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a b s t r a c t

We use a change of dynamical variables to prove, subject to certain conditions on
the parameters, that a nonmonotone invariant manifold exists and is the graph
of a convex function for the planar Nagylaki–Crow fertility–mortality model from
population genetics with n = 2. Our results are obtained without the common
assumption that fertilities or death rates are additive, and are not restricted to
the case that the model is competitive in the new coordinates. We also provide
numerical examples demonstrating that the manifold need not be the graph of
a convex function, smooth, unique or globally attracting, and that the model
exhibits a sequence of nonmonotone manifolds similar to those studied by Hirsch
for competitive Kolmogorov systems (Hirsch 1988).

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we study invariant manifolds for the Nagylaki–Crow model, a continuous-time model from
population genetics, sometimes referred to as the fertility–mortality model [1], because these are the two
opposing forces at play for the model. By fertility, we mean the average number of offspring produced per
unit time by parents with specified genotypes. Meanwhile, mortality refers to the death rate for a given
(parental) genotype.

One of the earliest attempts at considering different fertilities for mating pairs was made by Penrose
in [2]. He showed that his basic discrete-time model with additive fertilities gave essentially the same results
as the usual discrete selection model. For the next few decades, most investigations into differential fertility
were only made for the discrete model [3].

Then in 1961 Rucknagel and Neel produced experimental evidence of fertility differences among mating
pairs for the locus corresponding to sickle cell anaemia [4], a single-locus genetic disorder affecting humans.
This revived interest in differential fertility models.
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Over a decade later, Nagylaki and Crow provided a derivation for a continuous-time model [5,6], now
known as the Nagylaki–Crow model. However, they restricted their attention to the case of additive fertilities
when analysing the model. Another special case of this model is analysed in [7,8] with symmetric fertilities
and no deaths. Hadeler and Glas showed that all orbits for the Nagylaki–Crow model with no deaths
converge to some fixed point [9]. They also proposed a change of variables, which was later used in [10]
to demonstrate that the model can have periodic orbits. In the nineties, Szucs proved the existence of an
invariant manifold connecting the two heterozygotic fixation states in a two allele fertility-selection model
where the fertilities were additive. He also showed that with the assumption of additivity of mortalities [11]
this invariant manifold coincided with the Hardy–Weinberg manifold where the genotypic frequencies are
the product of allele frequencies. Szucs and Akin also showed in [12] that with additivity of positive fertilities
and mortalities the Hardy–Weinberg manifold is invariant, and with additional conditions on the relative
sizes of fertilities and differences in mortalities implied convergence of solutions onto the Hardy–Weinberg
manifold.

Our aim here is to extend this work by showing that the Nagylaki–Crow model possesses at least one
nonmonotone invariant manifold without assuming additivity of fertilities or mortalities, which will make
our result more widely applicable than Akin and Szucs. In the context of our planar model, a nonmonotone
manifold is a manifold which is the graph of a decreasing continuous function; the full definition for a manifold
being nonmonotone is given later in Section 3. We also find conditions that ensure that the invariant manifold
is the graph of a convex function, as is the case for the Hardy–Weinberg manifold.

Section 2 introduces the n-allele model, while Section 3 discusses the two-allele case of the model and
shows how to rewrite the Nagylaki–Crow model as a competitive system using a change of coordinates,
although later we will drop one of the two inequalities that render the model competitive, so that we obtain
results for not-necessarily competitive models. It turns out that the model always has fixed points on two
corners of the triangular phase plane (axial fixed points) corresponding to heterozygotic fixation, and our
numerical evidence suggests the existence of at least one nonmonotone invariant manifold Σ connecting
the two fixed points in the phase plot. We analyse both axial fixed points in Section 4, and investigate
their relationship with the condition for the system being competitive in the new coordinates. Finally, for
Section 5, we prove that a nonmonotone invariant manifold Σ does indeed exist for a certain case of the
Nagylaki–Crow model, and that it is the graph of a convex function. When the fertilities and mortalities are
additive, Σ coincides with the Hardy–Weinberg manifold.

2. The model

A derivation of the panmictic Nagylaki–Crow model for diploid populations can be found in [5], where
the authors consider a single locus with n alleles A1, . . . , An, and the dynamical variables of their system
are the frequencies Pij for the ordered genotype AiAj .

The Nagylaki–Crow model also features the fertilities aik,lj that are defined as the product of the
average number of matings of an arbitrary individual per unit time and the average number of progeny
per AiAk ×AlAj union. With this definition in mind, it is reasonable to assume

aik,lj ≥ 0 ∀i, j, k, l.

Moreover, it will be assumed that these fertilities are also time-independent for all i, j, k, l.
In addition, the model contains the mortalities dij , the death rate for genotype AiAj . These are also

taken to be non-negative and constant for all time.
The governing equations for the genotype frequencies Pij

Ṗij =
(∑

kl

aik,ljPikPlj − dijPij

)
− Pij

∑
uv

(∑
kl

auk,lvPukPlv − duvPuv

)
, (2.1)
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Fig. 1. A case of the Nagylaki–Crow model with five interior fixed points, three of which occur on the line y = x with y = 0.04, 0.12
and 0.36 respectively. There are three different nonmonotone invariant manifolds, one of which passes through three interior fixed
points. Here, the fertilities are F11 = 6, F12 = 1/2, F13 = 1, F22 = 1/14, F23 = 1/2, F33 = 6, while the mortalities are D1 = 2,
D2 = 1, D3 = 2, making this system competitive in (w, t) coordinates. The notation for the fertilities and mortalities are as given
in (3.2) and (3.3).

form a system of n2 nonlinear first order ordinary differential equations (see [5] or [6]). Note that if
Pij(0) ≥ 0 then Pij(t) ≥ 0 for all t ≥ 0. Moreover

∑n
i,j=1Pij(t) = 1 for all t ≥ 0. The marginal∑n

j=1Pij(t) =
∑n
j=1Pji(t) = pi(t) is the frequency of allele Ai at time t ≥ 0.

