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Abstract: Sub-pixel offset tracking has been used in various applications, including measurements of
glacier movement, earthquakes, landslides, etc., as a complementary method to time series InSAR.
In this work, we explore the use of a small baseline subset (SBAS) Offset Tracking approach to
monitor very slow landslides with centimetre-level annual displacement rate, and in challenging
areas characterized by high humidity, dense vegetation cover, and steep slopes. This approach, herein
referred to as SBAS Offset Tracking, is used to minimize temporal and spatial de-correlation in offset
pairs, in order to achieve high density of reliable measurements. This approach is applied to a case
study of the Tanjiahe landslide in the Three Gorges Region. Using the TerraSAR-X Staring Spotlight
(TSX-ST) data, with sufficient density of observations, we estimate the precision of the SBAS offset
tracking approach to be 2–3 cm on average. The results demonstrated accord well with corresponding
GPS measurements.

Keywords: sub-pixel offset tracking; small baseline subset (SBAS); TerraSAR-X Staring Spotlight
(TSX-ST); very slow landslide; Three Gorges Region (TGR)

1. Introduction

As a major natural hazard, landslides cause enormous direct and indirect damage worldwide
every year. Remote sensing has become the most convenient and feasible tool widely applied in
deformation mapping, including in the monitoring of landslides. In the study area, due to the often
limited access to Global Positioning System (GPS) measurements, and the high costs of skilled labour
and instrumentation, it is difficult to collect sufficient geodetic measurements. Due to the high humidity
caused by the monsoon climate of this region, optical sensors are often limited in obtaining an effective
time series of measurements. Thus, microwave remote sensing using Synthetic Aperture Radar (SAR)
imagery has been recognized as an effective tool for landslide monitoring. It is able to work both day
and night during all weather conditions, and repeatedly acquires time series of images over large areas.

DInSAR techniques have been conventionally used for mapping of landslide activities. However,
several difficulties arise when attempting to apply DInSAR in areas with steep slopes and rugged
topography, high humidity, and dense vegetation cover. In addition to these difficulties, in previous
studies [1–3], it is shown that the maximum detectable displacement gradient (DDG) of DInSAR can
be exceeded in some case of very slow landslides (16 mm·year−1–1.6 m·year−1, as defined in Cruden
and Varnes [4], Hungr et al. [5]) even when using high resolution SAR imagery.

As an alternative method, Offset Tracking (sometimes also referred to as intensity tracking) can be
used to address some of the technical limitations of DInSAR, particularly the limitation of maximum
detectable displacement gradient (DDG) and low coherence due to vegetation changes [6–9]. Offset
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Tracking allows the measurement of two-dimensional (2D) ground surface displacement with sub-pixel
accuracy, by analysing the 2D offsets of the master and slave images based on cross-correlation of SAR
intensity and amplitude.

Sub-pixel correlation of optically sensed imagery from spaceborne or airborne platforms has been
proven as a very useful technique for investigation of landslides [10–15]. A more recent study proposed
a multiple pairwise image correlation (MPIC) technique based on a sub-pixel correlation analysis of
optical data [16]. This method was tested with time series Pléiades monoscopic and stereoscopic images
to investigate a landslide-prone landscape in the South French Alps. It demonstrated the capability
of this method to improve detection accuracy, benefiting from averaging redundant measurements
from multiple pair combinations. However, in some areas, such as the Three Gorges Region where
our case study is located, due to the frequent cloud cover throughout the year, it is difficult to obtain
multi-temporal optical satellite images for time series analysis.

For time series offset tracking of SAR imagery, the commonly adopted approach is to use a
single master image, usually the first acquisition. This simple strategy is suitable when no significant
dependence is found between the number of reliable measurements and the temporal or spatial
baseline. Under such a scenario, connecting offset pairs by a small baseline network has limited
benefits and leads to much higher time consumption.

However, in many cases, due to a larger dynamic range of spatial baseline or temporal
de-correlation effects, the number of reliable measurements decreases significantly with the increase in
temporal or spatial baseline. As indicated in Yonezawa and Takeuchi [17], Offset Tracking requires
similar speckle patterns between the master and slave images to obtain a sharp correlation peak.
Long baseline distances will result in significant speckle geometrical de-correlation. The correlation
coefficient between offset pairs decreases with the increase of spatial baseline, which leads to a higher
standard deviation (STD) error in cross-correlation [18]. In addition, in densely vegetated areas, the
temporal de-correlation effects are significant. Higher accuracy is required to measure very slow
landslides, which again leads to lower density of final measurements. In particular, in rural areas with
dense vegetation cover, there are few high-contrast surface features (e.g., artificial corner reflectors,
houses, bare rocks, etc.), but a number of natural scatterers can maintain a medium correlation within
a certain time period rather than over the whole time series. Thus, constructing a small baseline
network based on proper thresholds of temporal and spatial baseline can help to minimize temporal
and speckle geometric de-correlation effects, and take advantage of the scatterers with temporary
medium correlation, so as to increase the density of measurements.

Small baseline approaches have previously been combined with offset tracking to measure
large deformation magnitudes. Casu et al. proposed a PO-SBAS (pixel-offset small baseline
subset) approach applied to medium resolution ENVISAT SAR data to measure large displacements
(several metres) occurring in the inner part of the Sierra Negra caldera due to the October 2005
eruption [19]. The measured deformation reached one to several metres in both azimuth and range
directions. Manconi et al. produced post-event deformation maps for emergency evaluation of a
large, rapidly-moving (10–20 m) landslide [20]. The PO-SBAS approach was applied to ascending and
descending pairs of COSMO-SkyMed images to retrieve three-dimensional (3D) deformation of the
Montescaglioso landslide (Italy), of which the main movement occurred in 15–20 min at an average
velocity of 0.5–1 m per minute.

