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BSTRACT

lis study explored the in vitro dissolution o f pH-responsive methacrylic acid methylmethacrylate 

polymer coated dosage forms, in particular Eudragit S coated 5-aminosalicylic acid (5-ASA) 

)lets for ileo-colonic delivery. Ionic parameters that influence the in vitro dissolution were 

sntified as ionic strength, pKa o f the buffer and its concentration. Physiological bicarbonate 

ffers (Hanks and Krebs) were explored as potential dissolution media as they are more 

?resentative o f the ionic and buffer composition o f small intestinal fluids. In comparison to 

mpendial phosphate buffers, they were found to provide a better reflection o f the in vivo 

sintegration times o f these ileo-colonic tablets as reported in the literature. Jejunal fluids were 

tained from human volunteers and Hanks buffer provided a very good reflection o f buffer 

pacity and solubility o f 5-ASA in these fluids.

le dissolution o f acrylic film coatings was found to be influenced by the plasticizer component o f 

e formulation. A small library o f plasticizers was screened with the objective o f determining 

ram eters that correlate to dissolution o f polymer free films. Free film dissolution was measured 

ing two-compartment permeation cells. Dielectric properties o f the films were studied by TSDC 

lermally stimulated depolarisation currents). Secondary relaxations were deconvoluted and 

entified. Glass transition temperature (Tg) (indicator o f segmental mobility) was measured using 

5DC, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA).

asticizer structure and solubility were identified as determining factors in dissolution o f acrylic 

:e films. Low temperature TSDC spectra showed a relationship o f the total secondary relaxation 

ea and relaxation area o f the carboxylic acid functional group o f the polymer with dissolution 

ne. No correlation was found amongst the glass transition temperatures obtained by TSDC, DSC 

d DMA with dissolution time of the films. Although the Tg trend was similar for the films, Tg 

lues obtained by TSDC were lower than those observed by DMA and DSC.

im ediate release 5-ASA and prednisolone tablets were coated with the different Eudragit S/ 

asticizer formulations. The formulations with the extreme dissolution profiles gave rise to similar 

nds for the coated tablets and free films however the formulations with intermediate dissolution 

iset times displayed different trends in the two states. These differences were reasoned to be due 

drug and excipients in the core interacting with the coat. These findings will contribute to a 

echanistic approach in formulation development.
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CHAPTER ONE

Introduction



1.1 Overview

Modified release systems may be utilised to extend or delay drug release to specific 

regions of the gastrointestinal (GI) tract where optimum drug absorption occurs or for 

the treatment of local diseases. The focus of this study was pH-responsive dosage 

forms, with 5-aminosalicylic acid (5-ASA) and prednisolone as model drugs, for 

targeting to the ileo-colonic region of the GI tract. Drug release from these enteric 

systems is primarily controlled by the polymer constituting the coating; other 

excipients in the formulation, however, are also likely to exert an influence. Polymer- 

plasticizer interactions were investigated in this study and intrinsic properties of this 

coating system correlated to its dissolution. Thes findings will help achieve a 

mechanistic approach to formulation development.

Another influence on formulation behaviour, yet distinctive from this, is the GI 

luminal environment the dosage form is exposed to and, ultimately, drug releases into. 

Through identification of the parameters that influence the dissolution of pH- 

responsive systems a fundamental understanding of the dissolution mechanism is 

achieved. The relative importance of different media parameters on influencing the 

solubility of drugs with variable physicochemical properties is identified. The use of 

appropriate solubility and dissolution media simulating human GI fluids can serve as 

a prognostic tool for in vivo performance.



1.2 Gastrointestinal anatomy and physiology: its relevance to drug delivery

The gastrointestinal (GI) tract functions to uptake nutrients and eliminate unwanted 

material through the processes of secretion, motility, digestion, absorption and 

excretion. It can be divided into the oral cavity, oesophagus, stomach, small intestine 

and large intestine (Figure 1.1). The majority of drugs are administered as immediate 

release dosage forms that are designed to disintegrate rapidly in the stomach and 

empty into the small intestine from where the molecules can be absorbed into the 

systemic circulation.
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Figure 1.1 Anatomy of the human gastrointestinal tract (courtesy of Biocodex, Inc.)



The stomach has three main regions: fundus, body and antrum. It has several 

functions: acts as a reservoir for food, mechanically and biochemically processes food 

into chyme, controls the rate of delivery of chyme to the duodenum so that absorption 

is optimised from the small intestine and produces acid. Acid serves as a bacteriostatic 

since food consumed is not sterile. The acidic pH also provides optimum activity for 

the proteolytic enzyme, pepsin (Washington et al., 2001).

The small intestine is the longest part of the human GI tract. It is divided into three 

regions: duodenum, jejunum and ileum. Duodenum is derived from the Latin word 

duodeni which means ‘12’ as the structure is 12 flngerbreadths in length (0.2-0.3 m). 

The jejunum and ileum are 1 and 2 m in length respectively in a living person, while 

in a cadaver they are 2.5 and 3.5 m respectively due to loss of smooth muscle tone 

(Tortora and Grabowski, 1996). The small intestine has several functions: the mixing 

of chyme with intestinal and pancreatic secretions to complete digestion, absorption 

of nutrients, movement of unabsorbed material towards the large intestine and 

prevention of the entry of pathogens. The surface area of the small intestine is greatly 

enhanced by the presence in the mucosa of plicae circulares, or folds o f Kerckring, 

villi and microvilli. These increase the absorptive surface area to 200 m^, whereas the 

area of the stomach is only about Im^ (Rowland and Tozer, 1995). The absorptive 

capacity is higher in the duodenum and jejunum, than the ileum due to the more 

abundant plicae and longer villi (Aiache and Aiache, 1985). This large surface area, 

coupled with the relatively high fluid volume, makes the small intestine the main site 

of drug absorption in man.



The submucosa of the duodenum contains Brunner’s glands which are involved in the 

secretion of alkaline mucus that helps neutralise the acidic chyme arriving from the 

stomach. The Crypts of Lieberkühn, located between adjacent villi are involved in the 

secretion of mucus, digestive enzymes, entero-endocrine hormones and antibodies. 

The protection from pathogens is also achieved by the gut-associated lymphoid tissue 

(GALT) lining the intestine. On top o f microvilli exists the glycocalyx, a weakly 

acidic mucopolysaccharide, presenting a barrier to foreign substances (Tortora and 

Grabowski, 1996). Above this exists an unstirred layer of aqueous fluid which poses a 

barrier to lipophilic drugs.

The final region of the small intestine is known as the ileocaecal junction (ICJ). 

Digestion and absorption of nutrients are effectively complete by the time digesta 

reach the ICJ; it acts as a physiological sphincter region, regulating the flow of chyme 

into the colon (Basilico and Phillips, 1993).

The large intestine is approximately 1.2 -  1.5 m in length and comprises the caecum, 

colon, rectum and anal canal. The colon is further subdivided into the ascending (20 

cm), transverse (45 cm), descending (30 cm) and sigmoid colon (40 cm). The colonic 

lumen is wider than that of the small intestine; approximately 6 cm in diameter. The 

main function of the colon is the reabsorption of water and electrolytes, and the 

formation and elimination of faecal material. It has been estimated that approximately

1.5 - 2 L of water enters the colon each day which undergoes efficient reuptake 

throughout its entire length so that only 200 ml is eliminated in faeces. Sodium and 

chloride are absorbed from the colon in exchange for potassium and bicarbonate 

(Faigle, 1993).



Surface area of the colon is substantially lower than the small intestine as it lacks well 

defined villi and microvilli. In the colonic mucosa there is less opportunity for 

paracellular absorption of drugs due to the ‘tighter’ junctions between epithelial cells. 

Moreover, less fluid is available for drug dissolution, particularly beyond the hepatic 

flexure. Another barrier to colonic drug delivery is the relatively large unstirred water 

layer at the mucosal surface (Edwards, 1997). All drug molecules must diffuse 

through this layer to reach mucosa cells and the success of this depends on their 

physicochemical properties such as molecular weight and polarity. On a biochemical 

level, the abundant bacterial microflora in the colon can deactivate drugs through 

reduction or hydrolysis reactions (Farthing et al., 1979; Read et al., 1980).

Residence time in the colon is longer, however, than the small intestine and this 

longer time may be favourable for the absorption of certain drugs. The colon has been 

found to be a relatively inert site for the metabolism of drugs by mucosal Cytochrome 

P450 (GYP) 3A, the major phase I class of drug metabolising enzymes in humans. 

GYP 3A has clinically compromised the effectiveness o f many drugs. Studies have 

shown GYP 3A activity to be higher in the small intestine compared to the colon 

(Nakamura et al., 2002), thus drugs which are substrates for this enzyme have a 

higher absorption from the colon (Berggren et al., 2003). The drug absorption window 

must therefore be borne in mind when designing enteric and extended release 

formulations.

The GI tract is a complex organ and numerous hurdles need to be overcome for the 

desired drug release profile to be achieved by the delivery system. This is of particular 

concern for extended or delayed release systems which go through diverse



environments on their odyssey through the GI tract. To understand and accurately 

characterise drug release mechanisms, in vitro tests, particularly dissolution tests, 

need to reflect the complex GI physiology.

1.3 Gastrointestinal luminal phvsiolosv: its relevance to in vitro dissolution tests

1.3.1 Purpose o f  in vitro dissolution tests

In vitro dissolution testing of solid dosage forms is one of the most important 

biopharmaceutical studies. It serves several purposes (Dressman et al., 1998; 

Abrahamsson and Ungell, 2004):

(i) Investigation of drug release mechanisms, especially for modified release 

formulations.

(ii) Selection of excipients and candidate formulations that give the desired and most 

reproducible release profile. Identification of formulations robust to physiological 

factors; eg. pH, fluid availability and hydrodynamics.

(iii) In vitro/in vivo correlations thus reducing the number of clinical and 

bioavailability studies needed.

(iv) Surrogate for bioequivalence tests. Biowaiver can be granted for immediate 

release formulations with highly soluble and highly permeable drugs on the provision 

of dissolution results.

(v) Quality control for ensuring batch-to-batch reproducibility.

USP 24 recognises four types of dissolution apparatus for the testing of oral dosage 

forms. The European Pharmacopoeia has also adopted these with some modifications 

to the specifications (Kramer et al., 2005). Apparatus I (rotating basket) and II (paddle



assembly) are the most commonly used because they are simple, robust, and well 

standardised. USP apparatus I comprises a closed rotating mesh basket attached to a 

shaft which rotates at a pre-determined speed. The dosage form is contained in the 

basket which is immersed in transparent vessels heated in a water bath, in common 

with other apparatus II, III and IV, at a temperature of 37 ± 0.5 °C. Vessels with 

different capacities, typically in the range of 500 to 2000 ml, can be used. USP II is 

exactly the same as USP I, however the basket is replaced by a paddle and therefore 

the dosage form is immersed directly in the vessel.

USP apparatus III is the reciprocating cylinder apparatus which consists of a series of 

rows containing flat bottomed glass vessels with typical volumes of 200 -  300 ml. 

Inner cylinders exist within the vessels which vertically reciprocate at a pre-defmed 

speed. The dosage form is contained in the inner cylinders which are closed at the top 

and bottom with stainless steel mesh. This apparatus is particularly attractive for 

modified release dosage forms as each row can contain media simulating different 

regions of the GI tract thus making the process of buffer change much more practical.

USP apparatus IV is the flow-through apparatus and consists of a small volume cell in 

which the dosage form is contained. Media is continuously circulated through the cell 

and a filtration device fitted in the cell retains any undissolved material so that it is not 

analysed. The system may be operated in ‘open loop’, whereby new medium is 

continuously introduced, or ‘closed loop’ so that drug is allowed to accumulate in the 

medium. ‘Open loop’ is particularly useful for low solubility drugs.



Several dissolution theories have been proposed, the most prevalent of which is the 

Noyes-Whitney model developed in 1897 (Equation 1.1) (Martin, 1993b). From this 

equation, the factors important to drug dissolution can be determined:

dC = A * D ♦ (Cs - Ct) Equation 1.1
dt h

where the dissolution rate, dc/dt, of a substance is a function o f the surface area 

available for dissolution. A, the diffusion coefficient of the compound in the 

dissolution media, D, the boundary layer thickness, h, and the difference between the 

concentration of the drug’s saturated solubility, Cs, and it concentration in the bulk of 

the dissolution media at time t, Ct. Hence the essential parameters in determining drug 

dissolution in the GI tract are composition, volume and hydrodynamics of the lumenal 

fluids.

For in vitro dissolution tests to be meaningful they need to reflect physiological 

conditions in the GI tract. An ideal dissolution test would be a universal one that can 

be utilised for all solid dosage forms, whether immediate or modified release, and all 

drugs irrespective of their physicochemical properties. However this would be 

difficult to achieve in practice especially without compromising the simplicity of the 

conventional pharmacopoeal tests which make them attractive for all disciplines from 

regulatory to academia to industry.

This may explain why most research has focused on simulating a certain aspect of the 

GI environment which may be more critical for certain drugs and formulations than 

others. The next section is a brief description of the GI milieu and its implications on



in vitro dissolution tests. Particular emphasis was placed on the parameters relevant to 

pH-responsive systems for targeting drugs to the ileo-colonic region of the GI tract.

1.3.2 Gastrointestinal pH

It is well recognised that there is a sharp increase in pH across the pyloric sphincter 

from the stomach to the duodenum. Basal stomach pH is low due to secretion of 

hydrochloric acid by the parietal cells. On meal consumption, the pH in healthy adults 

increases from a median of 1.7 to a median of 5.0 due to the buffering action of food 

(Dressman et al., 1990). However in response to the presence of food further gastric 

acid is secreted and three to four hours after the meal the pH returns to fasting levels. 

This rise in pH on food consumption and the time it takes to return to basal levels 

depends on meal composition (Malagelada et al., 1976). pH in the stomach is 

influenced by additional factors including age, pathophysiological conditions such as 

achlorhydria (absence of gastric acid secretion) and AIDS, and other medication such 

as H2 receptor antagonists and proton pump inhibitors. This has implications on the 

dissolution and therefore bioavailability of certain drugs such as weakly basic ones as 

has been shown in the case of ketoconazole in AIDS patients with raised gastric pH 

(Horter and Dressman, 2001).

The pancreas secretes bicarbonate to neutralise the acidic chyme arriving from the 

stomach. The pH continues to rise down the small intestine due to further secretion of 

bicarbonate by mucosal cells of the ileum. Figure 1.2 shows the pH profile of the gut 

measured in 39 healthy volunteers (Fallingborg et al., 1989). A drop in pH in the 

caecum is notable and has been attributed to the production o f short chain fatty acids 

(SCFA), predominantly acetate, propionate and butyrate produced from the

10



fermentation of carbohydrates by colonic bacteria. The pH then rises again along the 

distal colon due to falling intraluminal concentrations of SCFAs coupled with colonic 

mucosal bicarbonate secretion (Nugent et al., 2001). 

pH

M edian v a lu e s

Figure 1.2 Percentiles (90, 75, 59, 25, and 10) of all pH determinations in different 
regions of the gastrointestinal tract. (Ven = stomach. Duo = duodenum. Pro = 
proximal small intestine. Mid = mid small intestine. Dis = distal small intestine, Cae = 
caecum, Asc = ascending colon, Tra = transverse colon. Des = descending colon, R/S 
= sigmoid colon or rectum, Fae = faeces). Reproduced from Fallingborg et al. (1989).

Table 1.1 summarises gut pH from two studies; Evans et al. (1988) and Fallingborg et 

al. (1989). Both these studies use radiotelemetry capsules (small encapsulated 

transmitters) for measuring pH. These two studies were selected as they remain the 

most comprehensive on pH measurement in different regions of the GI tract. They 

were both carried out in healthy individuals conducting normal daily activities. Evans’ 

study was performed in 66 healthy adults and Fallingborg study in 39 health adults.
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Table 1.1 Lumenal pH measured along the small and large intestine.

Intestinal Site pH (Evans, 1988) 
Mean pH (± SD)

pH (Fallingborg, 1989) 
Median pH (interquartile 

range) ̂

Proximal small intestine 6.63 (± 0.53) 6.6 (6.1 — 7.1)

Mid small intestine 7.41 (±0.36) 7.0 (6 .5 -7 .5 )

Distal small intestine 7.49 (± 0.46) 7.3 (7.0 -  7.6)

Accending colon 6.37 (± 0.58) 5.6 (5 .0 -6 .4 )

Transverse colon 6.61 (± 0.83) 5.7 (5.2 — 6.4)

Descending colon 7.04 (± 0.67) 6.6 (6.1 -6 .9 )

' Interquartile range estimated from the figure.

Both studies illustrate a rise in pH from the proximal to mid small intestine. The 

Fallingborg study further shows a continued rise in pH from the mid to distal small 

intestine; this rise is not so prominent in the study by Evans. The fall in luminal pH as 

the small bowel contents empty into the large intestine is distinctive in both studies. 

However this pH drop is observed to be of larger magnitude in the Fallingborg study 

and the median does not reach pH 7 again in the descending colon, dissimilarly to the 

Evans study.

The difficulty in simulating pH is the large intra- and inter-individual variability; 

particularly in the stomach as this is highly influenced by the food ingested. pH 

gradients have been used to mimic transit through different regions of the 

gastrointestinal tract. However these have either not been comprehensive, i.e. the 

transition not representing all the different regions (Klein et al., 2005) or the pH may

12



have been simulated however with inadequate unrealistic buffers eg, Moll vaine (Goto 

et ah, 2004). The more recent pharmacopoeia! dissolution apparatus III (reciprocating 

cylinder) and IV (flow-through cell) enable a more efficient and less labour-intensive 

change of dissolution media. Several media changes can be made within the same run.

1.3.3 Ionic composition and buffer species

From a brief glance at the constituents of small intestinal fluid, it is not difficult to see 

that the simple compendial media containing sodium and potassium phosphate salts 

employed in in vitro dissolution tests are dissimilar from lumenal fluids. Numerous 

electrolytes exist in the lumenal fluids (Na^, K^, Mĝ "̂ , Ca^^, and Cl ) all o f which play 

a role in orchestrating water and nutrient absorption (Table 1.2). Ionic movement 

across the cell membranes of gastrointestinal mucosa can occur in several ways to 

maintain isotonicity of lumenal contents with plasma, including diffusion through 

aqueous channels, active transport and exchange diffusion (Fordtran and Dietschy, 

1966).

Table 1.2 Ionic composition of small intestinal luminal fluids.

Electrolyte Jejunal fluid 
(Lindahl (1997))

Jejunal fluid 
(Banwell (1971))

Ileal fluid 
(Banw ell (1971), 

Phillips and Giller 
(1973)

Sodium 142 142 140

Potassium 5.4 4.8 4.9

Chloride 126 135 125

Calcium 0.5 - 4.2

Magnesium - - 2.8

Ionic strength 0.139 - -
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A consideration of GI physiology reminds us that lumenal fluids are buffered by 

bicarbonate, furthermore phosphate levels are very low. The pancreas secretes 

bicarbonate into the duodenum to neutralize the acidic chyme arriving from the 

stomach, bicarbonate is also further secreted by the ileum. Several researchers have 

independently investigated bicarbonate levels in the human small intestine. Levels 

reported in the jejunum are 6 to 8.2 ± 5 mM and in the ileum 30 to 40 ± 11 mM 

(Phillips and Summerskill, 1966; Phillips and Summerskill, 1967; Banwell et al., 

1971). In vitro/in vivo correlations of drug release from solid dosage forms may be 

greatly improved by defining the dissolution environment simply in terms of ionic 

composition.

The dissolution rate of ionisable drugs and excipients has been shown to be 

influenced by the buffer capacity at a given pH (Mooney et al., 1981; Aunins et al., 

1985; Ozturk et al., 1988b; Ramtoola and Corrigan, 1989). Ionisable drugs affect the 

pH at the boundary layer adjacent to the dissolving surface. The difference in pH 

between the boundary layer and the bulk medium is affected by the buffer capacity of 

the medium (Figure 1.3).

While the above studies have considered the influenced of buffer capacity on drug 

dissolution, to our current knowledge no study has explored the influence of buffer 

composition on the dissolution of pH-responsive dosage forms; this was therefore one 

of the study objectives. One of the steps of drug release from these systems is 

ionisation of the enteric polymer (discussed in detail in section 1.5.2). A further 

objective was to simulate the ionic composition of 01 luminal contents, particularly
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the bicarbonate component, which has not been previously explored in the context of 

dissolution of modified release dosage forms.

Polymer film coat
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Figure 1.3 Representation of the dissolution of a weakly acidic drug, HA, in a buffer 
solution, HB. Adapted from Ozturk et al. (1988b).

1.3.4 Surfactants

The surface tension of gastric fluids has been measured by several groups. In recent 

studies, Efentakis and Dressman (1998) reported values of 35-45 mN/m from the 

aspirates of eight subjects and Pedersen et al. (2000b) reported values of 28 -  42 

mN/m. Surface tension affects wetting of the drug and consequently its dissolution 

and solubility. Previous attempts to simulate gastric properties have used surfactants 

that are non-physiologically relevant such as sodium lauryl sulphate or indigenous 

substances to the stomach such as bile salt surfactants and enzymes (pepsin) however 

at non-physiologically relevant concentrations. However recent studies have 

improved the characterisation and simulation of gastric fluids (Vertzoni et al., 2005).
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Small intestinal fluids contain phospholipid surfactants in addition to bile salts; 

together these aid lipid digestion. The effect of these surfactants on solubility and 

dissolution of very poorly soluble drugs has been extensively explored (Nicolaides et 

al., 1999). In this study, solubility of the model drugs, 5-aminosalicylic acid (5-ASA) 

and prednisolone, was measured in media containing these surfactants (fasted state 

simulated intestinal fluid, FaSSIF), bicarbonate buffers and conventional phosphate 

buffers. The results are compared to solubility in jejunal fluids aspirated from healthy 

subjects and in ileostomy fluids from inflammatory bowel disease patients.

The dissolution of 5-ASA dosage forms coated with pH-responsive polymers was 

investigated in FaSSIF media and phosphate buffers with no surfactants. Interestingly, 

there was no difference between the dissolution in the two media (Rudolph et al., 

2001). It could be that the surfactants do not improve the wetting of the pH- 

responsive polymer coat, or if improved wetting does occur it does not influence the 

dissolution of this coat/ pellet formulation.

1.3.5 Gastrointestinal flu id  volumes

Fluid availability in the GI lumen is critical to the dissolution of the formulation 

and/or drug and is therefore pertinent to the therapeutic efficacy of the medication 

whether it is intended for local or systemic action. In the fasting state, the human GI 

tract contains a very small fraction of total body water, in contrast to other animal 

species (Gotch et al., 1957). The water present in the fasting stomach is either derived 

from salivary secretions, or presented as HCl from the parietal cells or as mucus from 

the mucoid cells of the gastric glands.
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Post-prandialy, water levels in the stomach increase through an input from three 

different sources: food consumed, digestive secretions and in certain cases down 

osmotic pressure gradients from plasma to the lumen. Digestive secretions 

accompanying food ingestion in the small intestine include those from salivary 

glands, stomach and small intestinal mucus glands, pancreas and gallbladder. It is 

estimated that the small intestine receives eight to nine litres of fluid per day; of these 

seven litres is from digestive fluid and 1.5 litres from oral consumption (Fordtran and 

Ingelfmger, 1968). Most of the intestinal secretions are stimulated and the basal 

volumes are much less.

The radius of the water-filled pores through which water diffusion occurs in the cell 

membranes o f jejunal and ileal mucosa has been estimated. It has been reported to be 

7.5 Â in the jejunum and decreasing to less than a half of that to 3.4 Â in the ileum. 

Interestingly however, the rate of water diffusion was measured to be approximately 

the same in these two regions. It was therefore reasoned that pore number and pore 

length must be greater in the ileum compared to the jejunum (Fordtran and 

Ingelflnger, 1968). The diffusion rate of water was measured in various areas of the 

human intestine using deuterium. The isotopically labelled water was administered to 

the desired region of the intestine via a tube which was swallowed and their rate of the 

deuterium appearance into the bloodstream was measured. The mean diffusion rate 

constants were calculated to be 2% from the stomach, 10% from the duodenum and 

proximal jejunum and 6% from the colon (Scholer and Code, 1954; Reitmeier et al., 

1957).
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In the 1950s a group of physicians sought to characterise the exchange characteristics 

of intraluminal gastrointestinal water with the objective of understanding ion transfer 

(Edelman and Sweet, 1956; Gotch et ah, 1957). They determined the water content of 

different regions o f the 01 tract using a simple yet efficacious method. The 01 tract 

was removed and its contents studied in 13 human subjects at autopsy within 22 hours 

o f their death. The subjects had different pathological conditions however none of 

them suffered from gastrointestinal disease and had minimal impairment of fluid and 

electrolyte balance. The procedures were performed first by placing double ligatures 

at the cardio-oesophageal junction, pylorus of the stomach, ileocaecal sphincter and 

just distal to the hepatic flexure of the transverse colon. This position o f the transverse 

colon was chosen as it was the transition point between semi-solid and solid stool 

pellets. The transition zone was rather sharp and a distinctive change in the 

consistency of the contents was observed over a short length. The tract was then cut at 

the ligatures and the sections removed from the peritoneal cavity. Each intact segment 

was carefully washed and weighed. Each segment was then cut longitudinally and the 

mucosal surface stripped off by hand. The contents were weighed before and after 

drying at 105°C for 72 hours.

Table 1.3 shows the calculated water content in the different regions o f the 01 tract. 

As would be anticipated, the large intestine displays the least water content due to the 

water absorption that occurs throughout the intestine. Thus digesta are progressively 

more viscous as they are transported aborally.
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Table 1.3 Intraluminal gastrointestinal water content (Gotch et al., 1957).

Stomach Small intestine

Caecum, 
ascending colon 
and midway of 

transverse colon

Mean water content 
(ml)

118 206 83

Range (ml) 11-233 6 0 -3 5 2 7 -4 3 0

In a similar, more recent study by Cummings et al. (1990) the water composition of 

the entire large bowel (caecum, ascending, transverse, descending colon, sigmoid and 

rectum) was measured in 46 adults and the mean was found to be 187 g. Although this 

is substantially higher than that reported by Gotch et al. (1957), it still falls within the 

range of 7 -  430 ml. Furthermore, Cummings measured the water content over the 

entire length of the large intestine, not just up to the mid-transverse colon. Note that 

grams and mis can be considered interchangeable in these two studies as the density 

of water is 1 g/ml.

Cummings et al. (1990) found the total content in the large intestine to be 222 ± 21 g 

(wet) and the % dry matter 14 ± 0.8 % in colon and 23 ± 1.6 % in the sigmoid/rectum. 

Thus the contents o f become drier as we progress down the large intestine. This 

would be anticipated due to the efficient water reabsorption that occurs.

When considering the above results, however, it is important to bear in mind that this 

is the total water content; i.e. water bound to digesta as well as free water. In a recent
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study by Schiller et al. (2005) they have innovatively used water-sensitive magnetic 

resonance imaging for estimating the volumes and distribution of free fluid in the GI 

tract as well as their position in relation to non-disintegrating capsules.

In both the fasted and fed states, 850 ml of water was consumed in the period from 

two to seven hours before the start of imaging. Despite this, limited free water content 

seems to exist in the GI lumen (Table 1.4). Moreover, the free water volume in the 

small intestine decreases in the fed state in comparison to the fasted state which is 

rather unexpected since an increase would be anticipated due to intestinal secretions. 

Now the question presents itself as to which fluid volumes, the total or free, are more 

relevant to simulate when it comes to in vitro dissolution tests. Water bound to digesta 

is still likely to promote dissolution of the drug delivery system and drug, however 

not to the same extent as ‘free’ water.

Table 1.4 Intraluminal gastrointestinal ‘free’ water content determined using 
magnetic resonance imaging (Schiller et al., 2005).

Gastrointestinal region Fasted state free fluid 
volume (ml)

Fed state free fluid 
volume (ml)

Stomach 45 (±18) 686 (±93)

Small intestine 105 (±72) 54 (±41)

Large intestine 13 (±12) 11(±26)
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The results of the study illustrate that dosage forms in the stomach are in contact with 

‘free fluid’ in the fasted and fed states. However, in the small and large intestine, fluid 

was found to be distributed into pockets which are not homogenously spread and 

large inter-individual variations were observed. Hence the dosage forms transit 

through fluid pockets and ‘dry’ segments (Table 1.5).

Table 1.5 Gastrointestinal fluid environment of non-disintegrating capsule 
determined using magnetic resonance imaging (Schiller et al., 2005).

Fasted volunteers Fed volunteers

Contact with 
liquid

Small 
intestine 

(%) (n=28)

Large 
intestine 

(%) (n=3)

Small 
intestine 

(%) (n=5)

Large 
intestine 

(%) (n=16)

Surrounded 50 0 20 6

Partly
surrounded 21 0 20 13

Not in contact 29 100 60 81

After food consumption; small intestinal fluid volumes significantly decreased. This 

decrease was accompanied by an increase in the number of fluid pockets, from a 

median of 4 to 6 throughout the length of the small intestine, and a decrease in the 

fluid volume per pocket from a median of 12 ml to 4 ml. In the colon, fluid volumes 

were variable before and after the meal. The number of fluid pockets significantly 

increased from a median of 4 to a median of 5.5, while the liquid volumes per pocket 

did not significantly change; 2 ml versus 1 ml before and after respectively (Schiller 

et al., 2005).
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USP Apparatus 3 (the reciprocating cylinder) may be adapted to mimic these patterns 

of exposure to wet and dry regions by altering the magnitude of the dip length. The 

inner tube containing the dosage form may be raised so that it is not in contact with 

the dissolution medium. The frequency of this ‘dry’ exposure can be controlled by 

adjusting the dip rate. Moreover, smaller volumes can be used which are more 

comparable to the limited volumes available in the GI tract. The 900 ml volumes 

typically used in the paddle apparatus are far from realistic, particularly when it 

comes to the large bowel. Large volumes, however, can help maintain sink conditions 

(less than 20% of saturation concentration). Again, this traditional requirement of sink 

conditions for all drugs can be argued against as it may not be achieved in-vivo 

depending on the properties of the drug. For high permeability drugs, i.e. those that 

penetrate the GI mucosa well and are uptaken by the systemic circulation, sink 

conditions are likely to be achieved. This however may not be the case for low 

permeability drugs. 5-ASA acts locally on the mucosa hence its rate o f uptake by the 

mucosal cells and consequent acétylation will influence the concentration in luminal 

fluids.

1.3.6 Viscosity

Viscosity increases as we progress aborally down the GI tract due to water 

reabsorption and the presence of indigestible residues. The average human diet is 

likely to comprise slowly digestible starch, resistant starch (RS) and non-starch 

polysaccharides (NSP) (Silvester et al., 1995). The latter two pass to the large 

intestine intact as they are resistant to digestion by pancreatic enzymes however are 

fermented by the rich anaerobic bacterial environment in the colon to produce short 

chain fatty acids (Cummings, 1995).
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RS and NSP display non-Newtonian behaviour and therefore it is difficult to simulate 

their rheology in vitro as this will be influenced by intestinal motility and flow 

patterns which vary in different regions of the GI tract and at different times (Ellis et 

ah, 1996). Moreover, dietary fibre modifies the motor function and contraction 

patterns of the small intestine. These effects change with the type o f fibre. A study in 

dogs showed that normal postprandial patterns of duodenojejunal contractions 

comprise bursts of 4-10 contractions occurring at a frequency of approximately 5 min. 

Bran and cellulose increase the number of contractions per burst however decreases 

the intervals between the bursts. Guar gum was found to decrease the amplitude of 

contractions. All three types of fibre caused an increase in the transit time, however to 

different extents (Bueno et ah, 1981). What further complicates rheology modelling of 

polymeric material is particulate matter in digesta. The behaviour o f polymers 

becomes more shear rate dependent with increasing particulate concentrations, known 

as the power-law behaviour (Ellis et ah, 2001).

GI luminal viscosity is therefore difficult to characterise and very complex being 

influenced by a multitude of factors including diet and health status of the individual. 

This may explain why no in vitro attempt to simulate GI rheology has been made.

1.3.7 Gastrointestinal transit times

Extensive research has been conducted in physiology laboratories on motility patterns 

of the GI tract. Szurszewski (1969), was the first to describe a regular motility 

comprising intense action potential activity ‘activity front’ migrating from the 

duodenum to the ileum in the fasted dog. These regular cycles of motility and
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quiescence are now known as the migrating myoelectric complex (MMC). The MMC 

has been found to be comprised of four distinctive phases (Code and Marlett, 1975): 

phase I, quiescence with little or no contractile activity; phase II, intermittent 

contractions which gradually increase in duration and intensity as the phase 

progresses; phase III, characterised by intense, large and continuous contractions 

which sweep the stomach of all indigestible residues; phase IV, a short transition 

period back to quiescence. Kellow et al. (1986) found the distal oesophagus, gastric 

antrum, duodenum, proximal and terminal ileum to participate in the MMC. MMCs 

were most often recorded in the proximal jejunum and found to ‘die out’ in the ileum; 

less than 20% passed into the mid-ileum. Cycle length was found to vary within and 

between subjects with an average cycle length ranging from 66 to 174 min at the 

proximal jejunum in individual subjects. Phase I and II were found on average to 

contribute to 21% and 67% of cycle duration respectively and phase III was relatively 

brief occupying only 12% of the cycle.

1.3.7.1 Gastric emptying times

Gastric emptying (GE) of non-disintegrating dosage forms usually occurs during the 

high amplitude contractile waves prevalent during phase III or the end of phase II of 

the MMC. How long the tablet takes to empty from the fasted stomach depends on the 

phase of the cycle tablet administration coincides with.

Bueno et al. (1975) witnessed the influence of food on motor patterns of the stomach 

and the resultant interruption of the MMC. In the fed state random/fortuitous 

emptying arises (Khosla et al., 1989) depending on whether the tablet is located in the
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pylorus whereby it can be swept out of the stomach or if it is embedded in the 

stomach folds demanding the stronger phase III contractions o f the fasted state.

The postprandial motor activity of the stomach comprises steady, low amplitude 

contractions (4-5 per min) prevalent in the antrum with little activity in the gastric 

body (Bueno and Fioramonti, 1993). Intragastric instillation of milk in dog resulted in 

all the pacesetter potentials in the stomach wall displaying action potentials, in 

contrast to phase II of the interdigestive phase where only 10 % of pacesetter 

potentials were associated with action potentials (Code and Marlett, 1975). Low 

amplitude contractions may explain why tablets take longer to empty from the 

stomach in the fed compared to the fasted state.

Multiple-unit dosage forms exhibit more reproducible gastric emptying than single­

unit dosage forms. They do not however empty simultaneously with co-administered 

food and fluid. The study by Coupe et al. (1993) showed 0.8-1.1 mm pellets to have a 

highly individual pattern of gastric emptying relative to food. In some subjects the 

pellets emptied from the stomach with food however in others they emptied post- 

prandially in phases II and III of the MMC.

1.3.7.2 Small intestinal transit times

Davis et al. (1986) pooled small intestinal transit data of liquids, pellets and tablets 

from studies conducted in a total of 201 healthy subjects. No significant difference 

was found between the transit times of liquids, pellets and tablets. A mean transit 

value (± SD) of 3±1 hours was reported. Two decades later and this is still the value 

quoted for small intestinal transit time and is the concept underlying time-dependent
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formulations. The downside, however, of mean values is that they mask individual 

transit times. For instance transit times as fast as 1 hour and as slow as 9.5 hours were 

masked in this mean value. These inter-individual variations can have implications on 

drug bioavailability particularly if the absorption window of the drug is restricted to 

the small intestine.

A delay in dosage form transit through the ileo-caecal region is observed in most 

individuals. This is advantageous for pH-responsive tablets for targeting the colon as 

this is the region of highest pH in the GI lumen and a long residence time will give an 

opportunity for the enteric coat to dissolve. If, however, the dosage form is in the 

terminal ileum on feeding, it may be rapidly propelled through the ICJ and pass 

within minutes into the colon (Spiller et al., 1987); this is known as the ‘gastrocolonic 

response’. This is likely to have implications in terms of clinical efficacy as rapid 

propulsion may not allow sufficient time for dissolution of the coat. The opportunity 

for dissolution is less likely in the colon due to the relatively low pH in the proximal 

region which is below the pH threshold of the polymer, coupled with the limited fluid 

availability. Optimal drug release site for pH-responsive dosage forms targeting the 

colon would therefore be the ileo-colonic region.

1.3.7.3 Colonic transit times

The transit time in the colon of healthy subjects is approximately 35 hours (Metcalf et 

al., 1987). The ascending and proximal transverse segments of the colon are more 

attractive for drug delivery in comparison to the rest o f the large intestine as they have 

a higher relative fluid volume. Transit times in this region are between 7 and 14 hours 

(Metcalf et al., 1987; Parker et al., 1988). Small, multiple-unit preparations tend to
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disperse widely and pass through the colon at a slower rate than larger single unit 

systems. This faster movement of larger objects in the colon is known as ‘streaming’.

