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On the convergence of message passing
computation of harmonic influence in social

networks
Wilbert Samuel Rossi and Paolo Frasca, Member, IEEE

Abstract—The harmonic influence is a measure of node influence in social networks that quantifies the ability of a leader node to alter
the average opinion of the network, acting against an adversary field node. The definition of harmonic influence assumes linear
interactions between the nodes described by an undirected weighted graph; its computation is equivalent to solve a discrete Dirichlet
problem associated to a grounded Laplacian for every node. This measure has been recently studied, under slightly more restrictive
assumptions, by Vassio et al., IEEE Trans. Control Netw. Syst., 2014, who proposed a distributed message passing algorithm that
concurrently computes the harmonic influence of all nodes. In this paper, we provide a convergence analysis for this algorithm, which
largely extends upon previous results: we prove that the algorithm converges asymptotically, under the only assumption of the
interaction Laplacian being symmetric. However, the convergence value does not in general coincide with the harmonic influence: by
simulations, we show that when the network has a larger number of cycles, the algorithm becomes slower and less accurate, but
nevertheless provides a useful approximation. Simulations also indicate that the symmetry condition is not necessary for convergence
and that performance scales very well in the number of nodes of the graph.

Index Terms—Distributed algorithm, message passing, opinion dynamics, social networks.
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1 INTRODUCTION

IN the study of networks and dynamical processes therein,
one important issue is the identification of the most

influential nodes, i.e. those with the higher ability to drive
the others towards a desired state. The issue depends on the
process and the control objective: consequently, it has been
addressed in several contexts, from the seminal paper [1]
on maximizing the spreading of influence, to several leader
selection problems recently considered, such as [2], [3], [4],
[5], [6], [7], [8].

In this work, we formulate this problem in the context of
social influence networks. Following a consolidated research
line [9], [10], [11], we postulate that the opinions of the nodes
follow a linear dynamics with fixed confidence weights. We
assume that a leader node has to compete against a given
adversary field node in order to win the opinions of the
other nodes. Under these assumptions, the fixed point of
the opinion dynamics is the solution of a Dirichlet problem
for the Laplacian of the graph, where the leader and the field
fix the boundary constraints.

Assuming without loss of generality that the leader has
opinion one and the external field has opinion zero, we
define the harmonic influence of the leader as the sum of
the asymptotic opinions reached by the agents in the social
network. The influence of a node is the influence obtained
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if that node was the leader. This quantity was implicitly
defined in [5] and named Harmonic Influence Centrality in [6].

By its definition, the harmonic influence of each node can
be computed exactly by solving an array of n linear systems
defined by the Laplacian of the graph, “grounded” in each
of the n nodes and the field node [12]. This straightforward
approach, used in [5], has some drawbacks. Firstly, global
knowledge of the graph and update matrix is required
by most solution methods, with the exception of some
distributed (i.e. non-global) methods like [13] and [14].
Secondly, solving n systems is computationally expensive,
even if one can resort to state-of-the-art algorithms that are
tailored to Laplacian systems: these methods can solve each
system in a time proportional to the number of edges but
are not distributed [15]. Moreover, since the n systems are
obtained by grounding the same original Laplacian, solving
them separately is wastefully redundant. Alternatively, the
harmonic influence can be computed iteratively by simply
running the linear opinion dynamics n times, one for each
possible leader node. Despite being distributed, this method
remains not scalable.

In order to overcome this scalability issue, paper [6]
proposed a Message Passing Algorithm (MPA) able to con-
currently compute the influence of all nodes. This algorithm
is distributed, that is, does not require any global knowledge
of the graph or of the parameters of the opinion dynamics:
moreover, it computes the harmonic influence of all nodes
at the same time. The algorithm is based on the crucial
assumption that the graph is undirected, that is, interactions
are reciprocal. If the graph is an effective tree (that is, if
it is connected and removing the field node makes it a
forest), then the algorithm computes the nodes’ influence
in a number of steps equal to the diameter of the graph. The
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algorithm thus scales very nicely in the size of the graph. If
the graph is connected and the Laplacian matrix is sym-
metric, then the algorithm converges asymptotically. Our
main contribution is indeed the proof of this convergence
result, which subsumes all previously available results for
unweighted regular graphs [6] and for unicyclic graphs [16].
It must be stressed that in general the algorithm, even
though it converges, does not converge to the exact values of
the influence: exactness is only guaranteed on effective trees.
We complement our mathematical analysis with extended
simulations on synthetic random graphs, from which we
draw three relevant observations: (1) When the number
of cycles increases, the algorithm becomes slower and less
accurate, but nevertheless provides a useful approximation
of the harmonic influence; (2) When the number of nodes in-
creases, the performance of the algorithm is only marginally
affected: thus the algorithm scales very well to large graphs;
(3) For the algorithm to converge, the symmetry of the
Laplacian is unnecessary.

Further relations with the literature

Our paper contributes to the literature on message passing
algorithms, by providing an interesting example of algo-
rithm that converges on any graph. On the contrary, proofs
of convergence of message passing algorithms are often
limited to tree graphs or to locally-tree-like graphs [17].

In this field, a closely related paper is [13], which refor-
mulates the problem of solving a linear systems Ax = b,
where the matrix A is full rank and symmetric, into a
probabilistic inference problem. Then, it develops a Gaus-
sian belief propagation method that involves two kinds of
messages. The authors prove that under suitable conditions
the algorithm converges to the exact solution. On trees, the
algorithm coincides with the direct Gaussian elimination
method.

Our work also shares some ideas with [18], which pro-
poses a consensus propagation protocol based on two kinds
of messages to solve the consensus problem: one contains a
partial estimate of the consensus value and the other con-
tains the number of nodes involved in such partial estimate.
A suitable attenuation parameter makes the protocol [18]
convergent on general graphs.

Furthermore, if we interpret the harmonic influence as
a kind of centrality measure, then we should mention that
some literature has looked at distributed algorithms to com-
pute other centrality measures, such as closeness [19], be-
tweenness [20], and eigenvector centrality or PageRank [21],
[22].

Paper Structure

Section 2 defines the harmonic influence and Section 3
describes our Message Passing Algorithm for its concurrent
and distributed computation, whereas the technical proofs
of convergence are given in Section 4. Simulations are pre-
sented in Section 5 and Section 6 concludes the paper.

Notation

The set of real and non-negative real numbers are denoted
by R and R+, respectively. Vectors are denoted with bold-
face letters and matrices with capital letters. The vectors 0

and 1 denote respectively the all-zero and all-one vectors of
appropriate dimension. The symbol I denotes any identity
matrix with appropriate dimension. The symbol 4 denotes
entry-wise  for vectors and matrices. The symbol � is used
if the entry-wise inequality is strict for at least one entry.
Given a matrix Q, Q> denotes its transpose, Q�1 its inverse
and ⇢(Q) its spectral radius, i.e. the maximum absolute
value of the eigenvalues of Q. If ⇢(Q) < 1, Q is termed
“Schur stable”. Given a vector v, Diag(v) is the square
diagonal matrix with the entries of v on the main diagonal.
The cardinality of the set S is denoted by |S|. The symbol
⇢ is used for strict subsets; ✓ for generic subsets. Given
the matrix Q 2 RS⇥S and two subsets T, T 0 ✓ S, Q

T,T

0

is the sub-matrix of Q containing the rows and columns
corresponding to T and T 0, respectively. A non-negative
matrix Q 2 RS⇥S

+ is said to be stochastic, sub-stochastic
and strictly sub-stochastic if Q1 = 1, Q1 4 1 and Q1 � 1,
respectively.

Let G = (V,E) be a graph where V is the set of
vertices and E is the set of edges, which are unordered
pairs of vertices. We will use the terms node, vertex and
agent interchangably. The set N

v

= {w 2 V : {v, w} 2 E}
contains the neighbors of v in G; the degree of v is d

v

= |N
v

|.
A leaf is a node of degree one. The graph G0

= (V 0, E0
) is

a subgraph of G = (V,E) if V 0 ⇢ V and E0 ⇢ E. If G0

contains all edges of G that join two vertices in V 0, then G0

is said to be the subgraph induced by V 0 and is denoted by
G[V 0

]. A path is a graph P = (VP , EP) of the form:

VP = {u0, u1, . . . , u`

} ,
EP = {{u0, u1}, {u1, u2}, . . . , {u`�1, u`

}} .