For measurements of large displacement, the topographic component of offsets is not significant
with regard to the deformation magnitude. Topographic distortions are usually modeled using a
reference DEM and orbital data, and removed from offset results [19–22]. In the case study presented
in Raucoules et al. [23], considering the selected small baselines (ranging from 1 to 200 m) with
regard to the large deformation magnitude, the topographic component was neglected. In addition,
co-registration errors (about 1/10 pixel size) are not significant either, in the case of large deformation.

However, in the case of much smaller displacement rates (several to dozens of centimetres per
year), the residual offsets in both range and azimuth directions due to co-registration errors and orbit
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inaccuracies in topographic distortion removal can even obscure the real displacement, and thus
are non-negligible.

This research, to the best of our knowledge, is the first to explore the use of SBAS offset tracking
technique to monitor very slow landslides, in which scenario the removal of residual offsets becomes a
crucial step to derive correct displacement rates even using sub-metre resolution SAR data. A step of 2D
polynomial fitting is applied to both range and azimuth offset measurements to estimate and remove
the residual offsets before the inversion step. Furthermore, the study area, the Tanjiahe landslide in the
Three Gorges Region, China, is characterized by high humidity and dense vegetation cover on steep
slopes, posing more difficulties on the application of time series InSAR and offset tracking. In our
preliminary study, time series InSAR analysis of the landslide did not obtain satisfactory results. Rapid
loss of phase coherence combined with topographical phase residuals lead to very low redundancy
of connections (less than three per acquisition) in the SBAS InSAR network. The dense vegetation
cover in this area lead to a very low density of Persistent Scatter (PS) candidates. For this reason, time
series InSAR cannot provide reliable measurements. Similarly, for offset tracking, there are very few
high-contrast surface features (e.g., artificial corner reflectors, houses, bare rocks, etc.) in the study area.
This means this area lacks strong scatterers with constantly high correlation coefficient throughout the
time series. An experiment using conventional offset tracking approach using a single master image
yielded rather sparse coverage, because the number of reliable measurements decreases significantly
with the temporal baseline, due to the lack of strong scatterers. Hence, SBAS offset tracking is applied
to make use of scatterers showing medium correlation within a certain time period, to increase the
density of reliable measurements. An assessment is then made on the potential and limitations of
SBAS offset tracking in the challenging conditions.

This paper is organized as follows: Section 2 describes the study area, employed data, and
proposed method; Section 3 presents the application results of this method to the Tanjiahe landslide
area, followed by discussions in Section 4. Finally, some concluding remarks are reported in Section 5.

2. Materials and Methods

2.1. Study Area

The case study is carried out in the Tanjiahe landslide area in the Three Gorges Region of China.
The Three Gorges Region, situated on the middle Yangtze River from Chongqing to Yichang, covers
an area of 58,000 km2 [24]. The terrain is composed of a succession of limestone gorges and ridges,
and inter-gorge valleys. Frequent and wide distributed landslides in the Three Gorges Region have
caused a lot of wasted resources, damage to properties and public facilities, and even loss of human
lives. They also pose great threats to the normal operation of the Three Gorges Dam. The land cover
within this region is dominated by cultivated land and mixed deciduous forest. The terrain is featured
by steep slopes and dense vegetation cover [25].

The Tanjiahe landslide area is representative of the hillsides of the Three Gorges Region, sparsely
populated by small villages filled with single-story buildings amongst dense orange trees. The Tanjiahe
landslide area is an ancient landslide, located on the southern bank of Yangtze River with centre
coordinates of 31.030◦N, 110.509◦E, about 56 km upstream from the Three Gorges Dam. The landslide
body is underlain by mudstone, sandstone, and siltstone. The trailing edge is 432 m high. The front
edge extends into the Yangtze River at an altitude of 135 m. The landslide body is about 400 m wide
and 1000 m long, with a slope ranging from 10◦ to 25◦ and a volume of 9 × 107 m3. The sliding
direction is 340◦ clockwise counting from the North, predominantly towards the Yangtze River. As
shown in Figure 1, the boundary of the Tanjiahe landslide looks like a boot [26,27].
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Figure 1. (a) Location of Tanjiahe landslide area shown in SRTM DEM. (b) Tanjiahe landslide area 
shown in Google Earth with landslide body highlighted in red. Map data: Google Earth, Image@ 2017 
CNES/Airbus. 

The Tanjiahe landslide has not been well studied especially in the English-language literature, 
but some historical measurements from GPS monitoring stations can be found in a few Chinese 
articles. The monitoring was started in October 2006. Notable deformation development of Tanjiahe 
landslide was observed in 2007 [28]. By December 2009, the accumulated deformation measured from 
one of the GPS points (ZG289) reached 757.9 mm [26], predominantly towards the Yangtze River. By 
December 2015, the accumulative displacements rise up to 1800–1900 mm [29]. From 2006 to 2015, 
seasonal accelerations can be observed from the deformation time series plot, which is suspectedly 
linked to hydrological factors, such as the local rainfall and water level changes of Three Gorges 
Reservoir. 

2.2. Data 

A stack of TSX Staring Spotlight (TSX-ST) images is employed in this research supplied under 
data grant GEO2630 of the German Aerospace Centre (DLR), acquired in a right-looking orientation 
on a descending orbit over the Tanjiahe landslide area mostly at 11-day intervals. The data stack 

Figure 1. (a) Location of Tanjiahe landslide area shown in SRTM DEM. (b) Tanjiahe landslide area
shown in Google Earth with landslide body highlighted in red. Map data: Google Earth, Image@ 2017
CNES/Airbus.

