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Abstract 

Adolescence is the period of life between puberty and relative independence. It is 

a time during which the human brain undergoes protracted changes - particularly 

in the frontal, parietal and temporal cortices. These changes have been linked to 

improvements in cognitive performance; and are thought to render adolescence a 

period of relatively high levels of plasticity, during which the environment has a 

heightened impact on brain development and behaviour. This thesis investigates 

learning and plasticity in adolescence in four experimental studies. Study 1 

examined age differences in face cognition, a key component of social cognition, 

by testing face perception and face memory performance in 661 participants aged 

11 - 33. Study 2 tested whether the effects of social exclusion are age-dependent 

by measuring cognitive performance after social exclusion in 99 participants 

between ages 10 - 38. For Study 3, 663 participants aged 11 - 33 were asked to 

complete 20 days of cognitive training to probe whether the effects of cognitive 

training are also age-dependent. Study 4 investigated the neural correlates of 

academic diligence in 40 girls aged 14 - 15, using functional and structural 

neuroimaging. The research in this thesis demonstrates protracted development 

of cognitive functions in adolescence, consistent with previous studies. It 

highlights adolescence as a window of opportunity for learning but also as a 

vulnerable phase during which the brain is particularly susceptible to harmful 

effects of social exclusion. Finally, it highlights that individual variability in self-

control and underlying frontal systems may be related to academic diligence, and 

thus educational outcomes. 
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1. Chapter 1: Introduction 3 

Educational policy tends to focus on early childhood. However, research over the 

past 20 years has demonstrated that the human brain and mind undergo 

protracted changes beyond childhood. Adolescence, in particular, has been shown 

to be characterized by continued changes in brain structure; accompanied by the 

development of high-level cognitive functions relevant to education. These 

changes in brain structure have also been linked to the protracted development of 

social skills necessary to navigate life inside and outside the classroom. These 

findings have led to the suggestion that adolescence is a period of relatively high 

levels of plasticity, during which time the environment has a heightened impact on 

brain development and behaviour. This chapter reviews evidence for protracted 

development in adolescence; extracts general characteristics of sensitive periods 

from well-researched sensitive periods in early development and discusses 

evidence for high levels of plasticity of cognitive functions relevant to education 

during adolescence. 

 

 

 

                                                      
3 Parts of this chapter have been published as: 
 
Fuhrmann, D., Knoll, L.J., Blakemore, S.-.J. (2015). Adolescence as a sensitive period of brain 
development. Trends in Cognitive Sciences, 19 (10), 558-566. doi:10.1016/j.tics.2015.07.008 
 
Fuhrmann, D.*, Knoll, L.J.*, Sakhardande, A., Stamp, F., Speekenbrink, M. & Blakemore, S-J. (2016). 
A window of opportunity for cognitive training in adolescence. Psychological Science, 27(12), 1620-
1631. doi: 10.1177/0956797616671327 *Joint first authors. 

Fuhrmann, D., Knoll, L.J., Sakhardande, A., Speekenbrink, M., Cohen Kadosh, K. & Blakemore, S-J. 
(2016). Perception and recognition of faces in adolescence. Scientific Reports, 6(33497), 
doi:10.1038/srep33497 
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1.1. Adolescent Development 

Adolescence is the period of life between the onset of puberty and the point at 

which we attain a stable, independent role in society (Damon, 2004). It is a time of 

protracted changes in brain structure across the cortex, but particularly in the 

frontal, parietal and temporal lobe (Giedd et al., 1999; Tamnes et al., 2017; 

Tamnes, Walhovd, Dale, et al., 2013). Concomitantly, processes requiring high 

levels of cognitive control continue to develop during adolescence, leading to 

improvements in cognitive skills such as reasoning and memory (Bazargani, 

Hillebrandt, Christoff, & Dumontheil, 2014; Dumontheil, Houlton, Christoff, & 

Blakemore, 2010; Tamnes, Walhovd, Grydeland, et al., 2013). Adolescence is also 

a time of social maturation during which peers becoming increasingly important 

(Blakemore, 2008; Blakemore & Mills, 2014; Steinberg, 2008). 

 

1.1.1. Brain development 

Until 20 years ago, it was thought that the brain had more or less reached 

maturity after childhood. This view was based on post-mortem studies, showing 

that total brain volume increases rapidly during the first years of life, and levels off 

after 5 or 6 years of age (Dobbing & Sands, 1973; Giedd et al., 1999; Reiss, 

Abrams, Singer, Ross, & Denckla, 1996). However, advances in in-vivo 

neuroimaging techniques over the past two decades have resulted in a wealth of 

data showing that regional structural changes continue to occur throughout 

childhood, adolescence and into adulthood (Giedd et al., 1999; Lenroot & Giedd, 

2006; Tamnes et al., 2017; Tamnes, Walhovd, Dale, et al., 2013).  
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Protracted cortical development  

Brain maturation during adolescence is characterized by an overall increase in 

white matter (Brain Development Cooperative Group, 2012; Giedd et al., 1999) 

and decrease in grey matter volume and cortical thickness (Tamnes et al., 2017). 

White matter has been shown to increase linearly up until mid-to-late 

adolescence. It still increases in volume thereafter but the rate of change 

decelerates (Mills et al., 2016). Grey matter volume, in contrast, is highest around 

8 years of age and decreases throughout adolescence (Mills et al., 2016). 

The increase in white matter during adolescence is thought to largely reflect an 

increase in myelination and axon diameter (Grydeland, Walhovd, Tamnes, 

Westlye, & Fjell, 2013; Miller et al., 2012). Myelin increases the speed of signal 

transmission along the axon and regulates timing of information transmission 

(Fields, 2014; Lillard & Erisir, 2011).  

Grey matter, in contrast, consists mainly of neural soma, dendrites and synapses. 

It has been posited that the decrease in grey matter during adolescence is due to 

synaptic pruning, that is, the active loss of synapses that are not used (Giorgio et 

al., 2010; Selemon, 2013). However, synaptic boutons only comprise a small 

fraction of cortical volume - 1.5% in macaque monkeys (Bourgeois & Rakic, 1993). 

It therefore seems unlikely that grey matter volume reduction, which amounts to 

approximately 17% in the prefrontal cortex between late childhood and early 

adulthood (Mills, Goddings, Clasen, Giedd, & Blakemore, 2014), is solely due to 

pruning. Other potential cellular mechanisms underlying grey matter volume 

reduction include increasing myelination encroaching on grey matter (Mills & 

Tamnes, 2014; Paus, 2005). 
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Changes in brain structure during adolescence are not uniform across the cortex. 

More posterior regions of the cortex mature before more anterior regions (Figure 

1.1) (Tamnes et al., 2017; Tamnes, Walhovd, Dale, et al., 2013). In late childhood, 

volume changes are most prominent in the occipital and parietal lobes, while in 

late adolescence, volume changes are more pronounced in the frontal lobes and 

inferior temporal and parietal regions (Tamnes, Walhovd, Dale, et al., 2013). The 

latter brain regions are implicated in a number of high-level cognitive functions, 

including adaptive cognitive performance and social cognition (Blakemore, 2008; 

Crone & Dahl, 2012; Milner, 1963; Tamnes, Walhovd, Grydeland, et al., 2013). 

 
Figure 1.1. Changes in Cortical Volume over Development. Red-yellow 

regions show the largest reductions in volume, while blue regions 

show relatively smaller changes in volume (adapted from Tamnes, 

Walhovd, Dale, et al., 2013). Permission to reproduce this figure has 

been granted by Elsevier. 
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Cortical versus subcortical areas: The dual-systems hypothesis 

Among the late-maturing cortical brain regions, the frontal lobe has been of 

particular interest to developmental science because its development is closely 

linked to improvements in executive functions and self-control (Blakemore & 

Robbins, 2012; Crone & Steinbeis, 2017; Tamnes, Walhovd, Grydeland, et al., 

2013). 

It has been proposed that, in contrast to frontal regions, subcortical regions 

mature earlier in adolescence (Casey, Getz, & Galván, 2008; Steinberg, 2008). This 

is thought to be particularly true for regions involved in reward processing, such 

as the ventral striatum and amygdala (Ernst et al., 2005; van Leijenhorst et al., 

2010). This maturational mismatch between cortical control and subcortical 

reward regions has been linked to increased sensation-seeking in adolescence 

(Figure 1.2) (Steinberg et al., 2017). 

This dual-systems hypothesis is one of the most influential models of adolescent 

development (Shulman et al., 2016; Strang, Chein, & Steinberg, 2013) and has 

been used to explain phenomena such as increased impulsivity and risk-taking in 

adolescence (Casey et al., 2008; Steinberg, 2008; van den Bos, Rodriguez, 

Schweitzer, & McClure, 2015). Recent reviews however, have critiqued the dual-

systems hypothesis as overly simplistic and have highlighted heterogeneity in the 

development of frontal and striatal structures, task-related functional activation 

and individual trajectories (Casey, Galván, & Somerville, 2016; Crone & Dahl, 

2012; Pfeifer & Allen, 2012; Romer, Reyna, & Satterthwaite, 2017). 
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Figure 1.2. The Dual-Systems Hypothesis. This theoretical model 

illustrates the mismatch in brain maturation during adolescence; with 

subcortical regions being relatively mature during adolescence, 

whereas the frontal lobe does not reach similar levels of maturity until 

adulthood. The gap in maturity (shaded) is hypothesised to increase 

the risk for sensation-seeking behaviours during adolescence. Adapted 

from Mills et al. (2014). Permission to reproduce this figure has been 

granted by Karger. 

Consistent with the dual-systems hypothesis, structural imaging studies have 

shown that the average rate of volume change during adolescence is higher in 

cortical than in subcortical regions (Brain Development Cooperative Group, 2012). 

Annual volume change in the cortex exceeds 1% whilst subcortical regions change 

approximately 0.5% per year during adolescence (Tamnes, Walhovd, Dale, et al., 

2013). 

Individual differences in maturational trajectories are pervasive however. A recent 

longitudinal study directly compared maturation of three relevant brain regions: 

the prefrontal cortex as well as two subcortical areas - the nucleus accumbens, a 
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part of the ventral striatum, and the amygdala (Mills et al., 2014). The volume of 

each of these three structures was measured on at least three occasions for each 

of the 33 participants in the study. Maturation was measured as the current 

regional volume compared to the regional volume at the last point of 

measurement. At the group level, the results were consistent with the dual-

systems hypothesis. Volume in the prefrontal cortex changed by 17% from 7 - 30 

years, while volume changed by only 7% each in the two sub-cortical regions. 

However, differences in individual developmental trajectories were large. 82% of 

participants presented with a mismatch between the maturation of the prefrontal 

cortex and the amygdala, while only about half the participants showed a 

mismatch between the maturity of the prefrontal cortex and the nucleus 

accumbens. Some participants showed no mismatch at all. There was also no 

systematic relationship between the individual extent of structural mismatch and 

self-reported risk-taking (Mills et al., 2014).  

In line with the dual-systems hypothesis, functional neuroimaging studies have 

mainly shown age-related decreases in striatal activation during reward-

processing tasks (Crone & Dahl, 2012; Pfeifer & Allen, 2012). However, some 

studies have found adolescent striatal hypoactivity rather than hyperactivity in 

response to rewards (Bjork, Smith, Chen, & Hommer, 2010; Geier, Terwilliger, 

Teslovich, Velanova, & Luna, 2010). Bjork and colleagues, for example, found that 

the nucleus accumbens was hypoactive or similarly activated in adolescents (aged 

12 - 17) compared to adults (aged 22 - 42) when anticipating or receiving 

monetary rewards (Bjork et al., 2010). What is more, Pfeifer and colleagues found 

that increases in ventral striatum activity in response to affective facial displays 
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between ages 10 - 13 longitudinally predicted less susceptibility to risk-taking 

(Pfeifer et al., 2011). Some of these inconsistencies in striatal activation between 

studies may be due to the fact that different studies tend to assess different 

stages of reward processing, i.e. reward anticipation, reward receipt, reward 

assessment, etc. Nonetheless, the functional significance of striatal hyperactivity 

in adolescence remains unclear (Pfeifer & Allen, 2012).  

Regarding frontal regions, many developmental neuroimaging studies have found 

age-related increases in frontal activation in cognitive control tasks (Crone & Dahl, 

2012; Pfeifer & Allen, 2012). This has been interpreted as indicative of frontal 

regions coming increasingly online during adolescence and taken as evidence in 

favour of the dual-systems hypothesis (Shulman et al., 2016; Strang et al., 2013). 

However, patterns of activation are strongly task-dependent (Crone & Dahl, 2012; 

Pfeifer & Allen, 2012). Critically, the most complex executive function tasks, which 

require self-control as well as performance monitoring, were often not associated 

with clear differences in frontal activation between adolescents and adults (Siegel 

et al., 2014; van den Bos, Guroglu, van den Bulk, Rombouts, & Crone, 2009).  

Some studies have even found that adolescents and young adults can be more 

self-controlled than older adults. A recent longitudinal study with 192 participants 

aged 8 - 26 showed that the ability to delay gratification follows a quadratic trend 

with a peak in the early twenties, rather than a dip in adolescence (Achterberg, 

Peper, van Duijvenvoorde, Mandl, & Crone, 2016). This challenges the idea of 

pervasive frontal immaturity during adolescence and indicates that self-control 

systems may already be online during this time of life (Crone & Dahl, 2012). 
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Overall, the existing literature thus highlights heterogeneity in the maturation of 

frontal and striatal structures and task-related functional activation, as well as 

individual differences in adolescent behaviour and brain development. There is 

also little and inconsistent data on how imaging data relates to real-world 

behaviour and individual differences thereof (Pfeifer & Allen, 2012). 

 

The dual-systems hypothesis and education 

Many studies investigating the dual-systems theory have focussed on risk-taking 

behaviours in adolescence (e.g. Braams, van Duijvenvoorde, Peper, & Crone, 

2015; Casey et al., 2008; Steinberg, 2008). However, reward processing and self-

control also affect many other phenomena including educational outcomes 

(Duckworth & Steinberg, 2015; Steinbeis & Crone, 2016). Personality traits such as 

diligence, conscientiousness or grit, all of which describe the ability to regulate 

behaviour in the service of goals, have also been shown to be related to 

educational attainment (Credé, Tynan, & Harms, 2016; Duckworth & Gross, 2014; 

Duckworth, Peterson, Matthews, & Kelly, 2007; Galla et al., 2014). The 

contribution of diligence to educational outcomes is thought to be dissociable 

from, and sometimes orthogonal to, IQ (Credé et al., 2016; Duckworth et al., 

2007). 

It has been proposed that diligence is the product of conflicting psychological 

processes – the exercise of will and the drive to seek immediate gratification 

(Duckworth & Steinberg, 2015). This rationale is similar to that of the dual-

systems hypothesis, and therefore diligence might be hypothesized to correlate 

with front-striatal structure function. However, only a handful of studies have 
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investigated neural correlates of diligence and related constructs (DeYoung et al., 

2010; Forbes et al., 2014; C. A. Myers, Wang, Black, Bugescu, & Hoeft, 2016; 

Nemmi, Nymberg, Helander, & Klingberg, 2016; S. Wang et al., 2016) and have 

produced results only partly consistent with a dual-systems account of diligence. 

Nemmi and colleagues (2016), for instance, found that grit correlates with 

nucleus accumbens grey matter density but not cortical thickness in the frontal 

lobe. There is also still a need for studies that combine structural, functional and 

connectivity data to provide a more holistic understanding of adolescent self-

control (Kilford, Garrett, & Blakemore, 2016). This gap in the literature will be 

addressed in Chapter 6. 

 

1.1.2. Cognitive development 

Changes in brain structure and function during adolescence are accompanied by 

protracted changes in cognitive functions. Piaget conceptualized adolescence as 

the ‘formal operational’ period of development during which we increasingly rely 

on abstract thought (Inhelder & Piaget, 1958). Recent empirical evidence supports 

this proposition. Adolescence has been shown to be a time during which many 

cognitive skills relevant to education undergo rapid development. These skills 

include planning (Luciana, Collins, Olson, & Schissel, 2009), attention (Velanova, 

Wheeler, & Luna, 2008) and arithmetic (Rivera, Reiss, Eckert, & Menon, 2005). 

Here, the development of three non-social cognitive skills, investigated in 

experimental Chapters 3 - 6 of this thesis, is discussed: (I) working memory, (II) 

relational reasoning and (III) enumeration. 
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Working memory 

Working memory describes the ability to store and manipulate information for 

ongoing cognitive processing (Baddeley & Hitch, 1974). Working memory predicts 

both fluid intelligence (Engle, Tuholski, Laughlin, & Conway, 1999; Kane et al., 

2004) and academic performance (Alloway, Gathercole, Kirkwood, & Elliott, 2009; 

Gathercole, Brown, & Pickering, 2003).  

The most established model of working memory assumes that working memory 

consists of a central executive managing two storage systems: a phonological loop 

and the visuo-spatial sketchpad (Baddeley, 2003; Baddeley & Hitch, 1974). The 

capacity of these two storage systems critically limits working memory 

performance and can be assessed using tests of verbal and visuo-spatial working 

memory. Verbal working memory is known to predict reading comprehension 

(Swanson, Howard, & Saez, 2006) and can be assessed, for example, by asking 

participants to memorize and repeat digits (de Haan, 2014). Visuo-spatial working 

memory is more predictive of mathematical performance than reading 

comprehension (Holmes & Adams, 2006) and can be measured with tasks that 

require participants to memorize and repeat spatial sequences (de Haan, 2014).  

Each of these two storage systems can be assessed with simpler tasks, in which 

information need only be maintained over a delay (e.g. forward digit span), or 

more complex tasks, in which information has to be mentally manipulated (e.g. 

backward digit span) (de Haan, 2014). Generally speaking, complex working 

memory tasks with high processing demands that recruit frontal areas of the 

brain, show particularly protracted development throughout adolescence, while 

performance on simpler tasks plateaus before age 12 (Conklin, Luciana, Hooper, & 
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Yarger, 2007; Isbell, Fukuda, Neville, & Vogel, 2015; Luciana, Conklin, Hooper, & 

Yarger, 2005; Tamnes, Walhovd, Grydeland, et al., 2013). Luciana and colleagues, 

for instance, showed that simple aspects of visuo-spatial working memory, such 

as delayed spatial recall, reach maturity around ages 11 - 12 (Luciana et al., 2005). 

More complex working memory abilities, such as strategic self-guided spatial 

search, in contrast, continue to improve at least up to 16 - 17 years of age 

(Luciana et al., 2005) and possibly even up to the mid-twenties (Murre, Janssen, 

Rouw, & Meeter, 2013). 

 

Relational reasoning 

Relational reasoning is the ability to detect abstract relationships between groups 

of items (Krawczyk, 2012). Relational reasoning skills correlate with mathematics 

performance (Mackey, Whitaker, & Bunge, 2012), and are often assessed in tests 

of fluid intelligence, a strong predictor of educational outcomes (Chuderski, 

2014).  

Relational reasoning can be reliably scored using tests like Raven’s Progressive 

Matrices Test (Raven, 1941). Raven’s is a visual task in which a stimulus has to be 

identified, that completes a pattern (Figure 1.3). Difficulty is scaled by the number 

of dimensions (e.g. horizontal, vertical, colour, shape) participants need to take 

into account to arrive at the correct solution (Christoff et al., 2001). For instance, 

zero-relational problems are the easiest to solve and involve only simple visual 

matching, while one-relational problems require pattern matching along one 

dimension. 
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Relational reasoning performance has been shown to improve between childhood 

and adulthood (Crone et al., 2009; Richland, Morrison, & Holyoak, 2006). For 

instance, young adults aged 18 – 25 perform better than children aged 8 - 12 on 

two-relational problems but similarly on zero- and one-relational problems (Crone 

et al., 2009). These changes in relational reasoning performance during 

adolescence have been linked to the protracted development of frontal brain 

regions, particularly the rostrolateral prefrontal cortex (Bazargani et al., 2014; 

Crone et al., 2009; Dumontheil, Houlton, et al., 2010). 

 
Figure 1.3. Raven’s Progressive Matrices Task. The panel shows 

examples of a zero-relational problem (REL-0), a one-relational 

problem (REL-1) and a two-relational problem (REL-2). Participants are 

instructed to indicate the correct solution out of three options. 

Adapted from Crone et al. (2009). Permission to reproduce this figure 

has been granted by John Wiley and Sons. 
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Some studies have found non-linear trajectories with a dip in relational reasoning 

between ages 11 - 17, compared to younger and older participants (Dumontheil, 

Houlton, et al., 2010). Such non-linear changes may relate to the onset of puberty 

and can be observed in other domains as well, including in face processing and on 

match-to-sample tasks (Carey, Diamond, & Woods, 1980; Dumontheil, Houlton, et 

al., 2010; McGivern, Andersen, Byrd, Mutter, & Reilly, 2002).  

 

Numerosity discrimination 

A foundational skill in mathematics is numerosity discrimination, the ability to 

represent approximate numbers and compare quantities (e.g. which group of 

icons is bigger) (Piazza, 2010). This is sometimes also called the ‘approximate 

number system’ (Feigenson, Dehaene, & Spelke, 2004) or ‘number acuity’ 

(Halberda, Mazzocco, & Feigenson, 2008).  

Some sense of numerosity is present already in infancy (Piazza, 2010). Newborns 

can discriminate between quantities differing by a 1:3 ratio, 6-month old infants 

discriminate quantities differing by 2:1, and 9 month olds succeed at 2:3 ratios 

(Piazza, 2010). It has been proposed that symbolic mathematical skills such as 

learning numbers is achieved by mapping number words or digits onto pre-

existing, approximate, quantitative representations. In this model, the 

approximate number system is a pre-requisite for acquiring symbolic mathematics 

skills (Wynn, 1992).  

This view was supported by studies showing that numerosity discrimination 

correlates with and longitudinally predicts mathematics performance in children 
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and adults (Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Halberda et al., 

2008; Starr, Libertus, & Brannon, 2013). However, the relationship may become 

bidirectional relatively early in development. Symbolic number representation 

abilities have been shown to longitudinally predict the refinement of the 

approximate number system in 4 - 5 year olds (Mussolin, Nys, Content, & 

Leybaert, 2014). 

Number acuity undergoes protracted development past childhood. While earlier 

computational modelling suggested that number acuity is mature from the pre-

teen years (Halberda & Feigenson, 2008), a more recent large-scale data (N > 

10,000) showed that number acuity improves throughout the school-age years, 

peaking at around 30 years of age (Halberda, Ly, Wilmer, Naiman, & Germine, 

2012). 

 

1.1.3. Social development 

In addition to the development and refinement of non-social cognitive skills, social 

cognition undergoes major changes in adolescence. A key developmental task for 

adolescents is transitioning from the relative dependence on caregivers during 

childhood to the relative social independence of adulthood. This requires the 

acquisition of social skills necessary for navigating life inside and outside the 

classroom (Blakemore, 2010). 

This process is accompanied by marked changes in social cognition (Blakemore, 

2008; Blakemore & Mills, 2014). Adolescence is characterised, for example, by 

maturation in perspective taking (Dumontheil, Apperly, & Blakemore, 2010; 



28 
 

Dumontheil, Kuster, Apperly, & Blakemore, 2010; Sebastian et al., 2012), emotion 

processing (Blakemore & Robbins, 2012; Goddings, Burnett Heyes, Bird, Viner, & 

Blakemore, 2012) and social learning (Cook & Bird, 2011). Here, evidence for 

developmental changes in two areas of social cognitive development, that are of 

particular interest for the experiments presented in this thesis, are reviewed: (I) 

face cognition and (II) peer-influence. 

 

Face cognition 

Faces are of unique importance in everyday life. Recognition of faces is 

fundamental to building and maintaining relationships (Behrmann & Avidan, 

2005). Faces also provide social signals such as information about other people’s 

mental states and emotions (Adolphs, 2003) and facilitate communication and 

social learning (Tomasello & Carpenter, 2007). Because faces are so central to our 

social life, it has been proposed that face cognition may serve as a model for 

broader changes in social cognition during adolescence (Scherf, Behrmann, & 

Dahl, 2012). There is, however, an ongoing controversy as to whether face 

cognition actually changes qualitatively past childhood (McKone, Crookes, Jeffery, 

& Dilks, 2012). 

Theories of face cognition mainly distinguish between two sub-components: face 

memory, the ability to learn and recognize known faces, and face perception, the 

ability to discriminate facial features and configurations (Dolzycka, Herzmann, 

Sommer, & Wilhelm, 2014). Face memory and face perception are thought to be 

face-specific skills that are distinct from other abilities such as object cognition 

(Wilhelm, Herzmann, Kunina, & Sommer, 2007).  
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The ability to recognize people from their faces has its origins early in 

development, potentially even prenatally (Crookes & McKone, 2009; Reid et al., 

2017), but face memory expertise follows a protracted course of development 

thereafter. Face memory has been shown to improve rapidly between 6 and 10 

years and then level off, or even dip with the onset of puberty, to then rise again 

later during the teenage years (Diamond, Carey, & Back, 1983). Other studies 

have shown linear improvements between childhood and adulthood (Gur et al., 

2012; Song, Zhu, Li, Wang, & Liu, 2015). 

Proponents of the late maturation account argue that these developmental 

patterns demonstrate that face memory does not mature until at least 10 years of 

age and that it is likely driven by experience of faces - by one’s ‘face diet’ (Maurer 

& Mondloch, 2011). Proponents of the early maturation account, in contrast, 

contend that experience has little effect on face memory development and that 

quantitative improvements in face memory after 3 - 5 years are due to 

improvements in general cognitive ability (McKone et al., 2012). 

Similarly for face perception, early maturation accounts compete with late 

maturation accounts (Mondloch, Le Grand, & Maurer, 2002; Mondloch, Robbins, 

& Maurer, 2010). The disagreement here may in part be attributable to the fact 

that the perception of different face aspects such as identity, expression or gaze, 

develops at different rates (Cohen Kadosh, 2011). These face aspects are 

processed in different ways by the face perception network of the brain (Cohen 

Kadosh, Johnson, Henson, Dick, & Blakemore, 2013; Cohen Kadosh, Walsh, & 

Cohen Kadosh, 2010), and gaze perception generally matures earlier than identity 

or expression perception, with identity perception maturing last (Cohen Kadosh, 
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2011; Cohen Kadosh, Johnson, Henson, et al., 2013). It is thought that this order 

of maturation reflects the degree to which configural processing is required 

(Mondloch et al., 2002). Configural processing refers to the processing of the 

overall layout of the face, rather than features in isolation. This is thought to be a 

complex cognitive skill that requires much experience (Mondloch et al., 2002). 

In order to investigate when in development face cognition matures, Chapter 3 

explores age-related differences in the two aspects of face cognition, fame 

memory and face perception. It also explores when different aspects of face 

perception mature. 

 

Peer influence 

Adolescence is thought to be a time during which peers become increasingly 

important (Crone & Dahl, 2012; Steinberg, 2008). A recent, eight-year longitudinal 

study investigated developmental changes time allocation in American girls and 

boys. Lam and colleagues followed children and adolescents aged 8 - 18 and 

showed that time with same-sex peers peaks around the age of 14, after which 

time is spent increasingly with opposite-sex peers (Lam, McHale, & Crouter, 

2014). The quality of relationships with peers changes during adolescence too. 

While parents are perceived as the greatest source of support in late childhood 

(between the ages 9 - 12.5), by mid-adolescence (around 16 years), same-sex 

friends are the greatest source of support. At age 19, romantic partners are the 

most important source of support (Furman & Buhrmester, 1992). 

Peers also exert a strong influence on opinions and behaviours during 

adolescence (Blakemore & Mills, 2014). For instance, young adolescents (aged 
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12 - 14) appear to be particularly susceptible to peer influence on risk perception, 

compared with other age groups (Figure 1.4) (Knoll, Magis-Weinberg, 

Speekenbrink, & Blakemore, 2015). Knoll and colleagues measured the degree of 

social influence on risk perception in different age groups and found that, while 

other age groups were more influenced by adults’ opinions about risk, young 

adolescents were more influenced by the opinions of other adolescents. Mid-

adolescents (aged 15 to 18) showed no difference in social influence between 

adults’ and teenagers’ opinions about risks, suggesting that this is a transitional 

stage in development.  

Adolescents and young adults (aged 13 - 22) are also more likely to take 

driving risks in the presence of peers, whilst adults’ (aged 24 and over) driving 

risks are unaffected by peers (Gardner & Steinberg, 2005). This peer influence 

effect is not restricted to risk-taking. When adolescents (aged 10 - 18) are 

observed by a friend rather than an adult, their performance on a reasoning task 

is reduced. Adults’ (aged 21 and over) performance, in comparison, is unaffected 

by being observed by a friend or an adult (Wolf, Bazargani, Kilford, 

Dumontheil, & Blakemore, 2015). 