Motor patterns in the proximal colon are mainly mixing and retropulsive (Edwards, 

1997). Patients with inflammatory bowel diseases experience diarrhoea which arises 

from the failure of colonic water absorption (Snape et al., 1980; Rao et al., 1987). 

This partly arises from accelerated left colonic transit caused by deficient postprandial 

colonic contractility. Surprisingly, however, patients with active colitis suffer from 

proximal colonic stasis (Rao et al., 1987). Diet also influences colonic transit time. A 

low fibre diet is associated with slow transit (Spiller et al., 1980). There are several 

extrinsic stimulants to colonic motility. The strongest reported is the awakening from 

sleep or rest (Bassotti et al., 1993).

These transit times can be simulated in in vitro dissolution tests by exposing dosage 

forms to media mimicking different regions of the GI tract for the corresponding 

times. Again, the difficulty in this is that wide variability not only inter-individual 

variability however other factors such as time of day and time relative to meal intake. 

Nevertheless, a pragmatic approach would be to start by comparing extreme residence 

times that reflect likely scenarios, then if necessary, intermediate times can be 

explored. For example, a study in eight healthy volunteers showed that following a 

standard meal, dosage form GE times vary from 20 min to 270 min (Ibekwe et al., 

2007). This time range can be used as a starting point although it is a rather simplistic 

approach as GE times will depend on the meal composition.
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1.3.8 Motility and hydrodynamics

It is considered that the basket and paddle dissolution apparatus provide a good model 

for an ‘upset stomach’. The agitation within the vessels does not reflect the segmental 

and peristaltic contractions of the intestine and it is important to simulate these as they 

influence the boundary layer thickness. Efforts have been made to quantify the 

destructive forces single unit dosage forms are subjected to by designing different 

‘destructive force-dependent release systems’ which release the drug only when they 

are subjected to a force greater than their pre-determined crushing strength (Kamba et 

al., 2001). This information can help in using the appropriate rotation speeds in the 

basket and paddle apparatus which have similar destructive forces to that in vivo. 

However this approach still will not achieve the mixing and turbulent flow 

experienced in the gastrointestinal lumen.

Abrahamsson et al. (2002) used computer simulations of tablets moving within the 

stomach derived from magnetic resonance imaging. Tablets were found to experience 

a wide range of shear forces which varied with the position in the stomach. Low shear 

stress was experienced in the fundus, moderate shear stress when the tablets moved in 

the antrum between contraction waves and high shear stress when tablets encountered 

antral contraction waves.

1.3.9 Dynamic artificial gut

As discussed above there are a considerable number of factors that influence 

dissolution of dosage forms and drugs. This led to the development a dynamic, 

multicompartmental in vitro system simulating the GI tract by TNO Nutrition and
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Food Research (Zeist, The Netherlands). The TNO gastro-intestinal model (TIM) 

eonsists of a series of eompartments simulating the stomach, duodenum, jejunum and 

ileum (TIM-1) (Blanquet et ah, 2004). TIM-2 exists with additional eompartments 

that simulate the large intestine. Each compartment consists of a glass jacket with a 

flexible wall inside; water is pumped around the flexible wall and changes in water 

pressure cause alternate relaxation and eompression of the walls thus creating a 

mixing motion. Media in the stomach can be anything from water to a homogenised 

meal thus giving an insight into food-drug interaetions and the physieoehemieal 

influenees of food. Simulated gastric, biliary and pancreatic secretions are introdueed 

into the eorresponding eompartments. Chyme transit from the stomaeh to the 

duodenum is eontrolled by pressure sensors. Water and small molecules eg. products 

o f digestion and dissolved drugs, are removed from the lumen of compartments by 

pumping fluid through hollow tubes with dialysis membranes. This step is intended to 

mimic the absorption phase (Blanquet et al., 2004).

To date, this is the closest system that simulates the gut as it takes into aeeount several 

faetors in GI physiology. Work with theophylline matrix tablets shows that it achieves 

good one to one in vitro/in vivo correlations (IVIVC) (Souliman et al., 2007). Other 

than with theophylline and paraeetamol, it has not been extensively investigated and 

so its IVIVC value eannot yet be established. The downfalls of the system are several; 

again we do not know how closely the peristaltie activity of the flexible walls 

simulates that of the GI traet with its additional shear forees, and no information is 

given as to how the fluid volumes in the different eompartments is deeided upon. The 

diffusion through the peristaltie membrane is passive and thus its absorption value is 

limited for drugs that are absorbed by active transport (mucosal cells are not involved
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in the in-vitro system). The technical shortcomings are that it is difficult and time- 

consuming to set-up and clean. Almost two days of instrument cleaning time are 

needed per run. It has a low throughput, only one tablet per run and there is no 

automatic sampling. Moreover, it is very expensive and therefore prohibitive for 

academic research.

1.4 Formulation influences on drus release from solid dosase forms

The GI physiological parameters that can influence drug release from solid dosage 

forms have been discussed. However it is not only the dissolution environment and 

the physicochemical properties of the drug that are critical to its release from a 

particular delivery system; the formulation is also of great importance.

Several studies have been conducted on the influence of excipients on drug release 

from diffusion controlled systems in the form of polymer matrices or polymer coats. 

Cameron and McGinity (1987) showed that the filler influences release of 

therophylline from controlled release matrix tablets; this was related to the porosity of 

the tablet core. Drug release from pellets coated with ethylcellulose was shown to be 

influenced by the solubility of the drug and filler (Sousa et ah, 2002). Generally, drug 

and filler followed the ‘solubility rule’ whereby drug release was fastest when the 

solubility of these two components was greatest; exceptions to the rule however 

existed and were explained by pellet porosity and specific surface area. The binders 

selected for granule formation influence the water uptake by disintegrants and 

therefore their action (Wan and Prasad, 1989).
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Siepmann et al (1999) showed that the choice of plasticizer in ethylcellulose film 

coats influences drug diffusion through the channels. Plasticizers reduce the attractive 

forces between polymer chains thus creating a higher free volume within the polymer 

network and greater opportunity for the drug molecule to ‘jum p’ from one cavity to 

the other; this is known as the ‘free volume theory of diffusion’ (Siepmann et ah, 

1999). However there was no evidence for this theory and no proposal as to why 

different plasticizers influence drug diffusion to different extents.

Little attention has been given to excipient influence, particularly plasticizers, on 

dissolution of pH-responsive polymers. No study has attempted to correlate intrinsic 

behaviour of the film coating, such as its molecular motions, to dissolution. To gain a 

fundamental understanding of the polymer-plasticizer molecular interactions that 

influence the dissolution of polymethacrylic methylmethacrylate copolymer was one 

of the objectives of the current study. This information can aid in formulation design 

so that the optimal drug release profile is achieved. In terms of treating inflammatory 

bowel diseases, the coating can be tailored so that drug release is achieved at the sites 

of the gastrointestinal tract affected by disease.

1.5 Pru2 tarsetins to the ileo-colonic resion o f the sastrointestinal tract

Modified release systems may be utilised to extend or delay drug release to specific 

regions of the GI tract where optimum drug absorption occurs or for the treatment of 

local diseases. The colon serves as an important site for drug delivery, principally for 

the therapy of local pathologies which can range in severity from irritable bowel 

syndrome to the more debilitating inflammatory bowel diseases (ulcerative colitis and
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Crohn’s disease) through to infections and carcinomas. The colon also has great 

potential as a route for drug delivery to the systemic circulation which is of value for 

therapeutic moieties that are poorly absorbed or unstable in the upper regions o f the 

GI tract. One such group of molecules are peptides and proteins that are degraded by 

hydrochloric acid in the stomach and digested by pepsin and intestinal peptidase. 

Compared with the stomach and small intestine, the colon is believed to contain lower 

levels o f luminal and mucosal digestive enzymes (Gibson et al., 1989). The inherent 

lag time in mouth to colon transit can also be exploited to achieve delayed release for 

the treatment of diseases that are sensitive to circadian rhythms (chronotherapy) such 

as angina and asthma. A variety of delivery strategies have been proposed for colonic 

targeting; the trigger mechanisms include: time, pressure, bacteria and pH. However 

only bacterial and pH triggered systems have reached the clinic.

1.5.1 Bacteria-responsive delivery

There are over 400 different species of bacteria and their population is over 10 million 

times that of the proximal small intestine. The species are predominantly anaerobic 

and metabolise endogenous and exogenous substrates that escape digestion in the 

upper GI tract (Cummings et al., 1989).

5-ASA is the active moiety of sulphaslazine and is liberated by cleavage of the azo 

bond linking it to sulphapyridine. 5-ASA is rapidly absorbed from the small intestine 

however when administered as a pro-drug it is too large to be absorbed and therefore 

reaches the colon where the azo bond is cleaved by colonic bacteria. This concept was 

used to develop olsalazine and balsalazide both of which constitute 5-ASA azo-
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bonded to another 5-ASA, as in the case of olsalazine, or azo-bonded to an inert 

carrier, as in the case of balsalazide (Chan et al., 1983; Wadworth and Fitton, 1991).

Recently there has been more focus on development of universal systems utilising 

polysaccharides as coatings or matrices in solid dosage forms. However the polymers 

of interest are hydrophilic in nature and so swell in gastrointestinal fluids resulting in 

premature drug release. Chemical modifications to the polymers are thus necessary or 

combination with hydrophobic, water insoluble polymers which control the swelling 

in the upper gastrointestinal tract. Polysaccharides that have been explored include: 

pectin, guar gum, xanthan gum, chitin and chitosan. Although some have provided 

good results on the bench; most of the formulations developed are not very practical 

and have not shown promising results in vivo (Basit, 2005).

One polysaccharide that has been extensively investigated as a colonic carrier is 

amylose. Amylose is one of the two major components of starch, and in its glassy, 

amorphous state is resistant to breakdown by pancreatic enzymes in the small 

intestine, however undergoes fermentation by amylase producing bacteria in the 

colon. More than 50% of the bacterial population shows a tendency to digest amylose 

(Macfarlane and Englyst, 1986). In combination with ethylcellulose, amylose has 

been applied as a coating to solid dosage forms using conventional coating methods to 

achieve colon-specific delivery. A number o f gamma scintigraphy and 

pharmacokinetic studies have provided evidence for the colon-targeting potential of 

this system (Cummings et al., 1996; Thompson et al., 2002; Basit et al., 2004). The 

amylose system, COLAL^ '̂' ,̂ is the only polysaccharide preparation to progress to 

clinical trials. Furthermore, the corticosteroid prednisolone metasulphobenzoate
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sodium, a more polar and less well absorbed analogue of prednisolone (Lee et al., 

1980), was incorporated to provide a new oral treatment for ulcerative colitis 

(COLAL-PRED™). This product is currently undergoing phase III clinical trials.

1.5.2 pH-responsive delivery

This relies on the pH gradient along the GI tract and the choice of polymer depends 

on its pKa (Table 1.6) and drug properties such as acidity/basicity and permeability 

through the enteric polymer film. For conventional enteric coating, whereby it is just 

necessary to prevent drug release in the stomach and attain rapid release in the 

proximal small intestine, a polymer with a dissolution pH threshold in the range of 5 

to 6 is considered appropriate. Since this pH is unlikely to be reached in the stomach, 

not even in the fed state, however will definitely be attained in the alkaline 

intraluminal environment of the duodenum (Kendall and Basit, 2006). However for 

colonic drug delivery, polymers with a higher pH threshold in the range of 6 to 7 are 

chosen so that premature release in the proximal small intestine is avoided.

The first colon-targeted pH-responsive delivery system was developed by Dew et al. 

(1982) and comprised a capsule coated with the polymethacrylic acid 

methylmethacrylate ester copolymer, Eudragit S (Degussa, Darmstadt, Germany), 

which has a dissolution pH threshold of 7. This dosage form was found to disintegrate 

in the distal gut and so it formed the basis for the development of Eudragit S coated 5- 

ASA tablets marketed as Asacol® MR for treating ulcerative colitis.
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Table 1.6 pH-responsive polymers commonly used to coat solid dosage forms for the 
attainment of delayed drug release

Polymer Dissolution 
threshold pH

CELLULOSE DERIVATIVES

Hydroxypropyl methylcellulose phthalate 50 5.0

Hydroxypropyl methylcellulose phthalate 55 5.5

Hydroxypropyl methylcellulose acetate succinate L 5.5

Cellulose acetate trimellitate 5.5

Hydroxypropyl methylcellulose acetate succinate M 6.0

Cellulose acetate phthalate 6.2

Hydroxypropyl methylcellulose acetate succinate H 6.8

ACRYLIC DERIVATIVES

Poly(methacrylic acid, ethyl acrylate) 1:1 (Eudragit L55) 5.5

Poly(methacrylic acid, methyl methacrylate) 1:1 (Eudragit L) 6.0

Poly(methacrylic acid, methyl methacrylate, methyl acrylate) 6.8
2.5:6.5:1 (Eudragit PS)

Poly(methacrylic acid, methyl methacrylate) 1:2 (Eudragit S) 7.0

POLYVINYL DERIVATIVES

Polyvinyl acetate phthalate 5.0

The pH threshold of Eudragit S polymer will be achieved in the mid to distal small 

intestine however is not met in the ascending colon. When Asacol was originally 

developed, it was based on the concept that pH continues to rise aborally along the GI 

tract. It was developed before the confounding evidence of fall in pH in the caecum 

emerged; this is likely to have serious implications on dissolution of the polymer. 

Formulating the film coat with the appropriate plasticizers, however, may vary the site 

of initial polymer dissolution and help achieve the desired release profile.
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1.5.3 Mechanism o f  dissolution ofpH-responsive polymers

pH-responsive polymers have acidic or acidic ester groups and thus dissolve and 

ionise on exposure to alkaline pH. It has been proposed by Nguyen and Fogler (2005) 

that dissolution of carboxylic acid polymers involves the following processes (Figure 

1.4):

(1) Diffusion of water and buffer ions into the polymer matrix to form a gel.

(2) The functional carboxylic acid groups of the polymer chains in the gel layer 

undergo ionisation.

(3) Polymer chains disentangle out of the gel layer and diffuse to the polymer-solution 

interface.

(4) Further ionisation o f the carboxylic acid groups on polymer chains at the polymer- 

solution interface.

(5) Disentangled polymer chains diffuse away from the interface and towards the bulk 

solution.
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Figure 1.4 M echanism o f dissolution o f  carboxylic acid polymers. Numbers 
correspond to the step. Adapted from Nguyen and Fogler (2005).

Diffusion o f  the ions and water (step 1) and ionisation o f  the polym er functional 

groups (steps 2 and 4) are usually relatively fast. Hence enteric polym er dissolution is 

either disentanglem ent-lim ited (step 3) if polym er diffusion away from the interface is 

faster than the disentanglem ent rate, or diffusion-lim ited (step 5) if  polym er behaviour 

is vice versa.

As hydrogen ion concentrations in the gel layer decrease, ionization o f the polymer 

increases and therefore greater repulsion exists between the anionic functional groups. 

This can cause greater swelling o f the gel thus allowing faster polymer 

disentanglem ent. This dependence o f polym er disentanglem ent rate on the ionic 

com position o f the release medium draws attention to the importance o f  accurately
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simulating the luminal GI composition when investigating the dissolution of pH- 

responsive polymers. This was the focus of part of the current study.

1.6 Inflammatory bowel disease and therapy

1.6.1 Presentation o f  the disease

Inflammatory bowel disease (IBD) has traditionally been categorised into two forms; 

ulcerative colitis (UC) and Crohn’s disease (CD). It is a chronic, non-infectious 

inflammation of the gut mucosa and patients usually require life-long treatment. The 

aetiology is not exactly known however it has been associated with environmental 

triggers, such as infections and drugs, in genetically predisposed individuals 

(Ardizzone and Porro, 2002). The genetic influence is stronger in CD than UC. 

Smoking raises the risk of CD however surprisingly lowers the risk of UC through 

unknown mechanisms. The prevalence of UC is 100 -  200 per 100,000. There are 

significant differences between ethnic groups, with certain populations, such as 

Ashkenazi Jews, having a particularly high incidence. The incidence of UC remains 

stable. CD has a prevalence of 50 -  100 per 100,000; however its incidence may be 

increasing. Both UC and CD are mainly diseases o f young people, with peak 

incidence between the ages of 10 -  40 years (Rubin et al., 2000; Loftus, 2004).

UC is diffuse mucosal inflammation of the colon. It involves the rectum in about 95 

% of patients and may extend proximally in an uninterrupted pattern to affect other 

parts of the large intestine (Kombluth and Sachar, 2004). ‘Distal disease’ may be 

restricted to the rectum (proctitis) or the rectum and sigmoid colon 

(proctosigmoiditis). More extensive disease involves ‘left sided colitis’ up to the
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splenic flexure, ‘extensive colitis’ up to the hepatic flexure and pancolitis affecting 

the whole colon (Carter et al., 2004). CD is a patchy, transmural disease which can 

affect any part of the GI tract. In a collective of 414 patients it was shown to most 

commonly affect the colon (41.7 %), followed by Crohn’s ileocolitis (34.1 %) and 

isolated Crohn’s ileitis (20.7 %), rarely does it involve the upper GI tract (Tromm and 

May, 2005).

The hallmark symptom of UC is bloody diarrhoea, often with colicky abdominal pain, 

rectal urgency or tenesmus. It is characterised by exacerbations and remissions which 

may occur spontaneously or as a result o f treatment changes or intercurrent illnesses 

(Meyers and Janowitz, 1989). Symptoms of CD include abdominal pain, diarrhoea 

and weight loss. Obstruction may occur as a result of strictures or fistulae. CD tends 

to cause greater disability in patients than UC. Both UC and CD are associated with a 

greater risk of colon cancer (Carter et al., 2004).

1.6.2 Management o f  ulcerative colitis: maintenance o f  remission

The goals of treatment of UC are the induction and maintenance of remission of 

symptoms and mucosal inflammation to obtain an improved quality of life (Kombluth 

and Sachar, 2004). The British Society of Gastroenterology (BSG) guidelines 

recommend 5-ASA for the maintenance of remission in all patients with ulcerative 

colitis, especially those with left-sided or extensive disease. 1-2 g is the recommended 

oral maintenance dose. However recent evidence suggests that higher doses are more 

effective at maintaining remission. A study in 169 patients found the one year relapse 

rate to be 33 % for those taking 3 g/day in comparison to 46 % in those taking 1.5 

g/day (P = 0.057). Although this improvement in remission was not within the 0.05
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significance, the high dose was well tolerated and not associated with an increase in 

adverse effects (Fockens et al., 1995). 5-ASA is available as oral tablets, pellet 

sachets, suspension, liquid or foam enemas, or suppositories. Suppositories do not 

have a topical effect above the rectosigmoid junction and 100 ml enemas do not 

spread above the splenic flexure (Marteau et al., 2005). Oral treatment is therefore 

required in extensive UC extending beyond the splenic flexure. Distal presentations of 

the disease can be effectively treated topically, orally, or with a combination of both. 

Randomised controlled trials have shown that local treatments achieve better 

remission rates than oral treatment (Cohen et al., 2000). A combination of local and 

oral treatments can achieve high mucosal concentrations and therefore superior in 

extensive colitis or left-sided colitis provided they are well tolerated (Marteau et al., 

2005; Regueiro et al., 2006). Furthermore, proximal extension of the disease can be 

reduced on administration of oral treatment to left-sided colitis patients (Regueiro et 

al., 2006).

1.6.3 Management o f  ulcerative colitis: induction o f  remission in active disease

The British Society of Gastroenterology (BSG) guidelines recommend 5-ASA as first- 

line therapy for active mild-moderate, left-sided or extensive ulcerative colitis (UC) 

(Carter et al., 2004). There is increasing evidence that raising the dose to > 4 g/day, 

leads to improved response rates and earlier symptom relief in UC patients; this was 

investigated in the recent double-blind, randomised and multi-site ASCEND 

(Assessing the Safety and Clinical Efficacy of a New Dose) studies (Travis, 2006). 

ASCEND II showed that at six weeks, patients on the 2.4 g/day dose experienced 

59 % improvement in comparison to 72 % in patients at the 4.8 g/day dose. There was 

also no significant increase in the incidence of adverse effects (Hanauer et al., 2005).
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Oral corticosteroids are effective at inducing remission in UC, however have no place 

for maintenance therapy. Commonly prescribed oral corticosteroids include 

prednisolone, prednisone and budesonide. They are potent anti-inflammatory agents 

and the therapeutic strategy is to achieve topical effects and reduce systemic side 

effects. A common starting dose of prednisolone is 40 mg once daily with dose 

tapering occurring at 5 mg/ week (Carter et al., 2004).

1.6.4 Management o f  Crohn’s disease: maintenance o f  remission

CD is more resistant to therapy and more difficult to manage. Corticosteroids and 

aminosalicylates are ineffective in maintaining remission in CD. For remission other 

agents need to be considered depending on the patient group; these are the 

immunomodulators and include: azathiopurine, methotrexate and the new anti-TNF 

biological infliximab. These agents can also be used to induce remission in severe, 

extensive, active CD (Travis et al., 2006).

1.6.5 Management o f  Crohn’s disease: induction o f  remission in active disease

Initial published trials concluded that oral 5-ASA is effective in the treatment of mild 

to moderate ileal, ileocolonic or colonic CD (Singleton et al., 1993; Tremaine et al., 

1994). 5-ASA therefore became popular among physicians for mild CD, but in 2004 

the conceptions changed. A meta-analysis of three placebo-controlled trials of Pentasa 

4 g daily in active CD for a period of 16 weeks in 615 patients showed only a modest 

superiority o f Pentasa over placebo in therapeutic outcome (Hanauer and Stromberg, 

2004). The clinical significance of the difference is viewed as debatable. Subgroup
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analysis does not provide clear answers as to whether treatment is beneficial in one 

group of patients more than the other. The consensus by the European Crohn’s and 

Colitis Organisation (ECCO) is that 5-ASA should not be considered more effective 

than placebo for active ileal or colonic CD (Travis et al., 2006). Budesonide 9 mg 

daily is the preferred treatment in mild to moderately active localised ileocaecal CD. 

However there is still a lot of debate in this area as some patients suffer from mild 

disease that does not warrant steroid therapy and introducing steroids into the 

treatment regimen of CD patients may present the risk of steroid dependency. Some 

groups of physician therefore advocate aminosalicylates as first line treatment in mild 

CD (Lim and Hanauer, 2004).

In mildly active localised ileocaecal CD budesonide 9 mg daily has been shown to be 

superior to placebo and 5-ASA 4 g/day and achieves remission in 51% to 60% of 

patients over 8 - 1 0  weeks (Travis et al., 2006). Budesonide is preferred to 

prednisolone as less systemic absorption arises and therefore less severe adverse 

effects, although a Cochrane systemic review showed budesonide to be appreciably 

less effective (Otley and Steinhart, 2005).

1. 7 Préparations o f  5-aminosalaicvlic acid available in the clinic

1.1.1 History o f  the discovery o f  5-amino salicylic acid

In the late 1930s sulphasalazine was designed by the Swedish physician Dr Nanna 

Svartz in an attempt to treat rheumatic polyarthritis, which was then thought to be of 

bacterial origin. The value of salicylates in reducing joint inflammation and pain was 

well recognised and Dr Svartz believed that rheumatic polyarthritis originated from an
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infection, most likely caused by Streptococci. At that time only sulfa antibioitics were 

active against streptococci (Svartz, 1988). However when aspirin and sulphonamides 

were administered concomitantly they had no real therapeutic efficacy and it was 

rationalised that they need to be combined chemically to have an affinity for and 

concentrate in connective tissue (Watkinson, 1986; Svartz, 1988). Among the 

compounds produced by Swedish chemists was sulphasalazine, which is an azo bond 

attachment of the anti-inflammatory active 5-ASA to the antibiotic sulphapyridine. 

Investigations in rheumatic arthritis patients led the group to conclude that it was 

therapeutically effective for this indication. When this drug was tried in rheumatoid 

arthritis patients with UC a great improvement of their colitis symptoms was observed 

(Watkinson, 1986). In the 1960s, controlled clinical trials definitively established its 

value over placebo in the treatment of ulcerative colitis (Watkinson, 1986).

1.7.2 Serendipitous bacteria-responsive delivery

In the 1970s it was demonstrated that the azo bond of sulphasalazine (Salazopyrin®) is 

metabolised by colonic bacteria to release sulphapyridine and 5-aminosalicylic acid 

(Das et al., 1973b; Azadkhan et al., 1977) (Figure 1.5). In 1977 it was proved by Azad 

Khan’s group that 5-ASA is the active therapeutic moiety in the treatment of 

ulcerative colitis and sulphapyridine behaves as an inert carrier molecule facilitating 

drug delivery to the colon (Azadkhan et al., 1977). Another finding was that the 

sulphapyridine moiety of sulphasalazine is responsible for its toxicity profile (Das et 

al., 1973a; Azadkhan et al., 1980). Adverse effects include: allergies, gastrointestinal, 

haematological and fertility (Singleton et al., 1979; Bimie et al., 1981; Malchow et 

al., 1984). These findings have led to the development of new 5-ASA formulations.
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Sulphapyridine Sulphaslazine 5-ASA

Figure 1.5 Azo-bond cleavage of sulphasalazine to produce 5-aminosalicylic acid 
(5-ASA) and sulphapyridine. Reproduced from Klotz and Schwab (2005).

The mechanism of action of 5-ASA is still not exactly known however in vitro studies 

have shown it has modulatory action on lipid mediators, metabolites of arachidonic 

acid (prostaglandins and leukotrienes), cytokines and reactive oxygen species which 

are involved in the tissue inflammation and damage characterising UC and CD 

(Larsen and Henson, 1983; Clemett and Markham, 2000). It achieves its therapeutic 

efficacy mainly by acting on the inflamed mucosa of the GI tract making it necessary 

for the active substance to be selectively released in the diseased areas.

5-ASA is unstable in gastric acid and is better absorbed from the upper than the lower 

intestinal tract (Myers et al., 1987). Its permeability is five-fold higher in jejunum in 

comparison to the ileum (Zhou et al., 1999). To achieve 5-ASA delivery to the colon; 

carrier molecules conjugated to 5-ASA by an azo bond susceptible to cleavage by 

colonic bacteria are still exploited. The sulphapyridine has been replaced by another 

5-ASA to produce olsalazine (Dipentum®) or 4-aminobenzoyl-P-alanine to produce 

balsalazide (Colazide®) (Klotz and Schwab, 2005) (Figure 1.6 ).
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Naa.-C-CH- CtlyNH C O ' ^  NU, - 4 ------  NaO,C CH, CH, NH C C ^  ^  H

4-aminobenzoyl-(3-alanine Balsalazide 5-ASA

Olsalazine5-ASA Olsalazine 5-ASA

Figure 1.6 Structures of 5-aminosalicylic acid (5-ASA) pro-drugs currently available 
in the clinic. Reproduced from Klotz and Schwab (2005).

1.7.3 The use o f  pH-responsive and diffusion controlled delivery to achieve 5- 

aminosalicylic acid delivery to the distal gut

A number of formulation approaches have been adopted and several preparations are 

available on the UK market utilising pH or diffusion dependent delivery, or more 

recently, both (Table 1.7). The enteric polymers used are all acrylic with a pH 

threshold of 6 or 7. In-vitro dissolution studies in our laboratory have shovm that the 

different formulations give rise to distinctive release profiles under pH values used to 

simulate different regions of the GI tract. These different release patterns have 

implications on the lumenal concentrations of 5-ASA and its metabolite, acetyl 5- 

ASA, in different areas of the GI tract (Myers et al., 1987; Devos et al., 1992; 

Christensen, 2000). Pharmacokinetic studies comparing Asacol and Pentasa showed 

that 5-ASA release starts in different regions of GI tract and consequentially different 

fractions of absorption into the systemic circulation arise (Chuong et al., 2006).

45



The current UK guidelines states that modified release mesalazine preparations are 

not interchangeable and should therefore be prescribed by their proprietary (brand) 

name (British Medical Association, 2007). The IBD patient population is 

heterogeneous in the severity of the disease and the site o f the GI tract burdened by 

disease. The physician should therefore select the most appropriate formulation for 

each individual patient. Pentasa and Salofalk granules release more proximally; 

henceforth they are most likely to be effective if the main site of inflammation is 

found in the ileum.

In a review by Forbes et al. (2003) they conclude that confirming systemic 

bioequivalence for mesalazine modified release products is not sufficient evidence for 

their similarity, as is the case with systemically acting modified release products. 

Additional criteria need to be fulfilled, including: attainment of information from in- 

vitro dissolution tests and one adequately powered, controlled comparative clinical 

trial to determine therapeutic equivalence and assessing safety. A clinical study is 

necessary as luminal concentration of 5-ASA and its metabolite may not necessarily 

be a surrogate to the therapeutic efficacy of the drug. It would be ideal to assess the 

concentration of 5-ASA in the intestinal mucosa however this is not currently 

demanded by regulatory authorities as there is no agreed procedure in terms of the 

region of gut biopsy and preparation. Moreover, the inter-laboratory reproducibility of 

such procedures has not been validated (Forbes et al., 2003).
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Table 1.7. 5-aminosalicylic acid preparations for the treatment of inflammatory bowel 
diseases available in the UK.

Product Dosage
form Polymer type Site of 

release Indication

M esren M R

Ipocol

Salofalk

Salofalk®
Granules

Pentasa
Granules

Pentasa
Tablets

A sacol M R Coated tablet

Coated tablet

Coated tablet

Coated tablet

Coated
m icrogranules 
filled into a 
sachet

Coated
m icrogranules 
filled into a 
sachet

Coated
m icrogranules 
com pressed  
into tablets

M A -M M (1 :2 )
Eudragit S 
(release at pH > 7)

M A -M M (1 :2 )
Eudragit S 
(release at pH >  7) 
M A -M M (1:2 )
Eudragit S 
(release at pH >  7)

M A -M M (1 :1 )
Eudragit L 
(release at pH > 6)

Core M M  neutral ester 
(Eudragit N E ). Coat M A - 
M M  (1:1) (Eudragit L). 
Coat d isso lves at pH 6 and 
then drug release occurs by  
diffusion through the core.

E thylcellu lose coat through  
w hich drug d iffuses out.

Tablets im m ediately  
disintegrates into granules. 
Drug diffuses out o f  the 
ethylcellu lose membrane 
coating the tablets__________

D istal sm all 
intestine and 
colon

D istal sm all 
intestine and 
colon
Distal sm all 
intestine and 
colon

M id to distal 
sm all intestine 
and co lon

M id to distal 
sm all intestine 
and co lon

Stom ach to  
colon

Stom ach to  
colon

U C
acute/m aintenance 
C D  ileoco litis
m aintenance

U C
acute/m aintenance

U C
acute/m aintenance

U C
acute/m aintenance

U C
acute/m aintenance  
L icensed  for use in 
children above 6 
years. O nly 5- 
A S A  product 
licensed  for use in 
children.

U C
acute/m aintenance

U C
acute/m aintenance

MM, methyl methacrylate; MA, methacrylic acid

1.7.4 pH-responsive delivery o f  corticosteroids to the small and large intestines

Two enteric coated controlled release preparations of budesonide licensed for CD 

commercially available are Entocort® and Budenofalk®. Entocort constitutes a capsule 

containing Eudragit L I00-55 coated ethylcellulose granules. Drug release starts in the
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duodenum (pH threshold of polymer is 5.5) and is slowly continued through the small 

intestine and colon (Edsbacker et al., 2003). Budenofalk is a capsule that contains 

Eudragit L/S coated ethylcellulose granules (pH threshold of the enteric coat is 6.4). 

The release profiles and clinical efficacy of these two formulations have never been 

compared. These ‘controlled ileal release’ formulations are popular as they are 

believed to have improved anti-inflammatory action by delivering drug to the site of 

inflammation (D'Haens, 2006). However it must be borne in mind that 

glucocorticosteroids exert a ‘global’ anti-inflammatory action, thus different to 

aminosalicylates. Clinical trials comparing ‘ileal controlled release’ formulations of 

budesonide with enteric coated prednisolone, showed the former to be less effective 

(Otley and Steinhart, 2005). Interestingly, the prednisolone preparations used are 

tablets which comprise just an enteric coat and no controlled release profile. A 

commonly prescribed enteric brand in the UK is Deltacortril Enteric® which is an 

immediate release tablet with polyvinyl acetate phthalate as the enteric polymer (pH 

threshold 5). Hence it would be expected that most of the drug is released in the small 

intestine with minimal amounts reaching the colon for local action. Despite this 

release profile, clinical efficacy has been confirmed; thus warranting investigation 

into whether a local effect is really exerted by glucocorticosteroids.

1.8 Model druss used in the study

Aminosalicylates and glucocorticosteroids were the model class of compounds 

selected for this study as their efficacy in the treatment of inflammatory bowel 

diseases has been confirmed and they are formulated for local delivery to the distal 

small intestine and colon. 5-ASA (Figure 1.7) was chosen as all aminosalicylates are

48



derived from it. Prednisolone (Figure 1.8) was chosen in preference to budesonide as 

it is more readily available for research.

COOH

Figure 1.7 Chemical structure of 5-aminosalicylic acid (5-ASA). 5-ASA is light pink 
crystals with a MW of 153.14. According to the British Pharmacopoeia (2003) it is 
slightly soluble in water.

OH
.OH

HO,

Figure 1.8 Chemical structure of prednisolone. Prednsiolone is white crystals with a 
MW of 360.4. According to the British Pharmacopoeia (2003) it is very slightly 
soluble in water.

1.9 Scope and purpose o f  study

Polymer-excipient interactions and gastrointestinal luminal fluids are two distinctive 

aspects of the biopharmaceutics of modified release dosage forms; yet a thorough
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investigation of both of them is necessary for the efficient development of 

pharmaceutical products.

The aims of this work are:

• To identify ionic luminal fluid components that influence dissolution of tablets 

with pH-responsive acrylic coatings and to understand the dissolution 

mechanism of these systems. To develop dissolution media that better 

simulate gastrointestinal luminal components and thus contribute to achieving 

improved in vitro in vivo correlations.

• To explore drug solubility in human gastrointestinal luminal fluids, 

conventional phosphate buffers and physiologically relevant media. To 

identify the relative importance of different media parameters on influencing 

the solubility of drugs with varying physicochemical properties.

• To identify plasticizer influence on the dissolution of pH-responsive acrylic 

free films and achieve a fundamental understanding of how this arises. To 

conduct an in depth study of the molecular mobility of theses systems through 

the use of thermal, mechanical and dielectric techniques. To correlate intrinsic 

properties with dissolution onset of the systems.

• To evaluate if drug and excipients in the tablet core influence the dissolution 

of acrylic film coatings. This will be conducted by comparing the dissolution 

trends of acrylic free films fabricated with different plasticizers with the 

dissolution trends of coated tablets.
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CHAPTER TWO

An investigation into the influence o f physiological 

bicarbonate buffers on the dissolution o f pH-responsive

dosage forms
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2.1 INTRODUCTION

The in vitro assessment of drug release from pH-responsive dosage forms is usually 

conducted by sequential dissolution testing in compendial acid and near neutral pH 

phosphate buffer systems. While these simple dissolution media are routinely used to 

represent the pH conditions in the stomach and small intestine respectively, they do 

not reflect the ionic nature, particularly buffer components, of luminal gastrointestinal 

(GI) fluids.

2.1.1 Osmolality and ionic constituents o f  sastrointestinal fluids

The osmolality of stomach contents after hypotonic or hypertonic meals does not tend 

to equilibrate with plasma with the passage of time. This stable osmolality of gastric 

contents may be explained by the impermeability of gastric mucosa to water 

movement in response to osmotic gradients, dilution of the meal by hypoosmotic 

saliva and gastric secretions, and reaction of secreted HCl with dietary protein 

(Fordtran and Ingelfmger, 1968). In contrast to the stomach, the proximal small 

intestine rapidly adjusts the osmolality of both hypotonic and hypertonic meals to 

values extremely close to that o f normal plasma (280 to 300 mOsm/kg) and this is 

maintained throughout the small intestine. The ability of the proximal small intestine 

to equilibrate the osmolality of fluids it receives from the stomach is mainly 

attributable to its large effective pore radius (Fordtran et al., 1965). Moreover, the 

different ions present in small intestinal luminal fluids are also maintained at rather 

stable concentrations. In this part of the study, we endeavoured to make in vitro 

dissolution media more physiological by simulating the ionic components of small
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intestinal luminal fluids. Particular attention was given to simulating the buffer 

component, bicarbonate.

