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Articulated Multi-Instrument 2D Pose Estimation
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Abstract—Instrument detection, pose estimation and tracking
in surgical videos is an important vision component for computer
assisted interventions. While significant advances have been made
in recent years, articulation detection is still a major challenge.
In this paper, we propose a deep neural network for articulated
multi-instrument 2D pose estimation, which is trained on a
detailed annotations of endoscopic and microscopic datasets. Our
model is formed by a fully convolutional detection-regression
network. Joints and associations between joint pairs in our
instrument model are located by the detection subnetwork and
are subsequently refined through a regression subnetwork. Based
on the output from the model, the poses of the instruments
are inferred using maximum bipartite graph matching. Our
estimation framework is powered by deep learning techniques
without any direct kinematic information from a robot. Our
framework is tested on single-instrument RMIT data, and also
on multi-instrument EndoVis and in vivo data with promising
results. In addition, the dataset annotations are publicly released
along with our code and model.

Index Terms—Surgical instrument detection, articulated pose
estimation, fully convolutional networks, surgical vision

I. INTRODUCTION

ROBOTIC surgery systems, such as the da Vinci® (Intu-
itive Surgical Inc, CA), have introduced a powerful plat-

form for articulated instrument control in minimally invasive
surgery (MIS) through tele-operation of the surgical camera
and specialised dexterous instruments. The next generation of
such platforms is likely to incorporate a more significant com-
ponent of computer assisted intervention (CAI) system support
through software, multi-modal data visualisation and analytical
tools to better understand the surgical process and progress.
Real-time knowledge of the instruments’ pose with respect
to anatomical structures and the viewing coordinate frame
is a crucial piece of information for such systems focused
on providing assistive or autonomous surgical capabilities.
While in principle with robotic instruments, the robot joint
encoder data can be used to retrieve the pose information, in
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the da Vinci®, the kinematic chain involves 18 joints, which
is more than 2 meters long. This is challenging for accurate
absolute position sensing and requires time-consuming hand-
eye calibration between the camera and the robot coordinates.
On cable driven systems the absolute error can be up to 1
inch, which means the positional accuracy is potentially too
low for tracking applications without visual correction [1], [2],
[3]. Recent developments in endoscopic computer vision have
resulted in advanced approaches for 2D instrument detection
for minimally invasive surgery. Most of these methods have
focused on semantic segmentation of the image or on single
landmark detection on the instrument tip, which cannot rep-
resent the full pose of an instrument or include articulation.
Additional challenges to articulated tracking in surgical video
are because information inferred from video directly can suffer
from occlusions, noise and specularities, perspective changes
and bleeding or smoke in the scene.

Image-based surgical instrument detection and tracking is
attractive because it relies purely on equipment already in the
operating theatre [4]. Likewise pose estimation from images
has been shown to be feasible in different specialisations,
such as retinal microsurgery [5], [6], [7], neurosurgery [8]
and MIS [9], [10], [11]. While both detection and tracking
are difficult, pose estimation presents additional challenges
due to the complex articulation structure. Most image-based
methods [7], [11] often extract low-level visual features from
keypoints or regions to learn offline or online part appearance
templates by using machine learning algorithms. Such low-
level feature representations usually suffer from a lack of
semantic interpretation, which means they cannot capture the
high level category appearance. To improve robustness, it
is possible to integrate external constraints such as surgical
CAD models [10], [12] or robotic kinematics [1], [13], but
the essential image-driven approach is still central to provide
robust and generalisable systems.

Deep convolutional neural networks have emerged as the
method of choice for various visual tasks [14], [15], [16],
[17]. In the past few years, it has been applied to medical
image datasets and deep networks have been developed for
various medical applications such as segmentation [18] or
recognition tasks [19]. The methodology has been demon-
strated to be effective in instrument presence detection [20]
or localization [21]. Additionally, networks for semantic in-
strument segmentation have also been proposed and shown to
be effective in real-time performance [22], [23]. In [24], the
pose estimation task is reformulated as heatmap regression and
is estimated concurrently with semantic instrument segmenta-
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Fig. 1. The pipeline of the proposed pose estimation framework and the detection-regression FCN architectural design. The output of the network integrates
the associated joints and assembles them into the final poses for all instruments in the frame.

tion. However, few methods are yet able to jointly detect the
instrument contour and to estimate articulation from it.

Following the deep learning paradigm, in this paper, we
present a novel 2D pose estimation framework for articulated
endoscopic surgical instruments, which involves a fully con-
volutional detection-regression network (FCN) and a multi-
instrument parsing component. The overall scheme is able
to effectively localize instrument joints and also to estimate
the articulation model. To measure articulation performance,
we used the single-instrument RMIT dataset, and we also re-
annotated instrument joints of the multi-instrument dataset pre-
sented at the EndoVis Challenge, MICCAI’15 for training our
network. Our method achieves very compelling performance
and illustrates some interesting capabilities including transfer
between different instrument sets within the EndoVis data and
also between phantom settings, and in vivo robotic prostatec-
tomy surgery data. The high-level of detail annotations which
we have created as part of this study will naturally be made
available for future research as well as our model and code
(See Fig. 7)1.

