
HAL Id: hal-01687727
https://hal.inria.fr/hal-01687727

Submitted on 18 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Parallelization Scheme for the Hermite
Interpolation Based Gyroaverage Operator

Nicolas Bouzat, Fabien Rozar, Guillaume Latu, Jean Roman

To cite this version:
Nicolas Bouzat, Fabien Rozar, Guillaume Latu, Jean Roman. A New Parallelization Scheme for the
Hermite Interpolation Based Gyroaverage Operator. ISPDC 2017 - 16th International Symposium on
Parallel and Distributed Computing, Jul 2017, Innsbruck, Austria. pp.1-8, �10.1109/ISPDC.2017.12�.
�hal-01687727�

https://hal.inria.fr/hal-01687727
https://hal.archives-ouvertes.fr


A New Parallelization Scheme for the Hermite
Interpolation Based Gyroaverage Operator

Nicolas Bouzat:˚, Fabien Rozar;§, Guillaume Latu˚, Jean Roman¶
˚CEA/IRFM, FR-13108 Saint-Paul-lez-Durance

:Inria, FR-54600 Villers-lès-Nancy
;Maison de la Simulation, FR-91191 Gif-sur-Yvette
§Laboratoire de Mécanique et Génie Civil (LMGC),

Université de Montpellier, CNRS, FR-34000 Montpellier
¶Inria, Bordeaux INP, CNRS (LaBRI),

FR-33405 Talence

Abstract—Gyrokinetic modeling is appropriate for describing
plasma turbulence in the core of Tokamaks, and the gyroaverage
operator is a cornerstone of this approach. In a gyrokinetic code
the gyroaveraging scheme needs to be accurate enough, but also
requires a low computational cost because it is often applied on
the main unknown, namely the 5D guiding-center distribution
function, as well as on several 3D fields. The current gyroaverage
implementation used in the GYSELA code has recently been
improved [6], enhancing the precision of the operator thanks
to Hermite interpolation. In the present paper, we describe
a new parallelization scheme for the gyroaverage operator. It
mainly avoids costly transpositions of the full 5D function using
halo exchange instead. Though the computational cost remains
the same, the communication one is much smaller. The overall
algorithm is also improved by cleverly interleaving commu-
nications and computations, thus allowing for a reduction of
communication costs and a more efficient thread parallelization.
The execution time with this algorithm is up to twice as fast
as the previous version. The benefit of an improved scheme
providing the overlap of communications by computations is also
shown, again improving execution times. The description of the
algorithms is given, together with an analysis of the achieved
performance.

I. INTRODUCTION

Gyrokinetic theory is the framework chosen for the simu-
lation code named GYSELA [4]. This parallel code is used to
study turbulence dynamics in the core of a Tokamak plasma.
The gyroaverage operator J , a key element of the gyrokinetic
model, transforms the so-called guiding-center distribution
into the actual particle distribution [2]. It enables one to take
into account the cyclotronic motion of the particles around the
magnetic field lines at a distance called Larmor radius. These
motions are faster than the turbulence we are looking at and the
computational costs for simulating them explicitly would be
too high. In the present paper, we improve the parallelization
of the gyroaverage operator in the GYSELA code to shorten
the execution time. In a gyrokinetic code, the gyroaveraging
scheme needs to be accurate enough to avoid spoiling the data,
but also requires low computational costs because it is applied
several times per time step on the main unknown, the 5D
guiding-center distribution function. The gyroaverage is used
to compute the right-hand side of the Poisson equation, to

compute the gyroaveraged electric potential that is used to get
the advection field in the Vlasov solver and in several diagnos-
tics that export physical quantities on mass storage. Our aim is
to reduce the cost of this operator without compromising the
overall numerical accuracy. In this context, the optimization of
numerical methods, algorithms and implementations is a major
issue. Physicists perform large GYSELA simulations using
from 1k to 16k cores on supercomputers. This paper presents
the improvements made on the algorithm based on Hermite
interpolation which significantly speeds up the gyroaverage
operator. Technical points are further described in the extended
version of this paper [1].

The GYSELA code uses a five dimension mesh r ˆ θ ˆ
ϕ ˆ v‖ ˆ µ to simulate plasma charged particles evolving in
the Tokamak. These particles are confined in a strong magnetic
field. r, θ and ϕ are the spatial dimensions, v‖ the speed along
the magnetic field lines and µ the magnetic momentum. The
gyroaverage operator mimics the cyclotronic motion projected
in the rˆ θ plane. Indeed the component of the motion along
the field line is negligible towards its rotation around the
field line. Thus, only data from a same plane are required
to compute the gyroaverage. This paper essentially focuses
on the integration of the gyroaverage operator in one costly
diagnostic using the gyroaverage on the whole distribution
function. Integration in other sections of the code will be part
of future works. In this diagnostic, the data distribution is such
that the r and θ dimensions are split among the MPI processes
and the ϕ and v‖ dimensions are entirely contained on each
process. The µ dimension is always split between groups of
MPI processes (i.e. a MPI process has only one value of µ).
In the previous implementation of the gyroaverage operator, a
Padé approximation method was used. It requires the whole
r ˆ θ plane to be stored locally in memory. Therefore, it
was necessary to transpose the whole distribution function
between MPI processes before and after the computation of
the gyroaverage. The method based on Hermite interpolation
does not have this requirement which permits us to avoid
these costly transpositions. Moreover it does not damp the
small variations of the function as the Padé approximation
did. This new method has previously been implemented in



GYSELA [6], replacing the Padé approximation based operator
and leading to a great increase in precision and possibilities
for better parallelization schemes. However, the transpositions
were kept, as it was easier for a first integration in GYSELA
to keep the same parallel strategy.