Peer influence may be heightened in adolescence because peer acceptance or 

rejection strongly influences feelings of self-worth (Blakemore & Mills, 2014; 

Burke, McCormick, Pellis, & Lukkes; O'Brien & Bierman, 1988). Peer-rejection and 

social exclusion can be simulated experimentally using the Cyberball paradigm 

(Williams, Cheung, & Choi, 2000). Cyberball is an online ball-tossing game during 

which participants are ostensibly either included or excluded by two peers. In 

adults, Cyberball exclusion reliably lowers mood and induces a threat to four 
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fundamental psychological needs: self-esteem, belonging, control and a sense of 

meaningful existence (Williams, 2007; Williams et al., 2000). Such effects may be 

amplified in younger age groups. For example, young adolescent girls (aged 11 - 

13) showed a reduction in mood and increase in anxiety after exclusion compared 

to baseline, whilst mid-adolescents (aged 14 - 15) showed reduced mood only, 

and adults (aged 22 - 47) showed no changes in either mood or anxiety 

(Sebastian, Viding, Williams, & Blakemore, 2010).  Another study showed that 

Cyberball exclusion threatened psychological needs in adolescents (aged 13 - 17) 

and emerging adults (aged 18 - 22) more than it did in older adults (aged 22 to 27; 

Pharo, Gross, Richardson, & Hayne, 2011). 

Social exclusion may affect not only mood and need-threat but also cognitive 

performance (Baumeister, Twenge, & Nuss, 2002). Studies using the Cyberball 

paradigm in adults have largely found negative effects of exclusion on cognitive 

functioning, particularly on executive functions such as inhibitory control and 

working memory. For instance, Cyberball exclusion is associated with reduced 

performance in the Flanker task (Themanson, Ball, Khatcherian, & Rosen, 2014) 

and the anti-saccade task (Jamieson, Harkins, & Williams, 2010) in adults. 

Cyberball exclusion has also been shown to disrupt cognitive performance in 

children. Hawes and colleagues showed that social exclusion disrupted cognitive 

performance in girls, but not boys, aged 8 - 12 (Hawes et al., 2012). To date, 

however, there is little experimental evidence on how social exclusion affects 

cognitive performance in adolescence. This question is explored in Chapter 4. 
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Figure 1.4. Social Influence on Risk Perception. A total of 563 participants rated the 

riskiness of everyday situations – before and after they were informed about the 

ratings of other people, either adults or teenagers. An index of conformity to 

other people's ratings is shown, depending on the origin of the social influence 

(adults or teenagers) across five age groups: children (aged 8 - 11), young 

adolescents (Y. Adoles., aged 12 - 14), mid-adolescents (M. Adoles., aged 15 - 18), 

young adults (Y. Adult, aged 19 - 25), and adults (aged 26 and over). *** p < .001, 

** p < .01, * p < .05 significant difference in social influence effect between social 

influence origin (adults compared with teenagers) for each age group. Data 

published in Knoll et al. (2015). Reused from Fuhrmann et al. (2015) with 

permission from Elsevier. 

In summary, adolescence is characterized by protracted changes in brain 

structure, cognitive function and social cognition. It has been proposed that 

these changes may make adolescence a time of high levels of plasticity or 

possibly even a sensitive period of brain development (Blakemore & Mills, 2014; 

Selemon, 2013; Spear, 2013; Steinberg, 2014). 
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1.2. Plasticity and Sensitive Periods of Development 

In the 1960s, Hubel and Wiesel investigated the effect of monocular deprivation 

in kittens. Neurons in the corresponding visual cortex lost responsiveness to 

stimuli directed towards the previously deprived eye and started responding 

preferentially to the non-deprived eye (Wiesel & Hubel, 1963, 1965a). Monocular 

deprivation in the first three months of life was also associated with atrophy in 

cells in the thalamus receiving input from the deprived eye. Recovery from this 

atrophy was very limited, even after five years of light exposure. In contrast, 

monocular deprivation after three months of age produced virtually no 

physiological, morphological or behavioural effects (Hubel & Wiesel, 1970; Wiesel 

& Hubel, 1965b). The findings from these studies were taken as evidence that the 

first few months of life form a sensitive period for perceptual development, 

during which neuronal plasticity is heightened (Knudsen, 2004). 

Plasticity describes the ability of the nervous system to adapt its structure and 

function in response to environmental demands, experiences and physiological 

changes (Pascual-Leone, Amedi, Fregni, & Merabet, 2005). It remains an 

underspecified concept, with usage varying between fields (Lövdén, Bäckman, 

Lindenberger, Schaefe, & Schmiedek, 2010). Plasticity can be measured at the 

level of the neuron (changes in synaptic strength, dendritic branching, 

neurogenesis etc.; Selemon, 2013), tissue (changes in cortical thickness, grey 

matter volume etc.; Wenger, Brozzoli, Lindenberger & Lövdén, 2017), or by 

observing changes in behaviour (e.g. performance; Wenger et al., 2017, 

Fuhrmann et al., 2015).  
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The human brain retains a baseline level of plasticity throughout life – this is 

known as experience-dependent plasticity and underlies all learning (Greenough, 

Black, & Wallace, 1987). Motor skill learning is a well-described example of 

experience-dependent plasticity (Adams, 1987). New motor skills can be acquired 

compensate for injuries or adjust to new tasks, such as learning to play the piano 

or learning to juggle. Motor skill learning is accompanied by changes in white and 

grey matter of the motor cortex and is possible throughout life (Ungerleider, 

Doyon & Karni, 2002, Sampaio-Baptista et al., 2014).  Plasticity during sensitive 

periods, on the other hand, is experience-expectant – the brain ‘expects’ to be 

exposed to a particular stimulus during this time (Greenough et al., 1987; 

Johnson, 2005).  

Sensitive periods were originally referred to as ‘critical periods’. This term is used 

less now, as it has since become clear that some gain or recovery of function may 

be possible even outside the particular time window in question. In the case of 

monocular deprivation, research on monocular deprivation in kittens during the 

70ies showed that animals can be trained to use the initially deprived eye after it 

is uncovered, and this can bring about a certain level of recovery (Dews & Wiesel, 

1970).  

 

1.2.1. Evolutionary perspectives on sensitive periods 

Optimality models in evolutionary biology seek to understand a given phenotype 

in terms of its associated costs and benefits. Adaptive phenotypes are predicted 

to maximise the cost-benefit ratio (Parker & Smith, 1990). For instance, for 
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Escherichia coli, expressing Lac proteins is associated with costs (producing and 

maintaining the proteins) and benefits (the ability to digest lactose). The cost-

benefit ratio of expressing Lac depends on the lactose content of the environment 

(Dekel & Alon, 2005). By experimentally manipulating this environmental 

constraint, Dekel and Alon (2005) showed that E. coli evolves to express optimal 

levels of Lac within a few hundred generations.   

Optimality models have also provided an insight into costs and benefits of 

plasticity (Fawcett & Frankenhuis, 2015). Almost by definition, the main benefit of 

plasticity is that is it allows an organism to adapt to new or changing 

environments. Plasticity is not cost-free, however. Plasticity requires energy and 

resources, as demonstrated by studies of Drosophila melanogaster (Mery & 

Kawecki, 2003, 2005). Fly larvae from strains selected for their high learning 

ability showed less competitive ability than larvae from low-learning strains (Mery 

& Kawecki, 2003). 

Plasticity also introduces the possibility of error. Environmental cues, for instance, 

may be unreliable, irrelevant or interpreted incorrectly. Lorenz (1937) famously 

observed that young birds imprint on any moving object within their first few 

hours of life, and follow it, regardless of whether it is their mother, or not (Lorenz, 

1937).  

Two key factors influence the cost-benefit ratio of plasticity: (I) the quality and 

quantity of available environmental cues available, and (II) the degree of 

uncertainty in environments (Fawcett & Frankenhuis, 2015). Carroll and Corneli 

studied soapberry bugs (Jadera haematoloma) and found that plasticity of mating 

behaviour was related to the stochasticity of environmental conditions. In 
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Oklahoma, where sex ratios vary due to climatic fluctuations, mate-guarding in 

male bugs was plastic. In Florida, where sex ratios are more stable due to a 

constant climate, males engaged in a fixed amount of mate-guarding and were 

not able to adapt their behaviour variable sex-ratios imposed in the lab (Carroll & 

Corneli, 1995).  

The quality of environmental cues and degree of uncertainty varies over 

ontogeny, which may produce changes in plasticity over the lifespan and predict 

sensitive periods of development (Fawcett & Frankenhuis, 2015; Panchanathan & 

Frankenhuis, 2016; Stamps & Krishnan, 2014). Simulation studies have highlighted 

that, under most circumstances, plasticity is expected to decline with age. Over 

ontogeny, the system accumulates more and more information. This reduces 

uncertainty, which in turn, is thought to reduce plasticity (Fawcett & Frankenhuis, 

2015; Panchanathan & Frankenhuis, 2016). Later peaks in plasticity (for instance 

during adolescence) will be produced only if environmental conditions change 

drastically and contradict earlier estimates. The variable onset of puberty, as well 

as rapid changes in the social environment during adolescence, may be such 

conditions of uncertainty (Fawcett & Frankenhuis, 2015), but this suggestion is, at 

present, untested.  

It should be noted that sensitive periods do not necessarily have to be adaptive. 

They could also be the by-product of other developmental programs and have no 

effect on fitness or even a negative effect (Laland & Brown, 2011; Michel & Tyler, 

2005; Thomas & Johnson, 2008). Optimality models do not actually demonstrate 

that sensitive periods are optimal. Rather, they are a tool for understanding 

biological constraints on evolution (Parker & Smith, 1990). 
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1.2.2. Early sensitive periods 

Most research on plasticity to date has focussed on early development. Early 

sensitive periods for visual, language and face perception development are 

particularly well described and highlight some key characteristics of sensitive 

periods in general. 

Characteristics of early sensitive periods 

Unlike translational work on sensitive periods of the visual system (Hubel & 

Wiesel, 1962, 1970; Wiesel & Hubel, 1963, 1965a, 1965b), studies in humans have 

relied on naturally occurring instances of visual deprivation in individuals born 

with cataracts, which occlude the lens of the eye. Sight may be regained after 

cataract reversal procedures. Cataract reversal studies indicate differences among 

sensitive periods for normal visual development, periods of sensitivity to 

deprivation and periods of recovery from deprivation (Lewis & Maurer, 2005). For 

visual acuity, for instance, the period of visually-driven typical development 

extends over the first 7 years of life, but individuals remain sensitive to 

deprivation up to 10 years of age and some recovery of function may be possible 

throughout life (Maurer & Lewis, 2012).   

Language development, too, generally shows heightened plasticity in childhood 

(Kuhl, 2010; Sakai, 2005), although there is no single sensitive period for language. 

Different linguistic abilities are acquired by partly separable neural systems, and 

these differ in their response to deprivation and periods of heightened plasticity 

(Kuhl, 2004). Congenital deafness, for instance, is associated with altered 

processing of grammatical information while semantic processing appears to be 
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insensitive to auditory deprivation (Neville, Mills, & Lawson, 1992). This highlights 

the specificity of sensitive periods. 

The timing of onset and offset of early sensitive periods is malleable. Studies with 

monkeys have demonstrated that the face sensitive period at the beginning of life 

can be extended by two or more years if infant monkeys are not exposed to face 

stimuli during this time. Face deprivation, therefore, delays the onset of the 

sensitive period (Sugita, 2008). The end of a sensitive period may in some cases 

be self-generated: learning may drive the commitment of neural structures, 

effectually reducing plasticity (Johnson, 2001, 2005). Face perception undergoes 

perceptual narrowing, for instance, during which individuals become better at 

processing the category of faces they are most exposed to, at the expense of 

categories they see less frequently, producing effects such as the own-race bias of 

face perception (Malpass & Kravitz, 1969; Scott, Pascalis, & Nelson, 2007; Tanaka 

& Pierce, 2009). Another explanation for the end of sensitive periods is that 

plasticity may not actually reduce but, instead, that frequency of or variation in 

environmental stimulation decreases (Johnson, 2005). 

 

Cellular mechanism of early sensitive periods 

Early development of the visual system has served as a model for cellular 

mechanisms of sensitive periods (Hensch, 2005). Evidence from this domain 

indicates that plasticity after sensitive periods is not lost but rather actively 

dampened by functional and structural ‘brakes’ (Takesian & Hensch, 2013). 

Functional brakes include neurotransmitters like serotonin and dopamine 

(Bavelier, Levi, Li, Dan, & Hensch, 2010), enzymes like histone-deacetylase (HDAC) 
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(Bieszczad et al., 2015) and proteins like myelin-derived Nogo (McGee, Yang, 

Fischer, Daw, & Strittmatter, 2005). Structural brakes inhibit further neuronal 

growth. Myelin, for example can hinder axonal sprouting (Bavelier et al., 2010).  

That capacity for high levels of plasticity is not lost after early childhood, is 

evidenced by incidents of stroke or traumatic brain injury naturally re-triggering 

plasticity (Hubener & Bonhoeffer, 2014). It is also possible to artificially enhance 

plasticity beyond childhood by inhibiting functional brakes. Treatment with the 

serotonin reuptake inhibitor fluoxetine has been found to restore visual function 

in amblyopic adult rats, for example (Maya Vetencourt et al., 2008). Another 

example comes from music learning. Whilst absolute pitch cannot usually be 

acquired after 6 years of age, inhibition of HDAC using valprorate has been shown 

to facilitate the acquisition of absolute pitch in human adults (Gervain et al., 

2013). 

In summary, early sensitive periods for visual and language development highlight 

some key facets of sensitive periods. Namely, that sensitive periods vary within 

and between domains, that the timing of sensitive periods is malleable and that 

plasticity after sensitive periods can be re-accessed. The evidence-base for 

sensitive periods beyond early childhood, however, is much sparser. 

 

1.3. Adolescence as a Sensitive Period of Development 

Adolescence, with its protracted changes in brain structure and function, has 

been posited to form a ‘second period of heightened malleability’ after early 

childhood (Steinberg, 2014, p. 9; see also Blakemore & Mills, 2014; Selemon, 
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2013). In this section three areas of adolescent development that have been 

proposed to be characterised by heightened plasticity, are explored: memory, the 

effects of stress, and the effects of drug use. The argument is made, that 

advances in developmental studies have yielded intriguing data that is consistent 

with heightened plasticity in adolescence. However, despite recent advances, 

concrete evidence for sensitive periods is mostly lacking.   

 

1.3.1. What evidence would be consistent with adolescence being a sensitive 

period? 

If adolescence is indeed a sensitive period, certain patterns of development ought 

to appear. First, the impact of a specific stimulus on brain and behaviour should 

be higher in adolescence than before or after. For that reason, studies are 

necessary that compare adolescents with other age groups. Only if multiple age 

groups are considered, can we assess whether adolescence is a stand-alone 

period of heightened plasticity (Model A, Figure 1.5), a continuous sensitive 

period with childhood (Model B, Figure 1.5) or not a sensitive period at all (Model 

C, Figure 1.5).   

As a result of the differences in the timing of maturation of different brain regions 

and circuits (Tamnes, Walhovd, Dale, et al., 2013), considerable variation in the 

on- and off-set of sensitive periods for different domains would be expected. Just 

as early development is characterised by multiple sensitive periods (Kuhl, 2004; 

Lewis & Maurer, 2005), adolescence is not proposed to be a sensitive period per 

se; instead, it is proposed that there are certain periods in adolescence during 

which a specific input from the environment is expected.  
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Figure 1.5. Models of Plasticity in Adolescence. Adolescence may be a stand-

alone period of heightened plasticity (A) or form a continuous sensitive 

period with childhood (B). Alternatively, plasticity may decline continuously 

from childhood through adolescence and into adulthood (C). Adapted by 

Fuhrmann et al. (2015) for adolescence from Thomas (2012). Reused with 

permission from Elsevier. 

 

If certain environmental stimuli do indeed have a heightened impact during this 

time, we would expect there to be enhanced learning, particularly of late-

maturing skills. This is discussed in section 1.3.2. A lack of stimulation or aberrant 

stimulation would also be expected to have a disproportionate effect during this 

time, however. This feature of sensitive periods is discussed in the section 1.3.3. 

Adolescent plasticity might differ from plasticity early in development because, 

unlike babies and young children, adolescents are more likely to actively choose 

the environmental stimuli they experience. During childhood, environments are 

usually more structured by parents or caregivers, while adolescents have more 

autonomy to choose what to experience and with whom (Lam et al., 2014; Larson 
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& Richards, 1991). We might thus expect a large degree of individual differences 

in sensitive periods in adolescence, and some sensitive periods may only ever be 

experienced by a subset of adolescents, as discussed in section 1.3.4. 

 

1.3.2. Adolescence as a sensitive period for memory and other complex cognitive 

skills 

At age 35, we are more likely to recall autobiographical memories from ages 10 - 

30 than prior or subsequent to this period - a phenomenon referred to as the 

‘reminiscence bump’ (Rubin & Schulkind, 1997). The reminiscence bump is 

remarkably robust and shows a similar pattern when tested with different 

mnemonic tests and in different cultures (Conway, Wang, Hanyu, & Haque, 2005; 

Rubin & Schulkind, 1997). In addition to autobiographical events, the recall of 

music, books, films and public events from adolescence is also superior compared 

to other periods of life (Janssen, Chessa, & Murre, 2007; Janssen, Murre, & 

Meeter, 2008). Even mundane events that happened in adolescence and early 

adulthood appear to be over-represented in memory, suggesting that mnemonic 

capacity in general is heightened during this time of life (Janssen & Murre, 2008). 

For example, a large-scale study showed a peak in visuo-spatial memory between 

14 - 26 years of age (Murre et al., 2013). 

While these data are suggestive of sensitive periods, studies are needed that can 

provide experimental evidence for plasticity across development. There is some 

evidence for plasticity of working memory from training studies. For children and 

young adolescents (mean age: 9 years), gains in n-back type working memory 
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training, but not knowledge-based training, was shown to transfer to 

improvements in fluid intelligence (Jaeggi, Buschkuehl, Jonides, & Shah, 2011). 

Improvements were sustained over a 3-month period during which time no 

further training was implemented. Working memory training may also be 

effective in adolescents aged 14 - 15 with poor executive functioning, as well as in 

typically-developing controls (Løhaugen et al., 2011).  

Other complex cognitive functions like relational reasoning and numerosity 

discrimination can be trained as well. Relational reasoning and fluid intelligence 

were originally thought of as stable characteristics. Recent research has shown, 

however, that relational reasoning training can result in changes in fluid 

intelligence (Mackey, 2012). Relational reasoning training has been shown to 

increase IQ by 10 points in children aged 7 - 9 (Mackey, Hill, Stone, & Bunge, 

2011). There is some evidence that training induces plasticity in white matter 

microstructure. When young adults (mean age: 21 years) trained relational 

reasoning for standardized law school admission tests, white matter 

microstructure was altered and fronto-parietal connections in relational reasoning 

networks were strengthened (Mackey, Miller Singley, & Bunge, 2013; Mackey et 

al., 2012).  

Similarly, education and environment have been shown to influence numerosity 

discrimination. Access to schooling in indigenous South American participants 

aged 4 - 63 has been shown to predict number acuity (Piazza, Pica, Izard, Spelke, 

& Dehaene, 2013). Experimental data also suggested that training on approximate 

addition and subtraction of arrays of dots in adults selectively improves symbolic 

addition and subtraction (Park & Brannon, 2013).  
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In summary, there is some observational evidence for heightened memory 

capacities in adolescence and experimental evidence for plasticity of working 

memory, relational reasoning and numerosity discrimination in childhood and 

adulthood. However, little is known about training effects in adolescence and 

there are virtually no studies comparing training effects between age groups. To 

address this issue, Chapter 5 details the results of a large-scale training study with 

adolescent and adult age groups. 

 

1.3.3. Adolescence as a sensitive period for the effects of stress 

Many mental illnesses have their onset in adolescence and early adulthood 

(Figure 1.6) (Kessler et al., 2007; Kessler et al., 2005). A longitudinal study showed 

that 73.9% of adults with a mental disorder had a diagnosis before 18 years of age 

and 50.0% before 15 years of age (Kim-Cohen et al., 2003). It is thought that 

psychiatric disorders develop due to a combination of genetic predispositions and 

environmental stressors; and some may be triggered by the onset of puberty 

(Andersen & Teicher, 2008; Rosenthal, 1970). Social stress in particular may have 

a disproportionate impact during this time (Andersen & Teicher, 2008). The 

experience of acculturation stress attributable to migration, for example, 

longitudinally predicts internalising symptoms such as depression and anxiety 

between ages 16 - 18 (Sirin, Ryce, Gupta, & Rogers-Sirin, 2013). Of course, 

adolescence is not the only life stage during which social stress has adverse 

effects. Bullying in childhood (age 7 - 11), for instance, also has lasting effects on 

physical and mental health in adulthood (Takizawa, Maughan, & Arseneault, 

2014).                 
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Figure 1.6. Age of Onset of Psychiatric Disorders. The interquartile ranges for the 

age of onset of selected psychiatric disorders are shown. Data for Schizophrenia 

Spectrum Diagnosis were adapted from the Early Psychosis Prevention and 

Intervention Centre in Melbourne, Australia, as reviewed by Kessler et al. (Kessler 

et al., 2007). Data for the remaining disorders stems from the National 

Comorbidity Survey Replication in the United States (Kessler et al., 2005). 

Rodent studies provide an opportunity to experimentally manipulate exposure to 

social stress, and have offered valuable insights into the deleterious effects of 

stress across development (Marin, 2016). Adolescence in female rats lasts 

approximately from post-natal day (PND) 30 - 60 and from PND 40 - 80 in males. 

In female mice, adolescence lasts from PND 20 - 40 and from PND 25 - 55 in males 

(Schneider, 2013). It should be noted that there is considerable variation in terms 

of the age at which rodents are classified as adolescent or adult in the literature, 

however, as there is in humans (Schneider, 2013). Adolescent rats subjected to 

repeated defeat by a dominant individual have been shown to present with 

different behavioural patterns (more avoidance rather than aggression), and less 

recovery from renewed stress, compared with adult rats. Exposure to stress in 
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adolescence (compared with adulthood) was also associated with less neuronal 

activation in areas of the prefrontal cortex, cingulate and thalamus (Ver Hoeve, 

Kelly, Luz, Ghanshani, & Bhatnagar, 2013). This study did not include juveniles, 

limiting the conclusions that may be drawn regarding sensitive periods. 

Adolescence may also be a vulnerable period for recovery from the experience of 

social stress (Pattwell et al., 2012). Fear extinction learning is key for a healthy 

response to stress (Maroun et al., 2013). For psychiatric conditions such as post-

traumatic stress disorder, stress persists even though the stressor is no longer 

present. Fear extinction learning was found to be attenuated in adolescents (12 - 

17 years), as compared to children (5 - 11 years) and adults (18 - 28 years) (Figure 

1.7). The rodent data in the study indicated that a lack of synaptic plasticity in the 

ventromedial prefrontal cortex during adolescence is associated with decreased 

fear extinction. This implies that desensitization treatments, which are based on 

the principles of fear extinction learning, may be less effective in adolescence, and 

highlights the need for the development of alternative treatment approaches for 

this age group (Pattwell et al., 2012). The particular strength of this study lies in 

that fact that it included child, adolescent and adult age groups, as well as 

providing neural evidence in rodents. The results suggest that adolescence may 

be a sensitive, or vulnerable, period for recovery from stress. 
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Figure 1.7. Fear Extinction Learning in Mice and Humans across Development. 

Mean indices for fear extinction learning with standard error bars in humans (A) 

and mice (B) for children or juveniles, adolescents, and adults. *** p < .001 for an 

attenuation in fear extinction compared with other age groups. Adapted from 

Pattwell et al. (2012) with permission from PNAS. 

The absence of any social stimulation can have deleterious effects as well. Social 

isolation in male and female rats has been shown to have irreversible effects on 

some aspects of exploratory behaviour, but only if the isolation occurred between 

PND 25 - 45, and not before or after (Einon & Morgan, 1977). Therefore, this 

appears to be a vulnerable period for social deprivation in rats. This paradigm 

cannot be directly applied to humans, but as discussed in the section on peer 

influence, there is some evidence that human adolescents show greater levels of 

anxiety in response to social exclusion than adults (Sebastian et al., 2011; 

Sebastian et al., 2010). Chapter 4 systematically investigates the effects of social 

stress across adolescence so as to help develop and time mental health 

interventions aimed at strengthening resilience to social exclusion.  
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1.3.4. Adolescence as a sensitive period for the effects of drug use 

Adolescence is a time of heightened experimentation with drugs (Eaton et al., 

2012; Steinberg, 2008), with cannabis being one of the most widely used 

recreational drugs among adolescents and adults in the US and UK (Johnston, 

O'Malley, Bachman, & Schulenberg, 2013; The NHS Information Centre, 2011). It 

has been estimated that 15.2% of Europeans aged 15 - 24 have used cannabis in 

the last year and 8% in the last month (European Monitoring Centre for Drugs and 

Drug Addiction, 2011). Cannabinoid exposure during adolescence (before age 17) 

as compared to exposure after 17 years of age has been shown to result in lasting 

changes in brain structure and cognitive deficits, possibly making adolescence a 

vulnerable period for its effects (Ehrenreich et al., 1999; Pope et al., 2003).  

Recreational cannabis use before the age of 18 (but not in adulthood), or heavy 

use at any age, has been linked to grey matter atrophy in the adult temporal pole, 

parahippocampal gyrus and insula (Battistella et al., 2014). Longitudinal data has 

indicated that self-reported, persistent cannabis use between 13 - 15 years is 

associated with a significant decline in IQ (Meier et al., 2012). The longer the 

period of cannabis consumption, the greater the decline in IQ (Meier et al., 2012). 

This decline in IQ was found to be more pronounced in participants who used 

cannabis before the age of 18 as compared to those who started to use cannabis 

after 18.  

These findings suggest that the adolescent brain may be particularly sensitive to 

the adverse consequences of cannabis use. It should be noted, however, that 

alternative explanations, such as pre-existing mood or anxiety disorders mediating 

both cannabis-use and cognitive problems, cannot be ruled out in this study 
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(Blakemore, 2013). These studies also did not include younger age groups, and it 

is possible that the developing brain during childhood would show a similar or 

even greater sensitivity to cannabis than in adolescence. Even if that were the 

case, however, such sensitivities would not be commonly observed in humans as 

adolescent or adulthood will usually be the first point of contact with recreational 

drugs. 

Molecular and cellular data on the effects of cannabis in adolescence is sparse but 

there is some indirect evidence for heightened sensitivity during adolescence. It 

has been shown that cannabis affects the endocannabinoid system, which, along 

with other neurotransmitter systems (e.g. the glutamatergic and dopaminergic 

systems), undergoes extensive restructuring during adolescence (Malone, Hill, & 

Rubino, 2010). While the two key cannabinoid receptors CB1 and CB2 are already 

present in the rodent embryo (gestational day 11 - 14 (Berrendero, Sepe, Ramos, 

Di Marzo, & Fernandez-Ruiz, 1999), neuroanatomical distribution and number of 

receptors change during development. CB1 receptor expression in several brain 

regions was found to peak with the onset of puberty in female and male rodents 

(Rodriguez de Fonseca, Ramos, Bonnin, & Fernandez-Ruiz, 1993). Any disturbance 

caused by cannabis exposure during the adolescent period may have lasting 

effects on the endocannabinoid system, which affects neurodevelopmental 

processes like neuronal genesis, neural specification, neuronal migration, axonal 

elongation and glia formation (Berghuis et al., 2007; Harkany, Keimpema, Barabás, 

& Mulder, 2008; Oudin et al., 2011). For instance, exposure to D9-

tetrahydrocannabinol, the main psychoactive ingredient in cannabis, during 

puberty in female rats (PND 35 - 45) resulted in a decrease in CB1 receptor 
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density and functionality in several brain regions (Ellgren, Spano, & Hurd, 2007). 

However, comparative data from other age groups is lacking.  

Strong evidence for an adolescent sensitive period for drug-use comes from a set 

of studies investigating chronic cannabinoid exposure in male rodents. 

Cannabinoid exposure in adolescence (PND 40 - 65) predicted long-term cognitive 

deficits in adulthood (object recognition memory), whereas similar exposure in 

prepubescent (PND 15 - 40) and young adult rodents (PND 70 and over) was not 

linked to such persistent deficits (Schneider, Drews, & Koch, 2005; Schneider & 

Koch, 2003). It is not clear, however, if this evidence directly translates to humans.  

It should also be noted that only a subset of human adolescents experiment with 

drugs such as cannabis and that drug-use may be mediated by peer-influence. 

Adolescents whose friends regularly consume tobacco, alcohol and cannabis are 

more likely to use drugs themselves (Branstetter, Low, & Furman, 2011).  Future 

studies are needed to investigate individual differences, particularly in relation to 

peer influence and risk-taking, to understand when and for whom adolescence 

may be a vulnerable period for drug use. 

To summarize, evidence for plasticity in terms of memory and the effects of social 

stress and drug-use, is consistent with the proposal that adolescence is a sensitive 

period for these areas of development. The strongest evidence for sensitive 

periods to date comes from rodent studies showing a heightened vulnerability to 

the disruptive effects of social isolation and cannabis use, as well as reduced fear-

extinction learning. There is little conclusive evidence for human adolescence, 

however. Studies are needed, which focus on the effects of training or stress 
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across adolescence and other age groups. This will have particular relevance for 

education, and may help answer the question of what to teach when, as well as 

identify the most effective time for providing school-based educational and 

mental-health interventions. 