II. METHODS

The overall pipeline of our deep convolutional neural net-
work based framework is shown in Fig. 1. In this section, we
first define the instrument joint structure. Then, we introduce
the objective and architectural design of each module of our
detection-regression FCN. In our detection-regression archi-
tecture, the detection module guides the subsequent regression
module to focus on the joint parts, and the regression module
helps the detection module to localize joints more precisely.
Finally, we describe how the network output is integrated for
inferring the poses of multiple instruments.

A. Articulation Model Architecture

The pose of an articulated instrument can be represented
in different ways. For example, it could take advantage of

1https://github.com/surgical-vision/EndoVisPoseAnnotation

kinematic information by using joint relative orientation. Our
work relies purely on visual cues. As shown in Fig. 2,
an articulated instrument is decomposed as a skeleton of
individual joint parts. We define a joint pair as two joints which
are connected within the skeleton. Based on the articulation,
instruments in different datasets are represented with a similar
tree structure which is made up of N joints and M joint
pairs. Therefore, the instrument pose estimation task is reduced
to detecting the location of individual joint parts, and if
there are multiple instruments present in the image, joints
of the same instrument should be correctly associated after
localization. Our bi-branch model architecture is inspired by
CMUPose [15]. Joint locations and associations between joint
pairs are learnt jointly via two branches of same encoder-
decoder predication process. In each of the blocks, features
or predictions from each branch capture different structural
information about the instrument and are concatenated for the
next block.

B. Joint Detection and Association Subnetwork

We design our bi-branch joint detection and association
network inspired by the recent success of FCNs [15], [18].
Since joints could overlap with each other, some pixels may
belong to multiple joints. Therefore, we choose to use multiple
binary cross-entropy instead of multi-class cross-entropy to
train our network. By treating it as multiple binary-class
problem, the ground truth we generate can reflect overlapping
joint occlusion.

In our bi-branch network, the first branch is used to predict
N individual joint probability maps, one for each joint; and
the second branch is used to predict the M joint association
probability maps, one for each joint pair. Therefore, the ground
truth for the detection subnetwork is constructed as a set of
N + M binary maps. Similar to the original U-Net [18], we
used the popular downsampling-upsampling FCN architecture.
The encoder-decoder network architecture concept is widely
used for semantic segmentation problems since it transfers
from classification to dense pixel-wise prediction probability
maps with the same size as the input image. Fully connected
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Fig. 2. Based on the articulation, instruments in different datasets are
represented with similar skeletons. They are decomposed into N joints and M
joint pairs. Joints are represented by colour dots, and joint pairs are connected
by black lines. (Top) The EndoWrist Needle Driver instrument is made up of
5 joints and 4 joint pairs; (Bottom) The Retinal instrument is made up of 4
joints and 3 joint pairs.

layers can be turned into convolution layers, which has the
advantages such as reduced number of parameters, faster
forward-backward pass speed or taking images of arbitrary
sizes [17]. We also augmented our model with skip connec-
tions by fusing features from different layers to refine the
spatial output precision. We take the Shaft-End joint pair
as example, and illustrate the corresponding ground truth in
Fig. 3. For joint ground truth map (Fig. 3 (c-d)), the pixels
located within a certain radius rd of the labelled location are
considered as the joint, and are set to 1, and the remaining
pixels are considered as background, and are set to 0. To reflect
the connection relationship and to measure the association of
correct joints, the association ground map is constructed as
shown in Fig. 3 (b). The pixels within distance rd to the
line connecting the joints are set to foreground, which form a
rotated rectangle and are set to 1, other pixels are considered as
background and are set to 0. The specifications of the network
are shown in Tab. I. As shown in Fig. 1, high level encoder
features are concatenated with the upsampled decoder output.
Instead of pooling operations, we use strided convolution for
downsampling and also eliminate fully connected layers and
use all convolutional layers following the recent examples
from the literature [17]. It is trained with a per-pixel binary
cross-entropy loss function Ld which is defined as:

Ld =
1

(M +N)Ω

M+N∑
k=1

∑
x∈Ω

[
pkx log p̃kx+

(
1− pkx

)
log
(
1− p̃kx

)] (1)

where pkx and p̃kx denotes the ground truth value and the
corresponding sigmoid output at pixel location x in the frame
domain Ω of the kth probability map.

TABLE I
THE NETWORK SPECIFICATIONS FOR THE DETECTION SUBNETWORK:
THE KERNEL SIZE AND STRIDE, AND THE OUTPUT SIZE (CHANNEL ×

HEIGHT × WIDTH) OF EACH LAYER. THE ORIGINAL DIMENSION OF THE
INPUT IMAGE IS 3× h× w, AND THE NETWORK OUTPUTS STACKED
(M +N) PROBABILITY MAPS WITH THE SAME SIZE AS THE INPUT

IMAGE.

