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Abstract In this paper, we investigate the attractive properties of the proximal gradient algorithm with
inertia. Notably, we show that using alternated inertia yields monotonically decreasing functional values,
which contrasts with usual accelerated proximal gradient methods. We also provide convergence rates
for the algorithm with alternated inertia based on local geometric properties of the objective function.
The results are put into perspective by discussions on several extensions and illustrations on common
regularized problems.
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1 Introduction

In this paper, we consider the composite convex optimization problem

min
x∈Rn

F (x) := f(x) + g(x) (1)

where the functions f and g are convex, and f is furthermore smooth. This problem can be solved by
the proximal gradient algorithm, a special case of Forward-Backward splitting, the iterations of which
read

xk+1 = prox
γkg

(xk − γk∇f(xk)) . (2)

Recall that the proximal operator proxh : Rn → R
n of a proper lower semi-continuous convex function

h : Rn → R ∪ {+∞} is defined as

prox
h

(x) := argmin
w∈Rn

(

h(w) +
1

2
‖w − x‖2

)

for all x ∈ R
n.

The computation of this operator is simple (closed-form or equivalent to a smaller problem) for several
interesting functions such as the ℓ1 norm, the group norm ℓ1,2, or the nuclear norm, which are commonly
used as regularizers in machine learning and image processing optimization problems; see, e.g., [1–3].

To improve the convergence of the proximal gradient algorithm, inertial versions have been extremely
popular, both practically and in terms of theoretical rate [4–8]. Adding inertia consists in constructing the
next iterate xk+1 by combining the outputs yk+1 and yk of the last two proximal steps. Specifically, given
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a sequence of real non-negative numbers (αk), an iteration of the inertial proximal gradient algorithm
can be written as

yk+1 = prox
γkg

(xk − γk∇f(xk)) , xk+1 = yk+1 + αk+1(yk+1 − yk). (3)

The design of the inertial sequence (αk) affects greatly the performance of the resulting algorithm, and
different options are investigated in the literature. Popular choices include Nesterov’s optimal sequence
[9,10] which leads to the FISTA algorithm [11] or a variant used for proving the iterates convergence [6,8].
These sequences have the form

αk+1 =
tk − 1

tk+1
with t0 = 0 and

tk+1 =
1 +

√

1 + 4t2k
2

or tk+1 =
k + a

a
with a > 2.

(4)

Both choices lead to increasing sequences going to 1 at rate 1/k and are proven to accelerate the worst-
case convergence rate of the algorithm from O(1/k) to O(1/k2). Another variant with tk+1 = ((k+a)/a)d

where d ∈]0, 1] and a > max{1, (2d)
1
d } was shown to be efficient, when the proximal operator is computed

approximately [7]. Finally, if f is in addition µ-strongly convex, then the optimal linear rate is attained
for fixed α = (1 −

√

µ/L)/(1 +
√

µ/L) [12].

Quest for Monotonicity. An attractive feature of the vanilla proximal gradient algorithm is its mono-
tonicity; more precisely, iterates generated by (2) satisfy both

– monotonicity of the iterates in the sense of Fejér: ‖xk+1 − x‖ ≤ ‖xk − x‖ for any optimal x

– monotonicity of the functional values: F (xk+1) ≤ F (xk).

These properties are well-known and obtained directly from contraction and descent results recalled in
Section 2. On the contrary, acceleration by inertia breaks down monotonicity as the iterates generated
by inertial variants can circle or oscillate around the set of minimizers [5,13,14]. These kinds of behaviors
make accelerated methods sometimes slower than their unaccelerated counterparts (see for instance the
non-negative least squares problem in [15]).

Monotonicity (and in particular functional monotonicity) is a highly desirable feature in optimization,
in both theory and practice; see for instance the quests for descent in [16–18]. For composite optimization,
several algorithms based on descent tests have been proposed to fix the non-monotonicity of accelerated
proximal gradient methods, notably: MTwist [17], MFISTA [14], or Monotonous APG [19]. However, all
these methods rely on additional function evaluations, or even additional computations, compared to the
initial proximal gradient algorithm.

Another strategy is to use inertia every other step of the method: the corresponding algorithm, called
proximal gradient with alternated inertia, can be formulated as (3) with αk = 0 for k even, and αk > 0
for k odd. Alternated inertia was introduced in [20] as a variation of the proximal point algorithm, and
exhibited attractive performances in practice [21]; and it was shown to have potential to achieve good
rates (better than both inertia and over-relaxation in some cases) while recovering iterates monotonicity
for some range of inertial coefficients. Unfortunately, in the case of the proximal gradient, the range
guaranteeing iterates monotonicity is typically [0, 0.5], which prevents from considering usual inertial
sequences. Moreover, functional monotonicity has not been investigated yet.

Contributions and Outline. In this paper, we show that the alternated inertial proximal gradient algo-
rithms enjoys a monotonic functional descent for a range of inertial coefficients encompassing the popular
sequences of the literature. Furthermore, building on this monotonic decrease, we provide a complexity
analysis based on the geometry of the function around optimal points. In addition, we discuss several
extensions of the alternated inertial proximal algorithm for i) being resilient to undetected strong convex-
ity, ii) handling non-convex g, and iii) recovering a 1/k2 worst-case rate. Finally, we provide numerical
examples illustrating the attractive properties of alternated inertia compared to existing (accelerated)
proximal gradient algorithms.

The outline of this paper is as follows. Section 2 sets the framework with the assumptions and useful
known results. Section 3 is the core of the paper and presents the study of the alternated inertial proximal
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gradient algorithm: its monotonicity and the resulting complexity analysis. This analysis is based on the
standard Kurdyka- Lojasiewicz inequality but in an original way: a by-product of our developments is
indeed a refined analysis of functional convergence rates for general weakly decreasing sequences. Finally,
Section 4 discusses extensions and Section 5 presents illustrative numerical experiments.