 

1.4. Learning, Plasticity and Education 

As discussed in this chapter, developmental research on learning and plasticity 

has traditionally focused on children, with a particular emphasis being placed on 

the first few years of life. It is undisputable that plasticity for many important 

cognitive and motor functions is heightened during early childhood, and that 

development during this period of life can have bottleneck effects for later life 

(Eluvathingal et al., 2006; Howard-Jones, Washbrook, & Meadows, 2012). 

However, much of the evidence for early sensitive periods stems from animal 

models and studies of severe deprivation, which may not necessarily generalize to 

human development under typical environmental conditions. Yet, this evidence 

has been used to draw the rather extreme and perhaps premature conclusion 

that ages 0 - 3 years is the critical period for learning, after which developmental 

trajectories are more or less fixed (Howard-Jones et al., 2012; Thomas, 2012). 

As highlighted in this chapter, many cognitive and social skills relevant to 

education normally develop beyond childhood. Adolescence, in particular, is 

characterized by protracted changes in brain structure and the maturation of 

cognitive skills requiring high levels of self-control. There is good evidence that 

plasticity for many higher level cognitive skills, like working memory or 
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reasoning, is maintained after childhood and some evidence suggestive of 

heightened plasticity in adolescence (Blakemore & Mills, 2014; Selemon, 2013; 

Spear, 2013; Steinberg, 2014), but conclusive evidence has been lacking. 

To investigate learning and plasticity in adolescence, this thesis highlights areas of 

adolescent development that are particularly relevant to education. Chapter 2 

discusses the methodology and design of the studies presented in this thesis. 

Chapter 3 - 6, the experimental chapters, address four main research questions:  

(I) Are there age-related differences in face cognition between adolescence and 

adulthood? A better understanding of social cognition and social development is 

critical to fostering social competency inside and outside the classroom 

(Blakemore, 2010). Chapter 3 investigates development of face cognition as a 

model for broader changes in social cognition beyond childhood. Specifically, this 

chapter examines age-related differences in face cognition between early 

adolescence and adulthood. It probes whether age effects are specific to face 

cognition, or rather due to general increases in cognitive ability, and investigates 

developmental differences between face cognition sub-domains and genders. 

 (II) Do the effects of social exclusion on cognitive performance differ between age 

groups? Chapter 4 examines the effects of social exclusion on cognitive 

performance in adolescence and adulthood. It probes whether some age groups 

are more affected by social exclusion than others. This may help inform the timing 

of bullying interventions in schools. 

(III) Do some age groups benefit more from cognitive training than others? 

Chapter 5 investigates whether complex cognitive skills like numerosity 
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discrimination, relational reasoning and face perception can be trained in 

adolescence and adulthood and probes whether some age groups benefit more 

from training than others. It also examines whether relational reasoning and face 

perception training generalizes to related cognitive skills by investigating transfer 

from relational reasoning to working memory, and from face perception to face 

memory. 

(IV) What are the neurocognitive correlates of diligence? Using a different 

theoretical framework than the preceding chapters, namely, the dual systems 

hypothesis, Chapter 6 investigates individual differences in self-control and their 

ramifications for education. It probes whether the interplay between frontal 

control and striatal reward systems is related to academic diligence, the ability to 

regulate behaviour in the service of educational goals. Using behavioural, 

structural MRI, functional MRI and connectivity data, it assesses the 

neurocognitive correlates of diligence in adolescence. This may foster a new 

understanding of the mechanisms of academic diligence and ultimately inform the 

design of educational interventions aimed at strengthening adolescent self-

control. 
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2. Chapter 2: Design Issues in Developmental Studies 

In this chapter, design issues, that are particularly relevant to the experimental 

studies presented in Chapters 3 - 6, are discussed. First, different types of 

developmental designs are explored to highlight potential benefits and limitations 

of each. Then, validity questions, that have been especially pertinent to the design 

of the studies in this thesis, are discussed, namely instrumentation effects and 

missing data. Even though only one of the experimental chapters covers a training 

study, an entire section is devoted to the design of training studies, because there 

are many specific issues requiring consideration, such as temporal design and the 

choice of transfer tasks. This chapter ends with a discussion of statistical designs 

and analyses used in developmental studies. A case is made for Generalized Linear 

Mixed Models as a particularly useful tool for the interpretation of complex 

developmental data sets, and particular attention is devoted to discussing how 

age can be modelled within this framework. 

 

2.1. Types of Developmental Designs 

There are two main types of design that can be used to study development - 

cross-sectional and longitudinal designs - as well as designs that combine aspects 

of both (Baltes, 1968; Little, 2013). The choice of design will depend on the 

researchers’ hypotheses as well as practical considerations and will affect 

inferences that can be drawn from it.  
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2.1.1. Cross-sectional designs 

Cross-sectional designs typically compare participants of different ages on an 

outcome measure. Cross-sectional designs are relatively time- and cost-efficient, 

in that multiple variables can be collected at a single point in time. This efficiency 

was the principal reason why we chose cross-sectional designs for most of our 

studies (see Chapters 3, 4 and 6). 

However, cross-sectional studies are limited in their ability to describe 

developmental change. Inter-individual variability makes it difficult to rule out the 

possibility that differences in age groups reflect accidental differences between 

groups rather than developmental differences (Mills & Tamnes, 2014). This 

problem can be ameliorated with large sample sizes, which increase power and 

protect against false positives (Button et al., 2013). Ultimately, however, cross-

sectional data on age differences should be considered as preliminary for studies 

on developmental change with longitudinal aspects (Kraemer, Yesavage, Taylor, & 

Kupfer, 2000). 

 

2.1.2. Longitudinal designs 

A pure longitudinal study takes a single age-cohort and takes repeated measures 

on an outcome variable over time (Baltes, 1968). For example, a cohort of eight-

year-olds may be recruited for the first wave of the study and then tested again 

five and ten years later to measure development on a reasoning task. Longitudinal 

designs are more powerful than cross-sectional designs and allow examining 

change over time (McArdle, 2008).  
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However, longitudinal studies take longer to complete than cross-sectional 

studies and are limited by the fact that age is perfectly confounded with time of 

measurement: If the same set of participants score higher on a reasoning test at 

age 18 than at age 8, it might be because of developmental changes, or it might 

be because participants have now taken the test more than once (Little, 2013). 

Moreover, changes in the testing protocol over time (e.g. changes in the testing 

personnel, imaging sequences, tasks used) can confound developmental effects.  

 

2.1.3. Combination designs 

There are a variety of mixed designs that attempt to combine the benefits of 

cross-sectional and longitudinal studies. One example of such designs is the cross-

sequential design. It begins with a cross-sectional sample and follows this sample 

over time (Little, 2013). The advantage of cross-sequential designs for the study of 

developmental change is that data can be collected more speedily than in 

conventional longitudinal designs. This design also allows the researchers to 

model intra-individual change (Sabol, Chase-Lansdale, & Brooks-Gunn, 2015). 

Training studies with multiple age groups (see Chapter 5) are an example of cross-

sequential designs. 

Another type of design that has become very popular over recent years is the 

cohort-sequential or accelerated longitudinal design (Little, 2013). Accelerated 

longitudinal studies are like a single longitudinal study starting over and over 

again. Initially, researchers may recruit 10 -, 11 -, 12 - and 13 - year olds for their 

study. Two years later, they may test 12 -, 13 -, 14 - and 15 - year olds in the 
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second wave of the study. Participants, who were 10 and 11 in the first wave, are 

12 and 13 in the second wave and can be tested again. Therefore, participants are 

followed longitudinally, but a broader age range can be covered in a shorter 

amount of time than in a traditional longitudinal study (Galbraith, Bowden, & 

Mander, 2017). Such designs are particularly suited to separating age effects from 

confounds such as learning effects, changes in experimenters or equipment 

(Prinzie & Onghena, 2014; Roe & Korn, 1993). Accelerated longitudinal structural 

imaging studies have provided rich insights into the protracted development of 

the human brain during adolescence and have highlighted an extraordinary 

amount of inter-individual variability in developmental trajectories (Giedd et al., 

1999; Gogtay et al., 2004; Mills et al., 2014; Mills & Tamnes, 2014; Tamnes et al., 

2017).  

 

2.2. Validity Issues 

Validity issues that are particularly important to the developmental studies 

presented in this this thesis include (I) instrumentation effects and (II) missing 

data. 

 

2.2.1. Instrumentation effects 

Instrumentation effects refer to violations of internal validity due to the measures 

or instruments used (Little, 2013). For developmental studies, floor effects (score 

limitation at the bottom of a scale) and ceiling effects (score limitation at the top 

of a scale) are a particular concern (Little, 2013; Uttl, 2005). For instance, a 
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researcher might not find a difference in reasoning scores between 10 - and 18 - 

year-olds because the particular test used was so simple that all participants 

performed nearly perfectly. If the test was harder, age group differences might 

have emerged. Instrumentation effects were a potential concern in the 

development of the studies presented in Chapters 3, 4, and 5, for which we 

recruited broad age ranges and participants in their early teens were compared to 

participants in their thirties. 

Instrumentation effects can be limited to some extent with careful piloting and 

calibration of task difficulty. Particularly when the age range studied is broad, 

however, it can be difficult to find an appropriate measure that produces no floor 

or ceiling effects. Researchers might then be tempted to choose different tasks 

measuring the same construct in different age groups. Such heterotypic measures 

can limit the validity of age group comparisons: age group differences become 

confounded with task differences (Little, 2013). Adaptive and testing-the-limit 

designs (see section 2.3.2. below and Chapter 5 for examples) may be better 

suited to preventing floor and ceiling effect in developmental studies (Alloway et 

al., 2009; Baltes, Lindenberger, & Staudinger, 2006; Wechsler, 1999).  

Statistically testing for floor or ceiling effects is a complex issue. One possibility is 

to compare the test scores of different age groups to the maximum or minimum 

possible scores. It is important to consider the possibility of asymptotes here - a 

score of 100% on a particular task may be theoretically possible but may never be 

achieved in practice (L. Wang, Zhang, McArdle, & Salthouse, 2009). Researchers 

therefore need to test their data against a realistic minimum or maximum value. 

See L. Wang et al. (2009) for an in-depth discussion of different analysis methods. 



60 
 

2.2.2. Missing data and selective attrition 

In studies with longitudinal components, like the training study presented in 

Chapter 5, attrition (and therefore missing data) is almost unavoidable, but 

missing data can also be a problem in cross-sectional data. The source of attrition 

needs to be carefully considered, because it can be a serious limitation to 

statistical inference (Koutoumanou & Wade, 2015a; Little, 2013; Newsom, 2015).  

Researchers need to report and analyse missing data patterns that are most 

pertinent to their hypotheses. The first step is to identify whether missing data is 

predicted by variables of interests or auxiliary variables (Little, 2013). In Chapter 5, 

for instance, we analysed whether drop-out from training differed between 

training and age groups.  

Conceptually, and rather confusingly termed, data can be either not missing at 

random (NMAR), missing at random (MAR), or missing completely at random 

(MCAR). NMAR means that missingness is related to the variable with missing 

scores, and cannot be explained by other variables in the dataset (Donders, van 

der Heijden, Stijnen, & Moons, 2006). NMAR is the most challenging scenario 

because even after including auxiliary variables, systematic differences in 

missingness remain (Koutoumanou & Wade, 2015a). For instance, participants 

may be more likely to drop out of a training study if they have low scores on the 

trained task. If this cannot be controlled for by any of the auxiliary variables 

collected, missingness would be NMAR.  

If data is MAR, it means that missingness is not related to the variable that has 

missing data. It can be related to other variables in the dataset, however (Donders 
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et al., 2006). Any differences between missing values and observed values can be 

explained by variables in the dataset (Koutoumanou & Wade, 2015a). For 

instance, participants from private schools may be less likely to drop out of a 

training study than participants from state schools, because the teachers of the 

former might have more time to support their training. Taking school-type into 

account, would completely explain missingness in this example. 

MCAR means that missingness is truly random and not related to any of the 

variables in the dataset. This means that there are no systematic differences 

between missing and observed values (Koutoumanou & Wade, 2015a). MCAR is 

the most desirable pattern of missingness because it poses the least difficulty in 

terms of analysing and interpreting the data. However, real data is rarely MCAR 

(Little, 2013). 

The exact type of missingness is mostly impossible to establish (Newsom, 2015). 

Most missingness will combine aspects of MCAR, MAR and NMCAR 

(Koutoumanou & Wade, 2015a; Little, 2013). This is problematic, particularly 

when choosing a method with which to address missingness because the optimal 

method depends on the type of missingness and results can vary depending on 

the method used (Newsom, 2015).  

The most common approaches to addressing missingness are list-wise deletion, 

pairwise-deletion and imputation. In list-wise deletion, all data for a participant 

who has at least one instance of missingness is removed. This method is used by 

default when using t-tests or ANOVAs. It is the most common but usually least 

effective method of dealing with missing data (Koutoumanou & Wade, 2015a). If 
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data is MAR or NMAR, list-wise deletion can induce bias into statistical inference. 

If data is MCAR, list-wise deletion does not induce bias but still reduces effective 

sample size (T. A. Myers, 2011).  

Pairwise deletion uses the entire available dataset but does not model the 

instances of missingness. Generalized Linear Mixed Models use pairwise deletion 

by default (see section 2.4.1. below) and was used for the studies presented in 

this thesis. Pairwise deletion has the advantage that is does not reduce or inflate 

sample size but it can still induce bias if data is NMAR (Koutoumanou & Wade, 

2015a). In Chapter 5, our study with longitudinal aspects, we therefore carried out 

several supplementary analyses to check missing data patterns. 

Imputation methods replace missing values with values predicted from the 

available data. Simple imputation methods include carrying the last observation 

forward or using the mean of the missing variable. These methods can both 

induce bias and falsely inflate the sample size (Koutoumanou & Wade, 2015a; 

Newsom, 2015). More modern approaches like multiple random imputation are 

much more effective at dealing with MCAR and MAR data (Newsom, 2015) but 

can be difficult to implement when using methods like Generalized Linear Mixed 

Models (but see Jagdhuber, 2016, for recent advances).  

In summary, it can be difficult to identify missing data types and address 

missingness optimally in analyses. Nonetheless, it is important to explore how 

inferences may be influenced by missingness (Koutoumanou & Wade, 2015a; 

Newsom, 2015).   
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2.3. Design Issues in Training Studies 

This section considers five particularly pertinent design issues in training studies 

like the one presented in Chapter 5: (I) temporal design; (II) adaptive designs; (III) 

control groups; (IV) randomization; and (V) transfer tasks. 

 

2.3.1. Temporal design 

Gollob and Reichardt (Gollob & Reichardt, 1987) stated the intuitive maxim that 

causes take time to exert effects and that the magnitude of effect depends on the 

measurement intervals. This is particularly relevant to training studies where 

researchers need to decide upon a multitude of temporal issues, including the 

duration of the individual training session, the total number of sessions, spacing 

between training sessions as well as the spacing between baseline testing and any 

follow-up testing. All of these decisions could affect the size of the training effects 

measured. Despite the obvious centrality of temporal issues in study designs, 

there is surprisingly little guidance and evidence available.  

The most relevant line of research compares the effects of spaced and massed 

learning on subsequent recall (Ebbinghaus, 1885). This research generally 

indicates that the same amount of material is better recalled when encoded on 

more rather than fewer occasions (Sisti, Glass, & Shors, 2007). It is relatively 

difficult to derive specific recommendations from this literature however, because 

there are only a handful of studies that have directly tested the effect of spacing 

of training on training gains and these studies usually find that the maximum 

interval tested was most effective (Penner et al., 2012; Z. Wang, Zhou, & Shah, 
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2014). For our training study, we therefore had to refer to the design of earlier 

training studies for guidance. It is to be hoped that in the future temporal design 

will become a more active area of investigation so as to provide reliable, 

quantitative evidence for the design of interventions. 

 

2.3.2. Adaptive designs 

Adaptive training means that task difficulty is scaled according to performance. In 

an up-down design, for instance, participants are given a more difficult item after 

getting an item right. After getting an item wrong, they are given an easier item 

next. Adaptive designs therefore ensure that participants are continually 

challenged. They may prevent ceiling effects and the formation of strategies, as 

well as promote transfer (Schwaighofer, Fischer, & Bühner, 2015). For these 

reasons, we made training adaptive in the study presented in Chapter 5. 

 

2.3.3. Active vs. passive control groups 

Training studies should always include a control group. A passive control group 

receives no treatment and is the equivalent of a wait-list control group in 

pharmacological studies. An active control group receives an alternative 

treatment, which makes it similar to placebo groups in pharmacological trials 

(Klingberg, 2010). Passive control groups control only for the effects of repeated 

testing, while active control groups also control for expectancy or placebo effects 

as well as generic effects of adhering to a schedule and so on. The most common 

type of active control condition used in training studies is a non-adaptive version 
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of the treatment condition (Schwaighofer et al., 2015). In Chapter 5, we opted to 

use a different design. We used three different, but equally challenging cognitive 

tasks that served as control tasks for one another (relational reasoning, face 

perception and numerosity discrimination). This design was chosen because it was 

more efficient than using three different tasks with a non-adaptive control 

condition each. It also ensured that task difficulty did not differ between training 

and control groups. 

 

2.3.4. Randomized-control studies 

Randomized-control study designs have been adapted for education from the 

gold-standard for medical studies, randomized-control trials (RCTs). They feature 

random allocation to a training or control group and usually a double-blind design 

where experimenters and participants are unaware as to which group participants 

were allocated to (Sullivan, 2011). Some features of RCTs may not be realistic in 

behavioural interventions, however. It may be possible to blind experimenters to 

participants’ training group, for example using automated testing. However, 

blinding participants to their treatment may be impossible when using cognitive 

tasks (as was the case in Chapter 5). Moreover, random allocation to training and 

control groups can be challenging if the intervention is delivered in the classroom. 

In Chapter 5, we therefore opted to ask participants to in their own time, instead 

of supervising training. The trade-off was, that we expected and got lower 

adherence to the training schedule than in supervised interventions. 
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2.3.5. Transfer tasks 

Transfer tasks are used to evaluate how much training generalizes. This is key, 

particularly for interventions that are trialled for use in the classroom (Klingberg, 

2010).  

Whether training a certain cognitive skills can improve performance on non-

trained tasks is still debated. Intervention studies have reported transfer mainly 

between skills that share similar cognitive processes such as different working 

memory tasks (near-transfer) (Klingberg, 2010; Thorell, Lindqvist, Bergman 

Nutley, Bohlin, & Klingberg, 2009). A small number of studies in children and 

adults have found evidence for far-transfer, that is, between less related skills. For 

instance, working memory training has been found to transfer to fluid intelligence 

(Bergman-Nutley & Klingberg, 2014; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; 

Klingberg et al., 2005), arithmetic performance (Bergman-Nutley & Klingberg, 

2014) and cognitive control (Klingberg et al., 2005), and reasoning training has 

been found to transfer to fluid intelligence (Bergman-Nutley & Klingberg, 2014; 

Klingberg et al., 2005; Mackey, Hill, Stone, & Bunge, 2011). However, large-scale 

studies and meta-analyses have failed to provide evidence for such far-transfer 

(Melby-Lervåg & Hulme, 2013; Owen et al., 2010; Schwaighofer et al., 2015). 

Nonetheless, the inclusion of far-transfer tasks is important when evaluating 

whether training generalizes to other skills, and was investigated in Chapter 5.  
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2.4. Statistical Design and Analysis 

Developmental studies usually produce complex data sets. They often feature 

mixed designs, which contain both fixed and random effects. Moreover, the effect 

of interest is usually an interaction - for instance, the interaction of age and 

training group. They also often include nested effects, meaning that effects are 

not independent. There are now several methods available to deal with these 

kinds of complex datasets efficiently, of which Generalized Linear Mixed Models 

are rapidly gaining in accessibility and popularity (Bolker et al., 2009). 

 

2.4.1. Generalized Linear Mixed Models (GLMMs) 

GLMMs are based on simple linear regression (Judd, McClelland, & Ryan, 2009). 

Simple linear regression finds a linear function that predicts the dependent 

variable y from an independent variable x as:  

y = α + βx  

Alpha (α) is the intercept of this model or the value of y for which x = 0. For the 

regression model depicted in Figure 2.1 α = 0.50. Beta (β) is the slope of the 

regression line. It describes the change in y over the change in x. In Figure 2.1 β = 

0.85. This means that when x increases by 1 unit, y increases by 0.85.  

Each data point is predicted with a certain error, ε. Figure 2.1 shows ε6, the error 

for the 6th data point. Simple regression is guided by the least-squares approach, 

which means the models seek to minimize the sum of squared errors. The 

squared errors are highlighted in blue in Figure 2.1. 
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Simple linear regression is the basis for more traditional approaches like t-tests 

and ANOVAs as well as GLMMs. GLMMs have several advantages over ANOVAs, 

however. The explicit regression approach makes GLMMs more flexible and easily 

allows for extensions. Such extensions include the inclusion of mixed effects 

(General Linear Mixed Models), the prediction of outcome measures that do not 

follow the normal distribution (Generalized Linear Models) or a combination of 

both (Generalized Linear Mixed Models) (Judd et al., 2009).  

 

Figure 2.1. The Regression Approach. An example dataset with variables x and 

y, which have been fitted the linear regression line y = 0.50 + 0.85x (shown in 

green).  

Mixed effects models use both random and fixed effects (Bolker et al., 2009). The 

levels of random effects form only a subset of the population of levels (Venables 

& Ripley, 2002). Participant is a common random effect. Researchers usually only 

take a sample of the population they are investigating (adolescents, adults, etc.) 
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Therefore, the participants included in an experiment do not exhaust the 

population. Random effects are also often nested and therefore correlated. For 

instance, each participant is part of a class, which is part of a school. GLMMs can 

model and account for this correlation by estimating the variance of the random 

effects (Judd et al., 2009). Fixed effects, in contrast, are variables whose levels 

exhaust the population of levels (Venables & Ripley, 2002). For instance, the 

experimental condition may be a variable with two levels: treatment and control. 

The researcher designed only these two levels, therefore the two levels included 

in the analysis constitute all possible levels.  

A feature of GLMMs that is particularly useful for cognitive researchers is the 

ability to predict outcome measures whose residuals cannot be modelled with a 

normal distribution. Most cognitive tasks produce accuracy data, which is 

dichotomous (1 = correct, 0 = incorrect). This kind of data cannot be modelled 

with a continuous normal distribution, which is a critical assumption of most 

linear regression approaches. Traditional approaches like ANOVA therefore 

require calculating an average score for each participant. GLMMs, however, allow 

modelling dichotomous outcome variables directly and predicting performance on 

each trial using a link function (usually the logit function). This function transforms 

dichotomous data into the unbounded, continuous probability of being correct, 

using the natural log of the odds. The link function therefore allows the predictors 

to vary linearly with the outcome variable, even though the outcome variable 

itself is not linear (Koutoumanou & Wade, 2015b). Using GLMMs instead of 

calculating averages has the advantage that it will not only increase power to 

detect effects, but also ensure that data is weighted correctly if not all 



70 
 

participants have completed the same number of trials (Koutoumanou & Wade, 

2015b).  

GLMMs can now be implemented in most statistical packages. R (R Core Team, 

2015) is well supported for GLMMs with packages like lme4 (Bates, Maechler, & 

Bolker, 2013). R is also open source and uses scripts, which can aid replication 

efforts. 

 

2.4.2. Modelling age  

Age is naturally continuous, but it can be modelled either as a continuous variable 

or a categorical variable. The most common way of turning continuous variables 

into categorical ones is using median splits (e.g., as a dummy-coded predictor 

with 1 = greater than median, 0 = less than or equal to the median). Whether or 

not it is valid to do so is controversial (Fitzsimons, 2008; Iacobucci, Posavac, 

Kardes, Schneider, & Popovich, 2015a, 2015b; Irwin & McClelland, 2003; 

McClelland, Lynch, Irwin, Spiller, & Fitzsimons, 2015; Rucker, McShane, & 

Preacher, 2015). The arguments on both sides are briefly outlined and some 

suggestions are provided for how researchers can model age as a continuous or 

categorical variable in practice. 

The main arguments against dichotomizing, or otherwise splitting variables, are 

that continuous variables are more realistic and increase power. Age, for instance, 

is naturally continuous. There is no real qualitative difference between being aged 

14.9 or 15.0 (Rucker et al., 2015). Using median splits for grouping will also make 

results sample-dependent, which can hamper generalizability. Finally, splitting 
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variables results in a loss of power. This can increase both the risk of Type II and 

Type II errors, i.e. it makes it both harder to find effects and more likely that any 

effects detected are false-positives (McClelland et al., 2015).  

The arguments for splitting continuous variables are mostly pragmatic. While 

splitting a variable does reduce power somewhat, this is often outweighed by the 

fact that categorical variables can be easier to interpret (Iacobucci et al., 2015a, 

2015b). Iacobucci and colleagues also showed that the risk of false positives is 

actually not increased by the use of median splits as long as there is no 

multicollinearity, or high degree of correlation between the factors of the model 

(Iacobucci et al., 2015a). Multicollinearity can be reduced, for instance, by using 

orthogonal contrasts coding schemes for categorical predictors (Judd et al., 2009), 

as was done in this thesis. 

If researchers decide to model age as a continuous variable they first need to 

determine which function age takes: linear, quadratic, cubic, logistic, or 

something else completely. Plotting data at this stage can help. Model 

comparisons can also be useful when deciding between nested models. For 

example, linear models (y = α + β1x1) are nested within quadratic models (y = α + 

β1x1 + β2x1
2), which are nested within cubic models (y = α + β1x1 + β2x1

2 + β3x1
3). 

Model comparisons weighing the loss of power by inclusion of more factors with 

the increase of information explained, can be implemented easily in most 

packages and help decide between nested models (Judd et al., 2009).  

If the function of age is not linear, the use of Generalized Additive Models (GAMs) 

may be an alternative to GLMMs. GAMs can be used to identify and characterise 
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non-linear regressions (Hastie & Tibshirani, 2006). However, GAMs are currently 

not easily specified or interpreted when models contain a mix of continuous and 

categorical factors and interactions thereof. 

Generally speaking, the interpretation of models using age as a categorical rather 

than continuous variable is often easier if age is a part of an interaction term, as is 

the case in much developmental research. This is particularly true when age 

interacts with categorical variables with more than two levels or if the researcher 

is interested in 3-way interactions or more. For categorical variables, a range of 

tools are available that allow inspecting specific contrasts and answering 

questions like ‘Does one age group improve more after training than another?’, 

‘Does gender moderate age group differences in motivation?’. Tools available in R 

include inspecting predefined contrasts within interactions using lsmeans (Lenth, 

2016) or designing custom contrasts with multcomp (Hothorn et al., 2016). See 

Appendix 2.1 for an example script using these functionalities. 

To summarise, this methods chapter discussed advantages and limitations of 

cross-sectional and longitudinal designs, validity issues such as instrumentation 

effects, missing data, the design of training studies and the analysis of mixed 

designs. These issues are relevant to the experimental studies of this thesis, which 

are presented in the following four chapters. 
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3. Chapter 3: Perception and Recognition of Faces in Adolescence 4 

Most studies on the development of face cognition abilities have focussed on 

childhood, with early maturation accounts contending that face cognition abilities 

are mature by 3 - 5 years. Late maturation accounts, in contrast, propose that 

some aspects of face cognition are not mature until at least 10 years. Here, we 

measured face memory and face perception, two core face cognition abilities, in 

661 participants (395 females) in four age groups (younger adolescents (11.27 - 

13.38 years); mid-adolescents (13.39 - 15.89 years); older adolescents (15.90 - 

18.00 years); and adults (18.01-33.15 years) while controlling for differences in 

general cognitive ability. We showed that both face cognition abilities mature 

relatively late, at around 16 years, with a female advantage in face memory, but 

not in face perception, both in adolescence and adulthood. Late maturation in the 

face perception task was driven mainly by protracted development in identity 

perception, while gaze perception abilities were already comparatively mature in 

early adolescence. These improvements in the ability to memorize, recognize and 

perceive faces during adolescence may be related to an increasing exploratory 

behaviour and exposure to novel faces during this period of life. 

 

 

 

                                                      
4 The study presented in this chapter has been previously published as: 

Fuhrmann, D., Knoll, L.J., Sakhardande, A., Speekenbrink, M., Cohen Kadosh, K. & Blakemore, S-J. 
(2016). Perception and recognition of faces in adolescence. Scientific Reports, 6(33497), 
doi:10.1038/srep33497 
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3.1. Introduction 

Faces are core to human sociality and changes in face cognition during 

adolescence may model broader changes in social cognition during this period of 

life (Adolphs, 2003; Scherf et al., 2012). Face cognition is known to improve 

between childhood and adulthood (Cohen Kadosh, 2011; Gur et al., 2012; Song et 

al., 2015). However, there is still controversy as to whether these improvements 

are domain-specific and environmentally-driven (late maturation account; Maurer 

& Mondloch, 2011) or whether they merely reflect changes in general cognitive 

abilities, while face cognition abilities themselves are actually mature by 3 - 5 

years of age (early maturation account; Crookes & McKone, 2009; McKone et al., 

2012). See pp. 28 - 30. 

