolio of assets reaches a market value below a contracted target: the amount below target is

the value in VaR and is calculated using a probability distribution for future prices of assets in the

portfolio.

Traditionally, volatility of an underlying asset as used in Black-Scholes world is assumed to be constant

throughout the duration of a derivative contract. In such a case the volatility is estimated by using

historical data in the form of logarithms of the asset returns. This measure of volatility is usually

referred to as historical volatility. It is unconditional: that is, it does not recognize that there are

interesting patterns in asset volatility that develop in response to trading conditions. A large number

of models have been proposed to address some of the shortcomings of the classical Black-Scholes

model (Black, F., & Scholes, M. , 1973; Merton, R. C. , 1973); and for traded options, the response

of volatility to the trading of the underlying asset has been widely explored.

Recent research provides abundant evidence that implied volatility might differ considerably from

historical volatility and contains information about subsequently released volatility ((Xu, X., & Taylor,

S. J. , 1995; Fleming, J. , 1998; Blair, B. J., Poon, S.-H., & Taylor, S. J. , 2010; Malz, A. M. , 2000); and

others). In other more theoretical studies, volatility is assumed to be time-varying but may be taken

to vary deterministically or stochastically. The case of stochastic volatilities has been investigated

by, among others ((Hull, J., & White, A. , 1987; Melino, A., & Turnbull, S. M. , 1990; Heston,

S. L. , 1993)), jump models of volatility by (Bates, D. S. , 1996) and Autoregressive Conditional

Heteroskedasticity (ARCH) / Generalised Autoregressive Conditional Heteroskedasticity (GARCH)

family models by ((Engle, R. F. , 1982; Bollerslev, T. , 1986; Duan, J.-C. , 1995; Heston, S. L., &

Nandi, S. , 2000)). The latter approach to the variation of volatility has become the most dominant

one, and indeed was the reason for Engle’s share in the Nobel Prize for Economics in 2003.
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5.2.1 General stochastic volatility models

These models assume that the asset prices evolve according to the geometric Brownian motion:

dS

S
= µdt+ σdZ1 (5.2.1)

In which the volatility of the underlying asset evolves according to the Itô process given as:

dσ = p(S, σ, t)dt+ q(S, σ, t)dZ2 (5.2.2)

Where increments dZ1 and dZ2 are unit Wiener processes σ1 = σ2 = 1, Z1 ∼ N(0,
√
t), Z2 ∼ N(0,

√
t).

The correlation of these processes remains an unknown a parameter ρ, implicit in the theory, to be

fitted to data in practice.

Let the value of the option with stochastic volatility be given as V (S, σ, t), i.e. V is a function of three

variables. It should be noted that although volatility is not a traded asset, one can hedge an option

with two other contracts, one being the underlying traded asset, and the other the volatility risk. To

illustrate this, we consider a portfolio which contains one option of value C(S, σ, t), a quantity- ∆ of

the underlying asset and quantity-∆1 of another shadow option whose value is denoted as C1(S, σ, t).

Here ∆ is taken as a coefficient and not as a finite difference operator. The hedge portfolio has value

π = C(S, σ, t)− S∆−∆1C1(S, σ, t) (5.2.3)

The change of value of the portfolio from time t to t+ dt is given as

dπ = dC(S, σ, t)− dS∆−∆1dC1(S, σ, t) (5.2.4)

Thus by Itô’s lemma we have

dπ =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ ρσqS

∂2C

∂S∂σ
+

1

2
q2∂

2C

∂σ2

)
dt−

∆1

(
∂C1

∂t
+

1

2
σ2S2∂

2C1

∂S2
+ ρσqS

∂2C1

∂S∂σ
+

1

2
q2∂

2C1

∂σ2

)
dt+(

∂C

∂S
−∆1

∂C1

∂S
−∆

)
dS +

(
∂C

∂σ
−∆1

∂C1

∂σ

)
dσ (5.2.5)

To eliminate randomness in (5.2.5), we choose

∂C

∂S
−∆1

∂C1

∂S
−∆ = 0 and

∂C

∂σ
−∆1

∂C1

∂σ
= 0 (5.2.6)

The result is then given as:

dπ =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ ρσqS

∂2C

∂S∂σ
+

1

2
q2∂

2C

∂σ2

)
dt−

∆1

(
∂C1

∂t
+

1

2
σ2S2∂

2C1

∂S2
+ ρσqS

∂2C1

∂S∂σ
+

1

2
q2∂

2C1

∂σ2

)
dt (5.2.7)
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By arbitrage argument, we have the returns of the portfolio equal to the risk-free rate, i.e.

dπ = rπdt = r(C − S∆−∆1C1) (5.2.8)

That is(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ ρσqS

∂2C

∂S∂σ
+

1

2
q2∂

2C

∂σ2

)
dt−

∆1

(
∂C1

∂t
+

1

2
σ2S2∂

2C1

∂S2
+ ρσqS

∂2C1

∂S∂σ
+

1

2
q2∂

2C1

∂σ2

)
dt = r(C − S∆−∆1C1)dt (5.2.9)

To separate variables, we collect all the C terms on one side and all the C1 terms on the other

∂C
∂t + 1

2σ
2S2 ∂2C

∂S2 + ρσqS ∂2C
∂S∂σ + 1

2q
2 ∂2C
∂σ2 + rS ∂C∂S − rC

∂C
∂σ

=
∂C1
∂t + 1

2σ
2S2 ∂2C1

∂S2 + ρσqS ∂2C1
∂S∂σ + 1

2q
2 ∂2C1
∂σ2 rS

∂C1
∂S − rC1

∂C1
∂σ

(5.2.10)

The left-hand side of (5.2.10) is in terms of C only and can be expressed as a function of independent

variables S,σ,t ( (Wilmott, P. , 1998), 300-301). Thus we have

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ ρσqS

∂2C

∂S∂σ
+

1

2
q2∂

2C

∂σ2
+ rS

∂C

∂S
+ (p− λq)∂C

∂σ
− rC = 0 (5.2.11)

where the separation constant λ(S, σ, t) is known as the market price of (volatility) risk. In particular,

for an underlying asset, if µ is the growth rate of the tradable asset, then (µ − r)/σ is the excess

rate of return (above the risk-free rate) per unit risk- thus it is known as market price of risk and is

also referred to as Shapiro ratio (see (Lyuu, Y.-D. , 2001), 220; (Hull, J., & White, A. , 1990), 498;

(Wilmott, P. , 1998), 301). Under the simplifying assumption that Wiener process Z1 and Z2 are not

correlated then (5.2.11) becomes

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+

1

2
q2∂

2C

∂σ2
+ rS

∂C

∂S
+ (p− λq)∂C

∂σ
− rC = 0 (5.2.12)

This is a partial differential equation that is analogous to Black-Scholes PDE, but accounts through

λ for the shadow option price C1.

From the perspective of pattern recognition for processes the PDEs are candidates for fitting a real

price history in which the volatility risk through λ has exerted an influence on market prices, and has

to be estimated by appropriate methods.
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5.2.2 Using Hough Transforms to Estimate Drift and Volatility

The Hough Transform (HT) and (Duda, R. O., & Hart, P. E. , 1972; Leavers, V. F. , 1992; Toft,

P. A., & Srensen, J. A. , 1996) is a standard tool for extraction of geometrical primitives such as

line-segments and arcs from noisy digital images. The original Hough transform (Hough, P. V. , 1962)

is commonly used to detect straight lines in edge-enhanced images. The transform was generalized

by Duda and Hart (Duda, R. O., & Hart, P. E. , 1972; Leavers, V. F. , 1992; Ballard, D. H. , 1981;

Illingworth, J., & Kittler, J. , 1988) to detect circles, ellipses, and even irregular shapes. Hough

transforms to change the mode of presentation of data set to ease detection of a specific geometric

form being sought. For example, one may want to use Hough Transforms to detect lines, circular arcs

of a specific diameter or any other shape of interest. Hough transforms usually use some parametric

representation to characterize the form or pattern to be detected.

The characteristic relation of the sought-for-feature is back-projected in the space of pattern param-

eters (ai, a2, . . . , an) a pixel (x,y) that lies on a parametric curve of the characteristic relation that is

inconsistent may be represented in the parametric space, if

f ((x, y), (αs)) = 0 (5.2.13)

Holds; the idea of the Hough transform is to convert a pixel position (x,y) into a relation between

pattern parameters αs by fixing (x,y) in (5.2.13) above.

The behaviour of Hough transforms is mathematically predicable when a pixel (x,y) is subjected to

similarity and affine transformations, and thus is especially useful in image processing, where images

suffer a geometrical transformation whenever the vision system moves with respect to its sensed

environment (Ser, P.-K., & Siu, W.-C. , 1995; Yip, R. K., Tam, P. K., & Leung, D. N. , 1995; Yuen,

S. Y., & Ma, C. H. , 1997; Aguado, A. S., Montiel, E., & Nixon, M. S. , 2000)). The simplest Hough

Transforms for line segment recognition works by transforming pixels lying in a tomographic slice

through an image into votes that are replaced in cells of a histogram. The histogram accumulates

that a given slice of the image contains intensity data, and is called an accumulator array.

We adapt the Hough transforms in (5.2.13) to stochastic dynamics by replacing pixel coordinates (x,y)

with sequence of
{
log
(
S(ti)
S(t0)

)
, ti

}
in a window. Quantity S(ti) is the price of security at time ti and

S(t0) is the initial price of the security at t0. This yields (see (Onyango, S. N., & Ingleby, M. , 2006)):

σ2 = f(µj) =
1

χ2
(Ck +Bkµj +Akµ

2
j ) (5.2.14)
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The moments of the current returns in the historical price window with n terms, are represented by

A,B,C, where

Ck =

i(k)+T−1∑
i=i(k)

(
(log((S(ti))/(S(t0)))/

√
(ti − ti−1)

)2

Bk = −2

i(k)+T−1∑
i=i(k)

log((S(ti))/(S(t0))

Ak =

i(k)+T−1∑
i=i(k)

(ti − ti−1) = tn − t0 (5.2.15)

where i(k)is the index of the start of ith window and χ2 is a statistical variate with the standard

distribution of Fischers χ2 with N degrees of freedom (Weatherburn, C. E. , 1949). We begin the

adaptation by replacing ℵ2 by its mean value n, for the sake of simplicity.

(Onyango, S. N., & Ingleby, M. , 2006) demonstrate on the effect of the trend in stock prizes. Stock

bargains are response to randomly matched buyers and sellers. Unmatched buyers can raise their bid

prizes to get a match, and unmatched sellers can lower their offer (asking price). An excess of buyers

drives price up, while an excess of sellers drives the prize down. Raising and lowering of bids and

offers are carried out randomly, so the prices of stock fluctuate randomly. Stock price movements are

random and adjust rapidly to new information as it comes available. During this adjustment the price

moves up and down around some trend line that reflects a current market equilibrium price.