The work we have done on the gyroaverage operator is
presented in this article as follows. The current method for
gyroaveraging using Hermite interpolation is explained in
Section II. Section III shows how the algorithm has been
redesigned to fit a new data distribution. Section IV details the
optimization done by overlapping computations and commu-
nications, shortening the execution time by a factor two in the
best cases. Both of these two sections detail the performance
results obtained in the GYSELA code. Section V concludes and
gives some hints to optimize further the gyroaverage operator.

II. GYROAVERAGE ALGORITHM AND CURRENT
IMPLEMENTATION

This section gives the details of how the gyroaverage is used
in GYSELA.

A. Gyroaverage operator

We will now describe the numerical framework and approx-
imations that are made for the gyroaverage operator. Let us
consider a Larmor radius ρ, a grid in polar coordinates r ˆ θ
(poloidal plane) and a function f defined over this grid. The
gyroaverage operator Jρ consists, for each point P of the
plane, in a weighted integral of the value of f over the circle
of radius ρ and center P . In a discrete space, this translates
as a mean of NL points uniformly distributed on the circle
of Larmor and interpolated with the Hermite method. The
precision of the operator directly depends on NL. An example
is shown in Figure 1 for NL “ 5. To compute the gyroaverage
at the point ‚, NL points N are placed on the circle of radius
ρ. As these points are unlikely to coincide with a mesh point,
an Hermite interpolation is performed for each of them using
the values at the four corners � of the cell in which they
are contained. Thus the gyroaveraged value of f at a point
pri, θjq of the grid writes

Jρpfqpri, θjq »
1

NL

NL
ÿ

k“1

Hpfqpxk, ykq (1)

with H being the Hermite interpolation function, xk “

ricospθjq ` ρcospθj ` k
2π
NL
q and yk “ risinpθjq ` ρsinpθj `

k 2π
NL
q being the coordinates of the points on the Larmor circle

in Cartesian coordinates. When one of these points is outside
the mesh, a radial projection is done on the inner or outer
border.

Given one of the NL points N of coordinate pr̃, θ̃q, the
computation of the interpolation H requires the value, the
derivatives in r and θ and the cross-derivatives of each of the
corners of the containing cell. The 2D interpolation behaves as
if two 1D interpolations along r and θ were performed. First,
an interpolation along r is performed from the two corners
of each θ side of the cell, θ1 and θ1 ` 1, to the points of
same respective θ coordinate and same r coordinate as the

Figure 1: Computation of the gyroaverage.

target point (r “ r̃). Then a second interpolation along θ is
performed from these two new points to reach the target point
(r̃, θ̃). The coefficients used for the Hermite interpolation are
detailed in [6].

B. Gysela implementation

This section presents how the numerical scheme explained
in the previous paragraph is implemented in GYSELA accord-
ing to the work conducted in [6]. We denote Nr and Nθ, the
number of mesh points in the r and θ dimensions.

For a given point, the computation of the gyroaverage
requires a certain set of points which coefficients in the
Hermite interpolation are stored in the matrix Mcoef . Each
line i of the matrix corresponds to the coefficients of the value
and three derivatives of all the points used in the interpolation
of the point pr“ri, θ“0q. These coefficients are also valid for
every θ-value thanks to radial symmetry. Furthermore, Mcoef

is sparse as for each ri, only a few cells (grey cells in Fig. 1)
along the Larmor circle center in pr“ri, θ“0q are involved in
the gyroaverage. Their number depends on NL, ρ and r.

In the actual implementation, Mcoef is represented as an
array of dimension Nr where each cell contains: an array of
indexes indicating which point is involved in the interpolation
for the given r and of an array of corresponding coefficients.
Thus the matrix is reduced to the minimum1 and is computed
once for all during the initialization. The size of Mcoef is
then at most of 36NrNL elements (see [1]). As GYSELA
simulations usually use NL “ 8, this storage method is
lighter than storing the whole mesh for each radius (N2

rNθ
elements). Once the initialization ended and Mcoef computed,
the gyroaverage operator is called several times during each
time step on the whole poloidal plane. A matrix Mfval is built
at the beginning of a call by computing the derivatives at each
point of the plane registered in Mcoef .