The Tanjiahe landslide has not been well studied especially in the English-language literature, but
some historical measurements from GPS monitoring stations can be found in a few Chinese articles.
The monitoring was started in October 2006. Notable deformation development of Tanjiahe landslide
was observed in 2007 [28]. By December 2009, the accumulated deformation measured from one of the
GPS points (ZG289) reached 757.9 mm [26], predominantly towards the Yangtze River. By December
2015, the accumulative displacements rise up to 1800–1900 mm [29]. From 2006 to 2015, seasonal
accelerations can be observed from the deformation time series plot, which is suspectedly linked to
hydrological factors, such as the local rainfall and water level changes of Three Gorges Reservoir.

2.2. Data

A stack of TSX Staring Spotlight (TSX-ST) images is employed in this research supplied under
data grant GEO2630 of the German Aerospace Centre (DLR), acquired in a right-looking orientation on
a descending orbit over the Tanjiahe landslide area mostly at 11-day intervals. The data stack spans a
time period of one year, from February 2015 to February 2016. The metadata of this annual time series
of TSX-ST data is listed in Table 1. The estimated perpendicular baselines of all subsequent images
with regard to the first acquisition are listed in Table 2.
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Table 1. Metadata of the data stack of TSX Staring Spotlight (TSX-ST) data using the parameters from
the first image. These values remain very close for all subsequent acquisitions.

TerraSAR-X Staring Spotlight Data

First acquisition 8 February 2015
Last acquisition 28 February 2016

Satellite orbit heading (◦) 189.555
Wavelength (m) 0.031

Incidence angle (◦) 44.303
Polarization HH

Range pixel spacing (m) 0.455
Azimuth pixel spacing (m) 0.169

Range resolution (m) 0.84
Azimuth resolution (m) 0.23

Maximum DDG 0.0059 (Range looks = 2)

Table 2. Perpendicular baseline of each slave image with regard to the first acquisition.

Common Master Slave

Acquisition Date Perpendicular
Baseline (m) Acquisition Date Perpendicular

Baseline (m)

8 February 2015

19 February 2015 391.3 27 September 2015 46.2
2 March 2015 80.8 8 October 2015 119.4
4 April 2015 46.8 19 October 2015 199.0

15 April 2015 192.4 30 October 2015 12.2
18 May 2015 42.0 10 November 2015 37.7
20 June 2015 60.2 21 November 2015 128.9
1 July 2015 19.4 2 December 2015 53.4

12 July 2015 28.6 24 December 2015 28.6
23 July 2015 147.7 4 January 2016 49.5

3 August 2015 123.1 15 January 2016 140.0
25 August 2015 3.5 26 January 2016 121.3

5 September 2015 77.0 17 February 2016 252.8
16 September 2015 122.0 28 February 2016 11.8

2.3. Method: SBAS Offset Tracking

We briefly summarize the SBAS offset tracking algorithm based on the work reported by
Berardino et al. [30] and Casu et al. [19]. Similar to the SBAS InSAR approach proposed by Berardino
et al. [30], we here consider the scenario in the amplitude domain. We assume that there is a stack
of co-registered full resolution SAR data consisting of N + 1 images φ0, φ1, φ2, · · · , φN . Based on
selected thresholds of spatial and temporal baseline, small baseline subsets are formed by M data
pair connections.

The 2D offset measurements of the M connected pairs are represented by δφT =

[δφ1, δφ2, · · · , δφM], where δφj = φISj − φIEj ∀j = 1, 2, · · · , M , φISj is the slave image and φIEj is
the master image of a generic offset pair. Assuming that:

φISj − φIEj =

ISj

∑
k=IEj+1

(tk − tk−1)
φk − φk−1
tk − tk−1

=

ISj

∑
k=IEj+1

(tk − tk−1)vk (1)

where vk is the mean azimuth or range displacement velocity between time-adjacent acquisitions of a
connected pair. Thus, a vector vT consist of a time series displacement velocity and can be expressed as:

vT =

[
v1 =

φ1 − φ0

t1 − t0
, v2 =

φ2 − φ1

t2 − t1
, · · · , vN =

φN − φN−1

tN − tN−1

]
. (2)
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Set B as a matrix recording all connections in the small baseline network,

B(j, k) =

{
tk − tk−1, IEj + 1 ≤ k ≤ ISj, ∀j = 1, 2, · · · , M

0, elsewhere
. (3)

So, the following relationship holds
Bv = δφ. (4)

In the vast majority of cases that B exhibits a rank deficiency, the velocity vector v can be retrieved
by solving the over-determined equations in Equation (4) using Singular Value Decomposition
(SVD), as:

[U, S, V] = SVD(B). (5)

Then the displacement velocity vector can be derived by

v = VS+UTδφ (6)

where
S = diag(σ1, σ2, · · · , σN−L+1, 0, · · · , 0)

S+ = diag(1/σ1, 1/σ2, · · · , 1/σN−L+1, 0, · · · , 0)
(7)

σi represent the singular values; L is the number of different subsets; N is the number of images
in the data stack; the rank of matrix B is N − L + 1.

The step-by-step processing strategy is described as follows:

(1) Co-registered images are cropped to cover the landslide body and the surrounding stable area.
Each data pair is processed by sub-pixel offset tracking.