Models of face cognition distinguish between two sub-components: face memory, 

the ability to learn and recognize known faces, and face perception, the ability to 

discriminate facial features and configurations (Dolzycka et al., 2014). For face 

perception, the disagreement between early and late maturation accounts may in 

part be attributable to the fact that the identity, expression or gaze perception 

develop at different rates (Cohen Kadosh, 2011). These face aspects are thought 

to rely on different processing strategies. Previous studies have shown that 

configural processing strategies are key to recognizing facial identities (Mondloch, 

Dobson, Parsons, & Maurer, 2004), while featural processing strategies are more 

often used to determine the direction of gaze (Cohen Kadosh, 2011) and a mix of 

both is recruited for expression perception (Bombari et al., 2013). Featural face 

processing is matures early in development (Mondloch et al., 2002). In contrast, 

configural face processing is more complex, requires much training, and develops 
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well into the second decade of life (Mondloch et al., 2004). However, when in 

adolescence the ability to perceive identity, expression and gaze matures, remains 

uncertain. 

It is also not yet clear, whether there are gender differences in face cognition 

during adolescence. For face memory, adult females generally perform better 

than males (Heisz, Pottruff, & Shore, 2013; Herlitz & Lovén, 2013; Sommer, 

Hildebrandt, Kunina-Habenicht, Schacht, & Wilhelm, 2013) and some studies have 

found a female advantage in face memory across the adolescent age range as well 

(Gur et al., 2012). However, little is known about gender differences in face 

perception during adolescence and adulthood. 

The aim of the present study was to investigate whether there are age- and 

gender-related differences in face cognition between adolescence and adulthood, 

and whether these differences are independent of general cognitive ability. 

To this end, we examined face cognition in 661 adolescents and adults aged 11 - 

33 (395 females). Participants were split into four age groups: younger 

adolescents (11.27 -13.38 years); mid-adolescents (13.39 - 15.89 years); older 

adolescents (15.90 - 18.00 years); and adults (18.01 - 33.15 years). We 

investigated age-related changes in the two core face cognition abilities, face 

perception and face memory (Dolzycka et al., 2014; Wilhelm et al., 2007), 

between adolescence and adulthood. Participants completed the Cambridge Face 

Memory Test (Duchaine & Nakayama, 2006), which measures the ability to 

memorise and recognise faces, and the Face Same-Different face perception task 

(Cohen Kadosh, 2011), which measures the ability to recognise changes in 

identity, expression or gaze between faces. The task is designed to prevent 
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participants from using a simple strategy, such as always focussing on the eyes by 

changing only one of these face aspects at a time, and never a mix of aspects. 

We investigated three hypotheses: (I) developmental differences: Based on 

previous developmental studies (Gur et al., 2012; Song et al., 2015), we predicted 

that face cognition abilities would improve from early adolescence to adulthood 

and investigated whether these developmental patterns differed between face 

memory and perception. We also examined (II) gender differences in face 

cognition: Based mainly studies in adults (Gur et al., 2012; Heisz et al., 2013; 

Herlitz & Lovén, 2013; Sommer et al., 2013), we predicted that females would 

perform better than males. Finally, we probed developmental differences in the 

perception of different (III) face aspect differences (identity, expression and gaze). 

Based on previous studies on face aspect cognition (Bombari et al., 2013; Cohen 

Kadosh, 2011; Cohen Kadosh, Johnson, Dick, Cohen Kadosh, & Blakemore, 2013; 

Cohen Kadosh, Johnson, Henson, et al., 2013) and configural and featural 

processing (Mondloch et al., 2004; Mondloch et al., 2002), we predicted that the 

ability to perceive changes gaze would mature earlier than changes in identity. 

 

3.2. Methods 

3.2.1. Participants 

We recruited 821 participants from 16 local schools in the London area 

(adolescents) and through University College London (UCL) participant pools and 

posters (adults). The present study analysed cognitive performance at baseline of 

a larger training study (see Chapter 5). Of this sample, 661 participants were 
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included in the current analysis (Mage = 16.21 years, SDage = 4.12, age range = 

11.27 - 33.15 years, 397 females). Exclusion criteria were: missing baseline data 

(N = 3); missing parental consent for adolescents (N = 123); report of 

developmental conditions including ADHD and dyslexia (N = 34). Adolescents 

were split into three age groups of equal size and adults were included as a fourth 

age group (Table 3.1). We chose three age groups as a compromise between 

increased sensitivity with increasing numbers of groups and the loss of power this 

engenders. Adults were qualitatively different from the other groups (e.g. not 

tested in schools) and were therefore included as a forth group. 

Table 3.1. Demographic Information 

 

 

 

Note. MRR = mean relational reasoning accuracy at T1; SDRR = 
standard deviation of relational reasoning accuracy at T1. The 
relational reasoning task was based on Raven’s matrices, a 
standard measure of IQ and general cognitive ability (Knoll et al., 
2016; Raven, 2009). Adapted from Fuhrmann et al. (2016) with 
permission from Nature Publishing Group. 
 

General cognitive ability differed between age groups as indexed by accuracy in a 

non-verbal matrix reasoning task similar to those included in IQ tests (Knoll et al., 

2016; Raven, 2009). Reasoning scores increased with age and there were 

significant differences between all age groups (F(3,654) = 42.28, p < .001; see 

Table 3.1 and Table 3.2). Reasoning scores were therefore included as a covariate 

Age group Age range Gender N MRR SDRR 

younger adolescents 11.27-13.38 female 118 0.63 0.16 
male 67 0.57 0.18 

mid-adolescents 13.39-15.89 female 89 0.68 0.15 
male 96 0.68 0.17 

older adolescents 15.90-18.00 female 109 0.73 0.13 

male 77 0.72 0.15 
adults 18.01-33.15 female 81 0.81 0.12 

male 24 0.79 0.17 
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in all analyses to control for age-group differences in general cognitive ability (see 

section 3.2.6). 

Table 3.2. Comparisons of Relational Reasoning Accuracy between Age Groups 

Contrast Estimate SE t df p  

young adolescents vs. mid-adolescents -0.07 0.02 -4.52 654 < .001 *** 

young adolescents vs. old adolescents -0.12 0.02 -7.52 654 < .001 *** 

young adolescents vs. adults -0.20 0.02 -10.68 654 < .001 *** 

mid-adolescents vs. old adolescents -0.05 0.02 -2.96 654 .019 * 

mid-adolescents vs. adults -0.13 0.02 -6.73 654 < .001 *** 

old adolescents vs. adults -0.08 0.02 -4.30 654 < .001 *** 

Note. * p < .001, ** p < .01, *** p < .05. Adapted from Fuhrmann et al. (2016) 
with permission from Nature Publishing Group. 

 

The study was carried out in accordance with UCL Research Ethics Guidelines and 

was approved by the UCL Research Ethics Committee. Informed consent was 

obtained from all participants aged 18 and over, and parents of participants under 

the age of 18. Assent was obtained from all participants under 18. 

 

3.2.2. Experimental design 

A 4 x 2 x 2 design with age group (younger adolescents, mid-adolescents, older 

adolescents, adults) and gender as between-subjects factors, and task (face 

perception, face memory) as a within-subjects factor was employed. For the face 

perception task, face aspect was investigated as an additional within-subjects 

factor with three levels (identity, expression, gaze). 
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3.2.3. Testing procedure 

Participants were tested on a battery of tasks including two face cognition tasks: a 

face perception and a face memory task (see section 3.2.4 and 3.2.5). Testing was 

carried out using an online platform developed by the research team and a 

software company (www.cauldron.sc).  

Participants completed the test session in groups of 3 - 48 in school (adolescents) 

or in a university computer room (adults), using laptops, tablets or desktop 

computers. Responses were made using a mouse or touchscreen. Task order was 

counterbalanced using a Latin-square design between testing groups of 

participants and across test sessions. 

An experimenter gave instructions before each task. Participants then completed 

practice trials until three were completed correctly. Participants were given visual 

feedback on their performance in the practice trials only. For the face memory 

task, 22 participants completed more than 3 practice trials. On average, these 

participants needed 5.2 practice trials to proceed to the task and never more than 

7.  For the face perception task, 173 participants completed more than 3 practice 

trials. On average, these participants needed 4.4 practice trials to proceed to the 

task and never more than 8. All participants completed three practice trials 

successfully during the test session and proceed to the task. Participants were 

given visual feedback on their performance in the practice trials only. 

  

 

 

http://www.cauldron.sc/
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3.2.4. Face memory task 

An adaptation of the Cambridge Face Memory Task (CFMT) was used to assess 

the ability to learn and recognise unknown faces using a 3-alternative forced 

choice (3-AFC) test (Duchaine & Nakayama, 2006). Participants were asked to 

memorise target faces and then find a target face in a panel of three faces. There 

was only ever one target face in the panel of three, the other two were distractor 

faces that had not been memorised (Figure 3.1). 

The task took 9 min or 54 trials to complete, whichever came first.  The task was 

shortened from the original 72 trials (Duchaine & Nakayama, 2006) due to time 

restrictions in schools. The three blocks of the original CFMT were preserved but 

block two and three were shortened to match the number of trials in block one. 

Adults’ accuracy in our adaptation of the CFMT was 82.02% (SD = 7.63) and similar 

to adults’ performance in the original CFMT, in which accuracy was 80.4% (SD = 

11.0). The third block was repeated if participants finished all trials before the 

time limit but data from these repeated trials were not included in the analysis. 

A set of 126 face stimuli matching the specifications of the original CFMT was 

created for the purpose of the present study and the larger training study, 

comprising three test sessions in total. Photographs of 42 Caucasian males from 

three angles (frontal/left quarter profile/right quarter profile) were obtained from 

the Facial Recognition Technology database (Phillips, Moon, Rizvi, & Rauss, 2000). 

Black and white images were cropped to exclude external features of the face 

(hair etc.) using the GNU Image Manipulation Program (GIMP Team, 2013). The 

size of each face was standardized to 180 x 245 pixels and luminance of the image 

was set to a value of 110 using GIMP’s Levels function. 
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Figure 3.1. Cambridge Face Memory Task. The CFMT (Duchaine & Nakayama, 

2006) consisted of three blocks. In the first block (shown here), a target face was 

shown at three different angles, for 3 s each, and this was followed by three 3-

AFC trials. This procedure was repeated for five more target faces. In the second 

block, frontal views of the same six target faces were presented simultaneously 

for 20 s, and this was followed by eighteen 3-AFC trials. In the third block, frontal 

views of the same six target faces were presented simultaneously for 20 s, but a 

50% Gaussian noise mask was added to the faces in the eighteen 3-AFC trials that 

followed. Adapted from Fuhrmann et al. (2016) with permission from Nature 

Publishing Group. 

 

3.2.5. Face perception task 

The face perception task measured the ability to process featural and configural 

changes in faces (Cohen Kadosh, 2011). Participants were asked to decide 

whether two consecutively presented faces presented were the same or different 
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(Figure 3.2). Faces were considered to be different with regard to changes in any 

of the following face aspects: gaze direction (left/right), expression (happy/sad) or 

identity (person A/person B). Participants were informed that faces should be 

classified as the same only if they are exactly the same across all three face 

properties.  

A test session took 7.5 min or 48 trials to complete, whichever came first. 16 out 

for 658 participants completed fewer than 48 trials. They still completed 89.7% of 

trials on average and never less than 62.5%. If participants finished the 48 trials 

within the 7.5min time limit, the set of faces was presented again, but these data 

were not included in the analysis. In half the trials, faces were the same; in the 

other half, faces differed (24 trials). In the trials in which faces differed, one third 

showed changes in expression, one third in identity and one third in gaze (8 trials 

per aspect). Trial difficulty was varied by adding noise masks of increasing 

strength (25 - 81% in 8% steps), except the first two trials, which had a noise mask 

of 25%. 

Photos of two female, Caucasian faces were taken under standardised lighting 

conditions for the purpose of this experiment. Four photos were obtained for 

each face: happy expression-gaze left, happy expression-gaze right, sad 

expression-gaze left, and sad expression-gaze right. Using the GNU Image 

Manipulation Program (GIMP Team, 2013), coloured photos were scaled to a 

uniform size and cropped to exclude external features of the face (hair etc.) Using 

GIMP’s Levels function, the lightness of the image and mean RGB values were 

standardized (Luminance: 105, R: 105, G: 75, B: 70). Task difficulty was increased 
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by presenting the images with a Gaussian noise mask of varying strength (25%, 

33%, 41%, 49%, 57%, 65%, 73% or 81% noise).  

 

 

Figure 3.2. Face Perception Task. Procedure for the face perception task (Cohen 

Kadosh, 2011). Screen shots show stimuli from practice trials. Each trial started 

with a fixation cross presented for 800 ms, followed by the first face presented for 

500 ms, then another fixation cross for 800 ms, and then the second face until a 

response was logged or 5000 ms passed, whichever came first. The two possible 

response options (same/different) were shown simultaneously with the 

presentation of the two faces. The next trial started immediately after the 

participant had entered their response. The trial displayed here shows an identity 

change. Adapted from Fuhrmann et al. (2016) with permission from Nature 

Publishing Group. 
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? 
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3.2.6. Statistical analysis 

GLMMs were implemented in R (R Core Team, 2015), lme4 (Bates et al., 2013) 

and lmerTest (Kuznetsova, Brockhoff, & Christensen, 2016) to assess differences 

in task performance between age groups. Trials with a response time under 250 

ms were excluded from the analysis. To assess age group differences in face 

cognition, a logistic model predicting correct/incorrect responses (accuracy) and a 

general linear model predicting response times in correct trials were computed. 

Orthogonal, Helmert-coded fixed effects included were age group, task and 

gender as well as all possible 2-way interactions and the 3-way interaction. Z-

scored performance in the relational reasoning task for each participant was 

included as covariate to control for differences in general cognitive ability 

between age groups (see Table 3.1 and Table 3.2). Nested random intercepts for 

participant ID and school/university were used to reflect the repeated-measure 

design and clustered nature of participants tested. Planned comparisons of age 

group differences were carried out using lsmeans (Lenth, 2016) and Bonferroni-

adjusted for multiple comparisons. To investigate the effect of face aspect on 

performance in the face perception task, two separate models predicting 

accuracy and response times in correct trials were computed. Age group and face 

aspect as well as their interaction were included as fixed effects. The covariate 

and random effects were computed as described above. Custom contrasts were 

computed using package multcomp (Hothorn et al., 2016) to investigate 

differences in performance dependent on face aspect and comparing differences 

between age groups within face aspects. These contrasts were Bonferroni-

corrected for multiple comparisons as well. Finally, one model for accuracy and 

one for response times in face perception were computed, which were identical 
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to the models described above except for the fact that face aspect was dummy-

coded with gaze perception as the reference group. This allowed inspection of 

contrasts of the interaction of face aspect with age group using the summary() 

function. 

 

3.3. Results 

3.3.1. The development of face memory and face perception 

To assess whether developmental trajectories differed between face memory and 

face perception, we pooled the data for both tasks, generating an overall index of 

face cognition ability. We then investigated age effects in overall face cognition 

before determining whether these age effects were moderated by task (face 

perception versus face memory).  

There were significant differences in overall face cognition accuracy between age 

groups (χ²(3) = 24.40, p < .001). Younger and mid-adolescents performed 

significantly worse than the two older age groups in face cognition (Figure 3.3A). 

There were also significant differences in response times on correct trials 

between age groups (χ²(3) = 18.46, p < .001). Response times were significantly 

slower in younger adolescents than in all older age groups. However, the contrast 

between mid-adolescents and the older age groups did not reach significance for 

response times (Figure 3.3B). The age effects did not differ between tasks 

(accuracy: χ²(3) = 4.47, p = .215; response times: χ²(3) = 4.41, p = .220) indicating 

that face memory and perception followed similar developmental trajectories.  
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Figure 3.3. Face Cognition Performance. Panel A shows accuracy and panel B 

response times in four age groups: younger adolescents (11.27 - 13.38 years), 

mid-adolescents (13.39 - 15.89 years), older adolescents (15.90 - 18.00 years) and 

adults (18.01 - 33.15 years). Results are shown averaged over the face prcoessing 

and face memory task with standard error bars (* p < .05, ** p < .01, *** p < 

.001). Adapted from Fuhrmann et al. (2016) with permission from Nature 

Publishing Group. 
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3.3.2. Gender differences in face memory and face perception 

There were no differences in reasoning scores between genders (F(1, 654) = 2.52, 

p = .113), indicating that general cognitive ability was matched. There was a main 

effect of gender on overall face cognition accuracy (χ²(1) = 13.48, p < .001) but 

not response times (χ²(1) = 0.17, p = .682). For both dependent measures, there 

was an interaction between gender and task (accuracy: χ²(1) = 8.00, p = .005; 

response times: χ²(1) = 9.01, p = .003) indicating that the effect of gender differed 

between face memory and face perception. For accuracy, females outperformed 

males in face memory but not face perception. Response times followed the same 

pattern (Table 3.3). There was no significant interaction between age group and 

gender (accuracy: χ²(3) = 1.10, p = .776; response times: χ²(3) = 2.47, p = .481), 

indicating that developmental trajectories did not differ between genders. 

Table 3.3. Face Cognition Performance Overall 

Measure Task Female Male Comparison 

Accuracy Face memory 0.79 
(0.11) 

0.77  
(0.13) 

z = 4.54, p < .001 

Face perception 0.70 
(0.09) 

0.68  
(0.09) 

z = 1.83, p = .068 

Response times 
(ms) 

Face memory 3144.53 
(880.56) 

3337.60 
(935.46) 

t(1276.96) = -2.29, p = .022 

Face perception 1626.21 
(294.6) 

1585.31 
(299.01) 

t(1277.21) = 1.67, p = .095 

Note. Mean performance is shown. SD is shown in brackets. Adapted from 
Fuhrmann et al. (2016) with permission from Nature Publishing Group. 

 

3.3.3. Development of face aspect perception 

The face perception task measures the ability to correctly detect changes in three 

face aspects: identity, expression and gaze. We investigated whether there were 

differences in the ability to process these face aspects and whether the 

developmental trajectories for identity, expression and gaze perception differed.  
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Accuracy 

There was a main effect of face aspect on accuracy (χ²(2) = 313.96, p < .001). 

Participants performed significantly better in gaze perception (M = 0.72, SD = 

0.17) than in identity perception (M = 0.55, SD = 0.22; z = 16.59, p < .001) and 

expression perception (M = 0.58, SD = 0.20; z = 14.32, p < .001). The difference 

between identity and expression perception did not survive correction for 

multiple comparisons (z = 2.39, p = .051).  

The effect of face aspect was moderated by age group for accuracy (χ²(6) = 14.84, 

p = .022), indicating that the ability to correctly identify changes in identity, 

expression or gaze differed between age groups. There were developmental 

differences in identity perception such that younger adolescents were less 

accurate than older adolescents and adults, and mid-adolescents were less 

accurate than adults. Younger adolescents were also less accurate than older 

adolescents in expression perception while there were no developmental 

differences in gaze perception (Figure 3.4A).  

To assess whether developmental differences in identity and expression 

perception were significantly greater than in gaze perception, we inspected 

contrasts. The difference between younger adolescents and the older age groups 

was significantly greater in identity than in gaze perception (Table 3.4), the 

difference between mid-adolescents and the older age groups was also 

significantly greater in identity than gaze perception. All other comparisons, 

including all comparisons between gaze and expression perception were not 

significant, indicating that developmental effects were mainly restricted to 

identity perception.  
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Table 3.4. Comparisons of Face Perception Accuracy between Age Groups and 

Face Aspects 

Contrast Estimate SE z p  

younger adolescents vs. older: gaze vs. expression 0.00 0.02 0.05 .963  

mid-adolescents vs. older: gaze vs. expression -0.06 0.04 -1.56 .118  

older adolescents vs. older: gaze vs. expression 0.07 0.07 1.04 .299  

younger adolescents vs. older: gaze vs. identity -0.05 0.02 -2.23 .026 * 

mid-adolescents vs. older: gaze vs. identity -0.09 0.04 -2.58 .010 * 

older adolescents vs. older: gaze vs. identity 0.01 0.07 0.16 .872  

Note. * p < .05. Adapted from Fuhrmann et al. (2016) with permission from 
Nature Publishing Group. 

 

Response times 

Face aspect also affected response times (χ²(2) = 73.44, p < .001). Following the 

same pattern as accuracy, participants responded significantly faster in gaze 

perception (M = 1596.92, SD = 351.95) than in identity perception (M = 1761.81, 

SD = 483.19; t(1294.22) = -8.55, p < .001) or expression perception (M = 1691.43, 

SD = 428.05; t(1293.61) = -4.75, p < .001). They were also quicker in expression 

than identity perception (t(1294.64) = -3.08, p < .001). 

The effect of face aspect was not moderated by age group for response times 

(χ²(6) = 7.58, p = .022). There were similar developmental differences for all face 

aspects. Younger adolescents were significantly slower than all older age groups 

for all three face aspects, and mid-adolescents were significantly slower than 

adults in identity perception (Figure 3.4B). Developmental differences between 

younger adolescents and the older age groups were not stronger in identity or 

expression perception than gaze perception (Table 3.5). 
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Figure 3.4. Face Perception Performance by Face Aspect. Panel A shows accuracy 

and panel B response times in four age groups: younger adolescents (11.27 - 

13.38 years), mid-adolescents (13.39 - 15.89 years), older adolescents (15.90 - 

18.00 years) and adults (18.01 - 33.15 years). Results are shown for identity, 

expression and gaze perception with standard error bars (* p < .05, ** p < .01, *** 

p < .001). Adapted from Fuhrmann et al. (2016) with permission from Nature 

Publishing Group. 

Table 3.5. Comparisons of Face Perception Speed between Age Groups and Face 

Aspects. 

Contrast Estimate SE df t p 

younger adolescents vs. older: gaze vs. expression 8.45 10.04 1291.80 0.84 .400 

mid-adolescents vs. older: gaze vs. expression 24.02 14.59 1293.40 1.65 .100 

older adolescents vs. older: gaze vs. expression 20.94 27.75 1289.20 0.76 .451 

younger adolescents vs. older: gaze vs. identity 2.77 10.06 1293.00 0.28 .783 

mid-adolescents vs. older: gaze vs. identity 27.50 14.58 1292.90 1.89 .060 

older adolescents vs. older: gaze vs. identity 52.98 27.79 1290.20 1.91 .057 

Note. Adapted from Fuhrmann et al. (2016) with permission from Nature 
Publishing Group. 
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In summary, there were improvements with age in identity perception - both in 

accuracy and speed - while expression and gaze perception improved with age in 

speed only. 

 

3.4. Discussion 

The results from this large scale, cross-sectional study demonstrate that face 

cognition undergoes protracted development: older adolescents’ and adults’ face 

memory and face perception abilities were more proficient than those of younger 

adolescents and mid-adolescents. Most studies on the development of face 

cognition abilities have focussed on early and mid-childhood, with many studies 

suggesting that face cognition abilities are mature by 3 - 5 years of age (McKone 

et al., 2012). However, some previous studies have shown improvements from 

early adolescence to adulthood - a finding that we replicated here (Germine, 

Duchaine, & Nakayama, 2011; Gur et al., 2012; Song et al., 2015).  

Our study extended previous evidence by showing that the main period of face 

cognition development in adolescence is roughly between 11 - 16 years. This was 

the case for both face memory and face perception, the two core components of 

face cognition. General cognitive ability (as measured by matrix reasoning) 

predicted face cognition scores but showed a different developmental trajectory 

with continuous improvements throughout adolescence and into adulthood. 

Developmental differences in face cognition also persisted after controlling for 

general cognitive ability. Our results thus indicate that the development of face 

cognition in adolescence is not solely due to improvements in general cognitive 
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ability (McKone et al., 2012). To further probe the domain-specificity of face 

cognition development, future studies will need to directly compare memory and 

perception of face- and non-face-objects. 

The effects of gender differed between the two sub-components of face 

cognition, with a female advantage for face memory but not for face perception. 

This pattern did not differ between age groups. Previous studies have shown a 

female advantage in face memory in adults (Heisz et al., 2013; Herlitz & Lovén, 

2013; Sommer et al., 2013) and in adolescents (Gur et al., 2012), which we 

replicated in the current study. Some studies have also found a female face 

perception advantage in adults, which was not replicated here (Sommer et al., 

2013). The female advantage in face cognition is thought to be driven by the fact 

that female participants scan face stimuli more than males (Heisz et al., 2013). 

One explanation for why we found gender differences in face memory, but not in 

face perception, is, that increased face scanning by females may have led to 

gender differences in the task in which face stimuli were presented for a long 

period of time (up to 20s in the case of the face memory task), and precluded 

gender differences in the task where the stimuli were only presented for a short 

time (500 ms for the face perception task). Gender differences in face cognition in 

adults are thought to be partly explained by greater social interest and 

involvement in females compared to males (Sommer et al., 2013), but this 

remains to be tested in adolescents. 

An inspection of the ability to recognise changes in the three face aspects 

manipulated in the face perception task – identity, expression and gaze – revealed 

that developmental effects in the face perception task were driven mainly by age 
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group differences in identity perception. Younger adolescents and mid-

adolescents were less accurate than older adolescents and adults in identity 

perception, but not gaze perception. This supports the late maturation account of 

face cognition by showing not only quantitative differences between adolescent 

age groups but also qualitative differences, with identity perception maturing only 

in mid-adolescence. This finding also matches models of early maturation of 

featural versus late maturation of configural perception (Cohen Kadosh, 2011; 

Mondloch et al., 2002). Perceiving identity changes requires mainly configural 

perception, whereas perceiving a change in gaze direction recruits purely featural 

perception (Cohen Kadosh, 2011; Cohen Kadosh, Johnson, Henson, et al., 2013). 

Mid-adolescence may be of particular importance, not only for the development 

of face cognition, but also for the development of social cognition in general. 

Developmental models (Scherf et al., 2012) and empirical evidence (McGivern et 

al., 2002) indicate a perturbation of face cognition with the onset of puberty. The 

ensuing period of rapid cognitive and neurological development may provide an 

ideal substrate for social learning (Blakemore & Mills, 2014; Fuhrmann, Knoll, & 

Blakemore, 2015). Exploratory behaviour in adolescence (Casey et al., 2008) may 

lead to more exposure to novel faces than earlier in life and new social roles in 

adolescence may increase the focus on facial information such as attractiveness 

and status (Scherf et al., 2012). This may then provide the environmental 

enrichment necessary for becoming a face expert. This interpretation fits with the 

perceptual expertise account of face perception (Bukach, Gauthier, & Tarr, 2006). 

Extensive experience with a specific category of objects, not just faces, is thought 

to lead to more efficient mental representations - perhaps through ‘holistic’ 
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encoding. The concept of holistic encoding is similar to configural perception and 

describes the ability to process a stimulus as a whole rather than the sum of its 

parts (Piepers & Robbins, 2012). 

In conclusion, face memory and face perception abilities mature relatively late in 

development, between early and late adolescence. Improvements in face 

perception over adolescence are driven by increased identity perception abilities. 

These improvements over adolescence may be related to changes in adolescents’ 

social environment and an increased exposure to novel faces during this period of 

life. The next chapter directly probes how the social environment affects 

adolescents by simulating social exclusion in the lab. 
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4. Chapter 4: Cognitive Performance after Social Exclusion in 

Adolescence 

It has been suggested that adolescence is a sensitive period of social development. 

During this time of life, social exclusion may have a particularly detrimental effect 

on mood and psychological needs. However, little is known about how social 

exclusion affects cognitive performance in adolescence. The aim of this study was 

to test whether social exclusion reduces cognitive performance in adolescence 

more than it does in adulthood. To this end, we recruited 99 females in three age 

groups: young adolescents (N = 36, aged 10.1 - 14.0), mid-adolescents (N = 36, 

aged 14.3 - 17.9) and adults (N = 27, aged 18.3 - 38.1). Social exclusion was 

simulated using the Cyberball paradigm, a computerized ball-tossing game. 

Following inclusion and exclusion by virtual peers in the game, participants 

completed a mood questionnaire and two measures of cognitive performance: an 

n-back verbal and a dot-matrix visuo-spatial working memory task. All age groups 

showed reductions in mood after exclusion. Young adolescents also showed 

reduced accuracy in the n-back task and increased response times in the dot-

matrix task following exclusion. In contrast, mid-adolescents’ and adults’ cognitive 

performance was not significantly affected by exclusion. These results suggest that 

young adolescent girls’ cognitive performance is particularly susceptible to the 

adverse effects of a short, virtual social exclusion experience. 

 

4.1. Introduction 

Adolescence is traditionally thought of as a time of social reorientation during 

which peers become increasingly important (Crone & Dahl, 2012; Steinberg & 
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Monahan, 2007). It has been suggested that adolescence may even be a sensitive 

period, during which the brain is particularly susceptible to socio-cultural 

information (Blakemore & Mills, 2014). As such, negative social experiences, such 

as social exclusion, may be especially detrimental for adolescents (Buwalda, 

Geerdink, Vidal, & Koolhaas, 2011; Fuhrmann et al., 2015). See pp. 30 - 34 and 

section 1.3.3. 