The vertices u0 and u
`

are the endvertices of P and ` is the
length of P [23]. Given a path of length ` � 2, we term
cycle the graph (VP , EP [ {{u0, u`

}}). A graph G = (V,E)

is connected if for any pair of nodes v, w 2 V it admits a path
with endvertices v, w as a subgraph. If G is connected, the
distance between v and w is the minimal length of the path
subgraphs with endvertices v, w while the diameter of G is
the maximum distance between pairs of nodes.

2 THE HARMONIC INFLUENCE

Consider a simple weighted graph G = (I, E,C) with node
set I = {f, 1, 2, . . . , n} of cardinality n+1 where f is a special
node called field. The edge set E contains unordered pairs of
nodes and the non-negative weight matrix C 2 RI⇥I

+ is such
that C

ij

and C
ji

are both non-zero if and only if {i, j} 2 E.
Note that C needs not to be symmetric, but its zeros are
symmetric and its main diagonal is null. We also introduce
the diagonal matrix D = Diag(C1) and the Laplacian matrix
L = D � C .

We define the harmonic influence of the nodes in I \ {f}
as follows. Given a node ` 6= f where ` stands for leader, we
denote the set of remaining nodes by R`

:= I \ {f, `} and
consider the Laplacian system with boundary conditions
(Dirichlet problem):

8
<

:

(Lx)

R

` = 0

x
`

= 1

xf = 0 .
(1)
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The harmonic influence of ` is the sum of entries of the vector
x solution of (1), that is,

H(`) := 1

>
x . (2)

The following result guarantees that harmonic influence is
well defined for connected graphs.

Lemma 1. Assume the graph G = (I, E,C) to be connected.
Then, for any ` 2 I \ {f}, the Laplacian system (1) admits a
unique solution and H(`) can be computed as:

H(`) = 1 + 1

>
(L

R

`
,R

`)
�1 C

R

`
,{`} .

Moreover, H(`) 2 [1, n].

Proof. We rewrite (Lx)

R

` = 0 as:

L
R

`
,R

`x
R

` + L
R

`
,{`}x`

+ L
R

`
,{f}xf = 0 ,

and obtain:
L
R

`
,R

`x
R

` = C
R

`
,{`} ,

using L
R

`
,{`} = �C

R

`
,{`} and the boundary conditions. To

prove that L
R

`
,R

` is invertible we can equivalently work
with D�1

R

`
,R

`L
R

`
,R

` , because the graph G is connected and
the matrix D as well as any of its principal sub-matrices are
invertible. We have:

D�1
R

`
,R

`L
R

`
,R

` = I�D�1
R

`
,R

`C
R

`
,R

` = I� (D�1C)

R

`
,R

` ,

thanks to the fact that D is diagonal. The matrix D�1C is
stochastic and the graph G is connected, thus the principal
sub-matrix (D�1C)

R

`
,R

` is strictly sub-stochastic and Schur
stable [24, Lemma 5]. Therefore the matrix I� (D�1C)

R

`
,R

`

is invertible.
Finally, note that x

i

2 [0, 1] for every i 2 R` because they
solve a linear Laplacian system with boundary conditions in
[0, 1], so H(`) 2 [1, n].

Before describing our approach to compute H , in the
rest of this section we offer an interpretation of the harmonic
influence based on a linear opinion dynamic model in an
undirected connected network with two stubborn leaders.

2.1 Opinion dynamics interpretation
Assume that the weighted graph G = (I, E,C) is connected
and represents a social network where agents are endowed
with a scalar opinion x

i

(t) updated at discrete time steps
t 2 N. The node f is a stubborn leader with null opinion, i.e.
xf(t) = 0 for every t � 0. Also the agent ` 6= f is a stubborn
leader, with conflicting opinion x

`

(t) = 1 for every t � 0.
The remaining regular agents in R`

= I \ {f, `} have initial
opinion x

i

(0) 2 R. At each step, they update their opinion
to a convex combination of the opinion of their neighbors:

x
i

(t+ 1) =

P
j2I

Q
ij

x
j

(t) 8t � 0 , (3)

where Q
ij

is an element of the stochastic matrix Q = D�1C
and represents how much agent i trusts agent j. The vector
x(t) 2 RI that stacks the agents’ opinion converges to the
solution of the Laplacian system.

Lemma 2. Assume the graph G = (I, E,C) is connected with
n � 1. The vector x(t) converges to the solution of (1).

Proof. The statement is trivial for the agents f and `. The
update rule of the regular agent, in compact form, is:

x

R

`(t+ 1) = Q
R

`
,R

`x
R

`(t) +Q
R

`
,{`} ,

which implies:

x

R

`(t) = (Q
R

`
,R

`)
t

x

R

`(0) +

P
t�1
i=0(QR

`
,R

`)
i Q

R

`
,{`} .

As we argued in the proof of Lemma 1, the matrix Q
R

`
,R

` =

(D�1C)

R

`
,R

` is Schur stable. Hence:

lim

t!1
x

R

`(t) =
P1

i=0(QR

`
,R

`)
i Q

R

`
,{`}

= (I�Q
R

`
,R

`)
�1 Q

R

`
,{`} .

If we multiply for D�1
R

`
,R

`D
R

`
,R

` between the two terms, we
finally obtain lim

t!1 x

R

`(t) = (L
R

`
,R

`)
�1 C

R

`
,{`} .

Lemma 2 implies that the harmonic influence of ` 6= f is
the sum of the asymptotic agents’ opinion in the undirected
weighted connected network G = (I, E,C) subject to a
linear opinion dynamic model with two stubborn leaders,
` itself with opinion 1 and f with opinion 0:

H(`) = lim

t!1
1

>
x(t) . (4)

The vector x(t) does not converge to a consensus. Ob-
serve however that if the leader ` was not present and
every agent in {1, . . . , n} still updated his opinion according
to (3), then consensus would be reached with x(t) ! 0 [25,
Thm. 13]. Therefore, we interpret the leader f as the one
originating a null opinion field in the social network. The
harmonic influence H(`) measures how effective ` is in
diffusing a different opinion. Following (4), H can be com-
puted by running n dynamics (3), one for each possible
leader `. This approach being non scalable in n motivates
the scalable distributed method that is studied in the rest of
this paper.

3 DISTRIBUTED COMPUTATION OF THE INFLUENCE

We present a Message Passing Algorithm (MPA) able to
compute concurrently and in a distributed way the harmonic
influence of every non-field node of a connected graph.

Following the definition, the computation of the harmonic
influence of every node ` 6= f requires the solution of n
Laplacian systems like (1). The plain application of Lemma 1
requires global knowledge of the graph and of the Laplacian
matrix L. Moreover, it does not exploit the apparent redun-
dancies between the n systems, as the Laplacian matrix L
does not change while different principal sub-matrices are
used. The paper [6] proposed a different, more scalable,
approach, that uses a MPA: in the following we recall and
extend its definition.

Consider the simple weighted graph G = (I, E,C) and
let t 2 {0, 1, . . .} be an iteration counter. At each step, every
node i sends to its neighbors j two messages:

W i!j

(t) 2 [0, 1] , Hi!j

(t) 2 R+ .

The field node f sends null messages:

W f!j

(t) = 0 , Hf!j

(t) = 0 , 8j 2 Nf , 8t � 0 ,

whereas any other node i 6= f sends the initial messages:

W i!j

(0) = 1 , Hi!j

(0) = 1 , 8j 2 N
i

.
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and then synchronously updates the messages sent to his
neighbor j following the rules:

W i!j

(t+ 1) =

0

B@1 +

X

k2N

j
i

C
ik

C
ij

⇣
1�W k!i

(t)
⌘
1

CA

�1

(5)

Hi!j

(t+ 1) = 1 +

X

k2N

j
i

W k!i

(t)Hk!i

(t) , (6)

where N j

i

:= N
i

\ {j} is the set of neighbors of i except
the one to which the message is sent. At any time, any node
` in I \ {f} can compute an approximation of its harmonic
influence H(`) using the incoming messages:

H`

(t) = 1 +

X

i2N`

W i!`

(t)Hi!`

(t) .

As observed in [6], the MPA converges to H in a finite
time if the graph G is a tree. Actually, this property is valid
for a slightly larger class of graphs defined as follows.

Definition. The graph G = (I, E,C) is an effective tree if it is
connected and the induced subgraph G[I \ {f}] is a forest.

Basically, an effective tree is any connected graph G that
after the removal of the field node f is a forest. The loca-
tion of the field node f allows effectively the same kind of
computation done on tree graphs.