We consider short-term stock price logarithms [log(S(t0)), log(S(t1)), . . . , log(S(tN ))] where log(S(ti))

is assumed at times ti ∈ [0, 1, 2, . . . , N ]. Taking short runs of window-data (window-size n, 0 < n < N)

from sample and of longer duration N, we get f1(µ, σ2), f2(µ, σ2), . . . , fk(µ, σ
2) k windows of n points

when nk = N from each historical window. These functions are converted. To A,B, and C and thence

vote along σ2 quadratic curves of the form given in (5.2.14).

In this section, we have shown that artificial intelligence can be adapted to detect stochastic processes

in real market data to estimate market parameters. This technique was shown by (Onyango, S. N., &

Ingleby, M. , 2006) to be robust and able to communicate complex ideas with tremendous simplicity,

clarity speed, and power. It also supports effective or rapid decision making in the market. This is

important because, in the market, the velocity of change is increasing amidst greater complexity and

chaos, so processing a deep understanding of the market patterns can be critical to decision making

whenever trading is to be undertaken.
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5.3 PRICING MODELS

In this section, we define the costs as in (Merton, R. C. , 1987). For an introduction to the basic

concepts for the pricing of derivative assets and real options under the uncertainty and incomplete

information, we refer to (Bellalah, M., & Jacquillat, B. , 1995) and (Bellalah, M. , 1999). We use an

extension of the analysis in the (Schwartz, E. , 1998, 1997) to account for the effects of incomplete

information as it appears in the models of (Merton, R. C. , 1987) and (Bellalah, M. , 2001). We

also use the aforementioned extension to describe the stochastic behavior of commodity prices in the

presence of mean reversion and shadow costs of incomplete information.

The data used to test the models consist of weekly observations of futures prices for two commod-

ity markets: Ethiopian Coffee Exchange (ECX) and Ivorian Coffee Exchange (ICE). In every case,

ninety-nine futures contracts (i.e. N=99) were used in the estimation. For different commodities and

different time periods, however, different specific futures contracts had to be used since they vary

across commodities and through time for a particular commodity. The interest rate data consisted

in yields on the Kenyan interest rates (Central Bank Rates). These data was used in the models

requiring variable interest rates.

In this study, we assume that future coffee prices are stochastic in nature. We also assume that the

interest rate s follow a stochastic process and therefore use CIR model to generate the interest rates.

The risk-free part of the CIR model are ones generated by stripping the Kenyan coupon bonds and

using the interpolation model developed in chapter 2 to find the risk free rates for the tenures not

availed by the government. We use the Hough Transform to estimate the market drift and volatility

for the futures pricing model.

The models used in this study for futures prices are closed-form solution. We use a three-factor model

for the pricing of the futures; the three factors are the spot price of the commodity, the instantaneous

convenience yield, and the instantaneous interest rate. When the interest rate follows a mean-reverting

process as in (Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. , 1985), the joint stochastic process for the

three factors under the equivalent martingale measure can be written as:

dS = (r − δ)Sdt+ σ1Sdz
∗
1 (5.3.1)

dδ = κ(αˆ− δ)dt+ σ2dz
∗
2 (5.3.2)
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drt = a(m∗rt)dt+ σ3dz
∗
3 (5.3.3)

where α and m∗ refer respectively to the speed of adjustment coefficient and the risk adjusted mean

short rate of the interest rate process. In the context, futures prices must satisfy the following PDE.

1

2
σ2

1S
2FSS +

1

2
σ2

2Fδδ +
1

2
σ2

3Frr+

σ1σ2ρ1SFSδ + σ2σ3ρ2Fδr + σ1σ3ρ3SFSr

+ (r − δ)SFS + [κ(αˆ− δ)]Fδ + a(m∗ − r)Fr − FT = 0 (5.3.4)

Under the terminal boundary condition F (S, δ, r, 0) = S;

Following the analysis in (Schwartz, E. , 1997), the solution is given by:

F (S, δ, r, T ) = Sexp

[
−δ(1− e−κT )

κ
+
r(1− e−αT )

α
+ C(T )

]
(5.3.5)

This can be written in a log form as:

lnF (S, δ, r, T ) = lnS − δ(1− e−κT )

κ
+
r(1− e−αT )

α
+ C(T ) (5.3.6)

where

C(T ) =
(κα̂ + σ1σ2ρ1)[(1− e−κT )− κT ]

κ2
− σ2

2(4(1− e−κT )− (1− e−2κT )− 2κT

4κ3
−

(am∗ + σ1σ3ρ3)[(1− e−aT )− aT ]

a2
− σ2

3(4(1− e−aT )− (1− e−2aT )− 2aT )

4a3
+

σ2σ3ρ2

[
(1− e−κT ) + (1− e−aT )− (1− e−(κ+a)T )

κα(κ+ a)
+
κ2(1− e−aT ) + a2(1− e−κT )− κa2T − aκ2T

κ2a2(κ+ a)

]
(5.3.7)

where α and m∗ refer respectively to the speed of adjustment coefficient and the risk-adjusted mean

short rate of the interest rate process, dz is an increment to a standard Brownian motion, measures

the degree of mean reversion to the long run mean log price where α∗ = α−λ, λ is the market price of

risk and can be interpreted as market volatility; is the instantaneous convenience yield which can be

seen as the cash flow of services to the holder of the commodity rather than the buyer of the futures

contract, λS refers to an information cost for the asset S; r is the risk free rate, the sigmas the market

risks associated with the given products and phi is the correlation matrix between the prices in the

market.

According to both Schwartz and Bellalah, this model can also be used to price forwards and some
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options. The differentiating factor of these models would be the nature of the interest rate. Since in

this particular model the interest rates are stochastic, then the futures prices will not equal to forward

prices.

The calibration method used to estimate the parameters in the models is the L-BGFS-B model which

reduces the number of iterations to be undertaken and also the attractive property of having boundary

conditions. For estimation of drift and volatility, we use Hough Transform and generate the stochastic

rates using CIR.

The use of stochastic rates instead of constant rates ensures that futures prices are not equal to

forward prices. With the assumed risk-adjusted stochastic process for the instantaneous interest rate,

the present value of a unit discount bond payable at time T when the interest rate is r is given by (see

(Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. , 1985)):

B(r, T ) =
2(eγ(T − r)− 1)

(γ + κ+ λ)(eγ(T − r)− 1) + 2γ
(5.3.8)

The prices generated using this equation are compared with the prices from stripping the bonds

(which in this case indicates observed market prices of discount bonds) to determine how appropriate

the method is.
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5.4 RESULTS AND DISCUSSION

5.4.1 Generated Spot Rates

Table 5.1: Kenyan Bond Tenures

Kenyan Bond Tenures B Short Rate, r Long Rate, R

1 0.906005 0.110856 0.056916

2 1.646151 0.086423 0.051075

5 3.140629 0.092459 0.052518

7 3.728693 0.086499 0.051093

10 4.256073 0.054171 0.043365

15 4.64573 0.660614 0.041866

20 4.781058 0.544267 0.041397

30 4.844209 0.366483 0.040878
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5.4.2 Interpolated Spot Rates

We use the interpolation method developed in the thesis to generate rates for the tenures not presented

in Table 5.2 below.

Table 5.2: Short rates and long rates

Time(years) Short Rate, r Long Rate , R

0 0.19 0.07583581

0.25 0.165441135 0.069964941

0.5 0.1542443 0.067288305

0.75 0.138987475 0.063641117

1 0.110856292 0.056916275

1.25 0.101738221 0.054736574

1.5 0.102978684 0.05503311

1.75 0.107473232 0.056107545

2 0.0864235 0.051075545

2.25 0.087449043 0.051320704

2.5 0.079789168 0.049489588

2.75 0.0711277 0.047419039

3 0.074532756 0.048233028

3.25 0.081462153 0.049889521

3.5 0.06677602 0.046378758

3.75 0.068483269 0.04678688

4 0.073452557 0.047974803

4.25 0.077519586 0.048947038

4.5 0.094286071 0.052955115

4.75 0.091815666 0.052364558

5 0.092459676 0.05251851

5.25 0.093702882 0.052815702

5.5 0.090007541 0.05193232

5.75 0.094845644 0.053088883

6 0.096758688 0.053546202

90



Time(years) Short Rate, r Long Rate , R

6.25 0.086231132 0.051029559

6.5 0.093325978 0.052725603

6.75 0.097635338 0.053755768

7 0.086499504 0.051093714

7.25 0.08862438 0.051601672

7.5 0.086484652 0.051090163

7.75 0.069573522 0.047047509

8 0.06892234 0.046891842

8.25 0.074599898 0.048249078

8.5 0.065524853 0.046079662

8.75 0.067917434 0.04665161

9 0.053447548 0.043192547

9.25 0.055024574 0.04356954

9.5 0.056230414 0.0438578

9.75 0.056699141 0.04396985

10 0.054171291 0.04336556
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5.4.3 Futures Pricing Calibrated Results

Table 5.3: Calibrated parameter values

Periods 1/15/05-5/16/12

Contracts F1, F3, F5, F7, F9

Number of observations 347

µ 0.326 (0.0110)

k 1.156 (0.041)

α 0.248 (0.098)

σ1 0.274 (0.012)

σ2 0.280 (0.017)

σ3 0.281 (0.016)

ρ1 0.818 (0.020)

λ 0.256 (0.0114)

ρ2 0.0621 (0.0124)

We use L-BFGS-B algorithm to calibrate the parameters above. With the parameters calculated in

Table 5.3 above, we are then in a position to calculate the price of the Futures. The bracketed values

are the error terms. The relatively high error margins are explained by the use of Brownian motion

in pricing, which is not completely reflective of the movement of prices in the markets from which we

got the data, but it is nevertheless adequate.

5.4.4 Analysis of the Coffee Futures Data

We look at different methods of analysis taking into account the non-linear nature of our data. The

methods used include Correlation analysis with time lags and Frechet distance. The reason for the

time lags is because we foresee a situation where the market would take longer to react to information,

and thus account for the delay.

5.4.4.1 Correlation analysis with time lags

The following results of the correlation with time lags (up to lag 7) between ECX washed prices, ECX

unwashed prices and ICE futures prices in comparison with the thesis futures pricing model’s prices
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are shown in the table below. They were generated using R programming, and the codes and the

output can be found in the appendices section (Appendix B).

Table 5.4: Correlation of the Coffee Futures Data with Time Lags (Up to Lag 7)

LAGS AUTO CORRELATION

THESIS FUTURES PRICING MODEL ECX WASHED ECX UNWASHED ICE FUTURES

1 0.716 0.781 0.929

2 0.579 0.737 0.860

3 0.571 0.699 0.809

4 0.555 0.674 0.780

5 0.449 0.663 0.757

6 0.370 0.614 0.735

7 0.433 0.553 0.714

It is evident that Ivory Coffee Exchange futures prices are highly correlated with the thesis futures

pricing model prices.

