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GENTLEMEN, STOP YOUR ENGINES! 

G. M cC. Haworth1 
 

Reading, England 
 
 

ABSTRACT 
 

For fifty years, computer chess has pursued an original goal of Artificial Intelligence, to 
produce a chess-engine to compete at the highest level. The goal has arguably been achieved, 
but that success has made it harder to answer questions about the relative playing strengths of 
man and machine. The proposal here is to approach such questions in a counter-intuitive way, 
handicapping or stopping-down chess engines so that they play less well. The intrinsic lack of 
man-machine games may be side-stepped by analysing existing games to place computer-
engines as accurately as possible on the FIDE ELO scale of human play. Move-sequences 
may also be assessed for likelihood if computer-assisted cheating is suspected. 

 
 
1. INTRODUCTION  
 
The recently celebrated Dartmouth Summer Workshop of 1956 (Moor, 2006) coined the term Artificial Intelli-
gence. The AI goal most clearly defined was to create a chess engine to compete at the highest level. Moore’s 
law plus new versions and types of chess engine such as FRUIT, RYBKA and ZAPPA, have increased the likeli-
hood that this goal has now been reached. Ironically, recent silicon successes in man-machine play have made 
this claim harder to verify as there is now a distinct lack of enthusiasm on the human side for such matches, 
especially extended ones. Past encounters have often been marred by clear blunders2, highlighting the unsatis-
factory nature of determining the competence of homo sapiens by the transitory performance of one individual. 
Ad hoc conditions have increasingly compromised the engines, sometimes in chess-variant matches one or 
more removes from normal chess matches. 
 
There is a need for a new approach to engine-rating, one which does not rely directly on unachievably large 
sets of man-machine games. The strategy here is based on an engine E, constrained for reasons of experiment-
repeatability to be Ep, i.e., searching for p plies and then for quiescence. Ep is, to borrow a photography term, 
stopped down by competence factor c to be engine Ep(c), choosing its move using a stochastic function f(c): 
Ep(∞) ≡ Ep. Let EP ≡ ΣqiEp(ci) be an engine in Ep-space which plays as Ep(ci) with probability qi. The objective 
is to associate engines EP with various players P and levels on the FIDE ELO scale F. 
 
Let engine E, search-depth p and player P (rated at ELO L) be chosen such that Ep manifestly plays better3 than 
P. A sample set S ≡ {(Qi, mi)} of moves mi from positions Qi characterises P. A Bayesian inference process 
defines a transform T:P→EP of P to Ep-space, analysing S to iterate towards EP (Jeffreys, 1961). ELO(EP) = 
L' = L + δF1(E,p,S). Match Ep-EP shows to arbitrary accuracy that ELO(Ep) = L' + δF2, see Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Mapping ELO L players to Ep(c), and comparing EP and Ep. 

                                                            
1 guy.haworth@bnc.oxon.org 
2 Kasparov (v DEEP BLUE match 2 game 6, DEEP FRITZ and DEEP JUNIOR), Kramnik (v DEEP FRITZ) mated in 1 
3 This is to reduce uncertainty, see Section 3.1, and a recommendation rather than a provably necessary condition. 
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Section 2 revisits the earlier Reference Fallible Endgame Player (RFEP) concept and reviews its use. Section 3 
generalises the RFEP to the Reference Fallible Player (RFP) concept and warns of the fallibility of the RFP. 
Section 4 reviews uses of the RFP and section 5 summarises the implied experimental program. 
 
 
2. THE REFERENCE FALLIBLE ENDGAME PLAYER 

 
The Reference Fallible Endgame Player, RFEP (Haworth, 2002) was defined after Jansen (1992a, 1992b, 
1993) suggested exploiting opponent-fallibility but did not define fallible opponents to play against. 
 