The cost of the core computation of the gyroaverage oper-
ator, where the matrices of coefficients and values are multi-
plied, is described in [1]. In short, the number of operations to
compute the gyroaverage of one point depends, in most cases
and for a given r value, on the number of different points
involved in the interpolations of the NL points on the Larmor
circle. The cost of gyroaveraging one poloidal plane is then

1If two interpolation points are contained by neighboring cells, the different
contributions of the overlapping corners are stored in a single coefficient in
Mcoef .



ΘpNLNrNθq, so the total cost for the full 5D distribution
function is ΘpNLNrNθNϕNv‖Nµq.

In GYSELA the distribution of data is twofold. A MPI
process Pi,j , located on the i-th r row and j-th θ column
of MPI processes, either has data D1pr “ ˚, θ “ ˚, ϕ “

ϕi Ñ ϕi`1, v‖ “ vj Ñ vj`1, µ “ µi,jq or D2pr “

ri Ñ ri`1, θ “ θj Ñ θj`1, ϕ “ ˚, v‖ “ ˚, µ “ µi,jq
where ri “ iˆ pNr{Nprocrq and similarly for θj , ϕi and vj .
Nprocr is the number of MPI processes in the radial direction.
Several processes share the same µi,j . The gyroaverage, as
implemented in previous version, requires the full poloidal
plane in local memory, i.e. distribution D1. However the
data distribution when the operator is called is D2. It thus
requires a costly transposition of the full distribution function
before the gyroaverage and after as the computation performed
subsequently requires the D1 distribution. This is the reason
why a gyroaverage operator which can handle directly D2 dis-
tribution can drastically reduce the volume of communication.

Algorithm 1: Hermite gyroaverage in GYSELA
Data: Distribution function f , Nlϕ and Nlv‖
Result: Gyroaveraged distribution function J0.f
begin

1 ftmp “ transpose_forward(f)
OpenMP parallel zone

for i : 0Ñ NlϕNlv‖ ´ 1 do
2 preprocess(ftmppiq)
3 gyroaverage(ftmppiq)
4 postprocess(ftmppiq)

5 f “ transpose_backward(ftmp)

Algorithm 1 shows how the basic Hermite interpolation
gyroaverage based on transpositions was integrated in GY-
SELA inside the diagnostic in which the new version will be
implemented. Nlϕ and Nlv‖ are the dimensions of the local
subdomain in ϕ and v‖. ftmp exactly corresponds to f but
using distribution D1. During the preprocessing step 2, the
function to be gyroaveraged is built from the 5D distribution
function. The same goes for the post-process step 4 where
some macro-data are gathered on the gyroaveraged function
(fluid momentum, velocity integrals over v‖ and µ . . . ).

III. PARALLELIZATION WITH HALO EXCHANGE

This section details the new solution for the gyroaverage
operator using Hermite interpolation. The algorithm has been
changed to fit data distribution D2, and some optimizations
have been done for the parallelization. The numerical analysis
and core computations remain the same and communication
schemes are improved. We only consider the cases were the
Larmor radius ρ is small against the innermost radius of the
poloidal plane rmin.

A. Halo and ghost points

In order to compute the gyroaverage with only a rˆθ patch
of data in local memory, it is necessary to exchange a few data
between processes.

Indeed, the computation of the gyroaverage for points on the
border of a r ˆ θ patch requires a certain number of values
from other MPI processes depending on the Larmor radius

and on the discretization of the mesh. Considering Figure 2,
the ‚ point of process 2 requires values and derivatives from
points � located on the processes 1, 3 and 4. � point
also requires neighboring points to compute their derivatives
as seen in II-B. The number of exchanged points also depends
on the r coordinate of the point to be gyroaveraged. The closer
it is to the inner circle of the plane, the narrower the meshing
in θ becomes and so the more cells the Larmor circle is
likely to intercept. The more cells the Larmor circle intercepts,
the larger the halo will be and thus the communication. The
computation still mainly depends on NL but now also loosely
on the Larmor radius.

The halo consists of all the points located on neighbor
processes (ghost points) needed by a process to be able to
apply the gyroaverage on its local subdomain. Its size must
be as small as possible so that its communication cost would
be smaller than the cost of a full transposition. Otherwise the
gain of Hermite interpolation gyroaverage would be lost. The
computation of the size of the halo only requires knowing the
points involved in the interpolation of the four corners of the
patch. It can even be reduced to the knowledge of one corner
as shown later.

For each specific subdomain, the number of ghost points
in dimension r is Nghost r, and Nghost θ in dimension θ.
Nghost r can be easily computed as the distance between two
points with consecutive r coordinate and same θ coordinate is
a constant value (prmax ´ rminq{Nr). rmax and rmin are the
radii of the r borders of the poloidal plane. Thus

Nghost r “ r
ρNr

prmax ´ rminq
s`Nderiv

where Nderiv is the number of points used to compute the
derivatives (here two). However, it is more complicated for
Nghost θ. Considering the center of a Larmor circle pr, θq, the
point with maximum r on the circle is pr ` ρ, θq. The point
with maximum θ on the circle though is not pr, θ ` ρ{rq, but
the intersection of the tangent to the Larmor circle, originated
from the center of the plane O, with the Larmor circle.