Social exclusion can be simulated in the lab using the Cyberball paradigm 

(Williams et al., 2000). Cyberball is an online ball-tossing game during which 

participants are seemingly either included or excluded by two peers. In adults, the 

exclusion condition consistently lowers mood and induces a threat to four 

fundamental psychological needs: self-esteem, belonging, control and a sense of 

meaningful existence (Williams, 2007; Williams et al., 2000). Such effects have 

been found to be heightened in adolescence in some studies (Pharo et al., 2011; 

Sebastian et al., 2010).   

Social exclusion may affect not only mood and need-threat but also cognitive 

performance (Baumeister et al., 2002). Studies using the Cyberball paradigm in 

adults have mostly found negative effects of exclusion on cognitive functioning in 

adults, particularly on executive functions such as inhibitory control and working 

memory (Jamieson et al., 2010; Themanson et al., 2014). Cyberball has also been 

shown to disrupt cognitive performance in children aged 8 to 12 (Hawes et al., 

2012). To date, however, there is little experimental evidence on how social 

exclusion affects cognitive performance in adolescence. 

The aim of this study was to investigate the effects of experimentally-induced 

social exclusion on cognitive performance during adolescence, so as to gain a 
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better understanding of the ramifications of social exclusion in schools. To this 

end, we compared the impact of social inclusion and exclusion in 99 female 

adolescents and adults. We recruited only one gender because of sex differences 

in pubertal development during adolescence that may cause differences in 

cognitive development (Sisk & Zehr, 2005). We chose to recruit females because 

adolescent girls have been found to spend more time with peers than boys 

(Larson & Richards, 1991), potentially making peer-rejection more relevant to 

them. In childhood, girls have also been shown to be more sensitive to social 

exclusion than boys (Hawes et al., 2012). 

Participants were divided into three age groups: young adolescents (N = 36, aged 

10.1 - 14.0), mid-adolescents (N = 36, aged 14.3 - 17.9) and adults (N = 27, aged 

18.3 - 38.1). Adolescent participants were divided into two, even-sized age groups 

because previous research suggested that younger adolescents may respond 

differently to Cyberball than mid-adolescents (Sebastian et al., 2010).  

Participants experienced the inclusion and exclusion condition in the Cyberball 

game. After each Cyberball condition, participants completed a mood 

questionnaire, as well as verbal and visuo-spatial working memory tasks. We 

chose working memory tasks as indicators of cognitive performance because 

working memory is educationally relevant and predicts fluid intelligence (Engle et 

al., 1999; Kane et al., 2004) and academic performance (Alloway et al., 2009; 

Gathercole et al., 2003). Using working memory tasks also allowed us to compare 

our results to previous Cyberball studies using working memory and other 

executive function tasks in children and adults (Hawes et al., 2012; Jamieson et 

al., 2010; Themanson et al., 2014). We assessed both verbal (n-back) and visuo-
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spatial (dot-matrix) working memory as these are proposed to rely on separable 

systems (Baddeley, 2003; Baddeley & Hitch, 1974). Assessing both components 

can therefore give a more complete picture of working memory performance. 

We hypothesized that social exclusion would reduce n-back and dot-matrix task 

performance across age groups, and that this effect would be higher in the 

adolescent groups compared with adults. In line with previous studies, we also 

expected that social exclusion would be associated with lower mood in all age 

groups, and that effects would be stronger in both adolescent groups than in 

adults. 

 

4.2. Methods 

4.2.1. Participants 

A total of 113 female participants aged 10 - 38 years were recruited for the 

purpose of this study. Adolescent participants were recruited from seven 

secondary schools (two state, four private and one grammar) in Greater London, 

Peterborough and Oxfordshire and tested individually in schools. Adult 

participants were recruited from UCL participant pools and tested in the lab. A 

researcher tested all participants individually in a quiet room. Seven participants 

were excluded from all analyses because they reported psychiatric or 

developmental disorders, one because they scored below 70 IQ points, one 

because of technical difficulties during testing and five because they didn’t believe 

the Cyberball manipulation (see section 4.2.2). The remaining 99 participants 

were allocated to one of three age groups: young adolescents, mid-adolescents 



99 
 

and adults (Table 4.1). School-aged participants were allocated to the two 

adolescent age groups via a median-split to ensure similar sample sizes in both 

groups. Participants over the age of 18 were allocated to the adult group.  

 
Table 4.1. Participant Characteristics 

 
Age group 

 
N 

Age   IQ 

Min Max   M SE 

Young adolescents 36 10.1 14.0   101.38 2.06 
Mid-adolescents 36 14.3 17.9   97.90 1.94 
Adults 27 18.3 38.1   108.02 2.25 

 

We examined IQ differences between age groups as a potential confound. IQ, as 

measured by matrix reasoning tests (WASI; Wechsler, 1999), did not differ 

significantly between young adolescents and mid-adolescents (t(92) = 1.23,  p = 

.667), or young adolescents and adults (t(92) = -2.18,  p = .096). It did, however, 

differ significantly between mid-adolescents and adults (t(92) = -3.41,  p = .003). 

Because of this difference, IQ was controlled for in all analyses (see section 4.2.4). 

The study was carried out in accordance with UCL Research Ethics Guidelines and 

was approved by the UCL Research Ethics Committee. Informed consent was 

obtained parents of participants under 18 and assent from participants 

themselves. Adult participants consented to taking part in the study. 

 

4.2.2. Materials 

Cyberball 

Social inclusion and exclusion were simulated using the freeware Cyberball 4.0 

program (Williams et al., 2000). This program features two virtual players who 

played an online ball-tossing game lasting ~2 min with the participant (Figure 4.1). 
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Whilst participants were told the other players were real and connected to them 

via the internet, the Cyberball players were in fact programmed to either include 

or exclude the participant from the game. Inclusion generated one third of the 

ball tosses to the participant. Exclusion generated only two tosses to the 

participant at the beginning of the game, after which the other players no longer 

threw the participant the ball.  

 

Figure 4.1. Cyberball Game. Screenshot from 

Cyberball 4.0 (Williams, Yeager, Cheung, & 

Choi, 2012). The participant saw an icon for 

herself at the bottom of the screen (‘You’). 

When she received the ball, she could click on 

one of the other two players (‘Kate’ or ‘Emma’) 

to throw the ball to them.  

To check whether participants believed the other players to be authentic, we 

carried out a three-question probe during debrief (Will, van Lier, Crone, & 

Güroğlu, 2016): 

1. What did you think of the Cyberball game? 

2. How did you like being connected to other people though the internet? 
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3. What did you think the study was about? 

We recorded whether or not participants verbalized suspicion about authenticity 

during this probe. Five participants (two mid-adolescents and three adults) voiced 

suspicion that the other players were not real, and were therefore excluded from 

all analyses.  

 

Working memory measures 

All participants completed two different measures of working memory: an n-back 

verbal working memory task and a dot-matrix visuo-spatial working memory task. 

The order of these tasks was counterbalanced between participants. The first 20 

participants also completed a digit span task. This task was then cut from the 

procedure because of time constraints in schools, and data from this task was not 

analysed. All tasks were programmed in Cogent (Cogent 2000 Team, 2015) and 

MATLAB (The MathWorks, 2013) and accuracy (correct/incorrect) and response 

times for each task were recorded. 

N-back task. In the n-back verbal working memory task (Gevins & Cutillo, 

1993), numbers were flashed one-by-one on a screen for 500 ms with a 

variable delay in between (1000-3000 ms, mean delay: 2000 ms). The task 

required participants to indicate whether the current number on the 

screen was i) a zero (0-back task) or ii) the same as the number that 

appeared "two back" in the sequence (2-back task). Distractors were 

shown simultaneously with the number. Distractors consisted of photos of 

a house, a happy face or a fearful face. They appeared on both sides of the 

number and were included to vary the affective context of the task. 
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Participants were instructed to ignore them. Participants completed six 

blocks of 12 trials each. Half of these blocks were 0-back tasks, half were 

2-back tasks. The order of blocks and response buttons was 

counterbalanced between participants. 

Dot-matrix task. The dot-matrix task is a visuo-spatial working memory 

task (Alloway et al., 2009). Participants were shown a four-by-four white 

grid on a black background. Dots were flashed one-by-one for 300 ms and 

with a 600 ms delay in between. Dots were displayed in any of the 16 

squares of the grid. After all dots in a particular sequence were shown, the 

grid turned orange for 1500 ms, and then turned white again. Participants 

were instructed to click on the fields of the grid where the dots had 

appeared; and in the order they had appeared. Sequence length increased 

from three to eight dots. Three sequences of each length were shown. 

 

Questionnaire measures 

Participants were administered a standard mood and need-threat questionnaire 

after each Cyberball condition (Williams et al., 2000). We analysed the mood 

questionnaire here in which participants rated how good/bad, happy/sad, 

friendly/unfriendly and tense/relaxed they were currently feeling, on a scale of 1 - 

5. We calculated an average mood rating for each participant and each Cyberball 

condition.  
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4.2.3. Procedure 

Participants practised the two working memory tasks at the beginning of the 

experiment. They were then introduced to Cyberball. All participants played 

Cyberball twice and experienced both inclusion and exclusion. The order of the 

Cyberball conditions was counterbalanced between participants. Participants 

completed the mood questionnaire and two working memory tests after each 

Cyberball condition. Participants were then fully debriefed. The experiment took 

~60 min in total.  

 

4.2.4. Design and analysis 

We used a 2 x 3 mixed design with Cyberball condition (inclusion/exclusion) as the 

within subjects measure and age group as the between subjects measure (young 

adolescent/mid-adolescent/adult).  

The data was analysed using GLMMs in R (R Core Team, 2015) and lme4 (Bates et 

al., 2013). For each of the working memory tasks, we specified one model for 

accuracy and one for response times. Accuracy was analysed as a binary 

dependent variable (correct/incorrect) and modelled using the binomial 

distribution. Response times and mood ratings were each averaged over Cyberball 

condition for each participant and analysed as continuous, dependent variables. 

In all models, Cyberball condition, age group and the interaction between the two 

were specified as orthogonal, Helmert-coded fixed effects. IQ was included as a z-

scored covariate and participant number as a random intercept. We carried out 

planned comparisons of the fixed effects in these models using lsmeans (Lenth, 
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2016) and multcomp (Hothorn et al., 2016) and Bonferroni-corrected for three 

comparisons each.  

In a supplementary analysis we specified four additional models predicting 

accuracy and response times for the n-back and dot-matrix task each. For the n-

back task, models were specified as described above but additionally included 

task difficulty (0-back/2-back) and distractor type (happy face/fearful face/house) 

as orthogonal, Helmert-coded fixed effects. For the dot-matrix task, two models 

were specified as described above but task difficulty (low: 3 - 5 dots / high: 5 - 8 

dots) was included as an additional factor. All models also included all possible 

interactions between the fixed effects. 

 

4.3. Results 

4.3.1. Working memory performance 

We assessed working memory performance after inclusion and exclusion in the 

Cyberball game. Accuracy and response times in the n-back verbal working 

memory task and dot-matrix visuo-spatial working memory task were analysed 

using GLMMs. 

 

N-back task 

Accuracy. There was no main effect of Cyberball condition for n-back 

accuracy (χ2(1) = 0.17, p = .678), indicating that there was no overall 

difference in performance between inclusion and exclusion (Table 4.2). 



105 
 

Table 4.2. Overall Performance in the N-Back and Dot-Matrix Task  

 
Cyberball 
condition 

N-back  Dot-matrix 

Accuracy (%) RT (ms)  Accuracy 
(%) 

RT (ms) 

M SE M SE  M SE M SE 

Inclusion 93.32 0.08 792.30 160.28  67.89 0.12 3530.90 390.37 
Exclusion 93.90 0.06 782.30 159.46  68.69 0.12 3423.95 369.49 

Note. RT = response times. Model-predicted values are shown. 

However, there was a significant interaction between Cyberball condition 

and age group (χ2(2) = 7.97, p = .019). Young adolescents were the only 

age group that showed reduced accuracy after exclusion compared to 

inclusion. Mid-adolescents and adults showed no significant difference 

between exclusion and inclusion (Figure 4.2; Table 4.3). The reduction in 

accuracy in young adolescents was significantly greater than differences 

between exclusion and inclusion in mid-adolescents. The difference 

between young adolescents and adults did not survive correction for 

multiple comparison (Figure 4.2; Table 4.4).   

There was a significant 3-way interaction between Cyberball condition, age 

group and task difficulty (χ2(2) = 7.94, p = .019). This indicated that the age 

differences in response to exclusion were moderated by task difficulty (0-

back or 2-back). Post-hoc tests showed that young adolescents 

demonstrated a greater reduction in performance in response to exclusion 

on the 0-back than the 2-back task (z = -3.07, p = .007) (Table 4.5). There 

was no difference between the 0- and 2-back task for any of the other age 

groups (mid-adolescents: z = 1.10, p = .810; adults: z = 0.07, p = 1). These 

age-group differences were unlikely to be due to ceiling effects as all age 

groups performed significantly below 100% (Table 4.5). There was no 
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significant interaction between Cyberball condition, age group and 

distractor type (happy face, fearful face, or house; χ2(4) = 4.38, p = .358).  

 

Figure 4.2. N-back Accuracy after Inclusion and Exclusion. Mean accuracy with 

standard error bars are shown for three age groups: young adolescents, mid-

adolescents and adults. All values are model-predicted. Asterisks at the bottom of 

the bars in white boxes indicate significant differences between Cyberball 

conditions for a particular age group. Asterisks above the bars indicate that such 

effects differed between age groups (* p < .05). 

 
Response times. There was no main effect of Cyberball condition for n-

back response times (χ2(1) = 0.19, p = .667), indicating that overall, there 

was no difference in performance between exclusion and inclusion (Table 

4.2). There was also no significant interaction between Cyberball condition 

and age group (χ2(2) = 3.27, p = .195) and planned comparisons showed 

that there were no significant differences between Cyberball exclusion and 

inclusion for any of the three age groups (Table 4.3; Table 4.4). There was 

also no significant interaction between Cyberball condition, age group and 
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task difficulty (χ2(2) = 3.01, p = .222) or distractor type (χ2(4) = 2.51, p = 

.644). 

Table 4.3. Cognitive Performance and Mood Compared 

between Exclusion and Inclusion within Age Groups 

N-back accuracy 

Contrast Estimate SE z p  

Young adolescents -0.31 0.11 -2.96 .003 ** 
Mid-adolescents 0.13 0.14 0.93 .353  
Adults 0.08 0.16 0.50 .616  

N-back response times 

Contrast Estimate SE t p  

Young adolescents -0.17 15.09 -0.01 .991  
Mid-adolescents 25.67 15.26 1.68 .096  
Adults 13.86 16.43 -0.84 .401  

Dot-matrix accuracy 

Contrast Estimate SE z p  

Young adolescents -0.01 0.13 -0.07 .943  
Mid-adolescents -0.08 0.13 -0.64 .522  
Adults -0.02 0.14 -0.14 .887  

Dot-matrix response times 

Contrast Estimate SE t p  

Young adolescents 235.21 114.21 2.06 .042 * 
Mid-adolescents 104.06 104.65 0.99 .323  
Adults -48.41 122.62 -0.40 .694  

Mood ratings 

Contrast Estimate SE t p  

Young adolescents -1.57 0.17 -9.20 <.001 *** 
Mid-adolescents -1.45 0.16 -9.02 <.001 *** 
Adults -1.42 0.19 -7.49 <.001 *** 

Note. * p < .05, ** p < .01, *** p < .001 
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Table 4.4. Cognitive Performance and Mood Compared between 

Exclusion and Inclusion between Age Groups 

N-back accuracy  

Contrast Estimate SE z p  

Young adolescents vs. mid-adolescents -0.45 0.18 -2.50 .037 * 

Young adolescents vs. adults -0.39 0.19 -2.06 .119  

Mid-adolescents vs. adults 0.05 0.22 0.25 1  

N-back response times  

Contrast Estimate SE z p  

Young adolescents vs. mid-adolescents -25.84 21.45 -1.21 .685  

Young adolescents vs. adults 13.69 22.30 0.61 1  

Mid-adolescents vs. adults 39.53 22.42 1.76 .233  

Dot-matrix accuracy  

Contrast Estimate SE z p  

Young adolescents vs. mid-adolescents 0.07 0.18 0.40 1  

Young adolescents vs. adults 0.01 0.19 0.06 1  

Mid-adolescents vs. adults -0.06 0.19 -0.33 1  

Dot-matrix response times  

Contrast Estimate SE z p  

Young adolescents vs. mid-adolescents 131.10 154.90 0.85 1  

Young adolescents vs. adults 283.60 167.50 1.69 .271  

Mid-adolescents vs. adults 152.50 161.20 0.95 1  

Mood ratings  

Contrast Estimate SE z p  

Young adolescents vs. mid-adolescents -0.12 0.23 -0.51 1  

Young adolescents vs. adults -0.15 0.26 -0.58 1  

Mid-adolescents vs. adults -0.03 0.25 -0.12 1  

Note. * p < .01 
 

Table 4.5. Mean Accuracy in the 0-Back Task  

Age group Cyberball 
condition 

Mean 
accuracy 

(%) 

SE (%) One-sample t-test 
(comparing mean to 100%) 

t df p  

Young adolescents Exclusion 91.75 17.44 -2.84 35 .045 * 
Young adolescents Inclusion 95.21 7.29 -3.94 35 .002 ** 
Mid-adolescents Exclusion 98.04 2.59 -4.35 32 < .001 *** 
Mid-adolescents Inclusion 97.19 2.94 -5.57 33 < .001 *** 
Adults Exclusion 97.36 3.99 -3.44 26 .012 * 
Adults Inclusion 97.06 3.56 -4.29 26 .001 ** 

Note. P-values smaller than .05 suggest that accuracy was significantly below 100% 
(* p < .05, ** p < .01, *** p < .00). 
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Dot-matrix task 

Accuracy. There was no main effect of Cyberball condition for dot-matrix 

accuracy (χ2(1) = 0.23, p = .629), indicating that overall performance was 

matched between exclusion and inclusion (Table 4.2). The interaction 

between Cyberball condition and age group was not significant (χ2(2) = 

0.18, p = .912). Accuracy did not differ significantly between inclusion and 

exclusion for any age group (Table 4.3; Table 4.4). There was also no 

significant 3-way interaction between Cyberball condition, age group and 

task difficulty (low: 3 - 5 dots / high: 6 - 8 dots) for dot-matrix accuracy 

(χ2(2) = 2.37, p = .305).  

Response times. There was no main effect of Cyberball condition for dot-

matrix response times (χ2(1) = 2.17, p = .141), indicating that overall 

performance did not differ between exclusion and inclusion (Table 4.2). 

The interaction between Cyberball condition and age group was not 

significant (χ2(2) = 2.87, p = .239). However, planned comparisons showed 

an increase in response times after exclusion compared to inclusion in 

young adolescents (Figure 4.3; Table 4.3; Table 4.4). There was no 

significant 3-way interaction between Cyberball condition, age group and 

task difficulty (χ2(2) = 1.58, p = .453). 
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Figure 4.3. Dot-Matrix Response Times after Inclusion and Exclusion. Mean 

response times with standard error bars are shown for three age groups: young 

adolescents, mid-adolescents and adults. All values are model-predicted. Asterisks 

in white boxes at the bottom of the bars indicate significant differences between 

Cyberball conditions for a particular age group. None of the comparisons between 

age groups were significant (* p < .05). 

 

4.3.2. Mood ratings 

We analysed participants’ mood ratings after inclusion and exclusion in the 

Cyberball game using GLMMs. There was a significant main effect of Cyberball 

condition on mood (χ2(1) = 216.70, p < . 001). Mood was lower after exclusion (M 

= 2.51, SE = 0.08) than inclusion (M = 3.99, SE = 0.08) overall. This effect did not 

differ between age groups (χ2(2) = 0.40, p = .818), however (Figure 4.4; Table 4.3; 

Table 4.4).  
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Figure 4.4. Mood Ratings after Inclusion and Exclusion. Mean ratings with 

standard error bars are shown for three age groups: young adolescents, mid-

adolescents and adults. All values are model-predicted. Asterisks in white boxes at 

the bottom of the bars indicate significant differences between Cyberball 

conditions for a particular age group. None of the comparisons between age 

groups were significant (*** p < .001). 

 

4.4. Discussion 

Here we investigated the impact of social exclusion on cognitive performance and 

mood in three age groups: young adolescents (aged 10.1 - 14.0), mid-adolescents 

(aged 14.3 - 17.9) and adults (aged 18.3 - 38.1). While all age groups showed a 

similar and significant reduction in mood after social exclusion, the effect of 

exclusion on cognitive performance was age-dependent. Only young adolescents 

showed a reduction in performance on n-back and visuo-spatial working memory 

tasks after social exclusion; this was not the case for mid-adolescents or adults.  
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Previous research showed negative effects of Cyberball exclusion on executive 

functions in adults (Jamieson et al., 2010; Lustenberger & Jagacinski, 2010; 

Themanson et al., 2014) and working memory in children (Hawes et al., 2012). 

Therefore, we hypothesized that we would see reductions in cognitive 

performance after exclusion in all age groups, but expected the effects to be more 

pronounced in adolescence. While cognitive performance was reduced after 

exclusion in younger adolescents, we found no effect of social exclusion on 

cognitive performance in mid-adolescents or adults. It is possible that the effects 

of social exclusion in older populations depend on the specific executive function 

tasks used. Executive functions may decompose into rule-driven, explicit; and 

internalized, automatic processes (Crone & Steinbeis, 2017; Olsson & Ochsner, 

2008). Effects in adults may be evident mostly when tasks require internalized, 

automatic executive function processes such as inhibition in the anti-saccade task 

(Jamieson et al., 2010) or the Flanker task (Themanson et al., 2014). Such 

automatic processes may be difficult to adjust to situational demands and might 

be easily disrupted by stressful situations. In contrast, our cognitive tasks were 

rule-driven and explicit and may be more adaptable under changing situational 

demands. This explanation is speculative at present, however, and remains to be 

tested in future research. 

Contrary to our hypothesis, we found no significant age group differences in 

mood: all age groups showed similar significant reductions after social exclusion. 

While this finding is dissimilar to some previous studies on mood, anxiety and 

need-threat (Pharo et al., 2011; Sebastian et al., 2010), it is in line with a recent 

meta-analysis of 120 Cyberball studies. This meta-analysis showed that exclusion 
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generally has large (d > |1.4|) effects on intrapersonal outcome measures such as 

self-esteem and that these effects are mostly independent of age (Hartgerink, van 

Beest, Wicherts, & Williams, 2015). 

This pattern of results makes it unlikely that the age-dependent effects of 

Cyberball on cognitive performance reported here were due to age differences in 

the emotional (mood) response to Cyberball. All three age groups tested showed 

similar mood reductions after exclusion and yet cognitive performance was 

affected in young adolescents only. This indicates that the age-dependent effects 

of Cyberball were relatively specific to cognitive performance. This finding is in 

line with previous studies in adults showing that the effects of social exclusion on 

cognitive performance are not mediated by mood (Baumeister et al., 2002; 

Buckley, Winkel, & Leary, 2004). Instead, self-regulatory processes such as 

suppression of ruminative thought, or active down-regulation of unwanted affect 

may be candidate mechanisms for the reduction in cognitive performance. These 

self-regulatory processes are thought to interact and compete with executive 

functions (Hofmann, Schmeichel, & Baddeley, 2012).  

The effect of social exclusion on cognitive performance in young adolescents was 

evident across two measures of working memory, even though it manifested 

somewhat differently. For n-back performance, accuracy was reduced but 

response times did not increase after exclusion. For dot-matrix performance, the 

opposite pattern emerged: response times increased but accuracy was not 

reduced. One possible explanation for this pattern of results is that the n-back 

required quick responses, while responses were self-paced in the dot-matrix task. 

Participants may have increased their response times in the dot-matrix task to 
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maintain accuracy levels after exclusion while that was not possible in the n-back 

task. Overall, the effect was more robust for n-back performance: the increase in 

dot-matrix response times in young adolescents after exclusion was not significant 

at the interaction-level. 

A supplementary analysis showed that the effect of exclusion was stronger for 

easy trials (0-back) than for difficult trials (2-back) in the n-back task. This finding 

is similar to the results of a previous study in which girls aged 8 - 12 also showed 

reduced cognitive functioning on easy but not hard working memory tasks (Hawes 

et al., 2012).  One possible explanation for this pattern of results is that the easier 

0-back trials may have allowed for more rumination than the demanding 2-back 

trials. Rumination, in turn, is known to increase the emotional impact of Cyberball 

exclusion (Wesselmann, Ren, Swim, & Williams, 2013) and also to disrupt 

cognitive performance (Curci, Lanciano, Soleti, & Rimé, 2013; Hofmann et al., 

2012). There was no difference between easy and hard trials in the visuo-spatial 

working memory test. This task was self-paced, which may have allowed for some 

rumination on all types of trials.  

There are some limitations of the sample included here, which need to be taken 

into account when interpreting the results. First, IQ differed between age groups. 

We think it unlikely, however, that IQ could explain stronger performance 

reductions after social exclusion in younger adolescents, as IQ was controlled for 

in all analyses. Furthermore, IQ did not differ significantly between young 

adolescents and the other two age groups, only between mid-adolescents and 

adults. It should be noted, however, that the difference between young 

adolescents and adults was approaching significance (p = .080). Second, our study 
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included female participants only and we do not know whether our results would 

generalize to males. Adolescent girls may spend more time with peers than boys 

(Larson & Richards, 1991) and may be particularly sensitive to social exclusion 

(Hawes et al., 2012). It is therefore important for future research to explore 

whether adolescent boys react differently to social exclusion than adolescent 

girls. 

Overall, our results indicate high susceptibility of young adolescent girls to the 

effects of a short virtual social exclusion experience. This adds to previous 

research showing that children aged 8 - 12 were similarly affected by social 

exclusion (Hawes et al., 2012). These findings are relevant to understanding the 

effects of ostracism in schools. It highlights that experiencing social exclusion may 

place a particular burden on young girls. Exclusion reduces cognitive performance, 

which, in turn, may impact educational achievement (Nakamoto & Schwartz, 

2010; Rigby, 2000; Sharp, 1995). This underlines the need to develop effective 

ostracism interventions in schools and to consider age differences in response to 

social exclusion in the design and timing of interventions.  

This hypersensitivity to social exclusion in late childhood and early adolescence is 

in line with rodent studies, which have shown a sensitive period for social 

isolation during the late juvenile and early adolescent stage (Einon & Morgan, 

1977). Future research could investigate effects of social exclusion in humans 

across a broader age-range to explore whether there is a peak of sensitivity to 

social exclusion in late childhood and early adolescence, as there is in rodents 

(Buwalda et al., 2011; Einon & Morgan, 1977), or whether sensitivity to exclusion 

simply decreases over development.  
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The study in this, and the preceding chapter, suggest that adolescence may be a 

period of high susceptibility to environmental input. If this is the case, we would 

not only expect increased vulnerabilities, however, but also predict opportunities 

for development. This line of inquiry is followed in the next chapter, which 

investigates whether some age groups benefit more from cognitive training than 

others. 
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5. Chapter 5: Age-Dependent Effects of Cognitive Training 5 

In the current study, we investigated windows for enhanced learning of cognitive 

skills during adolescence. Six hundred and sixty-three participants (11 - 33 years 

old) were divided into four age groups, and each participant was randomly 

allocated to one of three training groups. Each training group completed up to 20 

days of online training in numerosity discrimination (i.e., discriminating small from 

large numbers of objects), relational reasoning (i.e., detecting abstract 

relationships between groups of items), or face perception (i.e., identifying 

differences in faces). Training yielded some improvement in performance on the 

numerosity discrimination task, but only in older adolescents or adults. In contrast, 

training in relational reasoning improved performance on that task in all age 

groups, but training benefits were greater for people in late adolescence and 

adulthood, than for people earlier in adolescence. Training did not increase 

performance on the face perception task for any age group. Our findings suggest 

that for certain cognitive skills, training during late adolescence and adulthood 

yields greater improvement than training earlier in adolescence, which highlights 

the relevance of this late developmental stage for education. 

5.1. Introduction 

Education policy tends to emphasise the importance of investing in early 

childhood intervention. This argument is partly based on well-established 

economics accounts of the added value of early childhood intervention (Heckman, 

                                                      
5 The study presented in this chapter has been previously published as: 

Fuhrmann, D.*, Knoll, L.J.*, Sakhardande, A., Stamp, F., Speekenbrink, M. & Blakemore, S-J. (2016). 
A window of opportunity for cognitive training in adolescence. Psychological Science, 27(12), 1620-
1631. doi: 10.1177/0956797616671327 *Joint first authors. 
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2000, 2006). However, there is a tension between the assumption that earlier is 

always better for learning, and studies showing that the human brain continues to 

develop throughout childhood, adolescence and into early adulthood.  