(a) Topographic distortions are modeled using a reference DEM (SRTM 1 arc-second global
DEM) with orbital parameters and subtracted.

(b) The azimuth and range offsets are derived using cross-correlation. As described in Sun
and Muller [3] and recalled herein, the Normalized Cross Correlation (NCC) is applied to
the amplitudes of the master and slave images, to derive two-dimensional (2D) offsets.
The offsets of a point in any dimension are determined by its different positions in the
master and slave images. The corresponding position is determined by a measure of
similarity calculated between the point-centred window in the master image and a sliding
window of same pixel size in the slave image. The similarity, which is defined as the
correlation coefficient, is computed as follows:

NCC =

Nx
∑

m=1

Ny

∑
n=1

[(
i1(m, n)− i1

)
·
(
i2(m, n)− i2

)]
√

Nx
∑

m=1

Ny

∑
n=1

(
i1(m, n)− i1

)2

√
Nx
∑

m=1

Ny

∑
n=1

(
i2(m, n)− i2

)2

(8)

where i1 and i2 denote pre-event and post-event images with a two-dimensional offset
(a, b), which can be described as i2(x, y) = i1(x− a, y− b). Nx × Ny is the correlation
window size which can be modified by the application requirements. i1 and i2 are the
mathematical expectation values of the cross-event image pair:

i1 =
1

Nx × Ny

Nx

∑
m=1

Ny

∑
n=1

i1(m, n) (9)
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i2 =
1

Nx × Ny

Nx

∑
m=1

Ny

∑
n=1

i2(m, n). (10)

The NCC method searches for maximum correlation (i.e., maximum similarity) between
window pairs formed by the master and slave images. Those window pairs for which a
maximum correlation detected is considered as corresponding pairs. After locating the
corresponding pixels in the master and slave images, the 2D offsets of the slave image with
regard to the master image can be obtained. To achieve a sub-pixel accuracy of correlation,
image amplitudes are oversampled prior to cross-correlation. Positive values of range
displacement correspond to an increase of sensor to target distance. Positive values of
azimuth offsets refer to an increase of along-track displacement.

(c) Residuals offsets due to orbit inaccuracies and co-registration errors are estimated by 2D
polynomial fitting of selected reference points in the stable area, and reconstructed for the
whole subset, including both the landslide body and stable area.

(2) After correction of residual offsets, Singular Value Decomposition (SVD) is applied to invert the
range and azimuth offset measurements of all connected offset pairs, to derive displacements at
each acquisition time.

(3) To discard unreliable measurements, a mask is built based on the root mean square error (RMSE)
of the time series range and azimuth offset measurements, calculated pixel by pixel. For the
stable area, RMSE is calculated against zero offset measurements. For the landslide area, a
polynomial function is used to fit the displacement time series. RMSE is estimated between the
offset measurements and the fitted polynomial. The degree of the polynomial function is selected
by multiple fitting tests to obtain best goodness of fit. For the case study of Tanjiahe landslide, a
third order polynomial function is used.

(4) Time series azimuth and range offset maps can be produced to reflect the temporal evolution and
spatial distribution of the landslide; time series analysis is carried out on displacement rates of
selected pixels in the landslide area.

3. Results

3.1. Small Baseline Network Construction

To determine the spatial and temporal baseline thresholds to create a small baseline network, we
made an experiment using the conventional offset tracking method, i.e., computing the 2D offsets
of 26 offset pairs, using the first acquisition on 8 February 2015 as the common master image and
neglecting any constraint of spatial baseline. All images in the data stack are cropped to the sub-area
covering the landslide body and the surrounding stable ground, as shown in Figure 2. Orbital data
and a reference DEM (~30 m resolution SRTM DEM) are used to model and correct the topographic
components of offsets. A correlation window of 32 × 128 pixels is exploited, corresponding to a
27 m × 29 m resolution grid on the ground. The images are oversampled by a factor of 16 before
the cross-correlation.
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Figure 2. Boundary of the stable area surrounding Tanjiahe landslide, marked in blue polygon on the 
geocoded Synthetic Aperture Radar (SAR) amplitude. Data source: TerraSAR-X Staring Spotlight © 
DLR <2015>. All “stable area” mentioned and used in this study refer to this area inside the blue 
boundary. Apart from the Tanjiahe landslide body, the rest of area adjacent to the blue boundary 
belongs to another landslide active zone, therefore is excluded from the stable area. 

 
Figure 3. (a) Number of reliable measurements in the stable area plotted in relation to the temporal 
baseline; (b) Number of reliable measurements in the stable area plotted in relation to the 
perpendicular baseline. 

In Figure 3a, we can see that the number of valid pixels decreases with the temporal baseline, 
following an approximate exponential trend. In Figure 3b, the same perpendicular baseline 
corresponds to varied number of reliable measurements, and no significant dependence of the 

Figure 2. Boundary of the stable area surrounding Tanjiahe landslide, marked in blue polygon on
the geocoded Synthetic Aperture Radar (SAR) amplitude. Data source: TerraSAR-X Staring Spotlight
© DLR <2015>. All “stable area” mentioned and used in this study refer to this area inside the blue
boundary. Apart from the Tanjiahe landslide body, the rest of area adjacent to the blue boundary
belongs to another landslide active zone, therefore is excluded from the stable area.