Kernel (Size, Stride) Output (C×H×W)

Downsample
CBR 3× 3, 1× 1 64× h× w

Branch SBR1 2× 2, 2× 2 64× h/2 × w/2
Branch CBR1 3× 3, 1× 1 64× h/2 × w/2

CBR1 1× 1, 1× 1 128× h/2 × w/2

Branch SBR2 2× 2, 2× 2 128× h/4 × w/4
Branch CBR2 3× 3, 1× 1 128× h/4 × w/4

CBR2 1× 1, 1× 1 256× h/4 × w/4

Branch SBR3 2× 2, 2× 2 256× h/8 × w/8
Branch CBR3 3× 3, 1× 1 256× h/8 × w/8

CBR3 1× 1, 1× 1 512× h/8 × w/8

Branch SBR4 2× 2, 2× 2 512× h/16 × w/16
Branch CBR4 3× 3, 1× 1 512× h/16 × w/16

CBR4 1× 1, 1× 1 1024× h/16 × w/16

Upsample
Branch DBR1 2× 2, 2× 2 256× h/8 × w/8
Branch CBR1 3× 3, 1× 1 256× h/8 × w/8

CBR1 1× 1, 1× 1 512× h/8 × w/8

Branch DBR2 2× 2, 2× 2 128× h/4 × w/4
Branch CBR2 3× 3, 1× 1 128× h/4 × w/4

CBR2 1× 1, 1× 1 256× h/4 × w/4

Branch DBR3 2× 2, 2× 2 64× h/2 × w/2
Branch CBR3 3× 3, 1× 1 64× h/2 × w/2

CBR3 1× 1, 1× 1 128× h/2 × w/2

Branch DBR4 2× 2, 2× 2 32× h× w
Branch CBR4 3× 3, 1× 1 32× h× w

CBR4 1× 1, 1× 1 64× h× w

CBS 1× 1, 1× 1 (M +N)× h× w

Fig. 3. Detection subnetwork ground truth example for a Shaft-End joint pair:
the binary map for Shaft-End pair association (b), the Shaft (c) and End (d)
joint.
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TABLE II
THE NETWORK SPECIFICATIONS FOR REGRESSION SUBNETWORK: THE

KERNEL SIZE AND STRIDE, AND THE OUTPUT SIZE (CHANNEL × HEIGHT
× WIDTH) OF EACH LAYER. THE REGRESSION NETWORK IS FED WITH

THE CONCATENATION OF THE INPUT IMAGE AND THE DETECTION
OUTPUT MAPS, AND OUTPUTS STACKED (M +N) PROBABILITY MAPS

WITH THE SAME SIZE AS THE INPUT IMAGE.

Kernel (Size, Stride) Output (C×H×W)

CBR1 3× 3, 1× 1 64× h× w
CBR2 3× 3, 1× 1 128× h× w
CBR3 3× 3, 1× 1 256× h× w
CBR4 3× 3, 1× 1 256× h× w
CBR5 1× 1, 1× 1 256× h× w

CB 1× 1, 1× 1 (M +N)× h× w

C. Regression Subnetwork

From the pixel-wise prediction output of the detection
network, we could obtain coarse location of each joints, but
in order to obtain precise location of the joints, we add
a regression network following the detection network (see
Fig. 1).

The input of the network is the concatenation of the input
image and the stacked M + N output probability maps of
the detection network, with the latter acting as a semantic
guidance for the regression network to focus on the joint parts
and their structural relationships. Previous work [14] showed
that directly regressing single points from an input frame is
highly non-linear, so instead of regressing single points, the
network will produce stacked joint density maps, which have
the same size as the input image. The network contains five
Conv+Batch Normalization+ReLU (CBN) blocks, followed by
a Conv+Batch Normalization (CB) block. The specifications
of the network is shown in Tab. II.

In Fig. 4, we illustrate the Shaft-End joint pair ground truth
maps for the regression subnetwork. For joint ground truth
maps (Fig. 4 (c-d)), each joint annotation corresponds to an
density map which is formed with a 2D Gaussian centred
at the labelled point location. And the association ground
truth density maps are represented with a Gaussian distribution
along the joint pair centre line, with a standard deviation σ
shown in Fig. 4 (b). Therefore, the goal of the regression
subnetwork is to regress the density maps from the input
image with the guidance of the detection probability maps.
It is trained with the mean squared loss Lr which we define
as:

Lr =
1

(M +N)Ω

M+N∑
k=1

∑
x∈Ω

∥∥∥hkx − h̃kx∥∥∥2

(2)

where hkx and h̃kx represent the ground truth and the pre-
dicted value at pixel location x ∈ Ω of the kth density map,
respectively.

D. Multi-Instrument Parsing

After obtaining the output density maps of all the joints
from the detection and regression framework, non-maximum
suppression (NMS) [25] is performed on the joint density maps
to obtain potential joint candidates. NMS is popularly used in

Fig. 4. Regression subnetwork ground truth example for Shaft-End joint pair:
the density map for Shaft-End pair association (b), the Shaft (c) and End (d)
joint.

deep learning and generally in computer vision to eliminate
redundant candidates. It selects high-scoring candidate and
skips ones that are close to an already selected candidate.