5.4.4.2 Frechet Distance

Frechet distance is a measure of the similarity between curves that takes into account the location

and order of the points along the curves. Let S be a metric space. A curve A in S is a continuous

map from the unit interval into S, i.e. A : [0, 1]→ S. A reparameterization α of [0, 1] is a continuous,

non-decreasing, surjection α : [0, 1]→ [0, 1]. Let A and B be two given curves in S. Then, the Frechet

distance between A and B is defined as the infimum over all reparameterizations α and β of [0, 1] of

the maximum over all t ∈ [0, 1] of the distance in S between A(α(t)) and B(β(t)). In mathematical

notation, the Frechet distance F (A,B) is defined by:

F (A,B) =
inf

(α, β)

max

(t ∈ [0, 1])
{d (A(α(t)), B(β(t)))} (5.4.1)

where d is the distance function of S.

The results for Frechet distance were generated using R programming as shown in the table below.
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Table 5.5: Frechet Distance for the Interest Rates Data

KENYA FRECHET DISTANCE

BRAZIL ETHIOPIA IVORY COAST

13.00839 4.113821 1.40443

The results above show that curves generated by ICE futures and the thesis futures pricing model

have the shortest distance, which means that they are more similar to each other compared to the

distance between the curves generated by the ECX data and thesis model.

5.5 CONCLUSION

In this Chapter estimated the parameter of Futures pricing model by applying findings by (Onyango,

S. N., & Ingleby, M. , 2006) to calculate grey-scale votes in each cell within the accumulator array. This

enables us to retrieve the drift and volatility of the price data. In conjunction with the interpolation

model, we were able to generate the risk-free rates which we incorporated into the stochastically

driven CIR model; the stochastic rates generated were then used in the pricing model, the parameters

of which were estimated using L-BFGS-B, thereby making it possible for us to price coffee futures.

(See Appendix A).

The results show that the model generated from this thesis is closely related to the observed market

prices from Ivorian Futures exchange. The same conclusion is arrived at when using Frechet distance

as a comparison tool, indicating that the model used can be relied upon to predict future prices of

the futures traded in the exchange.

94



Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 THESIS CONCLUSIONS

The main intention of this study was to develop a zero coupon yield curve (ZCYC) for Nairobi

Securities Exchange (NSE) and an associated model for pricing coffee futures that are to be introduced

in the Kenyan market. This modeling task required:

• The existence of zero coupon bonds in the market;

• Continuous flow of data from the market; and

• Historical prices of coffee futures,

The required information was neither adequate nor available in the market because only coupon bonds

are traded: zero coupon bonds are not traded at all. To solve this, we stripped the coupon bonds

to create hypothetical zero-bond or risk free rates. Secondly, the bonds available for trade had only

specific, European-type, maturities: 1, 2, 3, 4, 5, 7, 10, 15, 20, 25 and 30 years, and there is no

information on several tenures. Therefore, it was necessary for us to interpolate the data available

so that we could estimate the rates for the missing maturities and construct a yield curve. Careful

selection of interpolation technique had to be done, which is a significant part of this study.

In relation to interpolation, novel aspects covered in this thesis are two:

1. In the literature, there was a general weakness in the interpolation methods in lacking differ-

entiability, especially at the knot points. In this study, we estimated forward rates from given

spot rates, a process which required differentiation, using numerical differentiation technique.

We call this the operator method.

2. We also developed a new interpolation method which removes the non-differentiability at the

knot points by side stepping the monotonicity constraint set by Hyman, which was set to facili-

tate using of Fritsch Butland algorithm to estimate the parameters and at the same time avoid

negative rates. In this study, we decided to relax this constraint given that negative rates are
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actually being applied in different parts of the world. When compared to the current interpola-

tion method, the function developed in this thesis performed the best when applied to current

Kenyan bond data from NSE.

To compare the interpolation methods, we analyzed different interpolation methods by using test on

stability, where we tested how perturbation at a point in a curve affected other points in the curve.

We sampled three models: the model currently applied at the Johannesburg Securities exchange when

tenures are missing from data, the monotone convex interpolation on r(t)t, the operator method

and the thesis interpolation method. We tested the stability of both the interpolated spot rates and

forward rates. Using monotone preserving interpolation on r(t)t produced a mean of 26.52% and

28.86%, and a standard deviation of 2.86 and 11.93 for spot rates and forward rates respectively.

The operator form produced a mean of 19.27% and 23.84%, and a standard deviation of 1.34 and

7.74 for spot rates and forward rates respectively. The thesis model produced a mean of 19.27% and

20.06%, and a standard deviation of 1.34 and 3.82 for spot rates and forward rates respectively. For

the latter two methods, they produced the same results for spot rates because they were using the

same interpolation function to generate the spot rates. However, when determining the forward rates,

we used different methods. Comparing these results with the average of Kenya Central Banks lending

rate and market rates (19.5-23%), we conclude that the model generated by this thesis produces rates

that are reflective of the practical rates. The operator form performs better also compared to the

monotone preserving interpolation on r(t)t method.

Zero coupon yield curves can also be generated using parametric models. Many studies have been

covered in establishing the best parametric models for risk free rates generation. In this study, we

chose the most acclaimed three models: (Rezende, R. B. , 2011; Nelson, C. R., & Siegel, A. F. , 1987;

Svensson, L. E. , 1994). We compare the models in terms of accuracy in pricing back the financial

instruments, in this case the bonds, and smoothness. In terms of accuracy, we see that (Rezende,

R. B. , 2011) performs the best with an accuracy of 97.38%, compared to (Svensson, L. E. , 1994)

and (Nelson, C. R., & Siegel, A. F. , 1987) which have 96.93% and 96.54% respectfully. In terms

of smoothness, Nelson-Siegel performs the best with smoothness value of 4.9822 ? 10−6, compared to

(Svensson, L. E. , 1994) and (Rezende, R. B. , 2011) which have smoothness values of 6.3840 ? 10−6

and 10.7467 ? 10−6. Note that the smaller the smoothness value the smoother the curve. This result

is consistent with other studies which have always shown that Nelson-Siegel performs better than the

other models in its class. This is explained by the over-parametization of the newer models, which

make them less smooth. In this category, we conclude that (Nelson, C. R., & Siegel, A. F. , 1987) is
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the best parametric model for generating the ZCYC for the NSE, despite the other two models having

a higher accuracy.

In support of our accuracy findings, the Bank of International Settlements (2005), which reports on

how central banks around the world calculate the ZCYC, has reported that central banks around the

world , when determining monetary policy , do not typically require yield curve models that price

back all the inputs exactly. Instead of 100% accuracy; 95% and above is deemed as adequate. We

see that (Nelson, C. R., & Siegel, A. F. , 1987) Model has 96.54% accuracy level, which is above the

required 95%.

We then compare the best parametric model with the best interpolation method. In this case, we

compare the two in terms of both the accuracy of pricing back the input instrument and smoothness.

We find that (Nelson, C. R., & Siegel, A. F. , 1987) performs better compared to the thesis interpolation

model, with an accuracy of 96.54% compared to the thesis models 94.93%, and smoothness value of

4.9822 ? 10−6 compared to the thesis interpolation model which has 10.75 ? 10−6. After considering

all the factors at hand, we come to a conclusion that the parametric model (Nelson-Siegel) is the

slightly better than the model suggested by this thesis. However, we would like to point out that

the decision on whether to use parametric models or spline-based methods to generate the yield curve

depends on the intended use of the yield curve. Parametric methods are very popular amongst Central

Banks. This is because Central banks typically do not require yield curves the prices back all inputs

exactly, when determining monetary policy, and they find parametric methods easier to implement as

compared to the spline models. On the other hand, Investment Bankers usually prefer spline-based

models because parametric models might not completely reflect the information on the ground as

compared to the spline models. For this reason, we use the interpolation method suggested in this

thesis for the purpose of pricing the coffee futures, which has been shown to perform better than

existing spline-based interpolation methods. Our method also offers the advantage of robustness in

dealing with curves which suffer a sudden change of trend in response to events causing a change in

market sentiment.

To develop a pricing model was a challenge because not only does the NSE not trade in coffee futures;

coffee is actually not traded there as a commodity at all. The only available NSE data was the coffee

beans prices from the auctions, we therefore had to look for alternative sources of data for the coffee

commodity prices and futures. To found Nairobi auction prices on a traded commodity framework,

we relate them to data from guide countries that grow coffee and at the same time trade in coffee
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futures. The countries we consider as guides of this nature are: Ethiopia, Cote dIvoire (Ivory Coast)

and Brazil, and we relate their economies to that of Kenya by fairly crude interest-rate comparisons.

The basis of comparison that we use is correlation analysis and Frechet distance.

In correlation analysis, the country which correlates most strongly with the Kenyan economy is taken

as the best guide to starting an eventual commodity exchange price for Kenya. In problem formulation

section 1.2 of the thesis, we consider instantaneous correlation of bank rates and also correlations with

a time lag because the economic conditions driving auction bidding in Nairobi may well be those

prevailing in the guide market at an earlier date. The results, over a range of plausible time-lags, were

consistent in showing that data from Ivory Coast provides a better guide than those from the other

two economies.

Seeing as we are dealing with comparison between the interest rate curves, we also used Frechet

distance. This is a measure of similarity between two curves. It is defined as the minimum cord-

length sufficient to join a point traveling forward along one curve and one traveling forward along the

other curve, although the rate of travel for either point may not necessarily be uniform. The shorter the

distance the closely related the curves are. From our analysis, Frechet distance comparison strongly

supports Ivory Coasts interest rates as being more closely related to Kenyas interest rates than those

of the other two countries, Brazil and Ethiopia.

Having concluded that Ivory Coasts coffee futures data was most suitable for pricing Kenyas coffee

futures, we settled on using a simple variation of GBM, used by (Bellalah, M. , 1999; Bellalah, M., &

Jacquillat, B. , 1995) because they price asset derivatives and real options under the uncertainty and

incomplete information. This is a characteristic of emerging markets, NSE being one of them. In our

pricing, we use an extension of the analysis in the (Schwartz, E. , 1998, 1997) to account for the effects

of incomplete information as it appears in the models of (Bellalah, M. , 2001; Merton, R. C. , 1987).

We also use the aforementioned extension to describe the stochastic behavior of commodity prices in

the presence of mean reversion and shadow costs of incomplete information. The implications of the

models are studied with respect to the valuation of financial and real assets. The parameters in the

models of (Bellalah, M. , 2001; Merton, R. C. , 1987) using The L-BFGS-B algorithm by (Richard,

L., & Burden, J. , 1988) is a standard method for solving large instances of
min

x ∈ Rn
F (x) when F is

a smooth function, typically twice differentiable with respect to the parameter of choice.