The reliability of offset measurements is assessed by their noise level on the stable ground
(Figure 2), which in this case is the local variances of azimuth and range offset measurements in
the stable area. This is calculated in the spatial domain using a window of 33 × 33 pixels centred
by each pixel for each acquisition, each corresponding to a temporal and spatial baseline value.
A proper threshold of the variances is used to select pixels of reliable measurements. Constraints of
the temporal–spatial baseline are then determined based on the relationship observed between the
number of reliable measurements (in pixels) and the perpendicular baseline and temporal baseline, as
displayed in Figure 3.
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In Figure 3a, we can see that the number of valid pixels decreases with the temporal baseline,
following an approximate exponential trend. In Figure 3b, the same perpendicular baseline corresponds
to varied number of reliable measurements, and no significant dependence of the number of pixels
is found upon the perpendicular baseline. This suggests that the key factor affecting the number of
reliable measurements is the time interval of offset pairs.

A temporal baseline of 99 days and a perpendicular baseline of 400 m are selected as constraints
to construct a small baseline network. In total, 157 offset pairs are connected, with a mean connection
redundancy of 5.6 per acquisition. The resulting small baseline network is shown in Figure 4, with
the relative position (perpendicular baseline with respect to the first acquisition on 8 February 2015)
plotted versus the temporal baseline.
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3.2. Removal of Residual Offsets

Sub-pixel offset tracking is applied to each offset pair connected by the small baseline network,
using the same procedure and parameters described in Section 3.1. Removal of residual offsets is
carried out before inversion of the 157 offset pairs. The standard deviations over time are respectively
estimated for the azimuth and range offsets measured from the stable area. By imposing a proper
threshold to the standard deviations of 2D measurements, a number of pixels on the stable ground are
selected as reference points for correction of residual offsets. A 2D first order polynomial function is
then fitted to the range and azimuth offsets measured from these points. Using the fitted parameters,
the overall residual offsets are reconstructed for the whole area, including both the landslide body and
the stable area. After correction, the mean of the azimuth and range offset measurements derived from
the reference points on the stable ground are estimated in the spatial domain for each offset pair, as
displayed in Figure 5.

In Figure 5, we can see the mean offset measurements on the stable ground are extremely close to
zero. This suggests the correction is successful.

3.3. Two Dimensional Displacement Measured by SBAS Offset Tracking

After correction of residual offsets, all 157 pairs of offset measurements are inverted by SVD
decomposition, to derive the azimuth and range displacement at each acquisition time. Noise-dominant
pixels are discarded by a RMSE mask using the method described in Section 2.3. Displacement maps
are produced to show the temporal evolution and spatial distribution of the landslide, as displayed in
Figures 6 and 7.
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amplitude, with landslide boundary plotted in white line, and Global Positioning System (GPS)
stations marked in white squares. Data source: TerraSAR-X Staring Spotlight © DLR <2015>.
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Figure 7. Accumulated range displacement of the Tanjiahe landslide on different acquisition dates
derived by the SBAS offset tracking approach, superimposed on TSX-ST amplitude, with landslide
boundary plotted in white line, and GPS stations marked in white squares. Data source: TerraSAR-X
Staring Spotlight © DLR <2015>.

From both the azimuth and range offset maps shown in Figures 6 and 7, the whole landslide
body shows consistent pattern of temporal evolution, i.e., the slope experienced biggest displacement
rate in April–August and tend to be stable in the following months. The spatial distribution of the
landslide is also clear. The upper part of the slope shows bigger deformation magnitude, whilst smaller
displacement rate is observed in the lower part of the landslide.

Three pixels on the landslide body are selected for time series analysis, with their locations
displayed in Figure 8 and corresponding offset measurements plotted in Figure 9.
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the standard deviation errors over time of accumulated azimuth and range offset measurements are 
calculated respectively. The overall error level is estimated by spatially analysed statistics in terms of 
‘mean ± STD’, as shown in Table 3. 

Figure 8. Location of the three pixels ‘P1’, ‘P2’, and ‘P3’ selected for time series analysis. The three
pixels marked by green triangles and the landslide boundary in red are superimposed on the SAR
amplitude image over the Tanjiahe landslide site. Data source: TerraSAR-X Staring Spotlight © DLR
<2015>.
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In Figure 9, we can see that the four pixels show quite similar magnitudes of deformation, with
maximum azimuth displacement around −0.15 m, and slant range displacement ranging from 0.1 m
to 0.15 m. As all these data were acquired with right-looking SAR in a descending orbit, the negative
magnitude of azimuth displacement corresponds to the reverse along-track direction (predominantly
to the North) and the positive magnitude of range displacement represents the movement away from
the sensor. In the time series analysis, the Tanjiahe landslide shows a seasonal pattern with a big
increase in the displacement rate in April–August, which slows down in the remainder of the year.

3.4. Precision Assessment and Comparison with GPS Measurements

The precision of offset measurements is assessed as follows: as the accumulated 2D displacements
on each acquisition date have been retrieved, for each valid pixel in the stable area, the standard
deviation errors over time of accumulated azimuth and range offset measurements are calculated
respectively. The overall error level is estimated by spatially analysed statistics in terms of ‘mean ±
STD’, as shown in Table 3.
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Table 3. Overall precision assessment based on the standard deviation errors of the azimuth and range
offset measurements derived from the stable ground, calculated along the temporal baseline.

Azimuth Offset (m) Range Offset (m)

Standard deviation errors 0.025 ± 0.011 0.027 ± 0.009

Due to the absence of direct geodetic measurements of the landslide, we compare the deformation
magnitudes of the selected pixels derived by the offset tracking approach with GPS measurements
found in literature. Four GPS stations were installed along the longitudinal section of the Tanjiahe slope
(ZG287, ZG288, ZG289, and ZG290) and surveyed monthly [29]. The paper presented a schematic
view of the GPS stations, a table showing annual displacement magnitudes from 2007 to 2015, as well
as a plot of GPS displacement curves. The displacement time series of the four GPS stations show a
very consistent pattern of accumulated displacement. Smaller deformation magnitude is observed
from the ZG290 station located at the lower part of the slope, whist higher displacement rate is found
on the three GPS stations installed on the upper part of the slope (i.e., ZG287, ZG288, ZG289). This
distribution is identical to the spatial distribution revealed by the offset maps in Figures 6 and 7.