Research has shown that several cortical regions in humans undergo protracted 

structural and functional development across adolescence (Cohen Kadosh, 

Johnson, Dick, Cohen Kadosh, & Blakemore, 2013; Giedd & et al., 1999; Giedd & 

Rapoport, 2010; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Tamnes et al., 

2010). Regions that undergo particularly substantial development include the 

prefrontal and parietal cortices, which are involved in a variety of higher cognitive 

skills relevant to mathematics education, including reasoning and numerical skills 

(Blakemore & Robbins, 2012; Dumontheil, 2014; Houdé, Rossi, Lubin, & Joliot, 

2010). There is evidence that protracted development of these cognitive skills 

occurs during adolescence (Crone, Wendelken, Donohue, van Leijenhorst, & 

Bunge, 2006; Dumontheil, Houlton, Christoff, & Blakemore, 2010; Halberda, Ly, 

Wilmer, Naiman, & Germine, 2012; Tamnes et al., 2013). See pp. 24 - 27 and 

section 1.3.2. However, little is known about when these skills are most efficiently 

learned. 

Here, we trained performance of three cognitive skills: numerosity discrimination, 

relational reasoning and face perception. These cognitive skills were chosen 

because they involve brain regions that undergo development during adolescence 

(Cohen Kadosh, Johnson, Dick, et al., 2013; Dehaene, Piazza, Pinel, & Cohen, 

2003; Dumontheil, Houlton, et al., 2010) and because they improve during 

adolescence (Dumontheil, Houlton, et al., 2010; Fuhrmann et al., 2016; Halberda 

et al., 2012). Therefore, these skills might be expected to be particularly trainable 
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in adolescence. In addition, both relational reasoning and numerosity 

discrimination are relevant to education. Numerosity discrimination is correlated 

with mathematics performance (Halberda et al., 2012), and relational reasoning is 

also related to fluid intelligence, a significant predictor of educational outcomes 

(Chuderski, 2014).  

Face perception, the ability to identify changes in faces and facial features, was 

included as the control training task. Face perception also improves during 

adolescence and may be susceptible to training, but it relies on different cognitive 

processes and neural circuits than those involved in numerosity discrimination 

and relational reasoning (Cohen Kadosh, Johnson, Dick, et al., 2013; Cohen 

Kadosh, Johnson, Henson, et al., 2013). We thus reasoned that there would be no 

transfer from face perception training to numerosity discrimination and relational 

reasoning performance, or vice versa. Including a face perception training group 

also allowed us to control for non-specific aspects of participating in a training 

study such as adhering to a training schedule, online training over several days 

and so on (Klingberg, 2010).  

Each of the three training tasks was tested before (test session one: T1) and 

immediately after training (test session 2: T2), and between three to nine months 

after training (test session three: T3) (Figure 5.1). In addition, we included two 

non-trained tasks in each test session: a working memory task (backward digit 

span) and a face memory task, in order to determine whether transfer effects 

were evident, and whether they differed between age groups.  
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Figure 5.1. Timeline of the Study. ND = numerosity discrimination, RR = relational 

reasoning, FP = face perception, T1 = baseline testing, T2 = testing after training, 

T3 = follow-up testing. Adapted from Knoll et al. (2016) with permission from 

SAGE Publishing. 

We compared training effects between four age groups: 186 younger adolescents 

(11.27 - 13.38 years), 186 mid-adolescents (13.39 - 15.89 years), 186 older 

adolescents (15.90 - 18.00 years), and 105 adults (18.01 - 33.15 years). We 

investigated three central hypotheses: (I) General training effects: Training would 

improve performance on the trained task only; (II) Age-dependent training effects: 

Performance on the trained task would improve after training within some or all 

age groups and the strength of improvement would differ between age groups; 

(II) Transfer effects: Training effects might generalise to performance on a non-

trained task that involves similar cognitive processes. Specifically, training in 

relational reasoning might lead to improvements in performance on an untrained 

working memory task (Klingberg, 2010), and training in face perception might lead 

to improvements in performance on an untrained face memory task (Dolzycka et 

al., 2014). 
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5.2. Methods 

5.2.1. Participants 

Participants recruited for the study described in Chapter 3, were tested on a 

number of tasks as part of a cognitive training study. As described in Chapter 3, 

Data from 821 participants was collected over a 16-month period. Adolescents 

were recruited from 16 schools in and around London. Adults were recruited 

through the UCL participant pools (which are databases that include individuals 

who are not students and have not previously studied at UCL) and through 

posters in central London, near the university. School-age participants were 

tested during lessons, and data were collected from all students present in the 

classroom. Data from 123 students was excluded because parental consent was 

not provided. Participants’ data was also excluded if they reported a diagnosis of 

developmental conditions, including attention-deficit/hyperactivity disorder, 

autism, dyscalculia, dyslexia, and epilepsy (N = 34), or if they were not present 

during testing at Test Session 1 (N = 1). The final sample at Test Session 1 included 

663 participants (398 females; Mage= 16.50 years, SDage = 4.42, age range = 11.27 - 

33.15 years) and was divided into four age groups: younger adolescents, mid-

adolescents, older adolescents, and adults (Table 5.1). To create the three 

adolescent age groups, we sorted the 11 - to 18 – year - olds by age and then split 

them into three bins of equal size. We chose three age groups for adolescents as 

a compromise between the increased sensitivity that comes with increasing 

numbers of groups and the loss of power this produces. Adults were tested 

separately from adolescents and were assigned to their own age group.  
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Participants were randomly assigned to one of three training groups: numerosity 

discrimination, relational reasoning and face perception training (see Table 5.1. 

for group sizes and gender split). Experimenters were blind to participants’ 

training group. We tested whether training groups and age groups differed in a 

number of potential confounds: the amount of training completed; days between 

training sessions; days between T1 and T2; days between T2 and T3; group size at 

testing, number of test sessions split over multiple days and missing data at T2 

and T3. None of the training groups differed on any of these variables, but there 

were age group differences in all of them. We therefore carried out 

supplementary analyses to test whether these potential confounds with age 

influenced our main results (see section 5.3.4). 

Table 5.1. Participant Numbers 

 
 
Age group 

 Numerosity 
discrimination 
training group 

Relational 
reasoning 

training group 

Face 
perception 

training group 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Younger 
adolescents 
11.27 - 13.38 

N overall 62 57 37 61 56 38 63 58 43 

N female 41 39 26 32 30 26 45 42 31 

Mid-adolescents 
13.39 - 15.89 

N overall 60 57 38 63 61 46 63 59 46 

N female 30 28 21 33 33 23 27 25 22 

Older adolescents 
15.90 - 18.00 

N overall 71 60 42 57 49 33 58 43 25 

N female 41 37 30 33 30 21 35 26 14 

Adults 
18.01 - 33.15 

N overall 36 36 17 35 34 22 34 32 18 

N female 28 28 14 25 24 15 28 27 17 

Note. Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 
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5.2.2. Experimental design 

Participants were tested at three time points: T2 occurred three to seven weeks 

after T1, and T3 occurred three to nine months after T2 (Figure 5.1). Between T1 

and T2, participants were asked to complete 20 sessions of online training on one 

of three training tasks (numerosity discrimination, relational reasoning or face 

perception). Participants were tested on five tasks at each test session: 

numerosity discrimination, relational reasoning, face perception, face memory 

and backward digit span. The face memory and backward digit span tasks were 

included to investigate transfer effects between the trained tasks and related 

tasks. See below for details of each of the tasks. 

 

5.2.3. Testing procedure 

Testing and training were carried out using an online platform developed by the 

research team and Cauldron, a software company (http://www.cauldron.sc). 

Participants completed each of the three test sessions in groups; adolescents 

were tested in school and adults were tested in a university computer room (for 

average group sizes per age group, see Table 5.7). Participants used laptops, 

tablets, or desktop computers. Responses on all five tasks were made using a 

mouse, touchpad, or touchscreen. Before each task, an experimenter gave 

instructions, and participants completed practice trials until they correctly 

completed three trials on each of the five tasks. Participants were given visual 

feedback on their performance in the practice trials only. Task order was 

counterbalanced among training groups and across test sessions using a Latin-

square design. Because of school scheduling constraints, Test Session 1 was split 

http://www.cauldron.sc/
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over 2 or 3 days for four groups (see Table 5.6). All other sessions were completed 

in one sitting. To check whether this influenced the main results, we reran the 

analysis and excluded data from individuals whose test sessions were split over 

multiple days (see section 5.3.4). 

 

5.2.4. Training procedure 

Participants were asked to complete 20 days of training on any internet-enabled 

device except smart-phones. The training platform did not allow more than one 

training session to be started per day. Each training session lasted a maximum of 

12 min or a set number of trials, whichever was reached first (see task 

descriptions). If a participant failed to respond for over 5 min, the training session 

timed out and was not included in the total number of training sessions. Task 

difficulty was adaptive according to performance and participants received 

feedback.  

Training was designed to be motivating by providing positive feedback, such as 

flashing stars, after every correct response. Motivational phrases (e.g. 

‘awesome!’, ‘three in a row!’) were shown as intermittent reinforcers (Ferster & 

Skinner, 1957). To incentivise training further, participants received virtual 

trophies. Before each training session, participants were asked to select a trophy 

chest (bronze, silver or gold). After the session, participants could open the chest 

to find a trophy in their online trophy cabinet. Participants were able to track the 

number of training sessions they had completed by viewing their trophy cabinet. 

Participants were reminded to train by automated daily e-mails and additional e-

mail reminders sent by the research team. Additionally, teachers were asked to 
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remind adolescent participants to train. Volunteers also received monetary 

rewards at T2 if they had completed at least 15 training days. Adolescents 

received a £10 Amazon voucher; adults received £30 in cash. After the third test 

session adults received a further £10 in cash and adolescents received a 

certificate of participation. The training platform was designed to resemble 

school-based learning: testing was carried out in groups in the classroom and the 

training programme was comparable to homework in terms of duration and 

frequency.  

 

5.2.5. Numerosity discrimination task 

The numerosity discrimination task was used to measure the ability to rapidly 

approximate and compare the number of items within two different sets of 

coloured dots presented on a grey background. In this task, the total number of 

dots and dot proportions (i.e., the relative number of dots of each colour) in each 

array could be modified to vary difficulty level, such that a higher number of dots 

and a higher dot proportion represented a more difficult trial (Halberda et al., 

2012).  

 

Numerosity discrimination testing protocol 

The dot proportions used were 0.30, 0.40, 0.42, 0.45, 0.47, and 0.49; the last four 

proportions, which were more difficult, appeared twice as often as the first two, 

easier proportions. Testing started with four easy trials (i.e., dot proportion = 

0.30), but the proportion used in all subsequent trials was randomized. Only trials 
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with black and white dots were included in the testing. Individual dot positions for 

each array were selected pseudo-randomly: Their position was restricted such 

that none of the dots overlapped or touched and each dot was within the borders 

of the stimulus display. 

Each trial started with a fixation cross presented for 250 ms, followed by a dot 

array presented for 200 ms. Participants were asked to select the colour of the 

more numerous dots. The two possible response options were displayed at the 

same time as the dot array and stayed on the screen until a response was given. 

The position (i.e., left or right) of the response buttons (i.e., ‘black’ or ‘white’) on 

the screen was counterbalanced between participants. There was no time limit on 

the response in each trial. After participants provided a response, the next trial 

started immediately. The numerosity discrimination task took 7 min to complete. 

 

Numerosity discrimination training protocol 

Each training session took 12 min or 64 trials to complete, whichever was reached 

first. All possible dot proportions were used. The first training session started with 

an initial dot proportion of 0.3. After each correct trial, difficulty increased one 

level (i.e., dot proportion came closer to 0.5); after each incorrect trial, it 

decreased two levels. The initial difficulty of each subsequent training session was 

two levels lower than the peak difficulty encountered in the previous training 

session. In training, randomly selected pairs of coloured dot sets were used (black 

and white, blue and yellow, blue and orange, violet and yellow, and violet and 

orange). 
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5.2.6. Relational reasoning task 

A modified version of Raven’s Progressive Matrices (Raven, 2009) was used to 

examine the ability to detect abstract relationships between groups of items. In 

this version of the relational reasoning task, puzzles consisted of a 3 × 3 matrix; 

eight of the cells contained shapes, but there was no shape in the bottom right 

cell. To select the correct response option, the participant had to deduce the 

pattern of change within the matrix. The items in a matrix could vary by colour, 

size, shape, and position across the matrix. 

 

Relational reasoning testing protocol 

Each trial started with a 500 ms fixation cross, followed by a 100 ms blank screen. 

In each trial, a puzzle was presented on the left side of the screen, and four 

possible response options were shown on the right side of the screen. Each puzzle 

was presented for 30 s. After 25 s, a clock appeared above the response options, 

indicating that 5 s remained until the next trial. The next trial started after 

participants responded or after 30 s had elapsed. The task took 8 min to 

complete. There were three test sessions; a different set of 80 puzzles using 

abstract shapes was created for each session. The order of the 80 puzzles within 

each set was the same for all participants, starting with five easy trials. The order 

of the three sets was counterbalanced across participants. If a participant 

completed all 80 puzzles within the 8 min time limit, the same set was presented 

again, but data from these additional puzzles were not included in the analysis. 
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Relational reasoning training protocol 

Each training session took 12 min or 40 trials to complete, whichever was reached 

first. For each session, abstract and iconic puzzle shapes were selected. The first 

training session started with an easy puzzle. Training was adapted to performance 

such that the number of changing dimensions increased by one after each correct 

response and decreased by one after each incorrect response. The initial difficulty 

of each subsequent training session was two levels lower than that in the previous 

training session. 

 

5.2.7. Face perception task 

The design of the face perception task was as described in Chapter 3.2.5. The face 

perception task measured the ability to process featural and configural changes in 

faces (Cohen Kadosh, 2011). Participants were asked to decide whether two faces 

presented consecutively were the same or different. Faces were considered to be 

different when there were changes in any of the following face properties: gaze 

direction (left or right), expression (happy or sad), or identity (Person A or Person 

B). Participants were informed that faces should be classified as the same only if 

all three face properties were exactly the same. 

 

Face perception testing protocol 

Photos of 26 faces (16 white, 10 Asian; 16 female, 10 male), were taken under 

standardized lighting conditions for the purpose of this experiment. Four colour 

photos were obtained for each face: two with a happy expression (one with 
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leftward gaze and one with rightward gaze) and two with a sad expression (one 

with leftward gaze and one with rightward gaze). Photos were scaled to a uniform 

size and cropped to exclude external features of the face (e.g., hair) using the 

GNU Image Manipulation Program (GIMP Team, 2013).  

Each trial started with a fixation cross presented for 800 ms, followed by the first 

face for 500 ms, and then another fixation cross for 800 ms, and then the second 

face for 500 ms. In the response display, the two possible response options 

(‘same’ or ‘different’) were shown simultaneously with the presentation of the 

two faces. The next trial started immediately after participants responded. One 

test took 7.5 min to complete. 

Each test session contained a different set of stimuli, and each set comprised 48 

different trials in which the faces of White women were shown. The order of the 

three sets of stimuli was counterbalanced across participants. If participants 

finished the 48 trials within the 7.5 min time limit, the trials were presented again, 

but the data were not included in the analysis. On the first 2 trials, the images had 

a noise mask of 25%, and difficulty in the remaining trials was increased by adding 

noise masks of increasing strength (from 25% to 81% in steps of 8 percentage 

points). 

 

Face perception training protocol 

Each training session lasted for 12 min or 48 trials, whichever was reached first. 

Twenty different sets of faces (five sets showed Asian women, five sets showed 

Asian men, five sets showed white women, and five sets showed white men) were 

generated for training. Training task difficulty was adapted to performance. In the 
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first training session, a 25% noise mask was applied to the first images. After a 

correct trial, noise strength was increased by 8 percentage points. After an 

incorrect trial, noise strength was decreased by 16 percentage points or kept at 

25% - the lowest level. Each subsequent training session started with an initial 

difficulty level that was 16 percentage points lower than the peak difficulty 

encountered in the previous training session. 

 

5.2.8. Backward digit span task 

The backward digit span task was used to measure verbal working memory. 

Participants were asked to remember a sequence of digits in a certain order and 

to recall them in the reverse order. Minimum sequence length was two digits, 

sequences neither started nor ended with a 0, and no digit appeared twice or 

more in a row. Each trial started with a 500 ms fixation cross, followed by a 250 

ms blank display. Digits were presented at a rate of one per second with an 

interstimulus interval of 250 ms. At the end of each sequence, participants were 

presented with a number of dashes equal to the length of the digit sequence they 

had just seen and were asked to input the digit sequence in reverse order, using 

the on-screen keyboard. Participants were not permitted to correct a response 

after a digit had been entered. There was no time limit on the response. After the 

response was given, the next trial started immediately. The task took 6 min to 

complete. The sequence length started at five digits, and trial difficulty was 

adapted to performance such that after correct trials, the difficulty level increased 

by one level (i.e., the sequence length increased by one), and after incorrect trials, 

the difficulty level decreased by 1 level (i.e., the sequence length decreased by 1).  
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5.2.9. Face memory task 

The design of the face memory task was as described in Chapter 3.2.4. An 

adaptation of the Cambridge face memory task (CFMT) was used to assess the 

ability to learn and recognise unknown faces using a 3-Alternative-Forced Choice 

(3-AFC) test. Participants were asked to memorise 6 target faces and then locate 

one of the targets from a panel of three faces comprising the target plus two 

distractor faces that had not been memorised. A set of 198 face stimuli matching 

the specifications of the original CFMT was created for the purpose of the 

experiment. Black and white photographs of 66 Caucasian males from three 

angles (frontal/left quarter profile/right quarter profile) were obtained from the 

Facial Recognition Technology database (Phillips, Moon, Rizvi, & Rauss, 2000). 

Photos were cropped to exclude external features of the face (hair etc.) using the 

GNU Image Manipulation Program (GIMP Team, 2013). The task consisted of 

three blocks. In the first block, a target face was shown at three different angles, 

for 3 s each, and this was followed by three 3-AFC trials. This procedure was 

repeated for five more target faces. In the second block, frontal views of the same 

six target faces were presented simultaneously for 20 s, and this was followed by 

eighteen 3-AFC trials. In the third block, frontal views of the same six target faces 

were presented simultaneously for 20 s, but a 50% Gaussian noise mask was 

added to the faces in the eighteen 3-AFC trials that followed. 

There was no time limit on the response in any of the blocks. After participants 

responded, the next trial started immediately. The task took 9 min or 54 trials to 

complete, whichever came first. Three sets of stimuli were created, one for each 

of the three test sessions. The order of presentation of these sets was 
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counterbalanced across participants. Each testing set contained 6 unique target 

faces and 6 unique distractor faces, as well as a set of 30 distractor faces that was 

used in all three test sessions. These common distractors were used to increase 

the difficulty of the task and prevent ceiling effects. 

 

5.2.10. Statistical analysis 

GLMMs implemented in the lme4 package (Bates et al., 2013) in R (R Core Team, 

2015) were used to investigate the degree to which participants improved their 

task performance after training and whether the effect of training differed 

between age and training groups. Trials in any of the tasks with a response time 

under 250 ms were excluded from the analysis. For the numerosity 

discrimination, relational reasoning, face perception, and face memory tasks, the 

sums of correct and incorrect responses across trials were used as dependent 

variables. The models predicted each participant’s task accuracy on the basis of 

four independent variables: training group, age group, test session, and number 

of completed training sessions (to control for differences in motivation). The 

models included fixed main effects of all four variables and fixed interaction 

effects between test session, training group, and age group as well as an 

interaction between training group and number of days trained. Orthogonal 

Helmert coding was used for all categorical fixed effects. Training days were 

standardized to z-scores. To account for individual differences, attrition, and the 

repeated measures for each participant, the model included a participant-specific 

random intercept (nested in school or university).  
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A LMM was used to investigate training effects on performance in the backward 

digit span task. This model incorporated each participant’s maximal digit span as 

the dependent variable and the same random and fixed effects that were used in 

the GLMMs. The effects of the predictors on the dependent variables were 

investigated using an omnibus Type III Wald χ2 test. Planned comparisons were 

performed to inspect differences across test sessions, age groups, and training 

groups using the multcomp package (Hothorn et al., 2016). For each of the five 

tasks, we inspected 26 comparisons of performance changes between T1 and T2 

and between T1 and T3. To investigate general training effects, we analysed 

changes in performance in the trained tasks between test sessions within training 

groups (2 tests) and compared these effects between training groups (4 tests). 

Age-dependent training effects were investigated by looking at changes in 

performance in each age group on their trained task (8 tests). Between-age-group 

comparisons of age-dependent training effects were made by looking at changes 

in accuracy between age groups on their trained task (12 tests). All reported 

results were Bonferroni-corrected for these 26 comparisons. For additional 

analysis, which investigated potential confounds, see section 5.3.4. 

 

5.3. Results 

5.3.1. General training effects 

Training on the numerosity discrimination, relational reasoning and face 

perception task improved performance on these respective tasks (Figure 5.2). 

Changes in performance differed between training groups, as indicated by 
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significant interactions between time point and training group for the numerosity 

discrimination task (χ2(4) = 34.61, p < .001), relational reasoning task (χ2(4) = 

328.48, p < .001) and face perception task (χ2(4) = 12.57, p = .014).   

Planned comparisons showed that participants who were trained in numerosity 

discrimination showed significantly improved performance in numerosity 

discrimination at T2 but those gains were not sustained to T3 (Table 5.2). 

Compared with participants who received training in one of the other two tasks, 

participants in the numerosity discrimination training group showed significantly 

higher gains in numerosity discrimination at T2. These effects were due mainly to 

the adult age group. When the adults’ data were excluded, some of the effects of 

numerosity discrimination training became non-significant after Bonferroni 

correction (see section 5.3.4). 

Participants who were trained in relational reasoning showed significantly 

improved performance in relational reasoning at T2 and T3 (Table 5.3). These 

gains were higher than those in participants trained in one of the other tasks 

(Figure 5.2). 

Participants who were trained in face perception showed significantly improved 

performance in face perception at T2 but not T3 (Table 5.4). The gains at T2 were 

higher than those in participants trained in numerosity discrimination (Figure 5.2). 

However, these effects were not stable in supplementary analyses: The training 

effects in face perception lost significance when confounds like variation in group 

size were controlled for (see section 5.3.4). 
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Figure 5.2. Performance by Training Group. Percentage accuracy with standard 

error bars in (a) the numerosity discrimination task, (b) the relational reasoning 

task, (c) the face perception task at the three test sessions of the. Asterisks in (a) 

and (b) indicate significantly greater gains at T2 and T3 in the group trained in the 

indicated task than in the other two groups (* p < .05, *** p < .001). The asterisk 

in (c) indicates a significant difference in gain at T2 between the group trained in 

face perception and the group trained on numerosity discrimination (* p < .05).  

Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 
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Table 5.2. Numerosity Discrimination Performance Change after Training  

Contrast Estimate SE z p  

T1 vs. T2, ND 0.39 0.11 3.38 .019 * 
T1 vs. T3, ND 0.18 0.13 1.39 1  
T1 vs. T2, ND vs. FP 0.75 0.16 4.65 < .001 *** 
T1 vs. T2, ND vs. RR 0.85 0.16 5.24 < .001 *** 
T1 vs. T3, ND vs. FP 0.58 0.18 3.15 .042 * 
T1 vs. T3, ND vs. RR 0.63 0.18 3.50 .012 * 
T1 vs. T2, ND, younger adol. -0.07 0.06 -1.11 1  
T1 vs. T2, ND, mid-adol. 0.06 0.06 0.95 1  
T1 vs. T2, ND, older adol. 0.20 0.06 3.49 .013 * 
T1 vs. T2, ND, adults 0.20 0.05 3.80 .004 ** 
T1 vs. T3, ND, younger adol. -0.05 0.07 -0.74 1  

T1 vs. T3, ND, mid-adol. -0.07 0.07 -1.08 1  
T1 vs. T3, ND, older adol. 0.06 0.06 0.99 1  
T1 vs. T3, ND, adults 0.24 0.07 3.52 .011 * 
T1 vs. T2, ND, younger adol. vs. mid-adol. -0.12 0.08 -1.45 1  
T1 vs. T2, ND, mid-adol. vs. older adol. -0.14 0.08 -1.74 1  
T1 vs. T2, ND, older adol. vs. adults -0.00 0.08 -0.06 1  
T1 vs. T2, ND, younger adol. vs. adults -0.27 0.08 -3.34 .022 * 
T1 vs. T2, ND, mid-adol. vs. adults -0.15 0.08 -1.85 1  
T1 vs. T2, ND, younger adol. vs. older adol. -0.26 0.08 -3.20 .036 * 
T1 vs. T3, ND, younger adol. vs. mid-adol. 0.02 0.09 0.24 1  
T1 vs. T3, ND, mid-adol. vs. older adol. -0.13 0.09 -1.47 1  
T1 vs. T3, ND, older adol. vs. adults -0.18 0.09 -2.03 1  

T1 vs. T3, ND, younger adol. vs. adults -0.29 0.10 -3.06 .059  
T1 vs. T3, ND, mid-adol. vs. adults -0.31 0.09 -3.30 .025 * 
T1 vs. T3, ND, younger adol. vs. older adol. -0.11 0.09 -1.21 1  

Note. T1 = test session one; T2 = test session two; T3 = test session three; ND = 
numerosity discrimination training; RR = relational reasoning training; FP = face 
perception training; younger adol. = younger adolescents; mid-adol. = mid-
adolescents; older adol. = older adolescents (* p < .05, ** p < .01, *** p < .001). 
Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 
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Table 5.3. Relational Reasoning Performance Change after Training  

Contrast Estimate SE z p  

T1 vs. T2, RR 3.17 0.19 16.52 <.001 *** 
T1 vs. T3, RR 2.59 0.21 12.1 <.001 *** 
T1 vs. T2, RR vs. FP 3.76 0.25 14.89 <.001 *** 
T1 vs. T2, RR vs. ND 3.90 0.25 15.55 <.001 *** 
T1 vs. T3, RR vs. FP 3.11 0.29 10.8 <.001 *** 
T1 vs. T3, RR vs. ND 3.29 0.29 11.33 <.001 *** 
T1 vs. T2, RR, younger adol. 0.46 0.08 6.11 <.001 *** 
T1 vs. T2, RR, mid-adol. 0.36 0.07 5.17 <.001 *** 
T1 vs. T2, RR, older adol. 1.03 0.09 11.53 <.001 *** 
T1 vs. T2, RR, adults 1.32 0.13 9.76 <.001 *** 
T1 vs. T3, RR, younger adol. 0.46 0.08 5.57 <.001 *** 

T1 vs. T3, RR, mid-adol. 0.28 0.08 3.68 .006 ** 
T1 vs. T3, RR, older adol. 1.06 0.11 9.36 <.001 *** 
T1 vs. T3, RR, adults 0.79 0.14 5.54 <.001 *** 
T1 vs. T2, RR, younger adol. vs. mid-adol. 0.10 0.10 0.97 1  
T1 vs. T2, RR, mid-adol. vs. older adol. -0.67 0.11 -5.87 <.001 *** 
T1 vs. T2, RR, older adol. vs. adults -0.28 0.16 -1.75 1  
T1 vs. T2, RR, younger adol. vs. adults -0.85 0.15 -5.51 <.001 *** 
T1 vs. T2, RR, mid-adol. vs. adults -0.95 0.15 -6.27 <.001 *** 
T1 vs. T2, RR, younger adol. vs. older adol. -0.57 0.12 -4.84 <.001 *** 
T1 vs. T3, RR, younger adol. vs. mid-adol. 0.18 0.11 1.63 1  
T1 vs. T3, RR, mid-adol. vs. older adol. -0.78 0.14 -5.74 <.001 *** 
T1 vs. T3, RR, older adol. vs. adults 0.27 0.18 1.49 1  

T1 vs. T3, RR, younger adol. vs. adults -0.33 0.16 -2.00 1  
T1 vs. T3, RR, mid-adol. vs. adults -0.51 0.16 -3.17 .040 * 
T1 vs. T3, RR, younger adol. vs. older adol. -0.60 0.14 -4.28 <.001 *** 

Note. T1 = test session one; T2 = test session two; T3 = test session three; ND = 
numerosity discrimination training; RR = relational reasoning training; FP = face 
perception training; younger adol. = younger adolescents; mid-adol. = mid-
adolescents; older adol. = older adolescents (* p < .05, ** p < .01, *** p < .001). 
Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 
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Table 5.4. Face Perception Performance Change after Training  

Contrast Estimate SE z p p 

T1 vs. T2, FP 0.54 0.14 3.92 <.001 .002 
T1 vs. T3, FP 0.46 0.16 2.79 .005 .137 
T1 vs. T2, FP vs. RR 0.46 0.19 2.43 .015 .393 
T1 vs. T2, FP vs. ND 0.59 0.19 3.16 .002 .042 
T1 vs. T3, FP vs. RR 0.48 0.22 2.12 .034 .882 
T1 vs. T3, FP vs. ND 0.34 0.23 1.50 .133 1 
T1 vs. T2, FP, younger adol. 0.04 0.06 0.65 .515 1 
T1 vs. T2, FP, mid-adol. 0.12 0.06 2.08 .038 .985 
T1 vs. T2, FP, older adol. 0.13 0.07 1.91 .056 1 
T1 vs. T2, FP, adults 0.25 0.09 2.89 .004 .100 
T1 vs. T3, FP, younger adol. 0.09 0.06 1.39 .164 1 

T1 vs. T3, FP, mid-adol. 0.13 0.06 1.99 .046 1 
T1 vs. T3, FP, older adol. 0.08 0.09 0.85 .393 1 
T1 vs. T3, FP, adults 0.17 0.10 1.59 .111 1 
T1 vs. T2, FP, younger adol. vs. mid-adol. -0.08 0.08 -1.01 .314 1 
T1 vs. T2, FP, mid-adol. vs. older adol. -0.01 0.09 -0.13 .899 1 
T1 vs. T2, FP, older adol. vs. adults -0.12 0.11 -1.06 .290 1 
T1 vs. T2, FP, younger adol. vs. adults -0.21 0.10 -2.03 .042 1 
T1 vs. T2, FP, mid-adol. vs. adults -0.13 0.10 -1.24 .217 1 
T1 vs. T2, FP, younger adol. vs. older adol. -0.09 0.09 -1.04 .297 1 
T1 vs. T3, FP, younger adol. vs. mid-adol. -0.04 0.09 -0.43 .666 1 
T1 vs. T3, FP, mid-adol. vs. older adol. 0.05 0.11 0.48 .632 1 
T1 vs. T3, FP, older adol. vs. adults -0.09 0.14 -0.66 .511 1 

T1 vs. T3, FP, younger adol. vs. adults -0.08 0.12 -0.63 .531 1 
T1 vs. T3, FP, mid-adol. vs. adults -0.04 0.12 -0.31 .760 1 
T1 vs. T3, FP, younger adol. vs. older adol. 0.01 0.11 0.12 .903 1 

Note. T1 = test session one; T2 = test session two; T3 = test session three; ND = 
numerosity discrimination training; RR = relational reasoning training; FP = face 
perception training; younger adol. = younger adolescents; mid-adol. = mid-
adolescents; older adol. = older adolescents (* p < .05, ** p < .01, *** p < .001). 
Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 

 

5.3.2. Age-dependent training effecs 

General training effects were significantly moderated by age group for the 

numerosity discrimination task (χ2(12) = 24.64, p = .017), relational reasoning task 

(χ2(12) = 80.13, p < .001), but not for face perception task (χ2(12) = 8.80, p = .720) 

(Figure 5.3). 
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Figure 5.3. Performance by Age Group. Percentage accuracy on the (a) numerosity 

discrimination task, (b) relational reasoning task, and (c) face perception task is 

plotted as a function of test session. Asterisks indicate significant training gains at 

T2 or T3 within age groups (* p < .05. ** p < .005, *** p < .001). Adapted from 

Knoll et al. (2016) with permission from SAGE Publishing. 

