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Capacity Approximation of Continuous Channels by
Discrete Inputs

Malcolm Egan and Samir M. Perlaza

Abstract—In this paper, discrete approximations of the capacity
are introduced where the input distribution is constrained to
be discrete in addition to any other constraints on the input.
For point-to-point memoryless additive noise channels, rates of
convergence to the capacity of the original channel are established
for a wide range of channels for which the capacity is finite.
These results are obtained by viewing discrete approximations
as a capacity sensitivity problem, where capacity losses are
studied when there are perturbations in any of the parameters
describing the channel. In particular, it is shown that the
discrete approximation converges arbitrarily close to the channel
capacity at rate O(∆), where ∆ is the discretization level of
the approximation. Examples of channels where this rate of
convergence holds are also given, including additive Cauchy and
inverse Gaussian noise channels.

I. INTRODUCTION

The channel capacity is a fundamental limit of a wide range
of communication systems, which informs communication
strategies both in terms of channel coding and also resource
allocation. As such, it is important to obtain computable
representations of the capacity. In the case of discrete mem-
oryless (DM) channels, such a representation always exists
[1]. However, for continuous memoryless channels it remains
challenging to effectively characterize the channel capacity.

Despite the challenges for general channels, there has been
progress in special cases. For example, the Gaussian noise
channel subject to a transmit power constraint has been studied
in [1].

An alternative approach is to establish that the optimal
input distribution is discrete. This approach was first developed
by Smith [2] for Gaussian channels subject to power and
amplitude constraints, and has since been investigated in a
range of contexts. In particular, a general characterization of
noise distributions and constraints that admit a unique discrete
optimal input has recently been obtained by Fahs and Abou-
Faycal [3]. Nevertheless, there remain channels arising in
emerging communication systems that do not fall into the
characterization in [3], including the additive inverse Gaussian
noise channel with an absolute moment constraint in molecular
communication [4]1.

It is highly desirable that the optimal input distribution
is discrete as it is then often possible to obtain arbitrarily
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1In fact, the optimal input distribution for the molecular timing channel
with an absolute moment constraint is conjectured to be of mixed-type.

accurate approximations of the capacity with error guarantees
using convex optimization techniques [2]. This observation
motivates the study of capacity approximations obtained by
introducing a further constraint that the input distribution is
discrete. Although discretization arguments have been used to
establish the achievability part of the noisy channel coding
theorem (NCT) for additive Gaussian noise channels [5] to
exploit the NCT for DM channels, there has not been a sys-
tematic study of discrete input approximations of the capacity
for general classes of channels.

In this paper, we study the convergence of discrete input
approximations to the capacity of continuous memoryless
additive noise channels. That is, we consider the capacity of
the channel subject to the additional constraint that the input
is discrete with mass points separated by a given Euclidean
distance, which is often referred to as the discretization level
denoted by ∆. In contrast to existing work, which has focused
on particular channels (e.g., the additive Gaussian noise chan-
nel in [6]), this work considers general classes of channels
and input constraints only under assumptions that guarantee
the channel capacity exists and is finite.

There are two fundamental questions that are answered
in this work: under what conditions is the channel capacity
continuous in the discretization level and what is the rate of
convergence to the capacity of the original channel?

In order to answer these questions, we study the discrete
input approximation within the framework of the capacity
sensitivity [7]. Here, instead of directly characterizing the
capacity of a channel, the focus is on how the capacity changes
whenever any of the parameters describing the channel are
varied. In particular, the behavior of the discrete input ap-
proximation can be viewed more generally in terms of how the
capacity changes when the constraints on the input distribution
are varied. In [7], the effect of varying constraint parameters
such as the maximum power level were considered. In this
paper, this analysis is extended to the case where the input
distribution is discrete.

The key result is that for a wide range of additive noise
channels for which the capacity optimization problem is well-
posed—i.e., an optimal input distribution exists—the conver-
gence of the capacity subject to a discrete input constraint
converges arbitrarily close to the channel capacity according
to O(∆). This result is very general and in fact can be readily
extended to point-to-point channels that are non-linear or even
non-additive.