The RFEP only plays chess when there is an Endgame Table, EGT, available in some metric. This subdomain 
of chess might be called the Endgame Table Zone, ETZ, and is currently restricted to 6--man chess. Nalimov’s 
Depth to Mate (DTM) EGTs are widely available but RFEPs can use other EGTs. The metrics DTC, DTZ and 
DTZ50

4 have been seen as more useful and economical, and have been used in computations (Tamplin and Ha-
worth, 2003; Bourzutschky, Tamplin and Haworth, 2005). RFEP Rc is assumed to have a theoretical win and to 
retain that win5. It chooses its moves in the following way: 

• at position Q, Rc has n moves mj to positions Qj of depth dj respectively 
• 0 ≤ dj which is arithmetically convenient: d1 ≤ d2 ≤ ... ≤ dn, so move m1 minimises DTx 
• Rc is defined as follows: qj,c ≡ Prob[Rc chooses move mj] ∝ (κ + dj)-c with κ > 0 and κ = 1 here6 
   

The Rc have the following required properties: 
• c = 0 corresponds to ‘zero skill’: R0 assigns the same probability to all available moves 
• R∞ is infallible, always choosing a move minimising depth to the next win-goal 
• R-∞ is anti-infallible, always choosing a move which maximises depth to the next win-goal 
• for c > 0, better moves in a metric-minimising sense are more likely than worse moves 
• as c increases, Rc becomes more competent in the sense that post-move E[depth] decreases 
• if dj+1 = dj+1, as dj → ∞, qj,c /qj+1,c → 1 monotonically.7 

 
A set S = {(Qi, cmi)} characterises P, who chooses move cmi in position Qi. Profiling P in Rc terms: 

• let R = {Rc | c = cmin(δc)cmax} be the defined set8 of candidate Rc, 
• before analysing S, the a priori beliefs are {hypothesisc ≡ Hc ≡ “Prob[P is Rc | Rc ∈ R] ≡ q1,c”} 
  defining an Aeolian harp of multiple hypotheses to be held up to the wind of evidence 
• let pi,c ≡ Prob[Rc chooses move cmi in positions Qi],  
• let q2,c ≡ ∏pi,c = Prob[Rc chooses all moves cmi in positions Qi], and  
• Bayesian inferences implies that the a posteriori Prob[P is Rc | S, Rc ∈ R] ≡ q3,c ≡ µ.q1,c.q2,c. 

 
Thus, set S defines a transform T:P→EP of player P into Rc-space: EP ≡ Σq3,cRc with mean cP,S ≡ Σc.q3,c.9 Ha-
worth and Andrist (2003) reported in Section 6.4 the experimental confirmation that if in fact P ≡ Rc, EP→P in 
the limit. A conjecture here is that if P ≡ ΣqcRc, then EP→P in the same way.  
 
Jansen’s random player (1992a) is equivalent to R0 here. Haworth (2002) analysed two KQKR demonstration 
games between Walter Browne (KQ) and Ken Thompson’s BELLE chess engine. Browne’s moves imply an 
apparent competence c of about 19 on the basis of 100 moves, but this value does not transfer to other end-
games and has no meaning in other terms. Haworth and Andrist (2003) reported much lower figures for c in 
KBBKN: Andrist and Haworth (2005) characterised intrinsic endgame difficulty and quantified the degree to 
which KBBKN is harder than KQKR. Competitive human games rarely spend long in the EGT zone and there 
is more opportunity to analyse the apparent competence of chess engines not armed with the EGTs.  
 
The quality of play of a losing defender may be measured in the same way (Haworth, 2002). 
 
                                                            
4 Depths to Conversion, move-count Zeroing move, and DTZ in the context of the 50-move draw-claim rule 
5 There is no loss of generality: Rc’s handling of drawing and losing moves when having a win, and its treatment of drawn 
and lost positions is also defined in Haworth (2002), but is not needed for illustrative purposes here. 
6 as κ increases, the RFEP differentiates less well between better and worse moves. 
7 This is why the more obvious and mathematically simpler qj,c ∝ 1/e^c.dj was not used 
8 After a parallelisable search-evaluation of complexity O(νp), probability computations per move-Rc are merely O(1). 
9 As cmin→-∞, cmax→+∞ and δc→0, Prob[P is Rc with c < x] and cP,S converge to limit values. 
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3.  THE REFERENCE FALLIBLE PLAYER 
 
The RFEP concept is now generalised to that of the Reference Fallible Player (RFP) as heralded by Haworth 
(2005). As before, player P provides a sample of play S = {(Qi, cmi)}, not now restricted to the endgame table 
zone ETZ. Player P, inferior to Ep, may be an individual or community of human players PL rated or playing in 
the FIDE ELO range [L-δL, L+δL]. P may also be an engine Eipj or a composite engine EP ≡ ΣqiEp(ci). 
 