2 Preliminaries: Assumptions and Recalls on the Proximal Gradient algorithm

In this paper, the working space is R
n with the standard inner product 〈·, ·〉 and associated Euclidean

norm ‖ · ‖. Although all forthcoming results generalize to Hilbert spaces, we restrict ourselves to finite-
dimensional spaces for simplicity and for being closer to considered applications. We use in our develop-
ments standard terminology, notation, and tools from convex analysis and operator theory; we refer to
the textbooks [22] and [23]. In particular, for a convex function h, we denote by ∂h(x) the subdifferential
of h at x.

We make the following standard assumptions on the functions involved in the composite problem (1).

Assumption 1 (i) f : Rn → R is a convex L-smooth function (for L > 0) i.e. it is differentiable and

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ R
n;

(ii) g : Rn → R ∪ {+∞} is a convex and proper lower semi-continuous function:

(iii) the set of optimal points X⋆ := argminx F (x) 6= ∅ is closed and F ⋆ := F (x⋆) > −∞ for any x⋆ ∈ X⋆.

These three points will be assumed to hold for all the results stated in this paper (except for (ii) in
Section 4.2 dealing with the non-convex case). For simplicity, we will also assume that the step-sizes of
the algorithms are fixed over time: γk = γ > 0 for all k; all the results presented in this paper extend
easily to the case when step-sizes are bounded consistently with the Lipschitz constant L. Restricting
to fixed step-sizes will slightly enlighten the statements and allow us to focus on the inertia parameters
(αk) which are at the heart of our analysis.

We now define the proximal gradient operator for F = f + g (for the step γ > 0) by

Tγ(x) := prox
γg

(x− γ∇f(x)) .

An iteration of the proximal gradient algorithm (2) can thus be written compactly xk+1 = Tγ(xk) and
the set X⋆ of the optimal solutions of (1) coincide with the fixed points set of Tγ .

In our analysis, we will rely on some basic results about this operator that we recall in the three
next lemmas. We refer respectively to [23, Th. 25.8/Cor. 27.9], [6, Lemma 1], and [24, Prop. 13] for
these results but out of convenience for curious readers, proofs of the last two lemmas are given in the
appendix.

Lemma 2.1 (Contraction) Take γ ∈]0, 2
L [. Then, the proximal gradient operator Tγ is ν-averaged:

‖Tγ(x) − Tγ(y)‖2 +
1 − ν

ν
‖(x− Tγ(x)) − (y − Tγ(y))‖2 ≤ ‖x− y‖2 for all x, y ∈ R

n

with ν = 2/
(
1 + 2 min{1, 1/(γL)}

)
∈ [2/3, 1[.

Lemma 2.2 (Functional descent) Take γ > 0. Then,

F (Tγ(x)) +
(1 − γL)

2γ
‖Tγ(x) − x‖2 +

1

2γ
‖Tγ(x) − y‖2 ≤ F (y) +

1

2γ
‖x− y‖2 for all x, y ∈ R

n.

Lemma 2.3 (Bound on distance to subdifferential) Take γ > 0. Then,

dist(0, ∂F (Tγ(x))) ≤ Lγ + 1

γ
‖x− Tγ(x)‖ for all x ∈ R

n.
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As a direct consequence of these lemmas, we retrieve the well-known monotonicity results for the
proximal gradient algorithm. For γ ∈]0, 2/L[ and any x⋆ ∈ X⋆, we have indeed that the sequence
generated by (2) satisfies

‖xk+1 − x⋆‖2 ≤ ‖xk − x⋆‖2 − 1 − ν

ν
‖xk+1 − xk‖2

F (xk+1) ≤ F (xk) − 2 − γL

2γ
‖xk+1 − xk‖2

≤ F (xk) − (2 − γL)γ

(1 + γL)2
dist(0, ∂F (xk+1))2.

Thus, (xk) converges to a point in X⋆ monotonically in both Fejér and functional sense. As already
mentioned in the introduction, inertial versions of the algorithm lose monotonicity, which is, roughly
speaking, due to local changes in the shape of the function (we refer to the references given in the
introduction and numerical experiments). We will see in the next section that alternating inertia allows
to keep some monotonicity properties of the initial proximal gradient method.

3 Proximal Gradient Algorithm with Alternated Inertia

In this section, we study the proximal gradient algorithm with alternated inertia, introduced in [20]
and [21]. With our notations, an iteration of this algorithm reads, for k even, as

{
yk+1 = Tγ(xk) yk+2 = Tγ(xk+1)
xk+1 = yk+1 + αk(yk+1 − yk) xk+2 = yk+2

. (5)

In Section 3.1, we briefly discuss known results about the iterates monotonicity for this method. We then
derive in Section 3.2 a functional monotonicity result for a wide range of inertial parameters. Finally,
in Section 3.3, we leverage this monotonicity to provide convergence rates using geometrical properties
of the objective function. This study is also a chance to establish an new generic convergence analysis
using Kurdyka- Lojasiewicz gradient inequality (see forthcoming Theorem 3.3).

3.1 Recalls about Iterates Monotonicity

The iterates monotonicity of the proximal gradient with alternated inertia is established in [21, Lemma 6].

Theorem 3.1 (Iterates Monotonicity) Take γ ∈]0, 2
L [. If the inertial sequence (αk) verifies

0 ≤ αk ≤ min

{

1,
1

γL

}

− 1

2
for all k > 0,

then the sequence (y2k) produced by (5) converges Fejér monotonically to a point in X⋆.

For instance, with the typical choice γ = 1/L, this result states that taking a fixed inertia αk = α ∈
[0, 0.5] leads to a monotonic convergence. This is an interesting property which is verified for the vanilla
proximal gradient algorithm but not by other accelerated proximal gradient algorithms; see e.g. [13].
However, this result suffers from the fact that monotonicity cannot be guaranteed when inertia goes to
1, as for the popular Nesterov sequence (4).