We have no access to the coordinates and actual measurements of the GPS time series used in the
abovementioned publication [29] (the plot in Zhang et al. [29] does not give the digit corresponding to
each point of the GPS time series). Nevertheless, we manually aligned the schematic view of the GPS
locations to the geocoded SAR amplitude over the Tanjiahe landslide area, using the river shoreline as
the matching features. In this way, the sketch maps of GPS stations are coarsely co-registered with the
offset tacking results. Then the pixels in the same area of GPS stations are extracted for a comparison.
The GPS time series plot was taken from the publication [29] and digitized, in order to obtain the GPS
measurements corresponding to the curves in the plot. The GPS measurements span the time period
from December 2014 to December 2015, overlapping 10 months in time with the offset measurements
(February 2015–February 2016).

Prior to the comparison, the GPS time series measurements are projected onto the azimuth
and slant range directions, based on the knowledge of the main sliding direction of the landslide
(340 degrees clock-wise from the North), and slope degrees of each position derived from the reference
SRTM DEM. The projected GPS monthly measurements are interpolated to the acquisition dates of
each image in the TSX data stack, in order to make the time series comparison on a one-to-one basis.

The time series of pixels located in the same area of the GPS stations are plotted against the
annual displacements of individual GPS stations, as shown in Figure 10. As ZG290 and ZG287 are
located out of the mask of valid pixels, the other two stations, ZG288 and ZG289, are used in the
following analysis.

In Figure 10, we can see the time series offsets measured from pixels located on the positions
of ZG288 and ZG289 closely follow the corresponding GPS measurements; the differences between
the offsets and GPS time series are estimated by RMSE, and summarized in Table 4. Considering the
precision of SBAS offset tracking (as estimated in Table 3) of 2.5 ± 1.1 cm in the azimuth direction and
2.7 ± 0.9 cm in the range direction, the RMSE between the offset time series and GPS data are not
statistically significant.

Table 4. The root mean square error (RMSE) between the time series displacements measured by SBAS
offset tracking and GPS stations.

ZG288 ZG289

Azimuth RMSE (cm) 1.89 1.20
Range RMSE (cm) 3.38 1.80



Remote Sens. 2017, 9, 1314 14 of 21
Remote Sens. 2017, 9, 1314  14 of 22 

 

 
Figure 10. Time series azimuth and range displacement (marked in blue diamonds) measured from 
pixels located in the same area of the GPS stations, plotted versus the GPS time series over the time 
period from 19 February 2015 to 2 December 2015. (a) Comparison with the GPS time series measured 
from ZG288 station. (b) Comparison with the GPS time series measured from ZG289 station. The x 
axis represents the days counted from 19 February 2015 (red lines). As some TSX images supposed to 
be acquired in a 11-day repeat cycle are absent in the original data stack, the offset time series 
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As is well known [31,32], the ground water table or pore-water pressure within the soil layers of 
the landslide body are affected by the reservoir surface fluctuation and local precipitation, which 
decreases the effective normal stress leading to a decrease in shear strength of the soils. In previous 
studies, the fluctuation of the reservoir water level and seasonal rainfall are found as the two main 
triggering factors for landslides along the Yangtze River banks [31,33–36]. Two studies of the Tanjiahe 
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Figure 10. Time series azimuth and range displacement (marked in blue diamonds) measured from
pixels located in the same area of the GPS stations, plotted versus the GPS time series over the time
period from 19 February 2015 to 2 December 2015. (a) Comparison with the GPS time series measured
from ZG288 station. (b) Comparison with the GPS time series measured from ZG289 station. The x
axis represents the days counted from 19 February 2015 (red lines). As some TSX images supposed
to be acquired in a 11-day repeat cycle are absent in the original data stack, the offset time series
measurements in this figure are not evenly spaced in the x axis.

4. Discussion

4.1. The Relationship between the Landslide and Water Level Variations of the Three Gorges Reservoir

The construction of the Three Gorges Dam was started in 2003 and completed in 2009. The
reservoir level rose from 66 m to 135 m in 2003, then to 156 m in 2006, and finally to 175 m above sea
level after three impoundments. After reaching the designed maximum height of 175 m in 2010, the
water level experiences 30 m of fluctuation between 145–175 m every year. A drawdown-filling cycle
is repeated every year at almost exactly the same time.

As is well known [31,32], the ground water table or pore-water pressure within the soil layers
of the landslide body are affected by the reservoir surface fluctuation and local precipitation, which
decreases the effective normal stress leading to a decrease in shear strength of the soils. In previous
studies, the fluctuation of the reservoir water level and seasonal rainfall are found as the two main
triggering factors for landslides along the Yangtze River banks [31,33–36]. Two studies of the Tanjiahe
landslide show controversial results on whether the local rainfall is the key driving factor of the
slope movements in this area [29,37]. However, previous studies of the Ivancich landslide in central
Italy point out there is a lack of correlation between the rainfall and the extremely slow landslide
displacement (<16 mm·year−1) [38–40]. Thus, in this section, the landslide displacement is respectively
compared with reservoir water level measurements and daily rainfall data. The rainfall data was
measured from a gauge station in Badong County, 16 km upstream from the Tanjiahe landslide site.