The only age groups to improve their performance in numerosity discrimination at 

T2 were older adolescents and adults, who were trained in numerosity 

discrimination (Figure 5.3). These improvements were larger than the changes in 

performance in younger adolescents (Figure 5.4). Only adults showed a 

consolidation effect in numerosity discrimination at T3, and this effect was larger 

than that for mid-adolescents (Figure 5.3; Table 5.2). However, the training 

effects of numerosity discrimination did not remain statistically significant when 

we included covariates for differences in spacing of testing and group size at 

testing. This was particularly the case for the consolidation effects at T3 (see 

section 5.3.4). 
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Figure 5.4. Training Gains Compared between Age Groups. Improvement after 

training (performance at T2 – performance at T1) for the numerosity 

discrimination (ND) task, relational reasoning (RR) task, and face perception (FP) 

task is plotted as a function of age group. Asterisks indicate significant differences 

in training gains at T2 between age groups (* p < .05. ** p < .005, *** p < .001). 

All age groups trained in relational reasoning showed improved relational 

reasoning performance at T2 (Figure 5.3). Improvements were stronger in older 

adolescents and adults than in younger adolescents and mid-adolescents (Figure 

5.4). Improvements were sustained at T3 in all age groups (Table 5.3), but were 

stronger in older adolescents and adults than the younger age groups (Table 5.3). 

None of the contrasts for face perception training was significant (Figure 5.3; 

Figure 5.4; Table 5.4). 
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5.3.3. Transfer effects 

There was no evidence of transfer from relational reasoning training to backward 

digit span or from face perception training to face memory.  

The two-way interaction between time point and training group was not 

significant for the backward digit span task (χ2(4) = 2.54, p = .637), and no 

significant improvements at T2 or T3 were found in the relational reasoning group 

(Table 5.5). There was no effect of age group on transfer to digit span (χ2(12) = 

14.87, p = .249) and none of the age groups trained in relational reasoning 

significantly increased their digit span (Table 5.5). 

For the face memory task, the overall two-way interaction between time point 

and training group was significant (χ2(4) = 12.31, p = .015). However, no significant 

improvements in the face perception training group to T2 or T3 were found (Table 

5.6). There was no effect of age group on transfer to face memory (χ2(12) = 13.31, 

p = .347) and none of the age groups trained in face perception improved 

significantly in face memory (Table 5.6). 
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Table 5.5. Change in Backward Digit Span Performance after Training 

 Estimate SE z p 

T1 vs T2, RR 0.52 0.32 1.61 1 
T1 vs T3, RR 0.84 0.38 2.23 .671 
T1 vs T2, RR vs. FP -0.56 0.46 -1.21 1 
T1 vs T2, RR vs. ND -0.14 0.45 -0.30 1 
T1 vs T3, RR vs. FP 0.19 0.55 0.35 1 
T1 vs T3, RR vs. ND 0.04 0.54 0.07 1 
T1 vs T2, RR, younger adol. 0.10 0.16 0.63 1 
T1 vs T2, RR, mid-adol. 0.13 0.14 0.92 1 
T1 vs T2, RR, older adol. 0.45 0.16 2.91 .094 
T1 vs T2, RR, adults -0.16 0.19 -0.85 1 
T1 vs T3, RR, younger adol. 0.18 0.18 0.99 1 

T1 vs T3, RR, mid-adol. -0.08 0.16 -0.46 1 
T1 vs T3, RR, older adol. 0.48 0.18 2.65 .207 
T1 vs T3, RR, adults 0.25 0.22 1.14 1 
T1 vs T2, RR, younger adol. vs mid-adol. -0.03 0.21 -0.14 1 
T1 vs T2, RR, mid-adol. vs older adol. -0.32 0.21 -1.54 1 
T1 vs T2, RR, older adol. vs adults 0.61 0.25 2.51 .318 
T1 vs T2, RR, younger adol. vs adults 0.26 0.25 1.06 1 
T1 vs T2, RR, mid-adol. vs adults 0.29 0.24 1.23 1 
T1 vs T2, RR, younger adol. vs older adol. -0.35 0.22 -1.59 1 
T1 vs T3, RR, younger adol. vs mid-adol. 0.26 0.25 1.04 1 
T1 vs T3, RR, mid-adol. vs older adol. -0.56 0.25 -2.29 .578 
T1 vs T3, RR, older adol. vs adults 0.23 0.29 0.81 1 

T1 vs T3, RR, younger adol. vs adults -0.07 0.29 -0.25 1 
T1 vs T3, RR, mid-adol. vs adults -0.33 0.28 -1.19 1 
T1 vs T3, RR, younger adol. vs older adol. -0.30 0.26 -1.18 1 

Note. ND = numerosity discrimination training; RR = relational reasoning 
training; FP = face perception training; younger adol. = younger 
adolescents; mid-adol. = mid-adolescents; older adol. = older 
adolescents. Adapted from Knoll et al. (2016) with permission from 
SAGE Publishing. 
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Table 5.6. Change in Cambridge Face Memory Task Performance after Training 

 Estimate SE z p  

T1 vs T2, FP -0.59 0.14 -4.20 <.001 *** 
T1 vs T3, FP -0.78 0.17 -4.53 <.001 *** 
T1 vs T2, FP vs. RR 0.29 0.20 1.48 1  
T1 vs T2, FP vs. ND 0.50 0.19 2.57 .262  
T1 vs T3, FP vs. RR -0.31 0.24 -1.31 1  
T1 vs T3, FP vs. ND -0.17 0.24 -0.71 1  
T1 vs T2, FP, younger adol. -0.29 0.06 -4.84 <.001 *** 
T1 vs T2, FP, mid-adol. -0.21 0.06 -3.56 .010 * 
T1 vs T2, FP, older adol. 0.01 0.07 0.08 1  
T1 vs T2, FP, adults -0.11 0.09 -1.22 1  
T1 vs T3, FP, younger adol. -0.16 0.07 -2.25 .640  

T1 vs T3, FP, mid-adol. -0.29 0.06 -4.52 <.001 *** 
T1 vs T3, FP, older adol. -0.14 0.09 -1.52 1  
T1 vs T3, FP, adults -0.19 0.11 -1.74 1  
T1 vs T2, FP, younger adol. vs mid-adol. -0.08 0.08 -0.94 1  
T1 vs T2, FP, mid-adol. vs older adol. -0.21 0.09 -2.27 .607  
T1 vs T2, FP, older adol. vs adults 0.11 0.11 0.99 1  
T1 vs T2, FP, younger adol. vs adults -0.18 0.11 -1.70 1  
T1 vs T2, FP, mid-adol. vs adults -0.10 0.11 -0.96 1  
T1 vs T2, FP, younger adol. vs older adol. -0.29 0.09 -3.09 .053  
T1 vs T3, FP, younger adol. vs mid-adol. 0.13 0.10 1.33 1  
T1 vs T3, FP, mid-adol. vs older adol. -0.15 0.11 -1.34 1  
T1 vs T3, FP, older adol. vs adults 0.05 0.14 0.34 1  

T1 vs T3, FP, younger adol. vs adults 0.03 0.13 0.20 1  
T1 vs T3, FP, mid-adol. vs adults -0.10 0.13 -0.81 1  
T1 vs T3, FP, younger adol. vs older adol. -0.02 0.12 -0.19 1  

Note. ND = numerosity discrimination training; RR = relational reasoning training; 
FP = face perception training; younger adol. = younger adolescents; mid-adol. = 
mid-adolescents; older adol. = older adolescents (* p < .05, *** p < .001). Adapted 
from Knoll et al. (2016) with permission from SAGE Publishing. 

 

5.3.4. Potential confounds 

We tested whether participants varied by age and training group in a number of 

potential confounds (Table 5.7). There were no significant differences between 

training groups but age groups varied in the number of days they trained, the 

spacing between training and test sessions, number of participants missing at T2 

and T3 and their group size at testing. Missing data was addressed by our main 
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analyses (see section 5.2.10). The other confounds were addressed in three 

supplementary analyses. 

Table 5.7. Confounds with Age 

 Younger 
adolescents 
11.27-13.38 

Mid-
adolescents 
13.39-15.89 

Older 
adolescents 
15.90-18.00 

Adults 
 

18.01-
33.15 

 
 

Test of 
difference 

Days trained  14.90  
(0.48) 

14.74  
(0.44) 

14.62  
(0.45) 

18.83 
(0.54) 

F(3,535)=15.53,  
p < .001)1 

Days between training 2.05  
(0.15) 

2.06  
(0.14) 

2.53  
(0.15) 

1.48  
(0.17) 

F(3,535)=7.25,  
p < .001)2 

Days between T1 and 
T2 

36.72  
(0.69) 

32.90  
(0.68) 

39.69  
(0.74) 

31.93 
(0.89) 

F(3,596)=22.36,  
p < .001)3 

Days between T2 and 
T3 

134.04 
(2.71) 

146.09 
(2.60) 

124.32  
(3.01) 

150.4 
(3.88) 

F(3,390)=14.64,  
p < .001)4 

Group size at testing 14.98  
(1.98) 

14.78  
(1.95) 

23.340  
(2.00) 

7.10  
(8.00) 

(χ2(3) = 12.74,  
p = .005)5 

Split test sessions 34 4 0 0 (χ2(3) = 72.02,  
p < .001)6 

Participants missing at 
T2 

15 9 34 3 (χ2(3) = 132.72,  
p < .001)7 

Participants missing at 
T3 

68 56 86 48 (χ2(3) = 27.93,  
p < .001)8 

Note. Mean with SD in brackets or total N are shown. Adapted from Knoll et al. 
(2016) with permission from SAGE Publishing. 
1 Adults trained more than all other age groups (p < .001). 
2 Adults’ training sessions were spaced more closely than older adolescents’ (p < 
.001). 
3 Only adults’ and mid-adolescents’ test sessions T1 and T2 were similarly spaced, 
all other comparisons differed at p < .05. 
4 T2 and T3 for adults and mid-adolescents, and for older and younger 
adolescents were similarly spaced; all other comparisons differed at p < 0.05. 
5 Group size at testing differed between older and younger adolescents, and 
between older and mid-adolescents at p < .001. 
6 There were more younger adolescents with split test sessions than all other age 
groups (p < .001); all other comparisons were non-significant. 
7 There were more older adolescents missing at T2 than all other age groups (p < 
.05); all other comparisons were non-significant. 
8 There were more older adolescents missing at T3 than mid-adolescents (p = 
.012); all other comparisons were non-significant. 
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Differences between adults and the other age groups in the amount of training 

completed and the spacing between test sessions 

Adults completed more training than all other age groups and completed training 

more quickly than older adolescents (Table 5.7). To check whether this affected 

our main findings, we re-ran the models for the three training tasks (numerosity 

discrimination, relational reasoning, face perception) and excluded adults’ data. 

The results were qualitatively similar, but there were some quantitative changes. 

One interaction and five planned contrasts became non-significant (Table 5.8): 

 Numerosity discrimination: Some of the training effects for numerosity 

discrimination training became non-significant, particularly at T3. 

 Relational reasoning: No changes. 

 Face perception: The interaction between time point and training group 

became non-significant for the face perception task in this analysis (χ2(4) = 

8.52, p = .074, previously p = .014). The training effects in face perception 

lost significance. 

All other reported effects remained the same. 
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Table 5.8. Contrasts that Became Non-Significant after Excluding Adults’ Data 

Original analysis 

Contrast Estimate SE z-ratio p  

T1 vs T2, ND 0.39 0.11 3.38 .019 * 
T1 vs T3, ND vs. FP 0.58 0.18 3.15 .042 * 

T1 vs T3, ND vs. RR 0.63 0.18 3.50 .012 * 

T1 vs T2, FP 0.54 0.14 3.92 .002 ** 

T1 vs T2, FP vs. ND 0.59 0.19 3.16 .042 * 

Supplementary analysis without adults’ data 

Contrast Estimate SE z-ratio p  

T1 vs T2, ND 0.19 0.10 1.83 1  

T1 vs T3, ND vs. FP 0.30 0.16 1.90 1  

T1 vs T3, ND vs. RR 0.30 1.16 1.94 .950  

T1 vs T2, FP 0.29 0.11 2.71 .123  

T1 vs T2, FP vs. ND 0.36 0.15 2.46 .253  

Note. ND = numerosity discrimination training; RR = relational reasoning 
training; FP = face perception training (* p < .05, ** p < .01, *** p < .001). 
Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 

 

Age-group differences in the spacing between test sessions and group sizes at 

testing  

The spacing between test sessions as well as group sizes at testing differed 

because of schools’ timetabling constraints (Table 5.7). 

To check whether this influenced our main results, we re-ran the models for the 

three training tasks (numerosity discrimination, relational reasoning, face 

perception) and included covariates for spacing between test sessions and group 

sizes. 

Our results were qualitatively similar: the overall interactions were still significant 

and the effects retained their directionality. However, there were some 

quantitative changes in that nine planned contrasts that were significant in our 

main analysis, became non-significant after Bonferroni-correction (three without 
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Bonferroni-correction; Table 5.9). This may partly be due to the loss of power 

incurred by including additional covariates. 

 Numerosity discrimination: Some of the training effects for numerosity 

discrimination training became non-significant, particularly at T3. 

 Relational reasoning: Younger and mid-adolescents did not show a training 

effect. 

 Face perception: The overall training effect disappeared. 

All other reported effects remained the same. 

Table 5.9. Contrasts that Became Non-Significant after Including Covariates for 

Group Size and Spacing between Test Sessions 

Note. ND = numerosity discrimination training; RR = relational reasoning training; 
FP = face perception training; younger adol. = younger adolescents; mid-adol. = 
mid-adolescents; older adol. = older adolescents (* p < .05, ** p < .01, *** p < 
.001). Adapted from Knoll et al. (2016) with permission from SAGE Publishing. 

Original analysis 

Contrast Estimate SE z-ratio p  

T1 vs T2, ND 0.39 0.11 3.38 .019 * 
T1 vs T3, ND vs. FP 0.58 0.18 3.15 .042 * 

T1 vs T3, ND vs. RR 0.63 0.18 3.50 .012 * 

T1 vs T2, ND, older adol. 0.20 0.06 3.49 .013 * 

T1 vs T2, ND, adults 0.20 0.05 3.80 .004 ** 

T1 vs T3, ND, adults 0.24 0.07 3.52 .011 * 

T1 vs T3, RR, younger adol. 0.46 0.08 5.57 <.001 *** 

T1 vs T3, RR, mid-adol. 0.28 0.08 3.68 .006 ** 

T1 vs T2, FP 0.54 0.14 3.92 .002 ** 

Supplementary analysis with covariates 

Contrast Estimate SE z-ratio p  

T1 vs T2, ND 0.26 0.14 1.85 1  

T1 vs T3, ND vs. FP 0.54 0.18 2.92 .091  

T1 vs T3, ND vs. RR 0.62 0.18 3.42 .416  

T1 vs T2, ND, older adol. 0.16 0.06 2.6 .244  

T1 vs T2, ND, adults 0.17 0.06 3.08 .053  

T1 vs T3, ND, adults 0.08 0.12 0.63 1  

T1 vs T3, RR, younger adol. 0.40 0.17 2.43 .398  

T1 vs T3, RR, mid-adol. 0.22 0.17 1.34 1  

T1 vs T2, FP 0.35 0.17 2.07 .996  
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Testing group sessions were sometimes split 

Testing was sometimes split over 2 or 3 sessions due to participants’ time-

constraints (Table 5.7). 

To check whether this influenced the main results, we re-ran the models for the 

three training tasks (numerosity discrimination, relational reasoning, face 

perception) and excluded data from individuals whose test sessions were split 

over several days.  

There were minor quantitative changes. Two planned contrasts became non-

significant after Bonferroni-correction only (Table 5.10): 

 Numerosity discrimination: Older adolescents’ training effect was not 

significantly stronger than younger adolescents’ training effects. 

 Relational reasoning: Mid-adolescents’ sustained training effect at T3 was 

no longer significant. 

 Face perception: No changes. 

All other reported effects remained the same. 
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Table 5.10. Contrasts that Became Non-Significant after Excluding Data from 

Individuals whose Test Sessions Were Split over Several Days 

Original analysis 

Contrast Estimate SE z-ratio p  

T1 vs T2, ND, younger adol. vs older adol. -0.26 0.08 -3.2 .036 * 
T1 vs T3, RR, mid-adol. 0.28 0.08 3.68 .006 ** 

Supplementary analysis without split test sessions 

Contrast Estimate SE z-ratio p  

T1 vs T2, ND, younger adol. vs older adol. -0.26 0.09 -2.99 .073  

T1 vs T3, RR, mid-adol. 0.2 0.08 2.66 .201  

Note. ND = numerosity discrimination training; RR = relational reasoning training; 
younger adol. = younger adolescents; mid-adol. = mid-adolescents; older adol. = 
older adolescents (* p < .05, ** p < .01). Adapted from Knoll et al. (2016) with 
permission from SAGE Publishing. 

 

5.4. Discussion 

This training study aimed to investigate cognitive skills relevant to maths 

education and when during adolescence such skills may be best trained. 

Numerosity discrimination training yielded small improvements only in late 

adolescence and adulthood. Relational reasoning training was already effective in 

early adolescence but showed a linear increase in benefit from mid - to late 

adolescence, and then no further improvement into adulthood. Training on face 

perception did not result in different levels of improvement in the different age 

groups. The results suggest that the ability to learn numerosity discrimination and 

especially relational reasoning is greater in late than in early adolescence. 

Overall, participants who were trained in numerosity discrimination improved 

their numerosity discrimination skills more than participants trained in the other 

tasks. However, these effects were age-dependent: Only older adolescents’ and 
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adults’ performance improved significantly after training. Previous studies have 

shown that numerosity discrimination, which is related to mathematics 

performance, peaks at around the age of 30 (Halberda et al., 2012), and that 

approximate number processing can be trained in adulthood (Cappelletti, Pikkat, 

Upstill, Speekenbrink, & Walsh, 2015; DeWind & Brannon, 2012; Park & Brannon, 

2013). However, ours is the first study to compare the training effect between age 

groups.  

Relational reasoning performance was more improved by relational reasoning 

training than by training in other tasks. This training effect was observed in all age 

groups: Relational reasoning training improved relational reasoning task 

performance throughout adolescence and adulthood. This finding supports 

results from previous research in children and adults (Mackey et al., 2011; Mackey 

et al., 2013; Mackey et al., 2012). The training effects survived a 6-month no-

training period. Between age group comparisons showed that the benefit from 

relational reasoning training increased from mid- to late adolescence, after which 

no further benefit was found in adulthood. This age effect was similar to the 

pattern of results observed in the numerosity discrimination task. This finding 

provides further evidence that training during older adolescence results in greater 

improvements in performance than does training during early adolescence. 

The fact that relational reasoning can be trained in all the age groups tested here, 

and that it is particularly amenable to training during late adolescence, does not 

support the notion that matrix reasoning gives an indication of some kind of 

innate, fixed ability. This has implications for education because matrix reasoning 

is commonly used in IQ tests and school entrance exams. 
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Participants who were trained in face perception showed improvements in 

identifying changes in faces and facial features compared with participants 

trained only in numerosity discrimination. There were no age-dependent training 

effects. Previous studies on face perception training in adults have also yielded 

inconsistent results. For example, face cognition speed training was found to be 

effective in adults, whereas face memory training was not (Dolzycka et al., 2014).  

There was no evidence of far-transfer from relational reasoning training to 

working memory performance or from face perception training to face memory 

performance. A small number of studies have demonstrated transfer effects from 

a trained task to a non-trained task, particularly if they are closely related 

(Klingberg, 2010; Thorell, Lindqvist, Bergman Nutley, Bohlin, & Klingberg, 2009). 

Many others have not (Melby-Lervåg & Hulme, 2013; Owen et al., 2010; 

Schwaighofer et al., 2015). Future studies should investigate near- and far-

transfer to a broader range of tasks and over a wide age range to evaluate the 

significance of age-dependent transfer effects for education. 

There are several possible explanations for the increased effects of training in late 

adolescence and adulthood observed here for numerosity discrimination and 

relational reasoning. First, improvements in training with age might be related to 

neurocognitive development. The prefrontal cortex is particularly late developing 

(Tamnes et al., 2017) and may retain high levels of plasticity (Fuhrmann et al., 

2015). Tasks such as relational reasoning, which rely heavily on this region 

(Dumontheil, Houlton, et al., 2010), may therefore be better trained later in 

development. Performance on executive function tasks undergoes gradual 

improvement throughout adolescence (Crone & Dahl, 2012; Zelazo & Carlson, 
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2012), and this might also contribute to improved learning with age. Until 

recently, most studies investigating plasticity have concentrated on early 

childhood and have suggested that the adaptive processes of the nervous system 

are heightened in early development (Kuhl, 2004; Lewis & Maurer, 2005). In 

contrast, studies focusing on sensitive periods in later development are rare. Our 

findings indicate that the acquisition of relational reasoning and numerosity 

discrimination is more efficient in late adolescence than earlier in the teenage 

years, suggesting that plasticity for certain cognitive skills is sustained or even 

heightened at this relatively late stage of development. However, our study did 

not include participants younger than 11 years old, and we therefore cannot 

exclude the possibility that training would be efficient in younger participants. 

Future studies will need to elucidate the neurocognitive mechanisms of cognitive 

training and include younger as well as older age groups to show the trajectory of 

plasticity before and after adolescence.  

Second, improved learning in late adolescence might be due to better strategy 

use. Older adolescents and adults have greater general cognitive abilities than 

young and mid-adolescents (Gur et al., 2012), which might enable them to 

develop and deploy strategies that result in greater training improvements. Of the 

three trained tasks, relational reasoning might be most amenable to improvement 

through enhanced cognitive strategies (Goodwin & Johnson-Laird, 2005).  

Third, the age-dependent training effects may be due to a number of confounding 

variables. The testing and training conditions and behaviour were similar for the 

three adolescent groups, but the adult group was unavoidably different from the 

adolescent groups, in that the adults were self-selected and were paid more for 
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taking part than were the adolescents. The adolescent groups were self-selected 

to a lesser degree in that entire school classes took part. Given these differences, 

as might be expected, adults trained more and completed their training more 

quickly than adolescents. There were also differences between age groups in the 

spacing between test sessions and group sizes at testing. We controlled for these 

possible confounds by including the number of training days as a covariate in our 

main statistical analyses. In addition, supplementary analysis showed that 

excluding the adult data, or including covariates for confounds named above, did 

not result in major differences in results: The interactions remained significant 

and effects were still in the same direction. However, although the training and 

age effects of relational reasoning were remarkably robust in all analyses, the 

effects of numerosity discrimination were weaker and should therefore be 

interpreted with caution. 

In summary, we found that complex cognitive skills relevant to maths education, 

particularly relational reasoning, show larger training effects in late adolescence 

than earlier in adolescence. These findings highlight the importance of late 

adolescence for education and, in contrast to the common assumption that 

‘earlier is better’ for learning, highlight the need to investigate late adolescence as 

a potential window of opportunity for educational interventions. 

While the study presented in this, and the prior two, chapters discusses cognitive 

and socio-cognitive performance across broad age ranges, the final experimental 

chapter of this thesis investigates individual differences in a narrow age group to 

better understand adolescent self-control, its relationship to educational 

predictors, and its neural correlates. 
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6. Chapter 6: The Neurocognitive Correlates of Academic Diligence 

The dual-systems hypothesis of adolescent development predicts reduced self-

control and heightened reward sensitivity during adolescence. Here we tested 

whether the interplay between frontal control and striatal reward systems is 

related to academic diligence, a predictor of educational attainment. We 

combined behavioural, structural MRI, functional MRI and connectivity data to 

assess the neurocognitive correlates of diligence. We recruited adolescent girls (N 

= 40, 14 - 15 years) and obtained behavioural measures of diligence using the 

Academic Diligence Task, which models students’ choices when doing school-work. 

We also collected structural imaging data for each participant, as well as 

functional imaging data during an emotional go-no-go self-control task. As 

predicted by the dual-systems hypothesis, we found that inferior frontal activation 

correlated with diligence. However, frontal and striatal connectivity and structure 

showed no clear relation with diligence. Instead, we found prominent activation of 

temporal areas during the go-no-go task. This highlights the need to investigate 

more extended brain networks in future studies. 

 

6.1. Introduction 

Adolescence is thought to be a time of protracted development of self-control 

and increased reward seeking (Casey et al., 2008; Steinberg, 2008; Steinberg et 

al., 2017). This ’imbalance’ between control and reward-sensitivity during 

adolescence is proposed to originate in the relatively early maturation of the 

subcortical reward system, including the striatum, while frontal control systems 
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still undergo protracted development during adolescence (Casey et al., 2008; Hall, 

1904; Steinberg, 2008) (see pp. 17 - 22). 

This dual-systems hypothesis of frontal self-control and striatal reward systems 

has been one of the most influential models of adolescent development (Shulman 

et al., 2016; Steinberg et al., 2017). Somerville and colleagues (2011), for instance, 

used an emotional go-no-go self-control task to show that inferior frontal 

activation and connectivity correlates with response inhibition in children, 

adolescents and adults. Adolescents, compared to children and adults, also 

showed an increased activity in the ventral striatum, which was linked to 

nonlinear reductions in impulse control to rewarding cues (happy faces), while 

response inhibition to neutral cues (neutral faces) improved linearly with age. This 

was taken as evidence that adolescents find it harder than other age groups to 

resist responding to rewarding social cues (Somerville, Hare, & Casey, 2011).  

While many studies find similarly increased average impulsivity and reduced self-

control in adolescence, compared to other age groups (Braams et al., 2015; Casey 

et al., 2008; Steinberg, 2008), several studies and reviews have highlighted 

pervasive individual differences in the maturation of self-control and fronto-

striatal systems during adolescence (Crone & Dahl, 2012; Mills et al., 2014). Such 

individual differences may affect students’ academic diligence (Duckworth & 

Steinberg, 2015). Academic diligence is the ability to regulate behaviour in the 

service of goals and been shown to be related to educational attainment (Galla et 

al., 2014). It has been proposed that diligence is the product of conflicting 

psychological processes – the exercise of will and the drive to seek immediate 

gratification (Duckworth & Steinberg, 2015). This rationale is similar to that of the 
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dual-systems hypothesis. Therefore, diligence might be hypothesized to correlate 

with fronto-striatal structure and function. 