The organization of the paper is as follows. Section II for-
malizes the problem and Section III establishes the connection



to the capacity sensitivity. Section IV and Section V present
the proofs of the main results on the continuity and rate of
convergence for the discrete input approximation. Section VI
discusses extensions and relationships with other capacity
sensitivity problems. Section VII concludes this work.

II. PROBLEM FORMULATION

This section focuses on real-valued point-to-point channels.
For concreteness—generalizations are discussed later in Sec-
tion VI—consider the linear additive noise channel with real
output Y of the form

Y = X +N (1)

where the input X has an alphabet X ⊆ R and the noise has
a distribution function on R, denoted by FN . We assume that
FN has a probability density function, denoted by pN . Given
that the channel is linear and additive, the channel Markov
kernel can be written as

pY |X(y|x) = pN (y − x). (2)

As a consequence of the noisy channel coding theorem
[Han], when the capacity of (1) exists it is obtained by
optimizing the mutual information subject to any constraints
on the input X . Let B(R) be the Borel σ-algebra on R and
let P denote the collection of Borel probability measures on
the measurable space (R,B(R)) equipped with the topology
of weak convergence.

An important property of the topology of weak convergence
is that it is metrized by the Lévy-Prohorov metric [8]. In
more detail, recall that a sequence µ1, µ2, . . . of probability
measures converges weakly2 to a probability measure µ0 if
for all bounded and continuous functions f ,∫

fdµn →
∫
fdµ0, as n→∞. (3)

The Lévy-Prohorov metric is related to weak convergence as
follows. A topology on a set (in this case, the set of probability
measures) is defined by closed subsets. In turn, a closed set
U has the property that all convergent sequences in U have
a limit point in U . As such, weak convergence of probability
measures induces a topology and a natural question is whether
there exists a metric on the space of probability measures that
induces the same topology. As already noted, this is indeed
the case and one such metric is the Lévy-Prohorov metric.

Denote I(µ, pN ) as the mutual information for the channel
in (1), given by

I(µ, pN ) =

∫
R

∫
R
pN (y − x) log

pN (y − x)

pY (y)
dµ(x)dy, (4)

where µ is the input probability measure. The capacity of (1)
is then the solution to the optimization problem

C(Λ) = sup
µ∈P

I(µ, pN )

subject to µ ∈ Λ,
(5)

2Weak convergence of probability measures should not be confused with
weak convergence in a topological vector space.

where Λ is a weakly compact subset of probability measures
on (R,B(R)). Key examples of the set Λ are the p-th order
constraints (p > 0), defined by

Λp = {µ : Eµ[|X|p] ≤ b}, (6)

where b > 0. The compactness of this constraint set can be
readily shown by the application of Prokhorov’s Theorem [9].

Now let ∆ > 0 and P(∆Z) be the set of probability
measures with support on ∆Z = {∆z : z ∈ Z} with Z the set
of integers. The question we focus on in this paper is how the
problem in (5) be approximated by a problem where the input
is required to be discrete. That is, we consider the discrete
input approximation

C(Λ∆) = sup
µ∈P

I(µ, pN )

subject to µ ∈ Λ∆,
(7)

where Λ∆ = ∪∆>∆P(∆Z) ∩ Λ. As such, (7) corresponds
to the capacity of the channel in (1), where the input is
constrained to be discrete.

The question addressed in this paper is how well the capac-
ity in (5) can be approximated by (7) as the discretization level
∆ tends to zero. Unlike other discrete input approximations
such as those based on the Ozarow-Wyner technique [10],
[11] with sub-optimal PAM constellations, it is necessary to
study the behavior of optimized discrete inputs. As such, the
question can be viewed within the framework of capacity
sensitivity as detailed in the following section.

III. CAPACITY SENSITIVITY AND DISCRETE INPUT
APPROXIMATIONS

The capacity of a memoryless additive noise channel can
be viewed as a map from the input alphabet X , the output
alphabet Y , the noise distribution FN , and the constraint set
Λ to R+. That is, (X ,Y, FN ,Λ) 7→ C, where C is the optimal
value function of the optimization problem in (5) or (7).