It should be noted that the time series measurements of azimuth and range offset are not evenly
spaced in the time domain, as some acquisition dates are missing. Thus, prior to the analysis, a cubic
spline interpolation is used to interpolate across the missing dates for the every-11-day measurements.
The interpolated displacements of the three selected pixels ‘P1’, ‘P2’, and ‘P3’are displayed in Figure 11
as follows.

As we can see from Figure 11, the measurements from all three pixels show a consistent pattern
of displacements in both the azimuth and range directions. The azimuth offset measurements of ‘P1’
are then selected for subsequent analysis in Section 4.1.
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In Figure 12, a significant and abrupt increase in deformation magnitude can be observed, 
synchronized with the sharp reservoir drawdown in April–July 2015, and non-significant 
displacement (with regard to the 2–3 cm precision of azimuth offset measurements) over the 
following months. It is evident that the active landslide period coincides with the fast drawdown of 
the reservoir water level. No noticeable correlation is found between the dramatic raising of water 
level in September–October and the landslide displacement. 
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Tanjiahe landslide derived by SBAS offset tracking.

The every-11-day offset measurements with a corresponding trend line are plotted against the
water level measurements (Figure 12) and local rainfall data (Figure 13).
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In Figure 12, a significant and abrupt increase in deformation magnitude can be observed,
synchronized with the sharp reservoir drawdown in April–July 2015, and non-significant displacement
(with regard to the 2–3 cm precision of azimuth offset measurements) over the following months. It is
evident that the active landslide period coincides with the fast drawdown of the reservoir water level.
No noticeable correlation is found between the dramatic raising of water level in September–October
and the landslide displacement.

In Figure 13, heavy and intense rainfall is observed from March to October, covering the period of
the greatest displacement rate (April–July 2015). However, in the period of July–October 2015 with
intensity of rainfall second only to the previous months, no noticeable deformation can be observed.

The above results suggest that rainfall does not play a key role in triggering the landslide in the
observation year, but we cannot rule out the possibly that rainfall has combining effects with the water
level variations due to the overlapped period of reservoir fast drawdown and heavy rainfall. Reservoir
drawdown is the key driving factor of the landslide. It appears that the slope stability decreases with
the fast drawdown of the reservoir water level and increases with the big rise of water level.

4.2. Potential and Limitations of the SBAS Offset Tracking Approach in Comparison with InSAR

Sub-pixel offset tracking techniques only utilize intensity bands of the satellite imagery to retrieve
2D ground deformation. It is less sensitive to low coherence and does not require phase-unwrapping,
which leads to most of the failures in time series InSAR due to the low density of valid pixels. As a
method free of phase-unwrapping, offset tracking has no limitation in the maximum detectable
displacement gradient (DDG). Thus, offset tracking techniques potentially have the capability
and advantage to measure slope movements with the speed exceeding the maximum detectable
displacement of DInSAR or map deformation in challenging areas such as densely vegetated and
steeply sloped terrain.

For a single pair of SAR images, the accuracy of offset tracking is jointly determined by the
deformation rates in the area of interest, image resolution, and the correlation coefficient of scatterers
in the target area [41]. The presence of high-contrast surface features does help to improve the
accuracy. With the availability of high-resolution SAR imagery, offset tracking is able to monitor
very slow-moving landslides (16 mm·year−1–1.6 m·year−1 as defined in Cruden and Varnes [4],
Hungr et al. [5]) and complement the applications of DInSAR. This has been demonstrated in our
previous study of the Shuping landslide [3].

Given an area of interest and the same dataset, the accuracy of offset tracking is mainly determined
by the correlation coefficient. Low correlation leads to a large uncertainty in cross-correlation and
eventually low accuracy of measurements. For this reason, temporal and spatial baseline screening
is necessary prior to analysis. If there is a significant dependence between the number of reliable
measurements and the temporal–spatial baseline, it is beneficial to create a small baseline network of
offset pairs, in order to increase the density and coverage of observation.

The proposed SBAS offset tracking approach is demonstrated of being capable of measuring
centimetre-level landslide rates in densely vegetated terrain. Instead of only measuring the deformation
of only a few sparsely distributed strong scatterers, the proposed approach provides a synoptic
overview of the landslide by constructing a small baseline network and time series inversion of
redundant connection of offset pairs. According to the results of our preliminary experiment in
conventional offset tracking, to achieve the same precision, the number of reliable measurements
derived by SBAS offset tracking is more than 15 times the conventional offset tracking method.

Offset tracking has the advantage of obtaining 2D measurements using data from a single
orbit. It should be noted that the azimuth and range offsets only measure the projection of the
real displacement on the slant range plane due to the radar geometry. The displacement component
perpendicular to the slant range plane, if there was any, would not be detected. To measure 3D
displacement, images from at least two different orbits are needed to solve the least squares functions.
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Data from descending and ascending orbits are preferred to improve the robustness of the estimation,
which should be considered when selecting new data in future studies.

East-West (E-W)-oriented landslides provide a better geometry for line-of-sight (LOS)
measurement from sun-synchronous SAR imaging instruments, as the E-W and downward component
of the sliding vector can both be captured by satellite LOS measurements. For North-South
(N-S)-oriented landslides, as most of the landslides on the banks of Yangtze River appear to be, Offset
Tracking is of great importance to provide measurements in the azimuth direction (approximately
N-W) when repeat data are only available from a single orbit.