As shown in Fig. 5, instead of a fully connected graph
(Fig. 5(a)), where every pair is connected, the instrument
structure is relaxed into a tree graph (Fig. 5(b)) with min-
imal number of connections. The tree graph can be further
decomposed into a set of joint pairs, for which the matching
is decided independently (Fig. 5(c)). The bipartite matching
sub-problem then can be solved by maximum bipartite match-
ing [26]. To eliminate outliers and connect the right joints
for each instrument, the association density maps from the
network output are used to measure the association of joint
candidate pairs: the association score is defined as the sum of
accumulated pixel values along the line connecting the joint
candidates on the corresponding association density map.

Fig. 5. Graph relaxing for instrument structure: (a) Fully connected graph;
(b) Tree structure graph; (c) A set of bipartite graphs after relaxation, the
matching of joint pairs are decided independently.

The association score of any possible joint candidate pair is
used to construct the weighted bipartite graphs. After finding
the matching with maximum score of the chosen joint pairs,
the ones which share the same joint can be assembled into full
poses of multiple instruments.
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TABLE III
LABEL/FRAME NUMBER SUMMERY OF THE RMIT AND ENDOVIS

DATASET.

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Total

RMIT Dataset

Train Data
201 / 201 111 / 111 265 / 271 - - - 577 / 583

Test Data
201 / 201 111 / 111 266 / 276 - - - 578 / 588

EndoVis Dataset

Train Data
210 / 1107 240 / 1125 252 / 1124 238 / 1123 - - 940 / 4479

Test Data
80 / 370 76 / 375 76 / 375 76 / 375 301 / 1500 301 / 1500 910 / 4495

III. EXPERIMENTS AND RESULTS

A. Datasets

Our proposed pose estimation framework is evaluated on a
single-instrument retinal dataset and on multi-instrument endo-
scopic datasets. The statistics of each dataset are summarized
in Tab. III.

Fig. 6. Example images from each sequence of test data in the datasets: (Top
row) single-instrument Retinal Microsurgery Instrument Tracking (RMIT)
dataset; (Middle rows) multi-instrument EndoVis challenge dataset; (Bottom
row) multi-instrument in vivo dataset.

Single-instrument Retinal Microsurgery Instrument
Tracking (RMIT) Dataset This dataset2 consists of three
image sequences during in vivo retinal microsurgery, with
at most a single instrument in the field of view [27] and a
resolution of 640 × 480 pixels. The statistics of the RMIT
dataset is summarized in the upper part of Tab. III, and frame
example from each of the three sequences is shown in the
top row of Fig. 6. For each sequence, four joints (Tip1, Tip2,
Shaft and End Joint) of the retinal instrument are annotated for
most frames. Following the same training strategy as used in
previous papers [7], [27], [28], the dataset is separated into a

2https://sites.google.com/site/sznitr/code-and-datasets

training set including all the first halves of the sequences (577
frames), and a testing set using the second halves (578 frames).

Multi-instrument EndoVis Challenge Dataset This multi-
instrument dataset3 is separated into training and test data:
the training data includes four 45 seconds ex vivo video
sequences of interventions, the test set is composed of 15
seconds additional video sequences for each of the training
sequence, and two additional 1 minute recorded interventions.
The frame resolution is 720 × 576 pixels. Different from the
original challenge guidelines, we do not enforce a leave-one-
surgery-out training strategy, but use the entire training data
due to our sparse annotations.

The original and our proposed annotations are demonstrated
in Fig. 7 (a-b). The original annotation is retrieved from the
robotic system, which includes the location of the intersection
point between the instrument axis and the border between
plastic and metal on the shaft, normalized Shaft-to-Head axis
vector and the tip angle. For training and evaluating our
network, we construct a high quality multi-joint annotation
for this dataset. For each instrument, five joints including
Left, Right Clasper, Head, Shaft and End joint are annotated.
Compared to our multiple joint annotations, the original anno-
tations only provide limited and non-intuitive pose information
for training and testing purposes. We manually labelled 940
frames of the training data (4479 frames) and 910 frames
for the test data (4495 frames). The label and frame number
of the EndoVis dataset are summarized in the lower part of
Tab. III, and frame examples from each sequence are shown
in the middle rows of Fig. 6. It is worth mentioning that
in the additional video sequences in the test set there is a
EndoWrist Curved Scissor instrument which does not appear
in the training set.

To test the performance against noise, we also add Frac-
tional Brownian Motion noise [29] on the test data in order
to simulate smoke effect during surgery (see Fig. 7 (c-d)).