Thus the computation of the halo size follows these steps:
given the corner of lowest r and highest θ of the patch, the
indexes of the corners of the cells containing the points of its
Larmor circle are calculated. Among those points, the largest θ
index is kept and the difference with the θ index of the center
of the Larmor circle gives number at which we need to add
Nderiv to obtain Nghost θ. Finally, the size of the halo writes
NH “ 4Nghost rNghost θ ` 2pNghost rNlθ ` Nghost θNlrq
with Nlr and Nlθ being the dimensions of the local subdomain.
The Figure 3 represents these values on a subdomain.

Furthermore we chose to have a unique communication
scheme for all processes sharing the same Larmor radius in
order to simplify the implementation. It means, given a Larmor
radius, that every process of the poloidal plane will have the
same Nghost r and Nghost θ even though Nghost θ depends
on r. Of course, the largest one is chosen as it is needed by
the processes in charge of the inner radii. This simplification
increase drastically the number of exchanged points if rmin



Figure 2: Data distribu-
tion over MPI processes
and gyroaverage exam-
ple.

Receive 1

Send 1

Send 2

r

θ

Rece

Nghost_θ Nlθ

Nghost_r

Nlr ive 2

Figure 3: Subdomain repre-
sentation (local points are in
gray) and halo communication
scheme.

is approximately equal to ρ which is not yet the case in
GYSELA. The communication scheme for halo will need to
be refined accordingly, keeping in mind that processes with
smaller halo communications will anyway wait for processes
with the highest communication costs. To conclude, the size of
the halo is computed during the initialization steps as the mesh
does not change during the simulation. For the processes in
charge of the inner and outer r borders, boundary conditions
are set up.

B. Block communication and OpenMP parallelization

Several optimizations for communications and for the par-
allelization of the computation can be done. Let us recall that
for a process Pi,j , we have the data distribution D2pr “ ri Ñ
ri`1, θ “ θj Ñ θj`1, ϕ “ ˚, v‖ “ ˚, µ “ µi,jq; in our setting
it means that every process has to compute the gyroaverage
for Nϕ ˆNv‖ patches. Each process has only one µ, and the
computation of the gyroaverage only depends on µ for the
halo size as ρ “

?
2µ. So µ will be considered fixed for the

explanations that follow.
Until now, all the communications were performed during

the transposition steps (see Algorithm 1), before and after the
computation. The same could be done by exchanging the halos
for every poloidal plane beforehand, but GYSELA is a highly
memory consuming application and the gyroaverage operator
is called within the part of the code where the memory peak
is reached. Therefore, it is preferable to exchange the halos
only when the corresponding planes are about to be processed.
However, to reduce the initialization costs of each commu-
nication, it is also interesting to perform them by grouping
the halos of several poloidal planes together. Thus, once the
communication accomplished, several planes (a block) are
ready to be gyroaveraged and they can be computed in parallel
in a multi-threaded loop. The size of a block of halos can
be tailored so that its memory footprint is not too important
with regards to the memory limitation of the machine and so
that the performance gains achieved by thread parallelization
remains high. The steps of the computation of the gyroaverage
are detailed in Algorithm 2.

During the initialization step 1, the local subdomains of the
current block are copied in the temporary array fblock which
is big enough to store the local subdomains plus their halos

received during the communication step 2. Step 4 performs
the backward operation, retrieving the gyroaveraged local
subdomains and storing them back into the function f as well
as gathering data via the post-process for the diagnostic. For a
given iblock, the vi and ϕi refers to the v‖ and ϕ coordinates
of the planes composing the block according to the formula

vi “ modulopiblock ˆ bs` i, Nϕq

ϕi “ piblock ˆ bs` iq ˜Nϕ

where bs is the size of a block. For future reference, we will
denote Nblock “

NϕNv‖
bs .

In step 3, the gyroaverage operator used is the same as the
one described in Section II-B, but it is applied to a function
whose size corresponds to the local subdomain size plus the
halo. In our implementation, we ensure that each plane of the
block is initialized by the thread which gyroaverages it in order
to maximize memory locality and affinity. The dimension sizes
and the number of threads being both powers of two, there is
no thread left with more work than another, leading to an ideal
load balancing.

Algorithm 2: Halo based gyroaverage by block
Data: Distribution function f , block size bs, Nghost r , Nghost θ , Nlr and

Nlθ
Result: Gyroaveraged distribution function J0.f
begin

fblock “ array(bs, Nlr ` 2Nghost r,
Nlθ ` 2Nghost θ)

for iblock : 0Ñ
NϕNv‖
bs ´ 1 do

OpenMP parallel zone
for i : 0Ñ bs´ 1 do

1 fblockpiq “ preprocess(fprmin Ñ
rmax, θmin Ñ θmax, ϕi, vi, µq)

2 send_receive_halo(fblock)
OpenMP parallel zone

for i : 1Ñ bs do
3 gyroaverage(fblockpiq)
4 fprmin Ñ rmax, θmin Ñ θmax, ϕi,

vi, µq “ postprocess(fblockpiq)