Proposition 3. If the graph G = (I, E,C) is an effective tree
and � is its diameter, then:

H`

(t) = H(`) 8t � � � 1, 8` 2 I \ {f} .

Proposition 3 will be proved in the next section by
showing that messages converge after a finite number of
steps and constructing the solution of the Laplacian system
for given `. In an effective tree the convergence values of
the messages W i!j

(t) and Hi!j

(t) have an exact interpre-
tation. Although the correct interpretation will be evident in
the proof, we anticipate it here (see also Figure 1):
W i!j

(1) is the value x
i

in the Laplacian system (1)
where the leader ` is actually j ;

Hi!j

(1) is the harmonic influence H(i) of the node i
in the graph obtained from G by removing the
edge {i, j} and adding a new edge {i, f} .

Our main result guarantees the asymptotic convergence
of the MPA on connected graphs G = (I, E,C) with sym-
metric weight matrix C .

Theorem 4 (Convergence). The MPA converges on any con-
nected graph G = (I, E,C) with symmetric weight matrix C .

The proof of Theorem 4, which is detailed in the next
section, is based on the following two key ideas:

1) construct a directed graph of relations between mes-
sages (called message digraph and denoted by MG)
and study its connectivity properties, which descend
from those of G ;

2) define a generalisation of the MPA on directed graphs
and prove its convergence.

To complete the proof, these two ideas are combined by
recognising that the MPA algorithm induces an MPA-like
dynamics on its message digraph.

f

j

i x
i

f

i

j

H(i)

Fig. 1. Two graphs with the node f marked by a black square and the
leader ` marked by a black circle: in the left graph the leader is the node
j, in the right one it is the node i. Let the effective tree on the left be G:
the message W i!j

(1) is the value of xi in the Laplacian system (1)
where the leader ` is the node j. The graph on the right is obtained
from G by substituting the edge {i, j} with the edge {i, f} and is also an
effective tree. The message Hi!j

(1) is the harmonic influence H(i)
of i in this modified graph.

In comparison with Proposition 3, Theorem 4 guarantees
that the MPA converges even if the connected graph G is
not an effective tree, provided C is symmetric. However,
convergence is asymptotical (not in finite time) and the
limit values do not in general provide the exact values of
the harmonic influence (that is, H`

(1) 6= H(`)). We shall
explore the issues of convergence time and of asymptotical
error by simulations in Section 5. In the same section we will
conjecture that the MPA also converges for non symmetric
matrices C .

3.1 Relation with the paper [6]
The MPA was originally proposed by [6] to compute the
harmonic influence in graphs G = (I, E,C) with symmetric
matrix C . Those graphs can be interpreted as electrical
networks: each edge {i, j} has conductance C

ij

= C
ji

and
the field node f is a reference with null electrical potential.
The harmonic influence H(`) coincides with the sum of
the nodes’ electrical potential in the network where the
potential of ` is held at one by an external battery. The set
of n � 1 independent node equations obtained using Ohm
law and Kirchhoff’s current law coincide with the Laplacian
system (1). See also [26] about the connection between social
and electrical networks. On (effective) trees, computations
based on the concept of effective resistance are exact and
have a recursive structure, which has inspired the design of
the MPA [6].

Proposition 3 shows that the MPA can be extended to
graphs with non-symmetric matrix C . More precisely, we
just assume that C has null diagonal and symmetric pattern
of zeros. Thus, the proposition distinguishes between C

ij

and C
ji

and guarantees that the update rule (5) is actually
the correct extension of the rule in [6]. Theorem 4 proves
the convergence of the MPA on every weighted connected
graph where C is symmetric and extends the result in [6]
about unweighted connected regular graphs.

4 CONVERGENCE PROOFS

This section is devoted to the proofs of Proposition 3 and
Theorem 4. The proof of Proposition 3, given in Section 4.1,
is direct and based on a triangularization procedure allowed
by the acyclic structure of the system. The rest of the section
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is devoted to the proof of Theorem 4, which proceeds in
three steps that develop the key ideas highlighted above.
In Section 4.2 we define the message digraph MG and
describe its connectivity properties. In Section 4.3 we define
the non-linear dynamics (7)-(8) on directed graphs, which
is a generalization of the MPA algorithm, and we prove
its convergence. This convergence argument proceeds by
distinguishing between graphs with different topologies: we
first study acyclic graphs and strongly connected graphs,
and then combine the results to obtain convergence on gen-
erally connected graphs. Finally, in Section 4.4 we recognise
that the MPA can be mapped into a special case of this dy-
namic and thus prove its convergence. Instrumental to this
identification is the presence in (7)-(8) of time-dependent
terms that allow us to accommodate the messages originat-
ing from the field node f. At the very end of the section, we
shall observe that our proof of convergence of the messages
W i!j

(t) does not need the symmetry of C .

4.1 Convergence on effective trees

Proof of Proposition 3. First we prove that the messages con-
verge in finite time and then we prove that the convergence
values lead to the computation of the exact harmonic influ-
ence. Let the set ~E ✓ I ⇥ I contain all the ordered pairs of
vertices of I that share an edge in G:

~E := {(j, i) : {i, j} 2 E}

We endow each element of ~E with a non-negative “order”
integer o(j,i) whose value is given by the following recursive
construction independent from `:

(
o(j,i) = 0 if i = f or N j

i

= ; ,
o(j,i) = 1 +max

k2N

j
i
o(i,k) otherwise ,

where N j

i

= N
i

\ {j}. Basically these integers are assigned
starting from the leaves of G and the node f and proceding
sequentially. There exists a unique and unambiguous way
to assign these integers because G is an effective tree: any
cycles in G contains the node f. It is easy to see that
max(j,i)2~

E

o(j,i) = � � 1 , where � is the diameter of G, and
by induction that:

W i!j

(t) = W i!j

(o(j,i)) , Hi!j

(t) = Hi!j

(o(j,i)) ,

for every t � o(j,i) so the messages converge in finite time.
Now, fix the node ` and let x be the solution of (1). We

introduce a second iterative construction that proceeds from
the leaves and field node towards the node ` and whose
actual goal is to produce a triangularization of the Laplacian
matrix and thus compute x and the sum of x.

For its initial step we consider the field node f and
the leaves separately. First, consider the former and all its
neighbors in Nf and notice that:

xf = 0 = W f!j

(o(j,f))xj

,

where j 2 Nf because W f!j

(o(j,f)) = W i!j

(0) = 0. The
contribution of f to the harmonic influence of ` is null
and we rewrite it as Hf!j

(o(j,f))xf with Hf!j

(o(j,f)) = 0.
Second, consider any leaf node i /2 {`, f} and let j be its

unique neighbor, i.e. N
i

= {j}. The equation (Lx){i} = 0 is
C

ij

(x
i

� x
j

) = 0 and we rewrite it as:

x
i

= x
j

= W i!j

(o(j,i))xj

,

because W i!j

(o(j,i)) = 1. The contribution of x
i

to the
harmonic influence of ` can be expressed as Hi!j

(o(j,i))xi

with coefficient Hi!j

(o(j,i)) = 1.
To describe the iterative step, consider a node i 6= ` such

that the equation of all but a neighbor j have been already
rewritten as x

k

= W k!i

(o(i,k))xi

. Assume the number
Hk!i

(o(i,k))xk

is the contribution to the harmonic influence
of ` coming from node k and those nodes connected to k
for which the equations have been already rewritten. We
rewrite the equation (Lx){i} = 0 as follows:

X

k2Ni

C
ik

(x
i

� x
k

) = 0

X

k2N

j
i

C
ik

�
1�W k!i

(o(i,k))
�
x
i

+ C
ij

x
i

= C
ij

x
j

x
i

=

C
ij

C
ij

+

P
k2N

j
i
C

ik

�
1�W k!i

(o(i,k))
�x

j

and then recognize that x
i

= W i!j

(o(j,i))xj

. We stress that
this rewritings are unambiguous because G is an effective
tree. The contribution to the harmonic influence of ` by node
i and those nodes connected to i for which the correspond-
ing equations have been already rewritten is Hi!j

(o(j,i))xi

where the coefficient satisfies:

Hi!j

(o(j,i)) = 1 +

X

k2N

j
i

W k!i

(o(i,k))H
k!i

(o(i,k)) .

