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Abstract

In this study, we apply the methodology of smooth tests of goodness-of-fit to hazard func-

tions. The smooth test formulation applied here is an extension of Neyman’s smooth test

and is obtained by nesting the null hypothesis in a larger class of probability and hazard

rate functions. The study revisits Neyman’s smooth tests and its data-driven versions in the

context of classical probability and survival analysis. Though several authors have theoret-

ically looked at the development of Neyman’s smooth tests, the main contribution of this

study is modelling loss to follow-up in HIV retention. To the best of our knowledge, this

issue has not been given its due share of coverage in the literature. We extend methods

proposed by Rayner et al. (2009); Pena (1998a,b) and Kraus (2007a), to an HIV reten-

tion setting. The applications dealt with in this thesis also covers performance of other

goodness-of-fit (GOF) approaches and compares them with that of smooth tests.

Three main methodological approaches are covered under the research methodology.

Part I revisits smooth tests for various probability distributions and applies the test when

assessing the fit for the two-parameter Weibull distribution to an HIV retention data under

the complete and uncensored data scenario. Part II looks at the application of smooth test

to Cox proportional hazards models. We assess the proportionality assumption in the two-

sample problem in cancer survival studies. Part III covers recurrent event situation. We fit

Block, Borges and Savits (BBS) minimal repair model to loss to follow-up (LFTU) data

and assesses the performance of the smooth test in terms of power.

More specifically, Chapter 1 deals with background of GOF in classical probability and

viii



survival distributions. The motivation for the study, overview of the smooth test of GOF

and comparison with other GOF tests is also covered in this chapter. In Chapter 2, we

provide a review of the literature. Chapter 3 details research methodology. We present

analysis and results in Chapter 4. Chapter 5 discusses important findings using simulated

and real data in the context of HIV retention and overall survival in cancer studies. Chapter

6 covers summary of the thesis, the limitations of the study and possible extensions of the

smooth GOF to discrete probability cases.

All computations have been implemented in R and the scripts are briefly described in

Appendix A. The chapters are self-contained in order to achieve our objective of cover-

ing the applications smooth tests of goodness-of-fit approach from distributions with non-

censored data to extensions in recurrent events.

A major limitation of this study, is that, in clinical studies, particularly involving LTFU

data, incomplete data is frequently encountered. Analysis of severity of data incomplete-

ness is a subject of future research.

Keywords: Smooth Tests of Goodness of Fit; Probability Distribution; Goodness-of-

Fit; Baseline Hazard Function; Recurrent Events Models; Simulations; Orthonormal Func-

tions; Loss to Follow-up; Proportionality Assumption; HIV retention; Cancer
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Chapter 1

Introduction

1.1 Background

Applications of probability and survival models have increased rapidly in the last few

decades. For specific practical examples in application of exponential distribution and sur-

vival distribution, Weibull distribution and generalized extreme value distribution, Gamma

distribution, log-normal distribution, log-logistic distribution, Gompertz distribution and

Gompertz-type hazard models, Hypergeometric distribution and other distributions see Liu

(2012); Kalbfleisch and Prentice (2011) and Rayner et al. (2009). In particular, fitting both

parametric and non-parametric models to a given data set and then using the results to make

well informed decisions have gained popularity. There are many advantages of fitting prob-

ability and survival models to a given data set i.e survival models, enables prediction of the

reliability of a component or a system. On the other hand, goodness-of-fit (GOF) tests mea-

sure compatibility of a random sample with a theoretical probability distribution function

or hazard function. Constructing valid tests for statistical hypotheses is a critical statistical

problem that has been studied for many years. The common approach to constructing GOF

test statistics involve measuring the “distance” between data and the corresponding empir-

ical probability distributions and hazard functions. Empirical GOF tests (i.e. Cramér-von

1



CHAPTER 1. INTRODUCTION 2

Mises, Kolmogorov-Smirnov and Anderson-Darling tests) are classical examples that use

this approach. More generally, these distance-based tests, as well as graphical tests based

on confidence intervals, usually belong to this class of empirical GOF (Langovoy, 2007).

GOF tests are based on test statistics that measure the distance between two distribu-

tions: a theoretical one, which characterizes the tested hypothesis H0, and an empirical one

computed from the given data set. The null hypothesis in this case is rejected when the test

statistic is too large. The critical region is the set of values of the statistic for which H0 is

rejected. If the observed value of statistic belongs to the critical region, the conclusion of

the test is the rejection of H0. The tests can either be one-sided or two-sided. Details on the

various GOF procedures have been covered extensively by Huber-Carol et al. (2012); Krit

(2014) and Andersen (1982) among others.

Without GOF tests, one cannot objectively validate the fitness of a probability distribu-

tion or hazard function. This can lead to wrong decision-making if an invalid distribution is

used. The question now is: what are best GOF tests and if the smooth test is one of the best

tests then how is it applied in real data settings when assessing baseline hazard functions?

A test is said to be smooth if the null hypothesis is embedded to form a class of smooth al-

ternatives. This is achieved by nesting the null distribution or hazard rate function to form

a larger class of alternatives (Neyman, 1937; Rayner et al., 2009; Pena, 1998b,a; Kraus,

2007a).

1.2 Motivation

1.2.1 Analysis of LTFU in HIV Retention

Patients receiving antiretroviral therapy (ART) are sometimes lost to follow-up (LTFU),

which may result in discontinuation of treatment, drug toxicity and treatment failure due to

poor adherence and drug resistance (Rachlis et al., 2014). LTFU accounts for an increased
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risk of death of up to 40% for ART patients in sub-Saharan Africa (Berheto et al., 2014).

Studies have shown that LTFU has negative impact on immunological benefit of ART and

increases AIDS-related morbidity, mortality, and hospitalizations (Berheto et al., 2014). In-

dividuals who miss visits in the first year of treatment have a higher mortality rate (Rachlis

et al., 2014). Asiimwe et al. (2016) and Rasschaert et al. (2012) showed that retention of

patients who are on ART treatment remains stable after 12 months of ART initiation, with

LTFU being the main cause of attrition. Previous studies has also illustrated associations

between frequent LTFU and more severe opportunistic illnesses (Haddow et al., 2003).

Analysis of LTFU is therefore important and has been used in HIV care to monitor and

improve programme effectiveness, using patient retention as a measure of quality of care

(Sengayi et al., 2013).

The main objective in the analysis of LTFU data is to check retention of patients in

care. In an HIV program, this is considered an important determinant of successful ART

long-term outcomes. Patients who experience LFTU eventually get enrolled in other facil-

ities with different regimen combinations, which are likely to compromise their immune

system. Retaining patients for long allows provision of long term Highly Active Antiretro-

viral Therapy (HAART), tracking World Health Organization (WHO) staging, tracking

immunosuppression profiles and evaluation of emergence of medication toxicities. More

innovation is therefore required for further ART scale-up and improve retention in care.

The study looks at the application of smooth tests of GOF to probability and survival mod-

els. The HIV retention data used in this study is a typical primary data set that has not been

studied or published anywhere.

1.2.2 Two-Sample Problem in Cancer Survival Studies

Despite decades of research in cancer, the overall prognosis for cancer, recurrences and

survival rates are still attracting a huge research interest. There are over 200 different types
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of cancer known today (Siegel et al., 2015). Since these numbers are likely to grow, cancer

research will particularly, be important in the fight against cancer. Most clinical trials are

highly specialized with respect to the type of cancer and are beneficial to patients through

advancing technologies and cancer treatment protocols. According to mortality data by the

National Center for Health Statistics (NCHS) (Siegel et al., 2015), between 1930 to 2012,

cancer was a major public health concern and was the second leading cause of death in

the United States. Prostate, lung and bronchus, and colorectal cancers account for 44% of

all cases in men, with prostate cancer alone accounting for 20% of new diagnoses. For

women, the three most commonly diagnosed cancers are breast, lung and bronchus, and

colorectum, representing 50% of all cases. Breast cancer alone is expected to account

for 29% all new cancer diagnoses in women. NCHS estimates 1,600 deaths per day as a

result of cancer in 2016. These four types of cancers account for 46% of all cancer deaths

with more than one-quarter (27%) due to lung cancer. The largest geographic variation in

cancer occurrence by far is for lung cancer, reflecting the large historical and continuing

differences in smoking prevalence among states. Cancer in adolescents (aged 15 to 19

years) differ somewhat from those in children in terms of type and distribution. With these

variations in mind, this study does not aim to provide an exhaustive performance of smooth

tests for proportionality for all types of cancer in the two-sample problem, but instead it

aims to statistically compare its performance in selected eight different practical settings.

The analysis is focused on the most common and prevalent cancers. Our goal is to provide

an overview of the performance of smooth tests to help in validation. We hope that the

issues and features we comment on will result in higher overall standards and quality of

oncological research by the survival analysis community, and limit the risk of using invalid

models. This is specifically important when analysing overall survival in cancer studies.

Authors who have analysed the eight different data sets (see chapter 4 section 4.2) did not

validate the proportionality assumption when comparing the two groups.
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1.3 Pearson’s χ2 test

The Karl Pearson chi-square procedure has been used over the years to compare observed

data with expected data obtained according to a specific hypothesis. If O1,O2, · · · ,On de-

note observations that are assumed to come from n non-overlapping classes that are ex-

pected to contain E1,E2, · · · ,En observations, then the Pearson’s χ2 test statistic is defined

broadly by Rayner et al. (2015) as

χ
2
p =

n

∑
i=1

(0i−Ei)
2

Ei
. (1.1)

If this is larger than 100α% point of the χ2
n−1 distribution, then the hypothesized expecta-

tion is rejected at the 100α% level of significance.

Karl Pearson first introduced a criterion in Pearson (1992) to examine whether the ob-

served data support a given specification. He called it the chi-square goodness of-fit test,

which motivated research in testing of hypotheses and estimation of unknown parameters.

This eventually led to the development of statistics as a separate discipline. Pearson (1992)

assumed that parameters of the probability model giving rise to the cell expectations were

known, and showed that the asymptotic distribution of the statistic in equation (1.1) is the

χ2 distribution. There is a lot of literature on how the cells may best be constructed. (See

McHugh (2013), Sürücü (2008), Rayner et al. (2009), Miller Jr and Quesenberry (1979)

among others). The recommendation is that for the approximation to be adequate, each

cell expectation should be at least five and this have been covered by multiple authors.

The most critical assumption of the test involves estimating parameters. Pearson (1992)

wrongly stated that estimating parameters makes no difference to the asymptotic null dis-

tribution of the test statistic. Furthermore, several authors have shown that if asymptotic

distribution is estimated by maximum likelihood method using the ungrouped data then

the Pearson’s statistic no longer have an asymptotic chi-squared distribution. See McHugh
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(2013), Sürücü (2008) and Rayner et al. (2009).

1.3.1 Deficiencies of Pearson χ2 Test

Pearson’s χ2 test is essentially applicable for testing discrete data when there is no param-

eter to be estimated. According to Barton (1956) and Neyman (1937), the smooth test was

developed to overcome deficiencies in Pearson χ2 test. Further discussions on deficiencies

of Karl Pearson χ2 test have been described by Stigler et al. (2008).

1. With right-censored data, determining the exact values of observation O j is not pos-

sible.

2. There is need to estimate O j using product limit estimators which is not provided for

in the Pearson χ2 test.

3. It is difficult to examine the power or optimality properties of resulting Pearson gen-

eralization due to their deviations.

1.4 Comparing Goodness-of-fit Tests

1.4.1 GOF for Probability Distributions

Several statistical distributions are applicable in many areas (e.g. business and commerce,

law, science, public health, medicine, engineering, etc.). As alluded earlier in section 1.1,

GOF procedures are useful in assessing how well a proposed distribution model fits a given

dataset. GOF tests have therefore, remained competitively useful in model validation and

model selection. Authors who have looked at GOF tests for probability distributions with

particular interest in finding a probability model that fits well for a given dataset, include

Huber-Carol et al. (2012), Cousineau (2009), Rayner et al. (2009), Stuart et al. (1968),

among others.
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Let F(x) be the unknown distribution function of the sample. F(x) can either be as-

sumed to be continuous or discrete. The GOF of a classical probability model is assessed

by describing how well the model fits the observed data. Many tests for GOF evaluate the

differences between the observed values, the actual data, and the expected values from the

model. In this research the interest lies in evaluating smooth tests of GOF procedures in

testing hypotheses on distribution functions.

Hypotheses testing can either be simple or composite. The simple hypothesis is of the

form H0 : F(x) = F(x;θ), where F(x;θ) is the probability distribution with which an ob-

served sample is being tested to fit, and θ is some known parametric value. A composite

hypothesis can be expressed as H0 : F(x) = F(x;ξ (θ)), where ξ (θ) is the domain of an

unknown parameter θ . The unknown parameter θ is generally, estimated from the samples.

The normal distribution remains the most conventionally used distributions. Many com-

monly used method of statistical inference (e.g. t-test, computation of p-values etc.) assume

the normal distribution. Other statistical methods exhibit optimum features when normality

is assumed. However, normality may not be the case in reality. Failure of the distribution

assumptions means failure of the model and conclusions based on the failure model may

be invalid. This possibility of failure can objectively be assessed by a GOF test.

For a comprehensive review of the importance of GOF tests in classical probabilities, see

Tiku (1986), Chambers et al. (1983), Lawless (2011), Hahn and Shapiro (1968) and Stuart

et al. (1968).

1.4.2 GOF for Hazard-based Functions For Single Events

Under hazard-based functions, we can consider testing the assumed form of the underlying

probability model in the presence of censored data. The goal is to assesses fitness of a

particular model in the presence of a censored variable. This situation that is common

with failure-time data. It is usually assumed that the hypothesized model follows the Cox
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Proportional Hazard (CPH) model.

Let T1, · · · ,Tn be independent continuous failure times, with the distribution function of

Ti given by F(t;λi,δ ), where λi refers to vectors of known covariates, and γ = (β ,δ ) is a

vector of unknown parameters. For the cumulative distribution F =F(t;λi,δ ), we write the

survivor function S= 1−F , and the density function, fi. Assuming that the censoring times

Vi have distribution functions Ci. Therefore, we denote Yi = min(Ti,Vi) and the indicator

Zi = I(Ti <Vi) are observed.

In order to assesses the CPH assumption, several methods have been proposed (e.g. Cox

(1972), Cox (1975), Schoenfeld (1980), Schoenfeld (1982), Andersen (1982), Kalbfleisch

and Prentice (2011) etc.). These methods consist either of graphical techniques designed

so as to visualize departures from the proportional hazards (PH) assumption or of formal

tests based on parameterizing the interaction between covariates and time. The CPH model

assumes that the hazard ratio is constant when comparing two treatment groups.In this case

the covariates are assumed to be time dependent (Nagelkerke et al., 1984).

The smooth tests of GOF utilized in this study are score tests obtained by nesting the

null hypothesis in a larger class of hazard functions. The formulation of this nesting goes

back to Neyman (1937) and have comprehensively been covered by several authors e.g.

Pena (1998b), Pena (1998a), Kraus (2007b), David (1939), David (1939), Rayner et al.

(2009), among others.

1.4.3 GOF for Hazard-based Functions For Recurrent Events

Modelling recurrent events can be approached in different ways. Here, we build the frame-

work from intensity functions and counting processes. Thereafter, we will focus on gap-

time.

Given a single recurrent event at time t, let 0 ≤ T1 ≤ T2 ≤ ·· · denote the event times,

where Tk is the time of the kth event. The associated counting process is defined as
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{N(t),0 ≤ t}, which denotes the cumulative number of event generated by the process.

Here N(t) = ∑
∞
k=1 I(Tk ≤ t) is the number of events occurring over the time interval [0, t].

If N(s, t) = N(t)−N(s) represents the number of events occurring over the intervals (s, t),

t− is infinitesimally smaller than t and t+ is infinitesimally larger than t.

Models for recurrent events can be specified more generally by considering the probability

distribution for the number of events in a short interval [t, t+4t], given the history of event

occurrence before time t.

Let4N(t) = N(t+4t−)−N(t−) denote the number of events in the interval [t, t+4t]

and H(t) = {N(s) : 0 < s < t} denote the history of the process at time t.

The intensity of the event is denoted as

λ (t|H(t)) = lim
4t→0

Pr{4N(t) = 1|H(t)}
4t

. (1.2)

The intensity function is useful in modelling events processes. See Munk et al. (2011).

The GOF problem is to test the hypothesis that λ (t|H(t)) follows some hypothesised form.

Smooth tests for recurrent events have been discussed by Agustin and Peña (2005) and

Agustin and Peña (2001).

1.5 Objectives

This study has three specific objectives, namely

1. Smooth test of GOF for the two-parameter Weibull distribution:

To fit an HIV retention data to the two-parameter Weibull distribution and assess the

fit using a smooth test of goodness-of-fit. The HIV retention data is a primary data

from a typical HIV care setting in Kenya.

2. Smooth test of GOF for the proportionality assumption in the CPH models:
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To validate the smooth test of goodness-of-fit for proportionality of the hazard func-

tion in the two sample problem in cancer survival studies. Eight real cancer datasets

from different settings are assessed for the proportional hazard assumption with an

interest of validating the assumption of proportionality in CPH models.

3. Smooth test of GOF based on the BBS modelling of time to first LTFU:

To test the baseline hazard function of time-to-first loss to follow-up using smooth

test of GOF. With a sample size 2,987 and 28% experienced first lost to follow-up

during observation period, the interest is to fit BBS model to first LTFU data and test

the fit using smooth test of GOF.

This study is organised in three phases i.e. phase one involves, fitting LFTU data to para-

metric models in order to reflect the randomness of LTFU. In the second phase, we validate

the smooth test under variety of real cancer data sets. In phase three, we fits LTFU data to

time-to first occurrence recurrent event and assesses the fit using smooth test.

The general framework is described on the next page:
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Figure 1.1: General Framework and flow of work



Chapter 2

Literature Review

The importance of probability and hazard models cannot be understated. Models and their

associated statistical analyses are crucial in the process of decision making in different

areas, for example, medicine, psychology and biology, among others. As stated earlier,

GOF tests are mainly concerned with assessing the validity of probability and hazard mod-

els. Assessing model fit (i.e., the discrepancy between a model and the data) is critical in

applications, as inferences drawn on poorly fitting models may be misleading.

2.1 GOF for Complete Samples

Let X1, · · · ,Xn be i.i.d. random variables with density f (x). We can test the simple hy-

pothesis H0 : f (x) = f0(x), where f0(x) is some specified density. Several tests exist in

literature ranging from graphical and probability plots to non-graphical tests. Some of the

conventionally used GOF tests for H0 are the empirical GOF tests (KS test, CVM test and

AD test). These tests have been discussed by many authors and a lot of work has been

done on their empirical and asymptotic powers, efficiencies and other properties (Sürücü,

2008; Stuart et al., 1968; Chambers et al., 1983; Huber-Carol et al., 2012). Although the

tests are omnibus, for moderate sample sizes only a few deviations from f0 can be detected

12
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by these tests with substantial frequency (Inglot et al., 1997; Miller Jr and Quesenberry,

1979; LaRiccia, 1991; Ledwina, 1994). Their results show how these tests distribute their

asymptotic powers in the space of all alternatives. In particular, they show that there are

only very few directions of deviations from f0(x) for which the tests are of reasonable

asymptotic power. When testing for GOF, alternative hypotheses are treated as omnibus

tests. An omnibus test is a test that is consistent against essentially all alternatives. See

Neyman (1937); Rayner et al. (2009); Rayner and Best (1990); Bargal and Thomas (1983);

LaRiccia (1991); Lemeshko et al. (2009) for details.

The approach here is based on modification of the test statistic to allow for nuisance

parameters (Koziol, 1987). For hypotheses about a scalar parameter, this modification was

studied further by Rayner et al. (2009). The advantage of the score statistic here is that the

sample being considered can be used for computation of nuisance parameters using maxi-

mum likelihood estimator (MLE).

The smooth test of GOF is constructed to have good power against an alternative whose

probability density function or hazard function departs “smoothly” from that specified by

the null hypothesis (cf Rayner et al. (2009)). Neyman’s concept of smooth test is that it

should be constructed to be locally most powerful, unbiased and of size α for testing for

uniformity against some order k alternative. Comparison of the power of smooth test have

been elucidated by Inglot et al. (1994). Note, however, that the class of “heavy-tailed”

alternatives is slightly larger for Neyman’s test than for the chi-square test. Typical state-

ments for choosing the orthonormal system in Neyman’s test have substantially greater

power than the chi-squared test for smooth alternatives (Sürücü, 2008) and to detect alter-

natives of particular interest, an orthonormal basis should be selected that gives a compact

representation of those alternatives (Rayner et al., 2009).
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2.2 GOF for Hazard Functions

The Cox (1972) model has become the most widely used statistical tool for analyzing

censored failure time data due to its flexibility and versatility. The model specifies that the

hazard function h(t) = limd→0 Pr[T < t +d/T > t] for the failure time T of an entity with

a p-vector of covariates Z has the form

h(t|Z(t)) = λ0(t)exp{βββ tZ(t)}, (2.1)

where β is a p-vector of unknown regression coefficients, and λ0(t) is the baseline hazard

function. Model (2.1) assumes that (i) all relevant covariates are included; (ii) the regres-

sion form of the hazard function on covariates is exponential; and (iii) the relationship

between the baseline hazard function and the regression function of covariates is multi-

plicative. The violation of these assumptions may have adverse effects on the statistical

inference. Furthermore, model miss-specification can lead to distortion of the size and re-

duction of the power of the partial likelihood score test (Lin, 1991; Lin et al., 1993). Various

graphical techniques have been proposed to check the CHPM assumptions (e.g., Crowley

and Hu (1977); Kay (1977); Cox (1975); Kalbfleisch and Prentice (2011); Andersen et al.

(2012); Schoenfeld (1980); Arjas (1988)).

Non-graphical approaches for testing the CPH model have also been studied by sev-

eral authors. In his paper, Cox (1972) proposed a way of model checking by introducing

a “dummy” time-varying covariate. This method is restricted to testing against a specific

alternative. Schoenfeld (1980) compared the observed and the expected numbers of deaths

in the cells arising from a partition of the Cartesian product of the range of covariates and

the times axis. Similar approaches were taken by O’Quigley and Pessione (1989). How-

ever, the partitions of time-axis and covariates are often arbitrary. In addition, different

partitions might lead to conflicting results. Lin et al. (1993) proposed an omnibus test for

the two-sample problem. Other procedures appeared in Andersen et al. (2012), Barlow and
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Prentice (1988), Nagelkerke et al. (1984), O’Quigley and Pessione (1989). These tests are

only applicable to specific problems.

Authors that have dealt with extensions of smooth tests of GOF include Pena (1998b),

Pena (1998a), Andersen and Gill (1982), Janic-Wróblewska (2004), Agustin and Pena

(1999), Arjas (1988) and Baltazar-Aban and Pena (1995). Excellent summaries of some

of these procedures have also been given by Nagelkerke et al. (1984) and Koziol (1987).

However, there discussion didn’t consider wide range of real life applications. The authors

considered at most two data sets. This study aims to fill this gap by assessing the perfor-

mance of smooth test under wide range of different real data sets.

2.3 GOF for Recurrent events

Inference about GOF procedures in recurrent failure data have been discussed by Puro-

hit (1994). Although semi-parametric models are popular in modelling hazard functions,

parametric models often provide viable alternatives. In reliability theory, the exponential

distribution, Weibull distributions and subsequently IFR (increasing failure rate) and DFR

(decreasing failure rate) distributions brings an understanding of the practical application

of semi-parametric models. An important aspect then is how to check validity of a specific

model assumption. Some research have been done in this regard i.e. Chen et al. (2004).

Considering the proportional hazards model, the hazard function for individual i is writ-

ten as hi(t) = h0(t)exp(βββ tXi), where h0(t) is the baseline hazard function, Xi is a (row)

vector of covariates, and βββ is a vector of regression parameters. The two basic assumptions

of this model are that the effect of X is linear and that h0(t) is constant over time. The

latter being the actual proportional hazards assumption when time to even is assumed to be

exponentially distributed. A number of GOF tests for the CPH model have already been

proposed. See Cox (1972); Preedalikit et al. (2016); Hirose (2011) and Andersen (1982).
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The fit of CPH model can also be assessed graphically using martingale residuals or partial

residuals (Andersen et al., 2012; Xue et al., 2013; Aalen, 1978). In this case, the martingale

residual is considered as the difference between the observed and the expected numbers of

events for a given individual and a plot of martingale residuals against a covariate can there-

fore be used to assesses departures from the linearity assumption. Furthermore, the partial

residual is the difference between the covariates of the individual that fails at a given time

and the (weighted) mean of the covariates of all individuals at risk at that time. A plot of

partial residuals for a given covariate may reveal a violation of the proportional hazards

assumption.

The test based on Neyman smooth test is applicable even when the available data is in-

complete because of censoring, hence are applicable to survival models. Important papers

dealing with the proportional hazards model (Pena, 1998a,b; Kraus, 2007b; David, 1939;

Adekpedjou et al., 2012; Agustin and Peña, 2001; Janic-Wróblewska, 2004; Kraus, 2007a)

forms the basis of this study. Smooth GOF tests for the classical formulation have the ap-

pealing property of having good power over a wide range of alternatives compared to other

GOF tests, to the extent that Rayner et al. (2009) implored practitioners to use a smooth

test rather than other methods.

Although the theory of the original Neyman’s smooth test was well known, there has

been several extensions to cover different orthonormal systems. Most of these efforts are

directed at completely specified hypotheses (simple case). For composite hypotheses, Bar-

ton (1956) considered statistic with unknown parameter. The statistics of Thomas and

Pierce (1979) are based on the quadratic score statistic, have convenient distribution the-

ory and appropriate optimality properties. The smooth test based on orthonormal functions

are chosen from the class of more powerfully detect particular alternatives. Since it is al-

ways possible to transform any probability to uniformity and use one of the many systems

orthonormal on the uniform distribution, using an orthonormal system makes it flexible

(Rayner et al., 2009; Rayner and Best, 1990).
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To the best of our knowledge no author have considered modelling LTFU; this forms

the main contribution of this study.

2.4 HIV Retention

Disruption in care through missed scheduled visits undermines both social as well as clin-

ical outcomes, including risk of virological failure (Rachlis et al., 2014; Asiimwe et al.,

2016; Sengayi et al., 2013; Megerso et al., 2016; Wang et al., 2011; Ramadhani et al.,

2007). Discontinuation of ART can lead to drug resistance, HIV-related illnesses and death.

It has been shown in Rachlis et al. (2014) that individuals who miss visits in the first year

of treatment have a higher mortality rate. Studies also show that retention of patients who

are on ART treatment remains stable after 12 months of ART initiation, with LTFU being

the main cause of attrition (Rasschaert et al., 2012). In resource-limited settings, its com-

mon to find patients dropping out of ART treatment. The dropouts are usually attributed

to LTFU (Asiimwe et al., 2016). Due to significant drop-outs, patients may not realise the

benefits of ART if they are LTFU. Previous studies have singled out associations between

frequent LTFU and more severe opportunistic illnesses (Haddow et al., 2003). However,

modelling LTFU data in either parametric or non-parametric models and assessing the fit

using smooth test of GOF have not been done.