Fig. 1 shows an example of the phase portrait for the Nagylaki–Crow model. In this example, there are
five interior fixed points, which is the maximum number that the two-allele model can possess [1]. In the
figure there are three different nonmonotone invariant manifolds, one of which passes through three interior
fixed points.

Even for this simple model it is not possible to obtain self-contained evolution equations for the allele
frequencies, which often are the variables of most interest to the geneticist. However, the presence of
an attracting manifold means that differential equations can be obtained for the allele frequencies when
restricted to that manifold. If an initial point is attracted to the manifold rapidly then after a short transient
the equations for the allele frequencies on the manifold will be a good approximation of the true allele
frequencies. Note that if there is more than one attracting manifold, which manifold is approached will
depend upon the initial conditions.

The special case where the fertilities and mortalities are additive means that aik,lj = αik + βlj and
dij = µi + κj , where αik, βlj , µi, κj ≥ 0. In this special case all trajectories converge to this nonmonotone
invariant manifold connecting the axial fixed points [12]. The Hardy–Weinberg manifold is obtained by
solving P11 = x2, so that it is the graph of the strictly convex function φHW : [0, 1] → [0, 1] defined by

φHW (x) = 1 + x− 2
√
x. (2.2)

For comparison, the Hardy–Weinberg manifold is shown in Fig. 2. Our results show that under mild
conditions, when the condition of additivity of fertilities and mortalities is relaxed, there is at least one
such nonmonotone manifold, and we give conditions that ensure that any such nonmonotone manifold is the
graph of a convex function. A detailed analysis of concerning uniqueness or nonuniqueness of this manifold
will be discussed elsewhere.
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Fig. 2. An example where the fertilities are additive, leading to the Hardy–Weinberg manifold which is the graph of the function
φHW in Eq. (2.2). Here, the fertilities are F11 = 0.6, F12 = 0.9, F13 = 1.3, F22 = 1.2, F23 = 1.6, F33 = 1.3, while the mortalities
are D1 = 0.3, D2 = 0.25, D3 = 0.2, making this system competitive in (w, t) coordinates. Again, the notation for the fertilities
and mortalities are as given in (3.2) and (3.3).

3. Rewriting the Nagylaki–Crow model

Even for n = 2 the Nagylaki–Crow is not a straightforward model to analyse and to the best of the
authors’ knowledge there is currently no understanding of this model for three or more alleles [1].

In the sequel we will always assume n = 2 and ignore the order of the genotypes, i.e. treat the genotypes
AiAj and AjAi as identical.

It is assumed in [6], as is done here, that the fertilities aik,lj possess the symmetries

aij,kl = akl,ij = aji,kl. (3.1)

Thus the Nagylaki–Crow model has only six independent fertility parameters. Using the notation of [10]
these are relabelled as follows:

F11 = a11,11, F33 = a22,22,

F12 = a11,12, F23 = a12,22,

F22 = a12,12, F13 = a22,11.

(3.2)

Meanwhile, as d12 = d21, there are only three independent mortality parameters. They are rewritten as

D1 = d11, D2 = d12, D3 = d22. (3.3)

Moreover, since the genotypes AiAj = AjAi, one has

Pij = Pji.

With this symmetry law in mind, let

P11 = x, P12 = P21 = z/2, P22 = y. (3.4)

Then according to [10], the Nagylaki–Crow model (2.1) reduces to

ẋ = F11x
2 + F12xz + 1

4F22z
2 −D1x− xm̄, (3.5)
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ż = F12xz + 2F13xy + F23yz + 1
2F22z

2 −D2z − zm̄, (3.6)

ẏ = F33y
2 + F23yz + 1

4F22z
2 −D3y − ym̄, (3.7)

with mean fitness

m̄ =
∑
uv

(∑
kl

auk,lvPukPlv − duvPuv

)
= F11x

2 + 2F12xz + F22z
2 + 2F23yz + 2F13xy + F33y

2

−D1x−D2z −D3y.

However, one also has the following condition:∑
ij

Pij = 1 or x+ y + z = 1, x, y, z ≥ 0 (3.8)

which indicates that the two-allele Nagylaki–Crow model has in fact only two degrees of freedom and is fully
described by just two ordinary differential equations on the phase space given by the triangle

T = {(x, y) ∈ R2
+ : x+ y ≤ 1}. (3.9)

(Here and elsewhere R+ = [0,∞)). These ordinary differential equations can be written in the form

ẋ = f(x, y), ẏ = g(x, y), (3.10)

by substituting z = 1 − x − y into the x and y equations. The full equations for x, y can be found in
Appendix.

As an alternative, we use the following coordinate change introduced in [9,10]

(x, y) ↦→ (w, t) = Φ(x, y) :=
(

2x
1 − x− y

,
2y

1 − x− y

)
. (3.11)

The map Φ is a diffeomorphism from the interior of T to the interior of R2
+ with inverse

Φ−1(w, t) =
(

w

2 + w + t
,

t

2 + w + t

)
(3.12)

and the Jacobian J of Φ on the interior of T is given by

J =

⎛⎜⎜⎝− 2(y − 1)
(x+ y − 1)2

2x
(x+ y − 1)2

2y
(x+ y − 1)2 − 2(x− 1)

(x+ y − 1)2

⎞⎟⎟⎠ , det J = 4
(1 − x− y)3 . (3.13)

In the new coordinates, the system (3.10) reduces to

ẇ = p(w, t), ṫ = q(w, t), (3.14)

where

p(w, t) = (F11 − F12 +D2 −D1)w2 + (2(F12 +D2 −D1) − F22)w
+ F22 − wt(F23 −D2 +D1 + F13w), (3.15)

q(w, t) = (F33 − F23 +D2 −D3)t2 + (2(F23 +D2 −D3) − F22)t
+ F22 − wt(F12 −D2 +D3 + F13t). (3.16)

Here by ẇ, ṫ we mean differentiation with respect to time; time will be denoted by s in the sequel.



