
HAL Id: hal-01677260
https://hal.inria.fr/hal-01677260

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Narrowing the gap between QoS metrics and Web QoE
using Above-the-fold metrics

Diego da Hora, Alemnew Asrese, Vassilis Christophides, Renata Teixeira,
Dario Rossi

To cite this version:
Diego da Hora, Alemnew Asrese, Vassilis Christophides, Renata Teixeira, Dario Rossi. Narrowing
the gap between QoS metrics and Web QoE using Above-the-fold metrics. PAM 2018 - International
Conference on Passive and Active Network Measurement, Mar 2018, Berlin, Germany. pp.1-13. �hal-
01677260�

https://hal.inria.fr/hal-01677260
https://hal.archives-ouvertes.fr


Narrowing the gap between QoS metrics and
Web QoE using Above-the-fold metrics

Diego Neves da Hora1, Alemnew Sheferaw Asrese3, Vassilis Christophides2,
Renata Teixeira2, and Dario Rossi1

1 Telecom Paristech – first.lastname@telecom-paristech.fr
2 Inria – first.lastname@inria.fr

3 Aalto University – alemnew.asrese@aalto.fi

Abstract. Page load time (PLT) is still the most common applica-
tion Quality of Service (QoS) metric to estimate the Quality of Experi-
ence (QoE) of Web users. Yet, recent literature abounds with proposals
for alternative metrics (e.g., Above The Fold, SpeedIndex and variants)
that aim at better estimating user QoE. The main purpose of this work
is thus to thoroughly investigate a mapping between established and re-
cently proposed objective metrics and user QoE. We obtain ground truth
QoE via user experiments where we collect and analyze 3,400 Web ac-
cesses annotated with QoS metrics and explicit user ratings in a scale
of 1 to 5, which we make available to the community. In particular, we
contrast domain expert models (such as ITU-T and IQX) fed with a sin-
gle QoS metric, to models trained using our ground-truth dataset over
multiple QoS metrics as features. Results of our experiments show that,
albeit very simple, expert models have a comparable accuracy to machine
learning approaches. Furthermore, the model accuracy improves consid-
erably when building per-page QoE models, which may raise scalability
concerns as we discuss.

1 Introduction

The Web remains one of the dominant applications in the Internet. Originally
designed to deliver static contents such as text and images, it evolved to serve
very dynamic and complex content: it is not uncommon for modern pages to
include hundreds of objects and dozen of scripts, placed at different servers
hosted in different domains [11]. Given this complexity, the Web architecture
and protocol landscape evolved as well, aiming at more efficient operation and to
enhance the end user QoE: the introduction of Content Delivery Network (CDN)
and different protocols such as HTTP2 [7], SPDY [16], QUIC [19] are some of
the efforts in this regard.

Measuring the impact of different network and Web browsing configurations
on Web browsing performance is essential to enhance user satisfaction. The met-
ric most commonly used to measure the performance of Web browsing has been
the Page Load Time (PLT), which holds true for both research [13, 26, 21, 27,
25] and industry [1, 2, 4]. Recent studies [10, 3, 8, 18, 24, 15], however, started to



question the relevance of using PLT to measure quality of user experience. The
main skepticism is that whereas PLT measures the precise time at which the page
finishes loading, the experience of the user depends on the whole process up to
that time and the rendering time at the browser. As such, a number of alterna-
tive metrics, which we review in Section 2.1, such as the Above-the-Fold (ATF)
time [10], SpeedIndex [3], Object/ByteIndex [8] and PerceptualSpeedIndex [15]
have been proposed to bridge this gap.

The approach adopted by the measurement community for computing met-
rics like ATF time and SpeedIndex requires taking a series of screenshots of the
Webpage loading progress and post-processing the captured frames. Unfortu-
nately, this approach is computationally intensive, which makes these metrics
complex to measure [15]. Our first contribution (presented in Section 3) is to
propose a tractable method to estimate the ATF metric, and offer an
open-source implementation as a Chrome plugin available at [5].