3.2 Functional Monotonicity

As recalled in Section 2, the proximal gradient algorithm with γ ∈]0, 2/L[ generates function values
(F (xk)) that decrease monotonically to F ⋆. Interestingly, a monotonic behavior can be retrieved when
considering alternated inertia.
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Theorem 3.2 (Descent result) Take γ > 0, αk ≥ 0. Then, for an iteration of (5) with k > 0 even,

F (yk+2) ≤ F (yk) − (2 − αk − γL)

2γ

[

‖yk+2 − xk+1‖2 + ‖yk+1 − xk‖2
]

≤ F (yk) − (2 − αk − γL)γ

2(1 + γL)2
dist(0, ∂F (yk+2))2. (6)

Proof Applying Lemma 2.2 with x = y = xk = yk, we get

F (yk+1) +
(2 − γL)

2γ
‖yk+1 − xk‖2 ≤ F (yk) (7)

and by applying Lemma 2.2 with x = xk+1 and y = yk+1, we get

F (yk+2) +
(1 − γL)

2γ
‖yk+2 − xk+1‖

2 +
1

2γ
‖yk+2 − yk+1‖

2 ≤ F (yk+1) +
1

2γ
‖xk+1 − yk+1‖

2 . (8)

Summing Eqs. (7) and (8), we obtain

F (yk+2) ≤ F (yk) +
1

2γ
‖xk+1 − yk+1‖2 −

1

2γ
‖yk+2 − yk+1‖2

− (2 − γL)

2γ
‖yk+1 − xk‖2 −

(1 − γL)

2γ
‖yk+2 − xk+1‖2

= F (yk) − 1

2γ
‖yk+2 − xk+1‖2 −

1

γ
〈yk+2 − xk+1;xk+1 − yk+1〉

− (2 − γL)

2γ
‖yk+1 − xk‖2 −

(1 − γL)

2γ
‖yk+2 − xk+1‖2

= F (yk) − αk

γ
〈yk+2 − xk+1; yk+1 − yk〉

− (2 − γL)

2γ
‖yk+1 − xk‖2 −

(2 − γL)

2γ
‖yk+2 − xk+1‖2

≤ F (yk) − (2 − αk − γL)

2γ

[

‖yk+2 − xk+1‖2 + ‖yk+1 − xk‖2
]

where the final inequality comes from Cauchy-Schwarz and Young’s inequalities. Lemma 2.3 then directly
gives the second part of the result. ⊓⊔

Instantiating this result with the standard step-size γ = 1/L, we have that the choice αk = α = 1− ε
for any ε ∈]0, 1] leads to a monotonic functional convergence. This is in contrast with Section 3.1 where
the condition for iterates monotonic convergence was α ≤ 0.5. Interestingly, if (αk) is chosen as in (4) or
any sequence valued in [0, 1], the functional descent is preserved (although maybe not the convergence).
Note also that, unlike MFISTA, MAPG, or MTwist, no functional evaluation is needed to guarantee this
monotonicity. Thus, this monotonicity brought by alternating inertia has a practical interest; we will see
in the next section that it also has a theoretical interest as it opens the door for a complexity analysis.

3.3 Complexity Analysis

The functional monotonicity of an algorithm can be combined with some geometric properties of the ob-
jective function in order to derive convergence rates. Two types of geometric profiles are often used: error
bounds or Kurdyka- Lojasiewicz gradient inequalities (see the extended survey in [25] or the associated
article [24]). For a nonsmooth1 function Φ : Rn → R achieving its minimum Φ⋆ (so that argminΦ 6= ∅),
these local properties write for x /∈ argminΦ as

– error bounds ϕ(Φ(x) − Φ⋆) ≥ dist(x, argminΦ)
– Kurdyka- Lojasiewicz (KL) ϕ′(Φ(x) − Φ⋆) dist(0, ∂Φ(x)) ≥ 1

1 For a nonsmooth (possibly nonconvex) function Φ : Rn → R, we denote by ∂Φ(x) the limiting (Fréchet) subdifferential
at x [26]. If Φ is convex, this subdifferential coincides with the standard convex subdifferential.
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where ϕ is a smooth increasing concave function, called desingularizing function (see [27] or [24] for
details). Typical desingularizing functions are of the form ϕ(t) = Ctθ/θ for θ ∈]0, 1] and C > 0. Interest-
ingly, with this class of desingularizing functions, the two properties are equivalent for convex functions
with the same desingularizing function [24, Th. 5]. Also, in this case, we can reformulate the KL property
in a simpler way: Φ has the KL property (with θ ∈]0, 1] and C > 0) if

dist(0, ∂Φ(x)) ≥ 1

C
(Φ(x) − Φ⋆)1−θ for all x /∈ argminΦ . (9)

The KL property may look strong at a first sight but it turns out to be widely satisfied. In particular, any
convex semi-algebraic function verifies the KL property [27]. In some special cases, we know explicitly
the parameters θ and C of the desingularizing function; see the examples in [24, Sec. 3]. For instance, we
know that ℓ1-regularized least-squares functions

Φ(x) =
1

2
‖Ax− b‖22 + λ1‖x‖1

have the KL property (9) on ℓ1-balls with ϕ(s) = C
√
s with an explicit constant C from A, b, λ1 and

the size of the ball [24, Lem. 10].
The KL property is particularly well-suited for complexity analysis of descent algorithms: see in

particular [28, 29] for so-called subgradient descent algorithms, or [19] for algorithms showing a descent
property of the form

Φ(xk+1) ≤ Φ(xk) − a dist2(0, ∂Φ(xk+1)).

However, Theorem 3.2 does not offer such properties for typical γ = 1/L and Nesterov-like inertial
sequences: the decreasing term in (6) may go to 0 but not faster than 1/k which we denote2 ak = Ω(1/k).
We thus provide an extension of existing results to cover our situation: the following theorem states
functional convergence rates for general algorithms showing the weak descent property (10), as the one
of alternated inertia proximal gradient algorithm.