However, we estimated the drift and volatility from Ivorian futures prices data, using the Hough
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Transform, an artificial intelligence pattern extraction method. We used the method suggested by

(Onyango, S. N., & Ingleby, M. , 2006) to calculate grey-scale votes in each cell within the accumulator

array. This is accomplished by using the χ2 distribution to get the probability that the voting curve

for window k in a price history passed through σ2 − µ cell corresponding to σ2
j and µj . The grey

voting technique is also used to simulate Ivorian coffee futures prices and evaluate the weights of votes

of each cell. These voting weights are then accumulated in a 3-dimensional accumulator array. The

cell curves pass through it. The corresponding values µ and σ2 give the estimates of the mean rate of

return and square of volatility of the underlying simulated asset prices respectively.

We find that with constant N and λ, the number of glitch points with noise (v=13) after which

the values of the parameter estimate change is 8% of the total number of simulated asset prices.

This shows that the transform is robust against glitches 8% data points (depending on size λ of the

inaccuracy). This technique was shown by (Onyango, S. N., & Ingleby, M. , 2006) to be robust and able

to communicate complex ideas with tremendous simplicity, clarity speed and power. It also supports

effective or rapid decision making in the market suffering an unexpected change of sentiment. This

is important because in the market, velocity of change is increasing amidst greater complexity and

chaos, so processing a deep understanding of the market patterns can be critical to decision making

whenever trading is to be undertaken. The futures market that we seek to serve is not free from glitch

noise and sentiment shifts.

6.2 RECOMMENDATIONS FOR FURTHER STUDIES

This study has used linear trending univariate stochastic models for simplicity. A more comprehensive

multivariate approach should be used where Kenyan data could be used alongside data from other

markets. This research could be helpful for a market like Integrated East African market, where we

see cross-trading among the East African securities markets. The results could be used in portfolio

pricing and comparison, and also in establishing hedging positions using multiple derivative products.

The spline method suggested is still neither ideally accurate nor smooth as it should be. This means

that there is need to improve the spline method suggested in this thesis, so as to improve on its

accuracy which is at 94.93%. Internationally acceptable accuracy level is 95%.

In pattern recognition method applied in estimating the market parameters, the adaptation of the

Hough Transform, though amply demonstrated, needs to be studied further. The method is able to
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deal with non-linearities such as logistic effects in place of the linear part of the stochastic models.

It is also able to deal with vector asset price models that allow correlations between asset prices -

particularly important where there are sector drags and contagion effects, possibly important also if

comparing coffee futures at different exchanges around the world more thoroughly than in our search

for a guide market such as Ivory Coast’s.
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APPENDICES

APPENDIX A: THE L-BFGS-B ALGORITHM

A.1 Introduction

The problem addressed is to find a local minimizer of the non-smooth minimization problem.

min

x ∈ Rn
f(x)

(A1)

s.t.li ≤ xi ≤ ui

i = 1, . . . , n

where f : Rn → R is continuous but not differentiable anywhere and n is large. li and ui are

respectively an upper limit and lower limit parameters. f(x) is NLS (Non Linear Schrdinger) function

of residual functions of Nelson-Siegel model class and x is a parameter of the Nelson-Siegel model

class.

The L-BFGS-B algorithm by (Richard, L., & Burden, J. , 1988) is a standard method for solving large

instances of
min

x ∈ Rn
f(x) when f is a smooth function, typically twice differentiable.

The name BFGS stands for Broyden, Fletcher, and Goldfarb and Shanno, the originators of the BFGS

quasi-Newton algorithm for unconstrained optimization discovered and published independently by

them in 1970 (Broyden, C. G. , 1970; Fletcher, R. , 1970; Goldfarb, D. , 1970; Shanno, D. F. , 1970).

This method requires storing and updating a matrix which approximates the inverse of the Hessian

∇2f(x) and hence requires O(n2) operations per iteration. According to (Nocedal, J. , 1980), the

L-BFGS variant where the L stands for ”Limited-Memory” and also for ”Large” problems, is based

on BFGS but requires only O(n) operations per iteration, and less memory. Instead of storing the

n × n Hessian approximations, L-BFGS stores only m vectors of dimension n, where m is a number

much smaller than n. Finally, the last letter B in L-BFGS stands for bounds, meaning the lower and

upper bounds li and ui. The L-BFGS-B algorithm is implemented in a FORTRAN software package,

according to (Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. , 1994). We discuss how to modify the

algorithm for non-smooth functions.
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A.2 BFGS

BFGS is standard tool for optimization of smooth functions. It is a line search method. The search

direction is of type = −Bk∇f(xk) where Bk approximation to the inverse Hessian of f 1. This kth step

approximation is calculated via the BFGS formula.

Bk+1 =

(
I − skyk

T

ykT sk

)
Bk +

(
I − yksk

T

ykT sk

)
+
sksk

T

ykT sk

(A2)

where yk = ∇f(xk+1) − ∇f(xk) and sk = xk+1 − xk. BFGS exhibits super-linear convergence on

generic problems but it requires O(n2) operations per iteration, according to (Wright, S., & Nocedal,

J. , 1999).

In the case of non-smooth functions, BFGS typically succeeds in finding a local minimizer. However,

this requires some attention to the line search conditions. This conditions are known as the Armijo

and weak Wolfe line search conditions and they are a set of inequalities used for computation of an

appropriate step length that reduces the objective function ”sufficiently”.

A.3 L-BFGS

L-BFGS stands for Limited-memory BFGS. This algorithm approximates BFGS using only a limited

amount of computer memory to update an approximation to the inverse of the Hessian of f. Instead

of storing a dense n×n matrix, L-BFGS keeps a record of the last m is a small number that is chosen

in advance. For this reason the first m iterations of BFGS and L-BFGS produce exactly the same

search directions if the initial approximation of B0 is set to the identity matrix.

Because of this construction, the L-BFGS algorithm is less computationally intensive and requires

only O(mn) operations per iteration. So it is much better suited for problems where the number of

dimensions n is large.

1When it is exactly the inverse Hessian this method is known as Newton method. Newton‘s method has quadratic

convergence but requires the explicit calculation of the Hessian at every step
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A.4 L-BFGS-B

Finally L-BFGS-B is an extension of L-BFGS. The B stands for the inclusion of Boundaries. L-

BFGS-B requires two extra steps on top of L-BFGS. First, there is a step called gradient projection

that reduces the dimensionality of the problem. Depending on the problem, the gradient projection

could potentially save a lot of iterations by eliminating those variables that are on their bounds at

the optimum reducing the initial dimensionality of the problem and the number of iterations and

running time. After this gradient projection comes to second step of subspace minimization. During

the subspace minimization phase, an approximate quadratic model of (A1) is solved iteratively in a

similar way that the original L-BFGS algorithm is solved. The only difference is that the step length

is restricted as much as necessary in order to remain within the l,u-box defined by equation (A1).

A.5 Gradient Projection

The L-BFGS-B algorithm was designed for the case when n is large and f is smooth. Its first step

is the gradient projection similar to the one outlined in (Conn, A. R., Gould, N. I., & Toint, P. L. ,

1988) and (Mor, J. J., & Toraldo, G. , 1989), which is used to determine an active set corresponding

to those variables that are on either their lower or upper bounds. The active set is defined at point

x∗ is:

A(x∗) = {i ∈ {1, . . . , n}|x∗i = liV x
∗
i = ui}

(A3)

Working with this active set is more efficient in large scale problems. A pure line search algorithm

would have to choose to step length short enough to remain within the box defined by li and ui. So

if at the optimum, a large number B of variables are either on the lower or upper bound, as many as

B of iterations might be needed. Gradient projection tries to reduce this number of iterations. In the

best case, only one iteration is needed instead of B.

Gradient projections works on the linear part of the approximation model:

mk(x) = f(xk) +∇f(xk)
T (x− xk) +

(x− xk)THk(x− xk)
2

(A4)
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whereHk is a L-BFGS-B approximation to the Hessian ∇2f stored in the implicit way defined by

L-BFGS.

In this first stage of the algorithm a piece-wise linear path starts at the current point xk in the

direction-∇f(xk). Whenever this direction encounters one of the constraints the path runs corners in

order to remain feasible. The path is nothing but feasible piece-wise projection of the negative gradient

direction on the constraint box determined by the values l and u. At the end of this stage, the value of

x that minimizes mk(x) restricted to this piece-wise gradient path is known as the ”Cauchy point”xc.

From this description of the estimation and optimization, following steps can be summarized:

• Find the residual function (r) of each model.

• Find NLS estimation, i.e. f(xi) = 1
2

∑p
i=1[xi]

2, of each model.

• Find the p× p matrix value forB1 = I, p is the number of parameters estimated in each model.

• Find the initial value of parameter vector with rank p × 1, p is the number of parameters

estimated in each model.

• Find gradient from step 2 with every parameter in models. e.g. ∇f(xi)i.

• Substitute the initial value of the parameter (step 3) to gradient of step 5 with result. e.g.∇f(x1).

• Find the value of p1.

Find the value off(x1) so it will obtain of d1 and s1.

APPENDIX B: DATA, CODES AND CURVES

B.1 Interest Rates Data and Codes

B.1.1 Brazil

The following is the analysis of the interest rates of Brazil using correlation with time lags and Frechet distance

methods:
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1. Correlation

R codes:

Brazil < −c(45, 42, 42, 39.5, 34, 32, 32, 29.5, 27, 23.5, 23.5, 22, 21, 21, 19.5, 19.5, 19.5, 19, 19, 19, 19, 19, 19, 19,

18.5, 18.5, 18.5, 18.5, 17.5, 17.5, 17, 16.5, 16.5, 16.5, 16.5, 16.5, 16.5, 15.75, 15.75, 15.25, 15.25, 15.25,

15.75, 15.75, 16.25, 16.25, 16.75, 16.75, 18.25, 18.25, 19, 19, 19, 19, 19, 19, 19, 19, 18.75, 18.75, 18.5, 18.5,

18.5, 18.5, 18.5, 18, 18)

Kenya < −c(21.76, 21.63, 23.1, 24.08, 22.09, 21.53, 21.61, 21.44, 21.42, 21.02, 20.35, 19.44, 18.45, 19.69, 26.2,

27.15, 26.78, 26.36, 26.28, 26.33, 26.74, 26.98, 26.38, 25.48, 24.67, 23.74, 22.47, 20.59, 17.66, 12.56, 10.7, 8.95,

8.84, 9.03, 9.63, 11.44, 14.47, 14.84, 15.78, 17.63, 18.14, 19.97, 20.3, 14.84, 11.28, 12.44, 11.22, 10.47, 9.9

, 9.25, 10.36, 10.65, 11.17, 12.9, 14.76, 15.3, 14.97, 12.9, 10.52, 12.07, 12.87, 12.84, 12.39, 11.63, 11.5, 11.01, 10.85)

Brazil Kenya<-data.frame(Brazil,Kenya)

acf<-acf(Brazil Kenya,lag.max=7,plot=F)

acf

plot(acf)

Output:

Autocorrelations of series Brazil Kenya, by lag

, , Brazil

Brazil Kenya

1.000 (0) 0.389 (0)

0.883 (1) 0.397 (−1)

0.777 (2) 0.404 (−2)