B. Seymenoglu, S. Baigent / Nonlinear Analysis: Real World Applications 41 (2018) 570–587 575

In this set of coordinates, the phase space is the whole (non-compact) first quadrant w ≥ 0, t ≥ 0. For
the boundary w = 0, one has ẇ = F22 ≥ 0, which shows that w < 0 can never occur. Likewise, we have
ṫ = F22 ≥ 0 for the boundary at t = 0, therefore it is impossible to acquire t < 0. This indicates that the
phase space R2

+ is forward invariant.
The off-diagonal elements of the Jacobian for this system are

pt = (−F23 +D2 −D1)w − F13w
2

qw = (−F12 +D2 −D3) t− F13t
2,

which are both non-positive for all w, t ≥ 0 if and only if

D2 ≤ min(D1 + F23, D3 + F12). (3.17)

Inequality (3.17) is a necessary and sufficient condition for Eqs. (3.14) to be competitive on R2
+ = {(w, t) ∈

R2 : w ≥ 0, t ≥ 0}, i.e. pt, qw ≤ 0 [9,10]. It is known that an orbit of a planar competitive system is either
unbounded or converges to a fixed point in increasing time [1,9]. For this system, if an orbit Γ in (w, t)
is unbounded, then z → 0, i.e. (x + y) → 1. This shows that the corresponding ω-limit set for Γ in (x, y)
coordinates is a subset of the bounding line x+ y = 1.

As shown by Hirsch [13] competitive systems often possess special codimension-1 invariant manifolds Σ

that are nonmonotone, so that no two points on Σ may be ordered with respect to the partial order that
defines the competitive ordering. Here we use the standard first orthant ordering: For each i = 1, 2, x ≥ y

if and only if xi ≥ yi; x > y if and only if x ≥ y and x ̸= y, x ≫ y if and only if xi > yi. A manifold Σ

is said to be nonmonotone if no points x, y ∈ Σ satisfy x < y; this agrees with our definition above that Σ

is the graph of a decreasing continuous function. Examples of nonmonotone manifolds are the three solid
curves in Fig. 1. Hirsch [13] showed that a large class of competitive ordinary differential equations possess
a countable sequence of nonmonotone manifolds that divide the phase space into regions, and that these
manifolds are alternately repelling and attracting. Although our model is competitive, it does not satisfy the
setting of Hirsch’s theory since ∂R2

+ is not invariant. However, we have found numerical evidence of similar
sequences of nonmonotone manifolds. For example, Fig. 1 shows three nonmonotone manifolds (solid curves)
that all connect the axial fixed points. These are the only nonmonotone invariant manifolds in the figure. A
monotone invariant manifold (where points are ordered) passes through 3 interior fixed points along the line
x = y. Two of the nonmonotone manifolds pass through a single interior fixed point, and the third passes
through 3 interior fixed points. The detailed structure of alternate repelling and attracting nonmonotone
manifolds in our model will be studied elsewhere. The focus in this paper is to prove the existence of at
least one nonmonotone invariant manifold and to establish conditions that the manifold is the graph of a
convex function. It turns out that to do this it is much easier to carry out some calculations in the (w, t)
coordinates where phase space is not compact, mapping back results to the system in (x, y) coordinates, and
some calculations in (x, y) coordinates where the phase space is compact, but there is no obvious ordering in
(x, y) coordinates for which the system is monotone or competitive. Our key observation is that manifolds
that are nonmonotone and graphs of convex functions in (w, t) coordinates are also nonmonotone and graphs
of convex functions in (x, y) coordinates.

The first step is to prove the following lemma:

Lemma 3.1. Suppose Γ ⊂ R2
+ is the graph of a twice-continuously differentiable function ψ : (a, b) ⊂ R+ →

R+ (0 < a < b) such that

ψ′(w) < 0, ψ′′(w) > 0, ∀w ∈ (a, b).
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Then Γ ′ = Φ−1 ◦ Γ is the graph of a twice-continuously differentiable convex and decreasing function
ϕ : (A,B) → R+ where A = a

2+a+ψ(a) , B = b
2+b+ψ(b) , and ψ = ϕ ◦ Φ:

ϕ′(x) < 0, ϕ′′(x) > 0, ∀x ∈ (A,B).

Proof. This is a simple calculation using that (w,ψ(w)) = Φ(x, ϕ(x))

ϕ′(x) = (2 + w)ψ′(w) − ψ(w)
(2 + ψ(w)) − wψ′(w) .

However, recall that w, t = ψ(w) > 0, therefore

ψ′(w) < 0 ⇒ ϕ′(x) < 0. (3.18)

Furthermore,

ϕ′′(x) = 2(2 + w + ψ(w))3

(2 + ψ(w) − wψ′(w))3 ψ
′′(w). (3.19)

Again, using w, t = ψ(w) > 0 we deduce

ψ′(w) < 0, ψ′′(w) > 0 ⇒ ϕ′′(x) > 0. □ (3.20)

Remark. It is known that linear-fractional transformations such as Φ map convex sets to convex sets (see,
for example, [14]). Hence graphs of convex functions in (w, t) coordinates map to graphs of convex functions
in (x, y) coordinates.

Regarding interior fixed points,

Lemma 3.2. A fixed point in the interior of T in (x, y) coordinates corresponds to a fixed point in the
interior of R2

+ in (w, t) coordinates.

Proof. Since (w, t) = Φ(x, y) we have (ẇ, ṫ) = J(ẋ, ẏ), where J is given by (3.13). Since J is invertible
when 0 < x + y < 1, and Φ maps the interior of T to the interior of R2

+, fixed points in 0 < x + y < 1
correspond to interior fixed points in R2

+. □

4. Fixed points and stability

The two fixed points (1, 0) and (0, 1) in T represent the cases where all members of the population are
homozygotes A1A1 and A2A2 respectively. These two points are always fixed points for the model (3.10)
regardless of the values of the parameters, and their local invariant manifolds are investigated via spectral
analysis of the Jacobian

J =
(
fx fy
gx gy

)
for both points.