Still, to date the relationship between this class of objective metrics and
the user subjective feedback (e.g., via explicit ratings summarized with Mean
Opinion Score (MOS)) remains to be elucidated. Indeed, while models mapping
PLT to an estimated MOS do exist [17, 14] (see Section 2.2), to the best of our
knowledge, extensions of these models to leverage these new metrics are still
lacking. Recently, Gao et al. [15] evaluated machine learning models that use
these new metrics as features to forecast A/B test results, where users are asked
to compare two Webpages loading side-by-side and identify which one loads
faster. Although Gao et al.’s work [15] represents an important step in the right
direction, A/B tests are a special case: i.e., we still miss an answer to the more
general question of how to estimate QoE of a single page a given user visits.

In this paper, we thoroughly investigate a mapping f(·) between user QoE,
expressed in terms of subjective MOS, and some QoS factor x that represents
objective measured properties of the browsing activity. In particular, we are
interested in cases where x can be any combination of the above objective metrics
and where the mapping f(·) is either defined by a domain expert (e.g., according
to popular models like ITU-T [17] or IQX [14]) or data-driven models learned
using classic machine learning algorithms (e.g., SVR regression, CART trees).

The other main contribution of this paper (presented in Section 4) is to per-
form a thorough assessment of expert models (ITU-T [17], IQX [14],
etc.) and contrast them to models learned from the data using dif-
ferent machine learning algorithms – which our investigation finds to have
surprisingly comparable accuracy performance. Our analysis relies on a dataset
with 3,400 Web browsing sessions where users explicitly rated the quality of the
session. This dataset extends our previous effort [9] and we make available to
the community at [28]. We conclude that expert models for Web QoE can easily
accommodate new time-related metrics beyond PLT, and that their accuracy is
comparable to that of data-driven models. Still, we gather that there is room for
improvement, as a single expert model is hardly accurate for the wide variety
of Web pages. At the same time, while we find that per-page models have supe-
rior forecast performance, the approach is clearly not scalable, which opens new



P
ro
g
re
ss

1

TTFB t

X x(t)
PLT

DOM ATF PLTTTFP

P
ro
g
re
ss

1

TTFB t

X
x(t)ATF

DOM ATF PLTTTFP

Fig. 1: Illustration of time-instant (x-axis labels) and time-integral metrics
(shaded surface). The time horizon of the time-integral metrics can be limited
to, e.g., (a) PLT or (b) Above-the-Fold time instants.

interesting research questions for the community to address, which we discuss
in Section 4.4. We conclude in Section 5.

2 Background and related work

This section first discusses the existing metrics that aim at capturing Web QoS,
which we build on to define a practical method to infer the ATF time in Section 3.
Then, it presents the existing models to estimate Web QoE from these QoS
metrics, which we evaluate in Section 4.

2.1 Web QoS metrics

The Web browsing process is complex with the request, download, and rendering
of all objects making up a Webpage. Hence, measuring when the page has finished
loading from the user’s perspective is challenging. The literature introduces two
classes of objective QoS metrics, which we exemplify with the help of Fig. 1.

Time instants. The time to load a Web page has a number of components, such
as the time at which the first byte is received (TTFB), the time at which the first
object is painted (TTFP) by the browser, the parsing of the Document Object
Model (DOM), to the complete download (PLT, that we measure using the on-
Load browser event) or the rendering of the full page (VisualComplete). We no-
tice that whereas network-related time-instant metrics (e.g. TTFB, DOM, PLT)
are easy to measure, rendering-related metrics (e.g. TTFP, VisualComplete) are
harder to define across browsers [20]. An interesting metric proposed by Google
in this class is represented by the ATF time [10], defined as the time at which the
content shown in the visible part of the Webpage is completely rendered. Albeit
interesting, the ATF metric is neither available in Webpagetest4 nor defined in
W3C’s navigation timing specifications.5 This omission is possibly due to the
fact that the ATF time is significantly more complex to measure, as it requires
to take screenshots during the rendering process and a post-processing stage of
the captured frames. One of our contributions is to propose a practical way to
approximate the ATF time, as well as provide an open source implementation.