InSAR techniques have been widely used for displacement monitoring in many areas including the
Three Gorges Region, with success demonstrated through measurements of much smaller displacement
rates in urban areas using time series InSAR approaches [42,43]. This case study, shows results of
so-called ‘very slow-moving’ landslide (16 mm·year−1 to 1.6 m·year−1 as defined in Cruden and
Varnes [4]) with annual displacement rates up to 20 cm. As calculated in Table 2 using a multi-looking
factor of 2, the upper limit of measurable displacement in one repeat cycle (11 days), is 0.59 cm, over a
ground distance of 1 m. For the Tanjiahe landslide showing a dramatic increase in deformation over a
short period, there is a high probability of underestimation by InSAR based techniques, especially on
the landslide boundary.

In addition to the limitation of maximum detectable displacement gradient (DDG), the rapid loss
of phase coherence is a major issue in densely vegetated areas. In our preliminary work, using the
TerraSAR-X Staring Spotlight data with an 11-day repeat cycle and 0.23 m × 0.84 m resolution, the
coherence loss is still a problem, resulting in too low a redundancy of data connections to apply time
series InSAR. Satellite data with a shorter re-visit cycle and high resolution (1–3 m at least) is expected
can help to address this issue, which should be exploited in future work. A shorter repeat interval is
much-needed by DInSAR in this kind of study area. The improvement of the re-visit time will also
increase the maximum measurable displacement of DInSAR.

Geometric distortion is also a key factor affecting the quality of interferograms, especially in an
area characterised by many steep slopes. DEM products often exhibit higher height errors in areas
with rugged topography due to geometric distortions. Low resolution, inaccuracies, or both in the
reference DEM can lead to large residual errors of topographic phase, which further decrease the
quality of interferograms.

Theoretically, time series InSAR has higher accuracy (millimetre-level) compared with Offset
Tracking (centimetre-level). In other types of terrain (e.g., with more man-made structures, less
vegetation, or lower slopes), the use of InSAR techniques may have more advantages for displacement
monitoring, especially for slower displacement.

For slow-moving landslides, the use of offset tracking is recommended to assess if the assumption
of maximum displacement gradient of InSAR can be fulfilled. Offset Tracking is less sensitive to low
coherence and is able to derive 2D displacement using data from a single orbit, whilst time series
InSAR can help to detect the smaller magnitude of deformation (e.g., during a less active period of the
landslide). Thus, the two techniques are complementary to each other and there appears to be hope of
more improvements with the availability of satellite data of shorter revisit cycle and higher resolution.

5. Conclusions

This work demonstrates the capability of the SBAS Offset Tracking approach to monitor
centimetre-level landslide displacement in a challenging area characterised by dense vegetation
cover and steep slopes. In the case study of the Tanjiahe landslide, as significance is found between
the number of reliable measurements and the temporal baseline, a small baseline network of offset
pairs is created to minimize temporal decorrelation, and increase the density and coverage of the
offset measurements at the end. Considering the centimetre-level displacement rate, an extra step is
taken to remove the residual offsets due to co-registration errors and orbit inaccuracies before the SVD
inversion of all offset pairs. Taking advantage of the sub-metre resolution of the TSX Staring Spotlight
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data, the proposed SBAS offset tracking approach has been shown of being capable of measuring
centimetre-level landslide rates with an average precision of 2–3 cm, with point density more than
15 times of the conventional offset tracking approach. The offset results have been validated of good
agreement with published GPS measurements. This approach is of particular interests for deformation
monitoring in many rural areas lack of high contrast surface features, especially over densely vegetated
and steep terrain.

In the case study, the relationship between the landslide and local rainfall, as well as the water level
changes of the Three Gorges Reservoir has been assessed. The reservoir fast drawdown is identified as
a major triggering factor of the landslide, and rainfall does not appear to be a key triggering factor in
the observation period.
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Appendix A

In this section, we firstly provide the details on parameter selection for cross-correlation, followed
by an example showing 2D image of the cross-correlation for a case with good correlation and another
with bad results.

The general performance of sub-pixel cross-correlation is assessed through cumulative histograms
of the azimuth and range deformation fields [44] derived from the stable area (Figure 2) surrounding
the landslide body. Bigger discrepancies from the centre of the Cumulative Distribution Function
(CDF) suggest higher error level in the stable area, indicating lower accuracy of cross-correlation. CDF
of azimuth and range displacements are plotted for different correlation window sizes using the same
oversampling factor of 16, as displayed in Figure A1. The time consumption of different parameter
settings is summarised in Table A1.Remote Sens. 2017, 9, 1314  19 of 22 
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Table A1. Processing time corresponding to different window sizes of cross-correlation, taking into
account the time consumption of image co-registration.

Correlation Window Size (in Pixels) Elapsed Time

16 × 64 1 h 25 min
32 × 128 5 h 40 min
64 × 256 25 h 41 min

From Figure A1 and Table A1, we can see that a larger window size improves the accuracy but
dramatically increases the processing time. In experiments, we also found that larger window sizes
increase artifacts and reduce the resolution of the output deformation fields. In the case study, the
window size of 32 × 128 pixels was selected for cross-correlation, as a trade-off between the correlation
accuracy, time consumption, and output resolution. Using the window size of 32 × 128 pixels, over
80% of pixels in the azimuth CDF are characterised by offsets around zero and within ±0.2 m. About
90% of pixels in the range CDF are centred on zero and within ±0.2 m of offsets. For the case study, we
found that this performance is good enough as the correlation output of individual offset pairs.

In Figure A2, we present a comparison of a case with good correlation from high-contrast features
and another of bad correlation from vegetated surface.
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