One finds that the Jacobian corresponding to (0, 1) is

J(0,1) =
(

D3 −D1 − F33 0
D1 −D2 − 2F13 + F23 D3 −D2 + F23 − F33

)
,

with eigenvalues λ(0,1)
1 = D3 −D1 − F33, λ

(0,1)
2 = D3 −D2 + F23 − F33.
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For simplicity, we only consider the generic case where (0, 1) is a hyperbolic fixed point and λ(0,1)
1 ̸= λ

(0,1)
2 .

If D1 −D2 − 2F13 + F23 ̸= 0, suitable respective eigenvectors for λ(0,1)
1 , λ

(0,1)
2 are

v(0,1)
1 =

(
− D1 −D2 + F23

D1 −D2 − 2F13 + F23
, 1
)T

, v(0,1)
2 = (0, 1)T , (4.1)

which indicates that the tangent space for one of the local invariant manifolds at (0, 1) is then vertical.
The positioning relative to T of the local invariant manifold tangent to v(0,1)

1 is not immediately obvious.
On closer inspection, it turns out that the local invariant manifold will lie locally in the triangular region
T if and only if the gradient of its tangent line, spanned by, v(0,1)

1 , is strictly less than −1, which occurs
when F23 < D2 − D1. Notice that this condition is satisfied if and only if λ(0,1)

2 < λ
(0,1)
1 . In the case that

D1 −D2 + F23 − 2F13 = 0, so that J(0,1) is diagonal, and since we are assuming that λ(0,1)
1 ̸= λ

(0,1)
2 , not a

multiple of the identity, then (1, 0) and (0, 1) are suitable respective eigenvectors, and only (0, 1) lies in T .
Note that for general Fij and Dk the signs of the eigenvalues remain unspecified, hence it is unclear whether
each local manifold is stable, unstable or centre.

Meanwhile, the Jacobian at (1, 0) is

J(1,0) =
(
D1 −D2 + F12 − F11 D3 −D2 + F12 − 2F13

0 D1 −D3 − F11

)
,

which has eigenvalues

λ
(1,0)
1 = D1 −D3 − F11, λ

(1,0)
2 = D1 −D2 + F12 − F11. (4.2)

Similarly to above we assume that (1, 0) is hyperbolic and λ
(1,0)
1 ̸= λ

(1,0)
2 .

When D3 −D2 + F12 − 2F13 ̸= 0, J(1,0) has suitable respective eigenvectors for λ(0,1)
1 , λ

(0,1)
2 given by

v(1,0)
1 =

(
−D3 −D2 + F12 − 2F13

D3 −D2 + F12
, 1
)T

, v(1,0)
2 = (1, 0)T .

Hence the tangent space for one local manifold at the point is guaranteed to be horizontal at (1, 0). A
necessary condition for the respective tangent space of the other local invariant manifold being inside the
triangle T is that the gradient of v(1,0)

1 should be strictly bounded by the values −1 and 0, or equivalently,

F13

D3 −D2 + F12
< 0.

This is satisfied if F12 < (D2 −D3), which is equivalent to λ(1,0)
2 < λ

(1,0)
1 . Again, the two eigenvalues can be

generally either positive, negative or zero, hence the respective tangent spaces corresponding with the local
invariant manifolds could be stable, unstable or centre manifolds.

Note that since all fertilities and death rates are taken to be real numbers, the triangular Jacobian for
both fixed points must always have real eigenvalues. Therefore, when hyperbolic, these fixed points cannot
have spirals or centres in their vicinity.

The system is strongly competitive in (w, t) coordinates if and only if strict inequality in (3.17) holds,
which is equivalent to the following inequalities combined

F23 > (D2 −D1) ⇔ λ
(0,1)
2 > λ

(0,1)
1 ,

F12 > (D2 −D3) ⇔ λ
(1,0)
2 > λ

(1,0)
1 .

As noted above, however, this means that the tangent spaces of the local manifolds corresponding to the
eigenvector v1 for both (0, 1) and (1, 0) lie outside the (x, y) phase space T . Thus strong competitiveness
in the (w, t) phase space is equivalent to the local invariant manifolds at (0, 1) being always vertical at that
fixed point, and similarly, any local manifolds at (1, 0) are always horizontal at that point.
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All this is summarised by the following result:

Proposition 4.1. The following are equivalent:

1. Both λ
(0,1)
2 > λ

(0,1)
1 and λ

(1,0)
2 > λ

(1,0)
1 hold.

2. The Nagylaki–Crow model is strongly competitive in (w, t) coordinates.
3. The tangent spaces of the local manifolds corresponding to v(0,1)

1 and v(1,0)
1 lie outside the (x, y) phase

space T .

5. Existence of a nonmonotone invariant manifold

The aim of this section is to prove that at least one nonmonotone invariant manifold Σ does indeed exist
when

F12 > D2 −D3,

and that it is the graph of a convex function if in addition

F11 > D1 −D3 > −F33.

Here the first inequality is similar to the condition (3.17) for competition, except that D2 ≤ D1 +F23 is not
required and the inequalities are now strict.

We recall that the time variable is denoted by s, so as to avoid confusion with the vertical coordinate t
from Section 3.