4 https://www.webpagetest.org/
5 https://www.w3.org/TR/navigation-timing/



Time integrals. Another class of metrics recognizes that a single time instant
hardly captures all the complexity of interactions between the user and the
rendering process of the page. Instead, this class integrates the loading time over
all events of a given type throughout the evolution of a page progress. Following
Google’s original SpeedIndex (SI) [3] definition, a number of generalizations have
been proposed in the literature [8, 15]. All the metrics in this class fit the general
form:

Xend =

∫ tend

0

(1− x(t))dt (1)

where Xend is the value of the metric, tend indicates an event considered as
time horizon and x(t) ∈ [0, 1] is the completion rate at time t. In particular,
SpeedIndex (SI) [3] measures x(t) as the visual progress using mean pixel his-
togram difference computed until the VisualComplete time. ObjectIndex (OI)
and ByteIndex (BI) [8] use the percentage of objects (and bytes) downloaded
until the PLT. Finally, PerceptualSpeedIndex (PSI) [15] uses Structural Simi-
larity to measure the visual progress x(t) and cut the time horizon at either the
PLT, or at an arbitrary time earlier than PLT.

One interesting question is how to select tend. A previous A/B study [15]
showed two pages rendering processes side by side, and asked users to click on the
page that completed faster, as soon as they felt a difference. The best predictor
uses this Time to Click as tend, which considerably improves PSI accuracy in
estimating user QoE [15]. Generalizing this observation, there is an incentive
into setting tend with the ATF time, and our method to compute the ATF time
enables measuring it during normal user browsing (i.e., without requiring user
intervention).

2.2 Web QoE models

The metrics introduced in the previous section are measurable automatically
from the browser (even though those involving rendering are fairly complex to
compute). These metrics, however, may not directly capture the user experience
(or QoE), which is often measured explicitly by an opinion score and summarized
with the MOS. There are two main approaches for mapping of QoS metrics into
MOS: expert models, where domain experts specify a closed form function and
use MOS data to fit model parameters, or machine learning models, where MOS
data is used to train the model.

Expert models. Two well established [22], models of Web QoE are the ITU-
T recommendation model [17] and the IQX [14] hypothesis. The ITU-T model
follows the Weber-Fechner Law and assumes that the user QoE has a logarithmic
relationship with the underlying QoS metric. The model is in the form:

QoE(x) = α log(x) + γ (2)

where x is the QoS metric (typically, PLT) and with α, γ parameters. The ITU-T
models are derived for three different contexts (fast, medium, and slow networks)



with a different minimum and maximum session time for the different contexts
so that QoE ∈ [1, 5].

Alternatively, the model based on the IQX hypothesis [14] postulates an
exponential interdependency between QoE and QoS metrics. The idea of the
model is that if the QoE is high, a small variation in the underlying QoS metric
will strongly affect the QoE. Instead, a degradation in QoS metric will not lower
QoE as much if the overall QoE was already bad. As such, for a given change in
QoS metric the change of QoE depends on the current level of QoE. The IQX
QoE model has the form:

QoE(x) = αe−βx + γ (3)

where x is a QoS metric and with α, β, γ parameters. We evaluate both loga-
rithmic and exponential models in Section 4.

Machine learning. While machine learning algorithms have been used to model
QoE for VoIP [12], video streaming [6] or Skype [23], its application to Web
browsing is still lacking. One marked exception is the work by Gao et al. [15],
where authors formulate a ternary classification task (i.e., A is faster, B is faster,
none is faster) and employ Random Forest and Gradient Boosting ML techniques
with QoS metrics such as those described in Section 2.1 as input features. In this
paper, we focus on a more difficult task, formulated as a regression problem in
the support MOS ∈ [1, 5] ⊂ R, and additionally contrast ML results to those
achievable by state of the art expert models.

3 Approximating the ATF time

One way to calculate the ATF time is to monitor the page rendering process
and identify when the pixels on the visible part of the page, also known as the
above-the-fold part, stop changing. This can be done, for example, by monitoring
the individually rendered pixels (or histograms of the rendering) and detecting
when they stabilize. This approach, however, is processing intensive and difficult
to implement in the wild, as the overhead may impair user experience. Webpages
may also contain visual jitter due to, for example, layout instabilities or carousel
elements [15], making it harder to detect the ATF time using pixel comparison
methods.