Patients who are actively receiving ART are particularly vulnerable to developing drug-

resistant infection when virological failure occurs, which could potentially result in broad

resistance to ART and transmission of drug-resistant viruses (Rachlis et al., 2014). Deter-

mining correct patterns of LTFU and exploring factors associated with them is therefore

crucial in identifying the patients who are at-risk of LTFU. Further, analyses of time to

LTFU is useful in informing development of evidence-based interventions that improve pa-

tient outcomes (Rachlis et al., 2014).



Chapter 3

Methodology

3.1 Smooth Tests of GOF for Probability Distributions

Smooth test of GOF was introduced by Neyman (1937). In his paper, Neyman only con-

sidered situations where there were no nuisance parameters (Neyman, 1937; Rayner et al.,

2009; Rayner and Best, 1990)). He applied the probability integral transformation (PIT)

to test uniformity. PIT is useful in transforming any distribution to uniformity and conse-

quently enables one to use Legendre polynomials.

The components of the smooth test statistics are designed to detect mean, variance,

skewness and kurtosis in that order (Rayner and Best, 1990). The test statistics are derived

to be the sum of orthonormal sets. The orthornormal sets are chosen with the alternative

that is most powerfully.

Rayner et al. (2009) and Koziol (1987) suggested smooth tests based on orthonormal

functions as opposed to quadratic approach which were proposed by Thomas and Pierce

(1979). Some of the advantages of orthonormal approach include:

1. They involves sum of squares and not quadratic forms therefore making them rela-

tively easier to implement,

18
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2. Numerical integration is not needed to specify constants in the test statistics,

3. The components are always identifiable with known moment-type statistics used in

tests of fit,

4. Components are asymptotically independent.

Let f (x) be a probability density function. The null probability density can be nested to

form (Rayner et al., 2009, 2008; Rayner and Best, 1990)

C(θθθ)exp

{
k

∑
i=1

θihi(x)

}
f (x), (3.1)

where θθθ = (θ1,θ2, · · · ,θk)
t is a vector of real parameters, C(θθθ) is the normalizing constant

that ensures the new functions integrates to 1, i.e.

∫
∞

−∞

C(θθθ)exp

{
k

∑
i=1

θihi(x)

}
f (x)dx =

∫
∞

−∞

g(x;θ) = 1, (3.2)

and hi(x) is a set of orthonormal functions on f (x) so that

∫
∞

−∞

hi(x)h j(x) f (x)dx = δi j, (3.3)

where

δi j =

 1, if i is equal to j;

0, if i is not equal to j.
(3.4)

Let X1,X2, · · · ,Xn be a random sample from f (x). We wish to test H0 : θθθ = 000 against

HA : θθθ 6= 000.

The score test can be derived as follows:



CHAPTER 3. METHODOLOGY 20

From equation 3.2, the likelihood function L becomes

L =
n

∏
j=1

C(θθθ)exp

{
k

∑
i=1

θihi(x j)

}
f (x j), (3.5)

yielding

L = (C(θθθ))n exp

{
n

∑
j=1

k

∑
i=1

θihi(x j)

}
n

∏
j=1

f (x j). (3.6)

The log-likelihood function becomes

l = logL = n log(C(θθθ))+
n

∑
j=1

k

∑
i=1

θihi(x j)+
n

∑
j=1

log f (x j) (3.7)

In Rayner et al. (2009), theorem 4.2.1, the derivation and proof of partial derivatives of

logC(θθθ) satisfies
∂ logC(θθθ)

∂θi
= Ek[hi(x)] (3.8)

and
∂ 2 logc(θθθ)

∂θiθ j
=−covk[hi(x)h j(x)]. (3.9)

The test statistic Ψk can therefore be derived by the formulae of generalised score test

under null H0

Ψk =UT (θ)I(θ)−1U(θ), (3.10)

where the score function is U(θ)= ∂ logL
∂θ

and the Fisher’s information is I(θ)=−E
[

∂ 2 logL
∂θiθ j

]
.

Differentiating the log-likelihood function (equation 3.7) yields

∂ l
∂θ

= nEk[hi(x)]+∑
i

hi(x)+0 (3.11)
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and

∂ 2l
∂θiθ j

=−n[Ek(hi(x)h j(x))−Ek(hi(x))Ek(h j(x))] =−ncovk[hi(x)h j(x)]. (3.12)

Considering that E0[hr(x)]= 0 and by orthonormality property (see Rayner et al. (2009))

E[hi(x)h j(x)] =

 1, for i equal to j;

0, for i not equal to j.
(3.13)

The score test statistic is given as

Ψ
2
k =

(
0 ∑i hi(x)

) 1
n

 1 0

0 1

 0

∑i hi(x)

 , (3.14)

which can be rewritten as

Ψ
2
k =

[
∑

i
hk

i (x)

]
1
n

[
k

∑
i

hi(x)

]
=

1
n

[
k

∑
i

hi(x)

]2

(3.15)

Theorem 3.1.1 Under null hypothesis, as the sample size n becomes large (n → ∞),

S(β̂ββ )∼ χ2
k . Where the estimate, β̂ββ is a vector representing nuisance parameter estimate.

Proof:

Consider a sequence of independent and identical orthonormal samples

hr(X1; β̂ββ ),hr(X2; β̂ββ ), · · · ,hr(Xn; β̂ββ ). By the orthonormality condition,

1. h0 = 0,

2. E0[hi(X ; β̂ββ )] = 0,

3. E0[hi(X ; β̂ββ )h j(X ; β̂ββ )] = δi j =

 1, i = j;

0, i 6= j.
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Define Vi1 as

Vi1 =
hi(X1; β̂ββ )−nE0[hi(X1; β̂ββ )]√

nδ11
. (3.16)

The variable Vi1 represents a standard score. Using the orthonormal conditions (i.e. E0[hi(X ; β̂ββ )]=

0 and δ11=1), the variable reduces to

Vi1 =
1√
n

hi(X1; β̂ββ ). (3.17)

Applying the Central Limit Theorem, for each identical and independently distributed

Vi1,Vi2, · · · the sum of the standard score φi = Vi1 +Vi2 + · · · tends to the standard nor-

mal distribution with mean 0 and variance 1 as the size becomes sufficiently large. That

is

φi = lim
n→∞

n

∑
i=1

1√
n

hi(X ; β̂ββ )→ N(0,1). (3.18)

The distribution of the standard score υn converges to the standard normal distribution as

n→ ∞ and the sum of squares of a normal variate is χ2 distributed; so

p

∑
i=1

υ
2
i ∼ χ

2
p,

end of proof.

The υi are components of the Sk, and provide directional tests to compliment the omnibus

tests based on the Sk,. Since q are elements of β which needs to be estimated, q are typical

components of the υi. Sk, has the χ2
k−q distribution under both the null and contiguous

alternatives. Sk−q is usually redefined as a test statistic, in order to emphasize the number

of useful components (Rayner and Best, 1990).

The smooth test of GOF, stands out a preferable procedure as it doesn’t depend on the

sample size n. Other GOF procedures are affected by the value of n where as smooth test

only depends on order K.
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3.1.1 Testing Uniformity

Application of PIT renders any GOF test, for continuous data, a test for uniformity when

the null distribution is completely specified. Tests of uniformity are also applicable when

one wishes to combine probabilities found as a result of significance tests on independent

data sets relating to the same null hypothesis. More specialized uses of tests of uniformity

are (Best and Rayner, 1985)

1. testing for normality on the basis of independent samples,

2. testing GOF for censored samples,

3. two sample tests of equality of circular populations,

4. testing material faults, road accidents, mine explosions etc

To define alternatives, we use Legendre polynomials i.e. hr(x) are the polynomials that are

orthonormal on the uniform distribution U(0,1). The first five polynomials (Rayner and

Rayner, 2001) are given by

h0(x) = 1,

h1(x) =
√

3(2x+1),

h2(x) =
√

5(6x2−6x+1),

h3(x) =
√

7(20x3−30x2 +12x−1),

h4(x) = 3(70x4−140x3 +90x2−20x+1).

The smooth test of order k for uniformity is based on the statistic

Ψk =

[
∑

i
hk

i (x)

]
1
n

[
k

∑
i

hi(x)

]
=

1
n

[
k

∑
i

hi(x)

]2

(3.19)

3.1.2 Case of Composite Hypothesis

As discussed in chapter 1, the smooth test is derived as an extension of Neyman (1937) test.

Here we extend our derivations to cover situations where we have composite hypothesis
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(i.e. situations where we have nuisance parameters).

Let f (x;βββ ) be a probability density function, where βββ = (β1,β2, · · · ,βq) is a vector of

nuisance parameters. The null probability density can be nested to form (Rayner et al.,

2009)

C(θθθ ,,,βββ )exp

{
k

∑
i=1

θθθ ihi(x,βββ )

}
f (x;βββ ) (3.20)

where θθθ = (θ1,θ2, · · · ,θk) is a vector of real parameters, C(θθθ ,,,βββ ) is the normalizing con-

stant that ensures the new functions integrates to 1 i.e.

∫
∞

−∞

C(θθθ ,,,βββ )exp

{
k

∑
i=1

θihi(x,βββ )

}
f (x;βββ )dx =

∫
∞

−∞

ϕk(x;θθθ ,,,βββ ) = 1 (3.21)

and hi(x,βββ ) is a set of orthonormal functions on f (x;βββ ) so that

∫
∞

−∞

hi(x,βββ )h j(x,βββ ) f (x;βββ )dx = δi j, (3.22)

If x1,x2, · · · ,xn is a random sample from the distribution function ϕk(x;θθθ ,,,βββ ), then test-

ing f (x;βββ ) is the same as testing H0 : θθθ = 000 vs HA : θθθ 6= 000. The assumption here is that the

derivatives of the log-likelihood function with respect to θ and β exist up to second order.

The observed random sample x1,x2, · · · ,xn has its log-likelihood function defined as

logL = n logC(θθθ ,,,βββ )+
k

∑
i=1

n

∑
j=1

θihi(x j,βββ )+
n

∑
j=1

log f (x j;βββ ). (3.23)

The first and second order, partial derivatives of the log-likelihood function with respect to

θr and βu yields
∂ logL

∂θr
= n

logC(θθθ ,,,βββ )

∂θr
+

n

∑
j=1

hr(x j,βββ ), (3.24)
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but Rayner et al. (2009) showed

∂ logC(θθθ ,,,βββ )

∂θr
=−Ek[hr] (3.25)

and
∂ logC(θθθ ,,,βββ )

∂βu
=−

k

∑
i=1

θiEk

[
∂

hi(x,βββ )
∂βu

]
−Ek

[
∂

f (x,βββ )
∂βu

]
. (3.26)

Therefore

∂ logL
∂θr

= n
logC(θθθ ,,,βββ )

∂θr
+

n

∑
j=1

hr(x j,βββ ) =
n

∑
j=1

(hr(x j,βββ )−Ek(hr(x,βββ ))) (3.27)

and

∂ logL
∂βu

= n
logC(θθθ ,,,βββ )

∂βu
+

k

∑
i=1

n

∑
j=1

θi
∂hr(x j,βββ )

∂βu
+

n

∑
j=1

∂ f (x j,βββ )

∂βu
. (3.28)

Equation 3.28 can be represented as

∂ logL
∂βu

=
n

∑
j=1

{
∂ log f (x j,βββ )

∂βu
−Ek

[
∂ log f (x j,βββ )

∂βu

]}
+

k

∑
i=1

n

∑
j=1

θi

{
∂hi(x j,βββ )

∂βu
−Ek

[
∂hi(x j,βββ )

∂βu

]}
.

(3.29)

The second derivatives will yield

∂ 2 logL
∂θr∂θs

= n
∂ 2C(θθθ ,,,βββ )

∂θr∂θs
=−ncovk(hr(x,βββ ),hs(x,βββ )), (3.30)

∂ 2 logL
∂θr∂βu

=−ncovk

[
hr(x,βββ ),

∂ log f (x j,βββ )

∂βu

]
+

n

∑
j=1

{
∂hi(x j,β )

∂βu
−Ek

[
∂hi(x j,βββ )

∂βu

]}
−

k

∑
i=1

θicovk

[
hr(x,βββ ),

∂hi(x j,βββ )

∂βu

]
. (3.31)

Given orthonormal condition for θ = 0 (i.e. E0[hr(X ;βββ )hs(X ;βββ )] = nδrs), the partial
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derivatives for the log-likelihood function generates the score function Uθ and the asymp-

totic covariance matrix Σ of Uθ as

Uθ = (hr(X1;βββ )+hr(X2;βββ )+ · · ·+hr(Xn;βββ )),

Σ = Iθθ − Iθβ Iββ Iβθ ,

where

(Iθθ )rs = nδrs,

(Iθθ )ru = ncov0

[
hr,

∂ log f
∂βu

]
,

(Iθθ )uv = ncov
[

∂ log f
∂βu

, ∂ log f
∂βv

]
.

The score statistic therefore takes the form S(β̂ββ ) = UT
θ

Σ̂−1Uθ . Here the score func-

tion Uθ =Uθ (βββ ) has rth element (hr(X1;βββ )+hr(X2;βββ )+ · · ·+hr(Xn;βββ ))/
√

n and Σ is the

asymptotic covariance matrix of Uθ .

But

Σ = Iθθ − Iθβ I−1
ββ

Iβθ = nM, (3.32)

where

M = Ik− cov0

[
h,

∂ log f
βββ

]{
var0

[
∂ log f

∂βββ

]}−1

cov0

[
∂ log f

βββ
,h
]
, (3.33)

which essentially reduces to M = Ik and the score test takes the form S(β̂ββ 0). β̂ββ 0 is the

maximum likelihood estimator of βββ under the null hypothesis and

S(β̂ββ ) =UT
θ (β̂ββ 0)M̂

−1Uθ (β̂ββ 0) =
1
n

p

∑
j=1

V̂ 2
j , (3.34)

where V̂j =
1√
n ∑

n
i=1 hr(xi; β̂ββ 0). The score statistic for testing H0 : θ = 0 against HA : θ 6= 0

is denoted by Sk(β̂ ). The choice of k depends on β̂ through the model dependent modified

Bayes information criterion (modBIC) given by

modBICk = Ŝk− k logn
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in which, relative to BIC, twice the maximized log-likelihood has been replaced by the

score statistic. We define k as the smallest order that maximizes modBICk i.e.

k = min{k ∈ {1,2, · · · ,d} and modBICk ≥modBICr, r = 1,2, · · · ,d}.

This is also referred to as the selection rule (Rayner et al., 2009).

3.1.3 Categorical data

In the same way, we can derive χ2 as a score test for the cell probabilities P1,P2, · · · ,Pm.

This is done by nesting the null probabilities in the smooth alternative cell probabilities.

For j = 1,2, · · · ,m

γ j = c(θ)exp

{
k

∑
i=1

θihi j(x)

}
Pj, (3.35)

so that testing Pj is equivalent to testing H0 : θ = 0 vs HA : θ 6= 0. We are dealing with

completely specified categorical model. θi, i = 1,2, · · · ,k are real parameters and c(θ) is a

normalizing constant that ensures γ1 + γ2 + · · ·+ γm = 1.

Since the parameter space have m− 1 dimension, k ≤ m− 1. Assuming all expectation

exist, the partial derivatives yield (Rayner et al., 2009)

∂ logγ j

∂θr
= hr j−Ek[Hr], (3.36)

and
∂ 2 logγ j

∂θr∂θs
=

∂ 2 logC(θ)

∂θr∂θs
. (3.37)

The smooth test for most common discrete probability distributions including Poisson,

geometric, binomial and negative binomial together with their applications have been cov-

ered extensively by Rayner and Best (1990); Rayner et al. (2009); Best and Rayner (1985).
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3.1.4 Smooth Tests for Continuous Distributions

Similarly, smooth tests of GOF for common continuous distributions e.g. Normal distribu-

tion, exponential distribution, Gamma distribution, Weibull distribution have been covered

well in literature. See De Boeck et al. (2011); Rayner et al. (2009, 2008); Rayner and Best

(1990); Rayner and Rayner (2001); Rayner and Best (1986); Best and Rayner (1985) for

detailed derivation.

Here we generalise for Normal Distribution, Exponential Distribution and Weibull Dis-

tribution.

Normal Distribution

The Normal Distribution (i.e. X∼ N(µ,σ2)),is defined as

f (x; µ,σ2) =
1

σ
√

2π
exp
{
−(x−µ)2

2σ2

}
, −∞ < x < ∞. (3.38)

The smooth model for order k will be

ϕk(x;θ ,µ,σ2) =C(θ ; µ,σ2)exp

{
k

∑
i=1

θihi(x; µ,σ2)

}
1

σ
√

2π
exp
{
−(x−µ)2

2σ2

}
. (3.39)

We define the set of normalized Hermite polynomials as (De Boeck et al., 2011; Rayner

et al., 2009, 2008; Rayner and Best, 1990)

∫
∞

−∞

Hr(z)Hs(z)
1√
2π

exp
{
−z2

2

}
dz = δrs (3.40)

Putting X = µ +σZ in equation 3.39, shows the set of hr(x; µ,σ) = Hr(
x−µ

σ
) are orthonor-

mal with respect to X ′s.

The first four orthonormal functions will be

h0(x; µ,σ2) = 1,
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h1(x; µ,σ2) = (x−µ)
σ

,

h2(x; µ,σ2) =

[
(x−µ)2

σ2 −1
]

√
2

,

h3(x; µ,σ2) =

(x−µ)
σ

[
(x−µ)2

σ2 −1
]

√
6

.

The score statistic will be S(µ̂, σ̂) = ∑
k
r=3Û2

r in which Ûr =
1√
n ∑

n
j=1 hr(X j; µ̂, σ̂).

Exponential Distribution

We define the exponential distribution function as

f (x;β ) = β exp(−βx), x > 0. (3.41)

The smooth model will be

ϕk(x;θ ,β ) =C(θ ,β )exp{
k

∑
i=1

θihi(x;β )}β exp(−βx), (3.42)

Suppose Lr(Z) are the Laguerre polynomials, orthonormal with respect to f (z;1). Then

(De Boeck et al., 2011; Rayner et al., 2009, 2008; Rayner and Best, 1990)

Lr(Z) =
r

∑
s=0

(
r
s

)
(−Z)s

s!
. (3.43)

By substituting X = Z/β in the orthonormality conditions for Lr(z), we find that hr(x;β ) =

Lr(βx),r = 0, 1, 2, · · · are orthonormal. Since h1(x;β ) = 1−βx,

∂ log f
∂β

=
1
β
− x =

h1(x;β )

β
. (3.44)

The first four orthonormal functions will be

h0(x;β ) = 1,

h1(x;β ) =−xβ ,
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h2(x;β ) = 1−2xβ + x2β 2

2 ,

h3(x;β ) = 1−6xβ + 3x2β 2

2 − x3β 3

6 .

Weibull Distribution

A two-parameter Weibull Distribution is define as

f (x;β ,η) =
β

η

[
x
η

]β−1

exp

{
−
[

x
η

]β
}
, (3.45)

where η is the scale parameter and β is the shape parameter. The orthonormal polynomials

for Weibull Distribution for the first four orders are derived from Extreme value distribu-

tion because the distribution approaches Weibull distribution as the sample size n becomes

large.

The first five orthonormal polynomials are given as (De Boeck et al., 2011; Rayner et al.,

2009, 2008; Rayner and Best, 1990):

h0 = 1,

h1 =
6
π

Z,

h2 =
Z2− 12ζ (3)Z

π
− π2

6√
11
90 π4 24

π2 ζ (3)
,

h3 = 0.10605Z3−0.49440Z2−0.21942Z +0.55831

h4 = 0.02493Z4−0.24168Z3 +0.26908Z2 +0.77691Z−0.22588,

where Z = x−µ

σ−γ
, γ is the Euler’s constant approximated to be 0.57722, and ζ (3) involves

the ζ function approximated to be 1.20206.

The score statistic is given as

S(β̂ , η̂) =
k

∑
r=2

V̂ 2
r = Ŝk−2, (3.46)
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where V̂r =
1√
n ∑

n
j=1 h j. The first four values of score statistics is therefore S1 = 0,

S2 = 0,

S3 =
√

b1−1.139547√
20/n

,

S4 =
b2−7.55

√
b1+3.21√

219.72/n
,

where
√

b1 = 1
n ∑

n
j=1[(X − X̄)/S]3 and b2 = 1

n ∑
n
j=1{(X − X̄)/S}4. The hypothesis being

tested here is H0 : f (x;βββ ) = Weibull distribution(η ,β ) against a generalised Weibull. The

test is equivalent to testing H0 : θθθ = 0 against HA : θθθ 6= 0. We reject the null hypothesis

for large values of the test statistics (simple hypothesis H0 (the Weibull distribution with

parameters: given scale and shape) versus the hypothesis H1 : a class of the Weibull distri-

bution).

3.1.5 Empirical Goodness-of-fit Tests

Since we are dealing with complete data in this section, we employ other standard empirical

goodness-of-fit methods for comparison. The convectional empirical goodness-of-fit tests

considered here are AD (A2), KS (Dn) and CVM (ω2).

These tests are based on departure between the empirical distribution function Fn and

theoretical distribution function F0 of the sampled data. The null hypothesis is rejected

when the difference is too large with a conclusion that the sampled data doesn’t come from

the underlying distribution. For the case of a Weibull Distribution, we consider Extreme

Value Distribution (Krit, 2014) and therefore apply the empirical cumulative distribution

function of ln(Xi) instead of Xi (Rayner et al., 2008; Bargal and Thomas, 1983).

The measure of difference from the empirical cumulative distribution function of ln(Xi)

is compared against estimated theoretical cumulative distribution function using Maximum

Likelihood Estimates i.e. F̂0(x) = F(x; ln η̂n,
1
β̂
)
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Anderson-Darling test of goodness-of-fit:

A2 =−n+
1
n

n

∑
i=1

[(2i−1)−2n) ln(1−Û∗i )− (2i−1) ln(Û∗i )] (3.47)

One-sample Kolmogorov-Smirnov test:

Dn =
√

nsup |Fn(x)− F̂0(x)| (3.48)

=
√

nmax[max{ i
n
−U∗i },max{U∗i −

i−1
n
}] (3.49)

Cramér-von Mises statistic (CM):

ω
2 =

n

∑
i=1

(Û∗i −
2i−1

2n
)2 +

1
12n

, (3.50)

where Û∗i = F̂0(lnXi).

3.2 Smooth Tests for Hazard Functions

3.2.1 Survival Setting and Data Framework

In classical survival analysis, a collection of individuals are observed from some entry time

until a particular event (e.g. death) happens. Often time, not all individuals experience

the event of interest; for some, it is only known that the event had not happened at some

specified time and in this case the observations of the time to the occurrence of the event is

right-censored (Andersen et al., 2012; Fleming and Harrington, 2011).

Consider a sample of n (uncensored) continuous distributed survival times X1,X2, · · · ,Xn.

For a survival function S, with hazard rate λ ; thus λ = f
1−F where F = 1−S is the distri-

bution function and f is the density of Xi.
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The hazard rate λ completely, determines the distribution through the relationship Ander-

sen et al. (2012),

S(t) = Pr{Xi > t}= Π
t
0[1−λ (s)ds] = exp(−

∫ t

0
λ (s)ds), (3.51)

where the product-integral Π(1−λ ) suggest the Kaplan-Meier estimator

ˆS(t) = Π
t
0(1−dÂ).

We can also write

1−dA(s)≈ exp(−dA(s)).

We can also write λ by the heuristic

Pr{Xi ∈ [t, t +dt]|Xi ≥ t}= λ (t)dt. (3.52)

Consider the non-parametric estimation of the hazard rate or cumulative hazard rate

A(t) =
∫ t

0
λ (s)ds. (3.53)

Typically, in survival analysis problems, complete observations X1,X2, · · · ,Xn is not pos-

sible. The observations are therefore recorded as (X̃i,Di), i = 1,2, · · · ,n where Di is a

“censoring indicator”

Xi = X̃i i f Di = 1

Xi > X̃i i f Di = 0

X̃1, X̃2, · · · , X̃n are random times.

Different kinds of hazard models may be obtained by making different assumptions

about the baseline hazard function. More particularly, semi-parametric regression models
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for censored survival data have been widely discussed in the literature, starting with the

important paper by Cox (1972). The hazard function λ (t,x) is defined by

λ (t,x) = lim
h→0

1
h

Pr(Y ≤ t +h|Y > t;x), t > 0, (3.54)

The cumulative hazard describes the accumulated risk until time t.

H(t) =
∫ t

0
h(u)du, (3.55)

Other relationships among the four functions S(t), H(t), f (t) and h(t) are;

h(t) =
∂ logS(t)

∂ t
,

H(t) =− logS(t),

S(t) = exp{−H(t)} ,

h(t) =
f (t)
S(t)

=
f (t)

1−F(t)
.

The Estimators of S(t) and H(t) can be estimated using non-parametric approach i.e.

Kaplan-Meier and using parametric assumptions (i.e. Exponential Distribution, Weibull

Distribution, Gamma Distribution, Log-normal Distribution etc). Applications of paramet-

ric survival function can be found in several literatures (e.g. Cousineau (2009); Andersen

et al. (2012); Baltazar-Aban and Pena (1995); Fleming and Harrington (2011)).

3.2.2 Smooth test for Cox Baseline Hazard function

For the CPH model, the GOF problem of testing whether the baseline hazard rate function

equals a specified hazard function in the presence of incomplete data is of interest. The

GOF tests are score tests obtained by nesting in a larger family of hazard rate functions
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developed through smooth and possibly random transformations. The tests are score tests

derived by reformulating Neyman’s idea of smooth tests in terms of hazard functions (Pena,

1998b).

Score Test Process

The hazard function for the Cox proportional hazard model (Cox, 1972) for T at time t is

defined by

λ (t|X(t)) = λ0(t)exp{β tX(t)} (3.56)

where λ0(·) is the baseline hazard function, β is a vector of regression coefficients and

transcript t denotes transpose of a vector.

Considering the counting process approach, let N(t) = {(N1(t),N2(t), · · · ,Nn(t)) : t ∈

T} be a multivariate counting process in probability space (ω,F,P) where P is some col-

lection of probability measures. Let this family be filtered by a filtration F =Ft : t ∈ T . The

time index T may be [0,ϒ], where ϒ≤ ∞. For the Cox proportional hazards model, which

is a special case of the multiplicative intensity model (Aalen, 1978; Andersen et al., 2012;

Pena, 1998b) the vector of F compensators of N is given by A= {(Al(t),(Al(t), · · · ,An(t)) :

t ∈ T} with

Ai(t) =
∫ t

0
Yi(s)λ (s)exp{β tXi(s)}ds, i = 1,2, · · · ,n (3.57)

where Y = {(Y1(t),Y2(t), · · · ,Yn(t)) : t ∈ T} is a vector of predictable processes, λ (·) is the

baseline hazard rate function,β is the qx1 vector of regression coefficients, and X1(·),X2(·), · · · ,Xn(·)

are qx1 vectors of predictable covariate processes.

The null hypothesis H0 : λ (·) = λ0(·), where λ0(·) is a completely specified hazard rate

function. The associated (cumulative) hazard function is given by

Λ0(·) =
∫ t

0
λ0(s)ds, (3.58)
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with Λ0(·) strictly non-decreasing. The smooth class of alternatives of order k in which

λ0(·) is embedded is defined for the ith component by

Ai = {λi(·;θ ,β ) = λ0(·)exp{θ t
ψi(·;β )} : θ ∈ℜ

k}, (3.59)

where k ∈ 1,2, · · · and ψi(·;β ) = (ψi1(·;β ),ψi2(·;β ), · · · ,ψik(·;β ))t is a vector of locally

bounded predictable processes that are twice-differentiable with respect to β .