0.658 (3) 0.400 (−3)

0.545 (4) 0.383 (−4)

0.464 (5) 0.383 (−5)

0.388 (6) 0.394 (−6)

0.303 (7) 0.408 (−7)

, , Kenya
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Brazil Kenya

0.389 (0) 1.000 (0)

0.329 (1) 0.946 (1)

0.277 (2) 0.855 (2)

0.226 (3) 0.757 (3)

0.178 (4) 0.652 (4)

0.141 (5) 0.555 (5)

0.108 (6) 0.461 (6)

0.076 (7) 0.369 (7)

2. Frechet Distance

R codes:

Brazil < −c(45, 42, 42, 39.5, 34, 32, 32, 29.5, 27, 23.5, 23.5, 22, 21, 21, 19.5, 19.5, 19.5, 19, 19,

19, 19, 19, 19, 19, 18.5, 18.5, 18.5, 18.5, 17.5, 17.5, 17, 16.5, 16.5, 16.5, 16.5, 16.5, 16.5, 15.75, 15.75,

15.25, 15.25, 15.25, 15.75, 15.75, 16.25, 16.25, 16.75, 16.75, 18.25, 18.25, 19, 19, 19, 19, 19, 19, 19, 19, 18.75,

18.75, 18.5, 18.5, 18.5, 18.5, 18.5, 18, 18)

Kenya < −c(21.76, 21.63, 23.1, 24.08, 22.09, 21.53, 21.61, 21.44, 21.42, 21.02, 20.35, 19.44,

18.45, 19.69, 26.2, 27.15, 26.78, 26.36, 26.28, 26.33, 26.74, 26.98, 26.38, 25.48, 24.67, 23.74, 22.47, 20.59,

17.66, 12.56, 10.7, 8.95, 8.84, 9.03, 9.63, 11.44, 14.47, 14.84, 15.78, 17.63, 18.14, 19.97, 20.3, 14.84,

11.28, 12.44, 11.22, 10.47, 9.9, 9.25, 10.36, 10.65, 11.17, 12.9, 14.76, 15.3, 14.97, 12.9, 10.52, 12.07,

12.87, 12.84, 12.39, 11.63, 11.5, 11.01, 10.85)

brazil<-sample(Brazil,10,replace=TRUE)

brazil

kenya<-sample(Kenya,10,replace=TRUE)

kenya

distFrechet(Kenya,Brazil,kenya,brazil)

Output:

Result = 13.00839

[1]13.00839

B.1.2 Ethiopia

The following is the analysis of the interest rates of Ethiopia using correlation with time lags and Frechet

distance methods:
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1. Correlation

R codes:

Ethiopia < −c(10, 10, 10, 10, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6)

Kenya < −c(21.76, 21.63, 23.1, 24.08, 22.09, 21.53, 21.61, 21.44, 21.42, 21.02, 20.35, 19.44, 18.45, 19.69, 26.2,

27.15, 26.78, 26.36, 26.28, 26.33, 26.74, 26.98, 26.38, 25.48, 24.67, 23.74, 22.47, 20.59, 17.66, 12.56, 10.7, 8.95,

8.84, 9.03, 9.63, 11.44, 14.47, 14.84, 15.78, 17.63, 18.14, 19.97, 20.3, 14.84, 11.28, 12.44, 11.22, 10.47,

9.9, 9.25, 10.36, 10.65, 11.17, 12.9, 14.76, 15.3, 14.97, 12.9, 10.52, 12.07, 12.87, 12.84, 12.39, 11.63, 11.5,

11.01, 10.85)

Ethiopia Kenya<-data.frame(Ethiopia,Kenya)

acf<-acf(Ethiopia Kenya,lag.max=7,plot=F)

acf

plot(acf)

Output:

Autocorrelations of series Ethiopia Kenya, by lag

, , Ethiopia

Ethiopia Kenya

1.000 (0) 0.433 (0)

0.824 (1) 0.453 (−1)

0.649 (2) 0.470 (−2)

0.473 (3) 0.476 (−3)

0.297 (4) 0.469 (−4)

0.285 (5) 0.479 (−5)

0.274 (6) 0.488 (−6)

0.262 (7) 0.489 (−7)

, , Kenya

Ethiopia Kenya

0.433 (0) 1.000 (0)

0.349 (1) 0.946 (1)

0.273 (2) 0.855 (2)

0.208 (3) 0.757 (3)

0.141 (4) 0.652 (4)

0.112 (5) 0.555 (5)

0.100 (6) 0.461 (6)

0.092 (7) 0.369 (7)
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2. Frechet Distance

R codes:

Ethiopia < −c(10, 10, 10, 10, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6)

Kenya < −c(21.76, 21.63, 23.1, 24.08, 22.09, 21.53, 21.61, 21.44, 21.42, 21.02, 20.35,

19.44, 18.45, 19.69, 26.2, 27.15, 26.78, 26.36, 26.28, 26.33, 26.74, 26.98, 26.38, 25.48, 24.67, 23.74, 22.47, 20.59,

17.66, 12.56, 10.7, 8.95, 8.84, 9.03, 9.63, 11.44, 14.47, 14.84, 15.78, 17.63, 18.14, 19.97, 20.3, 14.84,

11.28, 12.44, 11.22, 10.47, 9.9, 9.25, 10.36, 10.65, 11.17, 12.9, 14.76, 15.3, 14.97, 12.9, 10.52, 12.07,

12.87, 12.84, 12.39, 11.63, 11.5, 11.01, 10.85)

ethiopia<-sample(Ethiopia,10,replace=TRUE)

ethiopia

kenya<-sample(Kenya,10,replace=TRUE)

kenya

distFrechet(Kenya,Ethiopia,kenya,ethiopia)

Output:

Result = 4.113821

[1]4.113821

B.1.3 Ivory Coast

The following is the analysis of the interest rates of Ethiopia using correlation with time lags and Frechet

distance methods:

1. Correlation

R codes:

Ivory < −c(4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25,

4.25, 4.25, 4.25, 4.25, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3.75, 3.75, 3.75, 3.75, 3.75, 3.75, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5,

3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5,

3.5, 3.5, 3.5, 3.5, 3.5)
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Kenya < −c(21.76, 21.63, 23.1, 24.08, 22.09, 21.53, 21.61, 21.44, 21.42, 21.02, 20.35,

19.44, 18.45, 19.69, 26.2, 27.15, 26.78, 26.36, 26.28, 26.33, 26.74, 26.98, 26.38, 25.48, 24.67, 23.74, 22.47,

20.59, 17.66, 12.56, 10.7, 8.95, 8.84, 9.03, 9.63, 11.44, 14.47, 14.84, 15.78, 17.63, 18.14, 19.97, 20.3,

14.84, 11.28, 12.44, 11.22, 10.47, 9.9, 9.25, 10.36, 10.65, 11.17, 12.9, 14.76, 15.3, 14.97, 12.9, 10.52,

12.07, 12.87, 12.84, 12.39, 11.63, 11.5, 11.01, 10.85)

Ivory Kenya<-data.frame(Ivory,Kenya)

acf<-acf(Ivory Kenya,lag.max=7,plot=F)

acf

plot(acf)

Output:

Autocorrelations of series Ivory Kenya, by lag

, , Ivory

Ivory Kenya

1.000 (0) 0.791 (0)

0.966 (1) 0.783 (−1)

0.932 (2) 0.771 (−2)

0.898 (3) 0.749 (−3)

0.863 (4) 0.725 (−4)

0.829 (5) 0.705 (−5)

0.795 (6) 0.687 (−6)

0.752 (7) 0.671 (−7)

, , Kenya

Ivory Kenya

0.791 (0) 1.000 (0)

0.765 (1) 0.946 (1)

0.736 (2) 0.855 (2)

0.702 (3) 0.757 (3)

0.665 (4) 0.652 (4)

0.630 (5) 0.555 (5)

0.592 (6) 0.461 (6)

0.550 (7) 0.369(7)
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2. Frechet Distance

R codes:

Ivory < −c(4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25, 4.25,

4.25, 4.25, 4.25, 4.25, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3.75, 3.75, 3.75, 3.75, 3.75, 3.75, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5,

3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5,

3.5, 3.5, 3.5, 3.5, 3.5)

Kenya < −c(21.76, 21.63, 23.1, 24.08, 22.09, 21.53, 21.61, 21.44, 21.42, 21.02, 20.35,

19.44, 18.45, 19.69, 26.2, 27.15, 26.78, 26.36, 26.28, 26.33, 26.74, 26.98, 26.38, 25.48, 24.67, 23.74, 22.47,

20.59, 17.66, 12.56, 10.7, 8.95, 8.84, 9.03, 9.63, 11.44, 14.47, 14.84, 15.78, 17.63, 18.14, 19.97, 20.3,

14.84, 11.28, 12.44, 11.22, 10.47, 9.9, 9.25, 10.36, 10.65, 11.17, 12.9, 14.76, 15.3, 14.97, 12.9, 10.52,

12.07, 12.87, 12.84, 12.39, 11.63, 11.5, 11.01, 10.85)

ivory<-sample(Ivory,10,replace=TRUE)

ivory

kenya<-sample(Kenya,10,replace=TRUE)

kenya

distFrechet(Kenya,Ivory,kenya,ivory)

Output:

Result = 1.40443

[1]1.40443

B.2 Codes Used in Pricing the Coffee Futures

Using the futures pricing model 3 as deduced in chapter 5, the estimated parameters (generated using CIR

model and the Hough transform), and the closing prices gotten from the Ethiopian Coffee Exchange (ECX)

and the Ivorian Coffee Exchange (ICE), we get the thesis futures pricing model prices for ECX washed, ECX

unwashed and ICE futures respectively as shown in the tables below. The similarities between the curves (ECX

Washed, ECX unwashed and ICE futures, with the thesis futures pricing model) is observed through Frechet

distance and correlation which are generated using R programming.

B.2.1 ECX Washed

The following shows the analysis of the ECX washed prices with the thesis futures pricing model prices. The

analysis methods used include:
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1. Correlation with time lags, and

2. Frechet distance.

For both methods, R programming has been used to generate the results.