A chess engine E is constrained to be Ep, searching to p plies depth and for quiescence, to give experimental 
repeatability. Rc, a handicapped version Ep(c) of Ep, chooses its chess10 moves as follows:  

• at position Q, Rc has n moves mj to positions Qj: engine E gives value vj to position Qj 
• v1 ≥ v2 ≥ ... ≥ vn and move m1 is, in this sign convention, apparently the best move 
  however, some or all of the vi may be negative – which was not so with the di of section 2 
• let wj = |v1| + |v1 – vj|, ensuring that 0 ≤ wi and that the wi can play the role of the di of section 2 
• if (won) position Q is in an endgame for which an EGT is available, vj = wj = dj as in section 2 above 
  thus, Rc ≡ Ep(c) is an extension of Section 2’s RFEP, choosing moves as before in the ETZ 
• persisting with the RFEP’s probability function of Section 2, Rc is defined here as follows11: 
  qj,c ≡ Prob[Rc chooses move mj] ∝ (κ + wj)-c, κ > 0, and κ = 1 here. 

 
Note that the ‘stopping down’ process using parameter c is separate from, independent of and applicable to all 
engines E. The more fallible engine Rc may be welcomed for appearing to be ‘more human’. A game of chess 
between R1c and R2c may also be thought of as a game R1∞-R2∞ in a new variant of chess, Chessc. 
 
The notation of section 2 requires no change for the RFP, and Rc has the same properties: 

• a set S = {(Qi, cmi)} characterises P, who chooses move cmi in position Qi, 
• let R = {Rc | c = cmin(δc)cmax} be the defined set of candidate Rc, 
• before analysing S, the a priori beliefs are {hypothesisc ≡ Hc ≡ “Prob[P is Rc | Rc ∈ R] ≡ q1,c”}, 
• pi,c ≡ Prob[Rc chooses move cmi from position Qi], 
• Prob[Rc chooses all the moves cmi]  ≡ q2,c = Π pi,c, 
• the a posteriori Prob[P is Rc] ≡ q3,c ≡ µ.q1,c.q2,c for some scaling factor µ, and therefore 
• EP ≡ Σq3,cEp(c) and the mean c of EP is cS,E,p ≡ Σc.q3,c: n.b., forced moves do not change cS,E,p, 
• A match Ep-Ep(c) can determine the ELO difference of the engines δRE,p,c to arbitrary accuracy 

 
Note that the opponent’s moves do not affect the assessment of the play of P. One or both players in a game 
may be assessed independently of the other by this method. The concept of the engine E(c) or Ep(c) may be 
exploited in various ways as described in Section 4. However, it is first worth caveating the fact that Ep is not 
infallible, and comparing this RFP-approach with the experiment of Guid and Bratko (2006). 
 
3.1  Moving off the gold standard 
 
In section 2, the benchmark engine E ≡ R∞ is infallible and defines a gold standard of perfect DTx-minimaxing 
play. cP,S is therefore an absolute indicator, unaffected by engine or search-depth, of the apparent competence 
of P as demonstrated by S: it measures the degree to which S represents less than perfect play. However in sec-
tion 3, the mean of EP, the Ep-transform of P, is cS,E,p: both EP and cS,E,p are affected by E and p as well as by S. 
Benchmark engine Ep is now fallible, its evaluation of moves {mj} affected by p, its search strategy and its 
evaluation function. ELO(EP) ≈ ELO(P) but ‘transform error’ δF1 must be estimated. 
  
cS,E,p is merely a statistical ‘distance measure’ of how differently Ep and P play, as seen by Ep. Thus: 

• it is necessary to convert the c-measure into a measure of rating difference between Ep and P, but 
• if, at one extreme, Ep makes errors exactly when P moves correctly, cS,E,p is lowered, 
• if, at the other extreme, Ep makes exactly the same errors as P, cS,E,p is raised to ∞, and 
• if P actually plays better than Ep, cS,E,p decreases as the difference between their play increases. 