Note that the hypothesized baseline hazard rate function λ0(·) is obtained by taking θ = 0,

so within this embedding, H0 : λ (·) = λ0(·) is equivalent to H∗0 : θ = 0. The compensator

process of N(·) is A(·;θ ,β ) = A1(·;θ ,β ),A2(·;θ ,β ), · · · ,An(·;θ ,β ) where

Ai(·;θ ,β ) =
∫ t

0
Yi(s)λ0(s)exp{θ t

ψi(·;β )}exp{β tXi(s)}ds. (3.60)

The likelihood process is thus given by (Andersen et al., 2012)

L(t;θ ,β ) =
t

∏
s=0

{
n

∏
i=1

[Ai(ds;θ ,β )]∆Ni(s)

}
× [1−A·(ds;θ ,β )]1−∆N·(s) (3.61)

where N· = ∑
n
i=1 Ni(s), A· = ∑

n
i=1 Ai, and Π denotes the product integral. Equation 3.61 can

be rewritten as

L(t;θ ,β ) =

{
t

∏
s=0

n

∏
i=1

[Ai(ds;θ ,β )]∆Ni(s)

}
× exp{−A·(t;θ ,β )} (3.62)

The log-likelihood process will therefore be

logL(t;θ ,β ) =
n

∑
i=1

∫ t

0
log{Yi(s)λi(s;θ ,β )× exp{β tXi(s)}}dNi(s)−A·(t;θ ,β ) (3.63)
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The score process associated with θ is therefore

Uθ (t;θ ,β ) =
n

∑
i=1

∫ t

0

[
∂

∂θ
logλi(s;θ ,β )

]
dMi(s;θ ,β ) (3.64)

where Mi(·;θ ,β ) = Ni(·)−Ai(·;θ ,β ), (i = 1,2, · · · ,n).

Under H∗0 , assuming β0 is the true, M(·)= (M1(·),M2(·), · · · ,Mn(·)) with Mi(·)=Mi(·;0,β0)

is a vector of local square-integrable orthogonal martingales with quadratic variation pro-

cess (Pena, 1998b; Andersen et al., 2012)

〈M〉(·) = diag{A(·;0,βO)}= diag
{∫ ·

0
Yi(s)λ0(s)exp{β t

0Xi(s)}ds : i = l,2, · · · ,n
}
,

(3.65)

where for any vector a, diag{a} is the diagonal matrix with diagonal elements as the ele-

ments of a. Because [ ∂

∂θ
] logλi(·;θ ,β ) = ψi(·;β ),(i = 1,2, · · · ,n)

Uθ (·;0,β0) =
n

∑
i=1

∫ ·
0

ψi(s;β0)dMi(s). (3.66)

But the score process Uθ (·;0,β0) above is not observable, because β0 is unknown and

the ψ ′i s and M′is depend on it. To derive a score test statistic, β0 above is replaced by

an estimator β̂ based on F. Typically, the estimator used is the full maximum likelihood

estimator (MLE) of β subject to the restriction θ = 0. The Cox model is used to estimate

β using the partial MLE of β , which is the β that maximizes the Cox partial likelihood

function given by Andersen (1982) and Andersen et al. (2012)

L(t;β ) =
n

∏
i=1

t

∏
s=0

[
Yi exp{β tXi(s)}

∑
n
j=1Yj exp{β tX j(s)}

]
(3.67)

Notice that this partial likelihood process does not depend on the baseline hazard rate func-

tion; hence it is automatically (functionally) independent of θ . There is a tradeoff in using

the partial MLE of β instead of the full MLE of β restricted to θ = 0. It is that this partial
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MLE will be less efficient than the full MLE; on the other hand, it is the estimator under

the Cox model.

The score process arising from the partial likelihood is given by Aalen (1978) and Andersen

et al. (2012)

Uβ (·;β ) =
n

∑
i=1

∫ ·
0
[Xi(s)−E(s;β )]dMi(s;0,β ), (3.68)

where, for m = 0, 1, or 2, (Pena, 1998b,a; Andersen and Gill, 1982)

S(m)(t;β ) =
1
n

n

∑
i=1

Xi(t)
⊗

Yi(t)exp{β tXi(t)}, (3.69)

and

E(s;β ) =
S(1)(t;β )

S(0)(t;β )
(3.70)

The other expression for variance will yield the following process

V (t;β ) =
S(2)(t;β )

S(0)(t;β )
−E(t;β )

⊗
2 (3.71)

where for vector a, a
⊗

0 = 1, a
⊗

1 = a and a
⊗

2 = ata. The partial MLE of β , denoted

by β̂ , satisfies the equation Uβ (T ; β̂ ) = 0. The resulting observable score process used for

testing H∗0 : θ = 0 is given by (Pena, 1998b)

Uθ (·;0, β̂ ) =
n

∑
i=1

∫ ·
0

ψi(s; β̂ )dMi(s;0, β̂ ) (3.72)

and, in particular, the score test statistic based on Fτ , is obtained by evaluating Uθ (·;0, β̂ )

at t = τ . The processes {Mi(·;0, β̂ ) : i = 1,2, · · · ,n} are special cases of the ”martingale”

residual processes. An important thing to note is that the test process in above is a score pro-

cess, and consequently, test procedures arising from this process will have certain asymp-

totic optimality properties similar to score tests.

Because there is freedom to choose ψ ′i s by varying these processes, we generate a sequence
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of GOF tests.

The covariance matrix function of the limiting process is (Pena, 1998a)

Ξ(ti, t2;β0) =Σ11(t1, t2;β0)−Σ12(tl;β0)Σ22(τ;β0)
−

Σ12(t2;β0)
t+

∆(tl;β0)Σ22(τ;β0)
−1

∆(t2;β0)
t , (3.73)

where the matrix function is given as

Σ(t;β ) =

 Σ11(t;β ) Σ12(t;β )

Σ12(t;β ) Σ22(t;β )

 . (3.74)

The definition of submatrices in matrix, Σ(t;β ) is given by

Σ11(t;β ) =
∫ t

0 ψ(0)(s;β )⊗2y(s)λ0(s;β )ds

Σ12(t;β ) =
∫ t

0 ψ(0)(s;β )ρ(s;β )ty(s)λ0(s;β )ds

Σ22(t;β ) =
∫ t

0 ρ(s;β )⊗2y(s)λ0(s;β )ds

Σ21(t;β ) = Σ12(t;β )t See Pena (1998a); Agustin and Peña (2001); Koziol (1987); Kraus

(2007b), for elaborate descriptions of these functions.

The covariance matrix function Ξ(ti, t2;β0) can be consistently estimated by the matrix

Ξ̂(ti, t2; β̂0). The test statistic

S(τ; β̂ ) =
1
n

Uθ (τ;0, β̂ )t
Ξ̂(ti, t2; β̂0)

−1Uθ (τ;0, β̂ ). (3.75)

S(τ; β̂ ) has a limiting chi-squared distribution with degrees of freedom k∗= rank[Ξ(τ,τ;β0)].

The asymptotic smooth goodness-of-fit test for H0 : λ (·) = λ0(·) versus H1 : λ (·) 6= λ0(·)

is reject H0 if

S(τ; β̂ ) =
1
n

Uθ (τ;0, β̂ )t
Ξ̂(ti, t2; β̂0)

−1Uθ (τ;0, β̂ )≥ χ
2
k∗;α , (3.76)
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where χ2
k∗;α a is the (1−α)100th percentile of the chi-squared distribution with k∗ degree

of freedom. Effects of replacing the unknown nuisance parameter β0 by the partial MLE β̂

in Uθ (τ;β0)√
n have covered extensively by Pena (1998b,a); Agustin and Peña (2001). Since β̂

is a consistent estimator (Pena, 1998b) of β0, the test statistic can be expressed

S◦(τ; β̂ ) =
1
n

Uθ (τ; β̂ )t
Σ̂11(τ; β̂ )−1Uθ (τ; β̂ ). (3.77)

The limiting distribution of S◦(τ; β̂ ) is not even a chi-squared distribution. In such a case,

misleading conclusions thus may be reached. Also note that if β0 were estimated by the

MLE based on the full likelihood, then the term involving ∆(·;β0) in Ξ(t1, t2;β0) disappears,

so the effect of estimating β0 is a decrease in asymptotic variance. Consequently, the

term involving ∆(·;β0) in Ξ(·, ·; ·) can be interpreted as the increase in asymptotic variance

attributed to the use of the less efficient partial likelihood MLE.

The ψi Processes

Each choice or specification leads to a score test process, a limiting variance process, a

quadratic test statistic, and ultimately an asymptotic test of H0.

The associated score test process is denoted by (Pena, 1998a)

Q(t;β : ξ ) =
1√
n

Uθ (t;0,β ), (3.78)

where ξ is the label to identify the choice of ψ . The limiting variance process is denoted

by (Pena, 1998a)

Ξ(t;β : ξ ) =Σl1(t;β : ξ )−Σl2(t;β : ξ )Σ22(τ;β )−1
Σl2(t;β : ξ )t+

∆(t;β : ξ )Σ22(τ;β )−1
∆(t;β : ξ )t . (3.79)
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This problem is related to that of validating whether this model fits observed data. The

goodness-of-fit procedures is derived as score tests and is obtained by embedding λ0(·) in a

larger class of hazard rate functions; with this class developed through smooth transforma-

tion of λ0(·). The score tests depend on the unknown vector of regression coefficients β , so

to obtain usable tests, this β is replaced by its partial MLE. The effect of this substitution is

ascertained in the asymptotic properties of the score process. The resulting goodness-of-fit

procedures are also related to model validation procedures that utilize generalized residu-

als and, consequently, through the asymptotic results, the appropriate adjustments needed

to properly use procedures based on generalized residuals are obtained. Several classes

of goodness-of-fit tests, both omnibus and directional can be generated. Explicit expres-

sions of these tests are presented for the randomly censored model. Furthermore, some

goodness-of-fit tests that have been proposed in the literature can actually be derived and

justified more formally through counting processes, and because these tests can be viewed

as score tests, they are automatically endowed with certain optimality properties. This test

can be applicable in more complex dynamic models in survival analysis, reliability, and

the econometric settings, where the specification of the model is through hazard rates or

failure intensities. The resulting goodness-of-fit tests, both omnibus and directional, are

also appealing.

3.2.3 Smooth test for Composite Baseline Hazard

We extend the Neyman goodness-of-fit approach discussed in section 1.2 here in order

to cover composite situations. This extension allows situations where censoring variable

exists; a situation that is typically useful in time-to-failure scenario.

Let N = {N(t) : t ∈ T≡ [0,τ]} be a counting process defined on probability space (Ω,F,P)

with filtration F = {ft : t ∈ T} (Pena, 1998a). Let observable predictor process be Y =

{Y (t) : t ∈ F}. Assuming that the filtration considered here is the natural filtration FN =
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{fNt : t ∈ T}where fNt is the σ−field generated by {(N(s),Y (s)) : s≤ t} and f0. It is assumed

f0 contains all information at time 0.

The compensator process of N is therefore A={A(t) : t ∈ T} where

A(t) =
∫ t

0
Y (ω)λ (ω)d(ω) (3.80)

and λ (·) is unknown hazard rate function (Aalen, 1978).

The smooth test of goodness-of-fit is implemented by testing the null hypothesis H0 : λ (·)

belongs to a parametric class ξ = {λ0(·;η) : η ∈ F ⊆ ℜ} of hazard function verses the

alternative hypothesis λ (·) 6= ξ (McKeague and Utikal, 1991).

We assume the following basic conditions on the ψ(·;η) process and the class ζ . If H0 is

true, we let η0 denote the true value of η . Furthermore, ψ(·;η) is a locally bounded and

predictable process, and ∂

∂η
λ0(·;η) exists with λ0(·;η)> 0 for each (t,η) ∈z×Γ. Under

our model, the partial log-likelihood process for (θ ,η) [it will be the full log-likelihood un-

der additional assumptions such as noninformative censoring] is given as (Andersen et al.,

2012)

logL(t;θ ,η) =
∫ t

0
log[Y (s)λk(s;θ ,η)]dN(s)−

∫ t

0
Y (s)λk(s;θ ,η)ds. (3.81)

Let

M(t;θ ,η) = N(t)−
∫ t

0
Y (s)λk(s;θ ,η)ds, t ∈z. (3.82)

Then, the score process is defined as

U(t;θ ,η) =

 U1(t;θ ,η)

U2(t;θ ,η)

=
∫ t

0

 ψ(s;η)

∂

∂η
logλk(s;θ ,η)

dM(;θ ,η), (3.83)
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which, when evaluated at (θ ,η) = (0,η), becomes

U(t;θ ,η) =

 U1(t;θ ,η)

U2(t;θ ,η)

=
∫ t

0
H(s;η0)dM(s;η0), (3.84)

where H(s;η) = [ψ(s;η), ∂

∂η
logλk(s;θ ,η)]t and M(s;η) = M(s;0,η).

Under H0, {M(t;η0) : t ∈ z} is a square-integrable local martingale, and its predictable

variation process is

〈M(·;η0)〉(t) = A(t;η0) =
∫ t

0
Y (s)λ0(s;η0)ds. (3.85)

Since {H(t,η0) : t ∈z} is a locally bounded predictable process, then under H0,{U(t,η0) :

t ∈z} is a square-integrable local martingale with predictable quadratic variation process

〈U(·;η0)〉(t) =
∫ t

0
H(s;η0)

⊗2Y (s)λ0(s;η0)ds. (3.86)

If, under H0, the true value η0 is known, a test of Ho can be based on the statistic

U1(τ;η0) =
∫ t

0
ψ(s;η0)dM(s;η0). (3.87)

However, since η0 is unknown, an asymptotically optimal test can be obtained from the

efficient score vector

Û1(τ;η0) =U1(τ;η0)−Σ12(τ;η0)Σ22(τ;η0)
−1U2(τ;η0), (3.88)

upon replacing η0 by a suitable estimator, and where

Σ =

 Σ11 Σ12

Σ21 Σ22

 (3.89)
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is a (possibly limiting) covariance matrix of U . Replace η0 by its restricted maximum

likelihood estimator (Pena, 1998a) η̂ obtained under the restriction θ = 0.

Asymptotic properties of this estimator have been discussed by Andersen and Gill (1982),

Andersen et al. (2012) and McKeague and Utikal (1991).

Substituting η̂ for η0, the estimated efficient score vector becomes

U1(τ; η̂) = Û1(τ; η̂) =
∫

τ

0
ψ(s; η̂))dM(s; η̂). (3.90)

The process M(t; η̂) : t ∈z is the martingale residual process (Fleming and Harrington,

2011).

To obtain the exact form of the test, we need the sampling distribution of U1(τ; η̂) and its

covariance matrix Ξ(τ;η0) under H0. The smooth goodness-of-fit test for H0 of order k

associated with ψ(·;η) is to reject H0 if

Sk(τ; η̂) =Ul(τ; η̂)t
Ξ̂(τ; η̂)−1U1(τ; η̂)≥ cα , (3.91)

where cα is such that Pr[Sk(τ; η̂)≥ cα |H0)] equals α .

The asymptotic properties of the test have been covered extensively by Pena (1998a). He

showed that the test statistic has an asymptotic chi-squared distribution with k∗ degrees-of-

freedom under H0. The asymptotic α-level smooth test then rejects H0 whenever Sk(τ; η̂)≥

χ2
k̂∗,α

, where k̂∗ is the rank of the covariance matrix Σ11.2(τ; η̂). The definition and compo-

nents of Σ11.2(τ; η̂) have been covered in section 3.2.2.

3.2.4 Testing baseline hazard Function for Weibull Distribution

One of the most common family is the Weibull Distribution, and its survival function can

be defined as

S(t) = exp{−(λ t)p} (3.92)
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and hazard function

λ (t) = pλ (λ t)p−1 (3.93)

for parameters λ > 0 andp > 0. If p = 1, the model reduces to the exponential and has

constant risk over time. If p > 1, then the risk increases over time. If p < 1, then the risk

decreases over time. If we pick the Weibull Distribution as a baseline risk and then multiply

the hazard by a constant in a proportional hazards framework, the resulting distribution

turns out to be still a Weibull Distribution, so the family is closed under proportionality of

hazards. If we pick the Weibull Distribution as a baseline survival and then speed up the

passage of time in an accelerated life framework, dividing time by a constant , the resulting

distribution is still a Weibull Distribution, so the family is closed under acceleration of time.

Suppose we want to test λ0(·) belongs to the two-parameter Weibull Distribution class of

hazard rate functions

{λ0(t;α,η) = αη(ηt)α−1 : α > 0,η > 0}, (3.94)

where α and η is the scale and shape parameter respectively. Immediate substitution yield

ρ(0)(t;α,η) =

 α

η

1
η
(1+ log t)

 ,

γ1 =
r(0)τ(0)

α

 0

C(τ(0))


and Ψ = r(0)τ(0)

 α2

η2
1
η

E(1)(τ(0))

1
η

E(1)(τ(0)) 1
α2 E(2)(τ(0))


where,

D( j)(τ(0)) =
∫

τ(0)

0 (logw) jdψ
(0)
1 (w),( j = 0,1,2),

E(1)(τ(0)) = D(0)(τ(0))+D(1)(τ(0)),

E(2)(τ(0)) = D(0)(τ(0))+2D(1)(τ(0))+D(2)(τ(0))

and C(τ(0)) =
∫

τ(0)

0 (1+ logw)ψ(0)
1 (w)dψ

(0)
1 (w).
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Also, we define

V (τ(0)) = E(2)(τ(0))− [E(1)(τ(0))]2. (3.95)

The empirical versions of these quantities are D̂( j)(τ̂(0))′s, Ê( j)(τ̂(0))′s, Ĉ(τ̂(0)) and V̂ (τ̂(0)),

which are found by replacing ψ
(0)
1 (·) with ψ

(n)
1 (·) = RR

0 (·)
RR

0 (
ˆ

τ(0))
−1/2 in their definitions.

The test statistic is then obtained by setting

∆̂(τ̂(0)) =
Ĉ(τ̂(0))2

V̂ (τ̂(0))
. (3.96)

3.2.5 Smooth Tests of Goodness-of-fit for 2-sample hazard functions

This is achieved by nesting the Cox PH model defined in equation (1) to yield .

λi(t) = Yi(t)λ0(t)exp{β tXi(t)+θ
t
Ψi(·,β )Xiq(t)}, (3.97)

where Ψi(·,β ) = {(ψ1(·,β ),ψ2(·,β ), · · · ,ψk(·,β ))} is the smooth alternative chosen as

some basis functions in standardised time i.e.

ψi(·,β ) = ϖi(1− exp{−γ̂0(·,β )}) (3.98)

where γ̂0(·,β ) is the Breslow estimator of γ0(·,β ) =
∫ t

0 λ0(s)ds and ϖi(·) are some bounded

functions on [0,1] (Kraus, 2007a). Details on derivation of the test statistic, asymptotic

properties and how to determine the choice k including data-driven version of the test have

been elucidated by Kraus (2007a), Kraus (2007b) and Kraus (2009).

The score test statistic for testing H0 : θ = 0 against HA : θ 6= 0 is defined by

Sk =U(·; β̂ )t
Σ(·; β̂ )U(·; β̂ ) (3.99)
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where U(·; β̂ ) is a score process for θ evaluated at (β T ,θ T ) = (β T ,(0,0, · · · ,0)) and has

been shown by Kraus (2007a) to be

n

∑
i=1

∫ t

0
ψ(s,β )Xϖ(s)dNi(s)−

∫ t

0

∑
n
i=1Yi(t)Ψ(s,β )Xϖ(s)exp{β T Xi(t)}

∑
n
i=1Yi(t)exp{β T Xi(t)}

dN̄(s). (3.100)

The estimated variance (Σ) of the score is given as

Σ̂(·; β̂ ) = Σ̂22(·; β̂ )− Σ̂21(·; β̂ )Σ̂11(·; β̂ )−1
Σ̂12(·; β̂ ) (3.101)

where Σ̂11(·; β̂ ) = [U1(·; β̂ )](t), Σ̂22(·; β̂ ) = [U2(·; β̂ )](t) and

Σ̂21(·; β̂ ) = [U2(·; β̂ ),U1(·; β̂ )](t).

Sk→ χ2
k for n→ ∞ under H0 and Ho is rejected for large values of Sk.

3.2.6 Other Conventional GOF Tests

In the classical non-censored one-sample goodness-of-fit problem, one observes a random

sample X1, · · · ,Xn from a population with distribution function F(x) = Pr(X ≤ x); the cor-

responding survival function is F̄(x) = Pr(X > x) = 1−F(x). The null hypothesis asserts

that F(x) = G(x) , where G is completely specified. The need to generalize this problem

to encompass censored data arises because in some situations, such as clinical trials, or life

testing, the X’s may represent times to the occurrence of an end-point event and the data

are usually analyzed before all patients, or items on test, have experienced the event. In the

clinical trials context the end-point event could, for example , be relapse , pregnancy , or

death. In the life-testing framework, the end-point event could be failure of the inner ring

of ball bearings which are on test (Gatsonis et al., 1985).
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Kolmogorov-Smirnov Dn two-sample Goodness-of-fit for Hazard functions

Kolmogorov-Smirnov test for two sample proportional hazard with right censoring has

been covered by Lin et al. (1993) and Therneau et al. (1990). More on asymptotic properties

have been covered by Arjas (1988); Wei (1984) and Persson (2002). The test is based on

the simplified partial likelihood score process and it tests the hypothesis that transformation

hazards are proportional in two samples of right censored data. The test uses Kolmogorov-

Smirnov supremum statistic based on the simplified partial likelihood score process and

martingale simulations are used to compute the p-value.

Let ρ be a variable that indicates group 1 or 2 and

U(β̂ , t) = {U1(β̂ , t),U2(β̂ , t), · · ·Up(β̂ , t)} (3.102)

be the empirical score process. The standardized score process F1/2U(β̂ , t) where β̂ is

the NPMLE estimator β . For the supremum test, if the dimension, p ≥1, each of the

proportional hazards test statistics (Lin et al., 1993),

sup
t
{F−1(β̂ ) j j}

1
2 |U j(β̂ , t)| ( j = 1,2, · · · , p) (3.103)

has the asymptotic distribution of sup0≤U≤ |B0(u)| if {V (t)} jk = 0 for ( j 6= k) for all t,

where V (·) is the limiting covariance matrix for n−
1
2U(β0, ·).

However if the independence of covariates used to determine V (·) fails, assessing the over-

all proportionality, can be approached by the following test statistic

sup
t
||U(β̂ , t)|| or sup

t

p

∑
j=1
{F−1(β̂ ) j j}

1
2 |U j(β̂ , t)|. (3.104)

More on the consistency of the test against the nonproportional hazards alternative have

been covered by Lin et al. (1993) and Kraus (2009).
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Global test for two-sample Proportional Goodness-of-fit test

The global test is widely used to test the proportional hazards assumption for a CPH model.

The test was first proposed by Quantin et al. (1996). The test is based on a semi-parametric

generalization of the proportional hazards regression model. The hazard function corre-

sponding to a covariate vector X and has the time function defined as

Φ(t) = 1+ log[Λ0(t)] (3.105)

where Λ0(t) is the cumulative baseline hazard function which is essentially Breslows max-

imum likelihood estimator under H0 (Lin et al., 1993; Lin, 1991; Lim and Zhang, 2011).

The hypothesis of proportional hazards, H0 : θ = 0, is tested by using a score statistic

derived from the partial likelihood. The Breslow estimator for Λ0(t) =
∫ t

0 λ0(u)du is

Λ̂0(t) =
n

∑
i=1

∫ t

0

dNi(u)

∑
n
j=1Yj(u)exp(β̂ tX j(u))

(3.106)

where β̂ maximizes the partial log-likelihood of β . As in the special case of the propor-

tional hazards model, β and Λ̂0(t) are NPMLEs. For the more exhaustive coverage of Λ0(t)

see Lin (1991); Lin et al. (1993); Chen et al. (2004) and Persson (2002).

3.3 Smooth Tests for Baseline Hazard in Recurrent Events

3.3.1 General Overview of Recurrent Events

Recurrent events are processes that generate events repeatedly over time. The events occurs

in many areas such as public health, medicine, engineering, reliability studies etc. Exam-

ples of recurrent events in public health settings are the re-occurrence of polio, low CD4
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count in an HIV patient during ART, relapse of a drug and alcohol after rehabilitation, re-

curring migraines, TB recurrences etc. From engineering studies we have breakdown of a

machine, the failure of an operating system, or malfunctioning parts on an assembly line.

The deteriorating episodes of visual acuity, and the turnover rate for a company are also

examples of recurrent events in other settings. Studies on recurrent events that involves a

variety of statistical fields have been developed. See Cook and Lawless (2007), Lim and

Zhang (2011), Aalen and Husebye (1991), Adekpedjou et al. (2012) etc for more on exam-

ples of recurrent events. Recurrent events are structured to be of naturally ordered failure

time and the different events within an individual may be correlated.

Methods for recurrent events analysis include nonhomogeneous Poisson process (NHPP),

Andersen-Gill (AD), Wei-Lin-Weissfeld (WLW), Prentice, Williams and Peterson total

time (PWP-CP), Prentice, Williams and Peterson gap time (PWP-GT) and Lee, Wei and

Amato (LWA). Generally, nonhomogeneous Poisson process (NHPP) models and renewal

process models have been studied with the requirements of strictly minimal repair and per-

fect repair, respectively (Cox, 1972), LWA model allows a subject to be at risk several times

for the same event, WLW model overestimates treatment effect where as PWP-GT and TT-

R are useful models for analysing recurrent event data (Kelly and Lim, 2000). Models that

deal with recurrent data and incorporate a fraity component include those of Block et al.

(1985) and Stocker IV and Peña (2012).

Recurrent events can either be time-to-events model or gap times model. Time-to-

events models focuses on occurrence rate of recurrent events over time; time is measured

from time-origin to time of event of interest. Time-origin could be a fixed calendar time,

onset of treatment, or a biological event. On the other hand, in gap time models, outcome

variables of interest are gap times between events and is more relevant when cycling pattern

of recurrent events is strong.
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3.3.2 The Gap Time Model

Modeling hazard functions using calendar time domain has been the main conventional

counting processes in studying past recurrences and are widely used for asymptotic theory

derivation. When the focus switches to hazard function of gap time, it is more convenient to

consider processes that restart the time clock every time a recurrence occurs. For example,

a gap time counting process counts only the immediate event after the last recurrence. This

leads us to a generalised minimal repair model Block et al. (1985) which offers a general

framework gap-time events model.

Let a component start functioning at time 0. If the component fails at time t, either a

perfect repair is done with probability ρ(t) or a minimal repair is undertaken with probabil-

ity q(t) = 1−ρ(t). A perfect repair restores the component to the original state whereas,

a minimal repair restores the effective age to that just before the failure. The process of

perfectly or minimally repairing the component takes place at each subsequent failure with

the probability associated with the type of repair dependent on the effective age of the sys-

tem. This model is also applicable to other areas since it admits as special cases some of

the models commonly encountered in practice (i.e. ρ(t) = 1), under which we, recover the

independent and identically distributed (i.i.d.) model. A common model used for recurrent

events in the biomedical setting is the nonhomogeneous Poisson process which is a special

case of the BBS model.