1. Correlation

R codes:

Thesis Futures Pricing Model < −c(136.99, 136.80, 134.79, 134.21, 133.48,

129.598, 131.84, 133.87, 130.842, 130.96, 131.08, 131.202, 126.01, 130.44, 129.802, 131.32, 131.44, 131.564,

131.52, 133.25, 132.771, 134.67, 134.75, 134.871, 134.99, 132.49, 128.359, 127.46, 131.15, 134.758,

134.88, 135.00, 134.312, 133.42, 136.51, 141.249, 144.03, 144.16, 144.293, 141.31, 136.64, 139.31, 139.52,

137.63, 137.755, 137.88, 139.82, 139.985, 140.90, 145.11, 145.204, 145.34, 145.47, 148.335, 145.73,

145.57, 147.488, 151.16, 151.30, 151.431, 151.53, 139.42, 137.245, 142.27, 148.34, 148.474, 148.61, 150.84,

150.345, 151.91, 154.32, 156.018, 156.16, 156.30, 157.282, 162.71, 164.76, 160.883, 161.03, 161.17,

161.313, 160.90, 166.28, 165.452, 163.59, 161.61, 161.75, 161.89, 155.75, 156.698, 154.31, 155.90, 155.14,

155.28, 155.42, 155.554, 162.89, 160.27, 158.083)

ECX Washed < −c(137.33, 144.81, 155.37, 155.37, 144.73, 154.43, 149.14, 145.12, 153.53, 153.53, 153.53,

157.78, 153.76, 152.49, 146.03, 162.53, 162.53, 162.53, 159.58, 159.58, 169.61, 149.51, 162.98, 162.98, 162.98,

165.34, 160.36, 175.69, 169.72, 158.95, 158.95, 158.95, 162.34, 153.79, 165.13, 167.65, 163.66, 163.66,

163.66, 162.59, 161.5, 160.88, 164.43, 150.63, 150.63, 150.63, 171.19, 169.11, 161.52, 156.95, 160.72, 160.72,

160.72, 160.4, 164.39, 172.25, 156.46, 171.22, 171.22, 171.22, 159.26, 162.52, 172.29, 182.06, 154.2,

154.2, 154.2, 154.2, 150.31, 142.67, 152.14, 148.78, 148.78, 148.78, 144.27, 146.48, 147.91, 145.32,

145.32, 145.32, 145.32, 149.71, 154.93, 143.75, 137.65, 154.35, 154.35, 154.35, 147.79, 147.79, 125.94, 109.14,

128.19, 128.19, 128.19, 128.19, 151.27, 138.99, 132.18)

ECX Washed Thesis Futures Pricing Model<-data.frame(ECX Washed,Thesis Futures Pricing

Model)

acf<-acf(ECX Washed Thesis Futures Pricing Model,lag.max=7,plot=F)

acf

plot(acf)

Output:

Autocorrelations of series ECX Washed Thesis Futures Pricing Model, by lag

, , ECX Washed
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ECX Washed Thesis Futures Pricing Model

1.000 (0) −0.453 (0)

0.716 (1) −0.415 (−1)

0.579 (2) −0.399 (−2)

0.571 (3) −0.410 (−3)

0.555 (4) −0.376 (−4)

0.449 (5) −0.344 (−5)

0.370 (6) −0.317 (−6)

0.433 (7) −0.265 (−7)

, , Thesis Futures Pricing Model

ECX Washed Thesis Futures Pricing Model

−0.453 (0) 1.000 (0)

−0.483 (1) 0.962 (1)

−0.476 (2) 0.918 (2)

−0.456 (3) 0.880 (3)

−0.479 (4) 0.855 (4)

−0.503 (5) 0.831 (5)

−0.532 (6) 0.810 (6)

−0.576 (7) 0.790 (7)

2. Frechet Distance

R code:

Thesis Futures Pricing Model < −c(136.99, 136.80, 134.79, 134.21, 133.48, 129.598, 131.84, 133.87,

130.842, 130.96, 131.08, 131.202, 126.01, 130.44, 129.802, 131.32, 131.44, 131.564, 131.52, 133.25, 132.771, 134.67,

134.75, 134.871, 134.99, 132.49, 128.359, 127.46, 131.15, 134.758, 134.88, 135.00, 134.312, 133.42, 136.51, 141.249,

144.03, 144.16, 144.293, 141.31, 136.64, 139.31, 139.52, 137.63, 137.755, 137.88, 139.82, 139.985, 140.90, 145.11,

145.204, 145.34, 145.47, 148.335, 145.73, 145.57, 147.488, 151.16, 151.30, 151.431, 151.53, 139.42, 137.245, 142.27,

148.34, 148.474, 148.61, 150.84, 150.345, 151.91, 154.32, 156.018, 156.16, 156.30, 157.282, 162.71, 164.76,

160.883, 161.03, 161.17, 161.313, 160.90, 166.28, 165.452, 163.59, 161.61, 161.75, 161.89, 155.75, 156.698, 154.31,

155.90, 155.14, 155.28, 155.42, 155.554, 162.89, 160.27, 158.083)
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ECX Washed < −c(137.33, 144.81, 155.37, 155.37, 144.73, 154.43, 149.14, 145.12, 153.53, 153.53, 153.53,

157.78, 153.76, 152.49, 146.03, 162.53, 162.53, 162.53, 159.58, 159.58, 169.61, 149.51, 162.98, 162.98, 162.98, 165.34,

160.36, 175.69, 169.72, 158.95, 158.95, 158.95, 162.34, 153.79, 165.13, 167.65, 163.66, 163.66, 163.66, 162.59, 161.5,

160.88, 164.43, 150.63, 150.63, 150.63, 171.19, 169.11, 161.52, 156.95, 160.72, 160.72, 160.72, 160.4, 164.39, 172.25,

156.46, 171.22, 171.22, 171.22, 159.26, 162.52, 172.29, 182.06, 154.2, 154.2, 154.2, 154.2, 150.31, 142.67, 152.14,

148.78, 148.78, 148.78, 144.27, 146.48, 147.91, 145.32, 145.32, 145.32, 145.32, 149.71, 154.93, 143.75, 137.65, 154.35,

154.35, 154.35, 147.79, 147.79, 125.94, 109.14, 128.19, 128.19, 128.19, 128.19, 151.27, 138.99, 132.18)

thesis futures pricing model<-sample(Thesis Futures Pricing Model,10,replace=TRUE)

thesis futures pricing model

ecx washed<-sample(ECX Washed,10,replace=TRUE)

ecx washed

distFrechet(Thesis Futures Pricing Model,ECX Washed,thesis futures pricing model,ecx washed)

Output:

Result = 35.98278

[1]35.98278

Note: Repeating the procedure many times will always give a different value which will always be below

50.

B.2.2 ECX Unwashed

The following shows the analysis of the ECX unwashed prices with the thesis futures pricing model prices.

1. Correlation

R code:

Thesis Futures Pricing Model < −c(136.99, 136.80, 134.79, 134.21, 133.48, 129.598, 131.84, 133.87,

130.842, 130.96, 131.08, 131.202, 126.01, 130.44, 129.802, 131.32, 131.44, 131.564, 131.52, 133.25, 132.771,

134.67, 134.75, 134.871, 134.99, 132.49, 128.359, 127.46, 131.15, 134.758, 134.88, 135.00, 134.312, 133.42, 136.51,

141.249, 144.03, 144.16, 144.293, 141.31, 136.64, 139.31, 139.52, 137.63, 137.755, 137.88, 139.82, 139.985, 140.90,

145.11, 145.204, 145.34, 145.47, 148.335, 145.73, 145.57, 147.488, 151.16, 151.30, 151.431, 151.53, 139.42, 137.245,

142.27, 148.34, 148.474, 148.61, 150.84, 150.345, 151.91, 154.32, 156.018, 156.16, 156.30, 157.282, 162.71, 164.76,

160.883, 161.03, 161.17, 161.313, 160.90, 166.28, 165.452, 163.59, 161.61, 161.75, 161.89, 155.75, 156.698, 154.31,

155.90, 155.14, 155.28, 155.42, 155.554, 162.89, 160.27, 158.083)
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ECX Unwashed < −c(128.74, 126.66, 135.16, 135.16, 135.31, 140.43, 130.06, 131.44, 135.28, 135.28,

135.28, 128.23, 132.87, 135.57, 142.68, 128.46, 128.46, 128.46, 129.05, 129.05, 131.74, 128.92, 129.16, 129.16,

129.16, 132.24, 130.86, 129.81, 130.65, 128.75, 128.75, 128.75, 133.13, 134.44, 134.21, 140.78, 135.2, 135.2,

135.2, 138.63, 140.62, 144.1, 143.78, 145.94, 145.94, 145.94, 149.81, 149.84, 148.54, 151.5, 150.9, 150.9,

150.9, 144.77, 145.38, 145.15, 150.1, 146.6, 146.6, 146.6, 145.64, 147.27, 147.52, 145.52, 145.18, 145.18,

145.18, 151, 148.26, 130.31, 147.09, 146.66, 146.66, 146.66, 145.06, 147.31, 147.69, 151.42, 151.42, 151.42,

151.42, 156.22, 154.51, 155.5, 155.65, 148.9, 148.9, 148.9, 145.49, 138.22, 137.38, 140.02, 136.72, 136.72,

136.72, 136.72, 165.36, 141.76, 146)

ECX Unwashed Thesis Futures Pricing Model<-data.frame(ECX Unwashed,Thesis Futures Pric-

ing Model)

acf<-acf(ECX Unwashed Thesis Futures Pricing Model,lag.max=7,plot=F)

acf

plot(acf)

Output:

Autocorrelations of series ECX Unwashed Thesis Futures Pricing Model, by lag

, , ECX Unwashed

ECX Unwashed Thesis Futures Pricing Model

1.000 (0) 0.708 (0)

0.781 (1) 0.705 (−1)

0.737 (2) 0.702 (−2)

0.699 (3) 0.670 (−3)

0.674 (4) 0.670 (−4)

0.663 (5) 0.668 (−5)

0.614 (6) 0.654 (−6)

0.553 (7) 0.651 (−7)

, , Thesis Futures Pricing Model

ECX Unwashed Thesis Futures Pricing Model

0.708 (0) 1.000 (0)

0.679 (1) 0.962 (1)

0.651 (2) 0.918 (2)

0.638 (3) 0.880 (3)

0.613 (4) 0.855 (4)

0.587 (5) 0.831 (5)

0.565 (6) 0.810 (6)

0.550 (7) 0.790 (7)
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2. Frechet Distance

R code:

Thesis Futures Pricing Model < −c(136.99, 136.80, 134.79, 134.21, 133.48,

129.598, 131.84, 133.87, 130.842, 130.96, 131.08, 131.202, 126.01, 130.44, 129.802, 131.32, 131.44, 131.564,

131.52, 133.25, 132.771, 134.67, 134.75, 134.871, 134.99, 132.49, 128.359, 127.46, 131.15, 134.758,

134.88, 135.00, 134.312, 133.42, 136.51, 141.249, 144.03, 144.16, 144.293, 141.31, 136.64, 139.31, 139.52,

137.63, 137.755, 137.88, 139.82, 139.985, 140.90, 145.11, 145.204, 145.34, 145.47, 148.335, 145.73,

145.57, 147.488, 151.16, 151.30, 151.431, 151.53, 139.42, 137.245, 142.27, 148.34, 148.474, 148.61, 150.84,

150.345, 151.91, 154.32, 156.018, 156.16, 156.30, 157.282, 162.71, 164.76, 160.883, 161.03, 161.17,

161.313, 160.90, 166.28, 165.452, 163.59, 161.61, 161.75, 161.89, 155.75, 156.698, 154.31, 155.90, 155.14,