2.1.2 Bicarbonate levels in sut lumenal fluids

Bicarbonate is secreted in the duodenum and the ileum and absorbed or neutralised by 

hydrogen protons secreted in the jejunum (Selub, 1994). The mechanism for 

bicarbonate (HCO3 ) secretion in the ileum has not been fully elucidated and multiple 

potential mechanisms have been proposed. One mechanism is the sodium- 

independent Cl'HCGs' exchange, whereby one molecule of luminal chloride 

undergoes an electroneutral exchange for one molecule of cellular bicarbonate (Selub, 

1994). Another proposed mechanism is Na^HCOg" symport where varying ratios of 

ions may take part in either basolateral entry or apical exit mechanisms (Stellin, 

1997), It has been proposed that another major reason for the high bicarbonate 

concentration of ileal lumenal fluids is the higher permeability of jejunal mucosa to 

passive bicarbonate diffusion partly due to the aqueous filled pores in the human 

jejunum having a radius twice as large as the ileal pores (Fordtran et al., 1965). 

Bicarbonate ions therefore diffuse from the jejunal luminal fluid into the mucoal cells. 

A further rise in bicarbonate concentration is expressed by water absorption in the 

ileum giving rise to a volume decrease (Fordtran and Locklear, 1966).

There are different methods for measuring electrolyte composition of the intestinal 

lumenal contents. Banwell et al. (1971) used intestinal intubation whereby samples of 

luminal fluid were collected and analysed. The bicarbonate content of jejunal and ileal 

fluids in healthy subjects was measured to be 8.2 ± 5 and 30 ±11  mM (mean ± SD) 

respectively.
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Phillips and Summerskill (1966, 1967) studied bicarbonate movement by a segmental 

perfusion technique whereby a known concentration of the test substance was infused 

at the desired intestinal region and at a constant rate. The intestinal content was then 

sampled to determine to what extent the test substance had been removed from or 

added to the intestinal content per unit time (Fordtran and Ingelfmger, 1968). When 

high concentrations of the electrolyte are infused, absorption occurs. Whereas when 

low concentrations are infused, net movements from the plasma to lumenal fluids 

arise. The jejunal concentration of bicarbonate tended to equilibrate at 6 mM, whereas 

in the ileum equilibration occurred at 40 mM.

2.1.3 Phvsiolosical bicarbonate buffers as dissolution media

In this work physiological bicarbonate salt solutions were used as dissolution media; 

these solutions are traditionally used for the incubation of cultured cells and living 

tissue in vitro for biochemical and pharmacological studies (Atkins and Peacock, 

1997). They comprise various ions which are all present in lumenal fluids and are 

buffered predominantly by bicarbonate (Table 1.1). Furthermore, ionic strength of 

these buffers resembles that of the GI fluids. Physiological buffers of varying 

composition exist; dissolution in Hanks buffer was studied as it resembles the 

proximal small intestine most closely with respect to electrolyte composition, and 

Krebs buffer resembles the distal small intestine.
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Table 2.1 Comparison of the electrolyte composition and physicochemical properties 
of small intestinal fluids and pH 7.4 tested buffer media. Electrolyte content of 
lumenal fluid compiled from Banwell et al. (1971), Lindahl et al. (1997), Phillips and 
Ciller (1973).

Electrolyte
Human 

jejunal fluid
Human ileal 

fluid
Hanks
buffer

Krebs
buffer

0.05 M 
Phosphate 

buffer

Bicarbonate 7.1 35 4.2 25 Not present

Phosphate - - 0.8 1.1 50

Potassium 5.1 4.9 5.8 5.9 50

Sodium 142 140 142 143 39

Chloride 131 125 143 128 Not present

Calcium 0.5 4.2 1.3 2.5 Not present

Magnesium - 2.8 0.8 1.2 Not present

Ionic strength 

Buffer

0.139 - 0.155 0.161 0.129

capacity
(mmol/L/pH unit)

2.97" - 1.0 3.7 23

 ̂measured from lumenal aspirates (see chapter three). 
- indicates not measured
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2.1.4 Ionic factors influencing the dissolution o f  pH-resvonsive dosase forms

Aside from pH, a number of aspects of dissolution media have been shown to affect 

drug release from enteric coated dosage forms. Ashford et al. (1993b) compared 

phosphate buffers of varying composition and buffer capacity. The study conclusively 

showed that increasing phosphate concentration in the buffer increases dissolution 

rate, however it does not enable us to determine whether this is attributable to an 

increase in buffer capacity or ionic strength of the dissolution medium. Karali and co­

workers (1995) reported an increase in dissolution rate to the same extent when either 

NaCl or phosphate are used to increase the ionic strength of the medium, whereas 

Rudolph et al. (2001) found no modification of the drug release profile of Eudragit S 

coated formulations with increasing ionic strength. Chan et al. (2001) used a 

physiological salt solution (Hanks buffer) comprising various electrolytes including 

bicarbonate. Dissolution in this physiological buffer was found to be significantly 

slower compared to the conventional phosphate buffers. Ibekwe et al. (2006a) 

reported a finding similar to this for Eudragit S coated tablets of the non-ionic drug 

prednisolone. McNamara and co-workers (2003) used a 0.9 % saline solution and 

continuously sparged it with different partial pressures of C0 2 (g) to achieve different 

concentrations of bicarbonate (HCO3 ). They used this media to study the dissolution 

of low solubility ionisable drugs.

Dissolution of modified release marketed 5-aminosalicylic acid (5-ASA) products, 

with particular attention to Eudragit S (methacrylic acid methylmethacrylate 

copoloymer) (Figure 2.1) coated tablets, was studied in conventional phosphate and 

physiological buffer systems. The release profiles were compared to in vivo studies in 

the literature on the disintegration performance of these tablets. The objective of this
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was to determine whether bicarbonate buffers improve predictions of the in vivo 

behaviour of modified release systems designed for ileo-colonic drug delivery.

CM,
1

CH3

" CH;- C- " CH,- C-

C>0
r

OH
n

1
0CH3

2n

Figure 2.1 Structure of poly(metbacrylic acid methylmethacrylate) copoloymer 
(Eudragit S). Ratio o f carboxylic acid to ester groups is 1:2.

2.2 OBJECTIVES

To identify the ionic factors that influence the dissolution of pH-responsive 

acrylic polymer coated dosage forms. Factors considered are ionic strength, buffer 

species, buffer capacity and presence of other electrolytes.

To simulate the ionic composition, with particular attention to buffer species, of 

GI luminal fluids. To evaluate if dissolution testing of pH-responsive dosage 

forms in these physiological media improves the prediction of their performance 

in vivo.
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2.3 MATERIALS AND METHODS

2 . 3.1 Materials

5-aminosalicylic acid (5-ASA) used to form the calibration curves was of 99 % purity 

and obtained from Sigma-Aldrich Chemicals, Dorset, England. All the salts used to 

prepare the buffers and 5 M HCl were of analytical grade and obtained from VWR 

Chemical Ltd., Poole, UK. HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic 

acid) and MES (morpholinoethansulfonic acid) buffer salts were obtained from 

Sigma-Aldrich Chemicals, Dorset, England. The tablets studied were purchased from 

their manufacturers. Asacol® MR was purchased from Procter and Gamble Pharm., 

Mesren MR® from I VAX, Ipocol® from Sandoz and Pentasa® tablets from Ferring. 

Asacol, Mesren and Ipocol all contain 400 mg 5-ASA and are pH responsive systems, 

while Pentasa contains 500 mg of the drug and has a pH-independent mechanism of 

release. The formulations of these products are as follows:

Asacol® MR: lactose, sodium starch glycolate, magnesium stearate, talcum, 

polyvinylpyrrolidone, methacrylic acid copolymer, dibutylphthalate, polyethylene 

glycol, yellow iron oxide, red iron oxide.

M esren MR®: The same qualitative formulation as Asacol.

Ipocol®: Microcrystalline cellulose, sodium carboxymethyl starch, com starch, 

magnesium stearate, polyvinyl pyrrolidone, mannitol, precipitated silica, dimethyl 

phthalate, methacrylic acid copolymer, dimethicone, talc, titanium dioxide, red ferric 

oxide.

Pentasa®: Povidone, ethylcellulose, magnesium stearate, talc, microcrystalline 

cellulose.
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2.3.2 Buffer systems studied

To study the influence of buffer capacity on dissolution, phosphate buffers of varying 

strengths (0.05M and 0.2M phosphate) and Sorensen’s buffer (0.0687M phosphate) 

were investigated (Table 2). 0.05M phosphate buffer with a pre-calculated quantity of 

NaCl to attain the same ionic strength as that of the 0.2M phosphate buffer was 

prepared.

Physiological salt solutions were also used as dissolution media. Substitutes to 

physiological Hanks and Krebs buffers were prepared whereby they comprised only 

the buffer salts (bicarbonate and phosphate) as well as NaCl to maintain the ionic 

strength. These equivalent buffers were prepared to investigate whether the additional 

electrolytes K^, Mĝ "̂ , S0 4 ‘̂ and Ca^^ have an influence on the dissolution of enteric 

coatings.
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Table 2.2 Composition of the buffer systems studied

Buffer
component
(mM)

0.05 M 
PBS
(phosphate
buffer
solution)®

0.2M
PBS

0.05M 
PBS with 
NaCl

Sorensen’s
Buffer^

Krebs
buffer^

Equivalent
Krebs
buffer

Hanks
buffer‘d

Equivalent
Hanks
buffers

0.00217M 
PBS

KH2PO4 50 200 50 13.2 1.18 1.18 0.441 0.441 2.17

NaOH 39.5 158 39.5 1.72

Na2HP04 53.5

Na2HP0 4 .2 H2 0 0.337 0.337

NaHCOs 24.97 24.97 4.17 4.17

NaCl 397.2 118.07 135.04 136.99 149.39 149.4

KCl 4.69 5.37

CaCl2 2.52 1.26

M g S 0 4 .7 H 2 0 1.18 0.812

Ionic strength 0.129 0.526 0.526 0.174 0.161 0.161 0.155 0.155 0.155

Buffer capacity 
(mmoles/L/pH unit)

23.0 58.8 23.0 22.1 3.7 3.7 1.0 1.0 1.0

^British Pharmacopoeia (2003) Lentner (1984)  ̂Lund (1994) Atkins and Peacock (1997)
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2.3.3 Buffer capacity determination

Buffer capacity is the ability o f the buffer to resist changes to its pH. This was

measured by adding aliquots of O.IM HCl to 100 ml of the buffer system. Buffer

capacity (P) was then calculated using equation 1 (Martin, 1993a).

B = A AB Equation 2.1
A pH

where AB is the small increment in mol/L of the amount of acid or base added to 

produce a pH change of A pH in the buffer, p in all media was measured at a pH 

change of 0.5 units on addition of acid. This pH direction was chosen as it is the one 

relevant to our system. At near-neutral pH media 5-ASA and Eudragit S ionise to 

their anionic forms and protons are generated.

The buffer capacity of 0.05M phosphate buffer (23 mmoles/L/pH unit) was compared 

to that of the physiological buffers. A phosphate buffer was then formulated with the 

same buffer capacity as Hanks (0.00217M phosphate), in attempt to isolate the 

influence of buffer capacity from that of buffer species identity. For ionic strength 

however to be the same as Hanks, a calculated quantity of NaCl was added to the 

0.00217M phosphate buffer.

2.3.4 Stabilisation o f  phvsiolosical buffers

A difficulty in using bicarbonate buffers is the progressive rise in pH due to loss of 

CO2 from the solution (Perrin and Dempsey, 1974). In aqueous solutions both 

bicarbonate (HCO3 ) and carbonic acid (H2CO3) exist (Figure 2.2). H2CO3 has a pKa 

of 6.4 and dissociates to yield H2O and CO2 (aq). CO2 evaporates from solution and
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therefore the ionisation reaction towards the left (protonation of HCO3' to yield 

H2CO3) is promoted to restore the equilibrium. When physiological buffers are used 

in in-vitro cell cultures, they are maintained in a closed system equilibrated with 5% 

CO2 in the gas phase to maintain the pH. We adapted this method to stabilise Krebs 

buffer. Krebs buffer was continuously sparged with 5% CO2 and 95% O2 throughout 

the duration of the dissolution run. This maintenance of CO2 at steady concentrations 

prevents the decomposition o f H2CO3 (to yield H2O and CO2) which in turn prevents 

the protonation of HCO3'. Dissolution of the dosage forms in Krebs buffer in the 

absence and presence of CO2 were compared.

QO2 (g)

H20 + C 0 2 (a q ) .^  H2CO3 ^  H+ + HCO3.

Figure 2.2 Equilibria for bicarbonate buffer systems.

There was difficulty however in stabilising Hanks buffer due to its limited bicarbonate 

content. Attempts at reducing the 5 % CO2 gas flow rate to the lowest possible were 

still too high for the system and the levels of C0 2 (aq) would rise increasing the 

formation of H2CO3 and causing a decrease in pH. A different approach was therefore 

adopted whereby another buffering agent, HEPES (N-2-hydroxyethylpiperazine-N'-2- 

ethanesulfonic acid), was added to the system. Numerous other buffers exist however 

HEPES is commonly used in pharmacology as it is relatively innocuous to living 

tissue and its pKa is 7.55. Furthermore, the buffering ability o f a weakly acidic or
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basic group is approximately limited to the range, pH = pKa ± 1, the best buffering 

ability being at the pH equal to the pKa.

2.3.5 Calculation o f  ionic strensth

Ionic strength (p) is used for solutions of weak electrolytes and salts such as those 

existing in buffer systems. It relates interionic interactions whereby each ion is 

considered to be surrounded by an ‘atmosphere’ in which ions of opposite charge are 

predominant (Florence and Attwood, 1998). It depends on the number of ionic 

charges and not on the properties of the salts existing in solution (Equation 2.2).

p = Z CiZ^ Equation 2.2

where Cj is the concentration in moles per litre of any of the ions and z\ is its valence. 

Ionic strength is half the sum of the product of concentration and valence for all the 

ions present in solution.

An example is presented here for the calculation of the ionic strength of pH 7.4, 

0.05 M phosphate buffer.

pH 7.4, 0.05 M phosphate buffer is formed from 0.05 M KH2PO4 and 0.0395 M 

NaOH (British Pharmacopoeia, 2003).

On addition of NaOH to KH2PO4 the following reaction takes place:

KH2PO4 + NaOH -------- > KH2PO4 + Na2HP0 4

[0.05 M] [0.0395 M]
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The following species are therefore formed:

K+Na\HP0?-,H2P0 4 -

[K ^ = 0.05 M

[Na’"] = 0.0395 M 

[HP04^'] = 0.0395 M

[H2PO4 ] = 0.05 M -  0.0395 M = 0.0105 M

2\  , _  i 2 \  , /A AT AC . .  n 2 \  , / a  a i  a c  „  1 2p = ‘/2 Z  ( 0.05 X 1 0  + (0.0395 X 1")+ (0.0395 x T )  + (0.0105 x 1") 

p = 0.129

The ionic strength of the other buffers was calculated using the same formula. The 

ionic strength of pH 7.4 0.2 M phosphate buffer was found to be 0.5262. The 

difference in ionic strength between the 0.2 M and 0.05 M phosphate buffer is 0.3972. 

Hence amount of NaCl equivalent to a p of 0.3972 was added to 0.05 M phosphate 

buffer to give it the same ionic activity as 0.2 M phosphate buffer.

n of NaCl = '/2 X (CiẐ )

0.3972 = 16 [(AX 1^)+ (c ix l^)

=  H [(2c i)

0.3972 M = Ci

0.3972 moles/L of NaCl (23.21 g/L) was added to 0.05 M phosphate buffer for its 

ionic strength to equal that of 0.2 M phosphate buffer.

2.3.6 Solubility measurement o f  5-aminosalicylic acid in the different buffers

Solubility measurements of 5-aminosalicylic acid were performed in phosphate and 

bicarbonate buffers by adding excess drug to 1 ml of buffer in microcentrifuge tubes 

(Eppendorf AG, Hamburg, Germany) and placing in a shaking water bath at 37 °C 

and speed of 400 shakes per min. In the initial preliminary experiments, several
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samples were prepared and removed after 2, 5 and 24 hours. Equilibration was 

achieved within five hours. Based on this data, five hours was considered adequate 

time to achieve saturation solubility in the different media. Excess drug was then 

filtered and solubility measured using HPLC-UV; details of which are given in 

section 3.2.

2.3.7 Dissolution studies

5-ASA release from the dosage forms was assessed by dissolution testing using BP 

Method II paddle apparatus (model PTWS, Pharma Test, Hainburg, Germany). 

Tablets from within the same batch and from different batches o f the same brand were 

tested. The volume of the dissolution media was 1000 ml maintained at 37 ± 0.5°C 

and a paddle speed of 50 rpm was employed. The amount of 5-ASA released from the 

dosage form was determined by an in-line UV spectrophotometer (Cecil 2020) model, 

UK) with I mm flow cells at 330 nm in pH 7.4 buffer. As UV readings were 

automatically taken, no loss of medium occurred through the duration of the 

dissolution run. These same conditions were used to test the dissolution of 5-ASA 

powder. 400 mg of the drug was added to 1000 ml of dissolution medium.

In addition to testing the tablets directly in buffer, dosage forms were subjected to pH 

transitions to simulate the gastrointestinal tract. Tablets were tested in O.IM HCl for 

two hours, to simulate the normal maximal limit of gastric residence in a fasting 

individual, and then transferred to the pH 7.4 buffers. To mimic intestinal conditions 

even more closely, tablets were subjected to a transition from an acidic pH, to a pH of

6.8 for one hour to mimic the jejunal region of the small intestine (Evans et al., 1988) 

followed by transfer to the pH 7.4 buffers. The pH of Hanks buffer was adjusted to
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6.8  by the addition of MES (morpholinoethansulfonic acid) as it has a suitable pKa of 

6.15. During the transition phases the tablets were subjected to the same dissolution 

conditions (paddle rotation speed of 50 rpm and temperature of 37 ± 0.5 °C).

2.3.8 Media uptake by tablets

To establish if acid is uptaken by the dosage forms during the transition stage, the 

tablets were subjected to dissolution conditions for 2 hours in 0.1 M HCl. After 2 

hours the tablets were removed and excess medium drained and blotted with filter 

paper from around the tablet. The tablets were then weighed and the uptake 

calculated.

2.3.9 Scannins electron microscopy

The film thickness of the tablets was examined by scanning electron microscopy 

(SEM) using a Phillips XL 20 scanning electron microscope (Philips, Cambridge, 

UK). The tablets were cut in half to enable measurement of the film thickness. 

Specimens were coated with gold using a sputter coater (model K550, Emitech, Kent) 

and mounted onto a sample holder and examined using at an accelerating voltage of 

5 -15 kV depending on the magnification required. A random sample of 8 tablets from 

within the same batch and from different batches of the same brand were measured. 

The average thickness and standard deviations were calculated.
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2.4 RESULTS AND DISCUSSION

2.4.1 Comvahson o f  dissolution profiles o f  the pH-resvonsive systems

A consideration of the excipients in the pH-responsive preparations shows that Asacol 

and Mesren have the same qualitative formula. Ipocol however, has a different 

formulation with different plasticizers. SEMs of the marketed products show intra- 

batch and inter-batch variation in film coating thickness. Ipocol has the lowest enteric 

coating thickness of 50 pm ± 8 pm. Asacol has a coating thickness of 82 pm ± 11 pm 

and Mesren has a coating thickness of 75 pm ± 7.5 pm. Asacol and Mesren were 

found to have similar dissolution profiles in all the phosphate buffers studied (0.05 M, 

0.2 M phosphate and Sorensen’s buffers), attributable to their similar enteric coating 

thickness (Figure 2.3). The dissolution of Ipocol, however, was much faster compared 

to the other two products; arising from its thinner coat and/or the coating components 

(Figure 2.3).

As Ipocol has a faster drug release profile compared to the other two brands, it would 

be expected to exhibit individual drug availability at different sites of the GI tract. 

Since the ulcerative colitis patient population is heterogeneous, this would offer 

physicians the opportunity of matching the different drug release characteristics of the 

available 5-ASA brands to the site of disease, thus choosing the optimum formulation 

for their patients (Forbes et al., 2003).

It is noteworthy that the standard deviation error bars of drug release are so wide both 

within and between batches of the different preparations. These variations may be 

attributable to the intra-brand differences in coating thickness. Intra-brand dissolution

67



variations in phosphate buffers have been documented by several sources (Lund, 

1994; Ivax Pharmaceuticals, 2003; Sandoz, 2003).
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Figure 2.3 Comparative dissolution profiles of Asacol, Mesren and Ipocol tablets in 
0.05M phosphate buffer pH 7.4, expressed as mean +SD.

2.4.2 Sohibilitv o f 5-ammosalicvlic acid in different phosphate and bicarbonate 

bu ffers and the implications on drug release from pH-responsive systems

Table 2.3 shows how 5-ASA solubility varies with buffer type and molarity. 

According to the Noyes-Whitney equation (Equation 1.1), drug solubility in the 

medium influences its dissolution rate. Since the dissolution rate is proportional to the 

difference between the concentration of solute, Cs, required to saturate the solution 

and the solute concentration, C, at any time point (Cs -  C). Dissolution rate therefore 

slows down with time as the drug concentration approaches the saturation solubility. 

However the higher this saturation solubility the greater the difference will be
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between it and the drug concentration in the release media at any time and therefore 

the faster the dissolution.

Table 2.3 Solubility of 5-aminosalicylic acid (mean ± SD) in different buffers.

Buffer medium 5-aminosalicylic acid 
solubility (mg/ml)

0.002 M phosphate buffer 1.99 (±0.048)

0.05 M phosphate buffer 6.34 (± 0.053)

0.2 M phosphate buffer 13.69 (±0.079)

Hanks bicarbonate buffer 1.83 (±0.043)

Krebs bicarbonate buffer 4.51 (±0.067)

If ‘sink conditions’ exist, however, whereby the maximum concentration of drug in 

the dissolution medium does not exceed 20 % of its saturation solubility, then Cs -  C, 

may be approximated to Cs. Assuming that C < 0.2 Cs, for a dosage form containing 

400 mg of 5-ASA, sink conditions are attained in all buffer media used in this study, 

except Hanks buffer. In Hanks buffer, 20 % of Cs is 0.39 mg/ml, however the 

maximum concentration reached by a 400 mg 5-ASA tablet is 0.4 mg/ml (1000 ml is 

the dissolution volume used). Hence it is very close to sink conditions.

The next sections discuss how buffer composition of the dissolution medium alters 

dissolution rate of the pH-responsive system through influences on ionisation of the 

acrylic polymer. However ionisation of the polymer cannot be considered in isolation 

from the behaviour of the drug; any differences that arise are attributable to the 

system as a whole: drug and polymer.
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The influence of drug solubility on the dissolution profile of the enteric coated dosage 

form is likely to come into play once the polymer has dissolved and drug release 

arises; i.e. post lag-time. Hence at the initial stages o f the system’s dissolution, 

polymer behaviour is more important. Further evidence for this polymer influence is 

given in chapter five, where the dissolution of Eudragit S coated prednisolone tablets 

is compared in phosphate and bicarbonate media. A large difference is observed 

between the dissolution profiles in the two media despite the same solubility of 

prednisolone in both media due to its non-ionisable character.

2.4.3 Dissolution in phosphate media o f  different buffer capacity and ionic strensth

As depicted in figure 2.4, dissolution of Asacol tablets is faster in 0.2 M phosphate 

buffer compared to 0.05 M phosphate buffer. Adding NaCl to 0.05 M phosphate 

buffer (ionic strength: 0.129, P: 23 mM/L/ApH unit) to bring its ionic strength up to 

the same level as 0.2 M buffer (ionic strength: 0.526, P: 58.8) mM/L/ApH unit) 

increases the dissolution rate comparative to the 0.05M phosphate buffer, however 

dissolution is still slower than in the 0.2 M buffer. This indicates that both buffering 

capacity and ionic strength independently contribute to increasing the dissolution rate 

of Eudragit S coated formulations. Similar results were observed with Mesren, hence 

data not shown. This finding is in disagreement with that o f Karali et al. (1995) 

which states that dissolution rate is increased to the same extent whether NaCl or 

phosphate are used to increase the ionic strength of the dissolution medium.
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Figure 2.4 Drug release profiles of Asacol tablets in pH 7.4 phosphate buffers of 
varying buffer capacity and ionic strength, expressed as mean ± SD

As for Ipocol (Figure 2.5), a difference also arises in its dissolution profile in 0.2 M 

phosphate buffer compared to 0.05 M buffer, however the difference is less drastic 

compared to Asacol; attributable to Ipocol’s thinner enteric coating Dissolution in 

0.05 M phosphate buffer with NaCl closely resembles that in 0.05 M phosphate buffer 

alone. This may be that as the dissolution in 0.05 M phosphate buffer is rapid, adding 

NaCl may not noticeably alter the dissolution profile; despite that increasing buffer 

capacity does seem to result in an increase in dissolution rate. This may suggest that 

buffer capacity may have a more prominent influence compared to ionic strength on 

dissolution o f this system.
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Figure 2.5 Dnjg release profiles of Ipocol tablets in pH 7.4 phosphate buffers of 
varying buffer capacity and ionic strength, expressed as mean ± SD.

As previously described one of the steps involved in enteric polymer dissolution is 

diffusion of ionised disentangled polymer chains away from the polymer interface and 

into the bulk solution (Nguyen and Fogler, 2005). Two diffusion processes are 

generally reported for ionic polymers: slow diffusion process whereby the polymers 

diffuse as clusters and fast diffusion process which corresponds to the coupled 

diffusion of counterions (eg. hydrogen ions, sodium and potassium ions). The slow 

diffusive mode is dependent on polymer concentration, while both processes change 

with ionic strength. Charges on the ionised polymers can be screened by the presence 

of counterions thus reducing polymer repulsion. Attractive forces can give rise to 

multichain polymer domains. Furthermore, solution structure and dynamics are 

influenced by polyion-counterion interactions (Sedlak and Amis, 1992).
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Raising the salt concentration may reduce the repulsion forces between the carboxylic 

groups of the monomer units thus softening the polymer film; this softening and 

erosion of the film will increase difftision of drug through the polymer coat (Kararli et 

al., 1995). A further mechanism through which an increase in ionic strength may 

accelerate dissolution is through alteration of buffer pKa; change in the pKa 

influences reaction rate with the polymer.

Another example of the influence of buffer capacity on dissolution of enteric coated 

products is the work conducted using Sorensen’s buffer as the dissolution medium 

(Figures 2.6 and 2.7). Sorensen’s buffer has a phosphate content of 0.066 M and an 

ionic strength of 0.1737. The individual tablet dissolution profiles were found to be 

intermediate between that of 0.05 M and 0.2 M phosphate buffer.
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Figure 2.6 Drug release profiles of Asacol tablets in different pH 7.4 phosphate 
buffers of varying buffer capacity, expressed as mean ± SD.

73



100

80 - * — 0.05M  Phosphate buffer 

^ !^ 0 .2 M  Phosphate buffer 

^  Sorensen’s bufferO)
40 -

20

20
Time (min)

Figure 2.7 Drug release profiles of Ipocol tablets in different pH 7.4 phosphate 
buffers of varying buffer capacity, expressed as mean ± SD.

2.4.4 Dissolution in physiological bicarbonate buffers

It is evident from figure 2.8  that the dissolution profiles of the Eudragit S coated 

tablets is substantially slower in Hanks physiological buffer compared to phosphate 

buffers. Lag-times in Hanks buffer are 3.5 hours and 50 min for Asacol and Ipocol 

respectively. The lag-times in 0.05 M phosphate buffer, however, are 45 min and 5 

min for Asacol and Ipocol respectively. The dissolution profiles of Asacol and 

Mesren tablets are also similar in physiological buffers. This is in agreement with the 

finding by Chan et al. (2001) who reported a slower dissolution of Eudragit S coated 

dosage forms in Hanks buffer compared to compendial phosphate buffer. 

Interestingly, Dressman’s biorelevant medium to simulate the small intestinal fluid in 

terms of surfactant composition (Dressman et al., 1998) was not found to influence 

the dissolution profile of Eudragit S coated 5-ASA dosage forms (Rudolph et al.,
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2001 ); the release observed was the same as that in compendial phosphate buffer. 

Hence, simulating intestinal surfactant composition alone with no attention to buffer 

components does not improve prediction of the in vivo behaviour of pH responsive 

formulations.
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Figure 2.8 Comparative dissolution profile o f Asacol, Mesren and Ipocol in tablets in 
physiological Hanks buffer, expressed as mean ± SD.

Drug release in the physiological buffers, Krebs and Hanks, was compared to find if 

using different physiological buffers as dissolution media gives varying release 

profiles. From figures 2.9 and 2.10, it is evident that the dissolution profiles are faster 

in Krebs buffer compared to Hanks. Two profiles are shown for Krebs buffer; Krebs 

stabilised with CO2 (g) and Krebs without CO2 (g) stabilisation. Reasons for these 

different dissolution profiles that arise with and without CO2 are discussed in section 

2.4.4.
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Figure 2.9 Comparative dissolution profiles of Asacol tablets in Hanks and Krebs 
buffers (with C0 2 (g) stabilisation and without C0 2 (g) stabilisation), expressed as 
mean ± SD.
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Figure 2.10 Comparative dissolution profiles of Ipocol tablets in Hanks and Krebs 
buffers (with C0 2 (g) stabilisation and without C0 2 (g) stabilisation), expressed as 
mean ± SD.
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The two physiological buffers have similar ionic strengths however different 

bicarbonate content of 25 mmol/L and 4.17 mmol/L for Krebs and Hanks 

respectively. Consequently the buffer capacity of Krebs is greater than that of Hanks 

at 3.7 mmoles/L/pH unit and 1 mmol/L/pH unit respectively. These buffer capacity 

values are in general agreement with those achieved by Levis et al. (2003) who 

investigated the effect of buffer media composition on solubility and permeability of 

ibuprofen. The pH of the boundary layer (that is the pH adjacent to the surface of the 

dissolving solid) is crucial in determining the dissolution rate, however it can be quite 

different from the bulk pH depending on the buffer capacity of the dissolution media 

(Ozturk et al., 1988b; Horter and Dressman, 2001). 5-ASA is an amphoteric molecule, 

the COOH (carboxyl) group of 5-ASA has a pKa value of 2.30 and the (NH3+)- 

(amino) group has a pKa of 5.69 (Allgayer et al., 1985). The ionization and solubility 

characteristics are dependent on the pKa of the drug and the pH of the solution. At 

higher pH values, 5-ASA reacts with the buffer species, B", and its anionic form is 

generated. Hence it dissolves and dissociates generating hydrogen ions which lower 

the pH of the boundary layer (French and Mauger, 1993). A dissolution medium with 

a low buffer capacity will retard drug dissolution as the low pH environment deters 

formation of the anionic species. Furthermore, a reduction in pH will also reduce 

ionization of the methacrylic acid monomer units thus retarding dissolution of the 

enteric coat. This buffer capacity influence, however, is likely to come into play once 

drug dissolution starts to occur (i.e. following the lag-time).
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2.4.5 Bronstedcatalysis law

The explanation for the shorter dissolution lag time observed in Krebs compared to 

Hanks buffer is the Bronsted catalysis law theory proposed by Spitael and Kinget 

(1977a). Eudragit S dissolves through the dissociation of its acid monomer units (R- 

COOH) by proton transfer to the base H2O, forming conjugate base of the polymer 

and hydronium ions (Figure 2.11a). Figure 2.11a is a summarised mechanism; more 

intermediate steps and proton transfers are involved.

Very unstable 
intermediate

Unstable
intermediate

-OH
T

-OH

H H

r
OH

-OH

0

R  C  O'

+ H3O+

+0H

II
R  C +  OH'

OH

Very unstable 
intermediate

Figure 2.11a Mechanism of ionisation of Eudragit S. Adapted from Bender and 
Brubacher (1973).

The second structure formed in figure 2.11a is a very unstable intermediate and the 

charge accumulation that arises is energetically unfavourable. However in the
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presence of a basic salt (B'), such as phosphate (P0 4 ’̂) or bicarbonate (HCO3 ), the 

base accepts a proton from the water molecule thereby diffusing the build up of 

charge and reducing the free energy of activation, thus accelerating the reaction 

(Figure 2.1 lb). Hence the oxygen atom of the water molecule now has a greater share 

o f the electrons that formed part of the bond of the leaving proton. It is now more 

negatively charged and its potential to donate an electron pair to form a new bond 

with the carbonyl carbon atom is augmented (Bender and Brubacher, 1973). In effect 

the base accelerates the proton transfer and a general base catalysis mechanism 

operating.

Transition state

R  C  OH

/ ° \
H H

B-

-OH

H H.

R  0  O' -I- +  H 2O

Figure 2.11b Ionisation of Eudragit S in the presence of a basic salt (B ). 
(Intermediate steps of proton transfer have not been shown.)

The above mechanisms explain why dissolution rate increases with increasing pKa of 

the basic salts (note that pKa increases with increasing strength of the conjugate base). 

pKa values of H2PO4' and HCO3' buffers are 7.2 and 6.4 respectively. The total rate of 

the reaction can be given by equation 2.3 (Bender and Brubacher, 1973).
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Rate =  (ko +  kcat [catalyst]")[S] Equation 2.3

ko = order rate constant 

kcat = catalytic rate constant

n = the number of catalyst molecules that participate in the rate determining step 

[catalyst] = catalyst concentration 

[S] = substrate concentration

From this equation it can be deduced that the relative efficiency of the catalyst is 

reflected in kcat which increases with increasing strength of the conjugate base. 

Furthermore, the rate of the reaction is proportional to the concentration of the base; 

thus explaining the faster dissolution obtained in Krebs compared to Hanks buffer.

This theory is in agreement with the general principle proposed recently by Nguyen 

and Fogler (2005) whereby the buffer species is described as a ‘diffusion promoter’ as 

it facilitates the transfer of protons (produced by ionisation of the carboxylic acid 

groups) from the polymer interface towards the bulk solution. Therefore enhancing 

polymer ionisation and diffusion.

Further evidence for the Bronsted catalysis law is the dissolution profile observed in

0.00217 M phosphate buffer, which has a buffer capacity equivalent to that of Hanks. 

On conducting a dissolution test of Asacol tablets in this buffer it was observed after 

24 hours that the enteric film coat was still intact and retained its original dimensions. 

Although 5-ASA release did occur during this period (data not shown), it is likely to 

have been through hydration of the enteric coat and diffusion of the drug through it 

(Ebel et al., 1993). This justifies that dissolution is not merely dependent on ionic
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strength and buffer capacity, however the identity of the basic salt and its 

concentration are also determining factors.

The importance of identity of the buffer species is corroborated by the faster 

dissolution rate of Asacol tablets in 0.025 M phosphate buffer in comparison to 0.025 

M bicarbonate buffer (Krebs) (Figure 2.12). According to the Bronsted catalysis law 

phosphate buffer has a higher Kcat than bicarbonate buffer due to its higher pKa, 7.2 

versus 6.4 respectively, and would therefore be expected to give rise to a faster 

dissolution rate. Moreover the pKa of phosphate buffer is closer to the pH of the 

solution (pH 7.4). These two arguments explain the higher efficiency of phosphate 

buffer at facilitating proton transfer from the polymer interface to the bulk solution. It 

would be of interest to explore a range of buffers with different pKa values to 

determine which is more important the absolute buffer pKa value or the magnitude of 

its difference from the solution pH.
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Figure 2.12 Comparative dissolution profiles of Asacol in Krebs buffer (in presence 
and absence of C0 2 (g)) and in 0.025 M phosphate buffer with the same ionic strength, 
expressed as mean ± SD.
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2.4.5 Stabilisation o f the phvsiolosical bicarbonate buffers

Physiological bicarbonate buffers are inherently unstable, and so overtime there is an 

increase in the pH reaching approximately 7.6 after five hours. There is a need to stop 

this upward drift in pH; gassing the buffers with CO2 was the approach adopted for 

Krebs buffer. Dissolution of Asacol tablets in Krebs buffer is faster without sparging 

with CO2 (Figure 2.8). Sparging with CO2 maintains the gas’s concentration at 

constant levels throughout the dissolution test and therefore H2CO3 dissociation to 

CO2 and H2O is unfavourable in accordance with the equilibrium illustrated in Figure 

2.2. Since H2CO3 levels are maintained, HCO3' levels are also maintained as its 

protonation to yield H2CO3 is no longer promoted (Figure 2.2). However in the 

absence of CO2 sparging, the gas evaporates from solution and therefore the 

decomposition of H2CO3 proceeds to restore the C0 2 (aq) levels. In turn, the 

protonation of HCO3' is promoted. This change in the equilibrium of the system 

results in a rise in pH which renders faster dissolution.