Let ω0 = 0 < ω0 < ω1 < · · · be the successive failure times of a component, and let

U1,U2, · · · be a sequence of i.i.d. Uniform[0,1] random variables which are independent

of the failure times. The sequence (ω1,ω2, · · · ,ωv), where v = inf{k ∈ (1,2, · · ·) : Uk <

p(ωk)}, is an episode of the BBS model. Consider observing n independent BBS episodes

{ω jk : 1≤ j≤ n,1≤ k≤ v j} associated with n units where the jth unit has a possibly time-

dependent covariate process X j(·).

Let the counting process N= {N1(t),N2(t), · · · ,Nn(t)} and Y= {Y1(t),Y2(t), · · · ,Yn(t)},
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where

N j(t) =
∞

∑
k=1

I{ω jk ≤ t ∧ω jv} (3.107)

and

Y j(t) = I{ω jv j ≥ t}. (3.108)

With respect to the filtration F = {ℑt : t ∈ T}, where Ft = F0∨ v j = lnσ{(N j(s),Y j(s)) :

s≤ t}, and with ℑt containing all information available at time 0, the compensator of N is

A = {(A1(t;β ),(A2(t;β ), · · · ,(An(t;β ) : t ∈ T )} with

A j(t;β ) =
∫ t

0
Yj(s)λ (s)exp{β tX j}ds (3.109)

where λ (s) is a baseline hazard function, β is a q×1 vector of regression coefficients, and

X1(s), · · · ,Xn(s) are q×1 vectors of locally bounded predictable covariate processes.

The following condition is holds:

∫
∞

0
ρ(t)λ (t)exp{β tX j(t)}dt = ∞ (3.110)

The condition above allows the waiting time to the first perfect repair to be almost

surely finite with hazard rate function (Block et al., 1985; Agustin and Peña, 2005).

Let Wj = Tj−Tj−1 be the gap time between the ( j−1)st and the jth event. Papers dealing

with BBS models as renewal processes include Agustin and Pena (1999); Aalen and Huse-

bye (1991); Hollander et al. (1992); Adekpedjou et al. (2012); Dorado (1995); Dorado et al.

(1997); Kijima (1989); Agustin and Peña (2001).

Renewal process are mostly applicable for gap-time and are defined as a process where

(Cook and Lawless, 2007)

λ (t|H(t)) = h(t−TN(t−)) (3.111)
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Where h(·) is the hazard function for the gap time between events which are independent

and identically distributed. Assuming covariates are exogenous, let x(t) = {x(s) : 0≤ s≤ t}

be the history of covariates over [0, t] and x∞ is the complete covariate path. Assuming that

λ (t|H(t)) depends only on x(t), we partition the interval as [a,b] i.e. µ0 < µ1 < · · · < µR

and define4µr = µr+1−µr.

The product integral of g(µ) over [a,b] is defined as

∏
[a,b]
{1+g(µ)dµ}= lim

R→∞

R

∏
r=0

(1+g(µr)4µr) (3.112)

We start by defining methods that are based on renewal processes then extend the methods

to generalised situations where censored data exist.

Let an individual i be observed over the time interval [o,τi] and t = 0 refers to the start

of the event process. The event intensity function is defined by Cook and Lawless (2007)

as

λ (t|H(t)) = h(B(t)), t > 0 (3.113)

Where B(t) = t − TN(t−) is the time since the most recent event before t and h(ω) is the

hazard function for the variable Wi. That is, if Wihave a common density function f ω and

the survival function S(ω) = Pr{W ≥ ω} then

h(ω) =
f (ω)

S(ω)
= lim
4ω→0

Pr{W < ω +4ω|W > ω}
4ω

(3.114)

We can allow the baseline hazard W1 to have a different distribution from that of W2,W3, · · · .

Allowing for fixed covariates xi means that the gap times Wi j between events have hazard

functions h(ω|xi). If ni events are observed at time 0 < ti1 < ti2, · · · ≤ τi. Let ωi j = ti j−

ti j−1,( j = 1, · · · ,ni) and ωi,ni+1 = τi− tini where ti0 = 0. These are the observed gap times

for individual i with the final time being possibly censored. The likelihood function from
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m independent individuals will take the form of

L =
m

∏
i=1
{

ni

∏
j=1

h(ωi j|xi)exp(−H(ωi j|xi))}exp(−H(ωi j|xi)) (3.115)

where H(ω|x) =
∫

ω

0 h(µ|x)dµ is the cumulative hazard function for Wi j given xi. If τi is

the censoring variable then the expression in equation 3.115 can be expressed as

Pr{Wi,1 = ωi,1, · · · ,Wi,ni = ωi,ni,Wi,ni+1 > ωi,ni+1}= P(·). (3.116)

The expression above (equation 3.116) denotes the probability density.

Let f (ω|x) = {h(ω|x)exp(−H(ω|x))}exp[−H(ω|x)] be density function and S(ω|x) =

exp[−H(ω|x)] be survival function. Then

L =
m

∏
i=1
{

ni

∏
j=1

f (ωi j|xi) ·S(ωi,ni+1|xi) (3.117)

which is the likelihood function for a random sample involving failure times ωi j,( j =

1,2, · · · ,ni) and the right censored times ωi,ni+1,(i = 1,2, · · · ,m).

If observation terminates after the nth
i event i.e. ωi,ni+1 = 0, then the term S(ωi,ni+1) disap-

pears.

3.3.3 Smooth GOF tests for Baseline Hazard Functions in Recurrent

Events

Gap times between recurrent events are common in many clinical and observational studies.

Here, we extend Neyman’s smooth test to assesses the hypothesis for recurrence (Liu et al.,

2016) for the baseline hazards function. An extension of chapter 3 is used to obtain the

score test statistic of the baseline hazard function. The asymptotic properties of the test

have been examined in literature.
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Suppose that there are n subjects and that each subject can experience K recurrent events.

Assuming non-informative censoring, let Tik be the time when the kth failure occurs for the

ith subject and Cik be the corresponding censoring time. Tik is measured from an individual’s

entry into the study and the censoring Cik occurs after the individual has been entered into

a study to the right of the last known failure time; it is therefore, right censoring. When

Tik is subject to right censoring, the kth failure time Xik is a minimum of (Tik,Cik), i.e.,

Xik is equal to Tik if the event was observed and is equal to Cik if it is censored. Let

δik = I(Tik ≤Cik), where I(·) is an indicator function (Lim and Zhang, 2011) and takes the

value 1 when Tik ≤Cik and is 0 otherwise. Let Zik be a covariate vector of p-dimensions for

the ith subject at the kth failure time. For each of the K failures, the hazard function for the

ith subject with respect to the kth event, lik(t), is assumed to take additive or multiplicative

forms (Lim and Zhang, 2011).

λik(t) = λ0k(t− tk−1)exp{β tZik(t)}, (3.118)

where t is the time since a patients study enrollment and tk−1 is the time of the (k− 1)th

failure. Note that λk(t) are unspecified baseline hazard functions varying with k = 1, · · · ,K.

Embedding the baseline hazard, λ0k(t− tk−1) in equation 3.120 to form a larger family of

order k through smooth transformation.

Φk = {λk(·;θ) = λ0k(·)exp[θ
′
Ψ(·)] : θ ∈ℜ

k} (3.119)

where k is a fixed positive integer and Ψ(·) is a k×1 vector of locally bounded predictable

processes. The null hypothesis H0 : λ (·) = λ0(·) is recovered when setting θ = 0. The

score process associated with θ have been derived by Pena (1998b), Pena (1998a), Agustin

and Peña (2001).
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3.3.4 Modelling Smooth Test in BBS model

Let {ω0 = 0,ω1,ω2, · · ·} be a sequence of failure age generated under a minimal repair

model with ωi being continuously distributed with probability density function f and haz-

ard function λ = f
S̄ , where S̄ is the survival function. Considering ω0 = 0 < ω1 < ω2 < · · ·

are successive failure times of a component, and U1,U2, · · · is a sequence of i.i.d Uni-

form [0,1] random variables which are independent of the failure times. The sequence

(ω0 = 0,ω1,ω2, · · · ,ων) , where ν = inf{k ∈ {1,2, · · ·} : Uk < (pωk)} is an epoch of the

BBS model. Articles dealing with applications of BBS models include Aalen and Huse-

bye (1991); Agustin and Peña (2005); Baxter et al. (1996); Dorado (1995); Dorado et al.

(1997); Hollander et al. (1992); Kijima (1989); Nelson (2003); Agustin and Pena (1999);

Block et al. (1985); Brown and Proschan (1983). Since a perfect repair restores a compo-

nent to as good-as-new state, it suffices to observe a component only until the time of its

first repair; a situation that is naturally similar to time to first loss to follow-up (LTFU) in a

typically HIV clinical setting. BBS Model (Block et al., 1985) allows the probability of a

perfect repair to depend on the age of the failed item. In the BBS model ρ(·) is a measur-

able function ρ : [0,∞]→ [0,1]. The waiting time between perfect repairs is almost-surely

finite with distribution H given by

H(t) = 1− exp{−
∫ t

o

ρ(s)
F(s)

dF(s)} (3.120)

Considering counting process N(t)= {(N1(t),N2(t), · · · ,Nn(t)) : t ∈z}with Ni(t)=N∗i (t∧

Wivi), i = 1,2, · · · ,n. The corresponding observable filtration F = {zt : t ∈ T} is given by

zt = V ∗j=1z∗j(t∧Wivi)
. The compensator of N(t) is given as A = {A1(t),A2(2), · · · ,An(t)},

with

Ai(t) =
∫ 0

t
Yi(s)λ (s)ds, i = 1,2, · · · ,n, (3.121)
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where Yi(s) = I{Wivi} and λ (·) is unknown baseline hazard function.

Generally, the BBS model has two parameters Agustin and Pena (1999); a lifetime dis-

tribution function F , which in our case we assume here to be continuous, and a function

p[0,∞)→ [0,1]. Thus we write the model as BBS (F, p). Because there is a one-to-one

correspondence between F and its hazard function Λ, given by

Λ(t) =
∫ t

0

dF(ω)

1−F(ω)
=− log(l−F(t)) (3.122)

and

F(t) = 1− exp{−Λ(t)}. (3.123)

We can therefore specify a BBS model and rewrite it as BBS(Λ, p) (Agustin and Pena,

1999). Under a model of minimal repair, described at the introduction section, the se-

quence {ω j}∞
j=1 is a Markov process, and the conditional survivor function of ω j given

ω0,ω1, · · · ,ω j−1 is

S̄(t|ω j−l) =
S̄(t)

S̄(ω j−1
, t ≥ ω j−1, j ≥ 1,

where S = 1−F is the survivor function. Let U1,U2, · · · be a sequence of identically dis-

tributed and independent standard uniform variables, which are independent of the ω ′js. Let

ν = min{k ∈ {1,2, · · ·} : Uk ≤ p(ωk)}. An epoch in the BBS(Λ, p) model is the sequence

ω1,ω1, · · · ,ων . Because the system’s effective age is restored to 0 after a perfect repair is

performed, it suffices to observe the system until the ν th failure, which occurs at time ων .

Hence we focus on the feature of an epoch of a BBS(Λ, p) model. The probability mass

function ν for a BBS(Λ, p) is given by (see Agustin and Pena (1999))

fν(k) =
1

(k−1)!

∫
∞

0
exp{−Λ(ω)}× [Λ∗(ω)]k−1 p(ω)λ (ω)dω,k = 1,2, · · · (3.124)

where Λ∗(ω) =
∫

ω

0 λ ∗(s)ds and λ ∗(s) = [1− p(s)]λ (s). Considering stochastic formula-

tion developed by Hollander et al. (1992).
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Let N∗= {(N∗1(t),N∗2(t), · · · ,N∗n(t))} be a multivariate counting process defined by N∗j (t)=

∑
∞
k=1 I(ω jk ≤ t), j = 1,2, · · · and filtration F∗ = {F∗t : t ∈ F} defined by F∗t = F0

∨∧n
j=1F

∗
jt,

where

F∗jt = σ{{N∗j (s) : s≤ t}U{U jk : k ≥ 1}}, (3.125)

with F0 containing all null sets of F (Agustin and Peña, 2001). Consider observation of n

independent BBS epochs (Agustin and Peña, 2005){ω jk : 1≤ j≤ n,1≤ k≤ ν j} associated

with n units where the jth unit has time-dependent covariate process X j(·). Define the

stochastic processes N = {N1(t),N2(t), · · · ,Nn(t) : i ∈ F} with N j(t) = N∗j (t ∧ω jν j), j =

1,2, · · · and the corresponding filtration F = {Ft : t ∈ F} is given by Ft = ∨n
j=1F

∗
j(t∧ω j∨ j )

.

The compensator F of N is given as A = {A1(t),A2(t), · · · ,An(t) : t ∈ F} with

A j(t) =
t

∑
0

Yj(s)λ (s)ds, j = 1,2, · · · ,n, (3.126)

where Y j(s) = I{ω jν j ≥ s}, and λ (·) is the baseline hazard function.

The interest is to test the null hypothesis, H0 : λ (·) = λ0(·), where λ0(·) is completely

specified. Nesting the null hypothesis to get the larger family of order k by smoothly

transforming λ0(·) yields

ik = {λk(·;θ) = λ0(·)exp[θ
′
Ψ(·)] : θ ∈ℜ

k} (3.127)

where k is a fixed positive integer and Ψ(·) is a k×1 vector of locally bounded predictable

processes. The null hypothesis H0 : λ (·) = λ0(·) is recovered when setting θ = 0.

The score process associated with θ have been derived by Pena (1998b), Pena (1998a),

Agustin and Peña (2001) to yield

Uθ (t;θ) =
n

∑
j=1

∫ t

0
Ψ(s)dM j(s;θ) (3.128)
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where M j(s;θ) = N j(s)−A j(s;θ), j = 1,2, · · · ,n. The distribution of Uθ (t;θ) under the

null hypothesis can be achieved under four regularity conditions outlined in appendix B.

Under BBS model (Agustin and Peña, 2001) if the four conditions hold and H0 : θ = 0

is true, then as n→ ∞ converges to a normal distribution with mean zero and covariance

matrix Σ(τ), based on theorem 2.1 in Agustin and Peña (2001). Through Pena (1998b),

and assuming X = 0 and risk process Yj = I{Wiν j ≥ s}, the asymptotic α− level smooth

test of GOF of H0 : λ (·) = λ0(·). We reject H0 whenever

S(τ) =
1
n

Uθ (τ;0)′Σ−1Uθ (τ;0)≥ χ
2
k∗;α , (3.129)

where Σ−1(·) is a generalized inverse of Σ(·) and χ2
k∗;α is the (1−α)100% of the chi-

square distribution with degrees of freedom k =rank[Σ(τ)]. Since p(·) is not known, Σ(τ)

is estimated by

ˆΣ(τ) =
1
n

n

∑
j=1

∫
τ

0
ψ(s)ψ(s)tYj(s)λ0(s)ds. (3.130)

For comprehensive coverage on the processes of S(τ), polynomial specification (k), smooth-

ing process of S(τ), achieved power, asymptotic properties, small sample properties, effi-

ciency and other limiting distribution, see Agustin and Peña (2001), Pena (1998a), Agustin

and Peña (2001), Baxter et al. (1996), Aalen and Husebye (1991) and Agustin and Pena

(1999).
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Research Findings

4.1 Application of Smooth Test of GOF to Probability Dis-

tributions

4.1.1 Simulations

Here we begin by estimating the power of empirical GOF tests and smooth test when as-

sessing the two parameter Weibull distribution. Specifically, we compare efficiencies of

the smooth tests of order 3 and order 4 for the Weibull distribution against three common

empirical distribution function (EDF) tests (KS, CVM and AD).

We analysed simulation results in order to compare the critical values and powers of

empirical GOF tests ( Anderson-Darling (A2), Kolmogorov-Smirnov test (Dn) and Cramér-

von Mises ( ω2)) and smooth test. All computations were performed using R package EW-

GoF. We generated samples from two-parameter Weibull Distribution with scale and shape

parameters set at 30 and 6 respectively. The number of Monte Carlo runs in each situation

was 1000. Samples of size n ∈ {5,20,50,100,500,1000} were generated and estimates of

rejection probabilities computed. We eventually compared the performance of the GOF

60
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tests against significance level of 1%, 5% and 10%. The power of the test was determined

by the percentage rejection of the null hypothesis.

Similar tests have been examined by Bargal and Thomas (1983); Agustin and Peña

(2001); Hollander et al. (1992); Agustin and Peña (2005) in an extensive simulation study.

The performance of all the tests are strongly linked to the shape of the simulated distribu-

tion. Empirical tests (A2, ω2 and Dn) are biased in situations where β̂ is fairly minimal

(close to 1) whereas when η̂ is sufficiently large i.e. η̂ > 30, they fail to detect the right

distribution (Weibull Distribution). For smaller samples, smooth test tend to be unbiased

compared to the empirical GOF tests. The components of smooth test tend to be unbiased

when β = 5, η = 35 for large samples i.e. n ≥ 500. The calculation of the asymptotic

distributions of the EDF statistics follows φn = (Fn(z)− z)/
√

n, where Fn(z) is the EDF of

the set of zi and tends to standard normal distribution φ(z) as n→ ∞ and the statistics are

functions of the process.



CHAPTER 4. RESEARCH FINDINGS 62

Table 4.1: The power of goodness-of-fit tests for the simple hypothesis H0 (the Weibull
distribution with parameters: scale=30 and shape=6) versus the hypothesis H1 : a class of
the Weibull distribution (for the smooth test) and Not Weibull (for EDF tests)

The power of Smooth Test (order 3)

α n=5 n=20 n=50 n=100 n=200 n=500 n=1,000

0.01 0.015 0.006 0.007 0.006 0.006 0.007 0.008

0.05 0.053 0.041 0.046 0.035 0.039 0.040 0.047

0.1 0.103 0.103 0.090 0.089 0.085 0.091 0.088

The power of Smooth Test (order 4)

α n=5 n=20 n=50 n=100 n=200 n=500 n=1,000

0.01 0.016 0.007 0.008 0.008 0.010 0.008 0.009

0.05 0.055 0.042 0.049 0.043 0.042 0.042 0.051

0.1 0.105 0.104 0.096 0.087 0.088 0.101 0.090

The power of Kolmogorov-Smirnov Test

α n=5 n=20 n=50 n=100 n=200 n=500 n=1,000

0.01 0.014 0.010 0.012 0.012 0.012 0.012 0.012

0.05 0.049 0.055 0.049 0.056 0.060 0.065 0.069

0.1 0.107 0.106 0.097 0.098 0.098 0.113 0.108

The power of Anderson-Darling Test

α n=5 n=20 n=50 n=100 n=200 n=500 n=1,000

0.01 0.013 0.010 0.010 0.011 0.011 0.013 0.013

0.05 0.047 0.052 0.048 0.055 0.055 0.060 0.066

0.1 0.113 0.122 0.095 0.104 0.115 0.118 0.120

The power of Cramer-Von Mises Test

α n=5 n=20 n=50 n=100 n=200 n=500 n=1,000

0.01 0.014 0.013 0.011 0.011 0.012 0.013 0.013

0.05 0.050 0.055 0.050 0.053 0.047 0.060 0.067

0.1 0.112 0.117 0.096 0.099 0.107 0.116 0.123
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4.1.2 Modelling HIV Retention data-uncensored situation

Data Description

We conducted a retrospective data analysis for all patients who were initiated ART at two

government hospitals in Nairobi, Kenya (Makadara Health Center and Lungalunga Health

Center) between 1st of October 2011 to 31st December 2014. Considering that ART ser-

vices were initiated in Kenya in 2003 across all government hospital, we specifically ex-

tracted data from 2011 because by then all the public systems, processes and structures for

defaulter tracing were expected to have picked up effectively. Our event of interest was

time to first LTFU. The clinical setting considered here is routine regular Comprehensive

Care Center (CCC) in typical government hospitals. Data is collected routinely whenever

patients come for clinical check-up or drug refill. Since time to first LTFU was the event

of interest, other exits (i.e. transfer outs and deaths) were not considered in the analysis.

Patients who were actively receiving ART services and did not experience the event were

also removed. Only patients who were observed from the time of ART initiation between

1st November 2011 to 31st December, 2014 were included in the analysis. The time be-

tween ART initiation to first LTFU was given in months. Time to first LTFU was defined

as missing routine clinical appointment within 48 hours from the scheduled appointment

date and not identified as “Active on AR”, “dead”, or “transferred-out”. The time to first

LTFU was calculated as the time interval between the dates of ART initiation and first drop

out, as recorded by the ART database IQCare. The cohort was stratified into gender (male

and female), WHO Staging (WHO Stage 1, WHO Stage 2, WHO Stage 3 and WHO Stage

4) considered at the time of ART initiation and age groups (<10 years, 10-14 years, 15-24

years and 25+ years). Data was retrieved from an Health Information System (HIS) called

IQCare without patients identifiers. Only variables of interest were pulled out to excel

spreadsheet. Data was stored in excel and thereafter analysed in R. Approval was obtained

from Pathfinder International.
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Modelling LTFU

The focus is on time to first LTFU, and data in this perspective is primary and has not been

published or utilised in any publication. This is a typical Kenyan case, however, different

types of LTFU are expected to reflect the general evolution of HIV programming. LTFU

is expected to be a stable event that does not evolve much with time, at least in adults.

However, in young children, the risk of the event is not likely. Heterogeneity is to be

expected as it is well-known that there are various degrees of LTFU. The fact that LTFU is

considered as a stable event in any HIV programming suggests that at least in adults there

is no event-dependence and no time-dependence. The start time is the time of enrolment

on ART. Patients are expected to come for drug refill and routine check-up. During the

observation period, a patient can remain active (i.e. does not miss regular appointments),

die, transferred-out or LTFU.

Cohort description

A total of 4,981 patients were initiated ART between November 1, 2011 and December

31, 2014 in two public hospitals. Out of those initiated on ART, 854 patients experienced

LFTU and were therefore included in the analysis. The table below shows the patients’

status.

Table 4.2: Patients’ status

Status Frequency Percentage

Active on ART 2,392 48

Transfer Out 1,405 28

Dead 330 7

First Lost-to-follow up 854 17

Total 4,981 100
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The median age of those lost to follow-up (n=854) was 34.2 years (IQR 30.4− 38.4),

and 59% (n=509) of them were female. Forty five percent of patients had advanced/severe

immunodeficiency at the start of treatment, and 20% had WHO clinical stage 3 or 4 disease.

The mean CD4 count was 449 (SD 9.3) at baseline. Characteristics at baseline during ART

initiation is given below.

Table 4.3: Patients Baseline Characteristics at ART initiation

Patients Characteristics < 15 years (Children) (%) 15-24 years (Adolescents) (%) 25+ years (Adults) (%)
Gender (N=854) 87(4%) 458(52%) 309(34%)
Male (N=345) 45(5%) 185(28%) 115(68%)

Female (N=509) 42(8%) 273(54%) 194(38%)
WHO Staging (N=854 ) 60(7%) 258(30%) 536(63%)
WHO Stage I(N=376) 18(5%) 112 (30%) 216(65%)
WHO Stage II(N=308) 29(9%) 87(28%) 192(62%)
WHO Stage III(N=136) 8 (6%) 41(30%) 87 (87%)
WHO Stage IV(N=34) 5(15%) 18 (53%) 81 (81%)

Graphical Assessment

We obtained probability plots to assess the validity of statistical distributions (Kimber,

1985)to time to first LTFU data (Computing, 1991). Graphically, the Weibull distribution

seems to be close to the P-P plot line compared to the Gamma and log-normal distribution.

See Figure 4.1, 4.2, 4.3 and 4.4.
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Figure 4.1: Test for Theoretical Distributions. The Weibull distribution is closer to the
distribution

Figure 4.2: Test for Theoretical Distributions. Here, the data appears to be more coherent
with Weibull distribution
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Figure 4.3: Test for Theoretical Distributions. The PP-plot indicates that the Weibull dis-
tribution is the ideal distribution.

Figure 4.4: Test for Theoretical Distributions. The QQ-plot shows the Weibull distribution
is much coherent with the data.
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Model fitting

In order to assess the model fit for the Weibull distribution, we obtained the Akaike In-

formation Criterion (AIC) and the Bayesian Information Criterion (BIC). We also fitted

the log-normal and the Gamma distributions to the same data. The AIC and BIC for the

Weibull distribution (AIC = 5,276.6, BIC = 5,286.1) are lower than that of the Gamma

distribution (AIC = 5,777.8, BIC = 5,787.3) and the log-normal (AIC = 6,009.4, BIC =

6,018.9) distributions. Therefore the model that fits the data best is the Weibull distribu-

tion.

Table 4.4: Comparison of the AIC and BIC for the Weibull, Gamma and Lognormal Dis-
tributions. All the parameter estimates were obtained by the MLE method

Weibull Gamma Log-normal
Parameter shape=6.786; scale=30.145 shape=14.958; rate=0.532 meanlog*=3.303; sdlog**=0.299
AIC 5,276.633 5,777.821 6,009.374
BIC 5,286.133 5,787.321 6,018.874
* is the mean of the natural logarithm of LTFU, **is the standard deviation of the natural logarithm of LTFU

Tests Performance

The smooth test generated here is constructed using orthonormal functions as opposed to

quadratic forms (Bargal and Thomas, 1983). For the smooth test, the score statistics of

order 3 and order 4 are given. The hypothesis regarding the distributional form is rejected

by the three empirical distribution tests if their respective test statistic, Dn , ω2 and An are

greater than the critical value obtained from their tabulated values. Also their p-values are

considerably lower than the significance level of 0.01. These tests (Dn , ω2 and An) are

more powerful whenever the sample size is not large. In our situation, however, with a

sample size of size of 854, the tests are misleading. The smooth test, on the other hand,

rejects the hypothesis when considering score statistics up to order four and the p-value is

quite large compared with the Dn , ω2 and An tests.
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Table 4.5: Tests comparison (N = 864) for the One-sample Kolmogorov-Smirnov test,
Cramer-von Mises test, Anderson-Darling test and smooth test of order 3 and order 4. H0:
Weibull distribution (6,30) vs H1: Not Weibull distribution for AD, KS and CVM and
Generalised Weibull distribution for smooth test.

Test type Test Statistics p-value

One-sample Kolmogorov-Smirnov test Dn = 0.055232 0.01092

Cramer-von Mises test ω2 = 1.0238 7.947e-12

Anderson-Darling test An = 1.9603 0.09659

S3 S = 1.2529 0.308

S4 S = 0.66308 0.409

4.1.3 Application Results

To demonstrate the importance of the smooth test of goodness-of-fit in a real life applica-

tion, we examined an HIV retention data and fit a two parameter Weibull distribution to

LFTU data. We assessed the fit using smooth tests of order 3 and 4 and then compared

the results with the three empirical GOF tests. Other exits from the program (i.e. death,

transfer-outs and active-on-ART) were removed. Essentially, we tested the null hypothesis

that the Weibull distribution is the underlying distribution of time to first LTFU. The maxi-

mum likelihood estimates of the scale and shape parameters under the Weibull model were

η = 30.145 and β = 6.786, respectively, and the resulting values of the test statistics were

S3 = 1.2529, p = 0.308) and S4 = 1.66308, p = 0.409). Hence the Weibull null hypothesis

could not be rejected when using smooth tests, suggesting that the Weibull model is the best

model for the duration between the start of ART and first LTFU. In comparison, the three

empirical GOF tests rejected the null hypothesis. The one-sample Kolmogorov-Smirnov

test (Dn = 0.055232, p = 0.01092), Cramer-von Mises test (ω2 = 1.0238, p = 7.947e−12)

and the Anderson-Darling test (An = 1.9603, p = 0.09659 indicated significance deviations
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from the null distribution. This suggests that the smooth test is the most reliable test com-

pared with the rest whenever the sample size is sufficiently large.