The iterative procedure repeats until all the equations
have been rewritten, except that corresponding to node `
for which x

`

= 1. The harmonic influence of ` can be
finally computed summing the contribution coming from
all branches of the graph stemming from `:

H`

(max

i2N`

o(`,i)) = 1 +

X

i2N`

W i!`

(o(`,i))H
i!`

(o(`,i)).

Making explicit all the intermediate relations:

H`

(max

i2N`

o(`,i)) =
X

i2I

x
i

= H(`) .

The thesis follows because ` is arbitrary.

4.2 The message digraph MG and its topology
First, we introduce directed graphs and the related notation.
Then, we define the message digraph MG associated to the
graph G = (I, E,C) and prove a topological property valid
if G is connected.

A directed graph or digraph is a pair D = (V,�) where
V is the set of vertices and � ✓ V ⇥ V is the set of arcs,
that are ordered pairs of vertices. The sub-digraph induced
by U ✓ V is D[U ] = (U,� \ U ⇥ U). A node v is a sink
if (v, w) /2 � for any w 2 V . An arc of the form (v, v) is a
self-loop. A walk from v to w on the digraph D, of length l, is
an ordered list of nodes (u0, ui

, . . . , u
l

) such that:
(i) u0 = v and u

l

= w;
(ii) (u

i�1, ui

) 2 � for every i 2 {1, . . . , l}.
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A trail is a walk with no repeated arcs. A node w is reachable
from v if there exists a trail from v to w of length l � 0.

A digraph D = (V,�) is termed strongly connected if for
every pair of nodes v, w 2 V , w is reachable from v and
v is reachable from w. If D is not strongly connected, let
U ⇢ V : the induced sub-digraph D[U ] is a strongly connected
component of D if D[U ] is strongly connected but D[U [ {v}]
is not, for any v 2 V \ U . A strongly connected component
D[U ] is trivial if it contains a single node without a self-loop,
i.e. D[U ] = ({u}, ;). Otherwise it is non-trivial. The digraph
D is acyclic if all its strongly connected component are trivial.
We term acyclic ordering a relabeling x1, x2, . . . , x|V | of the
vertices of D such that for every arc (x

i

, x
j

) 2 � it holds
j < i. Any acyclic digraph admits an acyclic ordering [27,
Prop 2.1.3].

Given the digraph D = (V,�) consider all its strongly
connected components D

k

= (V
k

,�
k

), k 2 {1, . . . , s}. The
condensation digraph CD of D is the digraph with vertex set
{1, . . . , s} where there is an arc from h to k if and only if
there is an arc in D from a node in V

h

to a node in V
k

and
k 6= h. It is easy to check that CD is acyclic.

We are ready to define the message digraph MG = (V,�)
associated to the graph G = (I, E,C). The node set of MG
is V ✓ (I \ {f})⇥ (I \ {f}) and contains the ordered pairs of
vertices of I \ {f} that share an edge in G:

V := {ji : {i, j} 2 E, i 6= f, j 6= f} ,

where ji := (j, i) is a shorthand notation we reserve for the
elements of V . The arc set of MG is defined by:

� := {(ji, hk) : ji and hk 2 V, i = h, j 6= k} ,

and is inspired by the MPA update rules (5)-(6). Figure 2
illustrates the message digraph MP associated to a path
P of four nodes. More in general, the figure shows how a
pair of consecutive edges of G that do not involve the field
node f map into two arcs of MG . Note that nodes like ii,
self-loops (ji, ji) and arcs like (ji, ij) are never present in
the message digraph. We observe without proof that if G is
connected then MG enjoys the following properties:

• if G is an effective tree then MG is acyclic;
• if G contains exactly one cycle that does not include the

field node f then MG contains exactly two non-trivial
strongly connected components;

• if G contains at least two cycles that do not include the
field node f then MG contains exactly one non-trivial
strongly connected components.

A complete analysis of the topological properties of MG
is outside the scope of this paper. We are however interested
in the following finer connectivity property, which will be
crucial in our argument and which we verify in details.

Lemma 5. Consider a connected graph G = (I, E,C), the
corresponding massage digraph MG = (V,�) and the vector
↵ 2 RV

+ such that ↵
hk

= C
kf/Ckh

for every hk 2 V . For every
ji in a non-trivial strongly connected component of MG there
exists hk reachable from ji such that ↵

hk

> 0.

Proof. If the node i 2 I is a neighbor of f in the graph G,
the claim is trivially true. In fact, i 2 Nf implies C

if > 0

while ji in V implies {i, j} 2 E and C
ij

> 0. Therefore
↵
ji

= C
if/Cij

> 0.

G f k i j
{i, j}{i, k}{k, f}

MG

ji

ij

ik

ki

(ji, ik)

(ki, ij)

Fig. 2. The path P = ({f, k, i, j}, {{f, k}, {k, i}, {i, j}}) (above) and the
message digraph MP = ({ik, ki, ji, ij}, {(ji, ik), (ki, ij)}) (below).
For more general graphs G, to each pair of consecutive edge that do
not contain the field node f there correspond two arcs in MG .

If i is not a neighbor of f in G, i.e. i /2 Nf, assume that in
MG the node ji 2 V belongs to a non-trivial strongly con-
nected component. The assumption means that there exists
in MG a trail from ji to itself of length at least 3, because arcs
like (ji, ji) and (ji, ij) do not belong to �. Correspondingly,
G contains a cycle that includes the edge {i, j} and the graph
G � {i, j} (i.e. the graph obtained removing the edge {i, j}
from G) is connected. Hence, G� {i, j} contains a path with
endvertices i and f of length at least 2: {k, f} and {h, k} are
two edges of that path. Such path is also contained in G.
Observe that C

kf > 0 and C
kh

> 0 so ↵
hk

> 0. Therefore,
the message digraph MG contains a trail (ji, . . . , hk) from
ji to hk and the thesis follows.

4.3 Convergence of a MPA-like dynamics on digraphs
We define a generalization of the MPA (5)-(6) on directed
graphs and prove that it converges on any digraph provided
certain conditions are satisfied. The proof is straightforward
for acyclic graphs but more involved for graphs that contain
strongly connected components. We consider the digraph
D = (V,�) and its adjacency matrix M 2 {0, 1}V⇥V , i.e.
the matrix such that M

vw

= 1 if and only if (v, w) 2 �.
We consider two positive vectors r, s 2 (0,+1)

V and the
matrix W 2 [0,+1)

V⇥V defined by:

W = Diag(r)M Diag(s) .

Let the two sequence of non-negative vectors ↵(t), �(t) 2
[0,+1)

V be given. We consider two new vector sequences
!(t) 2 (0, 1]V and ⌘(t) 2 [1,+1)

V of initial value !(0) =

⌘(0) = 1 and subsequent values defined by the recursions:

!
v

(t+ 1) =

1

1 + ↵
v

(t) +
P

w

W
vw

(1� !
w

(t))
, (7)

⌘
v

(t+ 1) = 1 + �
v

(t) +
P

w

M
vw

!
w

(t) ⌘
w

(t) , (8)

for every v 2 V and t � 0. We are interested in the
convergence properties of !(t) and ⌘(t).

We make the following assumption, that holds for the
rest of this subsection.

Assumption 1. The vectorial sequence ↵(t) is non-decreasing
in every component and �(t) is convergent. The vectors r and s

satisfy r
v

= s�1
v

for every v 2 V . •
In any acyclic digraph !(t) and ⌘(t) converge since the

interdependencies among the components follow an acyclic
order and every preceding component converge.
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Lemma 6 (Convergence–Acyclic digraphs). If the digraph
D = (V,�) is acyclic, then the sequence ⌘(t) is convergent
and the sequence !(t) is non-increasing in every component and
convergent. Moreover, lim

t!+1 !
v

(t) < 1 if and only if there
exists w reachable from v such that ↵

w

(t) is non identically zero.

Proof. Let the subset S ✓ V contain the sink nodes of the
digraph D. Since D is acyclic S is non-empty [27, Prop 2.1.1].
For v 2 S we have M

vw

= W
vw

= 0 irrespective of w and
the update rules (7) and (8) simplify to !

v

(t+ 1) =

1
1+↵v(t)

and ⌘
v

(t+ 1) = 1+ �
v

(t) respectively. Using Assumption 1
the sequence w

v

(t) is non-increasing while ⌘
v

(t) converges.
Moreover, lim!

w

(t) < 1 if and only if ↵
v

(t) is non identi-
cally zero.