Sparging Krebs buffer with 5% CO2 gives rise to different results in Asacol and 

Ipocol tablets (Figures 2.9 and 2.10). For Ipocol, the release profiles in Krebs buffer 

with and without CO2 gas overlap and no difference exists. The reason for Asacol 

tablets dissolving differently in Krebs buffer in the presence and absence of CO2 gas, 

in contrast to Ipocol, may be due to the long lag-time of Asacol (130 minutes) during 

which the pH of Krebs buffer rises leading to a faster onset of dissolution compared to 

the presence of CO2 where the pH is maintained constant. In comparison to Asacol, 

Ipocol has a much shorter lag time.
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Ideally one would compare Krebs and Hanks in the presence of CO2 gas, however 

there was difficulty achieving this due the low bicarbonate content of the latter. 

Nevertheless, one would not expect the presence of CO2 gas to have a drastic 

influence in Hanks buffer since the bicarbonate concentration in Hanks buffer is very 

low (4.17 mM) leading to a slow rate of protonation to carbonic acid and consequent 

hydration to CO2 and H2O. This has been illustrated with the buffer capacity of Hanks 

remaining constant for 6 hours from the time of preparation and only decreasing 

slowly thereafter. A stable buffer capacity indicates stable levels of the buffer species,

i.e. HCO3'.

Stability of Hanks buffer was achieved for at least 24 hours by the addition of 5 mM 

of HEPES. However the disadvantage of this approach is that an artificial buffering 

reagent is added thus compromising the physiological nature o f the system. 

Furthermore, the dissolution rate of Asacol in the presence of HEPES is much faster 

with a shorter lag time and Tso% (Figure 2.13). It will therefore be difficult to attain a 

good in vitro/in vivo correlations using this approach.
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Figure 2.13 Dissolution profile of Asacol in Hanks buffer in the absence and presence 
of 5 mM HEPES, expressed as mean ± SD

2.4.6 Equivalent physiological bicarbonate buffers

Having established the importance of ionic strength, buffer capacity, buffer species 

and their concentration on dissolution behaviour of Eudragit S coated tablets, it was 

desirable to determine whether the other electrolytes in GI lumenal fluid influence 

release profiles. The dissolution of Asacol, Mesren and Ipocol tablets in the 

physiological buffers and their equivalent forms (lacking K \  M g^\ SC^^ and Ca^^) 

were found to be superimposable (refer to figure 2.14 for an example). Hence it can 

be concluded that buffer salts (phosphate and bicarbonate) govern the dissolution of 

enteric coated tablets; the remaining salts that constitute the physiological buffers 

(KCl, MgS0 4  and CaCb) do not influence dissolution of the coat.
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Figure 2.14 Comparative dissolution of Asacol tablets in Hanks and equivalent Hanks 
buffer (not containing KCl, MgS0 4  and CaCb). Results expressed as mean ± SD.

2 .4.7 Subjecting Eudragit S coated tablets to a pH  transition

The Eudragit S coated tablets were also subjected to a pH transiton from acid to pH

6.8  buffer to pH 7.4 buffer. For Asacol and Mesren, this pH gradient gave rise to 

similar dissolution profiles as direct testing in pH 7.4 buffer. This finding applies to 

both physiological and phosphate buffers (refer to figure 2.15 for an example). No 

media uptake was found to occur by the tablets, thus offering a possible explanation 

as to why dissolution was unaffected. Ibekwe et al. (2006a) however found that drug 

release of enteric coated tablets in buffer media was influenced by the duration of 

tablet exposure to acid. These different findings may be attributable to the different 

tablet formulations of the two studies. As for Ipocol, dissolution of the coating 

appeared to start at the edges of some of the tablets in 0.1 M HCl. In pH 6.8  buffer, 

dissolution was noticeable throughout the coat of all tablets.
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Figure 2.15 Comparative dissolution of Asacol tablets tested directly in pH 7.4 Hanks 
buffer or following a transition from 0 .1 M HCl to pH 6.8  buffer (transition media not 
shown), expressed as mean ± SD.

2.4.8 Influence o f ionic composition on drug release from sustained release 

ethvlcellulose granules

The previous sections have focused on drug release from pH-responsive systems; now 

we consider the same drug however from a system which has a different release 

mechanism. On contact with fluid, Pentasa tablets rapidly disintegrate into discrete 

granules which have an ethylcellulose coating. 5-ASA release is controlled by 

diffusion of the drug through the ethylcellulose film. Ethylcellulose is a non-ionic, 

water-insoluble polymer. Interestingly, a large difference exists between the 

dissolution profile of Pentasa in phosphate compared to Hanks buffer (Figure 2.16).

86



100 -

80 -

Hanks buffer
0.05 M Phosphate bufferO)

40 -

20 -

Time (min)

Figure 2.16 Comparative dissolution profiles of Pentasa tablets in phosphate and 
Hanks bicarbonate buffers, expressed as mean ± SD.

While hydoxypropylmethylcellulose (HPMC) is another cellulose ether polymer 

(Figure 2.17) utilised in modified release coatings it has a different mechanism of 

controlling drug release to that of ethylcellulose. HPMC undergoes hydration and 

swelling and is sensitive to ions. Ions have a greater affinity for water in comparison 

to HPMC and therefore exert a ‘salting out’ effect and dehydrate the polymer 

retarding its swelling (Lapidus and Lordi, 1968). Ehylcellulose, however, does not 

undergo this hydration and swelling and so is less likely to be sensitive to the ionic 

composition of the release medium.
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Figure 2.17 Structural formula of substituted cellulose.
For Hydroxypropyl methylcellulose (HPMC) the substituent groups are: H, CHg, or 
CH3CH(0 H)CH2. For Ethycellulose the substituent groups are H, CH] CH3
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As previously discussed, 5-ASA is an ionic drug and its solubility and dissolution are 

influenced by the buffer composition of the dissolution media. Figure 2.18 shows the 

dissolution of 5-ASA powder in 0.05 M phosphate and Hanks buffers. The dissolution 

is very fast initially in both media however after 50 % drug release it becomes 

substantially slower in Hanks buffer. The buffer media composition seems to have a 

greater affect on Pentasa than on 5-ASA powder. It can be speculated that the much 

slower release in Hanks buffer arises due to the pH at the polymer/ solution interface 

being lower than the bulk solution pH thus retarding diffusion of the acidic drug out 

of the granule core. Additionally, the grade of ethylcellulose used in Pentasa may 

have a bearing on its sensitivity to ions. The greater the degree of substitution of the 

ethylcellulose polymer the more water will be retained by the binding to its hydroxyl 

groups (Hjartstam and Hjertberg, 1999).
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Figure 2.18 Dissolution of 5-aminosalicylic acid drug powder in phosphate buffer 
and Hanks bicarbonate buffer, expressed as mean ± SD.
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2.4.9 Comyarison o f  in vitro drus release with published in vivo data and 

implications on the choice o f  formulation

Several studies have been conducted using gamma scintigraphy in humans to 

visualise the intestinal transit of enteric coated tablets for ileo-colonic delivery 

(Sciarretta et ah, 1993; Ashford et ah, 1993; Wilding, 2000; Sinha et ah, 2003; 

Ibekwe et ah, 2006b). Results show a large intra- and inter-individual variability in 

tablet initial disintegration times. A study of Asacol showed the average time of initial 

disintegration to be 7 hours post-dose with a standard deviation of 2.3 hours and range 

of 4-10 hours; initial release occurred in the terminal ileum or beyond in all subjects 

(Sinha et ah, 2003). The appearance of intact tablets in patients’ faeces has even been 

reported (Schroeder et ah, 1987). Ashford et al’s (1993) in vivo study using rapidly 

disintegrating tablets coated with Eudragit S also showed variable positions and times 

of release. In vivo variations in tablet disintegration are likely to be attributable to 

variations in small bowel transit time and pH level.

The use of physiological bicarbonate buffers as dissolution media provides a better 

reflection of the prolonged initial disintegration times of enteric coated tablets 

compared to that found in phosphate buffers. This can be explained by the similar 

ionic strength and ionic composition, particularly of the buffer salts, between the 

bicarbonate buffers and small intestinal luminal fluids. The buffer capacity of the 

physiological salts is relatively low compared to phosphate buffers, further 

resembling GI luminal fluids. The limited buffering capacity of the gut is illustrated in 

a study conducted by Dressman and Amidon (1984), whereby enteric coated tablets 

containing buffered cores at pH 3, 4 and 5 were administered to dogs. Tablet
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disintegration resulted in a pH drop in the upper small intestine due to release of 

buffer.

The dissolution profile of Pentasa in Hanks buffer is also more representative of the 

drug release pattern observed in vivo. Pharmacokinetic studies in man have measured 

plasma and small intestine luminal concentrations o f 5-ASA and its metabolite acetyl 

5-ASA, Post-prandial oral administration of 500 mg Pentasa tablets showed that 

approximately 80% of the dose was delivered to the colon (Layer et al., 1995); the 

rest being released in the jejunoileal region. The small intestinal transit time of 

Pentasa microgranules has been found to be 3 -  4 hours by gamma scintigraphy 

studies (Wilding et al., 2000). From figure 2.16 it can be seen that ~ 50% of the drug 

dose is released in phosphate buffer after four hours, however less than half this dose 

(20%) is released in Hanks buffer. Therefore bicarbonate buffers provide a more 

realistic insight into Pentasa intestinal delivery patterns.

Pentasa microgranules have been shown to spread over the whole length of the large 

bowel (Wilding et al., 2000). 5-ASA release therefore occurs over the entire region. 

Asacol however shows variations in site of disintegration; in some individuals 

complete disintegration has been observed in the small intestine while in others it only 

started in the transverse colon. It therefore holds the risk of failing to deliver drug to 

the inflamed regions of the intestine. Moreover, drug release from Asacol is more 

susceptible to physiological parameters such as pH, transit time and water availability 

for dissolution of its coating. If these conditions are sub-optimal dug release from 

Asacol is likely to be severely compromised. For instance, in one quarter of healthy 

individuals a pH of 7 is not reached in the small or large intestine (Fallingborg et al..
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1989), and in a similar proportion of ulcerative colitis patients, a luminal pH > 7 was 

only maintained for less than 30 min (Raimundo et ah, 1992). A fall in colonic pH to 

less than 5.5 was found in two out of six patients with active ulcerative colitis (Nugent 

et al., 2000). Proximal colonic pH values as low as 2.3 have been detected by 

Fallingborg et al. (1993).

It has also been shown by our group that the length of exposure of Eudragit S coated 

tablets to the correct pH may also be a limiting factor; i.e. transit times in the terminal 

ileum and stagnation at the ileocaecal junction (Ibekwe et al., 2007). The limited fluid 

availability in the distal gut, particularly its inhomogenity will present a greater 

problem for large single unit dosage forms in comparison to multiple unit systems due 

to its smaller surface area.
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2.5 CONCLUSIONS

This work has highlighted the importance o f defining the ionic com position o f 

dissolution m edia when determ ining the drug release profile o f pH responsive dosage 

forms. Outlining the pH value alone is not sufficient and can give rise to misleading 

results. Ionic strength, identity o f the buffer species and their concentration are all 

critical factors. Simply by using m edia that better sim ulate the buffer components o f 

small intestinal lumenal fluids a better reflection o f  in vivo dissolution tim es can be 

achieved. The above findings can be extrapolated to other system s with pH- 

responsive polymers as they all have the same underlying step for dissolution; 

ionisation o f acidic functional groups.

As discussed in chapter one, there remains to be num erous other GI param eters that 

need to be simulated in vitro to achieve better predictions o f the in vivo behaviour o f 

pH-responsive dosage forms. Only one study has investigated the influence o f 

intestinal surfactants on dissolution o f these systems and therefore this warrants 

further work under different conditions. It would be interesting, for example, to 

prepare a dissolution medium that combines bicarbonate buffers and intestinal 

surfactants. It is also o f importance to prepare bicarbonate buffers at different pH 

values without resorting to the addition o f external buffer salts. Thus transition o f 

dosage forms through pH gradients o f purely physiological buffers can be performed.

The ionic and buffer composition o f colonic luminal fluids remain to be characterised, 

including the surface tension. The distal 01 tract is certain to have an elevated
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viscosity due the efficient water reabsorption that occurs and the presence of resistant 

starches and non-starch polysaccharides.

While in this chapter we have looked at the behaviour of the pH-responsive system as 

a whole, in the next chapter we focus on the drug itself and its solubility in different 

media. We measure drug solubility in human intestinal fluids and correlate the results 

to our physiological media.
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CHAPTER THREE

A comparison o f drug solubility in human jejunal and 

ileostomy fluids with physiologically relevant media: the 

relative importance o f buffer composition and intestinal

surfactants
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3.1 INTRODUCTION

We have shown in the previous chapter how dissolution media composition 

influences the ionisation of pH-responsive polymers; in the context of drug release 

from enteric coated dosage forms. In this part of the study we focus on the drug and 

its physicochemical characteristics in relation to its solubility in different 

physiological media. The solubility of a drug is a major determinant o f its dissolution 

rate and of the proceeding diffusion from the dosage system.

Drug solubility is one of the two factors, the other being permeability across GI 

mucosa, that are used by the biopharmaceutics classification system (BCS) to 

characterise drugs into one of four different groups for prediction of bioavailability 

(Amidon et al., 1995). Suffice to say that solubility is a vital measurement for any 

chemical entity.

3.1.1 Physicochemical properties o f  5-aminosalicvlic acid and prednisolone

Solubility is dependent on the drug’s physicochemical properties and the composition 

o f the dissolution medium. Here we investigate the value of physiological media in 

predicting drug solubility in GI fluids. Two drugs are studied, 5-aminosalicylic acid 

(5-ASA) and prednisolone. A summary of their physicochemical properties is given in 

table 3.1. Here their solubility is compared in a range of phosphate and bicarbonate 

buffers and in media containing intestinal lipids and surfactants, i.e. fasted state 

simulated intestinal fluid (FaSSIF) (Galia et al., 1998) to solubility in human jejunal
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fluids aspirated from healthy volunteers and ileosotmy fluids from inflammatory 

bowel disease patients.

Table 3.1 Aqueous solubility, lipophilicity and ionisation constants of 
5-aminosalicylic acid and prednisolone.

5-aminosalicylic acid 
(5-ASA) Prednisolone

Intrinsic solubility^ (mg/ml) 1.32 0.223

pKa 2.3 and 5.69*’ N/A

L og ? 0.98“’ 1.59“*

^Solubility in water at 37 °C (measured in our laboratory) 
‘’French and M auger (1993)
“N ational library o f  m edicine (2007)
‘‘M achatha and Y alkow sky (2005)

5-ASA and prednisolone are classified as slightly soluble and very slightly soluble 

respectively by the British Pharmacopoeia. However this classification is in aqueous 

media and will therefore be different in gut lumenal conditions. Furthermore, the 

lumenal environment is complex and the pH, buffer capacity, surfactant 

concentration, fluid volume and viscosity can vary greatly in different regions of the 

gastrointestinal tract (Dressman et al., 1998). 5-ASA is an amphoteric drug; carboxyl 

group has a pKa value of 2.30 and the amino group has a pKa of 5.69 (French and 

Mauger, 1993). At low pH values, the COO' group of the zwitterionic compound 

(+A-) reacts with the buffer species, BH, generating the cationic form of the drug 

(+Ao) and B' (Figure 3.1). At higher pH values, the NHs^ group of the drug reacts 

with the buffer species, B', generating the anionic form of the drug (oA-) and BH.
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L ower pH values 

HaNt^ ^COOH COO"

+  H3O+

(+Ao) Cationic species 
predominate at pH values 
<pl .

(+A-) Dipolar species 
predominate at pH values 
near the pi.

Higher pH values

COO-

+ H3O'

(oA-)Anionic species 
predominate at pH values 
>pl .

Figure 3.1 Ionization of 5-aminosalicylic at different pH values. Adapted from 
French and Mauger ( 1993).

Solubility of 5-ASA was measured in unbuffered water at different pH values attained 

by adjustment with HCl or NaOH. The experimental solubility versus pH was found 

to have a U-shape whereby solubility increases at acidic values (pH <2.0) and more 

basic values (pH >5.5), corresponding to the ionization o f the functional groups 

(Figure 3.2). At pH values between 2.0 and 5.5, solubility was found to be minimal 

due to the presence of only the dipolar species (French and Mauger, 1993).

97



18 1

E
0 3 15 -E
>.
.tü 12 -

3

O 9 -
CO

2
c 6 -
03

Ê
3 -

Q .
X

L U

0 -

• •  • •  # e # $ * *

3 4

pH

Figure 3.2 Solubility of 5-aminosalicylic acid at 37 °C in unbuffered water at 
different pH values. Reproduced from French and Mauger (1993).

Prednisolone is a non-ionic drug and is not known to exhibit pH-dependent solubility. 

However due to its hydrophobic nature its solubility may be influenced by the small 

intestinal surfactants. Bile salts and phospholipids may improve the solubility of drugs 

through wetting whereby they decrease the interfacial energy between drug and 

dissolution medium, thus increasing the effective surface area available for 

dissolution (Mithani et al., 1996). However the predominant mechanism of solubility 

enhancement at bile salt concentrations exceeding the critical micelle concentration 

(CMC) is through solubilisation (incorporation into micelles) (Mithani et al., 1996).

For modified release formulations it is necessary to determine drug solubility under 

the different environments of pH, buffer capacity and intestinal surfactants that 

prevail in different regions of the gastrointestinal tract. 5-ASA and prednisolone were 

chosen as the model drugs not only because they are the cornerstone of inflammatory 

bowel disease treatment however they also display rather different physicochemical
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properties and thus it is interesting to identify which parameters o f the dissolution 

media constitute the most important influence on their solubility.

3.1.2 Media used for measurement o f  drus solubility

3.1.2.1 Phosphate and bicarbonate buffers

Drug solubility was measured in conventional media (phosphate buffers) and 

physiologically relevant media; bicarbonate buffers (Hanks and Krebs) and FaSSIF. 

Bicarbonate buffers are physiologically relevant with respect to their buffer 

composition and FaSSIF is relevant in terms of its surfactant content. Drug solubility 

in these media was compared to that in jejunal and ileostomy fluids.

3.1.2.2 Jejunal fluids

Jejunal fluids used in this study were received as a gift from Astra Zeneca (Molndal, 

Sweden). They were aspirated from patients via an oral intubation tube (Loc-I-Gut®, 

Synectics Medical, Sweden). The tube is a 175 cm long with an external diameter of

5.3 mm. It is a multichannel polyvinyl tube with two inflatable balloons 10 cm apart 

and a tungsten weight at the tip (Persson et al., 2005). The position of the tube was 

checked fluoroscopically (Knutson et al., 1989), and once the desired location was 

reached only the lower balloon was inflated with 25 to 30 ml of air to prevent fluid 

from passing down the gastrointestinal tract, thus achieving complete sampling of 

jejunal fluids. Fluids were collected from the jejunum by continuous vacuum 

drainage. A separate tube was positioned in the stomach to drain gastric fluid to
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prevent nausea. The jejunal fluid aspirated was collected on ice, pooled and stored at 

-70°C.

It is more difficult however to obtain lumenal fluids from more distal regions of the 

gut and this method has not been adapted to aspirate ileal fluids. Therefore ileostomy 

fluids from inflammatory bowel disease (IBD) patients were studied as an alternative.

3.1.2.3 Ileostomy fluids

Ileostomy fluids were also a gift from Astra Zeneca. They were obtained from IBD 

patients which had undergone bowel surgery. End ileostomy is usually constructed as 

a permanent stoma for patients with ulcerative colitis or Crohn’s disease. The terminal 

ileum is brought through the abdominal wall in the right iliac fossa area. It is usually 

the outcome of proctocolectomy (Keighley and Williams, 1999). Indications for 

surgery in IBD patients include failure of medical treatment or because of acute or 

chronic complications of the disease; including haemorrhage, obstruction and risk of 

carcinoma (Dozois and Kelly, 2000). In addition, patients with an ileostomy made 

because of Crohn’s disease will have had an ileal resection too, the extent of which 

depends on the extent of the disease (McNeil et al., 1982). Patients may also have 

recurrent or residual small bowel disease (Lockhart-Mummery and Morson, 1960).

A major difference between ileal and ileostomy fluid is that about 1.5 litres of fluid 

passes through the ileo-caecal valve each day, yet average ileostomy contents are less 

than a third of this (Kanaghinis et al., 1963; Ladas et al., 1986). Ileostomy fluids 

would therefore be expected to be more concentrated. Furthermore, transit through the 

final part of the ileum is slower in ileostomates compared to normal subjects. This
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slower flow gives rise to greater bacterial flora which would generate metabolites 

such as short chain fatty acids giving rise to a higher osmolality in ileostomy effluent 

compared to ileal fluid (Ladas et al., 1986).

The colon serves as a site of electrolyte and water conservation in man due to its large 

absorptive capacity. With a standard diet in healthy individuals, 1500 ml of water, 

200 mM of sodium, 100 mM of chloride and 10 mM of potassium enter through the 

colon each day. Faecal excretion of these is small as the colon absorbs more than 95% 

of the sodium, chloride and water and 50% of the potassium traversing the ileocaecal 

region (Phillips and Giller, 1973). Patients with ileostomies are therefore prone to salt 

and water depletion (Clarke et al., 1967) arising from the failure to re-absorb fluid and 

electrolytes passing from the ileum.

McNeil et al. (1982) found a statistically significant correlation of increased ileostomy 

output with an increased length of ileum resected. The authors use this to explain why 

Crohn’s colitis patients have greater ileostomy outputs in comparison to ulcerative 

colitis patients. From this study and other evidence they conclude that the terminal 

ileum is an important site of electrolyte and water conservation in man. Furthermore, 

malabsorption of fat, vitamin B 12 and bile salts occurs proportional to the length of 

the ileum affected by disease.

It would also have been interesting to compare drug solubility in ileostomy with 

colostomy fluids. In colostomy, the colon is brought through the abdominal wall and 

the part of the colon chosen depends on the part obstructed or resected (Keighley and 

Williams, 1999). Unfortunately however, we were unable to obtain these fluids.
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3.1.3 Intestinal surfactants and media used to simulate them

Bile plays a critical role in intestinal lipid digestion and absorption. Average 

composition of human bile is ~ 84% water, 11.5% bile salts, 3% lecithin 

(phosphatidylcholine, PC), 0.5% cholesterol, and 1% other components, such as bile 

pigments, inorganic ions, and proteins (Charman et al., 1997). Bile acid is synthesised 

by hepatocytes and effective hepatic secretion requires an intact enterohepatic 

circulation because most bile acids secreted into the small intestine undergo hepatic- 

enterohepatic recycling through active absorption from the ileum (Dawson et al., 

2006) After their synthesis, bile acids are conjugated with taurine or glycine via an 

amide bond between the carboxyl group of the bile acids and the amino group of 

glycine or taurine. In humans, most of the bile acids are conjugated to glycine. See 

Figures 3.3a-b for bile salt structure and figure 3.3c for phosphatidylcholine 

strucuture.
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Figure 3.3a Chemical structure of taurocholic acid
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Figure 3.3b Chemical structure of glycholate
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Figure 3.3c Chemical structure of phosphatidylcholine

Amino acid conjugation to bile salts increases hydrophilicity of the latter and the 

acidic strength of its side chain by converting a weak acid, pKa ~ 5.0, to a strong acid, 

pKa - 3 .9  for the glycine conjugate and pKa < 2.0 for the taurine conjugate. Hence 

the conjugated bile acids are almost completely ionised at the near neutral pH of the 

small intestine. This limits the passive diffusion of the bile acids across the small 

intestinal mucosa and absorption only occurs in the presence of the specific 

membrane carriers in the terminal ileum. Postprandial concentrations of free and
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conjugated bile acids along the small intestine were found to be highest in the upper 

ileum (10 mM) and lowest (2 mM) in the lower ileum (Figure 3.4) (Northfield and 

Mccoll, 1973).

16 2  Total bile acids (mean ± S.E.'M.) 
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Figure 3.4 Bile salt concentrations along the normal human small intestine 
postprandially. Reproduced from Northfield and McColl (1973).

Standard FaSSIF with 3 mM NaTC and 0.75 mM lecithin is the biorelevant media 

commonly used to represent fasted jejunal fluids (Galia et al., 1998). These values are 

relatively close to those obtained in a recent characterisation study of intestinal fluids 

in human volunteers. The study found the total bile salt concentration to be 2 ± 0.2 

mMol and the phospholipid concentration to be 0.2 ± 0.07 mM (Persson et al., 2005). 

In this chapter, the solubility of 5-ASA and prednisolone in human jejunal fluids was 

compared to the solubility in this biorelevant media.
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Recently, equivalent biorelevant media have been designed for proximal ileal fluids 

based on the assumption that no intestinal surfactants exist in the proximal ileum in 

the fasted state (Klein et al., 2005). This assumption, however, is not based on 

biological assays of ileal aspirates. From figure 4.4, it can be inferred that this 

assumption is invalid since bile salt concentrations are highest in the upper ileum. 

Furthermore, bile acid absorption occurs from the terminal ileum and therefore its 

concentration will still be high in the proximal region.

It is difficult to define the surfactant concentration in ileostomy fluids as it is 

dependent on several variables. Profound bile acid malabsorption occurs after ileal 

resection however we do not know the extent of dysfunction or resection of the ileum, 

if any, in the patients from whom the ileostomy fluids were obtained. Hence two 

concentrations of intestinal surfactants were explored in this study: high concentration 

(7.5 mM NaTC, 1.875 mM lecithin) and a low concentration (1.2 mM NaTC, 0.3 mM 

lecithin); 2.5 fold more concentrated and diluted than standard FaSSIF respectively. 

These two concentrations were chosen as an approximate prediction of the possible 

surfactant concentration in ileostomy fluids. The high concentration was used on the 

assumption that very little enterohepatic recycling of bile occurs and therefore the 

concentration in ileostomy fluids is equivalent to the concentration in fed jejunal 

fluids (ileostomy fluids were obtained from patients in the fed state). The 

conventional bile salt concentration used in the fed state (fed state simulated intestinal 

fluid, FeSSIF) is 15 mM NaTC, however this concentration has been found to be 

twice as high as that of jejunal fluids in the fed state (Persson et al., 2005). The low 

concentration was used as an estimate of that in the terminal ileum in the fed state in 

the event of efficient enterohepatic recycling.
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A further justification of the use of high bile salt concentrations in ileostomy fluids is 

the study by Ladas et al. 1986 which showed that a long chain triglyceride (LCT) rich 

meal and medium chain triglyceride (MCT) rich meal increased bile acid outflow in 

ileostomy effluent whereas only LCT rich meal increased bile acid outflow from 

ileum to colon in normal healthy subjects (Ladas et al., 1986). A study in normal 

subjects showed that MCT rich meals do not stimulate bile acid outflow from the 

gallbladder into the jejunum whereas LCT rich meals do (Ladas et al., 1984). This 

study hypothesises that if it is assumed that the gallbladder of ileostomates functions 

in the same way as normal subjects then the mechanism behind increased bile acid 

outflow in ileostomy effluent in response to MCT rich meals could be that a greater 

proportion of the bile acid pool resides in the ileal lumen in ileostomates in 

comparison to normal subjects.

3.2 OBJECTIVES

• To accurately determine solubility of the model drugs, 5-ASA and prednisolone, 

in jejunal fluids aspirated from healthy subjects and in ileostomy fluids from IBD 

patients.

• To compare solubility in these fluids to that in conventional phosphate buffers and 

in physiologically relevant media, including bicarbonate buffers and FaSSIF.

• To evaluate these physiologically relevant media for predicting drug solubility in 

human fluids.
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• To identify which parameters of the dissolution media constitute the most 

important influence on solubility of drugs with different physicochemical 

properties.

3.3 MATERIALS AND METHODS

3.3.1 Materials

Mesalazine (mesalamine, 5-ASA) > 99% purity was obtained from Sigma Aldrich 

Chemicals (Poole, UK). Micronized prednisolone was obtained from Sanofi-Aventis 

(Romainville, France). All salts to prepare the buffers were of analytical grade and 

purchased from VWR Chemicals Ltd., Poole, UK. Sodium taurocholate, 95% pure, 

batch # 115K1109, was purchased from Sigma-Aldrich Chemicals (Poole, UK). Egg 

phosphatidylcholine (Lipoid E PC, >99% pure), batch # 105038-2/908, was a gift 

from Lipoid GmbH (Ludwigshafen, Germany). Methylene chloride 

(dichloromethane), analytical grade was purchased from Fisher Scientific, 

Loughborough, UK. Solvents used in HPLC were: distilled water, methanol, 

acetonitrile and peroxide-free tetrahydrofuran. All were of HPLC grade and 

purchased from Fisher Scientific, Loughborough, UK.

3.3.2 Media used for measurement o f  dru2 solubility

3.3.2.1 Phosphate and bicarbonate buffers

Drug solubility was measured in conventional pH 7.4 phosphate buffers including 

0.05 M and 0.2 M phosphate buffers (Table 3.2). The bicarbonate media used were 

pH 7.4 Hanks and Krebs buffers. Blank FaSSIF (FaSSIF with no surfactants) and
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FaSSIF with different concentrations of intestinal surfactants at pH 6.8  was also used 

for drug solubility measurements.

Table 3.2 Comparison of the buffer content, ionic strength and buffer capacity of 
bicarbonate and phosphate buffers.

Buffer 0.05 M 
PBS 

pH 7.4

0.2M PBS
Blank

FaSSIF Krebs 
buffer 
pH 7.4

Hanks 
buffer 
pH 7.4

component
(mM)

pH 7.4 pH 6.8  (no 
surfactants)

KH2PO4 50 200 1.18 0.441

NaOH 39.5 158 11.70

NaH2P0 4 .2 H20 28.69

Na2HP0 4 .2H2 0 0.337

NaHCOs 24.97 4.17

NaCl 106.01 118.07 136.99

KCl 4.69 5.37

CaCl2 2.52 1.26

MgS04.7H20 1.18 0.812

Ionic strength 0.129 0.526 0.153 0.161 0.155

Buffer capacity 
(mmoles/L/pH 

unit)
23.0 58.8 14.8 3.7 1.0

3.3.2.2 Human fluids

Jejunal fluids were supplied by Astra Zeneca (Molndal, Sweden) from healthy fasted 

volunteers. Three different batches were studied and each batch was pooled from five 

people, hence samples were obtained from 15 different people.
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Ileostomy fluids were supplied by Astra Zeneca (Molndal, Sweden) from three 

different patient volunteers with IBD. The samples were not pooled and therefore 

each sample corresponds to one patient. Patients were not fasting and their diet was 

not controlled and therefore they were all eating differently. We do not have 

information on the patients’ medical condition and the extent of IBD and the sites 

affected.

3.3.3 Preparation o f  FaSSIF media

Concentrated FaSSIF was first prepared and then diluted with blank FaSSIF to 

achieve the desired concentration of intestinal surfactants.

1.32 g sodium taurocholate (NaTC) was dissolved in 100 ml of blank FaSSIF in a 

round bottomed flask. This solution was weighed and the weight noted (‘weight I ’). 

4.72 ml methylene chloride (dichloromethane) solution containing I OOmg/ml lecithin 

(E PC) (= 0.472 g lecithin, ‘weight 2’) was added to the sodium taurocholate solution; 

a milky white emulsion is formed. The methylene chloride was then driven off under 

vacuum using a rotary evaporator (Rotavapor, R-114, B U CHI, Switzerland) at room 

temperature. This was continued for around 15 min until a clear, micellar solution 

formed with no perceptible odour of methylene chloride. The weight o f the solution 

was checked and the loss of water that occurred due to evaporation was substituted to 

obtain an overall weight corresponding to the sum of ‘weight I ’ and ‘weight 2’. 

Finally, the volume was brought to 200 ml in a volumetric flask with pH 6.8  blank 

FaSSIF. The resulting FaSSIF concentrate contains 12 mM NaTC and 3 mM lecithin; 

this is then diluted with blank FaSSIF.
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3.3.4 Methodolosy o f solubility studies

An excess o f drug (15 mg of 5-ASA and 2 mg of prednisolone) was added to 

microcentrifuge tubes (Eppendorf AG, Hamburg, Germany) containing 1 ml of the 

different media and placed in a shaking water bath at 37 °C and speed of 400 shakes 

per min. In the initial preliminary experiments, several samples were prepared and 

removed after 2, 5 and 24 hours. Equilibration was found to be achieved within five 

hours for 5-ASA and prednisolone. Based on this data, five hours was considered 

adequate time to achieve saturation solubility in the different media.

After five hours the samples were centrifuged at 13,000 rpm for 10 min. Supernatant 

was transferred to microcentrifuge filter tubes (polysulphone 0.2  pm filters) 

(VectaSpin Micro, Whatman, England) and centrifuged at 10,000 rpm for 10 min 

(Centrifuge 5415D, Eppendorf AG, Hamburg, Germany). This was an additional step 

to remove any particles from the biological fluid or undissolved drug that may still be 

present. Aliquots of the resultant filtrate were removed and diluted with mobile phase 

and vortexed for one min. A 40-fold dilution was performed for 5-ASA (50 pi of the 

solution diluted with 1950 pi of HPLC mobile phase with Gilson pipette) and a 20- 

fold dilution for prednisolone (50 pi of the solution diluted with 950 pi of mobile 

phase). Solubility was determined using HPLC-UV. Dilutions were performed so that 

absorbance readings are within the limit of accurate detection by HPLC. Three 

aliquots were removed from the same sample and diluted; this was performed to
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determine precision of the assay. The filtration step using the microcentrifuge tubes 

was validated by comparing it to the solubility of solutions not subject to this 

filtration. Spiking the different media with known concentrations of drug showed a 

recovery between 95 to 100 %; thus solubility results were not affected by 

degradation in intestinal fluids or binding to laboratory apparatus such as 

microcentrifuge tubes, filters or pipette tips. All solubility experiments were 

performed at least in triplicate.

3.3.5 Hish performance liquid chromatosraphv (HPLC) for assavins dru2 solubility

3.3.5.1 Equipment

The equipment consisted of an integrated HP 1050 Series HPLC system comprising 

an HP 1050 autosampler, an HP 1050 pump and an HP 1050 multiple wavelength 

detector system, a UV-Vis spectrophotometric detector. The detector was interfaced 

with a pc with PC/Chrom+ Software (H & A Scientific Inc., Greenville, NC, USA).

3.3.5.2 Drug separation and choice o f  mobile phase

The basis of compound separation by reversed-phase chromatography (RPC) is 

partitioning between the mobile phase and column. The colunm, typically a silica 

support modified with a Cg or C]g bonded phase, is less polar than the water-organic 

mobile phase. Sample molecules partition between the polar mobile phase and the 

non-polar Cg or Cig stationary phase (Snyder et al., 1997). Retention is less and 

therefore elution faster for stronger, less polar mobile phases. A more polar mobile
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phase has a lower % of organic solvent and more water, and choice of a more polar 

organic solvent is made.

Short retention times are convenient and allow a large number of samples to be run in 

a relatively short time. However it was necessary to increase the retention of 5-ASA 

so that it is distant from the numerous impurities in biological fluids which are eluted 

at the start. To increase retention as much as possible, a polar mobile phase was used 

comprising 95 % water and 5 % methanol (polar organic solvent). A less polar 

column also increases retention time of the compound; therefore a Cig column was 

used (LiChrospher® 100, Merck, Darmstadt, Germany).

5-ASA is a zwitterionic drug and therefore the pH of the mobile phase needs to be 

controlled (Snyder et al., 1997). Trifluoracetic acid (TFA) was a suitable choice of 

buffer as it has a buffering pH range of 1.5 to 2.5. Inclusion of 0.05 % TFA in the 

mobile phase gives rise to a pH of 2.5. 5-ASA has two pKa values: the carboxyl 

group has a pKa of 2.3 and the amino group a pKa of 5.69 (French and Mauger, 

1993). Therefore at a pH of 2.5, the amino group is protonated and 5-ASA exists in 

the cationic state.

For the separation of prednisolone; the mobile phase recommended by the United 

States Pharmacopoeia (US?) (2006) for prednisone was used. This comprises:

6 8 .8% water

25% peroxide-free tetrahydrofuran 

6 .2% methanol

Column used: Water Symmetry Cg (5 pm) (Waters, Massachusetts, USA)
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Solvent type and solvent strength not only affect compound retention but also 

influence peak spacing and peak resolution.

3.3.5.3 Chromatographic conditions 

5-ASA assay

Injection volume: 20 pi; Flow rate: 1.0 ml/min; Maximum run time: 10 min; Assay 

wavelength: 228 nm; Pressure: 1800 psi, and column temperature: 40 °C.

Prednisolone assay

Injection volume: 20 pi; Flow rate: 1.0 ml/min; Maximum run time: 13 min; Assay 

wavelength: 254 nm; Pressure: 1800 psi, and column temperature: 40 °C.