5.1. In the original (x, y) coordinates

In the style of [15], we consider the temporal evolution of a function φ : [0, 1] × [0, τ0) → R+ satisfying
φ(x, 0) = φ0(x) and

φ(1, s) = 0, φ(0, s) = 1 ∀s ∈ [0, τ0). (5.1)

Here τ0 > 0 is the maximal time of existence of φ as a solution of the first order partial differential equation
dφ

ds
= φs + fφx = g, (5.2)

where f and g are defined as in Eqs. (3.10), and φs = ∂φ
∂s , subject to boundary and initial conditions

explained below.
We let Σs be the graph of φ(·, s) for s ∈ [0, τ0) (we will later show that τ0 = +∞). The boundary

conditions (5.1) force the endpoints of Σs to remain fixed for all time. We let

φ0(x) = (1 − x)(1 − εx), where 0 < ε ≪ 1. (5.3)

When ϵ = 0, φ0(x) = 1 − x and the image of the graph of φ0 under Φ is not defined. But by choosing ϵ > 0
small the graph G0 of φ0 is close to x + y = 1 and is mapped by Φ to the graph of a continuous function
ψ0 :

( 2
ϵ ,∞

)
→ R+ given by

ψ0(w) = 2(ϵw − 2 − w)
2 − ϵw

. (5.4)

The aim is to show that Σs converges (in the Hausdorff metric) to some manifold Σ as s → ∞.
Using d/ds to denote the time derivative which follows trajectories in the phase plane, differentiating

Eq. (5.2) gives Lemma 2.1 from [15], which is
dφx
ds

= gx + (gy − fx − fyφx)φx. (5.5)
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It is possible to investigate the right and left-sided limits of φx as x → 0, 1 respectively, i.e. φx(0+, s) and
φx(1−, s). These can be evaluated by substituting the expressions for fx, fy, gx and gy for (x, y) = (0, 1)
into Eq. (5.5) to obtain the following ordinary differential equation for φx(0, s):

dφx
ds

(0, s) = (λ(0,1)
2 − λ

(0,1)
1 )(φx(0, s) + 1) − 2F13 (5.6)

whose initial condition is

φx(0, 0) = −1 − ε < −1.

Although this equation is separable, we will not calculate the explicit solution for φx(0, s), although we do
note that since (5.6) is linear φx(0, s) is bounded for all finite forward and backward time. If F13 > 0 one
concludes that φx(0, s) < −1 for all s ≥ 0, which follows from the fact that when φx(0, s) = −1,

dφx
ds

(0, s) < 0.

Meanwhile, if F13 = 0 one observes that φ(·, s) = −1 − ε is the unique solution of (5.6) satisfying
φ(·, 0) = −1 − ε. Thus for all F13 ≥ 0 we have

φx(0, s) < −1, ∀s ≥ 0. (5.7)

Now we repeat the procedure for (x, y) = (1, 0). This time we obtain a differential equation for φx(1, s):

dφx
ds

(1, s) = −φx[(λ(1,0)
2 − λ

(1,0)
1 )(φx + 1) − 2F13φx], (5.8)

with

φx(1, 0) = −1 + ε ∈ (−1, 0).

Therefore if F13 > 0, then φx(1, s) = −1 leads to

dφx
ds

(0, s) > 0,

while if F13 = 0, φx(·, s) = −1+ε is the unique solution of (5.8) satisfying φ(·, 0) = −1−ε. Finally, regardless
of whether F13 is positive or zero, there is another solution corresponding to the function constantly equal
to zero. Therefore, as the solution is bounded, one can conclude that

− 1 < φx(1, s) < 0, ∀s ≥ 0. (5.9)

Note, however, that there may be no lower bound for φx(0, s).
To obtain information on φx(x, s) for x ∈ (0, 1) and s ∈ [0, τ0) using (5.5) and Lemma 2.1 in [15] is not

so easy due to the complicated form of gx = 1
2F22(x− 1) + 2y2(F12 −F22 +F23 −F13) + y(D1 −D2 + 5

2F22 −
2F12 − F23) + 2xy(2F12 − F11 − F22), whose sign on T is not obvious.

Eq. (5.5) can be differentiated to obtain an equivalent version of Lemma 3.1 in [15]. This governs the
evolution of the convexity of φ through the value of φxx. However, this approach will not be pursued in this
paper, since we have found it too involved to track the sign of φxx. Since an approach in (x, y) coordinates
does not easily lead to establishing that φx < 0, φxx > 0, we revert to (w, t) coordinates where establishing
convexity is simpler via Lemma 3.1.
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5.2. In the new (w, t) coordinates

5.2.1. The set-up
We seek to map the graph of φ in T to the graph of a new function ψ in R2

+. The function ψ(·, s) satisfies
the first order quasilinear partial differential equation

ψs + p(w,ψ(w, s))ψw = q(w,ψ(w, s)) (5.10)

for suitably defined w ∈ R+. For s ∈ [0, τ0), ψ(·, s) is known to exist since it is obtained from φ(·, s) : [0, 1] →
R via

(w(x, s), ψ(w(x, s), s)) =
(

2x
1 − x− φ(x, s) ,

2φ(x, s)
1 − x− φ(x, s)

)
, x ∈ (0, 1), s ∈ [0, τ0). (5.11)

Also needed is an initial condition ψ(w, 0) = ψ0(w), where ψ0 is a function to be determined from φ0.
Unfortunately the straight line y = 1 − x does not have a well-defined counterpart in (w, t) coordinates,

and so is an inappropriate choice for an initial data curve to map onto ψ0. Instead, we construct ψ0 by
defining φ0 as given in (5.3), and transforming that into (w, t) coordinates (see Fig. 3). By substituting
y = φ0(x) and z = 1 − x− y in Eqs. (3.11), we obtain

w = 2
(1 − x)ε , t = 2(1 − xε)

xε
, x ∈ (0, 1).

Then by eliminating x and letting t = ψ0(w), where ψ0 : ( 2
ϵ ,∞) → R+ we obtain the hyperbola

ψ0(w) = −2(2 + w − wε)
2 − wε

.

The graph of ψ0(w) lies in the open first quadrant with vertical and horizontal asymptotes w = 2/ε and
t = 2(1 − ε)/ε respectively. In addition,

(ψ0)w = −4
(wε− 2)2 < 0 (ψ0)ww = 8ε

(wε− 2)3 > 0. (5.12)

5.2.2. Equivalent boundary conditions
Boundary conditions for the partial differential equation (5.10) are needed, and should be equivalent to

the boundary conditions in (5.1). It turns out that the equivalent condition is that ψ must have a horizontal
and vertical asymptote at all times, even if the positions of these asymptotes vary in time. For now, these
asymptotes will be said to occur at t∗ and w∗ respectively (both functions of s).