4.2 Application of Smooth Tests to Hazard Functions: two-

Sample Problem

4.2.1 Simulations

Similarly, in this section we conducted a simulation study to ascertain proportionality under

right censoring in the CPH model. Independent samples of size 10, 50, 100, 200, 500 and

1,000 were simulated and adjusted to give a chosen percentage of censored observations

before the end of follow-up (i.e. 25% to 35% censoring, 45% to 55% censoring and 65% to

75% censoring). Each simulated dataset had a treatment covariate stratified by group (i.e. 1

or 2) and one other covariate arranged to contain equal numbers of observations. The power

of the test was calculated as the percentage of rejection at the 5% level of significance. All

simulations and comparative analyses were performed using the R packages survival, eha,

prodlim and surv2sample. For each sample size (i.e n ∈ (10,50,100,200,500,1000)),

1,000 samples were generated and percentage rejection was computed as the number of

cases rejected (with p < 0.05). Simulation studies show that as the censoring percentage

increases, the percentage rejection of the global and Kolmogorov-Smirnov tests increases.

Also the Kolmogorov-Smirnov test is strongly affected by sample size, such that as the

sample size increases, percentage rejection increases as well. It fails to detect proportion-

ality. The smooth tests are not affected by the percentage of censoring and sample size (see

Fig. 4.5 to 4.10).
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Figure 4.5: Graphs of percentage rejections for 1000 simulations with varying censoring
of sample size 10

Figure 4.6: Graphs of percentage rejections for 1000 simulations with varying censoring
of sample size 50
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Figure 4.7: Graphs of percentage rejections for 1000 simulations with varying censoring
of sample size 100

Figure 4.8: Graphs of percentage rejections for 1000 simulations with varying censoring
of sample size 200
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Figure 4.9: Graphs of percentage rejections for 1000 simulations with varying censoring
of sample size 500
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Figure 4.10: Graphs of percentage rejections for 1000 simulations with varying censoring
of sample size 1,000

4.2.2 Data Setting and Analysis of Cancer Studies

Dataset 1: Survival with Malignant Melanoma

This dataset consists of measurements made on patients with malignant melanoma. Each

patient had their tumour removed by surgery at the Department of Plastic Surgery, Univer-

sity Hospital of Odense, Denmark during the period 1962 to 1977. The surgery consisted of

complete removal of the tumour together with about 2.5cm of the surrounding skin. Mea-

surements taken included the thickness of the tumour and whether it was ulcerated or not.

Patients were followed until the end of 1977. Time was defined as survival time in days

since the operation, possibly censored. The patients’ status at the end of the study were

death from melanoma, alive and death from causes unrelated to their melanoma. Other

variables include survival time in days since the operation; the patients status at the end

of the study, 1 indicates that they had died from melanoma, 2 indicates that they were still
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alive and 3 indicates that they had died from causes unrelated to their melanoma (status);the

patients sex 1=male, 0=female(sex); age in years at the time of the operation (age); year of

operation (year). tumour thickness in mm (thickness); indicator of ulceration; 1=present,

0=absent (ulcer). Data is described in Andersen et al. (2012).

We begin by fitting the Cox PH model with sex, thick, ulcer and age as covariates.

Table 4.6: Fitting Cox model to Malignant Melanoma data

Covariate β chisq p-value

sex 0.151 1.35 0.2456

tumour thickness -0.249 3.02 0.0823

ulceration 0.163 1.52 0.2182

age 0.207 3.08 0.0791

From above (Table 4.6), all the covariates are insignificant at α = 0.05. Our focus,

however, was on testing the proportionality assumption and so we created the plots of the

Schoenfeld residuals versus log(time) for the overall fit. Testing the time-dependent co-

variates is equivalent to testing for a non-zero slope. A non-zero slope indicates a violation

of the proportional hazards assumption. We started by looking at the graphs of the Cox

regression models before performing the tests of non-zero slopes.
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Figure 4.11: Schoenfeld residuals versus Time for the overall fit: Malignant Melanoma
Data

The overall fit of the CPH model shows residuals scattered all over with a general zero

slope (Figure 4.11). Hence proportionality exists despite the fact that the covariates are

insignificant. The next step was to create Schoenfeld residual plots for each of the four

covariates, including a lowess smoothing curve. The graphs for the residuals were still

scattered for the four covariates (Figure 4.12).
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Figure 4.12: Schoenfeld residuals versus Time for each covariates: Malignant Melanoma
Data

Like in the plots, we expect all tests to fail to reject the null hypothesis, indicating that

the proportionality assumption holds. We then compared the power of rejection between

Kolmogorov-Smirnov test for proportional hazard, the smooth tests (Legendre polynomials

with d = 3 with 3 degrees of freedom), data-driven smooth test (Legendre polynomials as

the basis functions, nested with 5 dimensions) and the global test for all the interactions

tested at once. Note that a p-value less than 0.05 indicates a violation of the proportionality

assumption.
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Table 4.7: Tests of Hazard Proportionality in CPH: Melanoma cancer data

Test Statisic p-value

Global test 10.03 0.04

Two-sample Kolmogorov-Smirnov test 3.89 0.09

Smooth test of order 3 5.84 0.12

Data-driven Smooth test 2.28 0.15

Both the smooth test of order 3 and the data-driven version fail to reject the null hy-

pothesis, with p-values of 0.12 and 0.15, respectively, whereas the global test rejects the

null hypothesis at α < 0.05. On the other hand, the Kolmogorov-Smirnov test also fails to

reject the null at α < 0.05 but does not do well at α < 0.1 (null hypothesis is rejected).

Dataset 2: Cohort Study On Breast Cancer Patients From Netherlands

This dataset contains follow-up data on 2,982 women with breast cancer who went through

breast surgery. The women were followed from the time of surgery until death, relapse or

censoring. Only female patients diagnosed with primary epithelial breast cancer between 1

January 1990 and 31 December 2010 were selected from the Netherlands Cancer Registry

(NCR). The register is a population-based independent cancer registry containing clinical

administrative data of every newly diagnosed cancer patient in the Netherlands. Topog-

raphy and morphology is coded according to the International Classification of Diseases

for Oncology and staging according to the TNM-classification. Patients were included

from hospitals in the Northern Netherlands and the Rotterdam region. Patients from hos-

pitals from other regions that never participated before 2009 were included in the control

group. Patients that were diagnosed with neuroendocrine tumors, synchronous tumors,

diagnosed at autopsy and that had any type of previous malignancy were excluded. Hos-

pitals from the intervention group were categorized by the implementation proportion (IP)
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of recommendations that were given in the final reports of each peer review. Rating the

implementation was performed by studying final reports from subsequent reviews, follow-

up correspondence, hospital documents and interviews with shareholders when necessary.

Implementation of a recommendation was ranked on a scale from 0 to 4. The IP per hos-

pital was expressed as a percentage of the total possible score. When implementation of

a recommendation could not be determined (lost to follow-up), this recommendation was

subtracted from the total possible score. The average IP of all peer reviews per hospital

was used because it is not known what the time period is in which changes based on or-

ganizational change can occur and quality improvement is a continuous process. Ranking

the implementation of recommendations was performed by the principal investigator and is

described in. Other variables are defined as follows: patient ID number(pid);year of breast

surgery (i.e. year of enrollment into the study), between the years 1978-1993 (year); relapse

free interval measured in months(rf); relapse indicator(rfi); metastasis free (m); metastasis

status(mfi); overall survival(os); overall survival indicator(osi);age at surgery measured in

years (age); menopausal status with levels “pre” and “post” (meno); tumor size in three

classes: <=20mm, >20-50mmm and >50mm (size); differentiation grade with levels 2 or

3(grade); progesterone receptors, fmol/l (pr) oestrogen receptors, fmol/l (er); the number of

positive lymph nodes (nodes); hormonal therapy with levels “no” and “yes” (hormon); cat-

egorical variable indicating whether the patient received chemotherapy or not, with levels

“no” and “yes” (chemo); a numeric indicator of whether the tumor was discovered recently

with levels “1978-87” and “1988-93” (recent); a numerical indicator of whether the patient

did not received chemotherapy (no.chemo). Date is described in Moons et al. (2009).

We begin by fitting the Cox PH model with sex, thick, ulcer and age as covariates.
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Table 4.8: Fitting Cox model: Breast Cancer data

Covariate β chisq p-value

age 0.0519 4.28 3.85e-02

menopausal status with levels ”pre” and ”post” (meno) 0.0293 1.10 2.94e-01

progesterone receptors, fmol/l (pr) oestrogen receptors, fmol/l (er) 0.1375 26.10 3.24e-07

differentiation grade with levels 2 or 3(grade) -0.0304 1.20 2.74e-01

the number of positive lymph nodes (nodes) -0.0569 2.54 1.11e-01

progesterone receptors, fmol/l (pr) 0.1077 18.42 1.77e-05

From the table (Table 4.8), all the covariates are significant at α = 0.5. Figure 3 below

shows the Schoenfeld residuals versus log(time) plot for the overall fit. The solid line is

a smoothing spline fit to the plot, with the broken lines representing a ±2-standard-error

band around the fit.

Figure 4.13: Schoenfeld residuals versus Time for overall fit: Breast Cancer Patient Data
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Figure 4.14: Schoenfeld residuals versus Time for the covariates: Breast Cancer Patient
Data

The Schoenfeld residual plots show scatter plots with general non-zero slopes, indicat-

ing time-dependence (Figure 4.13 and Figure 4.14). The proportionality assumption does

not hold in this dataset. Table 4.9 shows the proportionality tests for this dataset. We also

compared the power of rejection for the Kolmogorov-Smirnov test for proportional haz-

ard, the smooth tests (Legendre d = 3 with 3 degrees of freedom), the data-driven smooth

test (Legendre functions as basis, nested with 5 dimensions) and the global test for all the

interactions tested at once.
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Table 4.9: Tests of Proportionality: Breast Cancer Patient data

Test Statisic p-value

Global test 83.48 6.66e-16

Two-sample Kolmogorov-Smirnov test 29.63 0.01

Smooth test of order 3 17.73 0.00

Data-driven Smooth test 8.48 0.01

All the four tests are consistent in the rejection of the null hypothesis, which is sup-

ported by the Schoenfeld residual plots as well.

Dataset 3: Ovarian Cancer Survival Data

Between mid-1974 to mid-1977, 82 patients with advanced ovarian carcinoma and 29 pa-

tients with minimal residual disease were followed. Patients included in the minimal dis-

ease group had surgical excision of all tumor > 2 cm in diameter at the time of total abdom-

inal hysterectomy, bilateral salpingo-oophorectomy and omentectomy within one month

before enrolment. Following surgery they were classified according to the distribution of

residual diseases in arbitral defined stages II to IIIA. All patients in each of the groups had

histologically proved epithelial type ovarian carcinoma and all had adequate renal hepatic

and marrow functions. The dataset is described in Edmonson et al. (1979).

Survival in a randomised trial comparing two treatments for ovarian cancer. The vari-

ables includes survival or censoring time (futime); censoring status (fustat); age in years;

residual disease present (1=no,2=yes)(resid.ds); treatment group (rx); ECOG performance

status (1 is better) (ecog.ps). We fit a Cox PH model for futime and fustat with covariates

age, ecog.ps, rx and resid.ds.
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Table 4.10: Schoenfeld residuals versus Time for the overall fit

Covariates β chisq p-value

age in years -0.0399 0.0262 0.871

ECOG performance status (1 is better) (ecog.ps) 0.4845 1.8819 0.170

treatment group (rx) 0.1325 0.2001 0.655

residual disease present (1=no,2=yes)(resid.ds) -0.1417 0.2463 0.620

From Table 4.10, all covariates are insignificant at α = 0.05.

For testing the proportionality assumption, we plotted the Schoenfeld residuals versus

log(time) for the overall fit and each of the four covariates (Figure 4.15 and Figure 4.16).

Figure 4.15: Schoenfeld residuals versus Time for overall fit: Ovarian Cancer Survival
Data
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Figure 4.16: Schoenfeld residuals versus Time for each covariate

The Schoenfeld residual plots show non-zero slopes, suggesting time-dependence. The

proportionality assumption holds in this dataset. Table 4.11 shows the proportionality tests

for this dataset. We compared the power of rejection between Kolmogorov-Smirnov test

for proportional hazard, the smooth tests (Legendre d = 3 with 3 degrees of freedom), data-

driven smooth test (Legendre functions as basis, nested with 5 dimensions) and the global

test for all the interactions tested at once.

Table 4.11: Tests of Proportionality: Ovarian Cancer Data

Test Statisic p-value

Global test 3.36 0.50

Two-sample Kolmogorov-Smirnov test 1.89 0.07

Smooth test of order 3 4.84 0.18

Data-driven Smooth test 2.23 0.20
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The global test, smooth tests fixed dimension and data-driven smooth test fail to reject

the null hypothesis. This is in agreement with the Schoenfeld residual plots for the general

zero slope. However, the two-sample Kolmogorov-Smirnov test rejects the null hypothesis

at α < 10%. This is misleading and inconsistent with the Schoenfeld residual plots.

Dataset 4: Remission Times for Acute Myelogenous Leukaemia

Acute myeloid leukemia (AML) represents a group of clonal hematopoietic stem cell dis-

orders in which both a block in differentiation and unchecked proliferation result in the

accumulation of myeloblasts at the expense of normal hematopoietic precursors. The pa-

tients in the study of maintenance therapy included 22 adults with AML, two with promye-

locytic leukemia and two who had subacute myelogenous leukemia before conversion to

classical AML. Patients had received no previous therapy for AML and there had been com-

plete remission with standardized induction regimens supervised by the Stanford Univer-

sity Hematology Division. The median age of patients entered on the study was 45 years,

with a range of 18 to 72 years. The induction program was modified from the programs of

Clarkson, Gee and colleagues by the addition of daunarubicin. With minor modifications,

therapy was administered as follows: daunarubicin, 60 mg per sq meter by rapid intra-

venous infusion, was given on the first day. This was followed in 12 hours by cytarabine, 3

mg per kg of body weight by rapid intravenous infusion, and 6-thioguanine, 2.5 mg per kg

of body weight given orally. Administration of the last two agents was continued every 12

hours until biopsy-proven marrow hypoplasia was achieved. A second dose of daunarubicin

between days 7 and 10 was nearly always given, the dose varying, depending on the cel-

lularity of a marrow biopsy specimen. Changes in therapy from the original program were

undertaken so as to shorten the treatment program and decrease the time at risk from severe

neutropenia and thrombopenia. That this was achieved is reflected in the shorter treatment

period required to reach hypoplasia with the current drug program compared with earlier

regimen employing only a single daily dose of cytarabine and 6-thioguanine. The question
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at the time was whether the standard course of chemotherapy should be extended (‘main-

tenance’) for additional cycles. The dataset is described in Miller Jr (2011). Variables and

covariates are defined as The length of the complete remission-in weeks (time); an indica-

tor of right censoring. 1 indicates that the patient had a relapse and so time is the length

of the remission. 0 indicates that the patient had left the study or was still in remission in

October 1974, that is the length of remission is right-censored (cens); The group into which

the patient was randomized-Group 1 received maintenance chemotherapy, group 2 did not

(x). We fitted a Cox PH model for remission time and status with covariate X, representing

‘maintenance’ or ‘non-maintenance’ of patients in chemotherapy.

Table 4.12: Fitting the CPH model: Acute Myelogenous Leukaemia Data

Covariates β chisq p-value

x(‘non-maintenance)’ 0.0198 0.00691 0.934

The covariate in this case (‘non-maintenance’) is not significant.
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Figure 4.17: Schoenfeld residuals versus Time for overall fit: Acute Myelogenous
Leukaemia Data

The Schoenfeld residual plots show a general zero-slope indicating proportionality. The

proportionality tests are indicated in Table 8 below. We compared the power of rejection

between Kolmogorov-Smirnov test for proportional hazard, the smooth tests (Legendre

d = 3 with 3 degrees of freedom), data-driven smooth test (Legendre functions as basis,

nested with 5 dimensions). The global tests did not yield any result.

Table 4.13: Tests of Proportionality: Acute Myelogenous Leukaemia Data

Test Statisic p-value

Global test NA NA

Two-sample Kolmogorov-Smirnov test 1.131 0.63

Smooth test of order 3 3.07 0.38

Data-driven Smooth test 0.15 0.75



CHAPTER 4. RESEARCH FINDINGS 88

The global test did not give any result but the other 3 tests (i.e. two-sample Kolmogorov-

Smirnov test, smooth test and data-driven smooth test) failed rejects the null hypothesis.

That is, they detected proportionality.

Dataset 5: North Central Cancer Treatment Group Lung Cancer Data

This data shows survival of patients with advanced lung cancer from the North Central

Cancer Treatment Group (NCCTG). The study looked at how performance scores can rate

how well a patient performs usual daily activities. An initial detailed questionnaire was

administered to approximately 150 patients with advanced cancer. This questionnaire was

subsequently revised and given to a total of 1,115 patients with advanced colorectal or lung

cancer. Thirty six variables showed significant prognostic information for survival in uni-

variate analyses, even though many of these variables were associated with only a minimal

increase in risk. A multivariate analysis demonstrated that there was a high correlation

between many variables. Three major groups of variables became apparent as providing

strong prognostic information (i.e. physician’s assessment, patient’s assessment and nu-

tritional factor such as appetite). Data contained 228 patients with advanced lung cancer

and includes measurements of the survival time in days, as well as other demographic and

biological information for each patient. Variables such as weight loss was categorized by

quartiles, and ECOG scores were grouped into categories with subjects rated as either 0/1

or 2/3, with 0/1 representing the best and 2/3 representing a poor score. The data set was

28% censored, with a median observed failure time of 256 days. The baseline group (n =

16) were males with ECOG scores equal to 1 and a weight loss measure in the first quartile

(Loprinzi et al., 1994). Variables and covariates were defined as institution code (inst);

survival time in days (time); censoring status 1=censored, 2=dead (status); age in years

(age); Male=1 Female=2 (sex); ECOG performance score (0=good, 5=dead) (ph.ecog);

Karnofsky performance score (bad=0-good=100) rated by physician (ph.karno); Karnofsky

performance score as rated by patient (pat.karno); Calories consumed at meals (meal.cal);
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Weight loss in last six months (wt.loss). We fit a Cox PH model for time and status with

covariates age, ecog.ps, rx and resid.ds.

Table 4.14: Fitting Cox PH model to NCCTG Lung Cancer Data

Covariates β chisq p-value

age in years 0.0710 0.6553 0.4182

sex 0.1773 3.7609 0.0525

ECOG performance score (0=good, 5=dead) (ph.ecog) -0.0189 0.0491 0.8247

Karnofsky performance score (bad=0-good=100) rated by physician (ph.karno) 0.1718 2.5791 0.1083

Karnofsky performance score as rated by patient (pat.karno) 0.0298 0.1403 0.7080

Calories consumed at meals (meal.cal) 0.1793 4.1493 0.0417

Weight loss in last six months (wt.loss) 0.0764 1.0117 0.3145

From Table 4.14 above, meal.cal and sex are the only significant covariates. The other

covariates are insignificant at α = 0.05 significance level.
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Figure 4.18: Schoenfeld residuals versus Time for the overall fit: NCCTG Lung Cancer
Data

The Schoenfeld residual plots for four covariates in the model including a lowess

smoothing curve yields
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Figure 4.19: Schoenfeld residuals versus Time for the covariates :NCCTG Lung Cancer
Data

The overall Schoenfeld residual plot together with the plots for the four covariates show

a zero slope, indicating proportionality. The hazard proportionality tests for the two-sample

results are provided in Table 4.15 below. We compare the power of rejection between

Kolmogorov-Smirnov test for proportional hazard, the smooth tests (Legendre d = 3 with

3 degrees of freedom), data-driven smooth test (Legendre functions as basis, nested with 5

dimensions) and the global test.

Table 4.15: Tests of Proportionality in CPH: Lung cancer data

Test Statisic p-value

Global test 13.8 0.06

Two-sample Kolmogorov-Smirnov test 1.97 0.99

Smooth test of order 3 0.81 0.85

Data-driven Smooth test 0.01 0.96
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Results show that the global test rejects the null hypothesis at α < 0.1 but does well for

α < 0.05. The other three tests fail to reject the null hypothesis. This is coherent with the

Schoenfeld residual plots.

Dataset 6: Stage C Prostate Cancer

Data contained 146 patients with stage C prostate cancer, from a study exploring the prog-

nostic value of flow cytometry. Patients were followed and variables for time to progres-

sion or last follow-up (years) recorded. other measurements were status (1= progression

observed, 0 = censored), age in years, status for endocrine captured (i.e. early endocrine

therapy, 1 = no, 2 = yes), percent of cells in G2 phase, as found by flow cytometry, grade of

the tumor, grade of the tumor, the ploidy status of the tumor, from flow cytometry, values

for diploid, tetraploid, and aneuploid. A tumor was determined to be diploid (normal com-

plement of dividing cells) if the fraction of cells in G2 phase was determined to be 13%

or less. Aneuploid cells were given a measurable fraction with a chromosome count that

is neither 24 nor 48, for these the G2 percent is difficult or impossible to measure (Han-

key et al., 1999). Variables and covariates include time to progression or last follow-up in

years (pgtime); 1 = progression observed, 0 = censored (pgstat); age in years (age); early

endocrine therapy, 1 = no, 2 = yes (eet); percent of cells in G2 phase, as found by flow

cytometry (g2); grade of the tumor, Farrow system (grade); grade of the tumor, Gleason

system (gleason); the ploidy status of the tumor, from flow cytometry. Values are diploid,

tetraploid, and aneuploid (ploidy). We fit Cox PH model for time and status with covariates

age, sex, rx, obstruct, adhere, differ, extent, surg, node4 and etype.
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Table 4.16: Fitting Cox PH model to Stage C Prostate Cancer data

Covariates β chisq p-value

age in years 0.0529 0.2361 0.6270

early endocrine therapy, 1 = no, 2 = yes (eet) -0.0406 0.1106 0.7395

percent of cells in G2 phase, as found by flow cytometry (g2) 0.0134 0.0109 0.9170

grade of the tumor, Farrow system (grade) -0.0716 0.2733 0.6012

grade of the tumor, Gleason system (gleason) -0.1328 0.9858 0.3208

ploidydiploid 0.1311 1.2196 0.2694

ploidytetraploid 0.1945 2.9799 0.0843

From Table 4.16 above all covariates are also insignificant at α = 0.05. The Schoenfeld

residuals versus log(time) for the overall fit is shown in Figure 4.20 below.

Figure 4.20: Schoenfeld residuals versus Time for the overall fit: Stage C Prostate Cancer
Data
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We also created the Schoenfeld residual plots for four covariates, including a lowess

smoothing curve.

Figure 4.21: Schoenfeld residuals versus Time for each covariate: Stage C Prostate Cancer
Data

The overall Schoenfeld residual plot together with the four covariates plots shows a gen-

eral zero slope indicating proportionality. The proportionality tests for the two-sample re-

sults are provided in Table 4.17. We compare the power of rejection between Kolmogorov-

Smirnov test for proportional hazard, the smooth tests (Legendre d = 3 with 3 degrees of

freedom), data-driven smooth test (Legendre functions as basis, nested with 5 dimensions)

and the global tests results to
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Table 4.17: Tests of Proportionality in CPH: Stage C Prostate Cancer data

Test Statisic p-value

Global test 7.30 0.40

Two-sample Kolmogorov-Smirnov test 2.35 0.50

Smooth test of order 3 1.31 0.73

Data-driven Smooth test 1.12 0.31

Results show that all the tests are consistent and fail to rejects the null hypothesis at

α < 0.05.

Dataset 7: Chemotherapy for Stage B/C colon cancer data

This was a national intergroup trial that was sponsored by the National Cancer Institute and

involved the Eastern Cooperative Oncology Group, the NCCTG, the Southwest Oncology

Group, and the Mayo Clinic. Enrollment of patients started in March 1984, when a pre-

liminary analysis of the NCCTG study indicated the likelihood of a treatment advantage

for levamisole plus fluorouracil and for levamisole alone, with regard to time to recurrence.

Enrollment was completed in October 1987. All patients were required to have undergone a

potentially curative adenocarcinoma of the colon without gross or microscopic evidence of

residual disease. Patients with rectal carcinoma were excluded for the study. The resected

specimen in eligible patients showed one of two indicators of poor prognosis - invasion ex-

tending at least to the serosa or pericolonic fat (Stage B2) or metastasis to regional lymph

nodes (Stage C). It was further required that the patient be able to swallow oral medica-

tion and have a leukocyte count of at least 4000 per microliter and a platelet count of at

least 130,000 per microliter. Eligibility was determined by careful review of study forms,

operative reports, and pathology reports. Entry into the study was allowed no earlier than

one week and no later than five weeks after surgery. These are data from one of the first
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successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity

compound previously used to treat worm infestations in animals. There are two records per

person, one for recurrence and one for death (Moertel et al., 1990).

Variables include patients id; treatment -Obs(ervation), Lev(amisole), Lev(amisole)+5-FU

(rx); sex; age in years; obstruction of colon by tumour(obstruct); perforation of colon (per-

for); adherence to nearby organs (adhere); number of lymph nodes with detectable can-

cer (nodes); days until event or censoring (time); censoring status (status); differentiation

of tumour (1=well, 2=moderate, 3=poor)(differ); Extent of local spread (1=submucosa,

2=muscle, 3=serosa, 4=contiguous structures)(extent); time from surgery to registration

(0=short, 1=long)(surg); more than 4 positive lymph nodes (node4); event type: 1=recur-

rence,2=death (etype). We fit Cox PH model for time and status with covariates age, sex,

rx, obstruct, adhere, differ, extent, surg, node4 and etype.