 
The uncertainty associated with cS,E,p needs to be understood, but is reduced by reducing the fallibility of the 
benchmark engine Ep, i.e. by using the best engine E and greatest search-depth p available. The latter need not 
                                                            
10 The RFP concept in fact applies to any game domain with a set of moves to evaluable positions. 
11 Other ways of stopping-down E(p) based on actual players’ error-patterns may prove to be even more useful here. 
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be restricted to the search-depth naturally achievable at a ‘classic’ 40/120 rate of play. Note that, if the errors of 
Ep and P are uncorrelated, Ep’s error-effect is proportional to |S| -½, and to the mean size and percentage of er-
rors. Given that Ep will identify Ep(c0)’s capability as c0, an experiment can identify the sensitivity of that iden-
tification by adding normal, variance V, ‘random anti-noise’ to cancel out, as it were, the noise in Ep’s position-
values. The following experiment will characterise the transform ELO-error δF1 directly: 

• given benchmark engine Ep, consider engines Eij, j < p: let T(Eij) = EPi,j 
• matches Eij-EPi,j directly identify the transform’s ELO-error δF1,i,j for the player Eij 
• matches Ep-Eij identify the profile of transform-errors δF1 down the ELO scale relative to Ep

12. 
 

Let E10 source S1 = {(Q1i, cm1i)} and E16 source S2 = {(Q2i, cm2i)}. The ‘distance measure’ is asymmetric: 
cS1,E,16  ≠ cS2,E,10 because E10’s and E16’s perspectives of the ‘distance’ between their play differ. 
 
3.2 A review of the Guid-Bratko experiment 
 
The Guid and Bratko experiment (2006) ranked World Champions by comparison with CRAFTY searching for 
12 plies and for quiescence. Their work differs from that proposed here in the following respects: 

• their aim was to rank human players, and not to align carbon and silicon players on one scale, 
• their distance measure was Average{|wchosen – w1|} in terms of the notation here 

- not considering, as here, P’s complete set of move-choices, 
- giving the same no-penalty reward for ‘optimal’ moves, even if forced or highly obvious, 
- penalising equally the choice of a non-optimal move in positions Q1 and Q2 where, e.g.: 
   Q1 has moves to positions/values {0, 1}; Q2 has moves to values {0, 1, 1, ... , 1},  

• their benchmark engine CRAFTY(12) is inferior to the human players it was assessing 
- the possibly conservative constraint here is that Ep is superior to P, constraining {P} 

• no constraints as to their approach’s applicability were stated, apparently leaving CRAFTY(12) to: 
- falsely rate (Beal, 1999) CRAFTY(12+n) as worse than CRAFTY(12), n > 0, 
- therefore, falsely rate ‘zero error’ CRAFTY(12) as the ultimate chess player, and 
- perhaps rate CRAFTY(n), n = 11, 10, ... as better than the World Champions. 

• there was no discussion of the uncertainty introduced by CRAFTY(12)’s fallibility: 
- the ‘stylistic similarity’ correlation of players’ and CRAFTY(12)’s errors affects the results. 

   
Their experiment may be valid but was unsupported by theory. It was counter-intuitive, as it used the worst 
playing agent as the benchmark. It therefore attracted criticism by Riis (2006) and others on both counts. In a 
response, Guid, Pérez and Bratko (2007) proffered further statistics to support their original data but again did 
not define theoretically the applicability of their approach. They did model a fallible benchmark agent correctly 
ranking two less fallible agents, showing their approach to be more than intuitively applicable. However, this 
extreme scenario from McKinnon (2007) further highlights the fact that there are limitations: 

• in a set of positions Qj, two moves are available, leading to positions valued at 0 and 1, 
• however, benchmark engine B values these moves’ destinations exactly wrongly at 1 and 0, 
• player Pi chooses the correct moves with frequency pi, p1 < p2 < ... < pn, 
• player Pi appears to B to be choosing the wrong moves with frequency pi, 
• therefore, B ranks the players in the opposite order to that which is correct, 
• in terms of the Guid et al (2007) model13, PC = 0, N = 1 and mirror-like, P' = 1 – P, 
• more generally in their model, dP'/dP = [(N + 1)PC – 1]/N, negative for PC < 1/(N + 1), i.e., 

   if Ep’s move-choices are bad enough, players are ranked in an exactly inverted order. 
 
Two experiments have been proposed in Section 3.1 to compensate for a similar absence here of the theoretical 
analysis of the impact of Ep’s fallibility on the c and on the ELO of the EP: 

• a test of the robustness of the computed c by adding ‘noise’ to Ep’s valuations {vi}, and 
• a comparison of the ELO rating of Eij and EPi,j, its transform in Ep-space. 