In order to study approximations of one channel by another,
it is natural to introduce the capacity sensitivity [7], [12]. In
particular, the capacity sensitivity is the capacity gap between
two channels, and is defined formally as follows.

Definition 1. Let K = (X ,Y, FN ,Λ) and K̂ = (X̂ , Ŷ, F̂N , Λ̂)
be two tuples of channel parameters. The capacity sensitivity
due to a perturbation from channel K to the channel K̂ is
defined as

CK→K̂
∆
= |C(K)− C(K̂)|. (8)

The capacity sensitivity problem can be viewed as a special
case of analyzing the sensitivity of nonlinear optimization
problems, where we identify the capacity as the optimal
value function. Clearly, the problem of computing the capacity
sensitivity is trivial when the capacity is available in closed-
form (such as the case of additive Gaussian noise with
a power constraint). However, the problem is significantly
more challenging in the usual situation in which the only
explicit characterization of the capacity is (5) under general
perturbations from one channel to another.



In this paper, we are concerned with a class of constraint
perturbations. In particular, the study of discrete input ap-
proximations of the capacity involves analyzing the effect of
varying the constraint set Λ. The capacity sensitivity in this
case therefore corresponds to

CΛ→Λ∆
= |C(Λ)− C(Λ∆)|, (9)

for ∆ > 0.
A first study of general constraint perturbations for the

capacity optimization problem is given in [7]; however, the
analysis was limited to the case that the constraint set is
defined by a finite number of inequalities. This is not the case
for the set Λ∆ and it is therefore necessary to apply further
techniques from nonsmooth analysis [13], which are used in
the sequel to establish rates of convergence of the discrete
input approximation.

IV. CONVERGENCE OF THE DISCRETE INPUT
APPROXIMATION

Before characterizing rates of convergence of the discrete
input approximation, it is necessary to first establish that the
approximation indeed converges. To this end, in this section
the convergence of the discrete input approximation is studied.
In particular, we provide sufficient conditions for C(Λ∆) →
C(Λ) as ∆→ 0, which are detailed in the following theorem.

Theorem 1. Let Λ be a non-empty compact subset of P . If
the mutual information I(·, pN ) is weakly continuous on Λ,
then C(Λ∆)→ C(Λ) as ∆→ 0.

Observe that the conditions do not depend heavily on
the channel statistics nor on the particular structure of the
constraint set Λ (other than compactness). As such, Theorem 1
holds for a wide range of channels, with examples in Sec-
tion IV-C. Another interesting feature of Theorem 1 is that
an assumption implying the uniqueness of the optimal input
distribution is not required, which is typical in the study of
the optimal input distribution.

The proof of Theorem 1 relies on Berge’s maximum theo-
rem and the theory of point-to-set maps. As such, we review
the concept of point-to-set maps in Section IV-A and prove
Theorem 1 in Section IV-B. Examples of channels satisfying
the conditions in Theorem 1 are then provided, along with an
extension to discrete and compactly supported approximations
of the capacity.

A. Preliminaries

In order to establish our convergence result, we first recall
useful definitions from the theory of point-to-set maps [13]
and a theorem from the sensitivity analysis of optimization
problems.

Let (Θ, d) and (S, dS) be metric spaces. A point-to-set map
Γ : Θ ⇒ S, also known as a correspondence, is a map from
a point in Θ to a subset in S such that for each point θ ∈ Θ
the set Γ(θ) is compact. Let s ∈ S and S ⊆ S and define
dS(s,S) = inf ŝ∈S dS(s, ŝ). Furthermore, for any ε > 0 define

the ε-ball centered at s ∈ S by Bε(s) = {ŝ ∈ S : dS(s, ŝ) <
ε}.

Definition 2. Let θ ∈ Θ and ε > 0. The ε-neighborhood of
the set Γ(θ) is defined by

ηε(Γ(θ)) = {s ∈ S : dS(s,Γ(θ)) < ε} =
⋃

s∈Γ(θ)

Bε(s) (10)

There are two notions of continuity for point-to-set maps,
which are detailed as follows.