Let us determine the boundary condition for (5.10) corresponding to the point (0, 1) using the
transformation (3.11). Recall that φ(·, s) : [0, 1] → R is defined and smooth for each s ∈ [0, τ0). Then
by l’Hôpital’s rule, for all s ∈ [0, τ0) we have limx→0+w(x, s) = 2

−1−φx(0,s) , whereas limx→1−w(x, s) = +∞.

Similarly, limx→0+t(x, s) = +∞, whereas limx→1−t(x, s) = 2φs(1,s)
−1−φx(1,s) . The graph of ψ(·, s) has a vertical

asymptote at w = w∗(s) := 2
−1−m0(s) and a horizontal asymptote at t = t∗(s) := 2m1(s)

−1−m1(s) , where
m0(s) = φx(0, s) and m1(s) = φx(0, s). Since from (5.7) and (5.9) we have, m0 < −1 and −1 < m1 < 0,
we find that w∗(s), t∗(s) are well-defined and positive for s ∈ [0, τ0). Hence the image of each φ(·, s) under
Φ is a continuous curve that is the graph of a function ψ(·, s) : (w∗(s),+∞) → R. This indicates that both
asymptotes will lie in the interior of R2

+.

5.2.3. Investigating the gradient and convexity
Differentiating Eq. (5.10) gives Lemma 2.1 from [15], which is

dψw
ds

= qw + (qt − pw − ptψw)ψw, s ∈ [0, τ0). (5.13)
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(a) A plot of the initial data curve, the graph of φ0, in
(x, y) coordinates.

(b) A plot of the initial data curve, the graph of ψ0, in
(w, t) coordinates.

Fig. 3. The initial data curve for the two coordinate systems (dashed line), which deforms in time according to the flow, converging
to the invariant manifold Σ (solid line). For these plots, we take ε = 1/2.

Furthermore, we can repeat the procedure to obtain an equivalent version of Lemma 3.1 [15], which states
that

dψww
ds

= qww + ψw(2qwt − pww) + ψ2
w(qtt − 2pwt) − pttψ

3
w + ψww(qt − 2pw − 3ptψw),

s ∈ [0, τ0). (5.14)

However, as the equations of motion are already simpler in (w, t), the partial derivatives of p and q are
also easier to compute. In fact, we find that

ptt = qww = 0,

which simplifies Eq. (5.14) to
dψww
ds

= ψw[(2qwt − pww) + ψw(qtt − 2pwt)] + ψww(qt − 2pw − 3ptψw). (5.15)

Also,

pww = 2(D2 −D1 + F11 − F12 − F13t),
qtt = 2(D2 −D3 + F33 − F23 − F13w),
pwt = D2 −D1 − F23 − 2F13w,

qwt = D2 −D3 − F12 − 2F13t,

and so

2qwt − pww = 2(D1 −D3 − F11 − F13t),
qtt − 2pwt = 2(D1 −D3 + F33 + F13w),

which are negative and positive when F11 > D1 −D3 and F33 > D3 −D1 respectively. Combining these two
conditions gives the constraint

F11 > D1 −D3 > −F33, (5.16)
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which is equivalent to having both λ
(1,0)
1 < 0 and λ

(0,1)
1 < 0. Meanwhile, a sufficient condition for qw < 0 is

t > 0 and D2 < D3 + F12 (i.e. λ(1,0)
2 > λ

(1,0)
1 ).

Then, assuming (5.16) and D2 < D3 + F12, let α = ψw and β = ψww and rewrite Eqs. (5.13) and (5.15)
as two coupled ordinary differential equations:

dα

ds
= Aα2 +Bα+ C (5.17)

dβ

ds
= α(D + Eα) + β(F +Gα), (5.18)

where

A = −pt E = qtt − 2pwt > 0
B = qt − pw F = qt − 2pw
C = qw < 0 G = −3qt
D = 2qwt − pww < 0

are all continuous (in fact, polynomial) functions of w and ψ (which replaces t). We already found that ψ0
is strictly decreasing and convex, with α0 < 0 and β0 > 0, where α0 = α(w, 0) and β0 = β(w, 0). Now the
aim is to prove

α < 0, β > 0 ∀s ∈ [0, τ0), (5.19)

for all values of w for which ψ(w, s) is defined. In other words, if the initial data curve is both strictly
decreasing and convex in (w, t) coordinates, then it will remain that way as s increases in [0, τ0).

The following lemma is based on Corollary 2.2 of [15], whose proof makes use of the fact that C = qw < 0:

Lemma 5.1. If the smooth initial curve ψ0 satisfies both ψ0 > 0 and (ψ0)w < 0, then for all s ∈ [0, τ0),
ψ(·, s) is defined and smooth for all w > w∗(s) (where w∗(s) is the vertical asymptote of ψ(·, s) mentioned
in the previous remark), with ψ(·, s) > 0, ψw(·, s) < 0 and ψww(·, s) > 0.

Proof. We already know that φ(·, s) : [0, 1] → R exists for s ∈ [0, τ0) for some τ0 > 0, and hence via
the coordinate change Φ, ψ(·, s) : (w∗(s),∞) → R satisfying (5.10) exists for all s ∈ [0, τ0). The function
ψ(·, s) : (w∗(s),∞) → R also satisfies Eqs. (5.13) and (5.15) for s ∈ [0, τ0).

As the vertical asymptote w∗(s) is changing in time, it is convenient to rescale the asymptote to unity
by a change of variables, taking

v = w

w∗(s) . (5.20)

Note that w∗(s) > 0 for s ∈ [0, τ0) so that this transformation is defined for at least s ∈ [0, τ0).
We define ψ̃(·, s) : [1,∞) → R+ via

ψ̃(v, s) = ψ(w, s) = ψ(v w∗(s), s), s ∈ [0, τ0).