Theorem 3.3 (General convergence with weak descent) Let Φ verify the KL property (9). Suppose
that there are a non-negative sequence (ak) and an R

n-valued sequence (xk) verifying

Φ(xk+1) ≤ Φ(xk) − ak dist2(0, ∂Φ(xk+1)) and
∞∑

k=1

ak = +∞ (10)

then Φ(xk) converges to Φ⋆ and

Φ(xk+1) − Φ⋆ =







O
(

1

(
∑k

ℓ=0 min{aℓ,Cl})
1

1−θ

)

for θ ∈]0, 0.5[

O
(

exp
(

− 1
2C2

∑k
ℓ=0 min{aℓ, Ce}

))

for θ ∈ [0.5, 1[

0 ∀k ≥ K := inf
{

k :
∑k

ℓ=0 aℓ > C2(Φ(x0) − Φ⋆)
}

for θ = 1

for positive constants Cl, Ce. Then, depending on the behavior of (ak) divided in three regimes:

(a) ak ≥ a > 0
(b) ak ≥ 0 with ak = Ω

(
1
kd

)
, d ∈]0, 1[

(c) ak ≥ 0 with ak = Ω
(
1
k

)

we get the functional convergence rates displayed in Table 1.

Proof The monotonicity of (Φ(xk)) implies that Φ(xk) → Φ̄. Since
∑∞

k=1 ak = +∞, we have moreover that
a subsequence of (dist(0, ∂Φ(xk))) vanishes. By using (9), this yields that the corresponding subsequence
of (Φ(xk)) converges to Φ⋆, hence Φ̄ = Φ⋆.

2 ak = Ω(bk) if ∃a,K such that ∀k ≥ K we have ak ≥ a.bk
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θ ∈]0, 0.5[ θ ∈ [0.5, 1[ θ = 1

(a) O

(

1

k
1+ 2θ

1−2θ

)

O

([
C2

C2+a

]k
)

finite

(b) O

(

1

k
1+ 2θ−d

1−2θ

)

O
(

exp
(

− C′

2C2 k
1−d

))

finite

(c) O

(

1

log(k)
1

1−2θ

)

O

(

1

k
C”
2C2

)

finite

Table 1 Functional convergence rates with C′ = lim infk sk/k
1−d, C” = lim infk sk/ log(k) and sk =

∑

ℓ≤k min(aℓ, 2C
2).

Define rk := Φ(xk) − Φ⋆, then rk → 0 monotonically. Thus, one can again use the KL property (9)
and the descent on Φ(xk) to get

rk+1 ≤ rk − ak
C2

r2−2θ
k+1 ⇔ ak

C2
≤ (rk − rk+1)r2θ−2

k+1 . (11)

which will be our core equation for rates derivations, which we separate in three cases depending on θ.

Case θ = 1. Eq. (11) becomes rk+1 ≤ rk − ak

C2 , so by summing this inequality we get

rk+1 ≤ r0 −
1

C2

k∑

ℓ=0

aℓ

and as (ak) is a non-negative sequence verifying
∑∞

k=1 ak = +∞, there is K < ∞, such that ∀k ≥ K,
1
C2

∑k
ℓ=0 ak > r0 leading to rk+1 = Φ(xk+1) − Φ⋆ < 0 which contradicts Φ⋆ being the minimum of Φ.

Thus, we must have Φ(xk+1) = Φ⋆ for all k ≥ K, i.e. finite convergence.

Case θ ∈ [0.5, 1[. Here 0 < 2 − 2θ ≤ 1. Since rk → 0 monotonically, we have r2−2θ
k ≥ rk for all k ≥ K,

rk+1 ≤ rk − ak
C2

rk+1 ⇔ rk+1 ≤ 1

1 + ak

C2

rk

which leads to different convergence modes depending of (ak). If it is bounded away from zero, linear
convergence arises (case (a)). Else, one gets that the above inequality also holds with ak replaced by

a′k = min(ak, 2C
2), and we have log(1/(1 +

a′

k

C2 )) ≤ − a′

k

2C2 . In addition, if ak = Ω(bk) with bk → 0, then
a′k = Ω(bk) too so

log(rk+1) ≤
k∑

ℓ=0

log

(

1

1 +
a′

ℓ

C2

)

+ log(r0) ≤ − 1

2C2

k∑

ℓ=0

a′ℓ + log(r0) ≤
{

− C′

2C2 k
1−d + log(r0) case (b)

− C”
2C2 log(k) + log(r0) case (c)

leading, for Cb, Cc two positive constants, to

rk+1 ≤
{
Cb exp(− C′

2C2 k
1−d) case (b)

Cc
1

kC”/(2C2)
case (c)

Case θ ∈]0, 0.5[. Here −2 < 2θ − 2 < −1 so as 0 ≤ rk+1 ≤ rk, we have 0 ≤ r2θ−2
k ≤ r2θ−2

k+1 .

Define φ(t) = C
1−2θ t

2θ−1 with the same C, θ as in ϕ. Let us turn our attention to φ(rk+1)−φ(rk) that
we want to lower-bound by a constant. We proceed in two subcases:
If r2θ−2

k+1 ≤ 2r2θ−2
k . Then we have

φ(rk+1) − φ(rk) = −
∫ rk

rk+1

φ′(t)dt = C

∫ rk

rk+1

t2θ−2dt ≥ C(rk − rk+1)r2θ−2
k

≥ C

2
(rk − rk+1)r2θ−2

k+1 =
ak
2C

:= dak

If r2θ−2
k+1 ≥ 2r2θ−2

k . Then we have r2θ−1
k+1 ≥ 2

2θ−1
2θ−2 r2θ−1

k

φ(rk+1) − φ(rk) =
C

1 − 2θ
(r2θ−1

k+1 − r2θ−1
k ) ≥ C

1 − 2θ

(

2
2θ−1
2θ−2 − 1

)

r2θ−1
k ≥ C

1 − 2θ

(

2
2θ−1
2θ−2 − 1

)

r2θ−1
0 := db
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Thus, we have φ(rk+1) − φ(rk) ≥ a′k/(2C) with a′k = min{ak, 2Cdb}, thus

φ(rk) = φ(r0) +
k−1∑

ℓ=0

φ(rℓ+1) − φ(rℓ) ≥
1

2C

k−1∑

ℓ=0

a′ℓ.