Definition 3. A point-to-set map Γ : Θ ⇒ S is upper
hemicontinuous at θ ∈ Θ if for all ε > 0 there exists a δ > 0
such that d(θ, θ) < δ implies that Γ(θ) ⊆ ηε(Γ(θ)).

Definition 4. A point-to-set map Γ : Θ ⇒ S is lower
hemicontinuous at θ ∈ Θ if for all ε > 0 there exists a δ > 0
such that d(θ, θ) < δ implies that Γ(θ) ⊆ ηε(Γ(θ)).

A point-to-set map Γ : Θ ⇒ S is both upper and lower
hemicontinuous at θ, then it is said to be continuous3. Intu-
itively, upper hemicontinuity can be viewed as constraining the
size of expansions of the set Γ(θ), in the presence of small
changes to θ. Conversely, lower hemicontinuity can be viewed
as constraining the size of the contractions.

Although point-to-set maps are widely studied in the case
the set S is Rn, the definitions also apply to other metric
spaces and can even be extended to more general topolog-
ical spaces [14]. For the purposes of this paper, the set S
corresponds to the set of probability measures with the Lévy-
Prohorov metric.

In order to establish convergence of the discrete approxima-
tion, we will require the following theorem [15] that provides
conditions ensuring continuity of the optimal value function in
terms of the upper and lower hemicontinuity of the constraint
map.

Theorem 2 (Berge’s Maximum Theorem). Let Θ and S be two
metric spaces, Γ : Θ ⇒ S a compact-valued correspondence,
and ϕ : S×Θ→ R be a continuous function on S×Θ. Define

σ(θ) = arg max{ϕ(s, θ) : s ∈ Γ(θ)}, ∀θ ∈ Θ

ϕ∗(θ) = max{ϕ(s, θ) : s ∈ Γ(θ)}, ∀θ ∈ Θ (11)

and assume that Γ is continuous at θ ∈ Θ. Then,
(i) σ : Θ ⇒ S is a compact-valued and upper hemicontin-

uous at θ.
(ii) ϕ∗ : Θ→ R is continuous at θ.

Intuitively, Theorem 2 shows that if the constraint set varies
continuously and the objective function is also continuous,
then the value function is also continuous.

B. Proof of Theorem 1

Θ = R+ with the Euclidean metric is a metric space. By
[8], P is a metric space with the Lévy-Prokhorov metric,

3In some literature the term hemicontinuity is called semicontinuity. In
this case, it is important not to confuse upper and lower hemicontinuity of
point-to-set maps with upper and lower semicontinuity of functions.



denoted by ρ. By hypothesis, the mutual information I(µ, pN )
is weakly continuous on P . We now show that C0 = C(Λ).
First, recall the following result from [16, Theorem 6.3].

Theorem 3. Let X be a separable metric space and E ⊆ X
dense in X . Then, the set of all measures whose supports are
finite subsets of E is dense in the space of probability measures
on X .

Noting that R is separable, it then follows from Theorem 3
that ∪∆>0P(∆Z) is dense in the topology of weak conver-
gence. Hence, C0 = C(Λ) by the continuity of I(µ, pN ).
Therefore by Theorem 2, the result is established if the point-
to-set map Λ∆ = ∪∆>∆P(∆Z) ∩ Λ is continuous at ∆ = 0.

To show that Λ∆ is a continuous point-to-set map at ∆ = 0,
first note that Λ∆ is monotonically decreasing as ∆ increases.
This implies that Λ∆ is lower hemicontinuous at ∆ = 0.
Moreover, Λ is compact. This means that Λ is also separable
and hence ∪∆>0Λ∆ is also dense in Λ. As ∪∆>0Λ∆ is dense,
it follows that for any convergent sequence in Λ with limit µ0,
either µ0 is in Λ∆ or for all ε > 0 there exists ∆ > 0 such that
ρ(µ0,Λ∆) < ε. This implies that Λ∆ is upper hemicontinuous.
As such, Λ∆ is both upper and lower hemicontinuous at ∆ = 0
and hence continuous at ∆ = 0.