Multi-instrument In vivo Dataset Additionally, to test
the framework performance on in vivo data, we labelled
123 frames of video clips (1220 frames) which are obtained
from robotic prostatectomy surgery conducted at University
College London Hospitals NHS Foundation Trust (UCLH)
with resolution of 1920× 1080 pixels. Frame examples from
the in vivo data are shown in the bottom row of Fig. 6.

B. Training and Runtime Analysis

We implemented our framework in Lua and Torch74. The
training data is augmented by horizontal and vertical flipping,
and is resized to 288×384 pixels for RMIT data, and 256×320
pixels for EndoVis and in vivo data to fit in GPU memory. The
detection radius rd is set to 10 pixels for RMIT data, and to 15
pixels for EndoVis and in vivo data. The regression standard
deviation σ is set to 20 pixels. The radius of NMS is set to
equal the detection radius rd. The network is trained on a
single Nvidia GeForce GTX Titan X GPU using stochastic

3https://endovissub-instrument.grand-challenge.org/
4http://torch.ch/
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Fig. 7. The original (a) and our proposed (b) annotation for EndoVis challenge
dataset, smoke effect simulation (c) and simulation overlaid on the frame (d).

gradient descent (SGD) with an initial learning rate of 0.001
and momentum of 0.98. The learning rate progressively de-
creases every 10 epochs by 5%. The processing speed achieves
8.7 fps for videos, with the network inferencing taking 24 ms
and the multi-instrument parsing step taking 89 ms.

C. Experiments

The following sections first outline the performance compar-
isons of our framework on the single-instrument RMIT dataset.
Then, to understand the detection-regression architecture, we
perform an ablation study and report its performance on the
multi-instrument EndoVis dataset. Finally, we finetune the
model to test the performance on the in vivo dataset.

1) RMIT Experiments: We trained the network with all four
joints and we report performance by two different metrics:
the Root-Mean-Square (RMS) distance (pixels) [27] and the
strict Percentage of Correct Parts (strict PCP) [30]. The RMS
distance reflects the localization accuracy of a single joint,
it is evaluated as correct if the estimated joint location and
the ground truth is within the threshold. Meanwhile the strict
PCP estimates the localization of a joint pair and is considered
correct if the distances between two connected joints are
both smaller than α times the ground truth length of the
connection pair. The evaluation results are shown in Tab. IV
and Tab. V. We report the average RMS error distance, only
on frames which the instruments are correctly detected (within
the threshold measure). The same criteria applies for other
datasets evaluated in the paper. We also compared the result
against the state-of-the-art methods in Tab. VI and Tab. VII. In
previous papers as listed in Tab. VI and Tab. VII, only recall
score is reported. Approximate numbers are obtained through
the accuracy threshold graphs from the papers, which do not
provide the precise number. Analogously to previous methods,
the recall score is evaluated by means of threshold measure

(15 pixels) for the separate joint of the pose predictions and
α for strict PCP is set to 0.5.

For the proposed methods, the average joint distance error
for the test set is 4.87 pixels with the same recall and precision
score of 94.33%, and the average strict PCP recall score is
96.94%. Some of the test set results are shown in Fig. 8.
Even under different lighting conditions, the model can predict
the pose of the instrument correctly. It is interesting to point
out that even though the association map used is constructed
using a straight line, it still works on titled instruments (see
the bottom line of Fig. 8 for example). This implies that the
rectangle association maps are learnt to indicate the connection
relationships between joint pairs. The trained network predict
joint pair connections by not only relying on the instrument
pixels, but also on the learnt joint relations and spatial contex-
tual information. As we listed in Tab. VI, previous methods
mainly focus on the evaluation of Shaft joint, except for
SRNet [31], where our performance is on par with SRNet. The
recall score of the End joint is the lowest (86.51%) among
the four joints, due to its ambiguous annotation and image
blur. SRNet uses a different strategy by explicitly modelling
the instrument joints and their presence, which simultaneously
predicts the instrument number and their pose. By assuming
a known maximum number of instrument in the field of
view, it bypasses the joint detection and association two-
stage process, so can be trained in an end-to-end fashion.
Adding prior could help constrain the problem, compared to
SRNet, we want to treat the task as general as possible, so our
model does not rely on any prior knowledge of the number
of instrument, theoretically it can predict pose of arbitrary
number of instrument, which one of the potential strengths
of our framework.

2) EndoVis Experiments: Since our annotation is limited,
we used our network with five joints using all the training
data generated from high quality our annotation. First, we per-
form an ablation study6 to understand the detection-regression
architecture. In Tab. VIII the average precision, recall score
and RMS distance (pixels) of each joint for all the test data
are reported. With a threshold of 20 pixels for the original
resolution of 720×576 pixels, the average joint distance error
for the test data set is 6.96 pixels with a recall score of 82.99%
and a precision score of 83.70%.