Concerning the communication step 2, one process ex-
changes data with the processes which are before and after
it2 in r (down and up), with those before and after him in
θ (left and right) and finally with the four other neighboring
processes ”in the corners”. The number of communications
can be reduced from eight to four by avoiding the corners
using the scheme pictured at Figure 3. For readability, only
the r down and θ left phases have been pictured. First, each
process sends and receives the requested data to its neighbors
in r (in green), second it sends and receives its data in θ plus
some of those received during the previous step (in red). Thus
the communications with the processes located in the corners
are avoided at the cost of a synchronization in the middle of
the communication phase. The communications are carried out
using the MPI_Sendrecv() routine to send the halos for all
the planes of a block in one step. A communication scheme
using non-blocking MPI routines has also been evaluated, but

2If the process is in charge of a r border, a boundary condition is applied
for the corresponding part of the halo instead.



proves to be less performing in the benchmark we conducted.
Only the solution using the blocking routines is presented here.

In the end, the new implementation is expected to be faster
as the communication costs are reduced compared to the orig-
inal version based on transposition though the computational
cost is higher. The memory footprint is also reduced as the
function distribution was previously fully duplicated whereas
now, we only need one buffer fblockpiq with relatively small
size.

C. Performance results

In the following, the performance of the new solution,
described in Section III-B, is compared to the one of the
original approach of Section II-B.

The simulations presented in this section were performed
on the Poincaré cluster located at Maison de la Simulation,
France. Nodes are composed of two Intel(R) Xeon(R) E5-
2670 with 8 cores and 32GB of shared memory each. In this
study, we consider NL constant and equal to 8 as it is the
value which is used in usual production runs.

The free parameter of the new parallel algorithm is the
block size, i.e. the number of poloidal planes for which halo
exchange is performed in one communication and for which
computation is parallelized at thread level. It is interesting
to study the block size which allows to achieve the best
performance. As shown in Figure 4, the optimal block size
depends on the number of processes and on the value taken
by µ. For instance, the optimal size for 4 processes in r and
θ and µ “ 4.0 is 64, when for µ “ 8.0, it is 16. If now
we switch to 2 processes in r and θ, the optimal block size
is above 512 for µ “ 8.0. In fact, for a given mesh size, a
greater number of processes means smaller subdomain sizes
and thus less computation time with regards to communication
time. Conversely the larger µ, the heavier the communication
costs for the halo weighs in the gyroaverage operator; indeed
µ is related to the Larmor radius via the relation ρ “

?
2µ

and thus to the halo size. Hence, for production runs with
multiple µ, there are as much optimal block sizes as different
values of µ. It could be interesting to consider the possibility
to have different block sizes depending on the value of µ in
the code. Nevertheless, the MPI synchronization, located at the
end of the diagnostic code we are focusing on, would make it
useless as the final time will be dominated by the slowest MPI
group which will be the one in charge of the largest value of
µ. Ultimately, the main problem to solve is to determine the
optimal block size for the group of largest µ.

Figure 5 shows the execution times of the gyroaverage
operator for the previous version and for the new one. The
mesh size is p1024ˆ 1024ˆ 64ˆ 32ˆ 1q with µ “ 4.0 and a
block size equal to 128. The number of cores is changed by
increasing alternatively the number of MPI processes along r
and θ. The number of threads per process is constant and equal
to 8. With a small number of cores the halo based version is
almost twice as fast. However it loses in scalability with the
number of cores compared to the transposition version. This
is mainly due to the decrease of the work load for each block

Figure 4: Normalized execution times for a mesh size of
p512ˆ 512ˆ 64ˆ 31q according to the block size for µ “ 8
and µ “ 4. Each curve stands for a different number of MPI
processes (Npcs “ Nprocθ “ Nprocr).

whose cost becomes lower than its associated communication
cost as explained below.

Figure 5: Strong scaling and comparison of execution time
of the Hermite gyroaverage based on transposition and the
gyroaverage based on halo exchange.

In Figure 6 the ratio between communication and compu-
tation time in the gyroaverage operator is given according to
the size of blocks for a given mesh and number of threads.
Though relatively big compared to the communication time for
small blocks, the computation time becomes less predominant
along with the size of the blocks. These results tend to show
an equal amount of communication and computation time for
large numbers of cores. Thus, it would be interesting to be
able to absorb these communication costs by performing them
concurrently with the computation.

Figure 6: Comparison of the ration between communication
and computation time for different number of MPI processes
according to block size.

IV. COMMUNICATION AND COMPUTATION OVERLAPPING

This section details how the performance of the gyroaverage
is improved by overlapping communications and computations



in the operator. It is essentially performed through finer grain
parallelization, one thread doing communication, while the
other threads perform the computation.

A. Algorithm, complexity and expected speedup

As seen in Section III-C, large production simulations usu-
ally show communication times and computation times which
are relatively close one to each other. It is then possible to
further improve the algorithm and decrease execution time by
performing communications and computations simultaneously.
Similar and more complete analyses are performed in [3]
and solutions for a good calibration of the parameters of the
overlapping are suggested.