Since I(µ, pN ) is weakly continuous and Λ∆ is both upper
and lower hemicontinuous at ∆ = 0, the result then follows
by applying Theorem 2.

C. Examples

Theorem 1 provides sufficient conditions for the conver-
gence of the discrete approximation. A key observation is that
by the extreme value theorem, these conditions imply that
there exists an optimal input distribution [17]. This implies
that Theorem 1 holds for a wide range of channels, including
the following examples:

(i) Gaussian model [1]
• pN (x) = 1√

2πσ2
exp

(
−x2/(2σ2)

)
, σ > 0.

• Λ = {µ : Eµ[X2] ≤ b}, b > 0.
(ii) Cauchy model [3]

• pN (x) = 1

πγ
(

1+( xγ )
2
) , γ > 0.

• Λ = {µ : Eµ[|X|r] ≤ b}, b > 0.
(iii) Inverse Gaussian model [4], [18]

• pN (x) =
√

λ
2πx3 exp

(
−λ(x−γ)2

2γ2x

)
, x > 0, λ, γ >

0.
• Λ = {µ : Eµ[X] ≤ b}, b > 0.

Note that these examples consist of models with a con-
tinuous optimal input (Gaussian), a discrete optimal input
(Cauchy), and a conjectured mixed-type optimal input (inverse
Gaussian). Further examples with characterizations of the
discreteness of the optimal input can be found in [3].

D. Discrete and Compactly Supported Inputs

A natural question is whether Theorem 1 can be generalized
to allow for discrete approximations with compact support. To

this end, consider the optimization problem

C∆,T = sup
µ∈P

I(µ, pN )

subject to µ ∈ Λ∆,T ,
(12)

where Λ∆,T = ∪∆>∆P(∆Z ∩ [−T, T ]) ∩ Λ with P(∆Z ∩
[−T, T ]) denoting the set of probability measures with support
∆Z∩[−T, T ]. As such, (12) corresponds to the capacity of the
channel in (1), where the input is constrained to be discrete
and supported on [−T, T ]. The following result then holds.

Theorem 4. Let Λ be a non-empty compact subset of P . If
the mutual information I : P → R is weakly continuous on
Λ, then C∆,T → C(Λ) as T →∞,∆→ 0.

The proof of Theorem 4 follows that of Theorem 1. The
key observation is that the set of all discrete measures on all
compact subsets of R is also dense in P , which follows from
Theorem 3.

V. RATE OF CONVERGENCE

In this section, we obtain a rate of convergence result for the
discrete input approximation in (7). In particular, we establish
that the following theorem holds.

Theorem 5. Suppose that Λ is a non-empty compact subset of
P and the mutual information I : P → R is weakly continuous
on Λ . If C(Λ) = supµ∈Λ I(µ, pN ) < ∞ in (5), then for all
ε > 0 there exists a v ∈ R such that

C(Λ)− C(Λ∆)− ε ≤ |v|∆ + o(∆), (13)

where C(Λ∆) is defined in (7).
If, in addition, C(Λ∆) is a convex function in ∆, then there

exists g ∈ R such that

C(Λ)− C(Λ∆) ≤ |g|∆. (14)

We remark that convergence rates for discrete approxima-
tions have been studied in special cases, such as Gaussian
channels subject to a power constraint [6]. Also, the problem
of characterizing channels with optimal discrete inputs [2], [3]
can be viewed as a study of discrete approximations that have
very good convergence properties.

The main feature of Theorem 5 is that it applies to a very
wide range of channels, including those that do not yet have
a characterization of their optimal input. This includes the
additive inverse Gaussian noise channel subject to a first order
moment constraint arising in molecular communications [4].
Moreover, as discussed further in Section V-B, the scaling
factor v can be characterized as belonging to the (non-empty)
set of regular subgradients of C(Λ∆).

A. Preliminaries

In general, C(Λ∆) is neither differentiable nor convex. As
such, standard methods to obtain rates of convergence based
on directional derivatives or the subgradient are not applicable.
In more general non-smooth and non-convex settings, a useful
notion is that of the regular subgradient, which is defined as
follows.