Table 4.18: Fitting Cox PH model to Chemotherapy for Stage B/C colon cancer data

Covariates β chisq p-value

age in years -0.0107 0.111 7.39e-01

sex 0.0563 2.869 9.03e-02

Treatment Lev(amisole)(rxLev) -0.0475 2.068 1.50e-01

Treatment Lev(amisole)+5-FU (rxLev+5FU) -0.0198 0.355 5.51e-01

obstruction of colon by tumour(obstruct) -0.1093 11.113 8.57e-04

adherence to nearby organs (adhere) 0.0470 2.032 1.54e-01

differentiation of tumour (1=well, 2=moderate, 3=poor)(differ) -0.1480 22.515 2.08e-06

Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures)(extent) -0.0364 1.229 2.68e-01

time from surgery to registration (0=short, 1=long)(surg) 0.0135 0.166 6.84e-01

more than 4 positive lymph nodes (node4 -0.1121 10.788 1.02e-03

event type: 1=recurrence,2=death (etype) 0.3561 112.926 0.00e+00

Results from Table 4.18 show that all the selected covariates are also significant at

α = 0.05. For testing proportionality the Schoenfeld residuals versus log(time) plot for the

overall fit is shown in Figure 4.22.
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Figure 4.22: Schoenfeld residuals versus Time for the overall fit: Stage B/C Colon Cancer
Data

The Schoenfeld residual plots for four selected covariates in the model including a

lowess smoothing curve yields The overall Schoenfeld residual plot together with the plots

for the four covariates show a general non-zero slope indicating non-proportionality. The

proportionality tests for the two-sample results in are indicated in Table 4.19. We com-

pare the power of rejection between Kolmogorov-Smirnov test for proportional hazard, the

smooth tests (Legendre d = 3 with 3 degrees of freedom), data-driven smooth test (Leg-

endre functions as basis, nested with 5 dimensions) and the global tests results to Results

show that all the tests are consistent in rejecting the null hypothesis. Despite the fact that

all covariates incorporated in this model are significant, proportionality does not hold. The

covariates are therefore time dependent α < 0.05.
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Figure 4.23: Schoenfeld residuals versus Time for four selected covariates: Stage B/C
Colon Cancer Data

Dataset 8: Veteran Administration Lung Cancer study

The study population consisted of 109 patients with newly diagnosed Small Cell Lung Can-

cer (SCLC) investigated at the Pulmonary Division of Mainz University Hospital between

1989 and 1999. Clinical data were collected from chart review. The staging procedure

for the majority of patients was standardized including a fiberoptic bronchoscopy, rou-

tine laboratory parameters, chest CT, abdomen CT and bone scan. In 89% of the patients

chemotherapy was performed as first-line treatment. Three different standard combinations

were applied with a median of four cycles. Response was first evaluated after two cycles

of chemotherapy and every second cycles thereafter or if new clinical symptoms occurred.

Response to chemotherapy was classified according to the WHO criteria in complete re-

sponse, partial response, stable disease or progressive disease. Complete response was
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Table 4.19: Tests of Hazard Proportionality in CPH: Colon cancer data

Test Statisic p-value
Global test 161.05 0.00

Two-sample Kolmogorov-Smirnov test 73.17 < 2.22e-16
Smooth test of order 3 97.76 < 2.22e-16

Data-driven Smooth test 97.21 < 2.22e-16

achieved in 24% of patients, partial response in 29%, and stable disease in 5% of patients.

42% of patients progressed during therapy. In 35% of all patients chemotherapy was fol-

lowed by radiotherapy of the primary tumor. From all subjects four patients with complete

response underwent surgical resection of the primary tumor side. The majority of patients

were followed-up regularly in a time frame of 2 to 3 months. The survival time was calcu-

lated from the date of histological diagnosis Micke et al. (2002).

Variables include treatment 1=standard 2=test (trt); celltype 1=squamous, 2=smallcell,

3=adeno, 4=large (celltype); survival time (time); censoring status (status); Karnofsky

performance score (100=good) (karno); months from diagnosis to randomisation (diag-

time);age in years; prior therapy 0=no, 1=yes (prior).

We fit Cox PH Model for time and status with covariates age, karno, trt, diagtime, prior and

celltype
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Table 4.20: Fitting Cox PH model to Veteran Administration Lung Cancer study

Covariates β chisq p-value

age in years 0.1890 5.3476 0.020750

Karnofsky performance score (100=good) (karno) 0.3073 13.0449 0.000304

treatment 1=standard 2=test (trt) -0.0273 0.1227 0.726104

months from diagnosis to randomisation (diagtime) 0.1491 2.9436 0.086217

age in years; prior therapy 0=no, 1=yes (prior) -0.1767 4.4714 0.034467

celltype smallcell 0.0128 0.0261 0.871621

celltype adeno 0.1424 2.9794 0.084329

celltype large 0.1712 4.1093 0.042649

From Table 4.20 above some covariates (i.e. celltypelarge, prior, karno and age) were

significance at α < 0.05. The other covariates were not significant at α = 0.05. The

Schoenfeld residuals versus log(time) plot for the overall fit is shown in Figure 4.24 below.
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Figure 4.24: Schoenfeld residuals versus Time for the overall fit: Veteran Administration
Lung Cancer study Data

The Schoenfeld residual plots for four selected covariates including a lowess smoothing

curve is shown in Figure 4.25 below.
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Figure 4.25: Schoenfeld residuals versus Time for four selected covariates: Veteran Ad-
ministration Lung Cancer study Data

The overall Schoenfeld residual plot together with the plots for the four covariates,

except prior, shows a non-zero slope, indicating proportionality. The proportionality tests

for the two-sample results are indicated in Table 4.21 below. We compared the power

of rejection between Kolmogorov-Smirnov test for proportional hazard, the smooth tests

(Legendre d = 3 with 3 degrees of freedom), data-driven smooth test (Legendre functions

as basis, nested with 5 dimensions) and the global tests.
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Table 4.21: Tests of Proportionality in CPH model: Lung Cancer Data

Test Statisic p-value

Global test 28.00 0.00

Two-sample Kolmogorov-Smirnov test 9.09 0.06

Smooth test of order 3 6.84 0.08

Data-driven Smooth test 2.03 0.18

In this case the global test strongly rejects proportionality, whereas the two-sample

Kolmogorov-Smirnov test and smooth test of order 3 rejects the null (proportionality) at

α < 0.10. The data-driven version of the smooth test however remains stable and fails to

reject the null, an indication of proportionality.

The results are summarized in Table 4.22

Table 4.22: Summary of 8 Real Datasets when Testing of Rejection∗ of Hazard Propor-
tionality at (α < 0.05) in CPH. Table also include articles that used the dataset without
verifying proportionality in CPHM and Description of Schoenfeld plots

Dataset Articles Schoenfeld residual plots Global test 2-sample K-S test Smooth test (order 3) Data-driven smooth test

Dataset 1 Andersen et al (2012) zero line slope rejects H0 fails to reject H0 fails to reject H0 fails to reject H0

Dataset 2 Royston et al (2011) non-zero slope rejects H0 rejects H0 rejects H0 rejects H0

Dataset 3 Edmonson et al (1979) zero slope fails to reject H0 fails to reject H0 fails to reject H0 fails to reject H0

Dataset 4 Embury et al (1977) zero slope NA fails to reject H0 fails to reject H0 fails to reject H0

Dataset 5 Loprinzi et al (1994) zero slope marginal fails to reject H0 fails to reject H0 fails to reject H0

Dataset 6 Zagars et al (1993) non-zero slope fails to reject H0 fails to reject H0 fails to reject H0 fails to reject H0

Dataset 7 Moertel et al (1990) non-zero slope rejects H0 rejects H0 rejects H0 rejects H0

Dataset 8 Micke et al (2002) zero slope rejects H0 marginal fails to reject H0 fails to reject H0

*H0: Hazard proportionality hold



CHAPTER 4. RESEARCH FINDINGS 104

4.3 Application of Smooth Tests to Recurrent Event

4.3.1 Simulations

We conducted Monte Carlo simulations to investigate the performance of the smooth tests.

Similar tests have been examined in extensive simulation studies by Agustin and Peña

(2001, 2005); Pena (1998a). The goal of simulations was to compare the empirical signifi-

cance levels of the tests with the specified nominal asymptotic levels as the sample size and

the degree of censoring are varied. These comparisons indicate which tests qualify as good

omnibus tests and which tests have good control of Type I error among a wide range of alter-

natives. Simulations were also helpful in determining appropriate values of the smoothing

parameter k (i.e. k = {1,2,3,4}). Since we are fitting the BBS model with the probability

of perfect repair ρ(·) = 1, we considered simulations for n = {20,50,100,200,500,1000}.

In the simulations, the initial failure-time variables were generated according to the ex-

ponential distribution with mean θ = 8, the Weibull distribution with shape parameter γ

and scale parameter β and the Gamma (ς = 3,α = 4) distribution. The failure-time vari-

ables (T1,T2, · · ·Tn) were generated using the chosen alternative, and the censoring variables

(C1,C2, · · · ,Cm) were distributed according to the exponential distribution with mean 1. By

utilizing the resulting randomly censored data {(Z, i), i = 1, · · · ,n}, the null hypothesis was

tested according to the different 5% asymptotic level tests. The percentage out of the repli-

cates that a test rejected H0 was then calculated. The bootstrapping procedure was applied

1,000 times to each generated dataset to obtain the significance level of the test. Within the

context of model selection, size estimates were based on the proportion of replications that

indicate acceptable fit, with a larger number of replications resulting in smaller CIs (higher

power, more accuracy) around the estimates. The data-generating process was performed

using the SimSurv function of the prodlim package from R.
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Table 4.23: Empirical control of the Type I error rate under H0 : λ (·) is distributed as
exponential (θ = 8) at α = 0.05. The failure times under the null hypothesis were generated
according to a BBS model.

Empirical Type I error rate (70% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0452 0.0406 0.0422 0.0394 0.0323 0.0401

ψ2 0.0418 0.0455 0.0497 0.0453 0.0498 0.0428

ψ3 0.0560 0.0485 0.0443 0.0490 0.0545 0.0563

ψ4 0.0568 0.0491 0.0553 0.0598 0.0654 0.0570

Censoring % Empirical Type I error rate (50% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0366 0.041 0.0333 0.0394 0.0303 0.0371

ψ2 0.0422 0.0459 0.0373 0.0453 0.0363 0.034

ψ3 0.0457 0.049 0.0398 0.05 0.0401 0.0482

ψ4 0.0564 0.0496 0.0403 0.0528 0.0509 0.0491

Censoring % Empirical Type I error rate (20% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0311 0.0322 0.0334 0.0304 0.0423 0.0309

ψ2 0.0384 0.0385 0.0398 0.0376 0.0486 0.0394

ψ3 0.043 0.0424 0.0438 0.0422 0.0525 0.0447

ψ4 0.044 0.0432 0.0446 0.0431 0.0533 0.0558
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Table 4.24: Empirical control of the Type I error rate under H0 : λ (·) is distributed as
Weibull (β = 6, γ = 10) at α = 0.05. The failure times under the null hypothesis were
generated according to a BBS model.

Empirical Type I error rate (70% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0352 0.0406 0.0422 0.0494 0.0423 0.0371

ψ2 0.0431 0.0411 0.0401 0.0411 0.0411 0.0431

ψ3 0.0444 0.0423 0.0677 0.069 0.0663 0.0471

ψ4 0.0798 0.0919 0.081 0.0788 0.0703 0.0998

Empirical Type I error rate (50% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0466 0.041 0.0333 0.0494 0.0403 0.0301

ψ2 0.0471 0.0466 0.0411 0.0494 0.0455 0.0411

ψ3 0.0516 0.0511 0.0594 0.0503 0.0571 0.0479

ψ4 0.0533 0.0666 0.0811 0.0777 0.0603 0.0578

Empirical Type I error rate (20% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0311 0.0322 0.0334 0.0304 0.0323 0.0309

ψ2 0.0471 0.0466 0.0371 0.0394 0.0403 0.0371

ψ3 0.0499 0.0511 0.0454 0.0422 0.0471 0.0455

ψ4 0.0521 0.0596 0.0511 0.0484 0.0509 0.0588
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Table 4.25: Empirical control of the Type I error rate under H0 : λ (·) is distributed as
Gamma(ς = 3,α = 4) at α = 0.05. The failure times under the null hypothesis were gen-
erated according to a BBS model.

Empirical Type I error rate (70% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0444 0.0354 0.0423 0.0394 0.0323 0.0371

ψ2 0.0497 0.0396 0.0474 0.0453 0.0398 0.0428

ψ3 0.0531 0.0423 0.0506 0.049 0.0445 0.0563

ψ4 0.0537 0.0529 0.0512 0.0598 0.0854 0.077

Empirical Type I error rate (50% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0366 0.031 0.0333 0.0394 0.0403 0.0371

ψ2 0.0422 0.0459 0.0373 0.0453 0.0463 0.044

ψ3 0.0557 0.049 0.0498 0.059 0.0601 0.0482

ψ4 0.0964 0.0696 0.0503 0.0598 0.0909 0.0991

Empirical Type I error rate (20% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0331 0.0322 0.0355 0.0304 0.0323 0.0309

ψ2 0.044 0.0385 0.0422 0.0476 0.041 0.0394

ψ3 0.0599 0.0624 0.0663 0.0722 0.0564 0.0447

ψ4 0.0691 0.1122 0.1072 0.0931 0.0875 0.1058
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Table 4.26: Empirical control of the Type I error rate under H0 : λ (·) is distributed as
Weibull (β = 5,γ = 15) at α = 0.05. The failure times under the null hypothesis were
generated according to a BBS model.

Empirical Type I error rate (70% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0415 0.0331 0.0395 0.0361 0.0382 0.044

ψ2 0.0464 0.037 0.0442 0.0417 0.0452 0.0493

ψ3 0.0496 0.0395 0.0472 0.0551 0.0695 0.0526

ψ4 0.0502 0.04 0.0478 0.0559 0.0704 0.0533

Empirical Type I error rate (50% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0435 0.0383 0.0311 0.0361 0.037 0.0333

ψ2 0.0487 0.0429 0.0348 0.0417 0.0426 0.0397

ψ3 0.052 0.0458 0.0472 0.0551 0.0561 0.0437

ψ4 0.0527 0.0464 0.0677 0.0759 0.1069 0.0946

Empirical Type I error rate (20% Censoring)

Sample size, n n=20 n=50 n=100 n=200 n=500 n=1,000

ψ1 0.0333 0.0388 0.0318 0.0364 0.0375 0.0362

ψ2 0.0397 0.0446 0.0381 0.0432 0.0456 0.0442

ψ3 0.0437 0.0583 0.0619 0.0574 0.0607 0.0791

ψ4 0.0846 0.089 0.1028 0.0683 0.0817 0.0802

To investigate the performance of the different tests, we evaluated the exponential,

Weibull and Gamma null hypothesis against their generalised alternatives for the initial

distribution of failure ages. Hence, given the values of different parameters, values for

each alternative were generated. Simulations were done for the 5% asymptotic level tests.

We also performed simulations for values of β = 6, γ = 10 and β = 5,γ = 15 for the
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Weibull initial distribution and found the results to be consistent with those presented by

Agustin and Peña (2001, 2005); Pena (1998a); Odhiambo et al. (2017b). Examining the

performance of the directional tests, we again noticed that we are able to achieve required

significance levels. Table 1, 2, 3 and 4 summarize the percentage rejection of the tests for

the exponential alternatives, Gamma alternatives and Weibull alternatives. For the expo-

nential alternative, the ψ1,ψ2 and ψ3, have the highest power under H0. The directional

tests based on ψi, i = 1,2,3,4, are sensitive for the Gamma-type distributions. The fact

that the ψ1 test are powerful for this alternative is expected because this test was derived

against such alternatives, whereas the observation that the ψ4 test is not powerful for this

alternative is also expected because the normalized total-time-on-test statistic is invariant

to changes in scale Agustin and Peña (2001). Against the Weibull-type, Gamma-type and

exponential alternatives, the ψ1 test performed best, followed by the ψ2 tests.

4.3.2 Fitting HIV retention data to BBS model

Motivation for Analysis of HIV Retention Data

HIV/AIDS have consistently been a major challenge in Kenya. The national prevalence is

currently estimated to be 6% and there are at least 1.6 million Kenyans living with HIV

(PLHIV) with at least 800,000 of PLHIV on ART (Council, 2014). In practice, the quality

of the ART services is measured against the rate of retention of PLHIV on ART. With the

advent of the United Nation AIDS (UNAIDS) programme on HIV/AIDS targets in 2013,

the focus have turned to interventions that quicken elimination of HIV/AIDS at the global,

regional, country, province, district and city levels (UNAIDS, 2014). The strategy popu-

larly known as 90− 90− 90 targets that by 2020, 90% of people living with HIV know

their HIV status, 90% of people who know their status are receiving ART treatment and

90% of people on HIV treatment have a suppressed viral load so that their immune system
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remains stronger and the likelihood of their infection being passed to others is greatly re-

duced. This strategy is currently being implemented in Kenya and this section focuses on

statistical innovation that hinges on one of the pillars: the third 90% i.e. viral suppression.

Viral suppression is achievable by retaining patients on ART for long. There are potential

benefits whenever a PLHIV’s viral load is reduced to an undetectable level (i.e. people

with undetectable viral loads are generally healthier than those people with higher levels of

virus in their blood and are also less likely to transmit HIV to their sexual partners (Rachlis

et al., 2014)). High retention rate in ART treatment plays a crucial role in maintaining viral

load suppression (Megerso et al., 2016; Rachlis et al., 2014; Rasschaert et al., 2012; Gwynn

et al., 2015; Ramadhani et al., 2007; Haddow et al., 2003). See Odhiambo et al. (2017a)

for excellent summary on the relevance of LTFU and the rationale for fitting LTFU data to

a parametric distribution.

Loss to follow-up (LTFU) in a typical ART treatment facility translates to increased

morbidity and mortality through sub-optimal viral suppression, increased risk of drug re-

sistance, and increased risk of HIV transmission. Consequently, there is increasing concern

about inadequate retention and adherence due to LTFU (Rachlis et al., 2014). This paper

revisits HIV retention and fits a primary data from typical HIV setting to a time to first oc-

currence recurrent events model. The main applications, is to assess the hazard rate of the

first LTFU time using smooth test of GOF. The work is motivated by the analysis of HIV

retention data from two typical government Hospitals in Kenya. Models such as CPH have

been employed to assess the effects of baseline covariates, such as onset age, gender, and

WHO staging, on the risk of LTFU. The validity of statistical inference, however, depends

critically on the adequacy of the assumptions. Smooth test of GOF have been developed

and studied in the literature when assessing models in gap time setting by Agustin and Peña

(2005, 2001); Pena (1998a). The focus of this paper is pegged on application of smooth

tests to hazard function in recurrent event situation.

Patients receiving ART can experience LTFU which may result in discontinuation of
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treatment, drug toxicity, treatment failure due to poor adherence and drug resistance. This

can result in an increased risk of death of up to 40% of ART patients in sub-Saharan Africa

(Berheto et al., 2014). Studies have shown that LTFU has negative impact on immunolog-

ical benefit of ART and increases AIDS-related morbidity, mortality, and hospitalizations

(Berheto et al., 2014). Individuals who miss visits in the first year of treatment have a

higher mortality rate (Rachlis et al., 2014). Asiimwe et al. (2016) showed that retention

of patients who are on ART treatment remains stable after 12 months of ART initiation,

with loss to follow-up(LTFU) being the main cause of attrition (Rasschaert et al., 2012).

Previous studies have also illustrated associations between frequent LTFU and more severe

opportunistic illnesses (Haddow et al., 2003). Analysis of LTFU have also been used in

HIV care to monitor and improve programme effectiveness, using patient retention as a

measure of quality of care (Sengayi et al., 2013). The main objective in analysis of LTFU

data is to check retention of patients in care. Retaining patients for long allows provision of

long term Highly Active Antiretroviral Therapy (HAART), tracking WHO staging, track-

ing immunosuppression profiles and evaluation of emergence of medication toxicities. In

resource-limited settings, it is common to find patients dropping out of ART treatment.

Due to significant drop-outs, patients may not realize the benefits of ART if they are LTFU.

More innovation is therefore required for further ART scale-up and improve retention in

care.

4.3.3 Data Description

Data comprised all patients who were initiated ART at two government hospitals in Kenya.

Patients under observation were enrolled between 1st of October 2011 and 31st December

2014. The event of interest was time to first LTFU. Data was collected routinely whenever

patients came for clinical check-up or drug refill. The time between ART initiation to first

LTFU was given in months. Time to first LTFU was defined as missing routine clinical
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appointment within 48 hours from the scheduled appointment date. Out of those initiated

on ART 854 patients experienced LFTU while the rest were right-censored. See Odhiambo

et al. (2017a) for more information on data description. We have also described the data in

section 4.1.2.

4.3.4 Application to HIV retention

Modelling LTFU

Let ω1,ω2, · · · ,ωn be the gap-time between started on ART to LTFU for PLHIV. The date

of start of ART for each patient is independent and the start time of observation is set

at 0. The gap time is the period between start of ART until time t, when the patients

experiences LTFU (failure) during observation period. Patients who experience other exits

(i.e. transfer-out and death) are censored. Patients who remain active on ART at the end

of the observation period are also censored. A patient who experiences LTFU (failure) can

still be recovered back (repaired) to ART treatment through a mechanism called defaulter

tracing. Such patients are still exposed to the risk of LTFU even after recovery and so

the event can recur several times. The setting is naturally public health, hence the risk for

the 2nd, 3rd and proceeding episodes of LTFU is the same as the fist. Let S1,S2, · · · be

the successive event times (LTFU) for the A process, and let T1,T2, · · · be the successive

event times of the B process. To obtain a realization of a BBS(Λ, p) model, events in the A

process correspond to the imperfectly repaired failures, whereas events in the B process are

associated with the perfectly repaired failures. The equivalence is then seen by noting that

the process A+B is a nonhomogeneous Poisson process with intensity function
∫ ·

0 λ (s)ds,

and, given that at time t an event has occurred, the probability that it is from the B process

is p(t).
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Model fitting

Here we begin by checking difference in residual behaviour and result to be detected in the

hypothesis testing.

Figure 4.26: Comparing baseline hazard for time to first occurrence of LTFU

The residuals graphically showed moderate signs of a different behaviour for violated

models when the sample size is small and censoring is present. This indicates that for

small samples with a higher degree of censoring the residuals could be sensitive for model

violations. The advantage of using smooth test in the next subsection is that, the test is not
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Table 4.27: Assessing the initial distribution. Only the Weibull distribution fails to reject
the H0 :Initial distribution is Weibull, at α < 0.05.

Distribution Scale Chi-square value p-value
Weibull 2.11 4.13 0.213

Exponential 1 8.29 0.016
Logistic 3.73 21.13 2.6e-05

Rayleigh 0.5 9.37 0.0093
Extreme Value 3.97 16.25 3e-04

Gaussian 7.45 29.83 3.3e-07
Student-t 4.89 21.58 2.1e-05

Log-normal 0.287 30.39 6.3e-05

affected by sample size, number of covariates and the level of censoring. We now check

the fit for the distribution of the initial distribution The results of smooth test of goodness-

of-fit when fitting LTFU data to BBS model with initial distribution Weibull(β = 6;γ = 30)

yields

Table 4.28: Result of Smooth test up to order 4 for BBS model with initial distribution
Weibull (β = 6,γ = 30) against an initial distribution of generalized Weibull family.

Ψ Test statistic p-value

ψ1 2.211 1.0

ψ2 3.334 0.811

ψ3 4.121 0.565

ψ4 5.011 0.323



Chapter 5

Comparative Discussion of GOF

Methods

We have revisited the problem of testing whether a complete sample or censored sample

with right-censored survival data come from a given distribution or hazard functions. The

aim is to apply smooth tests of GOF to a wide areas in classical probabilities, survival

analysis and recurrent events models. The tests are based on Neyman’s embedding idea.

The null hypothesis is tested against a model where the probability or hazard function of

the survival distributions is expressed by several smooth functions. We have also incorpo-

rated data-driven versions to the selection of basis functions. We have also explored sample

size performance and consistencies through simulations in order to compare the power of

smooth tests with other conventional tests.

We have also explored Neyman’s smooth test idea and its data-driven versions and

demonstrated how it can be extended with applications in survival analysis and recurrent

events. The smooth tests and their data-driven versions is a viable competitor to many

existing procedures, especially when one seeks a test without a clear advance idea of the

alternative. Certainly, methods of this type can be developed for many other branches of

statistics, though now they do not seem to be used often.

115
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In Chapter 1, we have looked at motivation of the study by elaborating on the signif-

icance of retaining patients on ART and the risk of experience LTFU which may result

in discontinuation of treatment, drug toxicity, treatment failure due to poor adherence and

drug resistance. We also described the main objective in analysis of LTFU data in order to

check retention of patients in care. We discussed the fact that retaining patients for long

allows provision of long term ART, tracking WHO staging, tracking immunosuppression

profiles and evaluation of emergence of medication toxicities. Due to significant drop-outs,

patients may not realize the benefits of ART. More innovation is therefore required for fur-

ther ART scale-up and improve retention in care. Another motivation for this study is the

need to validate smooth test under different practical setting in variety of cancer studies.

This have been captivated by the 2-sample problem in cancer studies.

In Chapter 2 we have revisited the general mathematical setting and framework when

analysing smooth test of GOF introduced by Neyman (1937). We have considered exten-

sion of the smooth tests to cover non-censored data, censored data and recurrent events

data.

5.1 HIV Retention

Human Immunodeficiency Virus/Acquired Immuno Deficiency Syndrome (HIV/AIDS) have

consistently been a major challenge in Kenya. The national prevalence is currently esti-

mated to be 6% (Council, 2014)and there are at least 1.6 million Kenyans living with HIV

(PLHIV) with 59% of PLHIV are on antiretroviral therapy (ART) (Council, 2014). In prac-

tice, the quality of the ART services is measured against the rate of retention of PLHIV on

ART. Program data and national survey shows that, the percentage of PLHIV initiated on

ART reduces with time progression and that retention rate in ART is higher in the first 12

months (about 92%) and reduced to about 70% at month 60 (Council, 2014). This data de-

picts a critical need to establish robust measures to reduce loss to follow-up (LTFU) among
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PLHIV on ART. With the advent of the United Nation AIDS (UNAIDS) programme on

HIV/AIDS targets in 2013 (UNAIDS, 2014), the focus have turned to interventions that

quicken elimination of HIV/AIDS at the global, regional, country, province, district and

city levels. The strategy popularly known as 909090 targets: that by 2020, 90% of people

living with HIV know their HIV status, 90% of people who know their status are receiving

ART treatment and 90% of people on HIV treatment have a suppressed viral load so that

their immune system remains stronger and the likelihood of their infection being passed

to others is greatly reduced. This strategy is currently being implemented in Kenya. This

thesis focuses on statistical innovation that hinges to the third 90 i.e. viral suppression.

Viral suppression is achievable by retaining patients on ART for long. There are po-

tential benefits whenever a PLHIV’s viral load is reduced to an undetectable level. PLHIV

with undetectable viral loads are generally healthier than those people with higher levels of

virus in their blood and are also less likely to transmit HIV to their sexual partners (Stricker

et al., 2014). High retention rate in ART treatment plays a crucial role in maintaining viral

load suppression (Ochieng-Ooko et al., 2010; Makunde et al., 2012; Gwynn et al., 2015).

Loss to follow-up (LTFU) in a typical ART treatment facility translates to increased

morbidity and mortality through sub-optimal viral suppression, increased risk of drug re-

sistance, and increased risk of HIV transmission. Consequently, there is increasing concern

about inadequate retention and adherence due to LTFU (Gwynn et al., 2015).

The main application in this work is to assesses the hazard rate of the first LTFU time

using smooth test of GOF. The work is motivated by the analysis of HIV retention data

from two typical government Hospitals in Kenya. From the literature, Cox proportional

hazards models (CPHM) have been employed to assesses the effects of baseline covariates,

such as onset age, gender, and WHO staging, on the risk of LTFU. The validity of statistical

inference, however, depends critically on the adequacy of the assumed model. The smooth

test of GOF as a model checking procedures have been developed studied in the literature

for assessing the CPH model but has not been extended to HIV retention setting.
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5.2 Smooth Tests for Probability Distribution

For Weibull Distribution application with non-censored data, we provided the orthonormal

structure so that the smooth tests of order k=3 and k=4 are computed. We then evaluate the

goodness-of-fit for the two-parameter Weibull Distribution fitted on HIV retention data.