Using the improved blocked version of the Hermite gy-
roaverage (Section III-B), the idea is to start the initialization
and communication of the next block while performing the
computation of the current one. The different steps are detailed
in Algorithm 3. Step 1 builds the different blocks to be pro-
cessed. Step 2 consists in the initialization and communication
of the current data block and step 3 is the computation and
post-processing of the previous data block. There is one more
iteration in the iblock loop than the total number of blocks so
that the first iteration only performs the communication for
the first block to initialize the macro-pipeline.

Algorithm 3: Patched gyroaverage with overlapping
Data: Distribution function f , block size bs
Result: Gyroaveraged distribution function J0.f
begin

Lϕv‖ “ tHu

1 for iblock : 0Ñ
NϕNv‖
bs ´ 1 do

Ltmp “ tHu
for i : 0Ñ bs´ 1 do

vi “ modulopiblock ˆ bs` i, Nϕq
ϕi “ piblock ˆ bs` iq ˜Nϕ
Ltmp “ Ltmp ‘ fprmin Ñ rmax, θmin Ñ
θmax, ϕi, vi, µq

Lϕv‖ “ Lϕv‖ ‘ tLtmpu

OpenMP parallel zone

for iblock : 0Ñ
NϕNv‖
bs do

2 Task 1

if iblock ‰
NϕNv‖
bs then

preprocess(Lϕv‖ piblockq)

async_send_receive_
_halo(Lϕv‖ piblockq)

3 Task 2
if iblock ‰ 0 then

wait_comm(Lϕv‖ piblock ´ 1q)

gyroaverage(Lϕv‖ piblock ´ 1q)

posprocess(Lϕv‖ piblock ´ 1q)

There are three ways algorithms with overlap can behave
according to the relative size of the different execution times.
Either the computation of a block and the communication
of a block have the same duration (a), or communication
is longer than computation (b), or computation is longer
than communication (c). This is well depicted in [1]. We
consider preprocess and postprocess times to be included in the

communication and computation times, respectively, assuming
they are negligible.

The ideal behavior is for cases where communication and
computation have the same execution times (a). In this case the
global execution time can be decreased by almost a factor 2.
But if communication (b) (resp. computation (c)) times are
too important compared to computation (resp. communication)
times, the gain can be drastically reduced. This can be numer-
ically assessed by estimating the complexity of the different
stages of the diagnostic. Considering the costs of preprocess
and postprocess negligible compared to the communication
and computation ones, the cost of the gyroaverage operator
with overlapping can be written

CpJoverlapq “ NblockmaxpCcomm, Ccompq`minpCcomm, Ccompq

where Nblock “
NϕNv‖
bs is the number of blocks and Ccomm

and Ccomp are the costs of communicating and computing one
block (which depend on the size of a block). Let the cost of
communicating a message of size n be β`nτ (β start-up time,
τ latency) and γ be the cost of gyroaveraging one plane. Then
Ccomm “ β ` bsNHτ and Ccomp “ γbs. The optimal number
of blocks can then be deduced analytically, but requires the
knowledge of the network hardware typical times as well as
the effective time needed to compute the gyroaverage on a
block (also depending on the thread parallelization efficiency).
Such a study is conducted in [3]. However, if we make
the simplifying assumption that these two costs are linearly
dependent on the block size (β “ 0), the maximal expected
speedup obtained with the overlap can be easily computed.
According to III-B, the cost of the halo exchange version of the
Hermite gyroaverage is CpJhaloq “ NblockˆpCcomm`Ccompq.

Let α “ Ccomm
Ccomp . Then the speedup between the halo and

overlap version writes

CpJhaloq
CpJoverlapq

“
1` α
α

Nblock
` δ

(2)

where δ “ α if α ď 1 and 1 otherwise. This equation shows
first, that the speedup which can be expected from the overlap
quickly decreases as communication time and computation
time diverge, and second, that the speedup is maximal and
equals to 2 for the ratio α “ 1. This result gives a coarse
overview of the speedup which can be expected from the
algorithm with overlapping.

B. Implementation

The implementation of the algorithm with overlapping is
based on OpenMP thread parallelization. It requires MPI com-
munications that can be performed in the background during
computations. OpenMPI and IntelMPI, which are the main
MPI implementations that GYSELA currently uses on most of
the clusters, do offer non-blocking communication routines;
however these are not really asynchronous. It means that the
pending communications mainly progress whenever a MPI
function is called [7]. An implementation with MPI_Isend
and MPI_Irecv was first tried but quickly dropped as
the communications mostly occurred during the MPI_Wait



though a lot of computation was done since the call to the
send routine.

To get the expected overlapping behavior and design a
portable approach, the ”asynchronous” communications are
performed by a dedicated thread (master). Moreover the loop
scheduling of OpenMP has been set to dynamic, i.e. once
a thread is done with its assigned loop iteration, it requests
others to the scheduler. This way, no index of the parallelized
loop is assigned beforehand to the master thread so the compu-
tation can be performed entirely even if the communications
are longer. And in the case where the communications are
shorter, this scheduling allows the master thread to join the
computation loop once it has performed the communications.
However, this could lead to a loss of cache locality as one
plane is no longer pre-processed, computed and post-processed
by the same thread. Indeed, OpenMP static scheduling ensures
that a thread is assigned the same loop indexes in any loop
which has the same first and last index, which is not the case
for the dynamic scheduling. Figure 7 pictures the scheduling
of the work load between the OpenMP threads in the case
where the communication time for a block is shorter than its
computation time (most common case).