3.3.5.4 Validation o f  HPLC assay method

Calibration curves for the HPLC assay were not prepared from biological fluids as 

there were insufficient quantities available and it would be more useful to use them 

for characterisation and drug solubility measurements. Furthermore, the saturation 

solubility concentrations achieved were very high and diluted by several fold with 

mobile phase to be within the linear range of the standard curves for HPLC. Spiking 

the different solubility media with known concentrations of 5-ASA or prednisolone 

and then diluting with mobile phase by the same factor used in the solubility 

measurements gave rise to very similar AUC readings in the different media. The 

details o f this are explained below.
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The different media were spiked with drug powder, details o f spiking ileostomy fluid 

are referred to here. In the case of 5-ASA, 0.001225 g was added to 1 ml o f ileostomy 

fluid in an eppendorf to form an 8 mM solution. Complete dissolution of the drug was 

ensured by leaving in a shaking water bath at 37 °C for five hours and then vortexing 

for 30 min. Dilutions with mobile phase were performed to achieve 0.8, 0.6 and 0.2 

mM drug solutions. Ileostomy fluid was also spiked with a 5 mM 5-ASA solution in 

mobile phase and further diluted with mobile phase to achieve the desired drug 

concentrations.

Ileostomy fluids studied have a large number of particulate matter and fibres as they 

are obtained from patients in the fed state. Hence they were subjected to filtration 

with a sefar nitex mesh filter of aperture size 350 pm (made from a polyamide basic 

fabric of PA 6 and PA 6.6  monofilaments) to remove the large particulate matter. A 

sample o f this filtered ileostomy fluid was also subjected to centrifugation at 13000 

rpm for 15 min. Peak area readings of 5-ASA in filtered ileostomy fluid were 

compared to those in ileostomy fluid subjected to filtration and centrifugation.

A 5 mM solution of 5-ASA in mobile phase was prepared and diluted further with the 

mobile phase to achieve the desired concentrations. These peak area readings were 

compared to those obtained by dissolving 5-ASA in ileostomy.

A comparison of the 5-ASA peak areas for known drug concentrations in ileostomy 

fluids (filtered or filtered and centrifuged) with that in mobile phase are shown in 

tables 3.3 - 3.5. The relative standard deviations (RSD) ranged from 0.033 -  2.60 %. 

These results show that similar peak areas are obtained for 5-ASA in mobile phase or
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by spiking ileostomy fluids with drug and then diluting with mobile phase. Hence 

calibration curves prepared from mobile phase are reliable for calculating drug 

solubility in the different media.

Table 3.3 A comparison o f 5-ASA peak areas in mobile phase with filtered ileostomy 
fluids spiked with drug powder. Areas presented as mean ± SD.

5-ASA
concentration

(mM)

5-ASA peak 
area of 
filtered 

ileostomy 
fluid spiked 
with drug 
powder

5-ASA peak 
area in mobile 

phase

Mean 
peak area Std. dev.

Relative
Std.dev.

(%)

0.8 2148 ± 40 2149± 16 2148.5 0.71 0.33

0.6 1673 ± 34 1626 ±23 1649.5 33.2 2.01

0.2 5 17± 37 515±11 516.0 1.4 0.27

Table 3.4 A comparison of 5-ASA peak areas in mobile phase with filtered and 
centrifuged ileostomy fluids spiked with drug powder. Areas presented as mean ± SD.

5-ASA
concentration

(mM)

5-ASA peak 
area of 

centrifuged 
ileostomy 

fluid spiked 
with drug 
powder

5-ASA peak 
area in 

mobile phase

Mean 
peak area Std. dev.

Relative
Std.dev.

(%)

0.8 2161 2149 2155.0 8.48 0.39

0.6 1652 1626 1639.0 18.38 1.12

0.2 523 515 519.0 5.66 1.09
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Table 3.5 A comparison of 5-ASA peak areas in mobile phase with filtered and 
centrifuged ileostomy fluids spiked with drug solution. Areas presented as mean ± SD

5-ASA
concentration

(mM)

5-ASA peak 
area of 

centrifuged 
ileostomy 

fluid spiked 
with drug 
solution

5-ASA peak 
area in mobile 

phase

Mean 
peak area Std. dev.

Relative
Std.dev.

(%)

0.8 2192 2149 2170.5 30.41 1.40

0.6 1687 1626 1656.5 43.14 2.60

0.2 532 515 523.5 12.02 2.30

To find out if  particulate matter in biological fluids influences drug solubility; drug 

solubility was compared in filtered and centrifuged ileostomy fluids in one batch of 

ileostomy fluids. The results gave rise to the same solubility and therefore all future 

experiments were conducted on centrifuged biological fluids as they are easier to 

handle.

3.3.5.5 Drug calibration curves for HPLC

5-ASA standard solutions (0.2 to 1.5 mM) were prepared in the appropriate mobile 

phase. The stock standard was prepared by dissolving 0.0766 g of 5-ASA in 100 ml 

mobile phase in a volumetric flask to achieve a 5 mM 5-ASA solution. Seven 

standard solutions containing 1.5, 1.2, 1.0, 0.8, 0.6, 0.4 and 0.2 mM 5-ASA were 

prepared from the stock solution by taking appropriate aliquots of the stock solution 

and diluting with mobile phase. The calibration curve was linear over the range of 0.2
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to 1.5 mM. The equation of the curve relating the peak area (P) to the 5-ASA 

concentration (C in mM) in this range was: P = 2694.9C -  30.343, r  ̂> 0.999.

Prednisolone standard solutions (0.0.139 to 0.139 M) were prepared in mobile phase. 

The stock standard was prepared by dissolving 0.02 g of prednisolone in 100 ml 

mobile phase in a volumetric flask to achieve a 0.555 mM 5-ASA solution. Six 

standard solutions containing 0.139, 0.083, 0.056, 0.042, 0.028 and 0.014 mM 

prednisolone were prepared from the stock solution by taking appropriate aliquots of 

the stock solution and diluting with mobile phase. The calibration curve was linear 

over the range of 0.0139 to 0.139 mM. The equation of the curve relating the peak 

area (P) to the prednisolone concentration (C in mM) in this range was: P = 6788.7C 

+ 9.3239, r^> 0.995.

3.3.5.6 Specificity/ selectivity /precision

This is illustrated by comparing the chromatograms of the blank media with media 

spiked with drug. No interfering peaks can be seen and the assay produced a stable 

baseline. The retention time for 5-ASA was 5 min and that for prednisolone was 10 

min. (Figures 3.5 -  3.8). All chromatograms are of fluids diluted with mobile phase 

by a factor o f 40 fold for 5-ASA and 20-fold for prednisolone. The coefficient of 

variation for mesalazine and prednisolone was in the range of 1.76 % and 3.96 % 

respectively.
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3.3.6 pH and buffer cavacitv measurements

pH and buffer capacity measurements of the human intestinal fluids were performed 

on centrifuged samples for accuracy of volume measurements which is essential for 

calculating the buffer capacity.

Explanation of buffer capacity measurements has been described in the previous 

chapter. Due to the volume restrictions of the biological samples, buffer capacity was 

measured in just one pH direction, by addition of HCl. This pH direction was chosen 

based on previous work in the literature which states that for near-neural media, 

titrating with HCl is more appropriate than titrating with NaOH (Kalantzi et al., 

2006a). Furthermore, the anionic species of 5-ASA predominates at high pH values 

and therefore it is more relevant to measure buffer capacity by titrating with acid.

Buffer capacity in all media was measured at a pH change of 0.5 units. This was 

obtained by adding 2 pi of 0.1 M HCl to 100 pi of jejunal fluid in a 0.5 ml 

microcentrifuge tube, vortexing and removing one drop of this mixture using a pipette 

pasteur and placing it on the pH sensor of a pocket sized pH meter (MiniLab IQ 125, 

IQ scientific, California, USA). The same procedure was performed for ileostomy 

fluids however 10 pi of 0.1 M to 100 pi of this fluid. Buffer capacity measurements 

were performed at least in triplicates for each sample.
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3.4 RESULTS AND DISCUSSION

3.4.1 pH  and buffer cavacitv o f  jejunal and ileosostomv fluids

The mean pH and buffer capacity (± SD) of jejunal fluids were measured to be 6,9 ± 

0.57 and 2,97 ± 1.40 mM/L/ApH unit respectively. These are in good agreement with 

the values reported in the literature whereby a pH of 7.1 ± 0.6 (Lindahl et al., 1997) 

and a buffer capacity of 2.4 mM/L/ApH (Persson et al., 2005) was reported for jejunal 

fluids aspirated from fasted healthy individuals. The mean pH and buffer capacity (± 

SD) of ileostomy fluids was measured to be 6.8 ± 0.93 and 14.07 ± 2.81 mM/L/ApH 

unit respectively. A value of 7.2 ± 0.3 has been reported by Ladas et al. (1986). No 

value for the buffer capacity of ileostomy fluids was found in the literature.

3.4.2 Solubility o f  5-aminosalicylic acid in different media

3.4.2.1 Comparison o f  5-aminosalicylic acid solubility in bicarbonate and phosphate 

buffers

Figure 3.9 shows that 5-ASA solubility is different in bicarbonate and phosphate 

buffers at pH 7.4. Moreover, the solubility also varies between bicarbonate and 

phosphate media of different buffer molarity. This illustrates that defining the pH 

alone is not sufficient when reporting the solubility and dissolution rates of weak 

electrolytes; however it is extremely important to define the composition and 

concentration of the buffer species. This is in agreement with the work of Mooney et 

al. (1981).
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Figure 3.9 Solubility (mean ± SD) o f 5-ASA in pH 7.4 bicarbonate (Hanks and 
Krebs) and phosphate buffers with different concentrations o f buffer species.

3.4.2.2 Comparison o f  5-aminosalicylic acid solubility in bicarbonate buffers and 

human fluids

W hile the buffer capacity in jejunal fluids is higher than that o f physiological Hanks 

buffer (Table 3.2), the mean 5-ASA solubility is sim ilar in both media; 1.91 ± 0.27 

mM and 1.83 ± 0.043 and respectively. The solubility o f  5-ASA in Hanks buffer is 

closer than that in phosphate buffers to jejunal fluids (Figure 3.10). The buffer 

capacity o f jejunal fluids was found to be higher than that o f Hanks buffer despite that 

they have sim ilar bicarbonate content as found in the literature. The higher buffer 

capacity o f  jejunal fluids may be explained by the existence o f several organic ionic 

species in biological fluids which in small amounts do not have a great influence on 

the dissolution o f 5-ASA. Organic ionic species include: (i) bile salts (which have 

strong acidic properties in jejunal fluids), (ii) lecithin (which com prises fatty acid 

esters at two positions o f glycerol with a phosphate ester at the third position; the head
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is highly hydrophilic composed o f a dipolar ion o f phosphate and a quaternary 

nitrogen (Figure 3.3)), (iii) fatty acids (produced from hydrolysis o f triacylglyeerols 

(TGs) in the small intestinal lumen by pancreatic lipases; their strueture comprises a 

long hydrocarbon chain and a carboxylic acid head group, thus displaying weak acidie 

properties (Abum urad and Storch, 2006) (iv) amino acids (these are m ade up o f a 

weakly basic amino group and a weakly acidie carboxyl group). A lthough these 

organic species are predom inant in the fed state, basal levels are present in the fasted 

state. Table 3.6 illustrates a comparison o f the quantities in the fasted and fed state.
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Hanks Jejunal fluid Krebs lleosotom y fluid

Figure 3.10 Solubility o f  5-ASA (mean ± SD) in hum an intestinal fluids in 
comparison to Hanks and Krebs bicarbonate buffers.
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Table 3.6 Characterisation of fasted and fed intestinal fluids aspirated from the 
proximal jejunum of healthy human volunteers (Persson et al., 2005).

Fasted HIF Fed HIF

pH 7.5 6.1

Protein conc. (mg/ml) 1± 0.1 5±0.1

Bile salt conc. (mM) 2±0.2 8±0.1

Neutral lipid conc.^ (mM) O.liO.Ol 22±1

Phospholipid conc. (mM) 0.2±0.07 3±0.3

Surface tension (mN/m) 28±1 27±1

Buffer capacity, acid (mM/L/ApH unit) 2.4 14.6

“ Including fatty acids

The buffers species generated by food digestion plays an important role in 

maintaining the pH value of gut lumenal fluids (Vertzoni et al., 2004). Food has been 

shown to increase the buffer capacity of human intestinal fluids aspirated from the 

proximal jejunum; buffer capacity increased from an average of 2.4 to mmol/L/ApH 

in the fasted state to 14.6 mmol/L/ApH in the fed state (Persson et al., 2005). 

Although most nutrient absorption occurs in the jejunum, any that has not been 

absorbed is likely to explain the high buffer capacity observed in ileostomy fluids. 

However despite this high buffer capacity which is 3.8 fold higher than in Krebs 

buffer, solubility of 5-ASA is 27 % higher in Krebs. This corroborates the results 

from the previous chapter whereby it is not only buffer capacity that influences 

dissolution however the identity and therefore the pKa of the buffer species are highly 

critical.

It is difficult to define and simulate the GI luminal buffer system in the fed state. Not 

only because it comprises a complex array of nutrients but it will also be affected by
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the type o f food consumed. From this study it is difficult to draw definitive 

conclusions on the value of Krebs buffer in predicting the solubility of ionic drugs in 

ileal fluids. Ileal fluids cannot be aspirated form human subjects using the Loc-I-Gut® 

method and so the next best alternative was to study ileostomy fluids although they 

are different to ileal fluids in several ways. Moreover they are in the fed state and 

therefore there is an abundance of ionic digestion products and several ionic reactions, 

other than ionization of 5-ASA, taking place simultaneously. We can only speculate 

that as Hanks buffer provides good agreement with jejunal fluids, Krebs buffer is 

likely to reflect solubility in ileal fluids.

3.4.2.3 Correlation o f  5-aminosalicylic acid solubility with the buffer capacity o f  

human fluids

5-ASA solubility was measured in each batch of pooled jejunal fluid. A different 

solubility was found in each batch and these differences are statistically significant 

(ANOVA, p < 0.05) (Figure 5.11). There is also a statistically significant difference in 

5-ASA solubility between ileosotmy fluids obtained from each patient (ANOVA, p < 

0.05) (Figure 5.12). 5-ASA solubility appears to correlate to buffer capacity in jejunal 

and ileostomy fluids, however there is an insufficient number of samples to perform a 

statistical test to test the significance of this correlation. Interestingly, buffer capacity 

seems to be more important than pH in determining the solubility o f 5-ASA in human 

fluids.
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Figure 3.11 5-ASA solubility and buffer capacity (mean ± SD) in different batches o f 
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Figure 3.12 5-ASA solubility and buffer capacity (mean ± SD) in ileostom y fluids 
obtained from different patients.
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For the dissolution of weak electrolytes, the pH of the boundary layer is significant in 

determining solubility o f the drug (Horter and Dressman, 2001). The pH at the solid- 

liquid interface, pHo, is lower than the bulk pH (pHbuik) for weakly acidic drugs. The 

rate of drug dissolution may asymptotically approach the limit where pHo equals 

pHbuik with increasing total buffer concentration in the bulk solution. Figure 3.13 

shows the difference between bulk pH and surface pH of three weak acids, 

indomethacin, 2-naphthoic acid, and benzoic acid, with pKa values of 4.17, 4.02 and

4.03 respectively. There is a plateau region at a bulk pH greater than the pKa of the 

drug, whereby the surface pH appears to be dictated by the drug rather than the bulk 

pH. This plateau region represents the ability of the dissolving acidic drug to suppress 

the surface pH to a value lower than the bulk pH. The extent of this plateau region and 

the pH over which it occurs depend on the drug’s pKa and its intrinsic solubility. The 

surface pH is lower and the plateau region more pronounced for drugs with high 

intrinsic solubilities and low pKa values, e.g. benzoic acid, than for drugs with lower 

intrinsic solubilities and higher pKa values, e.g. indomethacin (Ozturk et al., 1988b). 

We measured the intrinsic solubility of 5-ASA to be 8.46 x 10’̂  M; intermediate 

between that o f benzoic acid and 2-naphthoic acid. Hence it is likely to influence the 

microenvironmental pH, however the extent of this will depend on the buffer 

composition of the bulk medium. The use of buffer tends to suppress the pH 

differences between the surface and the bulk; the deviation becomes smaller as the 

buffer concentration and pKa of the basic salt of the buffer increase.
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Figure 3.13 The relationship between bulk and surface pH for weak acids in 
unbuffered media. (A) Indomethacin; (B) 2-naphthoic acid; (C) benzoic acid. 
Reproduced from Ozturk et al. (1988a).

3.4.2.4 The relationship o f  5-aminosalicylic acid solubility with surfactant 

concentration

Lecithin is a major phospholipid component of human bile and its amphiphilic nature 

renders it instrumental in the formation of mixed micelles. On average, the ratio of 

lecithin to total bile salt in healthy humans is 1:4 (Naylor et al., 1993). Lecithin 

decreases the critical micelle concentration (CMC) of bile salts, increases the size of 

the micelle and its solubilisation capacity (Charman et al., 1997). Addition of lecithin 

causes an increase in the molecular weight of micelles from 6000 to 150,000 Da 

(Shankland, 1970). The CMC of sodium taurocholate (NaTC) was found to drop from 

4.7 to 0.25 mM in the presence of lecithin at 25% of the bile salt concentration 

(Naylor et al., 1993). Hence in standard FaSSlF media, the CMC of NaTC is 

surpassed.
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5-ASA solubility in pH 6.8  blank FaSSIF (with no intestinal surfactants) is 2.7 ± 0.02 

mg/ml. This does not significantly change in the buffers explored with the three 

different concentrations of intestinal surfactants. Unlike glycine conjugated bile salts 

which have a pKa of ~ 3.9, taurine conjugated bile salts have a pKa < 2; therefore 

they are completely ionised at pH 6 .8 . Consequently, the mixed micelles formed have 

a predominantly anionic surface. The carboxylic acid group of 5-ASA has a low pKa 

of 2.3. Since,

pH = pKa + log [A-1 Equation 3.1,
[HA]

the following equation can be derived:

Percentage ionisation = 100 / [1+ antilog (pKa -  pH)] Equation 3.2 

(Florence and Attwood, 1998).

The % ionisation o f 5-ASA at pH 6.8 is:

100 / [1+ antilog (2.3 -  6 .8) = 99.997 %

The carboxylic acid group of 5-ASA is almost completely ionised to its anionic form 

at pH 6.8  or pH 7.4 and therefore its partition into the micelles will be hindered by 

repulsion between its anionic charge and that of the surfactant (Park and Choi, 2006). 

This may contribute to explaining why 5-ASA solubility does not significantly change 

on addition of intestinal surfactants to near-neutral buffers.
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3.4.3 Solubility o f prednisolone in different media

3.4.3.1 Solubility o f  prednisolone in bicarbonate buffers and  phosphate buffers with 

different concentrations o f  intestinal surfactants

Solubility o f prednisolone was found to be the same in all bicarbonate and phosphate 

buffers without surfactants. It was m easured to be 0.223 mg/ml. However 

prednisolone solubility increased with increasing concentrations o f intestinal 

surfactants (Figure 3.14).

X)
Ot/)
0)
c
o
ow
'c

CL

0.2 -

0.1 -

Blank F aS S IF  1.2m M  NaTC 3m M  NaTC 7.5 m M NaTC

Figure 3.14 Solubility o f prednisolone (mean ± SD) in pH 6.8 FaSSIF with different 
concentrations o f  the surfactant sodium taurocholate (NaTC).

At NaTC concentrations o f 1.2 mM, the solubility o f prednisolone is not significantly 

different to blank FaSSIF. However at concentrations o f  3 mM (FaSSIF) and 7.5 mM, 

the solubility significantly increased by 14.4% and 31.9%  respectively relative to 

blank FaSSIF (ANOVA, p < 0.05).
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Mithani et al. (1996) showed that the increase in drug solubility as a function of bile 

salt concentration can be predicted by the lipophilicity of the compound measured by 

the logarithm of the octanol/ water partition coefficient (log P) and the aqueous 

solubility o f the compound (Equation 3.3).

Log SR = 2.23 + 0.61 log P (r  ̂= 0.99) Equation 3.3

Where SR, is the solubilisation ratio and log P is the octanol/ water partition 

coefficient. An experimental log P value of 1.59 has been reported for prednisolone 

(Machatha and Yalkowsky, 2005). Based on this equation we calculate the log SR of 

prednisolone to be 3.2. This log SR, however, is a rough indicator as the calculation is 

based on micelles composed purely of NaTC without lecithin.

This increase in solubility of prednisolone with increasing intestinal surfactant 

concentrations is relatively modest in comparison to other drugs that have been 

screened in the literature. An example is ketoconazole which has a log P o f 4.45 and 

the increase in solubility from the fasted to fed state simulated intestinal fluid was 

found to be 40-fold. Furthermore, the aqueous solubility of ketoconazole is only 6.9 

pg/ml (Kalantzi et ah, 2006b) in comparison to prednisolone which has a solubility of 

223 pg/ml. Although the solubility increase observed for prednisolone in FaSSIF 

media is relatively modest, it is not unexpected since bile salts are poor solubilisers.
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3.4.3.2 Comparison o f  prednisolone solubility in human fluids with that in phosphate 

buffers with intestinal surfactants

The solubility of prednisolone observed in jejunal fluid is over two fold that 

determined in FaSSIF (3 mM NaTC) (Figure 3.15). Similar deviations in solubility 

between FaSSIF and human intestinal fluids (HIF) have been observed for other 

drugs, such as ketoconazole and dipyridamole (Kalantzi et al., 2006b). This poor 

reflection by FaSSIF may be partially attributable to the bile salt components of 

simulated intestinal fluid. FaSSIF is only composed of NaTC, however NaTC only 

comprises 20 % of the bile acids found in fasted HIF (Persson et al., 2005). The 

predominant bile salt is glycocholic acid constituting 40 % of bile acids. Other major 

bile salt components in the fasted state include taurochenodeoxycholic acid and 

glycochenodeoxycholic acid which constitute approximately 20  and 18% 

respectively. Vertzoni et al. (2004) have substituted crude for pure NaTC in FeSSIF. 

Crude NaTC has a mixture of bile salts. Some drugs were found to be sensitive to the 

exact composition of bile salt micelles and had different release profiles depending on 

the grade of NaTC used. In some cases, crude NaTC even provided a better prediction 

of the in vivo performance. The number o f hydroxyl groups in bile salts can be an 

important parameter in solubilization (Wiedmann and Kamel, 2002) . Human bile is 

predominantly composed of di- and tri-hydroxy acids (Hofmann, 1993). NaTC is a 

trihydroxy acid. Furthermore, lysophosphatiylcholine was found to be the dominant 

phospholipid in the fed and fasted state (> 85%) and not phosphatidylcholine which is 

what is used to prepare the FaSSIF media.
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Figure 3.15 Solubility o f  prednisolone (mean ± SD) in FaSSIF (containing 3 mM 
NaTC) and in hum an intestinal fluids.

Interestingly, the solubility o f prednisolone in jejunal fluids is not statistically 

different to that in ileostom y fluids (Kruskal-W allis non-parametric analysis, p < 

0.05) (Figure 3.15). In healthy subjects, bile undergoes enterohepatic recycling 

through absorption from the terminal ileum. I f  the ileum is not inflamed or resected, 

as is usually the ease in ulcerative colitis patients, then the concentration o f  bile salts 

would be expected to be very low in ileostom y fluids. However if  the ileum is 

dysfunctional or resected, as may be the ease in C rohn’s disease patients, then bile 

m alabsorption would arise and a substantial am ount would be excreted in ileostomy 

fluids. It appears, however, that prednisolone solubility in HIF is not sensitive to 

moderate changes in bile salt concentration. Further evidence for this is our finding 

that there is no statistically significant difference (ANOVA, p < 0.05) in the solubility 

o f prednisolone between the different batches o f pooled jejunal fluid and between the 

ileostomy fluids from the different patients. It may be that another param eter may
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have a more predominant influence on the solubility of prednisolone in HIF. 

Alternatively, it may be due to the poor solubilising nature of bile salts. Or it may be 

necessary for only a certain threshold bile salt concentration to be reached, this could 

be the CMC, after which further increases in concentration do not alter the solubility. 

Although prednisolone is classified as very slightly soluble by the British 

Pharmacopoeia, numerous other commonly used drugs exist, including those on the 

World Health Organisation (WHO) Essential drug list, o f which some have an over 

20-fold lower solubility and much higher log P than prednisolone (Kasim et al., 

2004).

A study by Pedersen et al. (2000a) on solubility of hydrocortisone solubility in mid- 

jejunal fluids from 9 different healthy, fasting subjects showed that hydrocortisone 

solubility does not correlate to bile salt content. Solubility was rather consistent and in 

the range of 0.5 to 0.6 mg/ml. However bile salt content in the different subjects was 

variable, ranging from 0.5 to 6 mM. Hydrocortisone solubility, however, did correlate 

to bile salt levels in simulated intestinal fluids. Solubility was also significantly lower 

in the simulated fluids with intestinal surfactants in comparison to the HIF.

In this study it would have been interesting to determine the concentration of the 

different bile salts in each batch of jejunal and ileosotmy fluids and evaluate any 

differences. This may be conducted using HPLC. Unfortunately, however, time did 

not permit this to be performed.
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3.4.4 Biopharmaceutical relevance o f in vitro solubility results

The usual prescribed dose of 5-ASA is 2,4 g daily in three divided doses; hence 800 

mg three times a day; although now doses > 2.4 g are increasingly prescribed in active 

disease as there is accumulating evidence for higher response rates. As has been 

previously discussed, release o f 5-ASA is desirable in the terminal ileum and colon. If 

we assume drug solubility in Krebs buffer is equivalent to that in the ileum, then the 

volume (V) of intestinal fluid necessary for complete drug dissolution from the solid 

dosage forms to occur can be calculated using Equation 3.4:

V = Dose/ Solubility (D/S); Equation 3.4

800 mg/ 4.51 mg m f'=  177.4 ml.

The mean free fluid volume in the small intestine is 105 ± 72 ml (Schiller et al., 2005) 

in the fasted state and decreases postprandially to 54 ± 41 ml. This limited fluid 

availability will reduce the dissolution of 5-ASA from the dosage form, particularly in 

regions of the gastrointestinal tract where it displays poor permeability. This problem 

is likely to be exacerbated in the colon as the fluid volumes are very limited; 13 ± 12 

ml vs 18 ± 26 ml in the fasted and fed states respectively (Schiller et al., 2005). The 

solubility of 5-ASA is also likely to be lower in proximal colonic luminal fluid as the 

pH is lower in this region compared to the distal small intestine. Hence not only sink 

conditions are not met however the saturation solubility of the drug is also likely to be 

exceeded.

The dose of prednisolone in active disease is 40 mg once daily with dose tapering 

occurring at 5 mg/ week on patient improvement (Carter et al,, 2004). 40 mg/ 0.51 mg 

m f' = 78.4 ml. Although it has an almost ten fold lower solubility than 5-ASA, the 

dose is lower therefore requiring less volume for dissolution.
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3.5 CONCLUSIONS

The solubility o f 5-ASA is dependent on buffer species and buffer capacity of the 

media. Hanks buffer therefore provided a good reflection of the solubility of this 

acidic drug in jejunal fluids. This finding can be extrapolated to other ionic drugs as 

bicarbonate provides a more realistic simulation of the buffer composition of lumenal 

fluids of the human small intestine. Solubility of 5-ASA in ileosotmy fluids is 

substantially lower than in Krebs buffer; yet it is closer to this medium in comparison 

to phosphate buffer. 5-ASA solubility needs to be measured in ileal fluid aspirates to 

determine if the prediction provided by Krebs for 5-ASA solubility in ileal fluids is as 

good as that provided by Hanks for jejunal fluids. Addition of intestinal surfactants to 

the buffer media was not found to alter the solubility of 5-ASA.

Fasted state simulated intestinal fluids (FaSSIF) with intestinal surfactants (sodium 

taurocholate and lecithin), did not provide a good prediction of the solubility of the 

poorly soluble drug, prednisolone, in human intestinal fluids. Although there is 

abundant evidence in the literature for usefulness of these media for prediction of 

drug solubility, their value seems to be for drugs which are highly lipophilic and with 

very poor aqueous solubility. The solubility of prednisolone was unaffected by the 

buffer composition however it increased with increasing concentrations o f intestinal 

surfactants in simulated media.

Chapters two and three have identified some elements of the dissolution medium that 

influence drug release from pH-responsive systems. The specific factors pertaining to 

the physicochemical properties of the drug and the polymer have been evaluated. In 

the remaining chapters we seek to identify formulation parameters that influence the
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performance of pH-responsive systems. Specific reference is made to interactions 

within the enteric coating.
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CHAPTER FOUR

Molecular interactions that influence the plasticizer 

dependent dissolution o f acrylic films
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4.1 INTRODUCTION

We have shown that the composition of the GI luminal environment is critical in 

determining drug release from pH-responsive systems. The luminal environment 

influences polymer ionisation and drug solubility. In the next two chapters we seek to 

evaluate the importance of the enteric film coating formulation in influencing 

dissolution of the pH-dependent polymer.

O f the different excipients present in film coatings we chose to study the effect of 

plasticizer component. We anticipated that this component may influence dissolution 

o f the polymer as plasticizers have the potential to interact with the polymer at the 

molecular level and give rise to micro- and macroscopic changes in properties o f film 

coatings.

4.1.1 Plasticizers in tablet film coatin2S and the changes they induce

Effective plasticizers are usually high-boiling point, neutral and stable fluids (Dittgen 

et al., 1997), which have the ability to alter the thermal and physical-mechanical 

properties of a polymer. Changes in mechanical properties that arise include: increase 

in strain or film elongation, decrease in elastic modulus and decrease in tensile 

strength (Aulton et al., 1981; Okhamafe and York, 1983; Gutierrez-Rocca and 

McGinity, 1994). One of the important thermal changes in the thermal properties of 

polymers induced by plasticizers is a reduction in the glass transition temperature 

(Tg).
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Tg is the temperature at which an amorphous polymer changes from a hard glassy 

material to a soft rubbery material. This corresponds to a change from a state of low 

free volume and high density to a state of higher free volume and less density. The 

transition can be detected by examining the temperature dependence of such 

properties as modulus o f elasticity, specific heat and dipole orientation and therefore 

Tg has been widely used to assess plasticizer efficiency. Several authors have 

demonstrated correlations between plasticizer efficiency and reduction in Tg 

(Tarvainen et al., 2001). Changes in Tg influence internal stresses in the polymer film 

coating and therefore crack development (Okhamafe and York, 1985).

Plasticizers are known to alter molecular mobility of the system by configuring 

between the chains and altering polymer intermolecular interactions thus increasing 

film flexibility (Banker, 1966). Several theories have been proposed to explain the 

mechanism of plasticizer action. The most prevalent and most commonly cited in the 

literature include: lubricity theory, gel theory and free volume theory (Marcilla and 

Beltran, 2004).

4.1.2 Theories proposed for vlasticizer mechanism o f  action

The lubricitv theorv envisages the polymers to exist as planes and the plasticizers 

orientating between the planes thus reducing the friction between the polymer chains 

and the force necessary for them to glide past each other. Kirkpatrick (1940) 

contributed to the lubricity theory and suggested the following factors to be of 

importance for plasticizer action:
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(i) presence in both the plasticizer and polymer of groups that offer points of mutual 

attraction

(ii) appropriate location of these groups relative to each other to allow attractive 

forces to exist

(iii) suitable shape of the plasticizer to accommodate between the planes

The gel theorv considers polymers to form three-dimensional honeycomb structures 

sustained by loose attachments between the polymer molecules along their chains. 

Plasticizers reduce these attachments between the polymer molecules by a dynamic 

and static mechanism. The dynamic mechanism is through a solvation-desolvation 

equilibrium whereby the plasticizer diffuses through the polymer network, reducing 

polymer contacts temporarily, and then moves around to another site, allowing the 

structure to close behind it in a different position. The static mechanism arises from 

polymer-plasticizer interactions with mean life times that are long compared with the 

time-scale of segmental motions (Marcilla and Beltran, 2004).

The free volume theorv emerged from an effort to explain the reduction in glass 

transition temperature of plasticized polymer systems. It is based on the concept that 

between atoms and molecules there is nothing but free volume. Sears and Darby 

(1982) summarised that free volume comes from three main sources; motion of chain 

ends, motion of side chains and motion of the main chain. These motions, and 

therefore the free volume, of a polymer system can be inherently increased by:

(i) Increasing the number of polymer end groups (therefore lower molecular weight 

polymers).
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(ii) Increasing the number or length of side chains.

(iii) Increasing the chance of main chain movement by including segments of low 

steric hindrance and low intermolecular attraction.

The above approaches achieve internal plasticization. If the polymer however is of a 

large molecular weight and is a long chain with few side groups, then the dipoles of 

adjacent polymer chains would align thus offering numerous attractions between 

nearby chains. In contrast, the presence of side groups would ‘shield’ the dipoles on 

the opposite polymer chains and therefore separate the polymer chains.

4.1.3 Plasticizer influence on moisture permeability and drus release thromh  

modified release polymer films

Efforts have been made to establish a correlation between moisture diffusion and Tg 

or tensile strength. It was initially proposed that the reduction in molecular order 

which arises from plasticization enhances diffusion pathways thus facilitating 

diffusion of water molecules (Okhamafe and York, 1983). However it was later found 

that plasticization is not always accompanied by increased moisture diffusion 

(Okhamafe and York, 1988) as plasticizers may extensively hydrogen bond with the 

polymer or with moisture thus obstructing further moisture permeability (Okhamafe 

and York, 1987). It has been proposed that plasticizer-induced changes in polymer 

tortuosity and porosity alter drug diffusion through GI tract insoluble polymer 

systems, however studies have not substantiated this (Jenquin et al., 1992).

Lecomte and co-workers (2004) have studied polymer coatings comprised of a blend 

of enteric and 01 tract insoluble polymers. Plasticizers were found to more favourably
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partition into certain polymers than others. The plasticizer was in some cases found to 

be associated with the extent of water uptake and consequential drug release. A 

comparison of a hydrophilic and hydrophobic plasticizer showed that greater leaching 

of the latter from the film renders decreased mechanical resistance and crack 

formation which can affect the mechanism of drug release.

4.1.4 Fabrication ofEudrasit S  polymer films with plasticizers

As a free flowing dry powder, Eudragit S has a high Tg (433 to 444 K). To produce 

Eudragit S tablet coatings, it is essential to blend this polymer with a plasticizer to 

reduce coating brittleness and to achieve smooth, crack-free films. The objective of 

this chapter was to understand the relative influence o f plasticizers on enteric polymer 

free film dissolution. This was investigated through the screening of a small library of 

plasticizers from different classes and determining the plasticizer and film parameters 

that correlate to dissolution. Plasticizer aqueous solubility and structure were 

examined. The wettability and molecular motions of the film coating were studied.

The molecular motions investigated include co-operative segmental mobilities 

(involving the polymer main chain) as well as side group motions. These relaxations 

are commonly referred to as a (primary) and p (secondary) relaxations respectively. 

Segmental relaxations were characterised by measurement of the Tg using differential 

scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermally 

stimulated depolarisation current (TSDC) techniques. Secondary relaxations were 

investigated in detail by examining the dielectric properties of the films using TSDC. 

TSDC work was conducted in collaboration with Professor Steve Brocchini from the 

Department o f Pharmaceutics at The School of Pharmacy and with Professor Nery
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Suarez from the Department of Physics at University Simon Bolivar, Caracas, 

Venzuela.

According to the Gordon Taylor equation (Equation 4.1);

WiTg! + kW2Tg2 .
= --------- — ------------------------- Equation 4.1

Wj  +  kW2

where 7^^.^ is the of the mixture, and the glass transition temperatures of

component 1 (solid) and component 2 (water or plasticizer), Wj and the weight

fractions of the solid and water respectively and k a constant calculated from the 

density {p) and the of the components according to:

A; = Equation 4.2
Tg2p2

hence the reduction in Tg of the polymer is proportional to the quantity o f plasticizer 

included in the film. The plasticizers used in the current study were all liquids at 

ambient temperature (apart from one of them) and therefore the Gordon-Taylor 

equation could not be used to calculate the reduction in Tg of the Eudragit S film.

Tg determination by different methods can result in different values being obtained 

(Georgoussis et al., 2000). DSC reflects polymer chain movement by measuring the 

changes in specific heat capacity (Cp) of the sample, DMA reflects the global nature 

of the sample by measuring mechanical changes, and TSDC detects the Tg through
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dipolar rearrangements. DSC and DMA are the two most common methods for 

determining Tg (Sircar et a l, 1999).