We have to split into two cases:
case (a) φ(rk) ≥ k min{a/2C; db} hence the result holds by inverting φ.
cases (b) and (c), as before a′k = Ω(bk) and

φ(rk+1) ≥ 1

2C

k∑

ℓ=0

a′ℓ ≥
{
Cbk

1−d case (b)

Cc log(k) case (c)
rk+1 ≤







(
C

(1−2θ)Cbk1−d

) 1
1−2θ

case (b)
(

C
(1−2θ)Cc log(k)

) 1
1−2θ

case (c)

which leads to the claimed result. ⊓⊔

The general convergence rates for weakly decreasing sequences thus depend on the geometry of the
objective function (controlled by C and θ) and the speed of decrease of Φ(xk) is controlled by (ak). To
our knowledge, this is the first result accepting vanishing (ak). Note that the proof of our result uses
techniques from [28, Th. 2]; however, it deals with the convergence analysis of functional values and not
the iterates sequence (xk), in contrast with the analysis of subgradient descent algorithms in [24, 28].
The latter analysis can cover the case of sequence with a stronger descent assumption on the algorithm
(typically Φ(xk+1) ≤ Φ(xk) − a‖xk+1 − xk‖2). Inertial versions of the proximal gradient algorithm,
including the one studied here, do not satisfy this assumption.

Remark 3.4 (Global vs local KL assumptions) In the above theorem and all next corollaries using
the KL property (9), we assume it holds for all x ∈ domΦ for sake of simplicity (since the main topic of
the paper is alternated inertia). In fact, the result holds under milder conditions; for instance, the exact
same proof can be carried through without the global KL assumption in the following cases:

– If (9) holds on {x : Φ(x) ≤ Φ(x0)} only; then, as Φ(xk) ≤ Φ(x0), the property can be applied for the
whole sequence (xk).

– If Φ is coercive, (ak) is non-increasing, and (9) holds on {x : Φ(x) ≤ Φ⋆ + η} for some η > 0;
then (xk) is bounded, and thus there is converging subsequence verifying (dist(0, ∂Φ(xkn))) → 0 thus
Φ(xk) → Φ⋆ monotonically so after some K, Φ(xk) ≤ Φ⋆ + η and (11) holds.

– If (9) holds on {x : dist(0, ∂Φ(x)) ≤ ε} ∪ {x : Φ(x) ≤ Φ⋆ + η} for some ε, η > 0; then the property
can be used after some K to retrieve convergence to Φ⋆ and (11) with the same arguments.

In addition, Theorem 3.3 also holds when (9) is verified for some local minimizer Φ̂ instead of Φ⋆.

Combining the general convergence result with the derived descent of the proximal gradient algorithm
with alternated inertia, we get the following convergence rates for our algorithm of interest.

Corollary 3.5 (Convergence and Rates of alternated inertial proximal gradient) Let F verify
the KL property (9). Then, for the alternated inertial proximal gradient algorithm (5), F (y2k) converges
to F ⋆ with the functional rates presented in Table 1 depending on the inertia parameters (αk) taken in
[0, 1], divided in three regimes:

(a) when γ < 1/L and any inertia choice. Or when γ = 1/L and limited inertia αk ≤ α < 1.
(b) when γ = 1/L and inertia parameters (αk) converging to 1 at rate 1/kd (d ∈]0, 1[).
(c) when γ = 1/L and inertia parameters (αk) converging to 1 at rate 1/k.

Proof The result follows from the descent result of Theorem 3.2, precisely Eq. (6) which gives

F (yk+2) ≤ F (yk) − (2 − αk − γL)γ

2(1 + γL)2
dist(0, ∂F (yk+2))2

combined with Theorem 3.3 applied with (xk) ≡ (y2k), Φ ≡ F , and ak = (2−αk−γL)γ
2(1+γL)2 . ⊓⊔
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The convergence rates are established for various inertial parameters (αk) and strongly depends on
the geometric properties: θ = 1 corresponding to finite convergence, θ ∈ [0.5, 1[ corresponding to linear
or sublinear convergence, and θ ∈]0, 0.5[ corresponding to sublinear convergence. In particular, for case
(b) corresponding to the inertia type used in [7]: in the least favorable case θ ∈]0, 0.5[, convergence is at
least O(1/k) when d ≤ 2θ and can be O(1/k2) for θ ∈]0.25, 0.5[ with d ≤ 4θ− 1. The case (c) covers the
popular Nesterov sequence (4).

Notice also that the present analysis does not extend easily to other monotonic accelerated proximal
gradient algorithms. Indeed, MTwist [17] and MFISTA [14] only rely on function evaluation to get non-
strict functional decrease and thus do not enjoy convergence rates from the above results. Concerning
Monotone APG [19], the additional unaccelerated step at each iteration makes it fit in the strongest
case (a) (the proof of which is inspired from [19]) but at the cost of roughly doubling the computation
expenses.

4 Extensions

4.1 Resilience to Strong Convexity

Let us consider the case where F is in addition µ-strongly convex (typically when f is µ-strongly convex
and g is simply convex) but this strong convexity is either undetected, local, or µ is unknown. Then,
the vanilla proximal gradient algorithm is known to have exponential convergence (see [30] for a proof
based on error bounds) but accelerated versions such as FISTA only have polynomial convergence (1/k2

in general). Moreover, these convergence rates clearly show in practice; see e.g. [15] or the numerical
illustrations of Section 5. For the alternated inertial proximal gradient algorithm, we establish a better-
than-polynomial convergence rate, which moreover translates in practice as shown in the numerical
experiments.

Proposition 4.1 (Strongly convex case) Assume that F is in addition µ-strongly convex and take γ
and (αk) as in Corollary 3.5. Then, the alternated inertial proximal gradient algorithm (5) verifies:

– better-than-polynomial rate: provided that γ and (αk) are chosen as in (a) or (b), F (y2k) converges
to F ⋆ at rate O

(
exp

(
−νk1−d

))
for ν > 0 and d = 0 (case (a)) or d ∈]0, 1[ (case (b));

– iterates convergence: (y2k) converges to the unique minimizer of F at the same rate.