Definition 5. Consider a function f : Rn → R and a point
x ∈ Rn with f(x) finite. For a vector, v ∈ Rn, v is a regular
subgradient of f at x, denoted by v ∈ ∂̂f(x), if there exists
δ > 0 such that for all x ∈ Bδ(x)4

f(x) ≥ f(x) + vT (x− x) + o(|x− x|). (15)

Furthermore, recall the notion of f -attentive convergence
[13].

Definition 6. A sequence (xk)k is said to f -converge to x
if (xk, f(xk)) → (x, f(x)) as k → ∞, and is denoted by
xk →

f
x.

We will also require the following result, which is proven
in [13, Result 8.10].

Theorem 6. Suppose f : Rn → R is finite and lower
semicontinuous at x ∈ Rn. Then, there exists a sequence
xk →

f
x with ∂̂f(xk) 6= ∅ for all k.

The main consequence of Theorem 6 is that it provides
conditions for a regular subgradient to exist for a dense subset
of R.

B. Proof of Theorem 5

We now prove Theorem 5. Since C(Λ∆) is finite and
continuous at ∆ = 0, it follows that it is lower semicontinuous
at ∆ = 0 and by Theorem 6 that there exists a sequence
(∆k)k → 0 such that for each k, ∂̂(C(∆k)) 6= ∅. By the
definition of the regular subgradient, this implies that for each
k there exists a v ∈ R such that

C(Λ∆)− C∆k ≥ v∆ + o(∆). (16)

By applying the triangle inequality, it follows that

C∆k − C(Λ∆) ≤ |v|∆ + o(∆). (17)

By Theorem 1, C(Λ∆) is continuous at ∆ = 0. This implies
that for all ε > 0, there exists Nε ∈ Z such that for all k > Nε,
C(Λ)− C∆k ≤ ε. It then follows that for all k > Nε,

C − C(Λ∆)− ε ≤ C∆k − C(Λ∆) ≤ |v|∆ + o(∆). (18)

as desired.
Now suppose, in addition, that C(Λ∆) is convex. By Theo-

rem 1, C(Λ∆) is continuous at ∆ = 0 and hence there exists
a subgradient g ∈ R such that

C(Λ∆)− C(Λ) ≥ g∆. (19)

Moreover,

C(Λ)− C(Λ∆) ≤ |g|∆, (20)

which completes the proof.

4Bδ(x) is the δ-ball in Rn centered at x.

VI. DISCUSSION

The discrete approximation provides an alternative means
of characterizing the capacity. This is achieved adopting the
capacity sensitivity point of view and studying the effect of
restricting the input to be discrete. A key observation from our
study of the discrete approximation is the result for the rate
of convergence in Theorem 5 holds for a very wide range of
memoryless additive noise channels.

In this section, we discuss implications of the discrete
approximation point of view for characterizations of the
optimal input and extensions to more general point-to-point
channels. We also point out how the techniques used to
establish Theorem 5 can be applied to obtain scaling laws
for other capacity sensitivity problems arising from constraint
perturbations.

A. On the Optimal Input of (5)

A key question in the study of the capacity in (5) is whether
or not the optimal input is discrete. The standard method in
order to establish discreteness of the input is due to Smith
[2] and is based on the behavior of the entropy density. A
sufficient condition for the optimal input to be discrete has
recently been established by generalizing Smith’s technique
in [3]. Here, we note another sufficient condition obtained by
considering the form of the function C(Λ∆) : R+ → R+.

Proposition 1. Suppose that the optimal input probability
measure for the problem in (5) exists and is unique. If C(Λ∆)
from (7) is convex in ∆, then the optimal input is not discrete.

Proof. First, observe that C(Λ∆) is non-increasing in ∆.
Moreover if the optimal input is discrete, then there exists
∆0 > 0 such that C(Λ∆) = C(Λ) for all ∆ ≤ ∆0. Observe
that the epigraph of C(Λ∆) in this case is non-convex, which
in turn implies that C(Λ∆) is non-convex.

At this point, we do not have a characterization of channels
for which C(Λ∆) is in fact convex. Nevertheless, Proposition 1
suggests that the behavior of C(Λ∆) may provide further
insight into the behavior of the optimal input distribution.