If there are non-sink nodes, i.e. V \ S is non-empty, we
introduce an acyclic ordering x1, x2, . . . , x|V | on V such that
{x1, . . . , x|S|} ⌘ S and proceed by induction. Let k � 2 and
assume that, for all i < k, !

xi(t) is non-increasing, ⌘
xi(t)

converges and moreover lim!
xi(t) < 1 if and only if there

exists x
j

reachable from x
i

(where j  i) such that ↵
xj (t)

is non identically zero. Since W
xkxi = 0 for any i � k, the

update law (7) of !
xk(t) is equivalent to:

!
xk(t+ 1) =

1

1 + ↵
xk(t) +

P
i<k

W
xkxi (1� !

xi(t))
.

The denominator is the sum of non-decreasing terms so
!
xk(t) is non-increasing, belongs to (0, 1] and converge.

Moreover, lim!
xk(t) < 1 iff either ↵

xk(t) is non identically
zero or there exists W

xkxi > 0 and lim!
xi(t) < 1. Therefore

lim!
xk(t) < 1 iff there exists x

j

reachable from x
k

and
↵
xk(t) is non identically zero. The update law (8) for ⌘

xk(t)
simplifies to:

⌘
xk(t+ 1) = 1 + �

xk(t) +
P

i<k

M
xkxi !xi(t) ⌘xi(t).

The sequence ⌘
xk(t) converges because its terms are conver-

gent sequences. The thesis follows by induction.

The absence of cycles is not necessary but has to be
compensated by nodes w where ↵

w

(t) is not identically
zero. We prove this for strongly connected graphs.

Lemma 7 (Convergence–Strongly connected graphs). If the
digraph D = (V,�) is strongly connected and there exists v
such that ↵

v

(t) is not identically zero the sequences !(t) and
⌘(t) converge. Moreover, for every u 2 V the sequence !

u

(t) is
non-increasing and has limit !

u

(1) < 1.

Proof. We first show that !(t) converges and that every
component of the limit is strictly smaller than 1. Then, by
using the implicit form of the limit, we show that the matrix
M Diag(!(t)) is eventually Shur stable and we conclude
that also ⌘(t) converges.

Assumption 1 implies that !(t + 1) 4 !(t) for every
t � 0. A direct computation gives !(1) 4 !(0) = 1 since
↵(0) < 0. Then, by induction, we let !(t) 4 !(t � 1) and
deduce that for every v 2 V :

!
v

(t+1) =

1

1 + ↵
v

(t) +
P

w

W
vw

(1�!
w

(t))

 1

1 + ↵
v

(t�1) +

P
w

W
vw

(1�!
w

(t�1))

= !
v

(t) ,

because ↵(t) < ↵(t� 1). Consequently, !(t+ 1) 4 !(t) for
every t � 0 and by monotonicity the sequence admits a limit
¯! := lim

t!+1 !(t) that is positive in every component.
In order to show that actually !̄

v

2 (0, 1) for every v, we
observe that, by the additional assumption on ↵(t), there
exist s � 0 and v 2 V such that ↵(t) = 0 for t < s whereas
↵
v

(s) > 0. Hence, !(t) = 1 for t  s whereas !(s+ 1) � 1

since !
v

(s+1) < 1. Let us define the set R
t

:= {v : !
v

(t) <
1} , and observe that R

s+1 6= ; = R
s

. If R
s+1 = V , we have

shown that !̄
v

< 1 for every v. If R
s+1 6= V , for t � s + 1

the set R
t

is a proper superset of R
t�1 unless R

t�1 ⌘ V .
The strong connectivity allows for a pair of nodes v, w such
that v /2 R

t�1, w 2 R
t�1 and (v, w) 2 �, thus !

v

(t) < 1

and v 2 R
t

. Hence R
t

= V eventually.
Next, we prove that W Diag(

¯!) is Schur stable. By
hypothesis, the sequence ↵(t) admits a limit ¯↵ � 0. The
limit ¯! of the recursion (7) solves, within (0, 1)V , the non-
linear system:

!̄
v

=

1

1 + ↵̄
v

+

P
w

W
vw

(1� !̄
w

)

8v 2 V . (9)

Since the denominators are positive, we rewrite (9) as:

!̄
v

(1 + ↵̄
v

+

P
w

W
vw

(1� !̄
w

)) = 1 8v 2 V ,

or equivalently:
P

w

!̄
v

W
vw

(1� !̄
w

) = 1� !̄
v

� ↵̄
v

!̄
v

8v 2 V .

By the change of variables x
v

:= 1 � !̄
v

, c
v

:= ↵̄
v

!̄
v

and
B

vw

:= !̄
v

W
vw

we obtain:
P

w

B
vw

x
w

= x
v

� c
v

8v 2 V ,

that in vectorial form reads:

Bx = x� c . (10)

In the “eigenvalue-like” expression (10), the matrix B =

Diag(

¯!)W is non-negative and irreducible: every compo-
nent of ¯! is positive and W is non negative with the
positive entries arranged as the adjacency matrix a strongly
connected graph, so it is irreducible. Every component of x
is positive and c � 0 because every component of ¯! belongs
to (0, 1) and ↵̄ � 0. If we multiply (10) on the left by B|V |�1

and iteratively reuse (10), we obtain:

B|V |
x = x�

P|V |�1
i=0 Bi

c .

Every element of the matrix
P|V |�1

i=0 Bi is positive, because
B is non-negative and irreducible [28, Corollary on p. 52].
Therefore, every component of

P|V |�1
i=0 Bi

c is positive and:

(B|V |
x)

v

< x
v

8v 2 V ,

which implies that the spectral radius of B|V | is strictly
smaller than one [29, Lemma 34.7], i.e. ⇢(B|V |

) < 1. Thus,
⇢(B) < 1 and since B = Diag(

¯!)W and W Diag(

¯!) have
the same eigenvalues:

⇢ (W Diag(

¯!)) < 1 . (11)

We finally show that ⌘(t) converges. Assumption 1 (i.e.
Diag(r) = Diag(s)

�1) implies that the matrix W Diag(

¯!)

and M Diag(

¯!) are similar:

W Diag(

¯!) = Diag(r)M Diag(s)Diag(

¯!)

= Diag(s)

�1M Diag(

¯!)Diag(s)
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1 2

3

4

5

6 7

Fig. 3. A digraph D = (V,�) and its condensation digraph CD . The
digraph D has black round nodes and thin arcs. The condensation
digraph CD has box nodes and dashed edges. The numbers in the
nodes of CD form an acyclic order.

and thus:
⇢ (M Diag(

¯!)) < 1 .

The matrix M Diag(!(t)) converges to M Diag(

¯!) hence
it is eventually Schur stable. In vectorial form, the update
law (8) reads:

⌘(t+ 1) = 1+ �(t) +M Diag(!(t))⌘(t) ,

where the sequence �(t) converges and so does ⌘(t) .

For strongly connected digraphs the presence of at least
one node v with ↵

v

(t) non identically zero is necessary to
make the sequence ⌘(t) converge. If such a node is not
present, then !(t) = 1 for every t � 0 and since M is
irreducible ⇢(M Diag(!(t))) = ⇢(M) � 1 so ⌘(t) grows
unbounded.

More in general, the vector sequences !(t) and ⌘(t)
converge on any digraph D provided that for any node
in a strongly connected component there exists a reach-
able node w such that ↵

w

(t) is non identically zero. To
prove the statement we consider the condensation graph
CD of the digraph D and fix an acyclic order on it, see
Figure 3. Within any strongly connected component (trivial
or not) the dynamic converges following the acyclic order;
the convergence of the remaining components follows. The
sequences ↵(t) and �(t) introduced before the definition of
the recursive laws (7) and (8) are used here to “connect” the
different components of the digraph.

Proposition 8 (Convergence–General graphs). Consider any
digraph D = (V,�) and the vector sequences !(t) and ⌘(t)
defined with the recursive laws (7)-(8). Assume that, for every
node v that belongs to a non-trivial strongly connected component
of D, there exists a node w reachable from v such that the sequence
↵
w

(t) is non identically zero. Then, the sequence ⌘(t) converges
and the sequence !(t) converges and is non-increasing in every
component. Moreover lim

t!+1 !
v

(t) < 1 for every node v such
that there exists w reachable from v and ↵

w

(t) is not identically
zero.