Now compute (
ψw
ψs

)
=
(
vw 0
vs 1

)(
ψ̃v
ψ̃s

)
,

so that via (5.20)

(
ψw
ψs

)
=

⎛⎜⎝
1

w∗(s) 0
−ww∗′(s)
(w∗(s))2 1

⎞⎟⎠(ψ̃v
ψ̃s

)
. (5.21)
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Next, using a similar argument to that used to obtain (5.13) and the Chain Rule, we have ψ̃v = w∗(s)ψw
along with

dψ̃v
ds

= w∗qw + (qt − pw + (lnw∗)′ − pt
w∗ ψ̃v)ψ̃v, v ≥ 1, s ∈ [0, τ0), (5.22)

and (ψ̃0)v < 0. Note that in Eq. (5.22) we find that

(lnw∗)′(s) = −dφx(0, s)/ds
1 + φx(0, s) ,

which by (5.7) is bounded for s ∈ [0, τ0).
Following Corollary 2.2 in [15], but with strict inequalities, we note that in (5.22) the term w∗qw < 0 so

that if ψ̃v = 0 for some value of v ≥ 1 and s ∈ [0, τ0), then from (5.22) we have dψ̃v
ds < 0, and so we deduce

that ψ̃(v, s) is strictly decreasing for v ≥ 1 and s ∈ [0, τ0). In turn this implies from ψw = dψ̃v
ds /w

∗ that

α = ψw(w, s) < 0, ∀w > w∗(s), s ∈ [0, τ0). (5.23)

Now we turn to the sign of β = ψww. If we let θ = α(D+Eα) and σ = (F +Gα), (5.18) may be written
as

dβ

ds
= σβ + θ, (5.24)

and D < 0, E > 0 which, combined with α < 0, yields θ > 0. But β0 > 0, so by Lemma 4.1 from [15], β > 0
whenever s ∈ [0, τ0). Thus (5.19) holds, which indicates that

ψww > 0 ∀w > w∗(s), ∀s ∈ [0, τ0). (5.25)

In particular, (5.25) together with (5.23) implies from Lemma 3.1 that

φx(x, s) < 0, φxx(x, s) > 0, ∀x ∈ (0, 1), s ∈ [0, τ0). (5.26)

Now we show that we may take τ0 = +∞.
Since φxx(·, s) > 0, φx(x, s) is increasing with x ∈ (0, 1), and hence finite, for each s ∈ [0, τ0). Let us

suppose that φx(x̄, si) becomes unbounded as i → ∞ for some sequence si → τ0, and some x̄ ∈ (0, 1). Since
φxx(x, s) > 0 for s ∈ [0, τ0) and x ∈ (0, 1) we have that φx(x, s) ≤ φx(x̄, s) for all x ∈ [0, x̄] and s ∈ [0, τ0).
In particular φx(0, s) ≤ φx(x̄, s) for all s ∈ [0, τ0) and so φx(0, si) ≤ φx(x̄, si). Letting i → ∞ shows that
φx(0, si) is unbounded below which contradicts that solutions to the ordinary differential equation (5.6)
remain bounded in finite time. This contradiction shows that τ0 = ∞.

We have thus shown that φx(0, s) exists and is finite for all s ∈ R+ and that φ(0, s) = 1, φ(1, s) = 0 for
all s ∈ [0, τ0), and hence φ(·, s) : [0, 1] → R is a strictly decreasing smooth convex function for all s ≥ 0. □

By Lemma 2.7 from [15], the graph of each φ(·, s) is a nonmonotone Lipschitz manifold Σs with Lipschitz
constant unity. By the Arzelà –Ascoli Theorem, the space of Lipschitz functions in a compact space is itself
compact. Hence a sequence of Lipschitz manifolds, such as the one constructed from φ, will always have a
convergent subsequence whose limit is in turn also a nonmonotone Lipschitz manifold which we call Σ . It
is not immediate that Σ is invariant. However, as we now show, we do not need to select a subsequence as
the sequence of manifolds Σs is actually monotone decreasing in s ≥ 0, from which it follows that the limit
Σ is invariant.

We rewrite (5.2) in the form

φs = N · f , (5.27)

where f = (f, g) and N = (−φx, 1) is the upward normal which normalises to n.
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As done in [15], we track the time evolution of b = n · f , the component of the flow normal to the curve.
Suppose that φ0(x) = 1 − x. Then at s = 0, n = 1√

2 (1, 1) and

b = 2F13x(x− 1),

which is negative for x ∈ (0, 1), as long as F13 > 0. Moreover, if ε is sufficiently small, we still have the
same sign for b at s = 0 for all x ∈ (0, 1) when φ0(x) = (1 − x)(1 − εx), since this initial data curve is a
perturbation of y = 1 − x.

Next, we invoke Lemma 2.6 from [15], i.e.

ḃ = (n · ∇f · n) b,

which shows that b, and in turn φs, stays negative for all s > 0. So the graphs Σs of φ(·, s) always move
downwards with increasing s under the flow of the system for all positive time, hence the limiting manifold
Σ is indeed invariant.

Hence we can summarise our results in the following theorem:

Theorem 5.2. In the Nagylaki–Crow model (3.5)–(3.7) suppose that

D2 < D3 + F12, F13 > 0. (5.28)

Then the model has at least one nonmonotone invariant manifold that connects the fixed points (0, 1) and
(1, 0) in T = {(x, y) ∈ R2

+ : 0 ≤ x+ y ≤ 1}.
If in addition

F11 > D1 −D3 > −F33 (5.29)

holds, this nonmonotone manifold is the graph of a convex function.

Observe that all of (3.17) is not needed, so existence works for not necessarily competitive models that
satisfy (5.28) only. A similar result applies by interchanging w and t leading to a version of Theorem 5.2
with (5.28) replaced by D2 < D1 + F23 and (5.29).