Proof As F is µ-strongly convex, we have F (x) − F ⋆ ≥ µ/2‖x − x⋆‖2 = µ/2 dist2(x,X⋆) which is a
(global) error bound with perspective function ϕ(t) =

√

2/µ t0.5. Thanks to the equivalence between
error bounds and KL property for convex functions [24, Th. 5], we have for the alternated inertial proximal
gradient the rates of Corollary 3.5 with the perspective function ϕ̃(t) = 2

√

2/µ t0.5 i.e. θ = 0.5 (as the
KL property actually holds for all x). So, provided that (2−αk − γL) does not vanish as quickly as 1/k,
we recover the rates of the top two lines of the column corresponding to θ = 0.5 in Theorem 3.3. Finally,
as ‖y2k −x⋆‖2 ≤ 2/µ(F (y2k)−F ⋆), functional convergence (and rate) leads to iterates convergence (and
rate). ⊓⊔

4.2 Case of Non-Convex g

In general, Kurdyka- Lojasiewicz inequality is particularly suited to study non-convex case as a large
number of non-convex functions verify KL properties. However, one has to find a functional decrease in
algorithms to establish convergence properties. This decrease may be harder to obtain in the non-convex
case. While one can get a functional decrease for the vanilla proximal gradient even when f and g are
non-convex3, the presence of (alternated) inertia requires to be able to take x 6= y in Lemma 2.2 which
prevents from getting rid of the convexity of f .

For f non-convex and g convex, a solution, used for instance in the algorithm iPiano [31], is to slightly
modify the inertial proximal gradient to recover a descent property on some Lyapunov function. Then,
convergence and rates can be obtained by an adaptation of the existing results of [27].

3 In the case of the proximal gradient, the proof of Lemma 2.2 recalled in the appendix requires (i) convexity of f in
order to take x 6= y (see Eq. (16)); (ii) convexity of g to get the term in ‖Tγ (x) − y‖ by strong convexity of the proximal
surrogate (see Eq. (14)).
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Here, we rather study the case where the convexity of g is dropped. The definition of the proximal
operator directly extends [26, Def. 1.22] and our analysis indeed follows at the expense of a smaller range
of stepsizes and inertia parameters, as formalized in the following proposition.

Proposition 4.2 (Non-convex case) Let Assumption 1 hold without the convexity of g. Let F verify
the KL property (9). Then, the alternated inertial proximal gradient algorithm (5) has the functional
rates of Theorem 3.3 depending on (αk) corresponding to the three regimes:

(a) when γ < 1/(2L) and any αk ≤ 1/2. Or when γ = 1/(2L) and limited inertia αk ≤ α < 1/2.
(b) when γ = 1/(2L) and inertia parameters (αk) converging to 1/2 at rate 1/kd (d ∈]0, 1[).
(c) when γ = 1/(2L) and inertia parameters (αk) converging to 1/2 at rate 1/k.

Proof We use Lemma A.1 which is the non-convex version of Lemma 2.2. The descent term in Theorem 3.2
is now factored with (1−αk − γL) instead of (2−αk − γL). Then, all the following results (and notably
the rates) hold with this modification since the KL property is independent of convexity. ⊓⊔

4.3 Proximal Gradient Algorithm with Alternated Extrapolation

In this subsection, we extend the alternated inertia to a more general alternated “extrapolation”, the
iterations of which take the form

{
yk+1 = Tγ(xk) yk+2 = Tγ(xk+1)
xk+1 = extrapolation ({yℓ}ℓ≤k+1) xk+2 = yk+2

(12)

where extrapolation ({yℓ}ℓ≤k+1) is a linear combination of past iterates (see for instance the recent [32]).
We show here that the following extrapolation step, surprisingly close to heavy balls,

xk+1 = yk+1 −
1

tk/2+1
(yk+1 − yk) +

tk/2 − 1

tk/2+1
(yk − yk−1) with (tk) as in (4) (13)

guarantees a worst case O(1/k2) rate. In other words, alternating extrapolation allows attaining the same
rates as standard inertia (e.g. FISTA) where alternating inertia cannot (see Corollary 3.5). Furthermore,
if the KL property is additionally assumed then this rate may be improved to a small-o convergence
instead of big-O for θ = 0.5 (with different arguments than in [8]) and faster convergence as θ increases.

Proposition 4.3 (alternated extrapolation) Take γ ∈]0, 1/L]. Then, the algorithm of (12) with the
extrapolation defined in (13) verifies for k odd

F (yk) − F ⋆ ≤ ‖x0 − x⋆‖2
2γt2k/2

= O
(

1

k2

)

and ‖Tγ(yk) − yk‖2 = o

(

1

t2k/2

)

= o

(
1

k2

)

.

Moreover, if F verifies the KL property (9); then, we have that for k odd

F (yk) − F ⋆ = o

(
1

k
1

1−θ

)

.

Proof From the descent lemma with extrapolation [14] with x = xk for k even, and defining Fk =
F (yk) − F ⋆, we get

t2k/2+1Fk+2 − t2k/2Fk+1 ≤ − 1
2γ

[∥
∥tk/2+1yk+2 − (tk/2+1 − 1)yk+1 − y⋆

∥
∥
2 −

∥
∥tk/2+1xk+1 − (tk/2+1 − 1)yk+1 − y⋆

∥
∥
2
]

.

As yk+1 = Tγ(xk) = Tγ(yk), we have F (yk+1) ≤ F (yk) − 1
2γ ‖Tγ(yk) − yk‖2 from Lemma 2.2, thus

t2k/2+1Fk+2 − t2k/2Fk ≤ −
1

2γ

[∥
∥tk/2+1yk+2 − (tk/2+1 − 1)yk+1 − y⋆

∥
∥2 −

∥
∥tk/2+1xk+1 − (tk/2+1 − 1)yk+1 − y⋆

∥
∥2
]

−
t2
k/2

2γ
‖Tγ (yk) − yk‖

2

and in order to have a right hand side of the form 1
2γ

[

‖uk+2‖2 − ‖uk‖2
]

, one can choose the extrapo-

lation, that is xk+1 so that

∥
∥tk/2+1xk+1 − (tk/2+1 − 1)yk+1 − y⋆

∥
∥
2

=
∥
∥tk/2yk − (tk/2 − 1)yk−1 − y⋆

∥
∥
2
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which naturally leads to taking

tk/2+1xk+1 − (tk/2+1 − 1)yk+1 = tk/2yk − (tk/2 − 1)yk−1

⇔ xk+1 = yk+1 −
1

tk/2+1
(yk+1 − yk) +

tk/2 − 1

tk/2+1
(yk − yk−1).