                                                            
12 This pattern is analogous to that established by GPS reference stations for use with Differential or Wide-Area GPS. 
13 PC ≡ Prob[B plays optimally], 1/N ≡ Prob[B and player P choose the same wrong move], 
 P' ≡ Prob[P appears to B to play optimally], P ≡ Prob[P actually plays optimally], 
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4.  USES OF THE REFERENCE FALLIBLE PLAYER Ep(c) 
 
4.1 Assessing positions with Ep ≡ Ep(∞) 
 
The large-scale deposition of position assessments by {Ep} in a standard format provides a set of reference data 
which will be valuable in itself, and may suggest stopping-down E(p) in a better way. Any engine E participat-
ing in this production will have the extra status of being a Reference Engine. 
 
4.2 The Player 
 
It is good practice to spar against a suitably stretching but not overpowering opponent, often today a chess-
engine. The competence-factor c allows an engine E to be tuned on a continuous scale which is preferable to a 
discrete set of choices such as FRITZ’s {very easy, easy, ... , really hard}: the scale extends from ‘grandmaster’ 
to ‘incompetent’. As described below, the c-scale can be correlated with the FIDE ELO scale for human play-
ers, and this leads to inferences of engine-rating and assessments of the likelihood of cheating. 
 
4.3  The Analyser 
 
The Analyser Ep proceeds as in Section 3 from an a priori belief that the observed player P is Ep(c) with prob-
ability q1,c. These q1,c may be independent of P in the ‘know nothing’ situation, or informed by some prior 
knowledge of P such as their ELO rating. The analyser recalculates q3,c ≡ Prob[P is Rc] after each move using 
the rule of Bayesian inference. Guid and Bratko (2006) sensibly recommend not considering the first ‘opening 
book’ moves or moves where the advantage, say 2.00+, is already decisive. At any time, cE,p,S ≡ Σc.q3,c is the 
apparent competence of P as seen by engine Ep.  
 
In fact, different measures of apparent competence may conveniently be developed for a range of search-depths 
p at the same time, say p ∈ [8, 18]. Beal (1999) proved that increasing search-depth p improves the quality of 
play, a fact previously assumed on empirical grounds only. Thus, it is to be expected that, as p decreases, Ep’s 
assessment cE,p,S of player P will first increase as Ep’s quality of play reduces to that of P. It should then de-
crease as Ep’s increasing errors are seen by Ep as P’s increasing errors. This behaviour provides a way of con-
firming that Ep does indeed play better than P as required here. 
 
Let the transform of PL in Ep-space be EPL. As highlighted in Section 3.1, ELO(EPL) is L'=L+δF1, approxi-
mated by L"=L+δF1' where δF1' is an estimate of δF1 based on the δF1,i,j. If engine EPL plays on the web, its 
ELO may be adjusted to L"' but this is susceptible to many social sources of error. 
 
Given two players P1 and P2, it is possible to compare their Ep-profiles and compare the c-distances of their 
play from that of Ep. P1 and P2 might be the benchmark engine E at different depths, subsets of PL before and 
after say 1980, or if Ep is good enough, different World Champions. The a priori beliefs about P1 and P2 
should be the same, or midway between profiles corresponding to their ELO ratings. 
  
4.4  The Imitator 
 
The Imitator Ep analyses its opponent as in Section 4.2, identifies their apparent competence cO, and then itself 
plays as Ep(c), with c bearing some defined relationship to cO. 
 
4.5  Estimating the FIDE ELO rating of engines Ep and E 
 
Let the best estimate of the FIDE ELO rating of Ep(cL,p) be L" as above. Let E be Ep, or E at a ‘classic’ 40/120 
tempo on some platform. A match between E and Ep(cL.p) will determine an ELO-superiority δFL with a preci-
sion proportional to the square-root of the number of games played. An estimate of the FIDE ELO rating14 of 
Ep is therefore L"+δFL. Given that an Ep(cL,p) engine may be determined for several ELO levels L, several esti-
mates {L"+δFL} of ELO(Ep) may be made and compared. Without the benefit of experimental evidence, the 
author’s expectation is that the better E is and the greater p is, the more accurate these estimates will be. Also, 
the values L chosen should be well below the eventual FIDE ELO rating estimate of Ep so that the evaluation-
errors of Ep are not significant compared to the errors of players at level L. 
 