The empirical tests GOF considered here (i.e. KS, CVM and AD) are powerful whenever

the sample size is small. This is consistent with Kallenberg and Ledwina (1995); Rayner

et al. (2009); Rayner and Best (1990, 1986). Our contribution in this article is unique in the

sense that we are considering LTFU data generated from a typical clinical setting.

Lemeshko et al. (2009) investigated the gamma distribution with its parameters chosen

so that it is closest to the Weibull Distribution. The power test was used to assess both

simple and composite hypotheses against the simple alternative. Although he found the

KolmogorovSmirnov, Cramérvon Mises and AndersonDarling type nonparametric tests to

be most powerful compared with the case when the estimates are found by minimizing the

corresponding statistics. The comparison did not take into consideration the smooth tests.

In this study, we have considered smooth test and assessed its performance with other con-

ventional tests.

Sürücü (2008) also did power comparison, and a simulation study of GOF tests but

smooth test was not included in his assessment. Few authors have incorporated smooth

tests when testing power of goodness-of-fit test. In particular, (Kallenberg and Ledwina,

1995) showed through simulation results that the data-driven version of Neyman’s smooth

tests performs very well over a wide range of alternatives and is competitive with other

data-driven procedures. They also showed that the data driven smooth tests are consis-

tent against essentially all alternatives (Kallenberg and Ledwina, 1995). Rayner and Best

(1986) also showed that Neyman smooth test for location-scale families are flexible and can

be chosen to improve detection of particular alternatives. The tests was shown to perform

well against its competitors. This assessment is also consistent with our simulations output
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though, our major contribution is in the setting of typical HIV programming data.

The smooth test approach fails to reject the hypothesis when considering up to order

four. The p-value is quite large compared with KS test, CVM test and AD test and therefore

more appropriate compared to other alternatives whenever we have large sample size. The

smooth GOF test also produced the best estimate of the distribution of the data (Weibull

Distribution), which will ultimately result in a better estimate of the hazard function for

time to LTFU for predicting hazard rates. The Weibull Distribution is the best choice from

the density plots and graphs and is validated by smooth GOF test. It is important to care-

fully choose the best GOF tests in order to make the correct inference about underlying dis-

tribution. We have demonstrated that the smooth test is superior and can be used to analyze

time to LTFU data in order to determine the underlying distribution. These results agree

with those of Kang (1979), who showed by simulation that the test for normality based

on smooth test has much greater power than the generalized χ2 test and the Kolmogorov-

Smirnov test. Kang (1979)also demonstrated that the test performs generally as well as the

Shapiro-Wilk, skewness, and kurtosis tests for a wide range of alternatives.

Several studies have shown that LTFU poses challenges to the successful implementa-

tion of ART programs (Berheto et al., 2014). Studies have shown that patients who dis-

continued ART developed a rapid increase in viral load and depletion of CD4 cells, putting

them at risk of opportunistic infections and early death. Therefore, understanding the un-

derlying pattern and distribution of LTFU is necessary to making sound interventions that

maintain adherence to ART treatment. In this study, the two parameter Weibull Distribution

fits the time to first LTFU well. Several authors (Megerso et al., 2016; Wang et al., 2011;

Rasschaert et al., 2012; Ramadhani et al., 2007; Haddow et al., 2003; Asiimwe et al., 2016;

Berheto et al., 2014; Rachlis et al., 2014)have shown that the main reason in rising cases

of LTFU to be poor patient’s defaulter tracing in resource-limited settings. This is likely to

compromise positive outcomes of ART in a large scale HIV care center. Pattern of LFTU

are therefore crucial in developing practical programmatic interventions.
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5.3 Smooth Tests for 2-sample problem in Cancer Studies

We have considered CPH model; commonly used to determine risk factors. The assumption

of proportional hazards is therefore important whenever the model is applied. Numerous

methods for assessing the assumption of hazard proportions have been proposed. These

methods (e.g. global test, G-test, Kolmogorov-Smirnov test, smooth test etc.) together

with their asymptotic properties have been studied theoretically by several authors. How-

ever, validation of these tests in light of real settings have generally utilized either none or at

most two real datasets. Furthermore, the combined use of graphical and non-graphical anal-

ysis which is one of the contribution of this manuscript have been studied comparatively

by few authors. Also, in practice there exist variations in real data settings, particularly

in cancer studies and validations of these tests in multiple settings have not been done.

More so, most researchers, usually fit CPH models using several explanatory variables in

order to identify risk factors. However, in the fitted CPH model, the covariates included in

the model should satisfy the assumption that the relative risk is proportional over the time

for different levels. This study’s main objective is to validate the performance of smooth

test in different cancer settings and compare with that of global goodness-of-fit test and

Kolmogorov-Smirnov proportional hazard test. Particularly, we assesses the performance

of these tests under different cancer study setting when testing for the PH assumption. With

many variations in cancer studies, this paper however, does not aim to provide an exhaustive

performance of smooth tests for proportionality for all types of cancer, but instead it aims

to statistically validate its performance in selected eight different practical cancer settings.

Ultimately, we hope that the issues and features we comment on will result in higher overall

standards and quality of oncological research and limit the risk of using invalid models. For

the eight data sets with the respective settings we have displayed the projected hazard plots

together with their log(β (t)) projection. We chose graphs that are based on the Schoenfeld

residuals because they are more robust compared to Kaplan-Meier(K-M) survival graphs
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because K-M graph does not work well for continuous predictor or categorical predictors

that have many levels. Furthermore, the K-M curves are sparse when there are fewer time

points and is usually not straight-forward when detecting how close to parallel is close

enough. In these cases the resulting power of rejection is compared with the graphical pre-

sentation. Whereas, there are certain types on non-proportionality that cannot be detected

by the tests of non-zero slopes alone, it become obvious when looking at the graphs of the

residuals such as nonlinear relationship between the residuals and the function of time. In

this regard, the behavior of smooth tests is similar as the other tests if we have ”sizeable”

sample size. The two versions of smooth tests provide a procedure with power that is more

stable than power of other methods. The smooth test is analyzed with a fixed dimension

of order 3 with 3 degrees of freedom. For the data-driven version of the smooth test, we

nested subsets in order to avoid the use of many components. The nested subsets selection

procedure is not sensitive with respect to the choice of the maximum dimension (d) if d

is large enough to cover realistic departures from the hypothesis (Kraus, 2009). Since, we

have analyze these datasets in order to validate the smooth test in different settings, we have

utilized Schoenfeld residuals plots to see indication if either proportionality does or does

not hold for Time (Time defined as log (time)). We have consequently applied the four

tests to determine consistency between the plots and the level of rejection of null hypothe-

sis (proportionality). We have done this simultaneously for comparison and verification of

results obtained with both the graphical and data analysis. The results of applying the tests

to the eight cancer datasets are reported in each subsection under methods section. The

eight dataset were pulled from already published articles and are readily accessible in R

program. For the graphical presentation testing the time dependent covariates is equivalent

to testing for a non-zero gradient. Therefore if the proportional hazards assumption is true,

beta(t) will be a horizontal line. All analysis in this section were performed using coxph,

cox.zph, survival and Surv2sample packages in R program. For each situation we describe

the general setting of the study and the power of each test is computed. Assessment of
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CPH model fitting in identifying proportional hazards on each categorical covariate taken

individually are clearly observed in Schoenfeld residuals plots. The variables that showed

approximate proportional hazards. A CPH model was then fitted to the data, using forward

selection procedure that ended up including as many covariates as possible into the model.

It is important, to note that, our interest is not how good covariates fit in CPH model, but

how accurate the hazard proportionality assumption is determined. Then, the Schoenfeld

residuals for overall and consequently four covariates were studied. A closer look at results

for the various settings summarised below;

Data 1: The setting under this sub-section is Malignant Melanoma with 205 patients. The

overall Schoenfeld residuals plot shows non-zero slope. Further, all the four covariates for

Schoenfeld residuals plots except sex shows non-zero slope. Analytic results on the other

hand show smooth tests both with fixed order 3 and data driven version fail to reject the

null hypothesis with their p-values 0.12 and 0.15 respectively whereas the global test rejects

the null hypothesis at α < 0.05. On the other hand Kolmogorov-Smirnov test also fails to

rejects the null at α < 0.05 but doesn’t do well at α < 0.1 (null hypothesis is rejected).

The smooth test in this setting does better than the other two tests in determining hazard

proportionality. The smooth test is generally, coherent with the Schoenfeld residuals plots.

Data 2: For the cohort study on breast cancer patients analyzed in this sub-section, the over-

all Schoenfeld residuals plot and three of the selected four covariates depicts zero slope.

This is an indication of time dependent covariates. In this setting, the sample size is also

significantly large (n=2,982). Results shows all the four test are consistent in rejected the

null hypothesis; a situation that is consistent with Schoenfeld residual plots.

Data 3: The setting here is ovarian cancer with 82 patients being observed. Results show

the global test, smooth tests fixed dimension and data-driven smooth test fails to rejects the

null hypothesis. This is in agreement with the Schoenfeld residual plots for none zero slope.

However, the two-sample Kolmogorov-Smirnov test rejects the null hypothesis at α < 0.10.

Kolmogorov-Smirnov test will still be consistent with the other two test at α < 0.05 but
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may be misleading at α < 0.1.

Data 4: The setting here involves patients with clonal hematopoietic stem cell disorder

(acute myeloid leukaemia). With a sample size of 23 and one covariate,, the global test did

not give any result but the other 3 tests (i.e. two-sample Kolmogorov-Smirnov test, smooth

test and data-driven smooth test) failed rejects the null hypothesis. In other words, they de-

tected proportionality. Despite the fact that the covariate was insignificant (chiq= 0.00691

and p-value=0.934), our interest was to check proportionality and not the best fit and it is

after ascertaining proportionality assumption that we can objectively say; the covariate is

insignificant. This is an indication that researchers can utilize smooth test and two-sample

Kolmogorov-Smirnov test whenever other variables (e.g. sample size, number of covariate

etc.) hinders accurate global test

Data 5: Survival data in this setting involves 228 patients with advanced lung cancer. The

overall Schoenfeld residual plot depicts a none-zero slope. Three of the four selected co-

variates (age, ph.karno and pat.karno rx) also shows none-zero slope. Results shows, the

global test rejects the null hypothesis at α < 0.1 by does well for α < 0.05. The other three

test fails to reject the null hypothesis; this is coherent with the Schoenfeld residual plots.

This is an indication that the global test may not be accurate.

Data 6: Data analyzed in this setting involved 146 patients with stage C prostate cancer.

All the seven covariates were statistically insignificant at α < 0.05. The overall Schoen-

feld residual plot depicts a none-zero slope. However, only one (eet) of the four selected

covariates two showed a zero slope. Analytic result showed that all the test are consistent

and fail to rejects the null hypothesis at α < 0.05.

Data 7: This is a setting of national intergroup trial and involved 1,858 patients with stage

B and stage C colon cancer. Results show that all the tests are consistent in rejecting the null

hypothesis; a situation that is coherent with both the overall Schoenfeld residual plot and

the four selected covariates Schoenfeld residual plots. Despite the fact that all covariates

incorporated in this model are significant, proportionality does not hold. The covariates are
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therefore time dependent α < 0.05.

Data 8: The study setting here involves a population consisting of 109 patients with small

cell lung cancer. The overall Schoenfeld residual plot depicts a none-zero slope. only

one coveriate (prior) of the four selected covariates shows a zero slope. In this case the

global test strongly reject proportionality where as two-sample Kolmogorov-Smirnov test

and Smooth test of order 3 rejects the null (proportionality ) at α < 0.10. The data-driven

version of the smooth test however remains stable and fails to reject the null; an indication

of proportionality. This is a situation where data-driven smooth test performs better than

the other test.

Cancer data analysis showed that the smooth test and its data-driven version is a stable

compared to the global and the Kolmogorov-Smirnov tests when assessing the proportional

hazards assumption in variety of practical settings. Furthermore, although the smooth test

does not universally dominate the other two tests in different cancer study settings, it re-

mains relatively stable irrespective of the sample size and the number of covariates. The

application of the smooth test and its data-driven version to assesses proportionality, il-

lustrates how global test and Kolmogorov-Smirnov test inadequacies can result in invalid

models. We have offered remedial measures whenever Schoenfeld residual plots shows

proportionality and the global test and Kolmogorov-Smirnov test are in conflict with the

inference about the plot. We therefore, implore researchers to use smooth tests of goodness-

of-fit.

5.4 Smooth Tests for Baseline Hazard Function in Recur-

rent Events

We have extended application of BBS model to cover HIV retention data by setting loss

to follow-up data to represent recurrent event scenario. This was motivated by LTFU data
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comprising of typical records of patients with repeated LTFU and repeated time-to-failure

(LTFU) measurements of multiple patients. First we revisited BBS model and generally

discussed its features and applicability. The BBS model is used to estimate baseline hazard

function. Furthermore, applying the BBS model to fit LTFU is more straightforward, par-

ticularly when the analysis involves several recurrent observation. Method of smooth test

for assessing model fit for BBS model have been presented. The application of the test to

assess overall fit of BBS model have also been revisited. The BBS model is often used in

reliability studies. In this paper, we demonstrate that the model can be extended to cover

other scenarios particularly in public health. BBS models are flexible and a typical HIV

retention data can be fitted to the model. This finding stresses the point that BBS model

and time-to-event analyses can be used to model LTFU. An analysis of the time to first

event also shows the flexibility of the model. The application to the LTFU data is special

in that we have attempted to show varied application of BBS Model. The procedures for

estimating the parameters of a general and flexible class of the models for recurrent events

have been revisited and its properties examined through simulation studies. Some data sets

in the biomedical and reliability/engineering settings can be reanalyzed using BBS models.

The importance of HIV retention and adherence is also reflected in the 2011 General As-

sembly Political Declaration on HIV/AIDS, which emphasizes the need to address factors

that limit treatment uptake and contribute to poor adherence and calls for the mobilization

and capacity building of communities to support treatment scale-up and patient retention as

well as programmes that support improved treatment adherence (Assembly, 2011). A fo-

cus on the client side was also underscored by UNAIDS in their 20112015 strategy, which

stated that the demand side of treatment the factors that make people enrol for treatment

and adhere to ithas not received enough attention (UNAIDS, 2010; Stricker et al., 2014).

One of the main challenges to the response to HIV treatment is insufficient adherence to

treatment. Suboptimal viral suppression as a result of LTFU may yield a higher risk of de-

veloping drug resistances, as well as the transmission of drug resistance. We consider the



CHAPTER 5. COMPARATIVE DISCUSSION OF GOF METHODS 126

problem of testing that the baseline hazard function λ (·) of the time to first LTFU equals

some specified baseline hazard function λ0(·). The goodness-of-fit procedures were de-

rived as score tests obtained by nesting the null hypothesis in a larger family of hazard

rate functions and has been studied by Agustin and Peña (2001), Agustin and Peña (2005),

Pena (1998b) and Pena (1998a). The resulting smooth test of goodness-of-fit procedures

are also related to model validation procedures that utilize generalized residuals and, conse-

quently, through the asymptotic results, the appropriate adjustments needed to properly use

procedures based on generalized residuals can be obtained (Pena, 1998a). Several classes

of goodness-of-fit tests, both omnibus and directional, can also be generated. Because the

smooth tests are viewed as score tests, they posses optimality properties. Through a sim-

ulation study, the acceptability of the asymptotic approximations were ascertained for the

BBS model, and the powers of the different tests were obtained for a wide range of alter-

natives.

One of the aims of this study is to provide an assessment of smooth test when mod-

elling LTFU. The most illustrative way of describing recurrent event data is showing the

different response patterns observed. Several statistical analyses are performed on the re-

current event data to determine baseline hazard function. Though the CPH model is used in

recurrent events, our interest however, lies in the validation of the baseline function. This is

directly important since invalid model assumption can lead to wrong statistical inference.

Although patients can experience several LTFU events in a typical HIV program is a quite

common situation, it should be taken into account that it is different from a recurrent event

situation, in which the events are short lasting. In the study presented in this work, the

events are not short lasting, but they can be more or less considered as states. When the

duration of the events under consideration is short relative to the total follow up time, the

definition of the time at risk for a Cox regression for recurrent events is somewhat easier.

Another issue that should be taken into account is that the measurements in this on pre-

defined time points. Although this is the situation in most experimental studies, it is also
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possible to measure on a continuous time scale. This basically means that measurements

are taken exactly at the moment the event of interest occurs. Therefore, the number of

measurements per subject or patient and the spacing of these measurements are highly de-

pendent on the number and spacing of the recurrent events. In these situations the definition

of the time at risk can be slightly different from the ones described in this work.

We have attempted to illustrate methodological issues of smooth test through analy-

ses of recurrence events in LTFU data. Even though main conclusions did not change in

our analyses. We fitted BBS models for LTFU application in order to illustrate the use of

smooth tests. We singled out that our dataset focuses on time to first LTFU since the risk is

considered the same in across several epoch.

In summary, the choice of the approach for analysis of LTFU data will be determined by

many factors, including: number of the drop-outs; relationship between subsequent drop-

outs; effects varying or not across recurrences; HIV programming; and existing referral

structure. Usually the stratified models, as PWP (total or gap times) or multi-state models,

are used when there are few recurrent events per subject and the risk of LTFU recurrence

varies between recurrences. On the other hand, models that account for correlation be-

tween recurrent LTFU using robust covariance matrix, time-varying covariates or frailties

are indicated for frequent events with constant hazard between recurrences. Many statis-

tical challenges arise when performing analyses of repeated LTFU data and the researcher

should be careful to address them adequately.

Furthermore, simulation studies in Agustin and Peña (2001) demonstrated that the di-

rectional components of the test based on the polynomial specification tend to be flexible

when the sample size is small, in contrast to the behavior of the directional components

of the test based on the orthogonal specification. Also, each component of the test based

on the orthogonal specification has the potential of detecting specific departures from the

hypothesized hazard rate.

We have extended application of hazard-based smooth GOF tests to model LTFU data.
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The appeal of the class of smooth test lies in the fact that a rich family of tests can be

generated by varying the smoothing process Ψ(·). Simulation studies showed that the or-

thonormal choices leads to powerful omnibus tests and there individual components good

directional tests. Simulation results showed doers k = 2 and k = 3 is appropriate. This is

consistent with Agustin and Peña (2001).



Chapter 6

Conclusions and Recommendation

6.1 Conclusion

As mentioned in the introduction, applications of smooth test of GOF to models fitted to

LTFU has not been considered before. Authors who have looked at smooth tests of GOF

have concentrated on almost two real data applications that didn’t include LTFU data. The

smooth test applied in this study can be extended to cover data-driven applications and can

also be adjusted to detect particular alternatives. They are characterized by the following

properties: The test statistics are asymptotically distribution free; The asymptotic distribu-

tion of the test statistics can be determined under both the null and alternative hypotheses;

In the important i.i.d. case consistency can be proven; The tests can be tailored to detect

specific alternatives, in particular Cox’s model, by an appropriate choice of Ψ(·); No esti-

mate of the baseline λ0(·) is needed in the test against CPH model and BBS model.

The smooth test of GOF approach performs better than empirical GOF test when fit-

ting a parametric distribution to time-to-event complete data. We describe how to fit a two

parameter Weibull Distribution to retention data and assesses the fit using goodness-of-fit

procedures. Smooth test is comparatively better when fitting a parametric distribution to

time to LTFU data in a typical clinical setting. Our results highlight the need to better

129
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understand LTFU of patients initiated on ART. Nuisance parameter estimation can be per-

formed without changing the test statistic and since the tests rely on maximum likelihood

techniques, they asymptotically meet the conditions of the Neyman-Pearson lemma against

any simple alternative hypothesis. Further studies that address fitting hazard functions in

the presence of censored data and determinants of risks to LTFU are required for clarity.

Neyman (1937) paper have had significant contribution in the statistical scene. Starting

from the first principles of testing, Neyman derived an optimal test statistic and discussed

its applications along with its possible drawbacks. In terms of its significance in the his-

tory of hypothesis testing, Neyman’s smooth test comparably performs well when testing

principles that satisfied certain optimality criteria. There is a lot of potential when borrow-

ing suitable statistical techniques and adapting them for real data applications. Given the

fundamental nature of Neyman’s contribution, the smooth test has not been formally used

in many different practical situations across different sectors despite the fact that the test is

known to perform well with both censored and uncensored data. This thesis is our mod-

est attempt to bring Neyman’s smooth test application to HIV research. Further numerical

investigation into the performance of the test in various practical applications is required.

6.2 Strength and Limitation of The Study

6.2.1 Strength of The Study

Primary data used in the study was obtained from Kenya’s typical HIV setting and is there-

fore more broadly generalizable. Data was pulled from a database that have been verified.

The other strength is that, although the effect of LTFU on clinical outcomes is not a new

issue, there is no study that have systematically endeavoured to assesses the fit of a para-

metric distribution or hazard function to loss to follow-up data.
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6.2.2 Limitation of the study

The study also has several limitations. Because data for missed clinic visits only began

to be collected in after 2007, they are available on only a small sample of the population

and therefore must be interpreted with caution. In addition, it is possible that some indi-

viduals lost to follow-up had died, moved or transferred to another health-care provider

without informing the clinic, and that this resulted in some outcomes being misclassified.

However, individuals were considered lost to follow-up only after the outreach programme

had attempted to locate them. The duration between the point of first LTFU and retracing

patients back to care may be significantly long. Its a random time and requires further inves-

tigation. Several factors associated with being lost to follow-up are potentially modifiable

and provide opportunities for improving HIV care programmes in sub-Saharan Africa.

6.3 Future Direction

This work have only covered continuous case. We have identified potential counting data

sets that can be fit to probability and hazard models and use smooth tests of GOF to assesses

underling distribution and hazard functions. Future potential areas involving count data

include

1. Family planing and couple year of protection (CYP) data. This can be fitted to Pois-

son distribution and Negative binomial distribution in order to test over dispersion

2. Number pregnant mothers in the first and fourth Antenatal visits. Test for dispersion

by fitting Poisson distribution and Negative binomial distribution

3. HIV Sero-conversion among discordant couple data. We can model a Geometric

distribution
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Appendix A

Formulae

A.1 Smooth Tests of GOF for Probability Distribution

A.1.1 Orthonormal Polynomials of Probability Distribution Using Emer-

son Recurrence Relation

The Emerson relation provides computational relation to enable construction of orthonor-

mal polynomials (Rayner et al., 2008).

Let {hi(x)} be the set of orthonormal polynomials of a given probability distribution. Let

E[·] be expectation of the probability distribution i.e. E[X ] = µ and µi = E[(X − µ)i] for

i = 2,3, · · · . Let {h∗i (x)} be a set of orthogonal polynomials with {h∗0(x)} = 1 for all x.

We write ci = E[{h∗i (x)}2] for i = 0,1,2, · · · . Therefore

{hi(x)}=
{h∗i (x)}√

ci
, (A.1)

for all x and i = 0,1,2, · · · , then {hi(x)} is the corresponding set of orthonormal poly-

nomials. The initial polynomials are h0(x) = h∗0(x) = 1 for all x, h∗1(x) = (x− µ) and

h1(x) =
(x−µ)√

µ2
. Note that c0 = 1 and c1 = µ2.
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In expectation form, the Emerson recurrence relation is (Rayner et al., 2008; Rayner and

Best, 1990)

h∗i (x) = (x−E[Xh2
i−1(x)])hi−1(x)−E[Xhi−2(x)Xhi−1(x)]hi−1(x). (A.2)

Example, for r = 2 equation (A.2) generates h∗2(x) =
[(x−µ)2−µ3/µ2(x−µ)−µ2]√

µ2
.

The following two theorems are can be generated from equation (A.2)

• If h0(x) = 1 for all x and h1(x) = (x−µ)/
√

µ2, then for r = 2,3, · · · ,h∗r , defined by

equation (A.2), is orthogonal to h0(x),h1(x), · · · ,hr−1(x).

• For r = 2,3, · · · and i = 0,1, · · · ,r,

ai,r =
ai−1,r−1√

cr−1
+

br−1,rai,r−1√
cr−1

+
br−2,rai,r−2√

cr−2
,

with boundary conditions a0,0 = 1, c0 = 1, a1,1 = 1/
√

µ2, a0,1 = −µ/
√

µ2, c1 = 1.

This follows by equating coefficient in

h∗r (x) =
r

∑
i=0

ai,rxi = xhr−1(x)+br−1,rhr−1(x)+br−2,rhr−2(x).

• Assuming the polynomials h∗0(x),h
∗
1(x), · · · ,h∗r−1(x) and the constants c0,c1, · · · ,cr−1

are known and the necessary moments required exist and are known. We write µ
′
r =

E[X r] for r = 1,2, · · · . For r = 2,3, · · · , the quantities in equation (A.2), and cr can

be obtained from

E[Xh2
r−1(X) =−br−1,r =

∑
r−1
j=0 ∑

r−1
k=0 a j,r−1ak,r−1µ

′
j+k+1

cr−1
,

E[Xhr−1(X)hr−2(X)] =−br−2,r =
∑

r−1
j=0 ∑

r−2
k=0 a j,r−1ak,r−2µ

′
j+k+1√

cr−1cr−2
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and

cr =
∑

r−1
j=0 ∑

r−1
k=0 a j,r−1ak,r−1µ

′
j+k+1

cr−1
−b2

r−1,r−b2
r−2,r.

A.1.2 Prepositions for Data Driven version of Smooth Tests

The idea of data-driven version of smooth tests was introduced by Ledwina (1994). He

applied the Bayesian information criterion (BIC, Schwarzs selection rule) to the task of

testing uniformity (or other single distribution).

Let X1,X2, · · · ,Xn be iid random variables with probability density f (x;θ) belonging to µs

for some s. Let the likelihood function be defined as

Ls(θ) = log
n

∏
i=1

f (xi;θ), (A.3)

and

Ls = sup
θ∈Ωs

Ls(θ), (A.4)

i.e.

sג = Ls−
1
2

s logn. (A.5)

We use Schwarz’s technique to select the model with index S defined by

S = min{ j,1≤ j ≤ K : ג j = max
1≤s≤k

.{sג (A.6)

The index of µs is selected with respect to the sample size n so that the density function

yields high likelihood on the data.

Let Ns be the data-driven version smooth test. The main properties of Schwarz’s technique

and Ns are stated below.

With f (·,θ) ∈ µs for s = 1,2, · · · ,K.

1. Preposition 1: Let the law of the observed random variables belongs to the model µs
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for s = 1,2, · · · ,K. Then, the probability limn−→∞ f n
θ
= 1, the Schwarz’s rule leads to

the choice of the lowest-dimensional model containing the true value of θ .

2. Proposition 2: If θ ∈ΩsΩs−1 for s = 1,2, · · · ,K then

Pn
θ = 0(enβ )

for some β > 0 and for 1 < i < k− s it holds that

Pn
θ (S≥ s+ i) = 0(ni/2(logn)(s+i−2)/2).

3. Preposition 3: Suppose that H0 is true. Then, as n→ ∞, the distribution of Ns is

approximated by the central chi-squared distribution with 1 degree of freedom.