In the ablation experiment, we compared the performance
of five different models, including detection-only, shallow
regression-only, deep regression-only, single-branch detection-
regression and our proposed bi-branch detection-regression
model. For the detection-only model, we use the output
probability maps from the detection subnetwork for direct
pose estimation. We also trained two regression-only models,
a shallow one with the same architecture as the regression
submodule in our detection-regression model and the input is
the RGB frame without the detection probability maps, the
deep one whose architecture is the same as the detection-
only model and with Gaussian regression ground truth. For

5To maintain notation consistency, the Shaft and End joint in our paper
correspond respectively to End Shaft and Start Shaft joint in previous papers.

6An ablation study refers to evaluating how the performance is affected by
removing some part of the model.
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TABLE IV
QUANTITATIVE RESULTS OF THE RMIT DATASET: PRECISION AND THE DISTANCE ERROR BETWEEN GROUND TRUTH AND THE ESTIMATE OF EACH

JOINT. THE THRESHOLD IS SET TO 15 PIXELS FOR THE ORIGINAL RESOLUTION OF 640× 480 PIXELS.

Recall (%) / Precision (%) / Distance (px) of the RMIT Dataset (Thres = 15 px)

Tip1 Tip2 Shaft End Total

Train set
100.0 / 100.0 / 2.14 100.0 / 100.0 / 2.28 100.0 / 100.0 / 1.72 100.0 / 100.0 / 2.38 100.0 / 100.0 / 2.13

Test set
99.13 / 99.13 / 5.26 97.58 / 97.58 / 4.61 94.12 / 94.12 / 4.93 86.51 / 86.51 / 4.68 94.33 / 94.33 / 4.87

TABLE V
QUANTITATIVE RESULTS OF THE RMIT DATASET: THE STRICT PCP SCORE OF THE ESTIMATE OF EACH JOINT PAIR.

Recall (%) / Precision (%) for Strict PCP of the RMIT Dataset (α = 0.5)

Tip1-Shaft Tip2-Shaft Shaft-End Total

Train set
100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0

Test set
99.13 / 99.13 97.58 / 97.58 94.12 / 94.12 96.94 / 96.94

Fig. 8. Result examples of RMIT test set with our model. The frame is trimmed around the instrument for better demonstration. It is difficult to localize
some joints due to its ambiguous annotation, image blur or specularities.

TABLE VI
QUANTITATIVE RECALL PERFORMANCE COMPARISON WITH THE

STATE-OF-THE-ART METHODS ON THE RMIT TEST SET5

The Recall Score of the RMIT Test Set (Thres = 15 px)

Tip1 Tip2 Shaft End Total

DDVT [27] - - < 85.0 - -
POSE [28] - - 88.9 - -
RTOA [7] - - 94.3 - -

SRNet [31] 98.6 94.1 96.2 91.2 95.0
Proposed 99.1 97.6 94.1 86.5 94.3

the single-branch model, we fuse two branches of the detection
submodule into only one branch with double size of the feature
maps of our model. The performance comparison of different

TABLE VII
QUANTITATIVE STRICT PCP SCORE COMPARISON WITH THE

STATE-OF-THE-ART METHODS ON THE RMIT TEST SET

The Strict PCP Score of the RMIT Test Set (α = 0.5)

Tip1-Shaft Tip2-Shaft Shaft-End Total

POSE [28] ≈ 95.0 ≈ 90.0 - -
Proposed 99.13 97.58 94.12 96.94

models is summarized in Tab. IX. The bad performance
of the detection-only model (32.19%/14.41% for recall and
precision score) is expected. As seen from the ground truth
binary map in Fig. 3, the pixels belonging to the joint have
the same weight, which lead to bad localization of joints.
We also observe that both regression-only models have better
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Fig. 9. Result examples with an unseen EndoWrist Curved Scissor instrument in the EndoVis test set with our model. (a) The original frame; (b) the estimated
pose; joint (c1-5) and association (e1-4) probability output from detection subnetwork; joint (d1-5) and association (f1-4) density output from regression
subnetwork.

Fig. 10. Examples of original EndoVis test set. Our network is able to detect a new instrument that is not present in the training data.
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Fig. 11. Examples of smoke-simulated EndoVis test set. Our network is able to detect instruments which are not seen in the training data even under smoke
simulation.

TABLE VIII
QUANTITATIVE RESULTS OF THE ENDOVIS DATASET: PRECISION AND THE DISTANCE ERROR BETWEEN GROUND TRUTH AND THE ESTIMATE OF EACH

JOINT. FOR THE EndoVis DATASET, THE THRESHOLDS ARE SET TO 20 AND 30 PIXELS FOR THE ORIGINAL AND SMOKE-SIMULATED TEST DATA WITH THE
RESOLUTION OF 720× 576 PIXELS.