Methodology. We propose a method to approximate the ATF time from the
browser itself without requiring image processing. We leverage the browser’s
ability to determine the position of objects inside a fully rendered page and the
recorded loading times of HTTP requests. Our method works as follows. First,
we detect all the elements of the Webpage and the browser window size. Then,
we trace loading time and resource type for all HTTP requests, and determine
which objects are rendered above-the-fold. To do so, we use simple heuristics to
classify resource types between images, JavaScripts (JS), CSS, HTML, etc. For
objects that are directly rendered (e.g., of the image class), the coordinates make



Fig. 2: ATF example: Time-instant metrics show that whereas DOM loads at
2.62s, all objects above the fold are rendered on or before ATF=5.37s and then
the page finishes loading at PLT=16.11sec. By definition, Time-integral metrics
are even shorter BIATF<BIPLT<ATF, hinting that PLT may be significantly
off with respect to timescales relevant to the user perception.

it obvious whether they are, at least partly, above-the-fold. For objects for which
we have no direct indication whether they are used for rendering (e.g., styles that
are defined through CSS; visual changes generated by JS), it is of course more
difficult to assert with certainty whether they happened above-the-fold, and as
such we prefer to conservatively assume they are. More formally, denoting with
To the loading time of object o, and letting I be the set of all images, IATF be
the subset of images whose coordinates are at least partially above-the-fold, J
the set of all JavaScript HTTP requests and C be the set of all CSS requests, we
calculate the ATF time as:

ATF = max
o
{To|o ∈ J ∪ C ∪ IATF } (4)

Implementation. We implemented the method to compute the ATF time as
an open-source Chrome plugin [5]. The script executes after the onLoad event
triggers. We use jQuery to detect visible DOM objects. For each object, we
detect its position and dimensions on the page. We use this information along-
side the dimension of the browser window, which we obtain using JavaScript,
to determine which DOM objects are visible and above-the-fold. We use the
Window.performance API to obtain the name, type, and timing information
about the resources loaded in the page. We compare the src field of DOM ob-
ject to the url of HTTP request to match HTML objects to its corresponding
timing information. Finally, we calculate the ATF time using (4). Fig 2 shows and
comments an example of the results from the extension applied when browsing
the Amazon Webpage. It can be seen that only 8 of the 154 images are located
above-the-fold (circled in blue in Fig 2), with a significant difference between
PLT, ATF and derived metrics.



Approximations and limitations. As in any real-world deployment, we find a
number of technicalities which complicates the process of detecting the resources
located above the fold. For instance, some Webpages contain sliding images which
keep rotating in the above-the-fold area. Additionally, there are cases where
images happen to be above-the-fold but also overlap, so that some of them are
not actually visible. For the sake of simplicity, we assume that all the images are
visible and consider all in the ATF time calculation, which makes a conservative
approximation. Also, in our current implementation, we consider images but do
not take into account other multimedia object types (e.g., Flash), that may be
relevant and that we leave for future work.

In some cases, we find image HTTP requests that do not match to any known
HTML object. This issue happens, for example, when the background image of
buttons are put into a certain position of the Webpage using CSS (circled in red
in Fig 2). Although we can not reliably detect if these “unmatched” images are
above or below the fold, we can still calculate the ATF time either considering
that those images are always “above” (i.e., which upper bounds the ATF time) or
“below” the fold (i.e., a lower bound). Our investigation reveals that whereas the
PLT vs, ATF difference is significant, these low-level details have no noticeable
impact on the ATF time computation – which we avoid reporting here for lack
of space.

4 Modeling WebQoE

In this section we thoroughly explore how Web QoS metrics relate to user QoE.
We detail the dataset used in this analysis, explore how well expert models
can predict QoE, and to what extent machine learning approaches present an
advantage in comparison to expert models.

4.1 Dataset

To assess the impact of application QoS on QoE, we extend our previous ex-
periment on measuring Web user experience [9]. We gather 8,689 Web browsing
sessions, that we make available at [28], where 241 volunteers rate their browsing
experience with the Chrome browser using the Absolute Category Rating (ACR),
where 5-Excellent, 4-Good, 3-Fair, 2-Poor, and 1-Bad. For lack of space, readers
are referred to our previous work [9] for a detailed presentation of our experi-
mental setup.

In this work, we focus on 12 non-landing Webpages from the Alexa top 100
popular ones in France, with diverse page size (0.43–2.88 MB), number of objects
(24–212) and loading times varying by over one order of magnitude. Since we rely
on volunteers to obtain user opinion scores, we employ basic dataset sanitization
techniques. First, we remove from the dataset all samples where users did not
rate or where the page failed to load completely. Then, we removed users which
failed to complete at least 10 reviews. We remained with 224 out of the original
241 users, and with 8,568 out of 8,689 reviews. Finally, we restricted our analysis



Fig. 3: Expert models: Impact of (a) explanatory QoS metric x for the f(·) =IQX
hypothesis and (b) combined impact of metric x and mapping function f(·)

on only 12 out of the 25 original Webpages comprising a significant number of
reviews and experimental conditions, which amounts to 3,400 user ratings.