Proof. Consider the condensation graph CD of D. Let
{1, 2 . . . , s} be the vertex set of CD and assign the nodes’
label to form an acyclic order on CD where the smallest

number are reserved to sink nodes, c.f. Figure 3. Assume
k is the node of CD that represents the strongly connected
component D

k

= (V
k

,�
k

). For every v 2 V
k

and t � 0, we
rewrite the recursive laws (7)-(8) as:

!
v

(t+ 1) =

1

1 + ↵0
v

(t) +
P

w2Vk
W

vw

(1� !
w

(t))
, (12)

⌘
v

(t+ 1) = 1 + �0
v

(t) +
P

w2Vk
M

vw

!
w

(t) ⌘
w

(t) , (13)

where:

↵0
v

(t) := ↵
v

(t) +
P

w/2Vk
W

vw

(1� !
w

(t)) , (14)

�0
v

(t) := �
v

(t) +
P

w/2Vk
M

vw

!
w

(t) ⌘
w

(t) . (15)

Let k be a sink node of CD (there must be at least one)
and observe that M

v,w

= W
v,w

= 0 for any v 2 V
k

and
w /2 V

k

. Hence ↵0
v

(t) = ↵
v

(t) and ⌘0
v

(t) = ⌘
v

(t) for any
v 2 V

k

and t � 0 so the dynamics within the component
D

k

is independent of any other component. Therefore the
sequences !

v

(t) and ⌘
v

(t) converge for any v 2 V
k

: if
D

k

is a non-trivial strongly connected component, invoke
Lemma 7; else D

k

= ({v}, ;) and it is sufficient to observe
the expressions, similar to those in the proof of Lemma 6.
Moreover, !

v

(t) is non-increasing and lim!
v

(t) < 1 if there
is w 2 V

k

such that ↵
w

(t) is non identically zero.
Consider now any non-sink node k > 1 of CD and

assume that the sequences !
u

(t) and ⌘
u

(t) converge for any
node u 2 V

h

in any component D
h

where h < k. Assume
moreover that lim!

u

(t) < 1 if there exists w reachable from
u such that ↵

w

(t) is non identically zero. Let v 2 V
k

and
observe that the sequence ↵0

v

(t) and ⌘0
v

(t) defined in (14)-
(15) only contain terms !

u

(t) and ⌘
u

(t) where u 2 V
h

for some h < k. Given these assumptions ↵0
v

(t) is non-
decreasing and, if there exists in D a node w reachable from
v such that ↵

w

(t) is non identically zero, non identically
zero. Moreover, �0

v

(t) converges.
Therefore, by inspection if D

k

is trivial or using Lemma 7
if D

k

is non-trivial, the sequences !
v

(t) and ⌘
v

(t) converge
for any v 2 V

k

, !
v

(t) is non-increasing and, if there exists in
D a node w reachable from v such that ↵

w

(t) is non iden-
tically zero, lim!

v

(t) < 1. An induction on the remaining
components of CD proves the claim.

4.4 Convergence of the MPA on G

We are now ready to prove Theorem 4 by applying Proposi-
tion 8: this requires to verify that Assumption 1 is satisfied.
The argument below hinges on the connectivity properties
of MG established in Lemma 5.

Proof of Theorem 4. We simplify the recursive laws (5)-(6) of
the MPA on G = (I, E,C) by excluding the messages sent
or received by the field node f. In fact, the messages sent by
the field node f are zero constants:

W f!j

(t) = Hf!j

(t) = 0 , 8j 2 Nf, 8t � 0 ,
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and substituting them in the recursive laws we obtain:

W i!j

(t+1) =

0

@
1+

C
if

C
ij

+

X

k2Ni\{j,f}

C
ik

C
ij

⇣
1�W k!i

(t)
⌘
1

A
�1

(16)

Hi!j

(t+1) = 1 +

X

k2Ni\{j,f}
W k!i

(t)Hk!i

(t) . (17)

The messages sent to the field node f play no role because
no message depends on W i!f

(t) and Hi!f
(t). Hence the

messages W i!j

(t) and Hi!j

(t) with i, j 6= f form an
autonomous system.

Consider now the message digraph MG = (V,�) asso-
ciated to the graph G = (I, E,C) and on it the dynamics
of the vector sequences !(t) and ⌘(t) described at the
beginning of Section 4.3. Let M be the adjacency matrix of
MG and the vectors r and s be such that:

r
ji

= (C
ij

)

�1 , s
ji

= C
ji

, 8ji 2 V .

The vector sequences !(t) and ⌘(t) have initial value
!(0) = ⌘(0) = 1 and subsequent values given by the
following recursive laws, valid for every ji 2 V and t � 0:

!
ji

(t+ 1) =

1

1 + ↵
ji

(t) +
P

hk2V

W
ji,hk

(1� !
hk

(t))
,

(18)

⌘
ji

(t+ 1) = 1 + �
ji

(t) +
P

hk2V

M
ji,hk

!
hk

(t) ⌘
hk

(t) ,
(19)

where W
ji,hk

= r
ji

M
ji,hk

s
hk

and for every t � 0 the vector
sequence �(t) = 0 while ↵(t) satisfies:

↵
ji

(t) = C
if/Cij

, 8ji 2 V .

Comparing !
ji

(t) and ⌘
ji

(t) and their laws (18)-(19) with
W i!j

(t) and Hi!j

(t) and their laws (16)-(17) we recognize
that:

W i!j

(t) ⌘ !
ji

(t) Hi!j

(t) ⌘ ⌘
ji

(t) ,

for every ji 2 V and t � 0. In other words, the message
W i!j

(t) that i sends to j (with i, j 6= f) corresponds to the
sequence !

ji

(t) and similarly Hi!j

(t) corresponds to ⌘
ji

(t),
see the example in Figure 4. According to the MPA’s update
rules (18)-(19) they depend on the messages W k!i

(t) and
Hk!i

(t) where k 2 N
i

\{j, f}: the arc (ji, ik) 2 � represents
such dependence relation.

The vectorial sequences ↵(t),�(t) and the vectors r, s
satisfy Assumption 1 because ↵(t),�(t) are constant while:

r
ji

= (C
ij

)

�1
= (C

ji

)

�1
= s�1

ji

for every ji 2 V ,

since the matrix C is symmetric. Using Lemma 5 the con-
nectivity of G implies that the hypothesis of Proposition 8
are satisfied and the dynamic on MG converge. Then, every
message of the MPA on G converge (also the messages
received by f) and we conclude that the sequence H`

(t)
converges for every node ` 2 I \ {f}.

Finally we observe that the symmetry of the matrix C
is not necessary to prove the convergence of the messages
W i!j

(t) on connected graphs G = (I, E,C). We will
discuss the convergence of the corresponding messages
Hi!j

(t) in the next section using numerical simulations.

G f k i j
W i!j

(t)W k!i

(t)
W f!k

(t)=0

MG jiik

!
ji

(t)!
ik

(t)

↵
ik

(t)>0

Fig. 4. The messages Wk!i
(t) and W i!j

(t) drawn in red in the
path P (above) have as corresponding counterparts in MP (below)
the black nodes ik and ji and the red sequences !ik(t) and !ji(t).
Not represented, also the the messages W i!k

(t) and W j!i
(t) have

corresponding counterparts in MP . The counterpart of the message
W f!k

(t) = 0 drawn in blue is the blue (constant) sequence ↵ik(t) > 0.
The message Wk!f

(t) has no counterpart and is not drawn. The
picture is similar for the messages Hi!j

(t).

100 101 102 103 104

time t

10-15

10-10

10-5

100

105

h(t)
w(t)

Fig. 5. The MPA convergence on graph G1. The solid black line is h(t),
the 1-norm distance between the estimates of the harmonic influence
H`

(t) at time t and their corresponding limits H`
(1). The dashed

magenta line is w(t), i.e. the 1-norm distance between W i!j
(t) with

i, j 6= f and their corresponding limits W i!j
(1).

Proposition 9 (Convergence without symmetry). Consider
the connected graph G = (I, E,C) and let MG = (V,�) be
the corresponding message digraph. Then, the messages W i!j

(t)
converge and, moreover,

⇢
�
Diag(r)M Diag(

¯!)Diag(s)

�
< 1 ,

where M is the adjacency matrix of MG and the components of
vectors r, s, ¯! are

r
ji

= (C
ij

)

�1 , s
ji

= C
ji

, !̄
ji

= W i!j

(1) .