155.28, 155.42, 155.554, 162.89, 160.27, 158.083)

ECX Unwashed < −c(128.74, 126.66, 135.16, 135.16, 135.31, 140.43, 130.06, 131.44, 135.28, 135.28,

135.28, 128.23, 132.87, 135.57, 142.68, 128.46, 128.46, 128.46, 129.05, 129.05, 131.74, 128.92, 129.16, 129.16, 129.16,

132.24, 130.86, 129.81, 130.65, 128.75, 128.75, 128.75, 133.13, 134.44, 134.21, 140.78, 135.2, 135.2, 135.2, 138.63,

140.62, 144.1, 143.78, 145.94, 145.94, 145.94, 149.81, 149.84, 148.54, 151.5, 150.9, 150.9, 150.9, 144.77, 145.38, 145.15,

150.1, 146.6, 146.6, 146.6, 145.64, 147.27, 147.52, 145.52, 145.18, 145.18, 145.18, 151, 148.26, 130.31, 147.09, 146.66,

146.66, 146.66, 145.06, 147.31, 147.69, 151.42, 151.42, 151.42, 151.42, 156.22, 154.51, 155.5, 155.65, 148.9, 148.9, 148.9,

145.49, 138.22, 137.38, 140.02, 136.72, 136.72, 136.72, 136.72, 165.36, 141.76, 146)

thesis futures pricing model<-sample(Thesis Futures Pricing Model,10,replace=TRUE)

thesis futures pricing model

ecx unwashed<-sample(ECX Washed,10,replace=TRUE)

ecx unwashed

distFrechet(Thesis Futures Pricing Model,ECX Unwashed,thesis futures pricing model,ecx un-

washed)

Output:

Result = 43.51305

[1]43.51305

B.2.3 ICE Futures

The following shows the analysis of the ICE futures prices with the thesis futures pricing model prices.
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1. Correlation

R codes:

Thesis Futures Pricing Model < −c(136.99, 136.80, 134.79, 134.21, 133.48,

129.598, 131.84, 133.87, 130.842, 130.96, 131.08, 131.202, 126.01, 130.44, 129.802, 131.32, 131.44, 131.564,

131.52, 133.25, 132.771, 134.67, 134.75, 134.871, 134.99, 132.49, 128.359, 127.46, 131.15, 134.758,

134.88, 135.00, 134.312, 133.42, 136.51, 141.249, 144.03, 144.16, 144.293, 141.31, 136.64, 139.31, 139.52,

137.63, 137.755, 137.88, 139.82, 139.985, 140.90, 145.11, 145.204, 145.34, 145.47, 148.335, 145.73,

145.57, 147.488, 151.16, 151.30, 151.431, 151.53, 139.42, 137.245, 142.27, 148.34, 148.474, 148.61, 150.84,

150.345, 151.91, 154.32, 156.018, 156.16, 156.30, 157.282, 162.71, 164.76, 160.883, 161.03, 161.17,

161.313, 160.90, 166.28, 165.452, 163.59, 161.61, 161.75, 161.89, 155.75, 156.698, 154.31, 155.90, 155.14,

155.28, 155.42, 155.554, 162.89, 160.27, 158.083)

ICE Futures < −c(160.50, 168.75, 168.9, 168.90, 168.10, 163.15, 165.85, 168.25, 164.3, 164.3, 164.3, 164.3,

157.65, 163.05, 162.1, 163.85, 163.85, 163.85, 163.65, 165.65, 164.9, 167.1, 167.05, 167.05, 167.05, 163.8, 158.55,

157.3, 161.7, 166, 166, 166, 165, 163.75, 167.4, 173.05, 176.3, 176.3, 176.3, 172.5, 166.65, 169.75, 169.85, 167.4,

167.4, 167.4, 169.6, 169.65, 170.6, 175.55, 175.5, 175.5, 175.5, 178.8, 175.5, 175.15, 177.3, 181.55, 181.55, 181.55,

181.5, 166.85, 164.1, 169.95, 177.05, 177.05, 177.05, 179.55, 178.8, 180.5, 183.2, 185.05, 185.05, 185.05, 186.05,

192.3, 194.55, 189.8, 189.8, 189.8, 189.8, 189.15, 195.3, 194.15, 191.8, 189.3, 189.3, 189.3, 181.95, 182.9, 179.95,

181.65, 180.6, 180.6, 180.6, 180.6, 188.95, 185.75, 183.05)

ICE Futures Thesis Futures Pricing Model<-data.frame(ICE Futures,Thesis Futures Pricing Model)

acf<-acf(ICE Futures Thesis Futures Pricing Model,lag.max=7,plot=F)

acf

plot(acf)

Output:

Autocorrelations of series ICE Futures Thesis Futures Pricing Model, by lag

, , ICE Futures

ICE Futures Thesis Futures Pricing Model

1.000 (0) 0.984 (0)

0.929 (1) 0.939 (−1)

0.860 (2) 0.887 (−2)

0.809 (3) 0.843 (−3)

0.780 (4) 0.819 (−4)

0.757 (5) 0.798 (−5)

0.735 (6) 0.778 (−6)

0.714 (7) 0.760 (−7)
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, , Thesis Futures Pricing Model

ICE Futures Thesis Futures Pricing Model

0.984 (0) 1.000 (0)

0.931 (1) 0.962 (1)

0.878 (2) 0.918 (2)

0.836 (3) 0.880 (3)

0.809 (4) 0.855 (4)

0.784 (5) 0.831 (5)

0.763 (6) 0.810 (6)

0.743 (7) 0.790 (7)

2. Frechet Distance

R code:

Thesis Futures Pricing Model < −c(136.99, 136.80, 134.79, 134.21, 133.48,

129.598, 131.84, 133.87, 130.842, 130.96, 131.08, 131.202, 126.01, 130.44, 129.802, 131.32, 131.44, 131.564,

131.52, 133.25, 132.771, 134.67, 134.75, 134.871, 134.99, 132.49, 128.359, 127.46, 131.15, 134.758,

134.88, 135.00, 134.312, 133.42, 136.51, 141.249, 144.03, 144.16, 144.293, 141.31, 136.64, 139.31, 139.52,

137.63, 137.755, 137.88, 139.82, 139.985, 140.90, 145.11, 145.204, 145.34, 145.47, 148.335, 145.73,

145.57, 147.488, 151.16, 151.30, 151.431, 151.53, 139.42, 137.245, 142.27, 148.34, 148.474, 148.61, 150.84,

150.345, 151.91, 154.32, 156.018, 156.16, 156.30, 157.282, 162.71, 164.76, 160.883, 161.03, 161.17,

161.313, 160.90, 166.28, 165.452, 163.59, 161.61, 161.75, 161.89, 155.75, 156.698, 154.31, 155.90, 155.14,

155.28, 155.42, 155.554, 162.89, 160.27, 158.083)

ICE Futures < −c(160.50, 168.75, 168.9, 168.90, 168.10, 163.15, 165.85, 168.25, 164.3, 164.3, 164.3, 164.3,

157.65, 163.05, 162.1, 163.85, 163.85, 163.85, 163.65, 165.65, 164.9, 167.1, 167.05, 167.05, 167.05, 163.8, 158.55,

157.3, 161.7, 166, 166, 166, 165, 163.75, 167.4, 173.05, 176.3, 176.3, 176.3, 172.5, 166.65, 169.75, 169.85, 167.4,

167.4, 167.4, 169.6, 169.65, 170.6, 175.55, 175.5, 175.5, 175.5, 178.8, 175.5, 175.15, 177.3, 181.55, 181.55, 181.55,

181.5, 166.85, 164.1, 169.95, 177.05, 177.05, 177.05, 179.55, 178.8, 180.5, 183.2, 185.05, 185.05, 185.05, 186.05,

192.3, 194.55, 189.8, 189.8, 189.8, 189.8, 189.15, 195.3, 194.15, 191.8, 189.3, 189.3, 189.3, 181.95, 182.9, 179.95,

181.65, 180.6, 180.6, 180.6, 180.6, 188.95, 185.75, 183.05)

thesis futures pricing model<-sample(Thesis Futures Pricing Model,10,replace=TRUE)

thesis futures pricing model

ice futures¡-sample(ICE Futures,10,replace=TRUE)

ice futures

distFrechet(Thesis Futures Pricing Model,ICE Futures,thesis futures pricing model,ice futures)
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Output:

Result = 29.37018

[1]29.37018

B.3 Thesis Interpolation Model Curves

Figure 6.1: Thesis Model-Spot Curve

Figure 6.2: Thesis Model- Discount Curve
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B.4 Nelson-Siegel Curves

Figure 6.3: Nelson-Siegel- Spot Curve

Figure 6.4: Nelson-Siegel- Discount Curve
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Glossary and Terms

Accumulator array: A histogram showing what estimate of pattern-recognition parameters are supported by

different data of a sampled pattern.

American-type option: An option which can be exercised at any time up to the time of maturity of the

option, in contrast to a European-type option.

Area: In image processing, this is the number of pixels in the region.

Arbitrage: The search of unlimited profits without accompanying risks (risk free profit) by playing off differ-

ences between inefficient markets in the same asset.

Arbitrageur: One who engages in arbitrage Asset: Some item in value, a property or right owned by a com-

pany or person.

At-the-money: A characteristic of an option when its strike price is at or near the current market price of

the underlying asset.

Basis: the difference between the international coffee price (the futures price) and the local physical market

coffee price.

Bid price: The price that a potential buyer is willing to pay for a security.

Binary image: A digital image in which each pixel is assigned (bits or bytes) an intensity value using binary

numbers (bits or bytes).

Black-Scholes-Merton formula: An analytical option pricing formula developed to estimate the market

value of option contracts, based on geometric Brownian motion.

Bond: A security paying regularly interest (cash bond) or lump sum at maturity.

Broker: A person who buys and sells assets on behalf of other people.

Brownian motion: The basic process in financial mathematics that describes the uncertainty of the market

in terms of the cumulative effect of many small adjustments during trade. In the Black-Scholes-Merton model,

it is the simplest form of random models for price movement.

Call option: A contract that entitles, but does not oblige the holder to buy a security at/by a future instant

of time, the maturity date of the option.

Capital: Amount of money that is invested or used to start a business.

Cash bond: A continuously compounded bond that is appreciated at an instantaneous interest rate set by

financial regulators.

Change of measure: A mathematical technique that is used to transform the output of a stochastic process

to another variable.

Claim: A payment to be made in the future according to a contract such as an option or a future.

Contingent claim: The value of a financial derivative usually measured by the difference between an agreed

strike price and the actual value of the underlying asset at maturity.

Delivery rate: The date when a derivative contract ends with an amount of cash paid in exchange of under-

lying asset.

Demand: This is a schedule of how much of an asset people will purchase during a specific period of time,
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depending on price and other factors.

Demand function: This is a mathematical expression of relationship between the quantity demanded and

other factors, notably price.

Derivative: A financial instrument whose value is derived from an underlying asset.