Recall (%) / Precision (%) / Distance (px) of the EndoVis Dataset

LeftClasper RightClasper Head Shaft End Total

Train set (Thres = 20 px)
100.0 / 99.95 / 2.43 100.0 / 99.95 / 2.53 99.57 / 99.68 / 2.34 100.0 / 99.95 / 2.74 99.89 / 99.84 / 6.73 99.89 / 99.87 / 3.36

Test set (Thres = 20 px)
86.28 / 86.65 / 5.03 85.49 / 85.82 / 5.40 75.82 / 76.81 / 6.55 90.55 / 91.50 / 8.63 76.81 / 77.71 / 9.17 82.99 / 83.70 / 6.96

Test set (Thres = 30 px)
89.29 / 89.67 / 5.57 87.86 / 88.19 / 5.99 80.05 / 80.99 / 7.37 94.51 / 95.42 / 9.38 89.78 / 90.68 / 11.58 88.30 / 88.99 / 7.98

Smoke Test set (Thres = 20 px)
83.85 / 83.48 / 5.25 82.69 / 82.27 / 5.72 74.89 / 75.07 / 6.50 89.73 / 89.71 / 8.62 82.25 / 82.55 / 8.86 82.68 / 82.62 / 6.99

Smoke Test set (Thres = 30 px)
88.30 / 88.02 / 6.13 86.81 / 86.41 / 6.68 78.02 / 78.30 / 7.19 95.66 / 95.66 / 9.76 91.32 / 91.48 / 10.60 88.02 / 87.97 / 8.07

TABLE IX
ABLATION STUDY OF THE DETECTION-REGRESSION MODEL ARCHITECTURE ON ENDOVIS TEST SET

Recall (%) / Precision (%) / Distance (px) of the EndoVis Test Set (Thres = 20 px)

LeftClapser RightClasper Head Shaft End Total

Detection-only Network
32.58 / 14.28 / 7.94 24.51 / 11.05 / 6.22 29.40 / 13.19 / 6.75 40.27 / 18.03 / 8.87 34.18 / 15.49 / 7.57 32.19 / 14.41 / 7.47

Shallow Regression-only Network
67.73 / 72.94 / 4.86 81.26 / 84.49 / 4.34 66.48 / 73.35 / 6.18 75.16 / 80.65 / 7.58 41.65 / 46.23 / 9.06 66.46 / 71.53 / 6.41

Deep Regression-only Network
65.75 / 98.79 / 3.63 61.81 / 93.35 / 3.80 66.48 / 99.34 / 5.12 66.65 / 99.40 / 6.84 64.62 / 97.47 / 7.15 65.06 / 97.67 / 5.31

Single-branch Detection-Regression Network
78.90 / 88.13 / 4.70 81.04 / 90.27 / 5.44 74.07 / 83.74 / 7.24 79.56 / 88.94 / 7.72 70.27 / 79.71 / 9.22 76.77 / 86.16 / 6.87

Proposed Bi-branch Detection-Regression Network
86.28 / 86.65 / 5.03 85.49 / 85.82 / 5.40 75.82 / 76.81 / 6.55 90.55 / 91.55 / 8.63 76.81 / 77.71 / 9.17 82.99 / 83.70 / 6.96
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performance. It is interesting that the precision score for deep
model (97.67%) is higher than that for the shallow model
(71.53%), while either shallow or deep regression-only models
achieve similar recall performance (66.46% for shallow model
and 65.06% for the deeper model). Deeper architecture does
not help to achieve better recall performance in the experiment.
We infer that one of the reasons is that the size of the training
data is relatively small, which affects model generalization.
The regression-only models are capable of predicting the
location of joints without any guidance. However, regression
is empirically too localized, which supports small spatial
context [14], the process of regressing from original input
image to joint location directly can be difficult. By combining
detection and regression, the detection module guides where
to focus and provides spatial contextual information between
joints for the regression module, by using the probability
output from the detection module as structural guidance, the
regression module facilitates the detection module to localize
the joints more precisely. The performance of both detection-
regression models show the improvement, and furthermore,
our network takes less time to train compared to regression-
only model. The single-branch model achieves the perfor-
mance of 76.77%/86.16% for recall and precision, which is
nearly as good as the bi-branch model. We would like to point
out that single-branch and bi-branch models are essentially
similar. We choose bi-branch architecture here to conceptually
separate the training of joint and joint association into two
branches.

Similar to the RMIT dataset result, the lower score for
the End joint (76.81%/77.71%) is reasonable since it does
not have distinct features and even the manual annotation
has high variance. If the threshold is relaxed to 30 pixels,
the recall and precision score of the End joint increase to
89.78% and 90.68% respectively. For the Head joint with
the lowest recall and precision (75.82%/76.81%), as we have
mentioned before, the two additional sequences of the test
dataset exhibit a Curved Scissor instrument which is not seen
in the training set. In Fig. 9 and Fig. 10, we show some pose
estimation examples from the test set. We observe that our
model works well on self occlusion, as shown in the first
row of Fig. 10. This is credited to: 1) the model learns the
spatial relationship between joints, even if a joint is occluded,
it can be inferred from other joints; 2) the training data
contains self occlusion examples that can be used by the
model for handling self occlusion. As we can see, the left
EndoWrist Curved Scissor instrument has a different shape
compared to the right EndoWrist Needle Driver instrument,
which explains the relatively low score for the Head joint.
But our model is general enough to detect individual parts of
this new instrument. Clearly, the generalisation to an unseen
new instrument is limited to certain degree. Although the
left Curved Scissor instrument has different appearance, it
shares the same joint configuration with the Needle Driver
instrument. The results we display show that with limited
training data, our model is still capable of generalising to some
degree.