B. General Scalar Point-to-Point Memoryless Channels

A key observation from the conditions in Theorem 1
and Theorem 5 is that they do not depend directly on the
assumption that the channel is linear and additive with the
noise distribution admitting a density. As such, these theorems
can be applied to more general point-to-point memoryless
channels under the assumption that it is possible to establish
that the mutual information is continuous on the constraint
set Λ in these settings. However, this can be challenging as
the output Y may no longer admit a density and the mutual
information given an input X must be written in the general
form developed by Pinsker [19], given by

I(X;Y ) = sup
∑
i,j

PX,Y (Ei × Fj) log
PX,Y (Ei × Fj)
PX(Ei)PY (Fj)

,

(21)



where PX,Y is the joint distributions, PX , PY the marginal
distributions, and the supremum is taken over all partitions
{Ei} of supp(X) and {Fj} of supp(Y ).

C. General Constraint Perturbations

In order to develop results on the rate of convergence of
discrete approximations, the problem is formulated in terms
of the capacity sensitivity in the case of a particular class
of constraint perturbation. It is also possible to consider other
classes of constraint perturbations by using similar techniques.
Of interest is the study of capacity sensitivity in the context
of channels subject to constraints of the form

Λ(b) = {µ : Eµ[f(|X|)] ≤ b}, (22)

where f is positive, non-decreasing and lower semicontinuous.
That is, the capacity C(b) is given by

sup
µ∈P

I(µ, pN )

subject to µ ∈ Λ(b).
(23)

For b, b̃ ∈ R+, we seek to establish a bound on the capacity
sensitivity |C(b) − C(b̃)|. From [7], we have the following
result.

Theorem 7. Let b ∈ R+ and suppose that the following
conditions hold:

(i) Λ(b) in (22) is non-empty and compact.
(ii) I(µ, pN ) is weakly continuous on Λ(b).

Then, C(b) in (23) is continuous at b.

With Theorem 7 in hand, it is possible to obtain rates
of convergence in an analogous fashion to the proof of
Theorem 5. In particular, if C(b) < ∞, by Theorem 6 it
then follows that there exists a sequence (bk)k → b such that
for each k, ∂̂(C(bk)) 6= ∅. By the definition of the regular
subgradient, for each k there exists a v ∈ R such that

C(b̃)− C(bk) ≥ v(b̃− bk) + o(|b̃− bk|). (24)

If b ≥ b̃, by the continuity of C(b) at b, it then follows that
for all ε > 0 sufficiently small

|C(b)− C(b̃)− ε| ≤ |v||b− b̃|+ o(|b− b̃|), (25)

which is consistent with [7, Theorem 2], with the difference
that the convergence is to a point arbitrarily close to C(b).
Nevertheless, the proof technique is considerably simpler and
is of the same form as that of Theorem 5, which suggests that
it is useful for the study of general constraint perturbations.

VII. CONCLUSION

In this paper, discrete approximations of the capacity for
continuous channels were studied. In particular, the rate of
convergence was analyzed within the capacity sensitivity
framework. The key conclusion is that for a very wide range of
channels, the approximation converges to arbitrarily close to
the capacity of the continuous channel at rate O(∆), where ∆
is the discretization level of the approximation. This result was

obtained by exploiting results from the theory of point-to-set
maps and techniques from nonsmooth analysis of optimization
problems.

The work in this paper suggests a number of further
avenues of investigation. For instance, the conditions on the
channel require that the mutual information is continuous on
the constraint set. It remains an open question to establish
this continuity condition in the general setting of point-to-
point channels with mixed-type outputs. Another aspect of
this work is the emphasis on the behavior of the capacity of
the discrete approximation C(Λ∆). An interesting direction
is therefore whether new conditions for discreteness of the
optimal input distribution can be obtained from properties of
C(Λ∆). Finally, rates of convergence for general constraint
perturbations can be established via the regular subgradient for
finite dimensional constraint parameters. An open question is
to find rates of convergence in the infinite dimensional case.
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