Digital image: An image that has been converted into an array of pixels, each of which has an associated

intensity value. It may be colored (separate intensities red, green and blue spectral regions), or monochrome

(intensity on a single gray scale).

Discounting: Scaling a future price or reward down to make it comparable to the present prices.

Dividend: Portion of profit paid out in cash to the shareholders of a company.

Drift: A steady tendency to show systematic movement in the same direction (up or down).

Efficient market: This is a market in which prices of assets immediately and fully reflect all the relevant

market information.

Envelope: Lines surrounding the trend line of a time-varying index or indicator to indicate the possible paths

that may be followed.

Equilibrium market: A market in which there is a balance between market demand and supply of assets.

Equilibrium price: A price at which the demand and supply of a traded asset are equal.

European-type option: An option that may be exercised only at time of maturity, in contrast to American-

type option.

Excess demand: A disequilibrium condition in a competitive market in which the quantity of an asset de-

manded is greater than the quantity supplied, hence there is excess demand.

Excess supply: A disequilibrium condition in a competitive market in which the quantity of an asset supplied

is greater than the quantity demanded, hence there is excess supply.

Exercise date: A last future date (set in an option contract) by which an option may be exercised.

Exercise price: In an option contract, fixed price at which an asset may be bought or sold.

Exotic option: Financial derivatives based on a combination of assets or standard derivatives. They are

over-the-counter contracts designed by individual companies hedging particular risks.

Expiry time: The date when an option contract matures, also known as exercise date.

Feature: In pattern recognition, this is an attribute of a pattern that may contribute to pattern classification-

for example, slope of an edge between regions, textures of region, area within a curved edge, etc.

Forward rate: Forward price of instantaneous borrowing, as used in assessing present value of future returns.

Future: A contract with the obligation to sell or buy agreed amounts of assets at fixed price per unit by/at

an agreed date.

Geometric Brownian motion: A stochastic process with an output whose logarithms execute simple Brow-

nian motion with linear drift. It is the basic price process in the Black-Scholes Merton model.

Grey level: An intensity value, which is associated with a pixel in a digital image. Usually it represents the

darkest pixel intensity by a binary (00000000) and the brightest pixel by one byte of (11111111).

Grey-scale: The range of grey levels that occur in an image, typically 256 if intensities are coded using an

8-bit byte.

133



Heteroscedasticity: Time-varying, or time-dependent, variance in a time-series of random variables.

Hedge: A trading strategy to protect against risk of loss in a market.

Hedger: A person who buys securities to reduce the investment risk in a portfolio.

Homoscedasticity: Time-independent variance, the opposite of heteroscedasticity

Instantaneous rate: Rate at which interest is paid.

Hough transform: A transformation of pixel coordinates in an image to the parameters of curves on which

pixels may be located.

Image: In image processing, a two-dimensional representation of a scene as an array of pixel intensities.

Itoˆ calculus: A stochastic calculus that gives the rules for integrating functions of Brownian motion. In par-

ticular, the Itoˆ integral is an integral with respect to a variable undergoing Brownian motion and the Itoˆ lemma

is a rule of this calculus.

Itoˆ lemma: A mathematical technique, which allows stochastic processes to be transformed by nonlinear func-

tions to new processes with changed parameters.

Market equilibrium: A situation in which markets clear because demand for an asset is matched to willing

supply.

Marker price of risk: A parameter measuring how much the average investor in an asset is risk seeking or

risk averse.

Market value: The spot price obtained through offer and demand from sellers and buyers on the market.

Maturity date: Expiration of a contract.

Noise: Irrelative data that hamper recognition of pattern and the interpretation of data interest.

Numeraire: A basic asset relative to which the value of another asset is determined, for example the cash

bond in the Black-Scholes Merton model.

Object: A real thing that can be seen partially or fully in an image.

Occlusion: The partial or complete hiding (loss) of in or more object(s) by another object or by the loss of

data.

Optimization: Putting together a portfolio in such a way that return is maximized for a given risk level or

risk is minimized for a given expected return level.

Option: A contract that entitles, but does not oblige one to buy/sell something by/at a future date. Options

to buy are called calls, option to sell puts.

Pattern: A meaningful regularity that may be used to classify objects in images or trends and spreads in price

histories, for example.

Pattern recognition: The analysis, description, identification and classification of objects by automatic and

semiautomatic means.

Peak: A point of local maximum in a graph or histogram.

Pixel: The smallest element of a digital image that can be assigned an intensity level.

Portfolio: A collection of securities.

Price adjustment: The movement of supply and demand towards equilibrium at a market price.

Put-call parity: Relationship between the price C at time t of a European call option and the price P at
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the same time of a European put option, with both having the same strike price E and maturity time T. The

expression is P = Ee−rT + C − S0 , r is the risk-free interest rate.

Put option: A contract that entitles one to sell something by/at a future maturity date (see also call option).

Security: A contract with financial promise.

Self-financing: A trading strategy that changes the portfolio value only through the price changes of the asset

bought sold or held.

Stochastic process: A collection of random variables indexed by time.

Strike price: A price fixed by contract at which an asset may be bought or sold, according to a futures or

options agreement.

Supply: This is a schedule of how much of a good or service people supply during a specified period of time,

depending on price and other factors.

Supply function: This is a mathematical expression of relationship between the quantity supplied and other

factors, notably price.

Tatonnement: A French word, meaning groping, is an iterative process in which buyers and sellers enter into

negotiations, discover a price and use this price as a base for re-negations until a price acceptable to all is

reached, i.e. no further negotiations.

Tomography: The creation and study of plane image and 3-dimensional renderings by slicing partitioned data.

Transaction cost: A charge for buying or selling an asset.

Underlying: A basic market asset (stock, bond, currency, etc.,) on which other derivative securities can be

based upon.

Volatility: The risk, or uncertainty, measure that is associated with short-term fluctuations in a financial time

series. It is estimates as a mean square deviation from a trend pattern.

Votes: Entries into a Hough histogram that accumulates evidence for presence of patterns in data.

Window: Part of an image of asset price history.

Yield: The average interest rate returns from an asset, for example interest, a bond, dividend from equity

shares etc.
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List of Abbreviations

African Institute for Mathematical Sciences Schools Enrichment Programme

AIMSSEC, 274

Institute of Mathematical Sciences

IMS, i, iv

Black-Scholes Partial Differential Equation

BSPDE, xviii

Black-Scholes-Merton

BSM, viii, xviii, xix, 29, 30, 33, 34, 153, 264

Black-Scholes-Merton partial differential equation

BSMPDE, 35

Broyden-Fletcher-Goldfarb-Shanno

BFGS, xx, 94, 242, 254, 255, 272, 273, 274, 275

Cannon Asset Managers

CAM, 38, 242

Capital Market Authority

CMA, 38, 242

cash-flows

CFs, 54

Central Bank of Kenya

CBK, 35, 38, 39, 91, 98, 103, 246

Central Depository System

CDS, 37

foreign exchanges

FX, 31

Free on Board

FOB, 45

Geometric Brownian motion

GBM, x, xvii, 34, 123, 125, 134

Geometric Brownian Motion

GBM, xiv, xix, 29, 33

Hough Transform

HT, iii, xix, 29, 30, 33, 247, 249, 252, 271

International Accounting Standard

IAS, 38

International Finance Corporation

IFC, 35
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Kenya Planters Cooperative Union

KPCU, 43

Kenyan government bonds

KGBs, 89, 105

Limited memory-Broyden-Fletcher-Goldfarb-Shanno algorithm

L-BFGS-B algorithm, xx, 94, 242, 254, 255, 272, 273, 274, 275

Market Leaders Forum

MLF, 91

maximum likelihood estimation

MLE, iii, 35

Nairobi Coffee Exchange

NCE, 43

Nairobi Securities Exchange

NSE, i, iii, 28, 35, 104, 105, 249

Nairobi Stock Exchange

NSE, 35

Nelson-Siegel

NS, xiv, xvi, xvii, 31, 35, 89, 91, 92, 94, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 239, 243, 245, 272

Non-linear Least Squares estimation

NLS estimation, 94, 272, 275

ordinary least squares estimation

OLS estimation, 93, 106

over the counter

OTC, 31

over-the-counter

OTC, x

Partial Differential Equation

PDE, 265

restricting least squares

RLS, 42

Root Mean Squared Error

RMSE, xvi, 98, 101, 109

Root Mean Squared Percentage Error

RMSPE, xvi, 98, 101, 109

Separate Trading of Registered Interest and Principal of Securities

STRIPS, 47

stochastic differential equation

SDE, 120, 122, 124, 127, 131, 264
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Thika Coffee Mills

TCM, 43

Yield to Maturity

YTM, 35

Zero Coupon Yield Curve

ZCYC, 29, 30, 34, 102
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List of Symbols

C Price of a European Call Option

d1, d2 Parameters used in option pricing formula

D(P ) Value of demand when price has value P

dZ(t) Differential change in a Wiener diffusion process at time t

E Exercise price of a derivative contract

ED(P ) Excess demand function

Exp(.) Exponential of a variable

f(.) A function of any variable x

fT Value of a derivative at time T

f0 Value of a derivative at time zero, the start of a derivative contract

L Back shift operator of a discrete time series

loge(.) Natural logarithm of any variable, loge

N(x) Cumulative probability that a variable with a standard normal distribution

is less than x

N(0, 1) Standard normal distribution

P (t, T ) Used price of an asset

P ∗ Walrasian equilibrium price

P Walrasian price vector in a multi-asset market

q Dividend yield rate

QD(P ) Demand function

QS(P Supply function

r The risk-free interest rate

S(t) Price at time t of an underlying asset on which a derivative is written

S(T ) Price of an asset at maturity time T

S(0) Price of an asset at time zero, the start of a derivative contract

t A future point in time between start at time 0 and maturity at time T

T Time at maturity of a derivative

tr(x) Trace of a matrix x

u(i) Return provided on the asset between the observation, S(i− 1) and an observation S(i)
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Vij Vote strength in grey scale histogram

x Column vector of variables with component x1, x2, , xi, , xN

x′ Transpose of a column vector x, to a row vector

X A square matrix

X ′ Transpose of a matrix X

Z(t) Standard Wiener process having a distribution N(0,
√
t)

∆ Delta coefficient of derivative or a portfolio of derivatives of base assets

∆xf Small change in function f as argument changes from x to x+ ∆x

ε Random sample from a standardized normal distribution i.e. ε ∼ N(0, 1)

µ Expected rate of return on an asset

α, β Arbitrary constants

µ̂ Estimate of expected rate of return on an asset

θ Polar coordinate angle between perpendicular to a line segment and x-axis

π Value of a portfolio of derivatives of base assets

σ Volatility of an underlying asset

σ̂ Estimate of volatility of an underlying asset

ρ Coefficient of statistical correlation

∇ Vector gradient operator. If the operator acts on a function f, then ∇f is its gradient

R2 Coefficient of determination

χ2 Chi-square distribution
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