We obtain MOS values by averaging the opinion score of a Webpage for
specific user groups. These groups are defined based on the distributional char-
acteristics of the input QoS metric x, whose impact on MOS we are interested to
assess. We grouped the user ratings of each page in 6 bins, specifically at every
20th percentile of metric x until the 80th percentile, and further break the tail
in two bins each representing 10% of the population.

4.2 Expert models

Application metrics. To assess how well a function f(·) applied to a QoS met-
ric x correlates with MOS, we consider the following time-instants: (i) the time
to load the DOM, (ii) the time to load the last visible image or other multimedia
object (ATF) and (iii) the time to trigger the onLoad event (PLT). We addition-
ally include time-integral metrics with either an ATF time or PLT time-horizon:
specifically, we consider (iv) two ByteIndex BIATF<BIPLT metrics, where x(t)
express the percentage of bytes downloaded at time t, and (v) two ObjectIndex
OIATF<BIPLT metrics, where x(t) counts the percentage of objects downloaded
at time t. Finally, we define (vi) two ImageIndex IIATF<IIPLT metrics, where
x(t) only considers the size of objects of the image class: these last metrics
purposely exacerbate the prominent role of images in the visual rendering of a
page.

Figure 3-(a) assesses the impact of the nine selected QoS metrics on QoE,
using the exponential model. We observe that, apart from DOM, all metrics show
a strong (> 0.8) Pearson correlation with MOS. Specifically, we see that counting
bytes (BI) and especially image bytes (II) is more valuable than counting objects
(OI). Additionally, results confirm the importance of evaluating time-integrals by
narrowing their time-horizon before the PLT (as suggested by Gao et al. [15]),
confirming the importance of estimating the ATF time (as proposed in this
paper). Overall, the metric with best correlation to MOS is IIATF (0.85), with
PLT ranking seventh (0.81). These results alredy confirm the soundness of using
the ATF time as proxy of user-perceived page loading time [24], and additionally
validate our approximated ATF time computation.



Mapping functions. We use three functions to map QoS metrics to user QoE:
specifically, a linear 1(·) function, a logarithm function on the form of Equa-
tion 2, and an exponential function on the form of Equation 3. While the ra-
tionale behind Equations 2 and 3 come from the Weber-Fetchner law and the
IQX hypothesis, we stress that many works still directly compares PLT statis-
tics, which is analogous to a simplistic linear mapping. We carefully calibrate
the model parameters using the non-linear least squares Marquardt-Levenberg
algorithm. In Figure 3-(b) we contrast how these different mappings correlate
to QoE for a relevant subset of the QoS metrics: specifically, we select the most
widely used metric (PLT) as well as those metrics exhibiting the worst (DOM)
and the best (IIATF ) correlation with user QoE. We also compare results with
the reference obtained by default ITU-T models for slow/medium/fast network
conditions using the PLT metric.

Among the default ITU-T models, the model for medium networking condi-
tions shows the stronger correlation to QoE in our dataset. This can be explained
by users’ expectation of network performance, since the experimental network
conditions mirror that of Internet Web access, and not of Intranet Web access. It
is worth noting that the uncalibrated ITU-T medium model is still better than
a linear mapping of PLT to QoE. We observe across all metrics in our dataset
that the exponential mapping is superior to logarithmic, which is in turn supe-
rior to simply using a linear mapping to estimate QoE. It is easy to observe that
our proposed metrics based on the ATF time (particularly, IIATF in the picture)
consistently yields the strongest correlation with MOS, across all functions.

4.3 Machine Learning

We evaluate different machine learning techniques to learn regression models that
predict user QoE. Note that the learned function f(·) maps a vector x to MOS,
compared to the expert models where x is a scalar metric. We evaluate the per-
formance of three state-of-the-art machine learning algorithms: Support Vector
Regression (SVR), Classification And Regression Tree (CART), and AdaBoost
with CART (BOOST) implemented using the sci-kit learn Python module.