This choice of extrapolation leads by summing the above inequality for k even to

t2k/2Fk +
1

2γ

k/2−1
∑

ℓ=0

t2ℓ‖Tγ(y2ℓ) − y2ℓ‖2 ≤
1

2γ
‖y0 − y⋆‖2

thus, noticing that all terms above are non-negative:
– Fk ≤ 1

2γt2
k/2

‖y0 − y⋆‖2.
–
∑∞

ℓ=0 t
2
ℓ‖Tγ(y2ℓ) − y2ℓ‖2 < +∞ thus ‖Tγ(y2ℓ) − y2ℓ‖2 = o(1/t2ℓ).

Interestingly, using Lemma 2.3, we get that for k even, dist2(0, ∂F (yk+1)) ≤ (L+ 1/γ)2‖Tγ(yk)− yk‖2 =
o
(

1
k2

)
. If we also assume that F verifies (9) for some C > 0, θ ∈]0, 1[; then, we have that for k odd

F (yk) − F ⋆ = o

(

1

k
1

1−θ

)

. ⊓⊔

5 Numerical Experiments

We compare the vanilla proximal gradient algorithm with

– proposed alternated inertial version with αk = tk+1/(tk − 1), tk = ((k + a)/a)d, and d = 0.8;
– proposed alternated extrapolation of Section 4.3;
– inertial versions: FISTA [11] and monotonic counterparts MFISTA [14] and MAPG [19] as well as

lasso-specific MTwist [17].

All algorithms were tuned as advised in their respective sources, the initial point was drawn randomly
and common to all methods. We will compare the speed of convergence of algorithms with respect to their
number of iterations. One iteration corresponds to one proximal gradient evaluation; more precisely, the
additional functional value computations for MFISTA, MTwist, and MAPG were not taken into account,
and an iteration of MAPG is counted double as two proximal gradient steps are computed.

In Section 5.1, we consider the composite problem of ℓ1-regularized logisitic regression. We show that
alternated inertia provides an efficient acceleration in the sense that it uniformly accelerates the proximal
gradient even when large stepsizes are taken. Then, in Section 5.2, we address the lasso problem which
illustrates the resilience of alternated inertia to strong convexity. Finally, in Section 5.3, we revisit the two
previous problems but replace the ℓ1-norm with the non-convex ℓ0.5-“norm”, this allows us to illustrate
the monotonicity and performance of alternated inertia even in a non-convex setting.

5.1 ℓ1-Regularized Logistic Regression

We first consider the problem of ℓ1-regularized logistic regression on the popular ionosphere dataset4

containing m = 351 binary classified examples (ai, yi) ∈ R
n × {−1,+1} of feature size n = 35. The

problem writes as

min
x∈Rn

1

m

m∑

i=1

log (1 + exp(−yi〈ai;x〉))
︸ ︷︷ ︸

f(x)

+λ1‖x‖1
︸ ︷︷ ︸

g(x)

and we fix the regularization parameter λ1 to 0.1.
In Figure 1, we plot the functional error for all compared algorithms with four choices for stepsize γ:

(a) γ = 1/Lu where Lu is the usual upper bound for the Lipschitz constant of the gradient of f which
is known to be overly pessimistic in most practical cases; and (b,c,d) γ = γmax/ν for ν = {8, 3, 1.5}

4 https://archive.ics.uci.edu/ml/datasets/ionosphere
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with γmax being the greatest stepsize admissible for the proximal gradient algorithm before divergence.
This second set of stepsize enables to exhibit the behavior of the compared algorithm with practical and
performing stepsizes. We notice that the alternated inertial version exhibits a steady monotonic behavior
always outperforming the vanilla proximal gradient. Also, while for smaller stepsizes non-monotonic
accelerated versions outperform monotonic ones, the trend shifts for the greater ones. Ultimately, for the
greatest stepsize vanilla proximal gradient and alternated inertial counterpart are the most performing.
Finally, one can see that the alternated extrapolation performs a bit worse than FISTA with the same
characteristic oscillation with a frequency twice as low.
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(a) γ = 1/Lu (b) γ = γmax/8

(c) γ = γmax/3 (d) γ = γmax/1.5

Proximal Gradient Alt. Iner. d = 0.8 Alt. Ext.
FISTA MFISTA MAPG

Fig. 1 Comparison of the algorithms on ℓ1-regularized logistic regression (functional decrease vs number of iterations).
The four cases correspond to four different choices of stepsize γ.

5.2 ℓ1-Regularized Least-Squares (Lasso)

We address the lasso problem
min
x∈Rn

‖Ax− b‖22
︸ ︷︷ ︸

f(x)

+λ1‖x‖1
︸ ︷︷ ︸

g(x)

on synthetic matrix/vector couples A ∈ R
m×n and b ∈ R

m. A is drawn from the standard normal
distribution and b = Ax0 + e where x0 is a 10% sparse vector taken from the normal distribution, and
e is taken from the normal distribution with standard deviation 0.001. We set λ1 so that the original
sparsity is ultimately recovered.

The interest of this problem is that we can compute exactly the standard stepsize γ = 1/L where
L = 2‖ATA‖, which we use for all algorithms. We plot the functional error for all compared algorithms
with two different sizes of the matrix A, which correspond to two conditioning levels of the lasso problem:
(a) 130 × 80 and (b) 85 × 80.

In Figure 2, we observe that the proximal gradient and the alternated inertial counterpart benefit
from a more-than-polynomial rate which enables them to outperform most other methods in the better
conditioned case, the alternated inertial version being always significantly better than the vanilla one.
In the second case, FISTA, MFISTA, and MTwist perform best although alternated inertia is still
competitive.
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Fig. 2 Comparison of the algorithms on lasso (functional decrease vs number of iterations). The two cases correspond to
two problems with two different strong convexity modulus (small and large).