OpenMP parallel section

{
{

}

}1st block
comm.

2nd block
comm.

1st block init.
2nd block init.

}1st block 
comput.

{Last block
comm.

}1st block post-
process

}Last block 
comput.

Figure 7: Behavior of the OpenMP threads in the main loop
for the version of the algorithm with overlapping with α ă 1
considering three blocks.

C. Performance results

In the following, the performance of the solution with
overlapping, is compared to that presented in Sections III-B
and II-B. The dimensions of the mesh used are p1024ˆ1024ˆ
64 ˆ 32 ˆ 1q. The performance detailed in this section were
performed on the Helios cluster located at the IFERC center in
Rokkasho, Japan which has an architecture very close to that
of the Poincaré machine (Intel(R) Xeon(R) E5-2680 instead
of E5-2680).

Tab. I shows how the version with overlapping of the
gyroaverage scales with the number of cores and is compared
to the halo version. The algorithm with overlapping is faster
than the halo algorithm and scales in a similar way. The
speedup results behave as expected in previous sections: the
time gained over the halo version when the optimal block size
of 64 (few blocks) is used is around 10%, and it reaches 100%

with numerous small blocks of size 4. Moreover we see that
the performance of the version with overlapping seems to be
much less dependent on the block size. It allows us to use
the same size for any value of µ (see Section III-C) without
having to scan for each optimal block size beforehand.

Version and Number of cores
block size 64 128 256 512 1024

Halo version (4) 20.67s 10.16s 5.21s 2.83s 1.56s
Overlap version (4) 11.55s 5.73s 2.62s 1.39s 0.95s
Halo version (64) 12.23s 6.27s 3.02s 1.67s 1.01s

Overlap version (64) 11.39s 5.66s 2.65s 1.43s 0.98s

Table I: Scaling of the execution time of the gyroaverage
operator for the halo and version with overlapping with
different block sizes (between parenthesis).

Evaluating the efficiency of the improvements detailed in
this paper on an overall GYSELA execution requires a test case
with several µ values, similar to usual production runs. Table
II shows the total time spent in the diagnostic in which the halo
and overlap gyroaverage algorithms have been implemented.
The execution covers 24 time steps, and the diagnostic is
performed every 3 time step. The improvement achieved by
the halo version is great but highly depending on the value of
µ. Nonetheless, µ never takes a value above 16 in production
runs and the halo version still demonstrates improvements at
this point. One can also notice that when µ is small enough and
is tending to zero, so that the Larmor circle only intercepts the
four cells neighboring the point being gyroaveraged, the cost
of the gyroaverage does not depend on µ anymore. Indeed, the
number of cells used in the computation is at least four, leading
to a constant amount of communication and computation. The
24 seconds of the transposition version for µ “ 0 are due to
the transpositions which still needed to be performed for the
diagnostic post-process though the gyroaverage function for
µ “ 0 is the identity function. This is another benefit of the
halo version.

Versions µ values
0. 2.6667 5.3333 8.

Transp. version 24.53s 81.74s 80.71s 81.14s
Halo version 1.694s 36.91s 45.73s 51.75s

Overlap version 5.01s 32.66s 38.30s 44.40s

Table II: Total execution time of the 9 calls to the diagnostic
on a typical production run with several µ values and for each
version of the Hermite gyroaverage operator.

The performance gain achieved by the new implementations
is effective, as the total execution time of diagnostic take 5.7%
of the total time in the transposition version, down to 2.7%
in the halo version and down to 2.4% in the version with
overlapping.

The gain in terms of memory is also significant enough to be
noticed. Indeed, in the transposition version, the transpositions
were performed on a copy of the distribution function, thus
making the memory footprint of same magnitude as the size
of the function to be gyroaveraged. With the halo version,
the memory cost of the operator is only the memory needed
by one block of poloidal plane; given NP MPI processes,
this represents one NP -th of the size of the function to be



gyroaveraged. It can even be smaller than the size of the
matrices Mcoef and Mfval (see Section II-B) used in the core
operator depending on the size of the blocks and the number of
processes in the poloidal plane. The version with overlapping
uses twice as much memory because it stores two blocks of
data in parallel for the communication-computation pipeline,
but it has still a smaller footprint than the transposition version.