Parameter tuning. We tune the hyper-parameters of the ML algorithms using
grid optimization. Namely, we select the best combination of parameters ε ∈
[10−2, 1], γ ∈ [10−3, 10] and C ∈ [1, 104] for SVR, minimum number of samples
per leaf ∈ [1, 10] and tree depth ∈ [1, 10] for CART and BOOST, and number
of boosted trees ∈ [10, 103] for BOOST. Grid optimization outputs ε = 0.3,
γ = 10−3, and C = 104 for SVR, and suggests 4 samples per leaf and tree depth
of 2 for both CART and BOOST, and 102 trees for BOOST.

Feature selection. We employ three strategies for building predictors using
different sets of features from our dataset. The first baseline strategy considers
as features the 9 raw metrics defined in Section 4.2. The second strategy feeds
the ML model with the output of the 3 expert models computed on the 9 raw



Fig. 4: Comparison of ML algorithm using different feature sets against reference
expert models, for correlation and RMSE metrics

(a) Black: one model for all pages, Gray:
one model per page

(b) Lines: one model for all pages, Bars:
one model per page

Fig. 5: Discussion: one model for all pages vs. one model per page

metrics, for an extended set of 27 features (notice that since one mapping func-
tion is linear, there are 18 additional features beyond the raw ones). Finally,
as performance upper bound, we perform an exhaustive search of feature sub-
sets from the extended set, to select the combination that minimizes the Root
Mean Squared Error (RMSE) of the predictor. The selected combinations in-
clude few features (3–5 out of 9) that vary across ML algorithms, although the
sets consistently include IIPLT (all algorithms) ATF and IIATF (all but one).

Results. We evaluate ML predictors using leave-one-out cross-validation. Fig-
ure 4 shows the (a) correlation and (b) RMSE between MOS and the ML model,
for the full set of algorithms and feature selection strategies. We also report, as a
reference, the performance of the best expert model (exponential, IIATF ), a tra-
ditional model (logarithmic, PLT ), and the worst expert model (linear, DOM).
Similar considerations hold for both correlation (the higher the better) or RMSE
(the lower the better): BOOST presents a small advantage over CART trees, al-
though SVR outperforms them both. Yet, the picture clearly shows that SVR
results are on par with the best expert model, with a small advantage arising in
the optimistic case of an exhaustive search for feature selection.

4.4 Discussion

We believe that there is further room for improvement. Notably, we argue that,
due to the variety of Webpages, the attempt to build a one-size-fit-all model is



doomed to fail. To testify this, we report in Figure 5 an extreme example where
(a) we build a model per Webpage and (b) contrast the RMSE results in the
per-page vs. all-pages model cases: it is immediate to see that RMSE drastically
decreases under fine grained models – the gap is comparably larger than what
could be reasonably achieved by further refining the metrics definition, or by the
use of more complex expert (or learned) models. Clearly, given the sheer amount
of Webpages, it would be highly unrealistic to attempt to systematically build
such fine-grained models. At the same time, we believe that due to the high skew
of Web content, it would be scalable to (i) build per-page models for only very
popular pages (e.g. the top-1000 Alexa) and (ii) build per-class models for the
rest of pages, by clustering together pages with similar characteristics. Whereas
our dataset currently includes few pages to perform a full-blown study, we believe
that crowdsourcing efforts such as Gao et al. [15] and systematic share of dataset
can collectively assist the community to achieve this goal.

5 Conclusions

This paper narrows the gap between QoS and QoE for Web applications. Our
contributions are, first, to motivate, define and implement a simple yet effec-
tive method to compute the approximated ATF time [5], which is also useful
to narrow the time-horizon of time-integral metrics [15]. Second, we carry on
a large campaign to collect a dataset of nearly 9,000 user subjective feedback,
which we use for our analysis and make available to the community [28]. Finally,
we systematically compare expert vs. data-driven models based on a set of QoS
metrics, which include the ATF time and variants. In a nutshell, our results
suggest that whereas considering PLT metric with linear mapping should be
considered a discouraged practice. Using (i) an exponential IQX mapping, (ii)
over time-integral metrics considering ByteIndex progress of image-content only,
and (iii) narrowing the time-horizon to the ATF time, provides a sizeable im-
provement of Web QoE estimation. Finally, we found that (iv) calibrated expert
models can provide estimations on par with state-of-the-art ML algorithms.