We also checked the wall clock times obtained by IPython’s timeit in the situation of Fig. 2 (a) and
found that alternated inertia and FISTA roughly take the same the time as the proximal gradient while
test-based MFISTA, MAPG, and MTwist are slightly more time consuming due to function evaluations;
thus the presented comparisons are more than fair for alternated inertia.

5.3 Non-Convex Problems

In order to investigate the behavior of the compared algorithms in a non-convex setting, we replace the
ℓ1 norm in the two previous problems by the ℓ0.5 “norm”. This regularization promotes sparsity in a
stronger, non-convex, sense than the ℓ1 norm. This function writes ‖x‖0.50.5 =

∑n
i=1

√

|xi| and has the
attractive feature of having a closed form proximal operator (see [33] and references therein). For these
non-convex problems, we do not plot the functional error, as the algorithms may reach different local
minimizers depending on the initialization point, but rather: (a) the functional error with respect to the
minimal value reached by the algorithm on the run; and (b) the distance of the subgradient to the null
vector dist2(0, ∂F (xk)). The two figures show that alternated inertia provides a quick and monotonic
convergence.
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(a) Functional error to final point (b) dist2(0, ∂F (xk))

Proximal Gradient Alt. Iner. d = 0.8 Alt. Ext.
FISTA MFISTA MAPG

Fig. 3 Comparison of the algorithms on the ℓ0.5-regularized logistic regression problem (with λ0.5 = 0.002).

6 Conclusion

Standard algorithms with inertia break down monotonicity; we have proved that adding a proximal
gradient step after each inertial step enables to recover monotonicity without extra assumptions on the
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Fig. 4 Comparison of the algorithms on the ℓ0.5-regularized linear regression problem (“ℓ0.5-lasso”) with m = 130 and
n = 80. To match the sparsity of x0, λ0.5 was set accordingly to 0.05.

stepsizes or on the inertial sequence. The resulting alternating inertial algorithm enjoys the accelerated
behavior of inertial algorithms while keeping the good properties of vanilla proximal gradient algorithms
(automatic rate adaptation for strongly convex objectives and generalization for non-convex objectives).
The complexity analysis of this algorithm is also the occasion of revealing a general convergence result
of weakly decreasing algorithms for minimizing sharp objective functions.

Many extensions of this idea of intermittent inertia are possible; we studied in particular an alternated
extrapolation algorithm for which we show that it converges faster as the geometry improves, going
beyond the usual worst case rate.

A Appendix with Known Results about the Proximal Gradient

For the sake of completeness, we provide short and direct proofs of known lemmas recalled in Section 2.

Proof of Lemma 2.2 Let x ∈ R
n; by definition, we have

Tγ(x) = argmin
w

(

γg(w) +
1

2
‖w − (x− γ∇f(x))‖2

)

= argmin
w







f(x) + g(w) + 〈w − x;∇f(x)〉 +

1

2γ
‖w − x‖2

︸ ︷︷ ︸

sx(w)








and, as it is defined as the minimizer of 1
γ

-strongly convex surrogate function sx, we have for any y ∈ R
n that sx(Tγ(x)) +

1
2γ

‖Tγ(x) − y‖2 ≤ sx(y) so

f(x) + g(Tγ (x))+〈Tγ(x) − x;∇f(x)〉 +
‖Tγ(x) − x‖2

2γ
+

‖Tγ(x) − y‖2

2γ
≤ f(x) + g(y) + 〈y − x;∇f(x)〉 +

‖y − x‖2

2γ
. (14)

Now we use (i) the descent lemma on L-smooth function f (see [23, Th. 18.15]) to show that

f(Tγ (x)) ≤ f(x) + 〈Tγ (x) − x;∇f(x)〉 +
L

2
‖Tγ(x) − x‖2 (15)

and (ii) the convexity of f to have

f(x) + 〈y − x;∇f(x)〉 ≤ f(y). (16)

Using Eq. (15) on the left hand side of (14) and Eq. (16) on the right hand side, we get

f(Tγ(x)) + g(Tγ(x))+
(1 − γL) ‖Tγ(x) − x‖2

2γ
+

‖Tγ(x) − y‖2

2γ
≤ f(y) + g(y) +

‖y − x‖2

2γ
.

⊓⊔

Proof of Lemma 2.3 Let x ∈ R
n, and let y = Tγ(x) ∈ argminw

(

γg(w) + 1
2
‖w − (x− γ∇f(x))‖2

)

, then

0 ∈ γ∂g(y) + y − x + γ∇f(x) ⇔ 0 ∈ ∇f(y) + ∂g(y) + ∇f(x) −∇f(y) +
1

γ
(y − x)

so ∇f(y)−∇f(x) + 1
γ

(x− y) ∈ ∂F (y), thus we have dist(0, ∂F (y)) ≤ ‖∇f(y)−∇f(x) + 1
γ

(x− y)‖ ≤
(

L + 1
γ

)

‖x− y‖. ⊓⊔
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Lemma A.1 Let Assumption 1 hold but with g possibly nonconvex, and take γ > 0. Then, for any x, y ∈ R
n,

F (Tγ(x)) +
(1 − γL)

2γ
‖Tγ(x) − x‖2 ≤ F (y) +

1

2γ
‖x− y‖2 .

Proof Let x ∈ R
n; by definition, we have, as in the proof of Lemma 2.2,

Tγ(x) = argmin
w

(

γg(w) +
1

2
‖w − (x− γ∇f(x))‖2

)

= argmin
w







f(x) + g(w) + 〈w − x;∇f(x)〉 +

1

2γ
‖w − x‖2

︸ ︷︷ ︸

sx(w)








and, as it is defined as a minimizer of (non necessarily convex) surrogate function sx, we have for any y ∈ R
n that

sx(Tγ(x)) ≤ sx(y) (which differs from from the convex case of Lemma 2.2) thus

f(x) + g(Tγ(x))+〈Tγ (x) − x;∇f(x)〉 +
‖Tγ(x) − x‖2

2γ
≤ f(x) + g(y) + 〈y − x;∇f(x)〉 +

‖y − x‖2

2γ
. (17)

The proof then follows the same lines as that of Lemma 2.2. ⊓⊔
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