D. Discussion

In this paper we consider that the Larmor radius is way
smaller than rmin which is a satisfactory condition in most
cases, and the parallelization scheme detailed above gives good
results in terms of speedup and memory usage. However, as
an extension, we would like to consider the situation where
rmin is so small that the numerical scheme becomes invalid,
meaning that its value comes close or under the Larmor radius.
Considering MPI processes on the inner border of the plane
and the gyroaverage of their points located at prmin, θq, the
problem is that the Larmor circle will intercept cells further
away than neighboring subdomains in θ direction. There are
two ways for this to happen: either its radius ρ is larger than
rmin (the circle then intercepts all the subdomains around
the center and the computation requires points from all these
processes), or the poloidal plane is divided between a large
number of processes in θ (the circle intercepts two or more
subdomains along θ direction). The current implementation
does not take into account these specific cases. The problem
does not occur in the r direction as there is a limit of at
least 32 points in r per process in GYSELA and physically
consistent conditions usually ensure that ρ does not exceed
subdomain r width. A small rmin value is the most critical
problem, as it is expected to be soon required in production
runs. A convenient solution is, for processes in charge of the
inner border of the plane, to share all their subdomains through
an MPI_AllGather call. Thus, each process in charge of
a subdomain starting at rmin knows all the data from the
other processes of the rmin annulus and can compute all its
own gyroaverages with the data received. However, this is a
setback for performance as the distributed Hermite algorithm
has been chosen to avoid large amounts of communication.
Moreover, the special buffers required for this specific scheme
add memory usage where it is the most critical and where we
wanted to avoid it. A simple implementation of this algorithm
(using Allgather on inner annulus of processes and halo
on the rest of the plane) has been implemented on top of this
paper’s work and proves to be almost as costly as the initial
full transposition algorithm. Indeed, communication costs are
now proportionate to the size of the annulus (NlrNθ) rather
than to the halo size (αNlrNlθ, α ă 1). Same goes for the size
of the right-hand side (computation of the derivatives) which
computation cost is multiplied by Nprocθ.

However, we can consider several more sophisticated op-
tions in order to adapt the behavior of the algorithm on the
inner most processes without having to revamp the entire
scheme. We could for instance have a local redistribution of
data or we could reduce the number of points we use for

interpolation, considering non-uniform grids. The problem will
be fully addressed in future works.

V. CONCLUSION

A new parallel solution has been designed for the gy-
roaverage operator based on Hermite interpolation which is
a key component of the semi-Lagrangian code GYSELA.
The transpositions of the distribution function imply large
communication costs, they have been replaced by an algorithm
based on halo exchange. This leads to a significant reduction
of the execution time spent into the gyroaverage operator, a
gain of almost 40% for some settings, as well as a reduction
of the memory footprint of the operator. Nevertheless, this
approach requires to fix a free parameter, the block size, that
impacts execution time.

On the other hand, an overlapping technique has been
employed to further improve performance. The communication
involved by halo exchange is overlapped with the gyroaverage
computation of some previously received data. In this setting,
execution times are better, down to 50% of the initial version.
Execution times also depend more loosely on the block size
which provides a large benefit over the previous solution.

These new parallel solutions bring an effective gain on
production run execution times. They will also be integrated
in other sections of the code, leading to further improvement
of performance. In addition, it prepares for the future of
GYSELA. Indeed, in [5], it has been shown that a 4D advection
solver is able to perform valuable simulations. Combining the
gyroaverage parallelization described in this paper with the 4D
Vlasov solver would allow us to setup a version of the code
that does not involve large transposition. In such a context,
the new Hermite parallel gyroaverage solution paves the way
for highly scalable gyrokinetic semi-Lagrangian solvers.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge use of IFERC center
(Helios machine), Japan, as well as Maison de la Simulation
facilities (Poincaré machine), France, and associated support
services.

REFERENCES

[1] N. Bouzat, F. Rozar, G. Latu, and J. Roman. A new par-
allelization scheme for the Hermite interpolation based gyroav-
erage operator. Research Report RR-9054, Inria, Apr. 2017.
https://hal.inria.fr/hal-01502513.

[2] N. Crouseilles, M. Mehrenberger, and H. Sellama. Numerical solution of
the gyroaverage operator for the finite gyroradius guiding-center model.
Communications in Computational Physics, 8(3):484, 2010.

[3] F. Desprez, P. Ramet, and J. Roman. Optimal grain size computation for
pipelined algorithms. In Euro-Par’96 Parallel Processing, pages 165–172.
Springer, 1996.

[4] V. Grandgirard et al. A 5D gyrokinetic full-f global semi-Lagrangian
code for flux-driven ion turbulence simulations. Computer Physics
Communications, 207:35 – 68, 2016.

[5] G. Latu, V. Grandgirard, J. Abiteboul, N. Crouseilles, G. Dif-Pradalier,
X. Garbet, P. Ghendrih, M. Mehrenberger, Y. Sarazin, and E. Son-
nendrücker. Improving conservation properties of a 5D gyrokinetic semi-
lagrangian code. The European Physical Journal D, 68(11):1–16, 2014.

[6] F. Rozar et al. Optimization of the gyroaverage operator based on hermite
interpolation. ESAIM: Proc., 53:191–210, 2016.

[7] M. Wittmann, G. Hager, T. Zeiser, and G. Wellein. Asynchronous MPI
for the Masses. CoRR, abs/1302.4280, 2013.