Proof. The proof follows the same line of the proof of The-
orem 4. In general the matrix C is not symmetric and the
vectors r and s do not satisfy r

v

= s�1
v

for every v 2 V
so the second part of Assumption 1 is not verified and
Proposition 8 cannot be used as is. However note that the
convergence of the vector sequence !(t) on the message
digraph does not depend on that part of the Assumption
and so the convergence of the messages W i!j

(t).
To prove the second part of the claim consider the con-

densation graph CMG of the message digraph MG , group
and reorder the rows and column of M according to the par-
tial order that CMG implies between the strongly connected
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components V
k

of MG . Similarly do for the vectors r, s and
¯!. The matrix W Diag(

¯!), where W = Diag(r)M Diag(s),
is a block lower triangular matrix. Trivial strongly connected
components contain a single node and the corresponding
block is simply 0. For non trivial strongly connected compo-
nents V

k

the equation (11) in the proof of Lemma 7 holds,
giving

⇢
�
(W Diag(

¯!))

Vk,Vk

�
< 1 ,

because it does not require the second part of Assumption 1.
The claim follows from the block lower triangular matrix
structure.

The argument in this proof fails to guarantee conver-
gence of Hi!j because without the second part of Assump-
tion 1 matrices M Diag

¯! and W Diag

¯! are not similar.
However, numerical experiments (presented in the next
section) suggest that, irrespective of the symmetry of C ,
⇢
�
M Diag(

¯!)

�
= ⇢

�
W Diag(

¯!)

�
and the MPA converges.

5 SIMULATIONS ON RANDOM GRAPHS

In this paper we consider simple weighted graphs G =

(I, E,C) with node set I = {f, 1, 2, . . . , n} of cardinality
n+1. The non-negative weight matrix C is such that C

ij

= 0

if and only if {i, j} /2 E, thus the main diagonal is null
and the zeros are symmetrically located. We know from
Proposition 3 that the MPA converges in a finite time to
the exact harmonic influence values if G is an effective
tree, and from Theorem 4 that the MPA converges if G is
connected and C symmetric. In this section we first present
some numerical simulations which suggest that the sym-
metricity of the matrix C is not necessary for convergence,
see Section 5.1. Then we investigate how convergence time
and approximation error depend on the amount of cycles
present in the graph, focusing on graphs G where C is
symmetric and the f node is connected to every other node,
see Section 5.2.

We start by introducing some useful notation. Pro-
vided we approximate the asymptotic values H`

(1) and
W i!j

(1) by the values of H`

(t) and W i!j

(t) after a
sufficiently large number of iterations, we can introduce 1-
norm distances to the asymptotic values that we will use to
check the speed of convergence of the MPA:

h(t) =
nX

`=1

���H`

(t)�H`

(1)

��� , (20)

w(t) =
X

i 6=f

X

j 6=f
{i,j}2E

��W i!j

(t)�W i!j

(1)

�� . (21)

In order to assess the approximation of the harmonic influ-
ence achieved by the MPA, we plot H`

(1) against their cor-
responding exact values H(`) computed using definition (2)
and a standard solver. Spearman’s rank-order correlation
coefficient [30] between the two variables is used to give
a quantitative evaluation of how much the rankings are
preserved. Similarly, we plot W i!j

(1) against the value of
x
i

in the solution of the Laplacian system 1 where j = `,
denoted by x

i

|
j=`

. Indeed, recall that on effective trees
W i!j

(1) = x
i

|
j=`

.

5.1 Convergence for non-symmetric matrices C

We present a group of simulations to show that the MPA
converges on general connected graphs G = (I, E,C). The
node set is I = {f, 1, 2, . . . , n} with n = 50. The edge set is
generated randomly: each edge {i, j} is present with proba-
bility p = 0.100 and disconnected graphs are discarded. The
entries of the matrix C are chosen as:

⇢
C

ij

= U[2,8] if {i, j} 2 E
C

ij

= 0 if {i, j} /2 E

where U[2,8] is a uniform random variable with support
[2, 8]. We have observed that all these simulations converge.

We then describe one of these simulation. The generated
graph G1 has 117 edges, making the average degree be 4.6
while the diameter is 5. The degree of the field node is 5

and coincides with the expected degree pn. The non-zero
values of C belong to [2.030, 9.983]. Figure 5 shows the
convergence of the MPA. The distance w(t) between the
W i!j

(t) messages and their final values becomes negligible
after 30 iterations. The distance h(t) between H`

(t) and
the final approximation of the harmonic influence requires
about 1000 iterations to become negligible. If we rewrite the
MPA using the corresponding message digraph we observe
that the spectral radius of the matrices M Diag(!(1))

coincides with that of W Diag(!(1)) and is strictly smaller
than one:

⇢
�
M Diag(!(1)

�
= ⇢

�
W Diag(!(1)

�
= 0.964 .

In order to assess the approximation of the harmonic
influence achieved by the MPA, in Figure 6 we plot H`

(1)

against their corresponding exact values H(`). If the MPA
algorithm would be exact, the two vectors would coincide
and the pairs (H(`), H`

(1)) would be plotted on the 45

�

line of the diagram. Due to the presence of cycles, the MPA
is not exact and overestimates the harmonic influence, see
Figure 6 where all crosses are above the 45� line, a behaviour
consistently observed throughout simulations. However, the
points (H(`), H`

(1)) approximately form a monotonically
increasing function, meaning that the nodes’ rankings are
fairly preserved: indeed, the Spearman correlation coeffi-
cient is 0.977. Similarly, the crosses in Figure 7 represent the
values W i!j

(1) plotted against the exact values of their
interpretation x

i

|
j=`

. The points form an elongated cloud
and are below the 45

� line: the limit values W i!j

(1) are
consistently smaller than the corresponding x

i

|
j=`

.
Even though the approximation provided by the algo-

rithm is usually fairly good, there are extreme cases where
either the algorithm fails to provide a good answer or,
on the contrary, is particularly effective. We provide two
corresponding examples next.

If field node f is a leaf of the connected random graph,
i.e. it has a unique neighbor k and Nf = {k}, it is easy to
see from the definition that H(k) = n, the highest possible
value. The corresponding solution of the Laplacian system
(1) where ` = k is in fact the all-one vector except xf = 0,
irrespective of the weights in the matrix C . We then run
our algorithm on one such graph (which we call G2, with
C

kf = 4.291). The convergence of h(t) is very slow and
takes around 10000 steps, because ⇢

�
W Diag(!(1))

�
=

⇢
�
M Diag(!(1)

�
= 0.996. Figure 8 shows the harmonic

influences computed by the MPA against their exact values
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Fig. 6. The asymptotic values H`
(1) of the harmonic influence com-

puted by the MPA against the corresponding exact values H(`) for the
graph G1. All crosses are above the 45

� line.

0 0.2 0.4 0.6 0.8 1
xijj=`

0

0.2

0.4

0.6

0.8

1

W
i!

j
(1

)

!
xijj=`;W

i!j(1)
"

45/ line

Fig. 7. The asymptotic values of the messages W i!j
(1) for i, j 6=

f against the values xi|j=`, i.e. the values of the ith element of the
solution of the Laplacian system (1) where ` ⌘ j, for the graph G1. All
magenta crosses are below or on the 45

� line.

from the definition. The cross (H(k), Hk

(1)) = (50, 479)
stands out of the cloud while all the other crosses are fairly
monotonically aligned: the Spearman correlation is 0.972.
The MPA misses the fact that the node k has, for topological
reasons, the highest harmonic influence.

In the second special case the field node is connected
to every other node so |Nf| = n (we call G3 the graph
of this simulation). In this case, the convergence is much
faster and the approximation is very good. The distance
h(t) takes 150 steps to converge while w(t) takes 20 and
⇢
�
M Diag(!(1)

�
= ⇢

�
W Diag(!(1))

�
= 0.760. The

crosses (H(`), Hk

(`)) in Figure 9 are above but very close
to the 45

� line meaning that the harmonic influences com-
puted by the MPA is close to the exact values and almost
monotonically aligned: the Spearman correlation is 0.998.

5.2 Cycles in G and performance of the MPA
In this section, we investigate the effect of the number
of cycles on the convergence time and error of the MPA.
Since Proposition 3 guarantees finite-time convergence and
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H
` (

1
)

!
H(`); H`(1)

"

45/ line

Fig. 8. The asymptotic values H`
(1) of the harmonic influence com-

puted by the MPA against the corresponding exact values H(`) com-
puted by the definition, for the graph G2. All crosses are above the 45

�

line; the cross in (50, 479) stands out of the cloud.
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H(`)
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` (

1
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H(`); H`(1)

"
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Fig. 9. The asymptotic values H`
(1) of the harmonic influence com-

puted by the MPA against the corresponding exact values H(`) com-
puted by the definition, for the graph G3. All crosses are close to (but
above of) the 45

� line.

correctness of the algorithm, we expect that more cycles
should result in worse algorithm performance, meaning
both slower convergence and larger error. This intuition is
confirmed by the following simulations, which are obtained
on connected graphs G = (I, E,C) where the field node is
connected to all other nodes, i.e. {i, f} 2 E for every i, and
matrix C is symmetric, so that convergence is guaranteed
by Theorem 4.