4.1.5 Thermal characterisation o f  polvmer/plasticizer free films

4.1.5.1 Differential scanning calorimetry

DSC measures the heat flow into or from a sample as it is subjected to thermal 

treatment (heated, cooled or maintained at isothermal conditions) in relation to an 

inert reference that undergoes the same treatment. As the sample undergoes a 

transition, energy will be absorbed or evolved by the sample. StepScan- DSC^*^ 

(SSDC) was employed; this performs relatively fast, repetitive sequences of short 

heat-hold segments (Figure 4.1). This differs from modulated DSC in that it uses an 

isothermal step instead of a cooling step.

L
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Figure 4.1 Illustration of the heating-isothermal mode of step-scan. Adapted from 
Hohne et al. (2003).
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Similar to modulated DSC, SSDC has the advantage of detecting subtle thermal 

transitions which in some cases cannot be detected by normal mode DSC and 

distinguished from baseline noise. It has increased sensitivity without compromising 

resolution (Verdonck et ah, 1999). This was useful for our polymer free films as there 

was great difficulty in detecting their Tg in normal mode; even at high scan rates. 

However the disadvantage of SSDC is that it demands long scanning times.

4.1.5.2 Dynamic mechanical analysis

In DMA the sample is subjected to a an oscillating stress, measured as force per unit 

area, which results in sample deformation (strain) (Jones, 1999). The data is expressed 

graphically using two figures: modulus versus temperature, or tan ô versus 

temperature. The modulus is the ratio of applied stress to strain. As most materials are 

viscoelastic; the modulus has two components: (i) in-phase component with the 

applied stress (storage modulus, E ') which corresponds to the sample’s elastic 

response and (ii) out-phase component with the applied stress (loss modulus, E ") 

which corresponds to the sample’s viscous component. The ratio of the dissipated 

mechanical energy to stored mechanical energy is represented by the tan ô (E '7  E ') 

(Lafferty et al., 2002). If an oscillatory stress is applied to a perfectly elastic solid then 

the deformation (strain) is exactly in line with the stress. However on applying stress 

to a viscoelastic solid then the deformation lags behind the stress by an angle of 5 

(Royall et al., 2005).

The Tg of an amorphous material is accompanied by a large change in its mechanical 

properties. At the Tg, the loss modulus goes through a maximum peak due to the
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increase in the dissipated mechanical energy and the storage modulus decreases due to 

the reduced resistance o f the material to deformation (Chartoff, 1997; Jones, 1999). 

Consequently, the tan 6 goes through a maximum (Figure 4.2).
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Figure 4.2 Illustration of a typical DMA plot of a polymer showing the temperature 
dependence o f loss modulus (E"), storage modulus (E ') and tan 5. Adapted from 
Chartoff (1997).

4.1.5.3 Comparison o f  differential scanning calorimetry and dynamic mechanical 
analysis

DSC uses relatively small sample masses; down to 2 mg with high speed DSC. 

However the sensitivity of DSC is not so high and it is sometimes difficult to 

determine the Tg when it is a minor event (Sircar et al., 1999). It may also be difficult
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to determine immiscibility in a mixture whereby one of the components is minor, eg. 

plasticized/ unplasticized regions in formulations. In contrast, DMA has about 1000 

times greater sensitivity for detecting the Tg (Chartoff, 1997), however, a larger 

sample size is required. In this experiment 6 mm x 2 mm strips were required for 

clamping in the instrument. Commercial DMA instruments differ in operation and 

methodology, eg. mode of sample deformation, test frequency, clamping of the 

sample and its distance from the thermocouples (Chartoff, 1997). This may therefore 

compromise the reproducibility of measurements attained on different instruments.

4.1.5.4 Thermally stimulated depolarisation currents

TSDC technique is well-established and frequently used in physics however it is 

relatively novel to the pharmaceutical sciences. It relies on dipolar rearrangements to 

generate depolarisation currents that can be related to local (secondary relaxations) 

and cooperative (structural relaxations) molecular mobilities. Its high sensitivity, 

leads to the detection of very low dipole concentrations (Suarez et al., 1982), and its 

low equivalent frequency (~ 1 mHz) allows multicomponent peaks to be resolved 

accurately (Suarez et al., 2001). Hence information can be derived on the interactions 

and bonding of polymer side groups.
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TSDC is composed of the following steps (Figure 4.3) (Suarez et al., 1997; Shmeis et 

al., 2004):

Step 1 is the polarisation step. The sample is polarised under an electric field for a 

certain amount of time (tp) at a given temperature (Tp). Any dipoles within the 

molecular structure orient themselves along the external electrical field. To study a- 

relaxations of the specimen, a polarization temperature higher than the Tg is used. 

Since molecular mobility increases with increasing temperature, the nature and 

amount of polarization generated by the field is influenced by the polarization 

temperature.

Step 2 is the cooling step. In the presence of the electric field the sample is quenched 

rapidly to a very low temperature, usually liquid nitrogen temperature, where 

molecular motion ceases. The dipolar orientation is thus frozen.

Step 3 is the depolarization step. The polarizing electric field is switched off and the 

sample temperature is increased at a controlled rate thus decreasing the relaxation 

time of the molecular motions and allowing return of the sample to the equilibrium 

state. The disorientation of the dipoles gives rise to a small electric current 

(depolarization current) which is measured as a function of temperature. Where a  and 

p relaxations arise peaks are observed in the dielectric current spectra.
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Figure 4.3 The fundamental steps underlying the thermally stimulated depolarisation 
current technique. Reproduced from Shmeis et al. (2004).

4.1.6 Measurement o f  contact ansle

Interaction at the solid/liquid interface whereby a liquid spreads over a solid surface is 

known as ‘wetting’. For a solid to dissolve it must first be wetted. The wetting o f the 

different films by buffer medium was assessed by measuring the contact angle (0) 

(Figure 4.4). The contact angle gives an indication of the affinity of the two phases for 

each other. A low contact angle indicates good spreading of the liquid and wettability 

of the surface; the two phases therefore have affinity for each other (Buckton, 1995).

150



LV Vapour

L iq u id
Ysv

Ysl
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Figure 4.4 Interfacial forces acting on a drop of liquid that determine its degree of 
spreading onto a solid surface. Contact angle is the balanee of three interfacial forces: 
ysL (solid-liquid interfaee), ylv (liquid-vapour interface) and ysv (solid-vapour 
interfaee). Adapted from Buckton (1995).

One of the methods for measuring the contact angle is the Wilhelmy plate teehnique 

(Figure 4.5) (Sheridan et al., 1994). The apparatus is contained within a draught-free 

eabinet and temperature is controlled at 25 ± 1°C by water flowing through a jacketed 

vessel from a circulator (Gallenkamp). The glass plate coated with plasticized 

polymer film is attached to the microbalance arm via a balanced hook. The liquid is 

placed onto the motorised platform and raised at a eonstant speed o f 50 pms until 10 

mm of the plate is immersed under the liquid surface. Force readings are attained at 

one second intervals as a function of time and stage position. The foree detected by 

the balance (F) at first contact between the plate and the liquid is determined and used 

to obtain the contaet angle using Equation 4.3.

F = pylv cos 0 Equation 4.3

where p is the perimeter of the plate, ylv is the liquid surface tension and 0 is the 

contact angle. Liquids have a zero contact angle on clean glass thus a glass plate can 

be used to measure the yiv-
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Figure 4.5 Schematic diagram of the Wilhelmy plate apparatus used for measuring 
surface tension of liquids and contact angle of liquids against a solid surface. Adapted 
from Buckton, 1995.

Figure 4.6 shows the typical output of a Wilhelmy plate experiment. Contact of the 

plate with the liquid occurs at point B and the force rapidly rises to point C after 

which there is a buoyancy slope (C-D) arising from plate immersion in the liquid. 

Line C-D is extrapolated back to point E which is the true force representing the 

instantaneous plate/liquid contact. This force is fitted into Equation 4.3 to calculate 

the advancing contact angle. Receding data (G-J) is obtained by removing the same 

plate from the liquid; by lowering the platform at the same speed of 50 pm s*. Where 

the slope G-H crosses the perpendicular line drawn from zero contact, the force 

measurement is used to obtain the receding contact angle (Buckton, 1995).

The line G-J will always be higher than C-D due to hysteresis. One of the reasons 

hysteresis arises is from the reorientation of the molecules at the solid surface or in 

the liquid. However for surface tension experiments there should be no difference 

between C-D and G-H as the contact angle is 0.
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Figure 4.6 Schematic output o f a W ilhelmy plate experiment for determ ining the
contact angle o f a liquid against a solid surface. Reproduced from Buckton (1995).

4.2 OBJECTIVES

• To investigate plasticizer influence on the dissolution o f acrylic pH-responsive 

polym er free films.

• To investigate plasticizer and film param eters that may correlate to film 

dissolution. Plasticizer param eters to be explored include aqueous solubility and 

structure. W hile polym er film features to be studied include m olecular motions 

and wettability.

• To com pare the Tg o f polymer films in the wet state (while imm ersed in 

dissolution medium) with the dry state using imm ersion DMA.

• To compare the Tg attained by the different techniques o f DSC, DM A and TSDC.
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4.3 MATERIALS AND METHODS

4.3.1 Materials

Eudragit S polymer (MW= 135,000 g/mol) was donated by Degussa, Darmstadt, 

Germany. Plasticizers studied from the citrate class are: triacetin (TA), acetyl triethyl 

citrate (ATEC) (Sigma Aldrich, UK), triethyl citrate (TEC) and tributyl citrate (TBC) 

(Fluka, Germany). Plasticizers studied from the polyol group: polyethylene glycol 

(PEG 6000) and propylene glycol (P-diol) purchased from Fluka (Germany) and 

Fisher Scientific (UK) respectively. Plasticizers studied from the class of phthalate 

esters: dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate 

(DOP) (Sigma Aldrich, UK). Tributyl phosphate was studied from the class of organic 

phosphates (Fluka, Germany). Refer to table 4.1 for plasticizer structure and MW. 

Phosphate buffer was prepared from analytical grade KH2PO4 and NaOH purchased 

from VWR Chemical Ltd., UK.
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Table 4.1 Structure, molecular weight and water solubility^ of plasticizers.

Plasticizer Structure, g/mol MW % m/v water 
solubility

Triacetin
(TA)

Triethyl citrate 
(TEC)

Acetyl triethyl 
citrate (ATEC)

/

M W 2 1 8

HO.

M W  276

M W 3 1 8

6.7-7 .1

5.5- 6.9

0.72

Tributyl citrate 
(TBC)

HO.

M W  360

< 0.002

H

Polyethylene glycol 
6000 (PEG 6000) OH— Ç— t CHg—0

H

m ~  143

-CHz^C----

H

M W  6000

Very soluble

Propylene glycol 
(P-diol) OH

.OH

M W  76

> 10%
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Table 4.1 continued.

Plasticizer Structure, g/mol MW % m/v water
solubility

Dimethyl phthalate 
(DMP)

Dibutyl phthalate 
(DBP)

MW 194o
o

o

0.4%

0.04%

MW 278

Dioctyl phthalate 
(DOP)

O X CH.

'CH3

CH3

0 .0002%

MW 391

Tributyl phosphate 
(TBP)

H3C

O CH, 

'CH,

0.042%

MW 266.

 ̂Aqueous solubility of plasticizers compiled from Rowe et al. (2003) and Yalkowsky 
and He (2003).
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4.3.2 Préparation o f polymer free films by solvent evaporation

Eudragit S free films were prepared with plasticizer weight concentrations that are 

typically recommended for Eudragit S tablet coating applications. Films were 

fabricated from polymer-plasticizer solutions in ethanol that were cast onto Teflon 

plates followed by solvent evaporation. The plasticizer, 15 % or 20 %, of polymer 

weight was first dissolved in 100 g of 95 % ethanol for 30 minutes at room 

temperature in a beaker. Eudragit S powder (8.5 % w/w of solvent) was gradually 

added to the ethanolic solution that was rapidly stirred by a Heidolph RZRl overhead 

stirrer. The mixing vessel was sealed with Parafilm to prevent solvent evaporation and 

the solution was stirred overnight for a further 12 hours to ensure complete polymer 

dissolution. A portion of the solution (9 ml) was poured onto separate Teflon® molds 

(9 cm diameter) and allowed to dry at room temperature, under a funnel, for eight 

hours. Funnels were employed as they reduce the evaporation rate (by decreasing the 

exposed surface area) and therefore smoother and more even films arise. The films 

were then peeled from the Teflon moulds and placed in an oven at 50°C for 48 hours 

to remove residual ethanol/water. The plasticizers with very low aqueous solubility 

(DBP, DOP, TBC and TBP) could only be included at a concentration o f 15 % of 

polymer weight before phase separation was observed. Film thickness was measured 

at different points using a micrometer (Mitutoya, Japan) and was found to be 130 ± 10 

pm. The films were subsequently stored under vacuum in a desiccator. To find out the 

residual solvent of the films thermogravimetric analysis (TGA) was conducted on the 

films. TGA was performed with a Perkin-Elmer Pyris 6 TGA (Perkin Elmer 

Instruments, Bucks, UK) using 8-13 mg of film at a scan rate of 10 K/min over a 

temperature range of 30 to 150°C.
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4.3.3 Preparation o f compression molded polymer film

Only a control Eudragit S polymer film was prepared using this method as it was 

performed at another institution (Division of Biomaterials and Tissue Engineering, 

Eastman Dental Institute, University College London). Eudragit S powder was spread 

onto an aluminium plate and heat pressed using a Specac Hydraulic Heated Press 

(Specac, UK) at a temperature of 185 °C, and with a compression force of 5 tons 

(height 500 pm) for 15 min. The film was peeled off the aluminium plate and stored 

under vacuum in a desiccator until further testing.

4.3.4 Film dissolution

Film dissolution was measured using a custom made two-compartment permeation 

cell (Figure 4.7). This is similar to a methodology employed by Spitael and Kinget 

(1977b). A sample film with an area of 1.8 cm^ separated the two compartments with 

the aid of an 0-ring separation. The film was incubated to pH 7.4 in phosphate buffer 

(0.05 M) under sink conditions. The donor compartment had a volume of 5 ml and 

was filled with a saturated solution of the drug 5-ASA in pH 7.4 phosphate buffer 

(6.34 mg/ml). The acceptor compartment also had a volume of 5 ml, however 

continuous flow was employed in this compartment whereby a volume o f 100 ml of 

pH 7.4 phosphate buffer (0.05 M) maintained at 37 °C was circulated through via a 

peristaltic pump. The solution in the acceptor compartment was continuously stirred 

using a magnetic stirrer. Onset o f 5-ASA permeation from the donor to the acceptor 

compartment was determined by UV spectrophotometry at 330 nm and was found to 

correspond to film dissolution as pores in the film became clearly visible. A very
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sharp rise in absorbance arose and this was defined as the breakthrough time of the 

film. Dissolution results reported correspond to the dissolution onset of the films. UV 

readings were taken automatically every 15 minutes by an in-line UV 

spectrophotometer (Cecil 2020, UK). Phosphate buffer continuously circulating the 

acceptor compartment passed through the UV-spectrophotometer so that UV 

measurements were taken in real time. All film formulations were tested at least in 

triplicate.

Top screw for, 
donor compartment

Donor compartment of 
permeation cell containing 
solution o f mesalazine in 
phopshate buffer

Peristaltic-
pump

U V
spec.

/ \

Phosphate buffer circulating 
through acceptor compartment

Polymer
film

Acceptor 
compartment of 
permeation cell

Magnetic
stirrer

Figure 4.7 Schematic diagram of the measurement of film dissolution using a two- 
compartment permeation cell.
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Phosphate buffer was used as the film dissolution medium since there was no way of 

maintaining the stability of bicarbonate buffer in the permeation cells. It was not 

feasible to continuously sparge the compartments with 5 % CO2. Bicarbonate buffers 

are more realistic media however in this set of experiments we were not primarily 

concerned with the absolute dissolution values however we were interested in the 

trends attained with the different formulations. 0.05 M phosphate buffer was used as 

opposed to 0.2 M phosphate buffer or Sorensen’s buffer since it has the lowest ionic 

strength and buffer capacity therefore making it more comparable to GI luminal 

fluids.

4.3.5 Methodolosv for dynamic mechanical analysis

DMA was conducted using a Tritec 2000 DMA (Triton Technology Ltd., 

Nottinghamshire, UK). Films were cut into dimensions of 6 mm width and 2 mm 

length and subjected to a tensile deformation mode at a frequency of 1 Hz, static 

preload of 0.1 N and dynamic displacement of 10 pm.

The instrument is designed such that there are two pairs of clamps (back and front). 

The sample is positioned and gripped between these clamps (Figure 4.8). First the 

sample is tightened in the back (driveshaft) clamp and then a static force of 0.1 N is 

applied. This brings the driveshaft forward. The sample is then fully tightened in the 

front clamp (Figure 4.8). As the experiment starts the force is removed thus allowing 

the sample to stretch. This stretching of the sample avoids buckling during the run. 

The loaded sample needs to be straight and mounted in the glassy condition, thus 

loaded when the oven is cooled to the starting temperature.
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Front clamp

Back (driveshaft 
clamp)

Polymer film

Figure 4.8 Geometric set up of a Tritec DMA for measuring Tg of films in tension. 
(Adapted from Tritec DMA manual).

A heating rate of 6 K/min was employed from 298 to 473 K. We report the Tg value 

as the peak loss modulus as opposed to the peak tan 5. The former is the more 

appropriate representation as the upper temperature for use of most amorphous 

polymers is their ‘softening point’. Hence by the transition midpoint (peak tan 5) this 

softening point would have been exceeded (Chartoff, 1997).

Increase of frequency will show a shift of the moduli and tan 5 up the temperature 

scale. Multiple frequencies were employed in our experiments to verify that the 

transitions we are observing are glass transitions, since glass transition temperature is 

sensitive to the frequency (the lower the frequency the lower the Tg temperature). 

Figure 4.9 illustrates this increase in tan 5 with increasing frequency.
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Figure 4.9 A typical response of the Tg (represented by tan Ô) as a function of 
frequency. This is the result for Eudragit S film with TEC as the plasticizer.

4.3.6 Methodology for immersion dynamic mechanical analysis

DMA instruments which have the capacity to measure the Tg of materials while 

immersed in a liquid medium have recently been developed. This is useful as it can 

give an insight into changes in Tg of materials as a result of fluid uptake or plasticizer 

leaching out into the dissolution media. The same DMA geometry and parameters 

were used in the immersion mode however the end temperature was only 363 K to 

prevent the water boiling during the course of the experiment. The liquid medium 

used was pH 6.8  phosphate buffer to simulate small intestinal pH. pH 7.4 phosphate 

buffer was not used as in the dissolution experiments because the film starts to 

dissolve and therefore the thermal properties cannot be reliably measured. Prior to 

measuring the Tg of films using immersion DMA, the films were subjected to pre­

162



treatment in pH 6.8  buffer (just by immersion) for three hours. This is to simulate the 

average small intestinal transit time of dosage forms.

4.3.7 Methodolosy for differential scannins calorimetry

Films were directly cast into non-hermetically sealed aluminium pans (Perkin-Elmer 

Instruments, Bucks, UK). Polymer/plasticizer solution was added to the pan using a 

pipette Pasteur. This was allowed to dry for one hour at room temperature (under a 

funnel) before another layer was cast on top of it. Three layers were required to attain 

the required sample mass of 8 -  10 mg necessary to obtain a distinctive glass 

transition. This procedure was adopted to ensure good thermal contact between the 

sample and the pan; if however several layers of pre-prepared films were cut and 

accumulated in the pan then air between the film layers would impose resistance to 

heat flow. Samples within the pans were dried in an oven at 50 °C for 48 hours and 

stored in a desiccator over silica gel until analysis. Before analysis the pans were 

crimped. The pans were accurately weighed while empty and after filling with sample 

to determine the exact sample mass. The mass of the empty pan and lid were also 

recorded as this information needs to be known for Step-Scan. An empty pan was also 

crimped and weighed for use as a reference. A PerkinElmer autobalance AD-4 

(Perkin-Elmer Instruments, Bucks, UK) was used.

Film samples were evaluated by Step-Scan DSC using a Pyris 1 instrument 

(PerkinElmer Instruments, Bucks, UK). The sample was heated at 6 K/min for 2 K 

increments and then allowed to equilibrate for 0.5 min before being subjected to 

heating again. The sample was scanned from 298 to 473 K with a nitrogen gas purge 

at a flow rate of 20 ml/min. The Tg was taken as the half change in specific heat
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capacity (ACp) of the sample. Half ACp was calculated from an extrapolation of the 

baselines for the onset and end of the glass transition step. The transition step was 

clear and the baselines were stable therefore enabling accurate and reproducible 

determination of the beginning and end of the transition. Figure 4.10 shows an 

example of this.

2.7

2.6

2.5

Tg; H alf ACp Extrapolated = 383.67 K

^ 2.2 
o
o
A  2.0

393 403 413363 373 383315 323 333 343 353

Temperature (K)

Figure 4.10 A typical DSC thermogram showing how the Tg (half ACp) is obtained. 
This is the result for Eudragit S film with TEC as the plasticizer.

4.3.8 Methodolosy for thermally stimulated depolarisation current technique

TSDC was performed at University Simon Bolivar, using an in-house TSDC 

instrument. The Eudragit film is polarised at a certain temperature (polarisation 

temperature, Tp) in a electric field (5x10^ V/m) and the state of polarization is frozen 

by quenching the sample rapidly (1 Ks’*) to liquid nitrogen temperature. The electric 

field is then switched off and the sample temperature increased at a controlled rate 

(0.1 K/s) to record the depolarization current caused by the disorientation of the
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dipoles, A Cary Vibrating Reed Electrometer (Model 401) was used to record the 

depolarization current. The sensitivity of the current measuring system is 10'^  ̂A and 

the signal to noise ratio is greater than 500. The current-temperature data acquisition 

is fully automatic. To characterize the low temperature region of the dielectric spectra 

a Tp of 300K was employed. For the high temperature region of the dielectric spectra 

the samples were polarised at a temperature just above their Tg.

The low temperature TSDC peaks are complex wide bands arising from overlapping 

peaks; each peak corresponding to the reorientation of a particular functional group. 

Direct Signal Analysis (DSA) is a curve-fitting procedure that was developed to 

analyse the complex low temperature TSDC peaks (Aldana et al., 1994). The method 

consists of finding the elementary curves whose characteristic energies are equally 

spaced in a given energy window and whose combination best fits the whole 

experimental TSDC profile. The recorded TSDC current is approximated by Equation 

4.4

,  T,

\ Equation 4.4

with j  = \, M; V  < M /2

where Jb (T) is the current density, b is the rate at which the temperature is raised, 

t(T) is the relaxation time for each elementary process and Poi is its contribution to the 

total polarization. The temperature dependence of the relaxation time t(T) of the low 

temperature relaxations has been mostly represented by the Arrhenius expression. 

Equation 4.5.

T, (T) = To .exp(£^. / kT) Equation 4.5
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where Tq\ is a pre-exponential factor and Eq\ is the reorientation energy of the i

elementary curve. The pre-exponential factor is temperature dependent (proportional 

to r').

The DSA method adjusts Jd (T )  (Equation 4.5) to the experimental data using the 

Marquardt-Levenberg nonlinear least-squares fitting algorithm. The initial parameters 

are the threshold and width of the energy window which is divided into N  equally

spaced energy bins, the N %bi values, one for each energy bin, is read; estimated from

the value of the energy and the temperature range where the relaxation takes place.
N

The initial values for the set of Poi are all equal and normalised, that is S Poi = i ,
/  = 1

which is a uniform distribution; i.e. initially every bin contributes equally to the total 

polarization of the sample. The results of the fitting procedure are summarised into an 

energy histogram which covers the selected energy window divided into N energy 

bins and whose height, Poi, is proportional to the area under the curve corresponding

to each elementary excitation. The algorithm also fits the %bi values corresponding to

each energy bin. The whole TSDC curve is then simulated by adding all these 

contributions and plotting them with the experimental points. The whole procedure is 

then repeated with different staring parameters, until the quality of the fit, is deemed 

satisfactory.

166



4.3.9 Methodolosy for contact ansle measurement

Before starting each set of experiments the microbalance of the Wilhelmy plate 

apparatus was calibrated with a 500 mg weight. Surface tension of water was also 

measured to confirm the accuracy of the procedures and functioning of the 

instrument. This was found to be 72.31 ± 0 .1 2  mM m'* (mean ± SD) which is in 

agreement with the literature (Van Oss and Costanzo, 1992). The surface tension of 

the phosphate buffer was then measured and entered into the computer and used to 

solve equation 4.4. Surface tension of buffer was found to be very close to water at

71.7 ±0.21 mM m"'.

Polymer films cast on to Teflon plates were cut into square pieces using templates of 

dimensions 25 mm x 25 mm. However a perfectly smooth and even surface could not 

be achieved with this method even when the film was not completely dry when it was 

cut. This led to a not very straight buoyancy slope and unreproducible contact angle 

measurements. An alternative method was tried which worked successfully. This 

involved preparation of polymer solutions of Eudragit S with plasticizer as previously 

described and using them to coat glass microscope coverslips (plates). All microscope 

coverslips were cleaned thoroughly using blue flame of Bunsen burner to remove any 

surface contamination. Using forceps, the plates were dipped into the polymer 

solution for 10 seconds and on removal the plates were inverted several times to 

achieve uniform distribution of the polymer solution over the plates. The coverslip 

was then dried on the laboratory bench under normal atmospheric conditions. 

However the rapid evaporation of ethanol and high interfacial tension resulted in poor 

film uniformity, especially at the edge of the plates. To resolve this, the polymer 

solution coated surface was dried in an ethanol environment. This was created by
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pouring a solution containing 95 % ethanol and 5 % water into a weighing boat and 

placing a funnel over it. This ethanol environment was set up one hour prior to 

exposing the plate to it. The plate was positioned horizontally by attaching it at the 

edge to an inverted weighing boat. The plates were kept in this environment for 24 

hours and then placed in an oven at 50 °C for two days. The plates were thereafter 

stored in a desiccator over silica gel for at least two days prior to performing the 

contact angle measurements.

Phosphate buffer used to measure contact angle of the polymer films was prepared 

from HPLC water. The buffer was then filtered using a 0.45 pm syringe filter. Buffer 

of 80 ml volume was poured into a 100 ml clean glass beaker and placed on the 

motorised platform of the Wilhelmy plate apparatus. Small beakers of the buffer were 

placed around the platform inside the chamber to regulate the vapour. The beaker 

was filled with fresh buffer every time a new coated plate was used. A minimum of 

five contact angle measurements were performed for each formulation.

The advancing angle is used to measure the contact angle as this is when the liquid 

makes contact with a fresh solid surface that has not been previously wetted.
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4.4 RESULTS AND DISCUSSION

4.4.1 Dissolution o f  polymer films

From figures 4.11a and 4.11b it can be seen that plasticizers substantially influence 

the dissolution onset of Eudragit S films. Figure 4.1 lb  displays the dissolution results 

for films prepared from plasticizers with very poor aqueous solubility (< 0.05%). All 

the formulations illustrated in figure 4.1 la  have a faster dissolution than Eudragit only 

films. A quick glance at the results and comparison of these two figures may lead us 

to assume that the higher the aqueous solubility of the plasticizer the faster the 

dissolution of the enteric polymer film. This assumption can be rationalised by high 

aqueous solubility plasticizers leaching out o f the film thus creating channels/pores 

through which drug can diffuse out. It may also be anticipated that channels allow 

aqueous media imbibition into the film thus facilitating film dissolution. However 

from a more thorough examination of the results we can infer that film dissolution is 

more complicated than this.
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Figure 4.11a Onset of dissolution of Eudragit S films with or without plasticizers. 
Mean values ± SD.

Dibutyl phthalate 
H (DBP)

Tributyl citrate (TBC)

IW-W"!: Dioctyl phthalate 
(DOP)

Eudragit (Eu)

Tributyl phosphate  
(TBP)

10 15 20

Tim e (hours)

25 30 35

Figure 4.11b Onset of dissolution of Eudragit S films formulated with or without 
very poor aqueous solubility plasticizers (< 0.05 %). Mean values ± SD.
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The plasticizers TBP and DBF have very similar aqueous solubilities (0.042 % and 

0.04 % respectively), yet there is an almost three-fold difference in the dissolution 

onset of the Eudragit S films fabricated from them. A further example is a comparison 

of films comprising DMP and triacetin; DMP has an almost 20-fold lower solubility 

than triacetin yet their corresponding Eudragit S films dissolve at a similar rate. Even 

a comparison of films constituting plasticizers from the same class illustrates that 

dissolution is not only dependent on solubility. DOP has a 200-fold lower solubility 

than DBP, however dissolution onset of the Eu-DOP films is two-fold faster.

4.4.2 Wettability o f  the polymer films

The next step was to consider wettability of the films as films cannot undergo 

dissolution before they are wetted. The contact angles of the film formulations with 

pH 7.4, 0.05 M phosphate buffer are shown in table 4.2. There appears to be no 

substantial differences between the contact angles of the different films. The contact 

angle for all films falls in the range of 68.3° to 71.5° and no trends correlating to film 

dissolution are apparent.
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Table 4.2 Contact angles of different Eudragit S/plasticizer films with phosphate 
buffer.

Formulation Contact angle (0°) (± SD)

Eu 68.4 (± 1.35)

Eu + P- diol 70.0 (± 0.83)

Eu + TEC 68.8  (± 0 .6 6 )

Eu + DMP 68.7 (±0.41)

Eu + TA 69.2 (± 0.47)

Eu + ATEC 70.0 (±0.13)

Eu + PEG 6000 69.3 (± 0.27)

Eu + TBP 71.5 (±0.33)

Eu + DOP 70.7 (±061)

Eu + TBC 69.9 (± 0.35)

Eu + DBP 68.3 (± 1.55)

4.4.3 Glass transition temperature o f  films as measured by differential scannins 

calorimetry

The Tg o f the Eudragit S powder was measured in our laboratory to be 436 K. This is 

in close agreement to the value of 433 K quoted in the literature (Dittgen et ah, 1997). 

However the value we obtained for the Eudragit S control film was substantially 

lower at ~ 406 K. In attempt to establish the reason for this discrepancy a compression 

molded film of Eudragit S was prepared; thus avoiding the use of solvent. The Tg of 

this film was also found to be 436 K. The explanation for the lower than expected Tg
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of the Eudragit S film prepared by solvent evaporation is the residual solvent in the 

film which acts as plasticizer. TGA showed that this control formulation contains 

1.09% residual solvent. TGA was conducted on the other film formulations (Table 

4.3). The films all had different amounts of residual solvent and no relationship is 

apparent between this and onset of film dissolution. This difference between the Tg of 

the polymer powder and solvent cast film is often observed. An example is in the 

work conducted by Gutierrez-Rocca and McGinity (1994) whereby the physical 

properties of Eudragit L I00-55 (poly(methacrylic acid, ethyl acrylate)) cast films 

were studied. The Tg of Eudragit L I00-55 film cast from isopropyl alcohol was 

reported by Gutierrez-Rocca and McGinity (1994) to be 358 K, whereas the Tg of the 

pure powder reported in the literature is 388 K (Dittgen et al., 1997).
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Table 4.3 Residual solvent in the Eudragit S polymer films prepared with different 
plasticizers (expressed as mean % ± SD).

Film Formulation % Residual solvent (± SD)

Eu 1.09 ±0.22

Eu + F-diol 1.43 ±0.09

Eu + TEC 0.63 ± 0.22

Eu + DMF 1.72 ±0.19

Eu + TA 1.10±0.17

Eu + ATEC 1.21 ±0.16

Eu + FEG 6000 1.86 ±0.25

Eu + TBF 1.68 ±0.13

Eu + DOF 1.25±0.11

Eu + TBC 1.65 ±0.08

Eu + DBF 1.82±0.13

No definitive trends could be seen between film dissolution and Tg measured by DSC 

(Table 4.4). However films fabricated from plasticizers with very poor aqueous 

solubility seem to have a higher Tg and slower dissolution onset. Films comprising 

DBF and TBC display higher Tgs and much slower dissolution compared to their 

methyl and ethyl counterparts. This slower dissolution is unlikely to be attributable to 

the large size of the plasticizer molecules since DO? gives rise to a two fold faster 

dissolution compared to DBF. Therefore the structure of the plasticizer, and

174



consequently its interaction with the polymer, seem to be implicated in film 

dissolution.

Table 4.4 Tg values as attained by DSC of the Eudragit S polymer films prepared 
with different plasticizers (expressed as mean ± SD).

Film formulation Tg (K) (half ACp) (± SD)

Eu 405.9 + 0.14

Eu + P-diol Two Tgs : 378 + 0.71, 
405.8 + 0.61

Eu + TEC 383.7+ 1.03

Eu + DMP 385.7+ 1.72

Eu + TA 377.9 + 3.62

Eu + ATEC 390.8 + 2.27

Eu + PEG 6000 381.5 + 0.93

Eu + TBP 397.1 + 1.31

Eu + DOP 404.4 + 2.89

Eu + TBC 394.0 + 0.94

Eu + DBP 399.7+ 1.68

Interestingly, Eu + P-diol film has two Tg values which indicates there are two phases 

in the films; a plasticized and unplasticized phase (Figure 4.12). The unplasticized 

phase has a Tg of ~ 406 K which corresponds to the Tg o f Eu only film.
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(405.5 K)
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Figure 4.12 DSC thermogram of Eu + P-diol film showing the existence of two Tgs.

4.4.4 Screeniri2 o f  selected Eudrasit S  films usim  TSDC

4.4.4.1 Secondary relaxations and glass transitions o f  Eudragit S  film s prepared with 

plasticizers from  the citrate ester class

Conclusions on parameters influencing film dissolution could not be drawn from the 

screening of these plasticizers with such diverse structures. Therefore selected films 

fabricated with plasticizers from the citrate class were screened in depth using TSDC. 

Particular attention was paid to examining the secondary relaxations and comparison 

of the Tg values to those attained using DSC and DMA.
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The low temperature TSDC dielectric spectra of the Eudragit only film and films with 

citrate plasticizers (TA, TEC, ATEC and TBC) are shown in figure 4.13a. The low 

temperature zones in Figure 4.13a display broad multi-component peaks (secondary 

relaxations), with the EU-ATEC film displaying the most intense peak. Compared to 

the Eudragit S film, the maximum for this broad band had shifted to slightly higher 

temperatures for all the plasticized films. The high temperature dielectric spectra 

(glass transitions) are shown in Figure 4.13b. The a  peaks of the blended films 

display a lower temperature than that observed for Eudragit S alone. Amongst the 

blended films, there are different temperature maxima and signal intensities.

1,0
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o Eu 
♦ Eu+TA 
 ̂ Eu+TEC 

Eu+ATEC 
Eu+TBC

1 0 0

T.

150 200 250
Temperature (K)
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Figure 4.13a Low temperature TSDC spectra of films composed of Eudragit S with 
and without plasticizers. The continuous lines are the fitted curves. The density 
current was normalized to an electric field of 1 V/m.
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Figure 4.13b High temperature TSDC spectra of films composed of Eudragit S with 
and without plasticizers. The continuous lines are the fitted curves. The density 
current was normalized to an electric field of 1 V/m.

4.4.4.2 Deconvolution o f  secondary relaxation peaks o fp la stic ized  Eudragit S  fd m s

The low spectra have several overlapping and non mono-energetic peaks that cannot 

be described by assuming an elementary Debye process (Bucci and Fiesehi, 1964), 

since the neighbouring dipoles will be exerting directional forces on each other. 

Deconvolution is thus required to separate the contributions of individual dipolar 

species to the overall depolarisation current that is measured. Representative results of 

the DSA are shown in figure 4.14 for the Eudragit S film. The curve fitting together 

with the position in temperature and relative contribution of the Debye elementary 

processes which best fit the data are shown in figure 4.14a. The energy window for 

the best fit ranged from 0.16 to 0.90 eV and the resulting histogram is shown in figure 

4.14b. The variation of the pre-exponential factor Xoi corresponding to each energy 

beam is plotted in figure 4.14c.
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The pre-exponential factors varied between 10'  ̂ and 10'^ .̂ The energy histogram was 

fitted to four mean distributed components, assuming a Gaussian profile for each 

component (Laredo et al., 1981). The four Gaussian curves, labelled in the order of 

increasing energy (yi, 72, Pi, P2), are shown in figure 4.14b. All the films had these 

four components in their respective energy histograms. The corresponding mean 

energies for each peak in the films are listed in table 4.5. The mean energy of the yi 

component remained constant in all films at approximately 0.19 eV. However, for the 

72 component, the energy is higher in the plasticized samples than that observed for 

the Eudragit film alone.
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fitted M

S  0 .08

0 .0 4
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Figure 4.14 Direct signal analysis results for the secondary relaxations of Eudragit S 
film; (a) experimental (empty circles) and fitted (straight line) spectrum. The position 
in temperature and relative contribution of the Debye elementary processes which 
best fit the experimental curve are also represented, (b) Energy histogram of the 
contribution to the polarization of each Debye component peak, (c) Variation of the 
Arrhenius preexponential factor with the activation energy.
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Table 4.5 Direct signal analysis of the secondary relaxations obtained by TSDC. 
Mean energies (Eq) and width distributions (a) for each component.