The nonmonotone invariant manifold of Theorem 5.2 is a connecting orbit that connects the two axial
fixed points (possibly via other fixed points) in T . When both inequalities in (3.17) hold, so that the system
is competitive, it is also monotone with the order ≥L defined by x = (x1, x2) ≥L y = (y1, y2) if and only if
x1 ≥ y1 and x2 ≥ y2. In this case, existence of a connecting orbit (even with additional fixed points ordered
by ≥L) follows from [16]. Jiang [17] showed that for cooperative systems, this connecting orbit is unique if
the Jacobian is irreducible at the two fixed points. Even if Jiang’s result on irreducibility can be modified
for planar competitive systems, in our model the Jacobian at the axial fixed points is reducible and so an
alternative approach is needed to determine when the nonmonotone manifold is unique. In any case our
existence result does not require a competitive model for existence, and so conditions for uniqueness of the
manifold are not at all clear and will be dealt with elsewhere.

6. Discussion

We have shown the existence of a nonmonotone invariant manifold for a continuous-time differential
fertility model in Population Genetics without requiring additivity of fertilities or mortalities, nor competitive
dynamics.
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To do this, we set up an invertible mapping between an evolving curve φ in (x, y) space and an evolving
(unbounded) curve ψ in (w, t) space. Through our lemmata it then suffices to check the signs of the first and
second derivatives of ψ (as it then follows that the graph of φ is decreasing and convex). Then convergence is
established in (x, y) space using Lipschitz and bounded sequences of the graph of φ. Thus the crucial part is
setting up the map between φ and ψ by a change of dynamical variables. A similar technique is remarked on
in [18] which involves applying the transformation yi = log xi (i = 1, 2, 3) on the Lotka–Volterra equations.
This coordinate change maps the invariant surface from something which is not necessarily concave to a
concave surface.

There was no need to assume that the system was competitive in either coordinate system; nonetheless,
the existence proof given in this paper for a decreasing manifold only applies when the inequality (5.28)
(or its alternative in (3.17)) applies. We also showed that when the Nagylaki–Crow model satisfies the
inequalities (5.29), the invariant manifold is the graph of a convex function. In Fig. 4 we show that when
(5.29) is not satisfied the invariant manifold, which still exists as two heteroclinic connections of axial and
interior fixed points, may be non smooth and not the graph of a continuous decreasing convex function.
How far the conditions for convexity can be weakened is an open problem.

Meanwhile, it is also unknown what conditions are required for the constructed invariant manifold to
be smooth. Even when the model is competitive or strongly competitive, results such as in [19] are not
immediately applicable as ∂R2

+ is not invariant for our system. Since f and g are bivariate polynomials
each heteroclinic connection (orbit) along Σ is an analytic invariant manifold [20], hence only the interior
fixed points on Σ need to be checked for C1-smoothness. In addition, the Stable Manifold Theorem also
indicates that the stable and unstable subspaces for any saddle point in the dynamical system are both one-
dimensional. Moreover Σ , which is itself one-dimensional, must be tangential to one of the aforementioned
subspaces, as well as C1-smooth, even at the saddle point. Hence all that remains is to find conditions for
Σ to be also C1-smooth at interior fixed points of the model that are not saddles.

Recall that in Fig. 1 the invariant manifold Σ is not unique. In fact, numerics suggest that the model has
a countable sequence of nonmonotone invariant manifolds; these are analogous to the family of manifolds
described by Hirsch in Theorem 1.1 from [13]. Our model, however, is not immediately covered by Hirsch’s
results because the boundary of the phase space in Hirsch’s system is invariant whereas in our case, the
flow on the boundary points towards the interior of T . Nevertheless we believe that the difference is not
problematic, as long as we have a repelling boundary for the phase space.

Appendix. The explicit equations for the Nagylaki–Crow model

This appendix explicitly provides the governing equations for the three genotype frequencies, and
demonstrates that only two of the three equations are required.

By substituting (3.4) into Eq. (2.1), one has the following three equations of motion:

ẋ = 1
4z

2F22 + x
[
y (D3 − 2zF23) + z (F12 +D2) − y2F33 − z2F22 −D1

]
+ x2 (−2yF13 − 2zF12 + F11 +D1) − x3F11

ẏ = 1
4z

2F22 + y
[
x (D1 − 2zF12) + z (F23 +D2) − x2F11 − z2F22 −D3

]
+ y2 (−2xF13 − 2zF23 + F33 +D3) − y3F33

ż = 2xy F13 + z
[
y(F23 +D3 − 2xF13) + x(F12 +D1) − x2F11 − y2F33 −D2

]
+ z2

(
−2yF23 − 2xF12 + 1

2F22 +D2

)
− z3F22.
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Fig. 4. A numerical example where the invariant manifold, which consists of a union of two heteroclinic orbits, is not nonmonotone,
smooth or the graph of a convex function. The values of the fertilities are F11 = 2/5, F12 = 1/100, F13 = 1/81, F22 = 98/100,
F23 = 11/12, F33 = 1/97, while the mortalities are D1 = 93/100, D2 = 9/10, D3 = 1/10, so that this example does not satisfy
either of D2 ≤ D1 + F23 or D2 ≤ D3 + F12.

But recall that x + y + z = 1. Due to this, one has ẋ + ẏ + ż = 0, rendering the z-equation redundant.
Moreover, the remaining two equations can be re-written in terms of x and y:

ẋ = 1
4y

2F22 − 1
2yF22 + 1

4F22

+ x

(
y

(
−F12 + 5

2F22 − 2F23 −D2 +D3

)
+ y2(−F22 + 2F23 − F33)

+F12 − 3
2F22 −D1 +D2

)
+ x2

(
y(2F12 − 2F22 + 2F23 − 2F13) + F11 − 3F12 + 9

4F22 +D1 −D2

)
+ x3 (−F11 + 2F12 − F22)

ẏ = 1
4x

2F22 − 1
2xF22 + 1

4F22

+ y

(
x

(
−2F12 + 5

2F22 − F23 +D1 −D2

)
+ x2(−F11 + 2F12 − F22)

−3
2F22 + F23 +D2 −D3

)
+ y2

(
x (2F12 − 2F22 + 2F23 − 2F13) + 9

4F22 − 3F23 + F33 −D2 +D3

)
+ y3 (−F22 + 2F23 − F33) .
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