                                                            
14 Existing CCRL, CEGT, CSS, SCCT and SSDF ELO ratings cannot be interpreted as FIDE ELO ratings.  
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4.6  Use of a suite of engines Eij 
 
Different engines Eij have different search and evaluation algorithms, and will not be unanimous on position-
values or even choice of best move. The deployment of engines {Eij} as analysers of a game would produce a 
range of perspectives about the balance of advantage, the best moves, and the loci of apparent competence cEi,j,S 
of the two players. This would contribute to a more engaging commentary for the audience. 
 
4.7  Analysing suspected cheating 
 
Advancing technology has increasingly made engine-assisted cheating in chess an issue (Friedel, 2001). Re-
cently, the manager of Topalov claimed that Kramnik had been cheating in their World Championship match, 
this on the basis that the percentage of moves which coincided with the choices of FRITZ. It is notable that the 
claim did not specify the version, settings or search-depth if any of the FRITZ used to identify the moves. Nor 
were the percentages compared with those of Topalov himself. Regan (2007) correctly points to a lack of detail, 
rigour and scientific method in statements to date about suspected cheating. 
 
Worse, merely counting the number of times that engine E or Ep agrees with player P is unsatisfactory. A 
move-choice may be forced or obvious for both Ep and P, or not, and an assessment of coincidence needs to 
consider the full move-context of that choice as in Section 3. Tracking |vbest – vchosen| (Guid and Bratko, 2006) is 
an improvement but does not use the available information fully, as stated above. 
 
The proposal here is to use the Analysis process, together with an a-priori Ep-profile EP of player P, to calcu-
late the probability of EP making a sequence of P’s moves, and track apparent competence c after each move. 
A sharp increase in apparent competence indicates sustained move-agreement between P and Ep. The pattern of 
such variations in apparent competence may be compared for players of the pre- and post-engine eras. 
 
 
5.  SUMMARY 
 
This paper proposes an approach to the assessment of human play and the ranking of chess-engines on the 
FIDE ELO scale. The principle is to use games already played rather than require new games to be played. A 
possibly notional player P may be profiled in terms of a chess engine Ep, the recommended precaution being 
that Ep is a superior player to P. Standard statistical-confidence intervals apply to all results but: 

• a set of players rated at FIDE ELO L may be profiled in Ep terms, 
• the effect of the fallibility of Ep on that profiling process may be assessed 
• engines Ep(c) and in particular, engines Ep and E may be rated in FIDE ELO terms 
• for each engine Ep, c may be calibrated against the FIDE ELO scale 
• given T(P)=EP, Prob[P and Ep agree over n moves] can be calculated if cheating is suspected 
• the likelihood that P has cheated may therefore be considered with better quantitative input 
• sparring partners Rc ≡ Ep(c) may be supplied at any level of difficulty 
• an engine-opponent can tune itself dynamically to the apparent competence of its opponent 

 
The intention is that this theoretical proposal is tested by an experimental programme as follows: 

• some engines E are modified to be a set RE of Reference Engines, outputting in common format, 
• the conjecture ‘P ≡ ΣqiEp(ci) ⇒ EP ≡ P’ is investigated, 
• quorate and appropriate samples S of actual play are defined for various FIDE ELO levels L, 
• the samples S are analysed by the engines in RE at various attainable depths p, 
• the notional player P at FIDE ELO level L is profiled as a composite engine EP of Ep-engines,  
• this profile’s accuracy is tested by available δF1,i,j and by variations of S and Ep’s {vi}, 
• matches Ep-EP and Ep-Ep(c) are conducted to estimate the FIDE ELO level of Ep, 
• if there are Ep appearing to be better than the World Champions, then 

- the World Champions may be ranked in terms of apparent competence c, 
- the robustness of those assessments will define what confidence can be placed on the ranking, 
- “Who was the ‘best player?” may be addressed separately, partially informed by the {c}. 

 
These experiments may also provide a basis for improving both position-evaluation and the FIDE ELO scale 
itself. The author invites collaboration with engine-authors and others to expedite this programme. 
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