Sample EoydOyl)
(eV) (eV)

Eopi((fp]
(eV)

Eop2((fp2)
(eV)

Eu 0.19(0.05) 0.33 (0.09) 0.64 (0.15) 0.85 (0.01)
Eu-TBC 0.18(0.05) 0.37(0.10) 0.67 (0.13) 0.87 (0.02)
Eu-ATEC 0.19(0.06) 0.37(0.10) 0.65 (0.12) 0.85 (0.02)
Eu-TEC 0.18(0.05) 0.36(0.10) 0.64 (0.13) 0.85 (0.03)
Eu-TA 0.19(0.05) 0.37(0.10) 0.65 (0.15) 0.84 (0.01)

The absolute polarization values of each component and the total polarization of the 

global low temperature band as a function of the dissolution time are calculated and 

shown in figure 4.15. The calculation was made using an electric field strength of 1 

V/m. The predominant contribution to polarisation is from the pi component. The yi 

and P2 components display the smallest contribution to polarization. The contribution 

of the 72 component is about 5 times greater than the yiand p2 components. The total 

secondary relaxations area can be obtained directly from the TSDC spectrum, 

measuring the area below the global curve (Figure 4.13b). The partial contributions of 

the different peaks were obtained from the information contained in figure 4.14 (b). 

From the relations amongst the areas, the ratio of each contribution with respect to the 

total polarization was found. By multiplying each ratio by the total area below the 

global TSDC curve the area of each TSDC component can be calculated.

Figure 4.15 shows that as the Pi area and the total secondary relaxation area increase, 

the films display faster dissolution rates. This inverse linear correlation exists between 

both the Pi and the global low temperature peak areas with the dissolution time for all
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the films except for the EU-ATEC film. The Pi component is most likely to be 

derived from carboxylic acid functional groups (vide infra). Facile deprotonation of 

the carboxylic acid moieties results in ionization which will have a major influence on 

film dissolution (Spitael and Kinget, 1979; Krause et al., 1997).
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Figure 4.15 Total polarization of the global low temperature band (filled symbol) and 
the polarization of each of the four main components (open symbols) versus 
dissolution onset times of the different Eudragit S films. The dash lines are the best fit 
to straight lines.
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4.4.4.3 The mechanism through which changes in secondary relaxations influence the 

dissolution o f  Eudragit S  film s plasticized with citrate esters

Variations in the secondary relaxation caused by plasticizer can result in changes in 

the local free volume, i.e., packing efficiency variations (Shuster et al., 1994), local 

free volume fluctuations (Xiao et al., 1999), or dynamic interactions and constraints 

between the polymer and plasticizer (Ngai et al., 1991). Plasticizers can reduce the 

resistance of polymer molecules to slide past each other by favourably interacting 

with the polymer by dipolar interactions (Kirkpatrick, 1940; Moorshead, 1962; 

Marcilla and Beltran, 2004) or by other non-covalent interactions, especially 

hydrogen bonds (Wu and McGinity, 2003). Hydrogen bonding with a plasticizer may 

weaken intermolecular polymer-polymer interactions. This may potentially increase 

the propensity for water imbibation into the films to facilitate faster dissolution times. 

The large secondary relaxation area for EU-ATEC may thus contribute to dissolution 

rates faster than would be anticipated from the relative aqueous solubility of the 

plasticizer. This disruption of polymer-polymer interactions that sufficiently decreases 

the polymer packing efficiency facilitates the reorientation of localized dipolar 

entities.

Structurally TEC and ATEC differ only by the acétylation of the tertiary hydroxyl 

group in ATEC. This results in ATEC being approximately 10 times less water 

soluble than TEC. ATEC is a hydrogen bond acceptor only, while TEC is both a 

hydrogen bond acceptor and donator. Being only a hydrogen bond acceptor, ATEC 

may interact relatively more efficiently with the carboxylic acid H-bond donors on 

Eudragit S to reduce polymer-polymer interactions. This relative reduction in
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polymer-polymer chain interactions would result in faster dissolution which cannot be 

anticipated by the water solubility of ATEC alone.

4.4.4.4 Eudragit S  functional groups and their contribution to the mono-energetic 

secondary relaxation peaks

Since the yi component of the secondary relaxation peak has the lowest reorientation 

energy, it should originate from the most easily reorientable dipoles (Suarez et ah, 

1997). The yi component dipoles also have the smallest contribution to the overall 

polarisation, so these dipoles should have a small dipole moment in Eudragit S. In a 

study of the structurally related homopolymer, poly(methyl methacrylate) (PMMA), a 

small mechanical loss peak was reported (McCrum et al., 1991). The cause of this 

loss was assigned to the rotation of the methyl groups that are attached directly to the 

polymer main chain. The rotation of these methyl groups was also observed by 

nuclear magnetic resonance line-width measurements. Furthermore; nuclear magnetic 

resonance analysis on poly(bisphenol-A carbonate) (Matsuoka and Ishida, 1966) and 

ultrasonic attenuation experiments (Tanabe et al., 1970) revealed an activation energy 

for the relaxing methyl groups of about 0.2 eV for the methyl protons in the 

temperature region from 100 to 130 K. Both the temperature range of the yi peak and 

its reorientation energy (Table 4.5) are very close to these reported values. 

Consequently, the dielectric yi peak of the Eudragit S samples is assigned to the 

orientation of the CH3 dipoles that are covalently bound to the Eudragit S main chain.

The reorientation energy of the yi processes (Table 5) ranges from 0.33 up to 0.37 eV. 

These values are similar to the activation energy of 0.4 eV, obtained by dielectric and
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mechanical methods for the low temperature y relaxation that was detected for a series 

of n-alkyl methacrylate polymers that were examined by McCrum et al. (1991). They 

ascribed the mechanism for the y relaxation to motions of the pendent ester methyl 

group. From the McCrum study, the motions of the ester methyl were independent of 

the substitution along the polymer main chain. The similar activation energies of the 

y process reported by McCrum and the y2 processes from our study suggest that this 

reorientation should be assigned to the ester methyl groups in Eudragit S. The 

increase of the reorientation energy of the y2 process in the plasticized film samples 

compared to the EU control films may be due to plasticizer molecules hindering the 

motions of the ester methyl groups.

The broad Pi component (Table 4.5) suggests that it is a combined process involving 

a weighted sum of elementary processes occurring in different local environments. In 

other studies at the same temperature range, a similar p relaxation was observed by 

mechanical and TSDC techniques for poly(2-chlorocyclohexyl methacrylate) (Sanchis 

et al., 1999). The value of the activation energy associated with the processes 

responsible for the dipolar relaxation was calculated to 0.7 eV. The origin of the 

process was attributed to the rotations of the entire side chain. The similarity among 

the energy and temperature range of these results and those obtained in this work for 

the Pi peak supports its assignment to a combined process caused by the rotation of 

the pendent -COOCH3 and -COOH groups about the C-C bonds which link them to 

the main chain. As the Pi area increases, the number of available carboxylic acid 

functional groups participating in this relaxation becomes larger. Hence the exposed 

sample must have a greater number of carboxylic acid functional groups that are 

accessible for ionization by water. This would cause faster dissolution.
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Both ATEC and TA are exclusively hydrogen bond acceptors and must compete with 

the carboxylic acid pendent groups in Eudragit S. TA has three ester and ATEC has 

four ester functionalities, so TA has fewer accepting sites than ATEC. The 

contribution of non-covalent interactions from the ATEC molecules with Eudragit S 

should not be disregarded, and it can be accounted for by its large secondary 

relaxation area. The molecular volume, shape and polarity of the ATEC as well as the 

accessibility of its carbonyl groups influence its interaction with the polymer 

(Tarvainen et al., 2001).

The high reorientation energy of the p2 component (approximately 0.85 eV) is 

associated with low pre-exponential Arrhenius factors and could be due to 

overlapping with the low temperature tail of the a  transition. It is possible that this 

relaxation arises from the carbon-carbon bonds along the main chain whose motion 

would be the initial motions, especially near the chain ends, as the primary glass 

transition temperature is approached.

4.4.4.5 Influence o f  citrate plasticizers on film  dissolution as determined by changes 

in TSDC glass transitions

To better understand the influence of plasticizer on the dielectric manifestation of the 

glass transition, the high temperature TSDC profiles were evaluated. Table 4.6 shows 

the characteristic fitted parameters of the glass transition relaxation peak, i.e., Jo, p, 

and Tg. The first parameter is the current density amplitude (peak amplitude); the 

second describes the temperature dependence of the relaxation time (inversely
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proportional to peak width); the third is the measured Tg o f the relaxation (Puma, 

1997). Decreased intermolecular polymer-polymer interactions are indicated by the 

higher p parameters for the plasticized samples compared to the net film (Table 4.6).

Table 4.6 Analysis of the glass transition relaxations obtained by TSDC.

Sample JoxlO"(A/m^) P(K -‘) Tg(K)

Eu 0.005 0.0781 404.2
Eu-TBC 0.0059 0.0968 375.3

Eu-ATEC 0.0084 0.0864 372.3
Eu-TEC 0.0066 0.0816 358.6
Eu-TA 0.0122 0.0969 348.8

Our data shows that there is a decrease of the fitted Tg values as the molecular weight 

of the citrate plasticizer diminishes and its solubility increases (Tables 4.1 and 4.6). 

This may have arisen partly because the plasticizers were blended by weight percent 

rather than by molar percent. For a lower MW plasticizer there are more molecules 

for a given composition and therefore more molecules are available to occupy the 

accessible sites along the polymer structure (Mathew and Dufresne, 2002). The Tg 

values obtained by DMA and DSC techniques also display a tendency to decrease 

when the molecular weight and the solubility of the citrate plasticizers decrease and 

increase respectively (Figure 4.16). This tendency demonstrates that the separation of 

polymer chains and reduction of the intermolecular forces between the chains is 

dependent on the aqueous solubility and the MW of the plasticizer. This result 

contrasts with the DSC results obtained for similar methacrylic acid copolymer films
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(Eudragit L I00-55) (Gutierrez-Rocca and McGinity, 1994) that were plasticized with 

the same additives as those used in the present work.
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Plasticizer aqueous solubility (%m/v)

Figure 4.16 Illustration of the decrease in Tg of Eudragit S films with increasing 
molecular weight of citrate plasticizer.

4.4.4.6 How the structure o f  tributyl citrate accounts fo r  the prolonged dissolution o f  

its corresponding Eudragit S  film

It is interesting to compare the TSDC results obtained with EU-TEC and EU-TBC. 

These are the fastest and slowest dissolving films respectively. They differ only in the 

number of carbons in their ester chains (2 and 4 for TEC and TBC respectively). The 

moieties capable o f participating in hydrogen bonds are the same for these two 

plasticizers with the three ester groups potentially acting as hydrogen bond acceptor 

sites. The tertiary hydroxyl group has both hydrogen bond donating and accepting 

character. There is approximately a 19 K difference in the glass transition temperature 

of the films, and 8 K difference in their global secondary relaxation temperature 

maximum, with EU-TBC displaying the higher temperature values. It is possible that
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the butyl alkyl chains o f TBC reside more readily between the Eudragit S polymer 

chains to orient the ester and hydroxyl functional groups with the polar groups on the 

polymer. These non-covalent interactions would decrease the local polymer-polymer 

free volume fluctuations, and consequently cause improved packing, thus facilitating 

enhanced polymer-additive interactions.

Interactions may occur between hydroxyl groups of TBC and hydrogen bond acceptor 

moieties (e.g. carbonyl in acid and ester groups) o f the polymer in addition to 

interactions of the carbonyl groups of the plasticizer with the hydrogen bond donating 

moiety (carboxylic acid proton) on the polymer. This latter interaction could cause the 

increase of the reorientation energy of the Pi process on Eu-TBC, which may explain 

the shift to higher temperatures of the global secondary spectrum. This would result in 

a decrease in the free volume of the system and may explain the higher relative Tg, 

the increase of the secondary relaxation reorientation energies, and the lower 

secondary relaxation area that was obtained for EU-TBC. Interactions of the carbonyl 

groups of TBC with the carboxylic acid proton of EU would also decrease the amount 

of free hydroxyl groups which are accessible to water (Mathew and Dufresne, 2002).

The combination of low TBC water solubility and increased polar polymer-plasticizer 

interactions would be consistent with the prolonged dissolution time observed for EU- 

TBC. The fast dissolution time for EU-TEC could then be related to the high relative 

aqueous solubility of TEC and its structure favourably interacting with the Eudragit 

polymer.
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4.4.4.7 Influence o f  secondary versus segmental polymer relaxations on the 

dissolution ofplasticized Eudragit films

While the Tg of EU-TBC film is lower than that of EU alone (Tables 4.2 and 4.5); the 

opposite is true when comparing the areas and maxima of the secondary relaxations 

for the two films. TBC enhances segmental mobility while hindering the mobility of 

the pendent chain moiety of Eudragit S. These opposing effects of the plasticizer on 

primary and secondary relaxations of polymer systems has previously been reported 

by Ngai et al. (1991).

Our results show that the Tg values of the polymer films do not correlate to Eudragit 

S polymer film dissolution; however the secondary relaxations areas do. From this we 

can infer that the local environment of the side chains, particularly interactions and 

free volume fluctuations of the carboxylic acid group, have a predominant effect on 

polymer film dissolution in comparison to the cooperative mobility of the system.

4.4.4.8 Dissolution o f  plasticized Eudragit S films: plasticizer aqueous solubility 

versus polymer-plasticizer interactions

The relative contribution of plasticizer aqueous solubility and its extent o f disrupting 

polymer-polymer interactions on the dissolution of Eudragit S films can be 

established from a comparison of the dissolution rate of EU-TEC and EU-ATEC 

films. These two systems displayed relatively small differences in their dissolution 

times despite an almost 10-fold lower aqueous solubility of ATEC compared to TEC.
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This suggests that disruption of polymer-polymer interactions can make a significant 

contribution towards increasing the rate of Eudragit S film dissolution.

Referring back to the dissolution of Eudragit S films fabricated from polyols (P- diol 

and PEG 6000) in Figure 4.11a; the dissolution onset of EU/P-diol is almost three­

fold faster than the dissolution onset of Eu/PEG 6000 films despite the very high 

aqueous solubility of both plasticizers. On comparison of the structures, P-glycol has 

a small MW composed of two hydroxyl groups attached to methyl ethylene. However 

PEG 6000 is of large MW and has only two hydroxyl groups attached to a long 

repeating sequence of oxyethylene groups (m ~ 143). Thus the former plasticizer has 

a comparatively greater potential to hydrogen bond with the carbonyl groups of the 

polymer. As previously discussed, hydrogen bonding between plasticizer and polymer 

weakens intermolecular polymer-polymer interactions. This may potentially increase 

the propensity for water imbibation into the films to facilitate faster dissolution.

4.4.5 Comparison o f T s  values as determined bv TSDC, DSC and DMA

Comparative Tg values were obtained by DSC (Figure 4.17) and by DMA (Figure 

4.18a and 4.18b). A comparison is shown in table 4.7 and figure 4.19.
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Figure 4.17 DSC thermograms of Eudragit S with and without citrate plasticizers.
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Figure 4.18a Tan ô of Eudragit S with and without citrate plasticizers, at IHz, as 
obtained from DMA
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Figure 4.18b Loss Modulus of Eudragit S with and without citrate plasticizers, at 
IHz, as obtained from DMA. The loss modulus values were used to represent the Tg.

Table 4.7 Tg values obtained from the analysis of the DSC step of specific heat 
capacity change and DMA loss modulus of the different film formulations.

Film Tg(DSC)
(K)

Tg (DMA) 
(K)

EU 405.9±  0.14 410.8 ± 1.0
EU-TBC 394.0 ±0.94 394.7 ±2.1

EU-ATEC 390.8 ±2.27 388.5 ± 1.2
EU-TEC 383.7 ± 1.03 379.0 ±0 .6
EU-TA 377.9 ±3.62 378.9 ± 1.3
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Figure 4.19 Comparison of the Tg’s obtained from the analysis of the TSDC a-peaks, 
DSC step of specific heat capacity change, and DMA loss modulus of the different 
film formulations. The lines are drawn to guide the eye.

All three techniques gave a similar value for Eudragit S (DSC/DMA; 402 K and 

TSDC: 405.9 K). While the trend was similar for the plasticized films, the Tg values 

that were obtained by TSDC were lower than the Tg values determined by DSC and 

DMA, which were similar. There was a greater difference between the TSDC and 

DSC/DMA derived Tg values for the lower molecular weight plasticizers (TA and 

TEC). Also the DMA Tg value for EU-TEC was 4.7 K lower than the DSC derived 

Tg value. Although this difference is relatively small, the data are reproducible with 

very little variation. Regarding the difference in the Tg values obtained by TSDC and 

DSC/DMA, Leroy et al. (2002) reported a similar observation in their study of 

poly(vinyl methyl ether)/polystyrene blends. The observed Tg differences between the 

TSDC and DSC values were rationalized on the basis of the Lodge and McLeish 

model (2000) of the “effective concentration” concept. This model links the effective 

glass transition temperature to the average segmental mobility of the dielectrically 

active component in the blend. Leroy et al concluded that the TSDC technique allows
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measurement of the effective Tg in a blend. Effective Tg takes into account 

differences in the local environment. For example in a miscible blend of two polymers 

A and B, the local environment of a region of polymer A will have a greater 

abundance of polymer A in comparison to the bulk composition (Chung et al., 1994; 

Leroy et al., 2002). For a lower MW plasticizer more molecules are available to 

occupy the accessible sites along the polymer structure, and consequently the polymer 

segment will sense greater variations in the effective local concentration. According 

to the Lodge and McLeish model (2000), this would produce greater differences of 

the effective local glass transition that can be observed by dipolar interactions in 

comparison to the macroscopic Tg obtained by DSC or DMA. The results in figure 

4.19 are also consistent with the predictions of this model. This is why a greater 

difference is seen between TDSC and DSC/DMA for the low molecular weight 

plasticizers.

4.4.6 Ts o f  Eudrasit S/triacetin films as measured bv dynamic mechanical analysis

The correlation of the Tg values obtained by the different thermal methods are plotted 

in figure 4.20. There is a liner correlation between the TSDC and DSC results. 

Additionally, there are also linear relations among the Tg values obtained from TSDC 

and DSC with respect to that of the DMA, with the exception of the Tg of the 

sample with the smallest plasticizer (EU-TA), which is lower than expected by the 

linearity shown by the other samples (i.e. the Tg for EU-TA is below the two lines in 

Figure 20 for DMA-TSDC and DMA-DSC). TA seems to be the most effective 

plasticizer in interrupting the polymer-polymer interactions, as EU-TA displays the 

lowest Tg and the highest (^-parameter (Table 6). The relatively higher Tg value for 

EU-TA that was observed by DMA indicates that there are additional plasticizer

194



effects that are manifested in the mechanical relaxations, but not through dielectric 

and thermal relaxations.
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Figure 4.20 Correlation of Tg values of the films obtained from the different thermal 
methods. TSDC Tg versus DMA Tg (filled circles), TSDC Tg versus DSC Tg (empty 
circles) and DSC Tg versus DMA Tg (filled squares). The lines are the best fit to 
straight lines.

Anderson et al. (1995) studied polystyrene/mineral oil blends and reported the 

existence of polymer chain end effects that restrict their mobility thus resulting in 

higher moduli and strength than expected. These effects occur when the average 

diameter of the mineral oil domains was less than or equal to the average size of the 

free volume voids of the polymer chain ends. In agreement with this result, it could be 

that as TA is the smallest plasticizer, the chain end effects could affect the mean 

mechanical relaxation of EU-TA while the dielectric and thermal relaxations could be
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mainly influenced by the extent of the disruption of polymer-polymer interactions. In 

Table 1 it can be seen that TA is the only plasticizer that has a tri-substituted carbon. 

The other plasticizers all have a quaternary carbon. TA has a smaller volume and 

more mobility due to it tertiary substitution. These characteristics of TA could explain 

its ability to pack more efficiently at the chain ends of the polymer. This restriction of 

the mobility at the change ends affects mostly the mechanical relaxation and therefore 

the Tg of Eu-TA obtained from DMA is higher than would be expected from the trend 

in Figure 20. In contrast, TSDC a  peak of EU-TA (Table 6) had the highest intensity, 

smallest width and the lowest Tg. This indicates that the cooperative movements are 

extended freely along the polymer chain, resulting in disruption of the polymer- 

polymer interactions in this sample.

4.4.7 Immersion dynamic mechanical analysis

Eudragit control film and Eudragit film fabricated with TEC, TBC or ATEC 

plasticizers were tested using immersion DMA. The results show a decrease in the Tg 

of the films compared to the dry state. This must have arisen from water imbibation 

into the film since water acts as a plasticizer. Eudragit control film has the highest 

glass transition in comparison to the Eudragit plasticizer films; this can be explained 

by the small plasticizer molecules attracting water into the films. The higher Tg of 

Eudragit control film in the dry and wet state coupled to its slower dissolution in 

comparison to Eu-TEC and Eu-ATEC films indicates that free film dissolution is 

unlikely to be triggered by mechanical weaknesses or cracks in the film. Since if  this 

was the mechanism of release, Eudragit only film would have the faster dissolution as 

its higher Tg renders reduced polymer mobility and therefore reduced film flexibility.
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It would be useful to utilise TSDC to study the secondary relaxations of these systems 

while they are immersed in liquid media.

A EU + TEC 

D  EU + ATEC 
A  EU + TBC 

o Eu

lOn

320 330310 340
Temperature (K)

350 360

Figure 21 Loss Modulus of Eudragit S with and without citrate plasticizers, at IHz, as 
obtained from immersion DMA. The loss modulus values were used to represent the 
Tg.
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4.5 CONCLUSIONS

Dissolution of methacrylic acid methylmethacrylate copolymer films is influenced by 

the solubility and structure of the citrate plasticizers that were incorporated in the 

blend. The TSDC dielectric spectra indicate that subtle variations between plasticizer 

size and structure can have a distinctive influence on the dissolution behavior of these 

films. Detailed analysis of the low temperature TSDC spectra of the samples provided 

the means of identifying several secondary relaxation components. Relaxation of the 

carboxylic acid functional group was identified. Its peak area and the total secondary 

relaxation peak area linearly eorrelated with the dissolution time for all the films 

except EU-ATEC which was significantly higher. Secondary relaxation areas are 

related to polymer plasticizer interactions, and the differences between the films, 

especially EU-ATEC were mainly attributed to hydrogen-bonding, particularly 

between the plasticizer as a hydrogen bond acceptor and the carboxylic acid group of 

Eudragit S as a hydrogen bond donator. Hydrogen bonding can cause disruption of 

polymer-polymer interactions which increases the propensity for water imbibation 

into the films which contributes to faster dissolution.

The Tg values that were obtained by TSDC linearly correlated with Tg values 

measured by DSC. The shift in the Tg values indicates that the effective local Tg 

sensed by the dipoles is lower than the macroscopic Tg of the plasticized samples. No 

correlation however was found among the Tg values obtained by TSDC, DSC and 

DMA techniques with the dissolution time of the films. Polymer-plasticizer 

interactions have different influences on side chain and segmental relaxations. For 

these Eudragit films, the local environment o f the carboxylic acid groups, particularly
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their interactions with plasticizer and their free volume fluctuations, have the 

predominant effect on film dissolution.

The above results indicate that the dielectric secondary relaxations may be a powerful 

probe to predict the molecular interactions between a plasticizer and a polymer. For 

this study we evaluated in depth the interactions between Eudragit S and citrate based 

plasticizers. These findings contribute towards a better understanding of formulation 

influence on dissolution of pH-responsive dosage forms. This will achieve a 

mechanistic approach to formulation design.
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CHAPTER FIVE

Interaction o f drug and tablet core excipients with acrylic 

film coatings and influence on dissolution

200



5.1 INTRODUCTION

In the previous chapter, dissolution onset of enteric polymer films has been shown to 

be influenced by plasticizers at the molecular level. In this chapter we seek to 

establish to what extent these intrinsic properties manifest on the dissolution of enteric 

coated tablets. We seek to establish if the dissolution differences observed in polymer 

free films with different plasticizers are as substantial in tablets with acrylic polymer 

film coatings. Tablets are coated with an organic solution of the same polymer, 

Eudragit S.

Extensive research has been conducted on the inclusion of drugs into film coats; this 

is known as carrier coating and can be utilised for low dose drugs or for the separation 

of incompatible ingredients. Aulton et al. (1983) have shown that in carrier coatings 

drug can migrate from the coat to the table core. This affects the mechanical 

properties of the film and the drug release profile. Similarly, the migration of drug or 

excipients from the tablet core into the film coating can potentially occur through 

comparable mechanisms. This could alter molecular interactions in the coating which 

in turn influences membrane fluidity and permeability.

Migration of water soluble drugs or excipients from the tablet core into the coat could 

occur by their dissolution into the adsorbed moisture of film coatings. Moisture can 

arise from humidity in the storage environment (Okhamafe and York, 1989) or from 

atmospheric compressed air used in coating. Migration can also occur by drug or 

excipient dissolution in the solvent during the coating process. Alternatively, for 

drugs which are very soluble in the coating solvent, an intermediate surface layer of
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solubilised and subsequently dried drug material can be formed at the interface 

between the tablet core and polymer film (Simpkin et al., 1983).

Tablets in this study were coated using a fluidized bed coater (Figure 5.1). This 

comprises a vertical cylindrical column with a perforated base and a metal mesh lid. 

Air is supplied to the chamber from the bottom of the column and the exhaust air is 

removed from the top. A large air flow is required to maintain fluidization of the 

dosage forms. The dosage forms continuously pass up the column and fall back down 

again due to the expansion at the top of the chamber which causes a reduction in air 

velocity. The coating solution can be delivered from below or above the tablet bed 

and is fed into the path of a pressurised air stream which causes atomisation of the 

liquid into fine droplets. The instrument used in this study utilises a bottom spray 

coater. Important parameters that need to be controlled include: air pressure, which 

determines the size of the droplets, spray rates, air flow and temperature. The rate 

balance between solution spray rate and evaporation needs to be established to 

prevent aggregation of the dosage forms or spray drying of the polymer solution (Cole 

et al., 1995; Bauer et al., 1998).
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Figure 5.1 Schematic representation o f a fluidized bed coater. 1: inlet air filter, 2: air 
heater, 3:air flap, 4 :fluid bed column, 5:spray nozzle, 6:bag filter, 7:explosion flap, 8: 
spray fluid. Reprodueed from Bauer et al. (1998).

Immediate release tablets were prepared with either 5-am inosalicylic acid (5-ASA) or 

prednisolone as actives in the core. The dissolution profiles o f 5-ASA and 

prednisolone coated tablets were compared to elucidate the influence o f  drug on 

dissolution o f  the enteric coat. In a comprehensive study, Ozturk et al. (1988a) have 

shown the influence o f  an acidic drug, aspirin, on reducing the pH o f  the drug core/ 

polymer boundary layer relative to the bulk thus retarding dissolution o f  the polymer 

coating. In this study we are comparing two different actives, ionisable and non- 

ionisable, in the tablet core; hence a difference in their release profiles would be 

anticipated. However the pertinent question is if  the physicochem ical property o f  the 

drug alters the dissolution trend observed in polym er film coats fabricated with 

different plasticizers.
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5.2 OBJECTIVES

To compare the dissolution trends of tablets coated with the acrylic polymer, 

Eudragit S, fabricated with different plasticizers with polymer free films of the 

same formulation.

To evaluate how representative the dissolution trends of the polymer free films are 

when applied to a pharmaceutical product with an active and other excipients in 

the core.

To determine if the physicochemical property of the drug in the tablet core alters 

the dissolution trend observed in polymer film coats fabricated with different 

plasticizers.

Comparison of the dissolution profiles and trends of the different formulations in 

bicarbonate buffers with phosphate buffers.
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5.3 MATERIALS AND METHODS

5.3.1 Materials

5-ASA of > 99% purity was purchased from Sigma Aldrich (Poole, UK). Micronized 

prednisolone was purchased from Sanofi-Aventis (Romainville, France). Lactose was 

obtained from Ellis and Everand (Essex, UK). Polyvinyl pyrrolidone (PVP) was 

purchased from VWR International Ltd (Poole, UK). Ac-Di-Sol (croscarmellose 

sodium) was a gift from PMC International, Eire. Plasticizers studied: polyethylene 

glycol (PEG 6000), propylene glycol (P-diol), triacetin (TA), tri ethyl citrate (TEC), 

tributyl citrate (TBC), dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl 

phthalate (DOP).

5.3.2 Preparation o f 5-aminosalicylic acid and prednisolone tablets

5.3.2.1 Talet preparation methodology

Tablets with 5-ASA or prednisolone as the active ingredients were prepared to 200 

mg weight by wet granulation according to the formula in Table 5.1. Batch sizes were 

300 g and the uncoated tablets from each batch were tested to ensure batch-to-batch 

reproducibility.

205



Table 5.1 Formula for immediate release 5-aminosalicylic acid and prednisolone 200 
mg tablets.

Component % w/w per tablet W eight (mg) 
per tablet

Function

5-ASA or 
prednisolone 5 10 Active

Lactose 88.5 177 Diluent / filler

Ac-Di-Sol (half added 
intragranularly and 

half extragranularly)
0.5 1 Disintegrant

Polyvinyl pyrrolidone 
(PVP) 5 10 Binder

Magnesium stearate* 1 2 Lubricant

’ Added to dry granules and the percentage added accounted for the losses during the 
granulation process.

(i) All the powders were sifted before use to break up any agglomerates and remove 

foreign material. Lactose was added by trituration to half of the Ac-Di-Sol. The 

active ingredient and PVP were added to this mix in the bowl of a planetary mixer 

(model KM400/410, Kenwood, Hoban, UK) and dry blended at medium speed for 15 

min.

(ii) De-ionised water (granulating fluid) was added drop-wise under continuous 

stirring. Consistency of the water is regularly checked and sufficient amount is added 

until a moist, coherent mass is achieved.

(iii) The moist blend is passed through a 710 pm sieve plate to form granules.

(iv) Granules were then spread out on a metal tray in an oven at 60 °C. Granules were 

turned at frequent intervals to ensure even drying. Granules were also weighed at 10
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min intervals to determine water loss and drying continued until the loss was no 

greater than 0.1 % of granule weight.

(v) Dried granules were then milled through a 710 |im sieve to break up any clumps 

and remove any large granules. Granules > 710 pm in size were discarded. The 

granules were next milled through a 90 pm sieve to remove any fine granules. 

Therefore granules in the size range of 90 -  710 pm were selected for compression to 

attain uniformity of weight, content and hardness.

(vi) The granules were weighed and there mass noted.

(vii) Granules were added by trituration to the remaining half of the Ac-Di-Sol. This 

was then transferred to an amber glass jar and roller-mixed for 10 min.

(viii) Magnesium stearate equivalent to 1% of the granule weight measured in (vi) 

was added to the granules. This was roller mixed for 5 min.

(ix) The granules were compressed using a single punch Manesty Type F3 eccentric 

tablet press (Manesty, Speke, UK) equipped with a biconvex 8 mm punch and die set. 

The fill volume of the die was adjusted to yield 200 mg tablets with a crushing 

strength in the yield of 70 -  80 N.

5.3.2.2 Tablet weight uniformity

During tablet compression, the weight of the tablets is determined by the volume of 

the die; hence similar size and shape of granules is important to attain weight 

uniformity. This can be evaluated using the British Pharmacopoeia (BP) methodology 

whereby 20  tablets are selected at random from the batch and individually weighed. 

The mean weight is calculated.

207



5.3.2.3 Tablet content uniformity

Ten tablets were selected at random from the batch and assayed individually by 

crushing and dissolving in 0.1 M HCl. The resulting solution was then passed through 

a 0.45 pm filter and the amount of 5-ASA or prednisolone measured using UV 

spectrophotometry at 247 and 301 nm respectively and the amount calculated against 

a calibration curve.

5.3.2.4 Crushing strength

The compression load needs to be set so that tablets pass the pharmacopoeial 

disintegration and dissolutions tests and are robust enough to withstand the impact 

stress during the first few minutes of coating without attrition, chipping or capping. 

The crushing strength was regularly monitored during tablet compression using a 

tablet crushing strength tester model CT40 (Engineering systems, Nottingham, UK).

5.3.3 Film coatins

5.3.3.1 Coating formulation

Eudragit S was dissolved in 95% ethanol under high speed magnetic stirring until a 

clear solution was obtained. Plasticizers were added (20% and 15% on dry polymer 

for the water-soluble and water insoluble plasticizers respectively). No other additives 

were added so that the tablet coating resembles the free cast films prepared in the 

previous chapter. Moreover, it was desirable to simplify the coating to reduce the 

possibility of any interactions of the core with excipients and more confidently 

elucidate the influence of plasticizer on dissolution. The absence of glidants, such as

208



glyceryl monostearate (GMS) or talc, which serve to overcome the tacky phase during 

film formation however made the coating process more difficult.

5.33.2 Film coating process

The tablets were coated using an Aeromatic Strea-1 laboratory scale fluidised bed 

spray coater (Aeromatic AG, Bubendorf, Switzerland). The coater is equipped with a 

bottom spray pneumatic gun and a 1.2 mm nozzle but without a Wurster insert. A 

Gilson peristaltic pump (Type M312, Gilson, Gambetta, France) with the capability of 

speed adjustment was used to deliver coating solution to the fluid bed chamber. The 

coating parameters were optimised for each formulation to achieve maximum 

efficiency, and minimum chipping with no agglomeration. Optimisation was 

particularly made to solution spray rate, atomising pressure and air supply. The 

coating was visually inspected for any discontinuities or imperfections and once 

satisfied with its uniformity scanning electron microscopy (SEM) was performed on 

the coated tablets.

Tablets were weighed before coating and at appropriate intervals based on the 

calculated theoretical coating time. Tablets were however dried in an oven at 30°C for 

15 minutes before checking the weight gain after the theoretical coating time. Film 

thickness measured as the total weight gain by the tablets (% TWG) (Equation 5.1). 

After achieving the desired coating weight gain, tablets were placed in an oven at 30 

°C for one hour to ensure complete solvent evaporation. Dried tablets were placed in 

airtight containers until further testing.
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Total weight gain = Wt. o f tablets before coating -  Wt. of tablets after coating
Weight of tablets before coating X 100

Equation 5.1

For enteric coatings to achieve gastro-resistance, the recommended application is 4- 

6mg polymer per cm^ of tablet surface (Rohm Pharma Polymers, 2001). 5 mg per cm^ 

was chosen which corresponds to a TWG of 4.9%; this was calculated using equations 

5.2a and 5.2b.

Surface area (5) of a standard concave tablet is based on its diameter {d) and height 

{h). Height of tablet cores was measured to be 3.85 mm using a micrometer gauge 

(Mitutoya Corporation, Japan).

S = n (d*h + 0 .5 ^)

= ;r (8*3.85+ 0.5*8^) 

= 197 mm^

Equation 5.2a

Coating weight (%) = S (mrri^) * A (mscrn^)
w (mg)

Equation 5.2b

= 197 (5) = 4.9% 
200

5.3.4 Scannins electron microscopy

The film thickness of the tablets was examined by scanning electron microscopy 

(SEM) using a Phillips XL 20 scanning electron microscope (Philips, Cambridge,
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UK). The tablets were cut in half to enable measurement of the film thickness. 

Specimens were coated with gold using a sputter coater (model K550, Emitech, Kent) 

and mounted onto a sample holder and examined at an accelerating voltage of 5-15 

kV depending on the magnification required. A random sample of 4 tablets from each 

formulation was measured. The average thickness and standard deviations were 

calculated.

5.3.5 In vitro drus release testins

Drug release from the coated tablets was assessed by dissolution testing using a USP 

XXIV type II paddle dissolution apparatus (model PTWS, Pharma Test, Hainburg, 

Germany). The tests were conducted in triplicates, at a paddle speed of 50 rpm in 900 

ml dissolution medium maintained at 37 ± 0.5°C. Coated tablets were first pre­

exposed to 0.1 M HCl for two hours and then subjected to a pH transition in 0.05 M 

phosphate buffer: pH 6.8  (1 hour) to pH 7.0 (1 hour) to pH 7.2 until dissolution is 

complete. Phosphate buffer was used as the dissolution medium to maintain 

consistency with chapter four. pH changes in phosphate buffer were performed using 

~ 0.4 ml of 10 M NaOH, the pH was adjusted and checked in each dissolution vessel 

using a pH meter. 0.1 M HCl was used to simulate gastric fluid, pH 6.8  buffer the 

proximal small intestine, pH 7.0 the mid small intestine and pH 7.2 the distal small 

intestine. pH 7.2 buffer was chosen as it is more discriminative of dissolution 

performance than pH 7.4 phosphate buffer (Ibekwe et al., 2006a) . Film dissolution 

studies could not be conducted in pH 7.2 phosphate buffer as it was extremely slowly 

and therefore not practical.
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Dissolution was also conducted in pH 7.4 Krebs bicarbonate buffer and pH 7.4 

phosphate buffer following two hour tablet pre-exposure to 0.1 M HCl (Figure 5.2). 