We extract at random the graph G4 as follows. The node
set is I = {f, 1, 2, . . . , n} with n = 50; the edges {i, j} with
i, j 6= f have a probability p = 0.100 of being present and
we make sure G4[{1, . . . , n}] is connected. The entries of C
are:

8
<

:

C
if = Cfi = 0.040 for every i 2 {1, . . . , n}

C
ij

= 1 if i, j 6= f and {i, j} 2 E
C

ij

= 0 if {i, j} /2 E
(22)

The graph G4 that we select for the simulation contains 173
edges and has diameter 2. The subgraph G4[{1, . . . , n}] is
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Fig. 10. The MPA convergence on graph G4. The solid black line is
h(t), i.e. the distance to convergence of the estimates of the harmonic
influence obtained by the MPA. The dashed magenta line is w(t), i.e.
the distance to convergence of the messages W i!j

(t).
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Fig. 11. The asymptotic values H`
(1) of the harmonic influence com-

puted by the MPA against the corresponding exact values H(`) com-
puted by the definition, for the graph G4. All crosses are above the 45

�

line.

actually a connected realization of a Erdős-Rényi random
graph with diameter 5 and 123 edges, forming many cycles.

Figure 10 shows the convergence time of the MPA: the
distance w(t) becomes negligible after 30 iterations while
the distance h(t) requires about 2500 iterations to become
negligible. The MPA is not exact: Figure 11 represents
H`

(1) against the corresponding H(`), showing that the
largest value of H`

(1) is about 5 times bigger than the
corresponding H(`). All crosses are nearly aligned above
the 45

� line and Spearman’s coefficient is 0.9939: we can say
that the nodes’ rankings are nearly preserved. The crosses in
Figure 12 represent W i!j

(1) against the values of x
i

|
j=`

:
all of them are below the 45

� line.
We repeat the simulations on graph G5 obtained from

G4 by removing some edge {i, j} where i, j 6= f so that
the subgraph G5[{1, . . . , n}] is still connected but has fewer
cycles than the subgraph G4[{1, . . . , n}] Matrix C of G5 is
adapted accordingly. The subgraph G5[{1, . . . , n}] of the
simulation has 59 edges for 50 nodes so it contains 10 edges
more than a tree which form a few cycles, and has diameter
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xijj=`;W

i!j(1)
"

45/ line

Fig. 12. The asymptotic values of the messages W i!j
(1) for i, j 6= f

against the values xi|j=`, for the graph G4. All magenta crosses are
below or on the 45

� line.
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Fig. 13. The MPA convergence on graph G5. The solid black line is h(t);
the dashed magenta line is w(t).

9. Figure 13 shows the convergence time of the MPA. The
distance w(t) becomes negligible after 60 iterations, whereas
h(t) after about 400 iterations, much less than the previous
simulation. Also on this graph the MPA is not exact but
the nodes’ rankings implied by the harmonic influence are
nearly preserved. Figure 14 represents H`

(1) against the
corresponding exact values H(`). All crosses are above the
45

� line and the Spearman’s coefficient is 0.9940. The crosses
in Figure 15 compare W i!j

(1) against the corresponding
values x

i

|
j=`

: all points are just below or on the 45

� line.

5.3 Size of G and performance of the MPA

An important motivation behind the development of the
MPA is scalability. In this section we define the convergence
time of the MPA and simulate it on two families of graphs
that generalize those used in Section 5.2 to different sizes.

We define the convergence time of both the estimates
H`

(t) and the messages W i!j

(t), using the 1-norm dis-
tances h(t) and w(t) introduced in (20)-(21)

t
h,✏

:= inf

⇢
t :

h(t)

n
 ✏

�
, t

w,✏

:= inf

⇢
t :

w(t)

2m
 ✏

�
,
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Fig. 14. The asymptotic values H`
(1) of the harmonic influence com-

puted by the MPA against the corresponding exact values H(`) com-
puted by the definition, for graph G5. All crosses are above the 45

� line.
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Fig. 15. The asymptotic values of the messages W i!j
(1) for i, j 6= f

against the values xi|j=`, for graph G5. All magenta crosses are below
or on the 45

� line.

with m the number of edges in the subgraph G[{1, . . . , n}].
As in Section 5.2, the simulations have been performed

on connected graphs G = (I, E,C) where the field node is
connected to every other node, the matrix C is symmetric
and the convergence is guaranteed by Theorem 4. We denote
with Gn

6 any graph with node set I = {f, 1, 2, . . . , n} and
edge set E such that the subgraph Gn

6 [{1, . . . , n}] is a con-
nected realization of a Erdős-Rényi random graph with edge
probability p(n) = 1.3 log n/n. The entries of C follow from
(22). We denote with Gn,c

7 , for c � 0, any graph obtained
removing edges {i, j} with i, j 6= f from a Gn

6 -kind graph,
so that the subgraph Gn,c

7 [{1, . . . , n}] remains connected and
has n� 1 + cn edges. The matrix C is adapted accordingly.

Figure 16 shows the values of t
h,10�6 and t

w,10�6 for sev-
eral graphs of the family Gn

6 . The values of t
w,10�6 seem to

slowly decrease with n and settle to 10 while those of t
h,10�6

seem to concentrate and follow a trend like 1000 log n.
Figure 17 shows the values of t

h,10�6 and t
w,10�6 for

several graphs of the family Gn,c

7 with c 2 {0.2, 2}. All times
seem to concentrate and converge in n to precise values.
Interestingly, the values of t

h,10�6 for c = 2 are about ten

101 102 103

101

102

103

104

Fig. 16. Simulations of the convergence times th,10�6 (black squares)
and tw,10�6 (magenta crosses) for graphs of the family Gn

6 . There are
5 simulations for every n in {10, 20, 50, 100, 200, 500, 1000, 2000}. The
solid line represents the trend 1000 logn.

101 102 103
101

102

103

Fig. 17. Simulations of the convergence times th,10�6 and tw,10�6 for
graphs of the family Gn,c

7 . There are 5 simulations for each pair of (n, c)
in {10, 20, 50, 100, 200, 500, 1000, 2000} ⇥ {0.2, 2}. Black squares and
magenta crosses are used for th,10�6 and tw,10�6 of Gn,0.2

7 , respec-
tively; black diamonds and magenta x-marks for th,10�6 and tw,10�6 of
Gn,2
7 , respectively.

times larger than those for c = 0.2 on corresponding n.
These simulations show that the convergence time of the

MPA, measured by t
h,10�6 , has a good scaling with respect

to the size n of the graph, with a moderate increase for Erdős-
Rényi topologies, to be related with the abundance of cycles.

6 CONCLUSION: OPEN PROBLEMS

In this paper we studied the harmonic influence of nodes in
a diffusion process on a graph and a message passing algo-
rithm, originally proposed in [6] to compute an approxima-
tion of the harmonic influence. As our main contribution, we
proved the convergence of the algorithm on any undirected
graph, provided the Laplacian of the graph is symmetric.
Simulations suggest that this assumption can be relaxed
to a milder assumption of reciprocity in the interactions
between the nodes: future work could focus on proving such
conjecture. Our analysis is based on the concept of message
digraph, which describes the relations between messages
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and allows us to apply suitable tools from linear algebra:
this approach could be useful to analyze other message
passing algorithms.

Further work could also focus on rigorously evaluating
the error and the convergence time of the algorithm. Our
simulations on random graphs show a very good scalability,
where the convergence time seems not to depend on n but
only on the number of edges m. This dependence is likely
due to the adverse effects of cycles on the performance of
message passing. This promising insight is confirmed by a
mean-field analysis for k-regular graphs, i.e. graphs where
every non-field node has the same degree k, where the
convergence time depends on k only [31]. Based on these
observations, we are lead to conjecture that, at least for a
large class of (random) graphs, the typical convergence time
of the algorithm be O(m/n), where m is the number of
edges.
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