Acknowledgments

We are grateful to our shepherd Mike Wittie and to the anonymous review-
ers, whose useful comments helped us improving our work. This work has been
carried out at LINCS (http://www.lincs.fr) and benefited from support of
NewNet@Paris, Ciscos Chair “Networks for the Future” at Telecom Paris-
Tech (http://newnet.telecom-paristech.fr) and the EU Marie curie ITN
program METRICS (grant no. 607728).

References

1. https://googlewebmastercentral.blogspot.fr/2010/04/

using-site-speed-in-web-search-ranking.html.
2. http://googleresearch.blogspot.fr/2009/06/speed-matters.html.



3. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/

metrics/speed-index.
4. Alexa Internet Inc. http://www.alexa.com.
5. ATF chrome plugin. https://github.com/TeamRossi/ATF.
6. C. G. Bampis and A. C. Bovik. Learning to predict streaming video qoe: Distor-

tions, rebuffering and memory. CoRR, abs/1703.00633, 2017.
7. M. Belshe, R. Peon, et al. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC

7540, 2015.
8. E. Bocchi, L. De Cicco, et al. Measuring the quality of experience of web users.

ACM SIGCOMM CCR, 2016.
9. E. Bocchi, L. De Cicco, et al. The web, the users, and the mos: Influence of http/2

on user experience. In Passive and Active Measurements. 2017.
10. J. Brutlag, Z. Abrams, et al. Above the fold time: Measuring web

page performance visually. http://conferences.oreilly.com/velocity/

velocity-mar2011/public/schedule/detail/18692.
11. M. Butkiewicz, H. V. Madhyastha, et al. Characterizing web page complexity and

its impact. IEEE/ACM Trans. Networking, 22(3):943, 2014.
12. P. Charonyktakis, M. Plakia, et al. On user-centric modular qoe prediction for

voip based on machine-learning algorithms. IEEE Trans. Mob. Comput., 2016.
13. J. Erman, V. Gopalakrishnan, et al. Towards a spdy’ier mobile web? In ACM

CoNEXT, pages 303–314. 2013.
14. M. Fiedler, T. Hoßfeld, et al. A generic quantitative relationship between quality

of experience and quality of service. IEEE Network, 24(2):36, 2010.
15. Q. Gao, P. Dey, et al. Perceived performance of top retail webpages in the wild:

Insights from large-scale crowdsourcing of above-the-fold qoe. In Proc. ACM
Internet-QoE workshop. 2017.

16. Google. Spdy, an experimental protocol for a faster web. https://www.chromium.
org/spdy/spdy-whitepaper.

17. ITU-T. Estimating end-to-end performance in ip networks for data application.,
2014.

18. C. Kelton, J. Ryoo, et al. Improving user perceived page load time using gaze. In
Proc. USENIX NSDI. 2017.

19. A. Langley, A. Riddoch, et al. The QUIC Transport Protocol: Design and Internet-
Scale Deployment. In Proc. ACM SIGCOMM. 2017.

20. Minutes of TPAC Web Performance WG meeting. https://www.w3.org/2016/09/
23-webperf-minutes.html.

21. F. Qian, V. Gopalakrishnan, et al. Tm3: Flexible transport-layer multi-pipe mul-
tiplexing middlebox without head-of-line blocking. In ACM CoNEXT. 2015.

22. R. Schatz, T. Hoßfeld, et al. From packets to people: Quality of experience as a new
measurement challenge. In Data traffic monitoring and analysis, pages 219–263.
Springer, 2013.

23. T. Spetebroot, S. Afra, et al. From network-level measurements to expected quality
of experience: the skype use case. In M & N workshop. 2015.

24. M. Varvello, J. Blackburn, et al. Eyeorg: A platform for crowdsourcing web quality
of experience measurements. In Proc. ACM CoNEXT. 2016.

25. M. Varvello, K. Schomp, et al. Is The Web HTTP/2 Yet? In Proc. PAM. 2016.
26. X. S. Wang, A. Balasubramanian, et al. How speedy is spdy? In USENIX NSDI,

pages 387–399. USENIX Association, Seattle, WA, 2014.
27. X. S. Wang, A. Krishnamurthy, et al. Speeding up web page loads with shandian.

In USENIX NSDI. 2016.
28. Web QoE dataset. https://newnet.telecom-paristech.fr/index.php/webqoe/.



c©This is the author’s version of the work. This work has been submitted to
The Passive and Active Measurement (PAM) conference 2018 for publication.