The objective of this was to compare the release profiles of the different formulations 

in bicarbonate buffers with conventional phosphate buffers. A further objective was to 

investigate the influence of several pH transitions in near neutral buffers on the 

dissolution performance of enteric coated tablets. Ideally, a comparison between 

phosphate and bicarbonate buffers would be made however the pH of bicarbonate 

buffer could only be altered by the inclusion of an additional buffering agent, which 

would compromise the physiological property of the system.

Transition in 0.05 M 
phosphate buffer: pH 
6.8 for one hour, to 
pH 7.0 for one hour 
and then to pH 7.2.

0.1 M HCl for two 
hours

pH 7.4 0.05 M 
phosphate buffer

pH 7.4 0.05 M Krebs 
bicarbonate buffer

Figure 5.2 Summary of the media changes employed in the in vitro dissolution tests.
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5.4 RESULTS AND DISCUSSION

5.4.1 Performance o f  the tablet cores

The weight uniformity o f 5-ASA and prednsiolone tablets was 208.36 ± 4.8 mg and 

201.22 ± 3.78 mg respectively. The tablets comply with BP specifications whereby it 

is not acceptable for more than two tablets to deviate from the mean weight by more 

than 7.5 %, and also, no single tablet to differ from the mean by more than 15 %.

The content uniformity of 5-ASA and prednisolone was 9.85 ±0.16 mg/ml and 9.90 ± 

0.11 mg/ml respectively. The crushing strength was 73.2 ± 4.49 and 74.0 ±4.91 N for 

5-ASA and prednisolone respectively. The tablets therefore exhibit a good degree of 

content and weight uniformity. They are also sufficiently robust to withstand 

fluidization during coating. The onset of drug release is rapid for both drugs from the 

uncoated tablets (results discussed in a later section) thus drug release can be assumed 

to be controlled by dissolution of the film coating.

5.4.2 Dissolution o f  5-aminosalicvlic acid enteric coated tablets

5.4.2.1 Dissolution trends with different Eudragit S/plasticizer coatings

A selection of plasticizers from different groups were separately used to reduce the 

brittleness of the Eudragit S film coating to achieve a flexible, coherent, crack-free 

tablet coating. The plasticizers selected were: propylene glycol (P-diol), polyethylene 

glycol 6000 (PEG 6000), dimethyl phthalate (DMP) and tributyl citrate (TBC). P-diol
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and PEG 6000 are polyols, DMP is an organic phthalate ester and TBC is an organic 

citrate ester. These particular plasticizers were selected as they gave rise to different 

dissolution results when incorporated into isolated cast films, furthermore the 

differences were of large magnitude. Hence this small group of plasticizers will give 

us an insight into whether the same dissolution trends are observed on coated tablets.

Figure 5.3 shows the drug release profiles of 5-ASA tablets coated with different 

formulations of Eudragit S/plasticizer to a TWG of 4 .9 %. Each formulation gives rise 

to a different dissolution profile; the lag-times and time to 50 % drug release (T5o%) 

are shown in Table 5.2.

100

p-diol

A PEG 6000
60 -

DMP

TBC

50 100 150 200 250 300 350 400 450 500

pH 6.8 pH 7.0 pH 7.2 phosphate buffer

Time (min)

Figure 5.3 Dissolution profiles of Eudragit S/plasticizer (P-diol, PEG 6000, DMP and 
TBC) coated 5-aminosalicylic acid tablets in phosphate buffer (following a 2 hour 
exposure to acid-not shown). Mean values ± SD.
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Table 5.2 Lag time and T$o% (min) of 5-aminosalicylic acid tablets in pH 7.2 
I phosphate buffer (times include 2 hour total pre-exposure to pH 6.8  and pH 7.0 

phosphate buffer) following a 2 hour exposure to acid. Tablets are coated with 
Eudragit S and one of the different plasticizers.

Plasticizer blended with 
Eudragit S Lag-time (min) Tso»/o (min)

P-diol 140 175

PEG 6000 170 205

DMP 185 270

TBC 205 350

Referring back to the results from the previous chapter, it is noticeable that the 

dissolution onset of isolated cast films (Figure 5.4) is substantially longer than the lag­

time of drug release from coated tablets.
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Figure 5.4 Onset of dissolution in pH 7.4 phosphate buffer of Eudragit S isolated cast 
films fabricated with different plasticizers. Mean values ± SD.
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From a comparison of figures 5.3 and 5.4, it can be inferred that polymer free films 

are predictive of the dissolution trends for the coated formulations with the extreme 

profiles, however not necessarily predictive for the coated formulations with 

intermediate release patterns. P-diol and TBC plasticizers blended with Eudragit S 

give rise to the fastest and slowest dissolution respectively for both free films and 

coated tablets. However for the plasticizers which give rise to intermediate polymer 

dissolution, PEG 6000 and DMP, the trend is different for the free films and coated 

tablets.

5.4.2.2 Reasons fo r  the slower dissolution o f cast films in comparison to sprayed films

From figures 5.3 and 5.4 it can be noticed that free films dissolve much slower than 

tablet coatings. The magnitude of the difference between the two coatings with the 

extreme dissolution trends (P-diol and TBC) is almost seven-fold greater for the free 

films in comparison to the coated tablets. This can partly be explained by the polymer 

film formation process (cast versus sprayed). In solution, the polymer molecules are 

mobile, and on solvent evaporation the polymers intertwine to form a gel-like state at 

a relatively high polymer concentration. This gel-like state eventually ends up into a 

solvent-free polymeric film. The properties of the film depend on the evaporation rate. 

Cast films are formed under ambient conditions, whereas for tablet coatings solvent 

evaporation is assisted by air flow and elevated temperatures. Spraying of droplets 

onto the surface and evaporation of solvent occur simultaneously for tablet coatings 

(Figure 5.5) (Bando and McGinity, 2006). The rate of solution application and drying 

contribute to determining how uniformly the droplets are distributed on the tablet 

surface and the quality of the film. For spray coated films, the solution is added layer 

by layer and formed by coalescence of droplets, however for cast films, all the
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solution is added at the same time. These differences in the process of film formation 

will influence the intertwining of polymer chains and final film structure.

o o

Impingement Wetting Spreading

sy m b o lizes evaporation of so lvent

Figure 5.5 Film formation onto solid surfaces by spray coating. Reproduced from 
Arwidsson and Rudén (1993).

Spitael and Kinget (1977b) have described sprayed films as having a ‘droplet’ 

structure with a higher degree of porosity. They compared the permeability of 

caffeine and HCl in sprayed and cast free films of cellulose acetate phthalate 

(prepared from organic solutions), and found the former to be substantially more 

permeable. A comparison of spray-coated and solution cast films of ethylcellulose 

pseudolatex membranes has been conducted (Sun et al., 1999). The authors found 

sprayed films to be harder and more brittle than cast films, however it is uncertain the 

extent to which the findings of this study are applicable to organic films. Pickard et al. 

(1972), found the moisture permeation to be almost three-fold greater for air-sprayed 

in comparison to cast films of HPMC/ethylcellulose.
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A further explanation for these differences in the absolute dissolution times may be 

explained by the film thickness. Film thickness is greater for isolated cast films in 

comparison to tablet coatings at 120-130 pm and 60.1 ± 3.85 pm respectively. 

Furthermore, the coating thickness is even lower at the tablet edge reaching 35.2 ± 

9.67 pm.

Tablet film coatings have two boundaries: drug/polymer film boundary and polymer 

film/dissolution medium boundary. The drug is in the solid state blended with other 

excipients in the core. Whereas in the free film dissolution study the drug is in 

solution and therefore ionised. 5-ASA is dissolved in the phosphate buffer and is in its 

anionic form; this results in a lower pH near the polymer film/drug boundary which in 

turn reduces polymer dissolution rate. As for the tablet, dissolution rate of the film is 

initially fast at the polymer/dissolution medium interface however then slows down 

due to the generation of from the ionisation of 5-ASA (Figure 5.6). This lower pH 

at the drug/polymer interface retards polymer film dissolution near the tablet surface. 

Enteric tablet coating have been reported to stay intact up to the point when 90 % of it 

has dissolved. Tablet core disintegration starts to occur when 95 % of the coating has 

dissolved (Ozturk et al., 1988a). As the edge of the tablet has the thinnest coating, this 

region is observed to be the first to completely dissolve.
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Figure 5.6 Diagram representing enteric polymer dissolution and drug release, HA is 
weakly acidic drug, HP is enteric polymer and HB is buffer. Adapted from Ozturk et 
al. (1988a).

5.4.2.3 Interaction o f  drug and excipients in tablet core with the polymer film  coat

The tablet core is likely to impart an affect on polymer film dissolution. As previously 

mentioned, interaction of the drug and core excipients with the polymer film coating 

can occur. With specific reference to this tablet formulation, complexes between the 

binder, polyvinyl pyrrolidone (PVP), and Eudragit S are possible. Interaction can 

occur at the core/polymer boundary or PVP may even permeate into the coat. Possible 

mechanisms o f interaction are inter-macromolecular hydrogen bonds between the 

undissociated carboxylic groups of Eudragit S and the carbonyl groups of PVP (Jin et 

al., 2005) (Figure 5.7a). Alternatively, the partial positive charge on the nitrogen atom 

of PVP can facilitate its bonding to the carbonyl from Eudragit S (Figure 5.7b). 

However the formation of the latter structure is less favourable due to stearic 

hindrance arising from the ring and polymer chain thus rendering the nitrogen atom 

inaccessible. Another possibility is the formation of two hydrogen bonds between one
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monomer of PVP and one monomer of Eudragit S (Kaczmarek et al., 2001). An 

aqueous media is required to initiate this reaction which could become available from 

humidity in the atomizing and drying air during the spray coating process, or from 

HCl and buffer permeation into the tablet core during the dissolution process.

C H i  CH-
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  HO

Fig. 7a
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■CH. CH-

Ô-0 = = C

OH
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Fig. 7b

Figure 5.7 Interaction of the binder polyvinyl pyrrolidone (PVP) with poly (acrylic 
acid) (PAA). Reproduced from Kaczmarek et al. (2001).

PVP also has the potential to interact with carbonyls present in plasticizers. Carbonyls 

in plasticizers may be more accessible than those of the Eudragit polymer as they are 

not part o f a macrochain. The plasticizers studied have different numbers of carbonyl 

groups in their structure with different accessibilities which will determine their 

interaction with PVP.
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The disintegrant, croscarmellose sodium, is a cross-linked form of 

carboxymethylcellulose sodium (NaCMC). The carboxyl group on NaCMC has a pKa 

of 4.3, the sodium carboxylate groups could react with protons to form carboxylic 

acids (Rohrs et ah, 1999). This protonation needs to me mediated by moisture. 

Protonation may occur during the two hour acid exposure whereby the acid imbibes 

into the core. The extent of this acid imbibation depends on the porosity and tortuosity 

of the hydrated polymer coating which in turn depends on its microstructure. 

Protonation of the disintegrant has been shown to alter the dissolution profile of 

delavirdine tablets, this may be related to impairment in the wicking and swelling 

ability of the disintegrant (Rohrs et ah, 1999).

Drug migration from the tablet core into the polymer coat may occur. A study by 

Okhamafe and York, 1989 showed that incorporation of up to 10 % drug into polymer 

cast films alters their glass transition and crystallinity. Eudragit S is an amorphous 

polymer, however if  the crystalline drug 5-ASA dissolves in it then this may promote 

the formation of crystalline regions in the polymer film.

5.4.2.4 Reasons why plasticizers may have different influences on dissolution o f  tablet 

film  coats in comparison to polymer free films

Plasticizers have been shown to alter the permeability o f enteric coatings to water 

vapour and gastric juice (HCl). Whether this permeability is reduced or enhanced and 

its extent is dependent on a number of mechanisms; one of which is the plasticizer’s 

ability to reduce polymer-polymer interactions thus increasing segmental mobility and 

consequently reducing the activation energy for diffusion (Porter and Ridgway, 1982). 

Water vapour permeability hydrates the polymer layer and may further enhance the
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permeability due to the plasticizing effect of water. On the other hand, diffusivity may 

be reduced due to extensive hydrogen bonding between the water and plasticizers or 

other non-polymeric additives (Okhamafe and Iwebor, 1986). Increased permeability 

of the film to buffer species is likely to influence dissolution profile of the tablet and 

as previously discussed, sprayed films have different permeabilities to cast films. Ion 

transfer between the buffer solution and the film involves two steps: penetration of the 

electrolytic solution into the film and diffusion of ions within it (Raffin et al., 1995). 

Permeability to gastric juice, more specifically ions, during the two hour pre­

exposure to HCl will affect the commencing ionization of the polymer on exposure to 

buffer.

Although drug permeability coefficients are usually inversely proportional to film 

thickness; this is not always the case. Ion permeability through different formulations 

of cellulose acetate phthalate films (no plasticizer/ triacetin/ diethylphthalate) showed 

that the permeability coefficient decreases with increasing film thickness except in the 

case of diethylphthalate films (Raffin et al., 1996). From this it can be inferred that the 

rate o f Eudragit S film dissolution may not always correlate to film thickness for the 

different formulations. This may explain why the intermediate dissolution trends were 

different for free films and films coated onto tablets.

Internal stresses develop within the film coating when the polymeric solution is 

applied to a solid surface (Rowe, 1978). The stress is proportional to the elastic 

modulus of the film and if the internal stress exceeds the cohesive strength of the film 

then the coating will split or crack (Felton and McGinity, 2002). It may be argued that 

leaching of plasticizer out of the polymer film may have arisen while tablet is
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immersed in HCl or buffer media, thus increasing the internal stress of the film and 

the incidence of crack formation. However all the tablet coatings were examined by 

SEM at different intervals from the time of immersion in the dissolution media, and 

they showed no appearance of cracks. Hence we are confident that the onset of drug 

release was not through a crack or flaw in the coating however due to dissolution of 

the polymer (Figures 5.8a and 5.8b).

W M B

Figure 5.8a

S I#

Figure 5.8b

Figure 5.8 SEM cross-sections of Eudragit S/TEC coated prednisolone tablets after 
exposure to HCl for 2 hrs (a) and after exposure to HCl for 2 hrs followed by buffer 
for 2 1/2 hrs ( b ) .
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Figure 5.8c

Figure 5.8 SEM cross-sections o f Eudragit S/TEC coated prednisolone tablets after 
exposure to HCl for 2 hrs followed by buffer for 2 hrs (c)

5.4.3 Dissolution o f  enteric coated prednisolone tablets

5.4.3.1 D issolution trends with different Eudragit S/plasticizer coatings and their 

comparison to 5-aminosalicylic acid coated tablets

The Eudragit S/plasticizer form ulations used to coat 5-ASA tablets were applied to 

prednisolone tablets to elucidate any drug influences on dissolution (Figure 5.9 and 

Table 5.3).
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Figure 5.9 Dissolution profiles o f Eudragit S/plasticizer (P-diol, PEG 6000, DMP and 
TBC) coated prednisolone tablets in phosphate buffer (following a 2 hour exposure to 
acid-not shown). Mean values ± SD.

Table 5.3 Lag time and l 5o%(min) of prednisolone tablets in pH 7.2 phosphate buffer 
(times include 2 hour total pre-exposure to pH 6.8  and pH 7.0 phosphate buffer) 
following a 2 hour exposure to acid. Tablets are coated with Eudragit S and one of the 
different plasticizers.

Plasticizer blended with 
Eudragit S Lag-time (min) 50% (min)

P-diol 

PEG 6000 

DMP 

TBC

70 (starts to dissolve in pH 
7.0 phosphate buffer) 

105

130

160

115

185

220

230
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Interestingly, the dissolution lag times and Tso% are considerably shorter for 

prednisolone tablets compared to 5-ASA tablets despite the lower solubility of the 

former drug in pH 7.2 phosphate buffer and the consequential slower dissolution of 

the uncoated tablets (Figure 5.10). A possible explanation for this is the ionization of 

5-ASA creating an acidic environment around the surface of the tablet core which 

retards polymer film dissolution. Furthermore, with the different actives a difference 

in the dissolution trend arises. Eudragit S/TBC and Eudragit S/DMP prednisolone 

coated tablets have similar dissolution onset times and profiles; however Eudragit 

S/TBC gives rise to a much slower release for 5-ASA tablets. Moreover, the 

difference between the dissolution profiles of Eudragit S/P-diol and Eudragit S/PEG 

6000 coated prednisolone tablets is of greater magnitude than that observed for 5- 

ASA coated tablets. These differences between 5-ASA and prednsiolone tablets can 

only be attributable to the active ingredient, as everything else in the tablet core or 

coating formulation is the same. It appears that the tablet core and the polymer film 

coating are not two discrete entities, however interact with one another in some way 

that influences the dissolution of the polymer film and thus the drug release that 

proceeds. From these results it can be proposed that the molecular interactions of the 

plasticizer with the polymer have the predominant influence on determining the 

dissolution of the polymer film; however the components of the tablet core, including 

the active and excipients can also exert an affect through different mechanisms.
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Figure 5.10 Dissolution of immediate release 5-ASA and prednsiolone tablets in pH 
7.2 phosphate buffer. Mean values ± SD.

5.4.3.2 Dissolution o f Eudragit S coated prednisolone tablets fabricated with the 

recommended plasticizers and implications on therapeutic efficacy

Degussa (producer of Eudragit S) recommends certain plasticizers for use with the 

poly(methacrylic acid methylmethacrylate) copolymer on the basis o f their 

compatibility and favourable alteration of the mechanical properties of the film 

coating. These recommended plasticizers are: triethyl citrate (TEC), triacetin (TA), 

P-diol and PEG 6000 (Rohm Pharma Polymers, 2001). The drug release profile of 

prednisolone tablets coated with different formulations of Eudragit S and the 

recommended plasticizers are shown in Figure 5.11 and Table 5.4.
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Figure 5.11 Dissolution profiles of Eudragit S/plasticizer (P-diol, PEG 6000, TEC 
and triacetin) coated prednisolone tablets in phosphate buffer (following a 2 hour 
exposure to acid). Mean values ± SD.

Table 5.4 Lag time and T5o«/o(min) of prednisolone tablets in pH 7.2 phosphate buffer 
(times include 2 hour total pre-exposure to pH 6.8  and pH 7.0 phosphate buffer) 
following a 2 hour exposure to acid. Tablets are coated with Eudragit S and one of the 
different plasticizers.

Plasticizer blended with 
Eudragit S Lag-time (min) Tsoo/o (min)

P-diol 70 115

PEG 6000 155 185

TEC 190 245

TA 320 420
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The recommended plasticizers give rise to different drug release profiles. These 

profiles, as with isolated free films, do not appear to correlate to the glass transition 

temperature. SEMs of all the Eudragit S/plasticizer tablet coatings show similar 

coating thicknesses and smooth, eraek-free coatings (Figure 5.12a-12e). This is even 

the case for the Eudragit S/P-diol coating (Figure 5.12d) for which two glass 

transition temperatures were detected in the previous chapter; these were ascribed to 

plasticized and non-plasticized regions in the free film.

Figure 5.12a SEM of the surface 
of Eudragit S/TEC coated 
prednisolone tablet

Figure 5.12b SEM eross-section 
I of Eudragit S/TEC coated 

prednisolone tablet
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Figure 5.12c SEM cross-section 
of Eudragit S/PEG 6000 coated 
prednisolone tablet

Figure 5.12d SEM cross-section 
of Eudragit S/P-diol coated 
prednisolone tablet

For Eudragit S only coatings with no plasticizer, however, there are very apparent 

cracks on the surface and cross-section of the coating layer (Figure 5.13a,b). Despite 

this the enteric coating was robust for two hours in acid and release was observed 

after 30 minutes in pH 6.8 buffer, i.e. below the pH threshold of the polymer. Internal 

stresses and rigidity within the film, however, probably give rise to core disintegration 

and drug release prior to 95 % of the coating dissolving. This result was therefore not 

directly compared to the other coating formulations as we believe the mechanism 

underlying drug release to be different.
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Figure 5.13a Surface SEM o f 
Eudragit S coated prednisolone 
tablet (no plasticizer).

Figure 5.13b SEM cross- 
section o f  Eudragit coated 
prednisolone tablet (no 
plasticizer)

These dissolution differences between the form ulations have im portant implications 

particularly as the Eudragit S polymer is utilised for site-specific delivery. Its current 

use is in pharm aceutical products for the treatm ent o f  inflam m atory bowel diseases 

(IBD) is critical that drug is released at the inflamed regions o f  the intestine. Hence by 

an alteration o f  the plasticizer in the film coating therapeutic efficacy o f  the drug may
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be compromised. This influence that excipients impart on drug release from dosage 

forms is not a new phenomenon in pharmaceutics. In the 1960s and 70s differences in 

the bioavailability of the immediate release antidiabetic drug, tolbutamide, and the 

steroid, prednisolone, where reported between brands due to different excipients in 

the formulation (Campagna et al., 1963; Levy, 1964). Toxicity was reported with 

phenytoin when calcium sulphate was replaced with lactose (Tyrer et al., 1970).

Nevertheless, this plasticizer influence on drug release from enteric formulations can 

be favourably utilised by pharmaceutical scientists and physicians. Formulations can 

be designed and prescribed to treat different regions of the gut affected by disease. As 

an example, P-diol can be used as a plasticizer in pH-responsive preparations to treat 

patients where the inflamed regions have reached proximal regions of the gut. 

However if a more distal release is desired then the appropriate formulation can be 

chosen, for example with TBC as a plasticizer, and designed into a multiple unit 

dosage form. High surface area to volume ratio dosage forms are more desirable; 

since slow in vitro dissolution will be further exaggerated in the large intestine, partly 

due to its limited fluid availability.

These findings can be utilised for other enteric polymers designed to release drugs in 

the proximal small intestine. Enteric coatings are not without their problems. A lag 

time of 1.5 to 2 hours post-gastric emptying has been reported for complete 

disintegration of an enteric coated capsule (Wilding et al., 1993; Ebel et al., 1993). 

This is not favourable if the drug has very poor solubility which would therefore 

demand complete release before reaching the large intestine. Slow dissolution is also 

not desirable if a rapid therapeutic effect is needed, for example analgesic action by
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non-steroidal anti-inflammatory drugs (NSAIDs). Extensive research is being carried 

out on ways to achieve rapid small intestinal drug release (Peamchob et ah, 2004; Liu 

et al., 2007) , use of the appropriate plasticizer in conjunction with other formulation 

strategies may help achieve rapid release.

5.4.3.3 Dissolution o f  Eudragit S coated prednisolone tablets fabricated with a 

homologous series o f  plasticizers

Prednisolone tablets were coated with Eudragit S plasticized with one o f phthalate 

ester: dimethyl phthalate (DMP), dibutyl phthalate (DBP) or dioctyl phthalate (DOP). 

The longer the alkyl chain length the lower is the aqueous solubility of the plasticizer 

with DMP, DBP and DOP having solubilities of 0.4 %, 0.15 % and 0.0002 % m/v 

respectively. Despite the different aqueous solubilties of the plasticizers and the 

different glass transition temperatures of the free films, the dissolution profiles of the 

coated tablets are very similar (Figure 5.14). This is a surprising result considering 

that the free films have very different dissolution times. It may be that the 

interactions of drug and excipients in the core with the coating, outweighs the 

differences in molecular interactions arising from the different chain length phthalates 

with Eudragit S polymer.
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Figure 5.14 Dissolution profiles of Eudragit S/plasticizer (DMP, DBP and DOP) 
coated prednisolone tablets in phosphate buffer (following a 2 hour exposure to acid- 
not shown). Mean values ± SD.

5.4.4 Influence o f release media composition on dissolution profiles o f  coated tablets

As explained in chapter four, dissolution of the films could not be measured in 

bicarbonate buffers due to the technical difficulties in maintaining buffer stability in 

permeation cells. In this set of experiments the dissolution profile of a selection of 

coated 5-ASA and prednisolone tablets is explored in Krebs bicarbonate buffer 

stabilised using 5 % CO2 The main objective was to investigate if bicarbonate buffer 

media give rise to different dissolution trends to those observed in phosphate buffers. 

Another objective was to evaluate if a pH transition in near neutral buffers affects the 

dissolution trends. The formulations selected were the same as those in the first part 

of the study so that the plasticizers represent the different groups.
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Tablets were exposed to 0.1 M HCl for two hours and then transferred to pH 7.4 

Krebs bicarbonate buffer or 0.05 M phosphate buffer at the same pH for a direct 

comparison. Figures 5.15 and 5.16 show the dissolution trends of coated 5-ASA 

tablets in Krebs bicarbonate buffer and phosphate buffer respectively. The dissolution 

trends of the four formulations are the same in the two different media. In Krebs 

buffer, however, the lag-time is 60 minutes longer. This corroborates the findings 

from chapter two whereby the dissolution profile of enteric coated tablets is 

dependent on the buffer species, its concentration and buffer capacity. Furthermore, 

the trends observed in these two figures are similar to those in figures 5.3 whereby the 

tablets undergo a transition through different near neutral pH phosphate buffer media.
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100 1 5 0 200 2 5 0

Time (min)

Figure 5.15 Dissolution profiles of Eudragit S/plasticizer (P-diol, PEG 6000, DMP 
and TBC) coated 5-aminosalicylic acid tablets in pH 7.4 Krebs bicarbonate (following 
a 2 hour exposure to acid-not shown). Mean values ± SD.
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Figure 5.16 Dissolution profiles of Eudragit S/plasticizer (P-diol, PEG 6000, DMP 
and TBC) coated 5-aminoslaicylic acid tablets in pH 7.4, 0.05 M phosphate buffer 
(following a 2 hour exposure to acid-not shown). Mean values ± SD.

Figures 5.17 and 5.18 show the dissolution trend of coated prednisolone tablets in 

Krebs bicarbonate buffer and phosphate buffer respectively. Again, the lag-time is 

longer in Krebs buffer in comparison to phosphate buffer. Interestingly, the lag-time 

is prolonged by 60 min, which is of the same magnitude as that for 5-ASA tablets. 

This confirms the propositions we put forward in chapter two concerning the Bronsted 

catalysis theory and its role in ionisation of enteric polymers. The buffer medium 

composition is not only critical for the dissolution of ionic drugs, but also for 

modified release dosage forms formulated with ionisable polymers. The last two 

figures illustrate this for the non-ionisable drug prednisolone which has the same 

solubility in different aqueous media.

Moreover, once drug release starts, the actual dissolution profile of prednisolone 

tablets is slower in Krebs buffer with a much longer time to 100 % drug release in
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comparison to phosphate buffer. This was also observed for 5-ASA tablets however 

not to the same extent. This may be related to the poorer aqueous solubility of 

prednisolone whereby the slower dissolution of the coating manifests to a greater 

extent on its release from the core.
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Figure 5.17 Dissolution profiles of Eudragit S/plasticizer (P-diol, PEG 6000, DMP 
and TBC) coated prednisolone tablets in pH 7.4 Krebs bicarbonate (following a 2 
hour exposure to acid). Mean values ± SD.
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Figure 5.18 Dissolution profiles o f Eudragit S/plasticizer (P-diol, PEG 6000, DMP 
and TBC) coated prednisolone tablets in pH 7.4, 0.05 M phosphate buffer (following 
a 2 hour exposure to acid- not shown). Mean values ± SD.
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5.5 CONCLUSIONS

This chapter shows that drug release from enteric coated tablets is influenced by the 

plasticizer component of the film coating. Polymer free film studies are predictive of 

the dissolution trends for the coated tablets with the extreme profiles, however not 

necessarily predictive for the formulations with the intermediate release patterns. It is 

speculated that leaching of drug and core excipients into the film coat and the 

molecular and physical interactions that arise also influence dissolution of the pH- 

responsive polymer.

Prednisolone and 5-ASA tablets coated with Eudragit S films fabricated with different 

plasticizers achieve the same dissolution trends in bicarbonate buffers as with 

phosphate buffers. However the release profiles for both drugs are markedly slower in 

the bicarbonate buffer. This emphasises the need to define the buffer composition of 

the dissolution medium as it is not only critical for the dissolution of ionic drugs, but 

also for modified release dosage forms formulated with ionisable polymers.
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CHAPTER SIX

General discussion and future work
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6.1 GENERAL DISCUSSION AND CONCLUSIONS

Modified release systems may be utilised to extend or delay drug release to specific 

regions of the gastrointestinal (GI) tract where optimum drug absorption occurs or for 

the treatment of local diseases. The focus of this study was on pH-responsive dosage 

forms for targeting of the model drugs, 5-aminosalicylic acid (5-ASA) and 

prednisolone, to the ileo-colonic region of the GI tract for inflammatory bowel disease 

(IBD) therapy. We endeavoured to understand the behaviour of these systems and the 

elements that influence drug release from them. We achieved this through the 

characterisation and simulation of human small intestinal luminal fluids as well as 

investigation of the interaction of excipients in the formulation, primarily plasticizers, 

with the pH-responsive polymer. This improved understanding enables selection of 

appropriate media for use in dissolution tests and brings us closer to attaining in vitro/ 

in vivo correlations. An understanding of polymer-plasticizer interactions will help 

reduce the empirical approach to formulation design.

The work started with identification of ionic factors that influence dissolution of the 

pH-responsive polymer, Eudragit S (methacrylic acid methylmethacrylate 

copoloymer). Polymer ionisation was proved to be regulated by the Bronsted catalysis 

law and therefore the pKa of the buffer species and its concentration in the dissolution 

medium. The ionic luminal environment of small intestinal fluids was simulated in 

vitro through the use of physiological bicarbonate buffers at electrolyte concentrations 

and ionic strength corresponding to those in jejunal and ieal fluids. Bicarbonate media 

were shown to provide a better reflection of the in vivo disintegration times published 

in the literature of these ileo-colonic delivery systems. On designing dissolution tests
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it is important to accurately define the ionic composition of the dissolution medium to 

attain meaningful results. These findings can be extrapolated to other systems with 

pH-responsive polymers as they all have the same underlying step for dissolution; 

ionisation of acidic functional groups.

The next focus was on the drug and its physicochemical characteristics in relation to 

solubility in different physiological media. Dug solubility was measured in human 

intestinal fluids (HIT) and compared to that in physiological media. Bicarbonate 

buffers provided a good reflection of the solubility of 5-ASA in jejunal fluids. The 

HIT solubility of the non-ionisable drug, prednisolone, was not well reflected by any 

of the physiological media, including fasted state simulated intestinal fluid (FaSSIF) 

containing intestinal surfactants. This may arise because the bile salt composition in 

HIF is not accurately simulated in FaSSIF. Physiological bicarbonate buffers can 

provide a surrogate to HIF for examining the solubility of ionisable drugs. HIF are not 

only difficult and expensive to attain however also ethically questionable and 

therefore not feasible for routine use.

Knowledge of drug solubility and fluid availability in different regions of the GI tract 

can contribute to the decision making process in dosage form design. Currently, only 

drugs that are in class I of the biopharmaceutics classification system (BCS) (high 

solubility, high permeability) are considered for waiving in vivo bioequivalence 

testing for the approval of new immediate release dosage forms. In future years, 

biowaivers may be approved if the drug expresses high solubility in the region of the 

GI tract it is designed to target; not just high solubility in water. For example non 

steroidal anti-inflammatory drugs which are usually enteric coated display low

241



solubility in the stomach however higher solubility in the near neutral pH of the small 

intestine (Sheng et ah, 2006). This further stresses the importance of realistic in vitro 

dissolution tests as the results derived from them are heavily relied upon for granting 

biowaiver status to an oral dosage form.

Now that elements of the dissolution medium influencing drug release from pH- 

responsive systems have been identified, the rest o f the study focused on the system’s 

formulation; with particular reference to polymer-plasticizer interactions and their 

influence on dissolution. Plasticizers are known to alter molecular mobility of the 

system by configuring between the chains and altering polymer intermolecular 

interactions thus increasing film flexibility. We therefore thoroughly investigated 

molecular mobility of the film systems through characterisation of their segmental 

(glass transition) and local (secondary) relaxations. A range of techniques were 

employed including differential scanning calorimetry (DSC), dynamic mechanical 

analysis (DMA) and thermally stimulated depolarisation currents (TSDC). Eudragit S 

polymer free films formulated with different plasticizers were screened. Onset of film 

dissolution was measured using two-compartment permeation cells.

Film dissolution was found to be influenced by the solubility and structure o f the 

plasticizer. Plasticizer structure affects its interaction, particularly hydrogen bonding, 

with the polymer. This is supported by the TSDC results whereby the total secondary 

relaxation area and relaxation area o f the carboxylic acid functional group of Eudragit 

S were found to correlate with dissolution times of the films. Hydrogen bonding can 

cause disruption of polymer-polymer interactions thus increasing the propensity for 

water imbibation into the films and increasing dissolution rate. No correlation
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however was found among the glass transition temperatures obtained by TSDC, DSC 

and DMA techniques with dissolution time of the films. For pH-responsive films, the 

local environment of the carboxylic acid groups of the polymer predominates over 

segmental relaxations in influencing film dissolution.

The next step was to establish if the dissolution trends observed with the different film 

formulations are representative of Eudragit S coated immediate release 5-ASA and 

prednisolone tablets. The drug release from enteric coated tablets was also found to be 

influenced by the plasticizer component of the film coating. The polymer free films 

are predictive of the dissolution trends for the coated tablets with the extreme profiles, 

however not necessarily predictive for the formulations with the intermediate release 

patterns. It is speculated that leaching of drug and core excipients into the film coat 

and the molecular and physical interactions that arise also influence dissolution of the 

pH-responsive polymer.

These findings will aid in mechanistic formulation development. This will reduce 

time and resources, and more importantly, achieve improved drug bioavailability. 

With reference to IBD, formulations can be designed to treat different groups of the 

heterogeneous patient population. Hence if more proximal regions of the small 

intestine are affected, a plasticizer which gives rise to a faster onset of tablet 

dissolution can be selected.
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6.2 FUTURE WORK

❖ It would be of interest to characterise the ionic composition of fluids from 

different regions of the large intestine. This information, coupled with the 

available information in the literature on the gastric environment, will allow 

simulation of the dosage form as it passes through the entire GI tract.

Now that promising results with bicarbonate buffers have been achieved it would 

be beneficial to simulate other GI parameters and mimic them collectively in 

dissolution tests in vitro. A  parameter that warrants investigation is viscosity of GI 

luminal fluids, particularly of the distal small intestine and large intestine. While 

this will be difficult to simulate, our preliminary dissolution experiments using 

media with elevated viscosity have shown interesting results.

❖ Drug solubility was tested in ileostomy fluids from patients with IBD as an 

alternative to ileal fluids. It would be useful if we attained specimens of ileal fluid 

from healthy patients and compared drug solubility in these two media. The same 

can be performed for colonic and colostomy fluids. This will give an insight into 

drug behaviour in patients and special considerations may need to be made when 

designing the formulation. Measurements of intrinsic drug solubility would also 

be beneficial.

<♦ The solubility findings with 5-ASA and prednisolone can be generalised to other 

drugs with similar physicochemical properties. Nevertheless, it would be useful to 

screen a small library of actives; including acidic and basic drugs with different
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pKa values as well as poorly soluble drugs with different log P values to establish 

how the influence of buffer species and intestinal surfactants along with their 

concentrations changes with these properties.

I Immersion DMA is one of the few techniques that can study the properties of a 

system while it is actually immersed in liquid. Only one media was used during 

the course of our study with this technique; the next step would be to experiment 

with different media. Of particular interest would be changing the ionic strength 

of the media or inclusion of intestinal surfactants.

A ‘powder pocket’ has recently been innovated for use in DMA (Royal 1 et al., 

2005). This can contain a sample, such as a powder, and allow its mechanical 

properties to be measured as a function of temperature. Prior to this novel method 

only self-supporting materials could be studied by DMA. Although this method 

has only been developed for use in the dry state, it has implications for the study 

of dosage forms such as pellets or fragments from a tablet. Useful information can 

be derived such as drug or core excipients leaching into functional coatings and 

their affect on the thermal-mechanical properties o f the system. It may be possible 

to adapt this powder pocket so that it also effectively functions in immersion 

mode.

<♦ There was only time to investigate the influence of one concentration of 

plasticizer on the dissolution of pH-responsive films. It would be worthwhile to 

test a range of concentrations for each plasticizer.
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