From Fig. 11 and Tab. VIII we can also see that under
smoke simulations the performance on test data only decrease

Fig. 12. Examples of failure cases of EndoVis test set. (a) Occluded joints
are miss detected; (b) The head joint of the new Curved Scissor instrument
on the left is not well localized.

slightly to 82.68% for recall and 82.62% for precision, with
distance errors of 6.99 pixels. Please see the supplementary
video for more qualitative results7.

In Fig. 12, we have presented two failure cases on the test
set. When one instrument is occluded by another one (Fig. 12
(a)), the model can not infer the occluded joints, we think it is
due to the lack of training data on instrument overlap, which
causes the model fail to learn or handle the complex situation.
We can compare this to the self-occlusion (first row of Fig. 10).
Since the training data covers self-occlusion, the model can
well detect the self-occluded joints. We also show in Fig. 12
(b) that some joints of the new Curved Scissor instrument are
not well localized, e.g. the Head joint. Our model has extended
certain generalizability to unseen instrument, but obviously
compared to the Needle Driver instrument in the training data,
the performance is less robust.

3) In vivo Experiments: We fine-tuned the EndoVis trained
model on 80% of the labelled data (97 frames) with a fixed
learning rate 0.0001 for 10 epochs, and tested on the whole
sequence. The in vivo video sequence we use is with high
resolution 1920 × 1080 pixels, so we set the threshold as 50
pixels for evaluation. In Tab. X, it is shown that the average
distance errors are reduced to 9.81 and 13.42 pixels for the
train and validation set respectively, with the threshold of 50
pixels for the original resolution. Examples of the in vivo data
are shown in Fig. 13 and the pose estimation of the whole
video is also included in our supplementary material. Note
that we did not perform any temporal processing in any of
our results.

IV. CONCLUSION

In this paper, we have proposed a deep neural network based
framework for 2D pose estimation of multiple articulated
instruments in surgical images and video. The methodology
performs detection of the instruments and their degrees of
freedom without using kinematic information from robotic
encoders or external tracking sensors. The work, to the best of
our knowledge, represents a novel attempt to perform image-
based articulated pose estimation at this level of detail and
can potentially be extended to handle even more complicated
flexible articulation by incorporating additional joint nodes.

7This paper has supplementary downloadable material available at http:
//ieeexplore.ieee.org, provided by the authors. This includes a video file which
contains experimental results of the proposed framework and a readme file.
This material is 44.3 MB in size.
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Fig. 13. Examples of in vivo data with our fine-tuned model. The results demonstrate the capacity of our framework to be applied to real surgical scenes.

TABLE X
QUANTITATIVE RESULTS OF THE IN VIVO DATASET: PRECISION AND THE DISTANCE ERROR BETWEEN GROUND TRUTH AND THE ESTIMATE OF EACH

JOINT. FOR THE IN VIVO DATA, THE THRESHOLD IS SET TO 50 PIXELS FOR THE ORIGINAL RESOLUTION OF 1920× 1080 PIXELS.

Recall (%) / Precision (%) / Distance (px) of the In vivo Dataset (Thres = 50 px)

LeftClasper RightClasper Head Shaft End Total

Train set
97.94 / 96.39 / 7.84 97.94 / 96.39 / 8.40 100.0 / 98.97 / 9.61 100.0 / 100.0 / 10.39 98.97 / 98.97 / 12.81 98.97 / 98.14 / 9.81

Validation set
98.08 / 96.15 / 13.91 94.23 / 92.31 / 12.54 96.15 / 94.23 / 12.01 100.0 / 100.0 / 13.86 92.31 / 92.31 / 14.77 96.15 / 95.00 / 13.42

In our approach, joints and the associations between joint
pairs are first detected and then refined in a detection-
regression FCN. To obtain the final pose of all the instru-
ments in an image, association probabilities are used as a
measurement to connect joint pairs for each instrument by
maximum bipartite matching. The framework has been trained
and evaluated on RMIT, EndoVis and in vivo datasets with
detailed annotations adding to existing challenge data labels.
Interestingly, our experiments show that our model exhibits
some generalizability to new unseen instrument, and has good
robustness under smoke simulation. The performance on the
in vivo datasets demonstrates the capacity of our framework
to handle real surgical scenes. Our model will be publicly
released to support research in the field.

A current limitation of our method is that it is limited to
2D inference and a natural extension would be to explore the
estimation of 3D articulation. This seems plausible when using
stereo configurations which are available within the EndoVis
data for example and can potentially be used to formulate
both the detection and the pose estimation in a joint space
of both views. Additionally, it will be interesting to explore
the sequential tracking of articulated instruments. This could
potentially be achieved by probing the motion information that
can be learnt through recurrent neural networks.
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