4. Preposition 4: If θ ∈ ΩsΩs−1 for some s = 1,2, · · · ,K and θ 6= 0, then the power of

Ns tends to 1 as n→ ∞.

A.2 Smooth Tests of GOF for Hazard Functions

Regularity conditions

The regularity conditions required to generate asymptotic results for the Ψ process.

For a vector v = (v1,v2, · · · ,Vm)
t , |V| =

√
VtV, while for a matrix V = (vi j), let ||V|| =

maxi, j |vi j|

1. There exists a neighborhood Γ0 ⊆ Γ of η0 such that on z×Γ0,λO(t;η)> 0, and the

partial derivatives ( ∂

∂ηi
)λO(t;η),( ∂ 2

∂ηiη j
)λO(t;η) and ( ∂ 3

∂ηiη jηk
)λO(t;η) exist and are

continuous at η0 = η .
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2. On z×Γ0, the log-likelihood process

l(t;θ ,η) =
∫ t

0
log[Y (s)λ (s;θ ,η)]dN(s)−

∫ t

0
Y (s)λ (s;θ ,η)ds

can be differentiated three times with respect to η and with the order of the differen-

tiation and integration operations being interchangeable.

3. On z×Γ0, the partial derivatives ( ∂

∂ηi
)λO(t;η),( ∂ 2

∂ηiη j
)λO(t;η) and ( ∂ 3

∂ηiη jηk
)λO(t;η)

exist and are continuous at η0 = η and with the processes {ψ(t;η0) : t ∈ z} and{
( ∂

∂ηi
)ψ(t;η0) : t ∈z

}
being locally bounded and predictable.

4. There exist deterministic functions y(·) defined on z, and ψ(0)(·; ·) defined on z×

Γ0, such that for (t,η) ∈z×Γ0 and as n→ ∞∣∣∣∣∣∣∣∣a−2
n

∫ t

0
ψ(s;η)⊗2Y (s)λ0(s;η)ds−

∫ t

0
ψ

(0)(s;η)⊗2y(s)λ0(s;η)ds
∣∣∣∣∣∣∣∣ pr−→ 0;

∣∣∣∣∣∣∣∣a−2
n

∫ t

0
ψ(s;η)⊗2

ρ(t;η)tY (s)λ0(s;η)ds−
∫ t

0
ψ

(0)(s;η)⊗2
ρ(t;η)ty(s)λ0(s;η)ds

∣∣∣∣∣∣∣∣ pr−→ 0;∣∣∣∣∣∣∣∣a−2
n

∫ t

0
ρ(t;η)⊗2Y (s)λ0(s;η)ds−

∫ t

0
ρ(t;η)⊗2y(s)λ0(s;η)ds

∣∣∣∣∣∣∣∣ pr−→ 0.

5. Defining the matrices of functions on z×Γ0 given by

Σ11(t;η) =
∫ t

0
ψ

(0)(s;η)⊗2y(s)λ0(s;η)ds;

Σ21(t;η) = Σ12(t;η)t =
∫ t

0
ψ

(0)(s;η)⊗2
ρ(t;η)ty(s)λ0(s;η)ds;

Σ22(t;η) =
∫ t

0
ρ(t;η)⊗2y(s)λ0(s;η)ds
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the (k+q)× (q+ k) matrix

 Σ11(t;η) Σ12(t;η)

Σ21(t;η) Σ22(t;η)


have finite elements for each t ∈z, and Σ(τ;η) is positive definite.

6. For each ε > 0 and t ∈z, as n→ ∞

a−2
n

∫ t

0
|ψ(s;η0)|2 I {|ψ(s;η0)|> εan}Y (s)λ0(s;η0)ds

pr−→ 0;

a−2
n

∫ t

0
|ρ(s;η0)|2 I {|ρ(s;η0)|> εan}Y (s)λ0(s;η0)ds

pr−→ 0.

7. There exist functions G1 and H1 defined on z such that for each t ∈z

sup
η∈Γ0

∣∣∣∣ ∂ 3

∂ηiη jηk
λO(t;η)

∣∣∣∣≤ G1(t)

sup
η∈Γ0

∣∣∣∣ ∂ 3

∂ηiη jηk
logλO(t;η)

∣∣∣∣≤ H1(t)

and such that, as n→ ∞,

a−2
n

∫
τ

0
G1(s)Y (s)ds

pr−→
∫

τ

0
G1(s)y(s)ds < ∞,

a−2
n

∫
τ

0
H1(s)Y (s)λO(s;η0)ds

pr−→
∫

τ

0
H1(s)y(s)λO(s;η0)ds < ∞,

a−2
n

∫
τ

0
H2

1 (s)Y (s)λO(s;η0)ds
pr−→
∫

τ

0
H2

1 (s)y(s)λO(s;η0)ds < ∞.

8. There exists a predictable process G2(·) with supη∈Γ || ∂ 2

∂ηi∂η j
ψi(s;η)|| ≤ G2(s) for
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each i = 1,2, · · · ,k and such that, as n→ ∞,

a−2
n

∫
τ

0

∣∣∣∣∣∣∣∣ ∂

∂η
ψ(s;η0)

∣∣∣∣∣∣∣∣2Y (s)λ0(s;η)ds =)p(1)

and

a−2
n

∫
τ

0
G2(s)2Y (s)λO(s;η0)ds

pr−→< ∞.

A.3 Smooth Tests of GOF for Baseline Hazard in Recur-

rent Events

In order to derive appropriate test procedure we obtain the distribution of UUUθ (t;θ) under

the null hypothesis. Required regularity conditions needed are (Agustin and Peña, 2001);

Uθ (t;θ) =
j=1

∑
n

∫ t

0
Ψ(s)dM j(s;θ)

1.
∫

τ

0 λ (·)(s)ds < ∞.

2. There exist a k× k matrix function D such that as n→ ∞,

sup
t∈z

∣∣∣∣∣∣∣∣1nΨ(t)Ψ(t)′Yj(t)−D(t)
∣∣∣∣∣∣∣∣ pr−→ 0.

3. The matrix Σ(τ) =
∫ t

0 D(t)λ0(t)dt is a positive definite.

4. For each ε > 0, l = 1,2, · · · ,k and for every t ∈F

1
n

n

∑
j=1

∫ t

0
Ψl(s)2I {| ≥ nε|}Yj(s)ds

pr−→ 0.
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R Syntax

B.1 Analysis of Loss to follow-up uncensored Data

R s c r i p t s f o r t e s t i n g Kolmogorov Sminov , Cram$\ a c u t e {\ t e x t {e}$} r Von Mises and Anderson−D a r l i n g t e s t

d a t a u n c e n s o r e d w e i b <−r e a d . csv ( ” U n c e n s o r e d w e i b d a t a . c sv ” )

d a t a u n c e n s o r e d w e i b

c . weib<−as . numer ic ( d a t a c e n s o r e d w e i b $ T i m e )

unc . weib<−as . numer ic ( d a t a u n c e n s o r e d w e i b $ T i m e )

ks . t e s t ( c . weib , ” p w e i b u l l ” , s c a l e = 39 .0762 76 , shape = 6 . 7 7 0 3 8 9 )

cvm . t e s t ( c . weib , ” p w e i b u l l ” , s c a l e = 39 .076276 , shape = 6 . 7 7 0 3 8 9 )

ad . t e s t ( c . weib , ” p w e i b u l l ” , s c a l e = 39 .076276 , shape = 6 . 7 7 0 3 8 9 )

ks . t e s t ( unc . weib , ” p w e i b u l l ” , s c a l e =30 .145206 , shape = 6 . 7 8 5 9 5 9 )

cvm . t e s t ( unc . weib , ” p w e i b u l l ” , s c a l e =30 .145206 , shape = 6 . 7 8 5 9 5 9 )

ad . t e s t ( unc . weib , ” p w e i b u l l ” , s c a l e =30 .145206 , shape = 6 . 7 8 5 9 5 9 )

B.1.1 Simulations R Codes

152
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Sampled R s c r i p t s

########### S i m u l a t e d 2−p a r a m e t e r Weibu l l random samples #########

s a m p l e n 5 1 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 2 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 3 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 4 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 5 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 6 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 7 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 8 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 9 = r w e i b u l l ( 5 , 6 , 30)

s a m p l e n 5 1 0 = r w e i b u l l ( 5 , 6 , 30)

############### Smooth t e s t f o r o r d e r 3#######################

WPP. t e s t ( sample n5 1 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 2 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 3 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 4 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 5 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 6 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 7 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 8 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 9 , t y p e =”ST1 ” )

WPP. t e s t ( sample n5 10 , t y p e =”ST1 ” )

############# Smooth t e s t f o r o r d e r 4#######################

WPP. t e s t ( sample n5 1 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 2 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 3 , t y p e =”ST2 ” )
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WPP. t e s t ( sample n5 4 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 5 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 6 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 7 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 8 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 9 , t y p e =”ST2 ” )

WPP. t e s t ( sample n5 10 , t y p e =”ST2 ” )

############## Kolmogorov−Smirnov t e s t #####################

WEDF. t e s t ( sample n5 1 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 2 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 3 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 4 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 5 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 6 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 7 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 8 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 9 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 10 , t y p e =”KS” , f u n E s t i m a t e =”MLE” )

################## Anderson−D a r l i n g T e s t #####################

WEDF. t e s t ( sample n5 1 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 2 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 3 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 4 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 5 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 6 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 7 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 8 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )
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WEDF. t e s t ( sample n5 9 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 10 , t y p e =”AD” , f u n E s t i m a t e =”MLE” )

##################### Cramer Von Mises T e s t s #####################

WEDF. t e s t ( sample n5 1 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 2 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 3 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 4 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 5 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 6 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 7 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 8 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 9 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

WEDF. t e s t ( sample n5 10 , t y p e =”CM” , f u n E s t i m a t e =”MLE” )

B.2 Analysis for Real Cancer Data

################# Lung Cancer ###################

d a t a ( l ung )

f i t . c a n c e r 1 <− coxph ( Surv ( t ime , s t a t u s ) ˜ age + sex + ph . ecog

+ph . ka rno + p a t . ka rno +meal . c a l +wt . l o s s , d a t a = c a n c e r 1 )

temp . can l<− cox . zph ( f i t . c a n c e r 1 )

temp . c a n l

p l o t ( temp . can l , main =” S c h o e n f e l d r e s i d u a l s f o r o v e r a l l

model vs . t ime ” )

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp . c a n l [ 1 ] , main =” age vs . t ime ” )

p l o t ( temp . c a n l [ 2 ] , main =” sex vs . t ime ” )
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p l o t ( temp . c a n l [ 3 ] , main =” ph . ka rno vs . t ime ” )

p l o t ( temp . c a n l [ 4 ] , main =” p a t . ka rno rx vs . t ime ” )

c o l 1 = p r o p r a t e 2 . ks ( Surv ( c a n c e r 1 $ t i m e , c a n c e r 1 $ s t a t u s ) ,

c a n c e r 1 $ p h . ecog , model = 1)

c o l 1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( c a n c e r 1 $ t i m e , c a n c e r 1 $ s t a t u s ) ,

c a n c e r 1 $ p h . ecog , model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( can1 . sm <− p r o p r a t e 2 . neyman ( Surv ( c a n c e r 1 $ t i m e ,

c a n c e r 1 $ s t a t u s ) , c a n c e r 1 $ p h . ecog , model = 1 , d a t a . d r i v e n =

TRUE) )

##################### Colon Cancer ###################

d a t a ( c o l o n )

c o l o n

f i t . c o l <− coxph ( Surv ( t ime , s t a t u s ) ˜ age + sex + rx +

o b s t r u c t + a d h e r e + d i f f e r + e x t e n t + s u r g +node4+ e type , d a t a =

c o l o n )

temp . co l<− cox . zph ( f i t . c o l )

temp . c o l

p l o t ( temp . v e t [ 3 ] , main =” S c h o e n f e l d r e s i d u a l s f o r rx vs .

t ime ” )

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp . c o l [ 1 ] , main =” S c h o e n f e l d r e s i d u a l s f o r age vs .

t ime ” )
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p l o t ( temp . c o l [ 2 ] , main =” S c h o e n f e l d r e s i d u a l s f o r sex vs .

t ime ” )

p l o t ( temp . c o l [ 1 0 ] , main =” S c h o e n f e l d r e s i d u a l s f o r e t i m e vs .

t ime ” )

p l o t ( temp . c o l [ 3 ] , main =” S c h o e n f e l d r e s i d u a l s f o r rx vs .

t ime ” )

c o l 1 = p r o p r a t e 2 . ks ( Surv ( co lon$ t ime , c o l o n $ s t a t u s ) ,

c o l o n $ e t y p e , model = 1)

c o l 1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( co lon$ t ime , c o l o n $ s t a t u s ) , c o l o n $ e t y p e ,

model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( v e t 1 . sm <− p r o p r a t e 2 . neyman ( Surv ( co lon$ t ime ,

c o l o n $ s t a t u s ) , c o l o n $ e t y p e , model = 1 , d a t a . d r i v e n = TRUE)

)

# p r i n t r e s u l t s

p r i n t ( v e t 1 . gof<− s u r v 2 . ks ( Surv ( co lon$ t ime , c o l o n $ s t a t u s ) ,

c o l o n $ e t y p e ) )

################# Leukemia ###################

d a t a ( l e u k e m i a )

l e u k e m i a

f i t . l eukemia1 <− coxph ( Surv ( t ime , s t a t u s ) ˜ x , d a t a =

leukemia1 )

temp . leukemia1<− cox . zph ( f i t . l eukemia1 )

temp . l eukemia1
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f i t . l eukemia1 <− coxph ( Surv ( t ime , s t a t u s ) ˜ x , d a t a =

leukemia1 )

temp . leukemia1<− cox . zph ( f i t . l eukemia1 )

temp . l eukemia1

p l o t ( temp . l eukemia1 )

p l o t ( temp . l eukemia1 )

t e s t . l eukemia1 = p r o p r a t e 2 . ks ( Surv ( l eukemia1$ t ime ,

l e u k e m i a 1 $ s t a t u s ) , leukemia1$x1 , model = 1 )

t e s t . l eukemia1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( l eukemia1$ t ime , l e u k e m i a 1 $ s t a t u s ) ,

leukemia1$x1 , model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( t e s t . l eukemia1<− p r o p r a t e 2 . neyman ( Surv ( l eukemia1$ t ime ,

l e u k e m i a 1 $ s t a t u s ) , leukemia1$x1 , model = 1 , d a t a . d r i v e n =

TRUE) )

# p r i n t r e s u l t s

p r i n t ( t e s t . l eukemia1 . gof<− s u r v 2 . ks ( Surv ( l eukemia1$ t ime ,

l e u k e m i a 1 $ s t a t u s ) , l eukemia1$x1 ) )

############## Melanoma ###################

d a t a ( melanoma )

mel1=melanoma

f i t . mel1 <− coxph ( Surv ( t ime , s t a t e ) ˜ sex + t h i c k + u l c e r +age

, d a t a =mel1 )

temp . mel1<− cox . zph ( f i t . mel1 )

temp . mel1
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p l o t ( temp . mel1 )

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp . mel1 [ 1 ] , main =” S c h o e n f e l d r e s i d u a l s f o r sex vs .

t ime ” )

p l o t ( temp . mel1 [ 2 ] , main =” S c h o e n f e l d r e s i d u a l s f o r t h i c k vs .

t ime ” )

p l o t ( temp . mel1 [ 3 ] , main =” S c h o e n f e l d r e s i d u a l s f o r u l c e r vs .

t ime ” )

p l o t ( temp . mel1 [ 4 ] , main =” S c h o e n f e l d r e s i d u a l s f o r age vs .

t ime ” )

t e s t . mel1= p r o p r a t e 2 . ks ( Surv ( mel1$t ime , m e l 1 $ s t a t e ) ,

me l1$u l ce r , model = 1 )

t e s t . mel1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( mel1$t ime , m e l 1 $ s t a t e ) , m e l1$u l ce r ,

model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( pbc1 . sm <− p r o p r a t e 2 . neyman ( Surv ( mel1$t ime , m e l 1 $ s t a t e

) , me l1$u l ce r , model = 1 , d a t a . d r i v e n = TRUE) )

# p r i n t r e s u l t s

p r i n t ( pbc1 . gof<− s u r v 2 . ks ( Surv ( mel1$t ime , m e l 1 $ s t a t e ) ,

m e l 1 $ u l c e r ) )

############### Ovar i an Cancer ###################

d a t a ( o v a r i a n )

o v a r i a n
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f i t <− coxph ( Surv ( fu t ime , f u s t a t ) ˜ age + ecog . ps+ rx +

r e s i d . ds , d a t a = o v a r i a n )

temp <− cox . zph ( f i t )

p l o t ( temp )

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp [ 1 ] , main =” S c h o e n f e l d r e s i d u a l s f o r age vs . f u t i m e

” )

p l o t ( temp [ 2 ] , main =” S c h o e n f e l d r e s i d u a l s f o r ecog . ps vs .

f u t i m e ” )

p l o t ( temp [ 3 ] , main =” S c h o e n f e l d r e s i d u a l s f o r rx vs . f u t i m e

” )

p l o t ( temp [ 4 ] , main =” S c h o e n f e l d r e s i d u a l s f o r r e s i d . ds vs .

f u t i m e ” )

temp

p r o p r a t e 2 . ks ( Surv ( o v a r i a n $ f u t i m e , o v a r i a n $ f u s t a t ) , o v a r i a n $ r x

, model = 1 )

ova1

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( o v a r i a n $ f u t i m e , o v a r i a n $ f u s t a t ) ,

o v a r i a n $ r x , model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( ova1 . sm <− p r o p r a t e 2 . neyman ( Surv ( o v a r i a n $ f u t i m e ,

o v a r i a n $ f u s t a t ) , o v a r i a n $ r x , model = 1 , d a t a . d r i v e n = TRUE

) )

# p r i n t r e s u l t s

p r i n t ( ova1 . gof<− s u r v 2 . ks ( Surv ( o v a r i a n $ f u t i m e ,

o v a r i a n $ f u s t a t ) , o v a r i a n $ r x ) )
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################# r o t t 2 ###################

r o t t 2 <− r e a d . csv ( ” r o t t 2 . c sv ” )

r o t t 2

f i t . r o t t 2 <− coxph ( Surv ( t ime , s t a t u s ) ˜ age + meno+ e r + g r a d e

+ nodes + nodes +pr , d a t a = r o t t 2 )

temp . r o t t 2 <− cox . zph ( f i t . r o t t 2 )

temp . r o t t 2

p l o t ( temp . r o t t 2 , main =” S c h o e n f e l d r e s i d u a l s f o r o v e r a l l

model vs . t ime ” )

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp . r o t t 2 [ 1 ] , main =” age vs . t ime ” )

p l o t ( temp . r o t t 2 [ 2 ] , main =” nodesvs . t ime ” )

p l o t ( temp . r o t t 2 [ 3 ] , main =” meno vs . t ime ” )

p l o t ( temp . r o t t 2 [ 4 ] , main =” g r a d e vs . t ime ” )

c o l 1 = p r o p r a t e 2 . ks ( Surv ( r o t t 2 $ t i m e , r o t t 2 $ s t a t u s ) , ro t t2$meno

, model = 1 )

c o l 1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( r o t t 2 $ t i m e , r o t t 2 $ s t a t u s ) , ro t t2$meno ,

model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( can1 . sm <− p r o p r a t e 2 . neyman ( Surv ( r o t t 2 $ t i m e ,

r o t t 2 $ s t a t u s ) , ro t t2$meno , model = 1 , d a t a . d r i v e n = TRUE) )

####################### S t a g e B / C P r o s t a t e Cancer

###########################

s t a g e c <− r e a d . csv ( ” s t a g e c . csv ” )
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s t a g e c

f i t . s t a g e c <− coxph ( Surv ( t ime , s t a t u s ) ˜ age + e e t + g2+ g r a d e

+ g l e a s o n + p l o i d y , d a t a = s t a g e c )

temp . s t a g e c <− cox . zph ( f i t . s t a g e c )

temp . s t a g e c

p l o t ( temp . s t a g e c , main =” S c h o e n f e l d r e s i d u a l s f o r o v e r a l l

model vs . t ime ” )

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp . s t a g e c [ 1 ] , main =” age vs . t ime ” )

p l o t ( temp . s t a g e c [ 2 ] , main =” e e t vs . t ime ” )

p l o t ( temp . s t a g e c [ 3 ] , main =” g2 vs . t ime ” )

p l o t ( temp . s t a g e c [ 4 ] , main =” g r a d e vs . t ime ” )

s t a g e c 1 = p r o p r a t e 2 . ks ( Surv ( s t a g e c $ t i m e , s t a g e c $ s t a t u s ) ,

s t a g e c $ e e t , model = 1 )

s t a g e c 1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( s t a g e c $ t i m e , s t a g e c $ s t a t u s ) , s t a g e c $ e e t

, model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( s t a g e c 1 . sm <− p r o p r a t e 2 . neyman ( Surv ( s t a g e c $ t i m e ,

s t a g e c $ s t a t u s ) , s t a g e c $ e e t , model = 1 , d a t a . d r i v e n = TRUE)

############### V e t e r a n ###################

d a t a ( v e t e r a n )

v e t 1 = v e t e r a n

p l o t ( v e t 1 )
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f i t . v e t <− coxph ( Surv ( t ime , s t a t u s ) ˜ age + ka rno + t r t +

d i a g t i m e + p r i o r + c e l l t y p e , d a t a = v e t e r a n )

temp . v e t <− cox . zph ( f i t . v e t )

temp . v e t

p a r ( mfrow=c ( 2 , 2 ) )

p l o t ( temp . v e t [ 1 ] , main =” S c h o e n f e l d r e s i d u a l s f o r age vs .

t ime ” )

p l o t ( temp . v e t [ 2 ] , main =” S c h o e n f e l d r e s i d u a l s f o r ka rno vs .

t ime ” )

p l o t ( temp . v e t [ 3 ] , main =” S c h o e n f e l d r e s i d u a l s f o r d i a g t i m e

vs . t ime ” )

p l o t ( temp . v e t [ 4 ] , main =” S c h o e n f e l d r e s i d u a l s f o r p r i o r vs .

t ime ” )

v e t 1 = p r o p r a t e 2 . ks ( Surv ( v e t e r a n $ t i m e , v e t e r a n $ s t a t u s ) ,

v e t e r a n $ t r t , model = 1)

v e t 1

## Neyman ’ s t e s t o f p r o p o r t i o n a l odds

## t e s t w i th f i x e d d imens ion

p r o p r a t e 2 . neyman ( Surv ( v e t e r a n $ t i m e , v e t e r a n $ s t a t u s ) ,

v e t e r a n $ t r t , model = 1 , d a t a . d r i v e n = FALSE)

## da t a−d r i v e n t e s t

p r i n t ( v e t 1 . sm <− p r o p r a t e 2 . neyman ( Surv ( v e t e r a n $ t i m e ,

v e t e r a n $ s t a t u s ) , v e t e r a n $ t r t , model = 1 , d a t a . d r i v e n =

TRUE) )

# p r i n t r e s u l t s

p r i n t ( v e t 1 . gof<− s u r v 2 . ks ( Surv ( v e t e r a n $ t i m e , v e t e r a n $ s t a t u s

) , v e t e r a n $ t r t ) )
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B.3 Analysis of Recurrent Events

B.3.1 Simulations

sim . da ta561<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta562<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta563<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)



APPENDIX B. R SYNTAX 165

sim . da ta564<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta565<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta566<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta567<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta568<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta569<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta570<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta571<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta572<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta573<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta574<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta575<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta576<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta577<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta578<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)



APPENDIX B. R SYNTAX 170

sim . da ta579<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta580<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta581<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta582<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta583<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta584<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta585<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta586<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta587<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta588<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta589<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta590<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)
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sim . da ta591<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta592<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

sim . da ta593<− c r i s k . sim ( n =5 , f o l t i m e =100 , d i s t . ev=c ( ” lnorm ” , ”

lnorm ” ) , anc . ev=c ( 1 . 4 7 9 6 8 7 , 0 . 5 2 6 8 3 0 2 ) , b e t a 0 . ev=c

( 3 . 8 0 3 4 2 , 2 . 5 3 5 3 7 4 ) , d i s t . c ens =” lnorm ” , anc . cens =1 .242733 ,

b e t a 0 . cens =5 .421748 , z= l i s t ( c ( ” u n i f ” , 0 . 8 , 1 . 2 ) , c ( ” u n i f ” ,

0 . 9 , 1 . 5 ) ) , b e t a = l i s t ( c ( 0 . 1 6 9 8 6 9 5 , 0 . 0 0 0 7 0 1 0 9 3 2 ) , c

( 0 . 3 7 3 5 1 4 6 , 0 . 5 5 9 1 2 4 4 ) ) , x= l i s t ( c ( ” be rn ” , 0 . 3 8 1 ) , c ( ” be rn

” , 0 . 5 6 4 ) ) , n s i t =2)

> s i m p l e . s u r v . sim ( n , t ime , d i s t . ev , anc . ev , b e t a 0 . ev , d i s t .

c ens = ” w e i b u l l ” , anc . cens , b e t a 0 . cens , z = NA, b e t a = NA

, x = NA)

simDat <− f u n c t i o n ( n , a , b , t a u ) {

z <− rgamma ( n , 2 , 0 . 2 )

X1 <− rbinom ( n , 1 , 0 . 5 )
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X2 <− r u n i f ( n , 0 , 1 )

lambda <− z * ( 1 / 1 0 ) * exp ( c b i n d ( X1 , X2 ) %*% a )

mt <− r p o i s ( n , t a u * lambda )

even tT <− l a p p l y ( s a p p l y ( mt , f u n c t i o n ( x ) r u n i f ( x ) * t a u ) ,

s o r t )

D <− exp(− c b i n d ( X1 , X2 ) %*% b ) * s q r t (800 * (− l o g ( r u n i f ( n ) )

/ z ) )

C <− ( X1 == 1) * rexp ( n , 0 . 1 ) + ( X1 == 0) * rexp ( n , i f e l s e ( z

== 0 , 10ˆ−10 , z ) ˆ 2 / 3 0 0 )

Y <− pmin (C , tau , D)

D e l t a <− 1 * (D <= Y)

f o r ( i i n 1 : n ) {

even tT [ [ i ] ] <− c ( even tT [ [ i ] ] [ even tT [ [ i ] ] < Y[ i ] ] , Y[ i ] ) }

o u t <− d a t a . f rame ( i d = r e p ( 1 : n , u n l i s t ( l a p p l y ( eventT , l e n g t h

) ) ) ,

T = u n l i s t ( even tT ) ,

X1 = r e p ( X1 , u n l i s t ( l a p p l y ( eventT , l e n g t h ) ) ) ,

X2 = r e p ( X2 , u n l i s t ( l a p p l y ( eventT , l e n g t h ) ) ) ,

D e l t a = r e p ( De l t a , u n l i s t ( l a p p l y ( eventT , l e n g t h ) ) ) )

o u t }

s e t . s eed ( 1 2 3 )

mydat <− s imDat ( 3 0 , a = c (−1 , 1 ) , b = c (−1 , 1 ) , t a u = 10)

( f i t . sim <− reReg ( r e S u r v ( T , id , D e l t a ) ˜ X1 + X2 , d a t a =

mydat , B = 0) )

p l o t ( f i t . sim , se = TRUE, B = 10)