Here, we investigated this proposal. We took an individual differences approach 

and correlated individual levels of diligence with fronto-striatal structure and 

function. We recruited 40 girls aged 14 - 15 years, as previous studies have 

highlighted that mid-adolescents may find self-control tasks particularly 

challenging (Braams et al., 2015). We chose to recruit a relatively narrow age 

range so as to not confound individual differences in self-control with the on-

going development of executive functions during adolescence (Baum et al., 2017; 

Crone & Steinbeis, 2017).  

We obtained behavioural measures of diligence using the Academic Diligence 

Task, which is designed to model students’ behaviour when doing school-work 

(Galla et al., 2014). In this task, participants can freely allocate their time between 

doing useful but boring maths exercises and playing fun video games. The task has 

been shown to have incremental predictive validity for educational outcomes 

such as Grade Point Averages and performance on standardized maths and 

reading tests (Galla et al., 2014). Questionnaire measures of grit and self-control 

also reliably predicted unique variance in task behaviour, whereas agreeableness, 

a personality trait encompassing compliance, did not, thus demonstrating 

discriminant validity of this task (Galla et al., 2014). 

We investigated how behaviour on the Academic Diligence Task was related to 

structure, function and connectivity of the inferior frontal gyrus and the striatum. 

We collected functional imaging data during an emotional go-no-go task with 
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happy and neutral peer faces as cues (Somerville et al., 2011). We chose a go-no-

go task as an established measure of self-control, which is consistently associated 

with activation in well-defined frontal (inferior frontal gyrus) and striatal (ventral 

and dorsal) regions of interest (Ahmed, Bittencourt-Hewitt, & Sebastian, 2015; 

Simmonds, Pekar, & Mostofsky, 2008; Somerville et al., 2011). Using this task 

allowed us to interpret our findings in relation to previous studies with adults and 

adolescents and to test whether neural activation in the go-no-go task is 

predictive of behaviour on more naturalistic self-control tasks like the Academic 

Diligence Task. We chose the emotional variant of the go-no-go task as 

adolescents have been shown to be particularly responsive to emotional face 

stimuli (Somerville et al., 2011) and in affective contexts in general (Kilford et al., 

2016; Prencipe et al., 2011) 

Based on the dual-systems hypothesis and previous go-no-go studies (Casey et al., 

2008; Somerville et al., 2011; Steinberg, 2008), we predicted that increased 

functional activation of the inferior frontal gyrus and decreased activation of the 

ventral striatum in the go-no-go task would correlate positively with diligence. We 

further predicted that increased diligence would be associated with increased 

connectivity strength between the inferior frontal gyrus and dorsal striatum, as 

well as decreased grey matter volume in the inferior frontal gyrus and the 

striatum. 
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6.2. Methods 

6.2.1. Participants 

42 typically developing girls aged 14 - 15 years were recruited for the purpose of 

this study. We chose to recruit only girls because of differences in pubertal 

development between the sexes during adolescence (Sisk & Foster, 2004). 

Participants attended eight different schools in Greater London and 

Cambridgeshire, UK, and were recruited through advertisements in schools and 

on social media. 28 participants attended state schools and 14 participants 

attended private schools. 38 participants were tested over the summer holidays, 

the remaining four were tested after school. Two participants were excluded from 

all analyses because of excess motion in the scanner (see section 6.2.4) leaving a 

total of 40 participants in the sample (Table 6.1). 

Table 6.1. Participant Characteristics 

 

 

 

 

Note. SES = socio-economic status; IQR = interquartile 
range; IQ was measured by matrix reasoning tests 
(Wechsler, 1999); SES was measured by parental 
education, a robust indicator of SES (Dubow, Boxer, & 
Huesmann, 2009). 

 

 

Age 

range 14.10 - 15.90 

14.99 

0.09 

M 

SE 

 

IQ 

range 85.03 - 122.51 

105.68 

1.30 

M 

SE 

 

SES 

range 2 (GCSE) - 6 (postgraduate degree) 

5 (undergraduate degree) 

4 (A-levels) - 5.5 (university degree) 

median 

IQR 
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The study was carried out in accordance with UCL Research Ethics Guidelines and 

approved by the UCL Research Ethics Committee. Informed consent from parents 

and assent from all participants was obtained. 

 

6.2.2. Behavioural task 

The Academic Diligence Task (ADT; Galla et al., 2014) is designed to mirror real-

world choices students face when completing school-work. The task is available 

for preview and download as freeware: 

https://angeladuckworth.com/research/academic-diligence-task/ The ADT 

consists of a split-screen interface with the choice to complete simple single-digit 

arithmetic problems (Figure 6.1A; e.g. 6 + 1, 5 x 2 etc.) or play games (TetrisTM 

etc.).  

Students were first shown an introduction screen that highlighted the benefits of 

practising maths equations: “New scientific research shows that students who 

practiced maths by doing more subtraction, addition and multiplication problems 

went on to earn higher grades. Even doing simple and easy maths problems can 

make you a better problem solver, which can help you in all areas of your life.” 

Participants then practised arithmetic problems before being instructed to solve 

as many maths problems as quickly and accurately as possible in the main task. 

They were also told that they always had the option to take a break and play 

games: “Remember, you will be able to play games whenever you feel like it, but 

the more problems you do, the better you will become at problem solving”. 

Students then completed three blocks during which they could freely allocate 

https://angeladuckworth.com/research/academic-diligence-task/
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their time between maths and games. After each block, participants were asked 

to rate how bored they felt on a 5-point scale (1 = not at all bored to 5 = very 

bored). After the last block, participants also rated how tempting they found the 

games on a 5-point scale (1 = not at all temping to 5 = very tempting). 

We operationally defined diligence as the percentage of time participants spent 

doing maths. The ADT took 20 minutes in total. 

 

6.2.3. fMRI task 

We used an emotional go-no-go task (Somerville et al., 2011) to measure self-

control (Figure 6.1B). Participants were presented with happy or neutral faces and 

were instructed to respond to one of them by clicking a button (go stimulus, e.g. 

neutral faces) and not respond to the other (no-go stimulus, e.g. happy faces). We 

used adolescent faces as stimuli to reflect the importance of peers in this age 

group (Crone & Dahl, 2012). The stimuli were 18 girls’ faces (happy and neutral 

expression for each) obtained from the NIMH-ChEFS adolescent face stimulus set 

(Coffman et al., 2015).  

Two-thirds of stimuli were go and one-third no-go stimuli.  This weighting was 

used to make the frequent go stimuli the pre-potent response and to increase the 

difficulty of inhibiting responses on infrequent no-go stimuli (Simmonds et al., 

2008). Participants completed go-no-go conditions in which happy faces were the 

frequent go and neutral faces the infrequent no-go stimuli, and conditions in 

which neutral faces were the frequent go and happy faces the infrequent no-go 

stimuli. 



161 
 

Go-no-go blocks were interspersed with never-go blocks during which participants 

passively viewed faces. These blocks were used to control for potential confounds 

(see section 6.2.5). Stimulus frequency in never-go blocks was weighted just as in 

go-no-go blocks, i.e. blocks contained either infrequent happy and frequent 

neutral, or frequent happy and infrequent neutral faces.  

Participants completed one functional run in which two-thirds of stimuli were 

happy faces, and one run in which two-thirds of stimuli were neutral faces. The 

order of the runs was counterbalanced between participants. Each of these runs 

consisted of eight blocks, four of which were go-no-go blocks and four never-go 

blocks. Each block consisted of 12 trials. A fixation cross was presented during a 

jittered (2000 - 7000 ms, M = 4500 ms) inter-stimulus interval. Each functional run 

took 8 min in total. The task was presented and responses were acquired with 

Cogent 2000 (Cogent 2000 Team, 2015) and Matlab (The MathWorks, 2013).  

A recent review highlighted the need to test whether happy stimuli are actually 

rewarding (Foulkes & Blakemore, 2016). We therefore asked participants to rate 

how much they liked looking at each of the stimuli on a scale of -2.5 to +2.5 after 

the scanning session.  
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Figure 6.1. The Academic Diligence Task and Emotional Go-No-Go Task. 

Panel A was adapted from Galla et al. (2014) and shows the Academic 

Diligence Task. Permission to reproduce this figure has been granted by 

Elsevier. Panel B shows the emotional go-no-go task (Somerville et al., 

2011). Face stimuli were obtained from the NIMH-ChEFS adolescent 

face stimulus set (Coffman et al., 2015). 
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6.2.4. Imaging data acquisition and pre-processing 

Imaging data were acquired using Siemens Avanto 1.5T MRI scanner. We ran a 

structural sequence (T1-weighted, 64 slices, TR = 1.17 s, TE = 0.01 s), two 

functional runs (T2-weighted, each run: 520 volumes, 44 slices, TR = 1 s, TE = 

0.045 s) and a fieldmap in two sequences (each sequence: 64 slices, TR = 1.17 

s, TE = 0.01 s). Each participant spent 30 min in the scanner.  

Imaging data were pre-processed and analysed using SPM12 (Wellcome Trust 

Centre for Neuroimaging, 2014). To allow for T1 equilibration effects, the first 

eight volumes of each session were discarded. The EPI images were sinc 

interpolated in time for correction of slice-timing differences. Images were also 

realigned to the first scan by rigid body transformations to correct for head 

movements. The field map scans were pre-processed with the FieldMap toolbox 

(Andersson & Hutton, 2017) and used to correct for magnetic field distortions in 

functional scan.  

Using a Gaussian kernel of full-width-half-maximum of 8 mm, EPI images (voxel 

size of 3×3×3 mm3) and structural images (voxel size 1x1x1 mm3) were co-

registered and normalized to the T1 standard template in Montreal Neurological 

Institute space. Proportional scaling and high-pass temporal filtering with a cut-off 

of 128 s was applied to remove low-frequency drifts in signal.  

Realignment estimates were used to calculate frame-wise displacement (FD) for 

each volume, which is a composite, scalar measure of head-motion across the six 

realignment estimates (Siegel et al., 2014). Volumes with FD > 0.9 mm were 

censored and excluded from further analysis by including a regressor of no 

interest for each censored volume in the general linear model (see section 6.2.5). 
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Scanning sessions with more than 5% of volumes censored or a root mean square 

movement over any run greater than 1.5 mm were excluded from the analysis. 

This applied to the two participants whose data were excluded from all analyses.  

 

6.2.5. Functional analyses 

Following pre-processing, statistical analyses were conducted on correct trials 

using a GLM. Activated voxels for inhibition (no-go > go trials) and emotion (happy 

> neutral trials) were identified using an epoch-related statistical model, 

convolved with a canonical haemodynamic response function and mean-

corrected. The GLM included the main effects of inhibition and emotion, as well 

as their interaction.  

To investigate the effects of inhibition, emotion, and the interaction between the 

two, we first conducted a whole-brain analysis (cluster-level p < .05 false 

discovery rate (FDR) corrected) with an exclusive mask for which we used 

contrasted infrequent never go trials with frequent go trials (p = .001). This mask 

was used to isolate activation due to inhibitory processes and to exclude 

activation due to the absence of a motor response or to viewing an infrequent 

stimulus.  

To investigate the interaction between diligence, inhibition, and emotion we 

extracted activations of a-priori regions of interests (ROIs) using MarsBaR (Brett, 

Anton, Valabregue, & Poline, 2002). The ROIs were defined by Somerville et al. 

(2011) and consisted of 4 mm spheres in the right inferior frontal gyrus (IFG: x = 
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34, y = 26, z = 0), the dorsal striatum (DS: x = 10, y = 16, z = 4), and ventral 

striatum (VS: x = -4, y = 15, z = -13). 

 

6.2.6. Connectivity analyses 

We used psycho-physiological interaction (PPI) analysis to estimate task-related 

changes in connectivity between the IFG and other brain regions (Wellcome Trust 

Centre for Neuroimaging, 2014). The PPI analysis involved extracting the blood-

oxygen-level dependent signal from the IFG ROI source region described above 

and forming the interaction term between the source signal and the eight 

conditions of our task. A second GLM analysis was then carried out that included 

the interaction term, the source region’s extracted signal, the experimental 

factors and the movement regressors as effects of no interest. Participant-specific 

PPI models were run, and contrast images generated for each condition. These 

‘first level’ contrast images were then entered into the full-factorial model to 

assess connectivity of the IFG during inhibition. We carried out a whole-brain 

analysis (p < .05 FDR-corrected) and extracted connectivity strength between the 

IFG and DS using MarsBaR (Brett et al., 2002). 

 

6.2.7. Structural analysis  

We analysed grey matter volumes within each of our ROIs using the CAT12 

toolbox (Dahnke & Gaser, 2016). We estimated total intracranial volume (TIV) 

using a function provided by Ridgway (Ridgway, 2007). TIV was then added a 

covariate into the analysis to correct for differences in head size as recommended 



166 
 

by Peelle and colleagues (Peelle, Cusack, & Henson, 2012). Grey matter volume in 

the IFG, VS and DS ROI were extracted using MarsBaR (Brett et al., 2002). 

 

6.2.8. Regression Models 

To investigate the interaction between diligence and task-dependent activation, 

we implemented LMMs predicting structure, function and connectivity of the IFG, 

VS and DS using the lme4 (Bates et al., 2013) package in R (R Core Team, 2015). 

Significance tests were obtained using an omnibus Type III Wald χ2 test. We built 

separate models for structure, function and connectivity because the structural 

analyses necessarily contained less fixed effects than the other two analyses (i.e. 

no contrasts for inhibition and emotion). For each ROI, we built one model 

predicting functional activation and one model predicting grey matter volumes. 

For connectivity, we built one model predicting connectivity between the IFG and 

DS. The functional models and connectivity model contained inhibition (no-

go/go), emotion (happy/neutral) as orthogonal, Helmert-coded fixed effects. 

Diligence was included as a z-scored fixed effect in all models. We further 

included all possible interactions of the fixed effects. Participant ID and school 

were included as nested random intercepts. These random intercepts were used 

to reflect the repeated-measures design and the clustered nature of participants 

tested. Random slopes were not included in any model because their inclusion led 

to overfitting and non-convergence of models. The models predicting grey matter 

volumes included diligence as a z-scored fixed effect and school only as a random 

effect. Participant was not included as a random effect here because the 

structural models contained no repeated measures. 
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6.3. Results 

6.3.1. Behaviour in the Academic Diligence Task 

As expected, participants performed well on the simple arithmetic tasks 

(percentage accuracy: M = 97.86%; SE = 0.26%). Diligence scores, reflecting 

percentage of time spent doing maths, were high overall (M = 84.14%, SE = 

2.70%) but individual scores ranged from 34.44% to 96.67%. Participants found 

maths moderately boring (ratings: M = 2.71 out of 5, SE = 0.17) and games 

moderately tempting (ratings: M = 2.84 out of 5, SE = 0.20). Diligence did not 

correlate significantly with IQ (r(38) = -0.03, p = .841) or SES (r(31) = -0.06, p = 

.741).  

 

6.3.2. Behaviour in the go-no-go task 

Participants gave happy faces in the emotional go-no-go task positive ratings, 

indicating that they found them rewarding to look at (M = 0.58, SE = 0.04). 

Neutral faces received negative ratings and were therefore not perceived as 

rewarding (M = -0.22, SE = 0.04). The difference between the two ratings was 

significant (t(37) = 6.76, p < .001). False alarm rates in the go-no-go task were low 

and did not significantly differ between happy (M = 6.72%, SE = 1.29%) and 

neutral faces (M = 8.13%, SE = 1.29%), (χ2(1)= 0.96, p = .328). There was, however, 

a difference in participants’ reaction times (t(39) = -3.38, p = .002). Reaction times 

on happy trials (M = 582.83 ms, SE = 22.71 ms) were significantly faster than on 

neutral trials (M = 622.21 ms, SE = 28.16 ms), indicating that participants respond 

faster to rewarding social cues than to neutral ones. 
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In an exploratory analysis, we checked whether reaction times on happy go-no-go 

trials were associated with diligence. Although the direction of the association 

was negative, as would be expected, the correlation was not significant (r(38) = -

0.14, p = .406). 

 

6.3.3. fMRI results 

Whole-brain results showed activation of mainly bilateral temporal clusters during 

inhibition (no-go > go; Table 6.2). No clusters survived cluster-level FDR-correction 

for emotion (happy > neutral) or for the interaction between inhibition and 

emotion. 

Table 6.2. Results of the Cluster-Corrected Whole-Brain Analysis during No-Go 

Compared to Go Trials. 

peak activation z cluster size cluster level 
pFDR 

cluster location 

x y z     

-51 5 -19 4.64 111 .023 L middle temporal gyrus and pole,  
posterior oribitofrontal cortex 

51 -22 2 4.47 97 .023 R middle temporal gyrus 
 

51 8 -25 4.35 87 .023 R inferior, middle temporal gyrus,  
middle temporal pole 

-27 -97 2 4.17 125 .006 L inferior occipital gyrus 

 

ROI analyses showed that there was no main effect of inhibition, or emotion for 

the IFG, VS or DS. There was an interaction between inhibition and emotion for 

the VS but not the IFG or DS (Table 6.3). VS activation was lower for happy no-go 

trials than for happy go trials while the reverse held for neutral trials (Figure 6.2). 

This indicates that the VS was activated more for trials where participants 
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responded to rewarding cues as compared to trials in which they withheld 

responses. 

Diligence correlated significantly with IFG activation but not with activation in the 

DS or VS (Table 6.3). Participants with higher diligence showed higher activation 

of the IFG during the go-no-go task (β = 0.20; Figure 6.3). This effect was not 

moderated by inhibitory load or emotional valence of stimuli, however (Table 

6.3). 

Table 6.3. Results of Models Predicting Functional 

Activation of the IFG, DS and VS 

IFG 

Effect χ2 df p  

inhibition 1.87 1 .172  
emotion 0.17 1 .677  
diligence 4.03 1 .045 * 
inhibition : emotion 0.62 1 .432  
inhibition : diligence 0.05 1 .833  

emotion : diligence 0.67 1 .412  
inhibition : emotion : diligence 0.30 1 .581  

  DS 

Effect χ2 df p  

inhibition 3.07 1 .080  
emotion 0.66 1 .418  
diligence 3.08 1 .079  
inhibition : emotion 1.57 1 .210  
inhibition : diligence 0.18 1 .670  
emotion : diligence 0.84 1 .360  
inhibition : emotion : diligence 1.21 1 .272  

VS 

Effect χ2 df p  

inhibition 0.32 1 .571  
emotion 0.04 1 .845  
diligence 0.25 1 .617  
inhibition : emotion 4.58 1 .032 * 
inhibition : diligence 0.11 1 .745  
emotion : diligence 0.28 1 .594  
inhibition : emotion : diligence 0.55 1 .460  

Note.* p < .05 
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Figure 6.2. Ventral-Striatum Activation during the Emotional Go-No-Go Task. 

Mean predicted activation with standard error bars are shown for responding 

(go) and withholding responses (no-go) to happy and neutral faces. VS = 

ventral striatum (* p < .05).  

 

Figure 6.3. Inferior Frontal Gyrus ROI and Correlation with Diligence. Panel (A) 

shows the ROI of the inferior frontal gyrus (IFG). Panel (B) shows IFG activation 

during the emotional go-no-go task by diligence (proportion of time spent doing 

maths rather than playing games). 

* 

A B 
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6.3.4. Connectivity results 

Connectivity between the IFG and DS was not significantly associated with 

inhibition, emotion diligence, or any of their interactions (Table 6.4). 

Table 6.4. Results of a Model Predicting Connectivity 

between the IFG and DS 

Effect χ2 df p 

inhibition 3.08 1 .079 
emotion 0.00 1 .949 
diligence 0.76 1 .383 
inhibition : emotion 0.01 1 .923 
inhibition : diligence 0.21 1 .645 
emotion : diligence 1.16 1 .282 
inhibition : emotion : diligence 3.73 1 .053 

 

6.3.5. Structural results 

Grey matter volumes did not significantly correlate with diligence for any of our 

three ROIs (IFG: χ2(1) = 0.01, p = .919; DS: χ2(1) = 1.15, p = .285; VS: χ2(1) = 1.15, p 

= .283).  

 

6.4. Discussion 

The current study investigated the neurocognitive correlates of academic 

diligence, a predictor of educational attainment. We assessed whether individual 

differences in diligence during adolescence were related to the interplay between 

inferior frontal self-control and striatal reward systems, as predicted by the dual-

systems hypothesis (Casey et al., 2008; Duckworth & Steinberg, 2015; Steinberg, 

2008). The results were mostly inconsistent with the dual-systems hypothesis. 
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There was a link between inferior frontal activation and diligence. However, there 

was no clear association between diligence and striatal structure and function, or 

diligence and connectivity between frontal and striatal regions. Instead, we found 

widespread activation of temporal areas during the go-no-go task. 

The functional ROI analysis provided some evidence that frontal activation was 

associated with diligence, in line with the dual-systems hypothesis (Duckworth & 

Steinberg, 2015). Activation of the inferior frontal gyrus during the emotional go-

no-go task correlated positively with diligence, although this association was not 

dependent on inhibitory load or emotional valence. This finding is similar to 

resting-state studies linking prefrontal activation to self-control (Gianotti et al., 

2009; Knoch, Gianotti, Baumgartner, & Fehr, 2010) and consistent with evidence 

from previous go-no-go studies showing a positive correlation between right 

inferior frontal activation and self-control (Simmonds et al., 2008; Somerville et 

al., 2011). It also complements lesion and correlational studies in adults showing 

that the personality trait conscientiousness, which is closely related to other 

measures of self-control (Credé et al., 2016), is associated with lateral frontal 

functioning (DeYoung et al., 2010; Forbes et al., 2014).  

However, most predictions made by the dual-systems hypothesis were not 

supported by our data. There was no clear link between diligence and striatal 

functional activation and structure, or between diligence and inferior frontal gyrus 

structure or connectivity. We did find that the ventral striatum showed greater 

activation for trials in which participants responded to happy adolescent faces as 

compared to trials in which they withheld responses to these faces, while the 

pattern of activation was reversed for neutral faces. This indicates that the ventral 
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striatum responded preferentially to trials on which participants were looking out 

for subjectively rewarding social cues. This is in line with previous findings of 

heightened ventral striatum activation in response to rewards in adolescence 

(Braams et al., 2015; Haber, 2016; Somerville et al., 2011; van Leijenhorst et al., 

2010). However, this pattern of striatal activation was not directly related to 

individual differences in diligence in our study.  

A surprising finding was the prominent activation in the temporal cortex during 

the inhibition task: The whole-brain analysis showed that the emotional go-no-go 

recruited mainly temporal regions. While many previous inhibitory control studies 

have mostly focussed on fontal regions (Simmonds et al., 2008; Somerville et al., 

2011), there are now several go-no-go studies in adolescents that have also 

shown prominent temporal activation. MEG (Vara, Pang, Doyle-Thomas, et al., 

2014; Vara, Pang, Vidal, Anagnostou, & Taylor, 2014) and fMRI studies (Tamm, 

Menon, & Reiss, 2002) have found that adolescents recruit temporal regions, 

particularly the right temporal sulcus, more than adults during go-no-go tasks. 

This recruitment of temporal regions has been proposed to support frontal 

functioning during development (Vara, Pang, Doyle-Thomas, et al., 2014). Future 

studies may benefit from probing the interaction between more extended 

networks than just fronto-striatal systems to better understand the development 

of self-control during adolescence. 

It is possible that some of our null findings are due to limitations of our sample or 

the tasks used. There was a range of individual diligence scores (34.44% to 

96.67%), but diligence was high overall in our sample: participants and chose to 

do simple and boring maths over playing games 84.14% of the time on average. It 
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is possible, that larger sample sizes with even more variability in diligence are 

needed to detect a stronger correlation between diligence and brain structure 

and function. This possibility should be investigated in future studies - so far only a 

handful of studies have investigated neural correlates of diligence and related 

constructs and very few have probed striatal functioning (C. A. Myers et al., 2016; 

Nemmi et al., 2016). 

Another limitation of this study is the limited amount of data available on the 

subjective experience of the emotional go-no-go and particularly the Academic 

Diligence Task. We directly probed how participants perceived our emotional go-

no-go stimuli and found evidence that happy, but not neutral, faces were 

perceived as rewarding. The Academic Diligence Task also included questionnaire 

items probing participants’ boredom during maths and temptation by games: our 

participants found maths relatively boring and games relatively tempting. 

Similarly, an earlier, larger validation study by Galla and colleagues (2014) used 

multilevel growth curve models to show that boredom during the Academic 

Diligence Task increased over time if participants chose maths, but not if they 

chose games. They also found that higher levels of boredom and temptation were 

linked to lower diligence. The Academic Diligence Task could be improved in 

future studies by including the same questionnaire items (temptation and 

boredom) for both maths and games to allow for a more direct comparison. 

Nonetheless, the evidence available to date suggests that the task is likely to 

capture every-day conflicts between the wish to pursue educational goals and the 

temptation to engage in more pleasurable distractions.  
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Despite these limitations, our study has some tentative implications for the study 

of adolescent self-control. It echoes previous theoretical work highlighting the 

limited ability of the dual-systems framework to explain the wide range of 

adolescent self-control observed in naturalistic settings (Crone & Dahl, 2012; 

Pfeifer & Allen, 2012). In conjunction with previous research, it also highlights that 

it may be useful to move away from the duality of fronto-striatal systems and 

instead explore more extended brain networks (Baum et al., 2017; Vara, Pang, 

Vidal, et al., 2014). More avenues for future research, as well as wider implication 

of this study, and the other studies in this thesis, is discussed in the next chapter, 

the overall discussion. 
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7. Chapter 7: Discussion 6 

There is a tension between the wide-spread assumption that earlier is always 

better for learning and a growing body of research highlighting that the human 

brain and mind undergoes changes past childhood. Previous research showed that 

adolescence in particular is characterized by extensive changes in brain structure, 

paralleled by protracted development of cognitive functions relevant to education. 

These changes in brain structure have been linked to the protracted development 

of cognitive and socio-cognitive skills and have led to the suggestion that 

adolescence is a period of relatively high levels of plasticity, during which the 

environment has a heightened impact on brain development and behaviour. This 

thesis investigated this proposition in three behavioural studies and one 

neuroimaging study. The findings of each of these studies will be summarised in 

this chapter and synthesized in terms of their implications for policy and practise. 

Methodological limitations will be discussed, as well as directions for future 

research.  

                                                      
6 Parts of this chapter have been published as: 
 
Fuhrmann, D., Knoll, L.J., Blakemore, S.-.J. (2015). Adolescence as a sensitive period of brain 
development. Trends in Cognitive Sciences, 19 (10), 558-566. doi:10.1016/j.tics.2015.07.008 
 
Fuhrmann, D.*, Knoll, L.J.*, Sakhardande, A., Stamp, F., Speekenbrink, M. & Blakemore, S-J. (2016). 
A window of opportunity for cognitive training in adolescence. Psychological Science, 27(12), 1620-
1631. doi: 10.1177/0956797616671327 *Joint first authors. 

Fuhrmann, D., Knoll, L.J., Sakhardande, A., Speekenbrink, M., Cohen Kadosh, K. & Blakemore, S-J. 
(2016). Perception and recognition of faces in adolescence. Scientific Reports, 6(33497), 
doi:10.1038/srep33497 

Fuhrmann, D. Knoll, L.J., Sakhardande, A. & Blakemore, S-J. (2016). When to teach what: Are there 
sensitive periods for learning in adolescence? Nuffield Foundation, London, UK. URL: 
http://www.nuffieldfoundation.org/sites/default/files/files/Blakemore%20%20Nuffield%20Main%
20Report%2012%20Jan%202017%20Final.pdf 
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7.1. Summary of Findings 

The research presented in the current thesis investigated four main research 

questions: (I) Are there age-related differences in face cognition between 

adolescence and adulthood?; (II) Do the effects of social exclusion on cognitive 

performance differ between age groups?; (III) Do some age groups benefit more 

from cognitive training than others?; and (IV) What are the neurocognitive 

correlates of academic diligence? Each of these questions is addressed below. 

 

7.1.1. Are there age-related differences in face cognition between adolescence 

and adulthood? 

Face cognition is a fundamental building block of social cognition. Faces are a pre-

eminent social signal involved in almost all aspects of social cognition and 

processed by a distributed neural network overlapping substantively with 

networks for other aspects of social cognition (Blakemore, 2012; Blakemore & 

Mills, 2014; Scherf et al., 2012). Thus, the development of face cognition between 

childhood and adulthood has been proposed to serve as a model for broader 

developments in sociality during adolescence (Scherf et al., 2012).  

Despite the growing interest in adolescent face cognition, most studies on the 

development of face cognition abilities have still focussed on childhood, and it has 

been unclear whether there are still substantive changes in face cognition during 

adolescence. Early maturation accounts contend that face cognition abilities are 

mature by 3 - 5 years of age (Crookes & McKone, 2009; McKone et al., 2012). Late 

maturation accounts, in contrast, propose that at some aspects of face cognition 
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are not mature until at least 10 years (Cohen Kadosh, Johnson, Dick, et al., 2013; 

Mondloch et al., 2002). 

In Chapter 3, we measured face memory and face perception, two core face 

cognition abilities to probe whether there are age-related differences in face 

cognition past childhood. We recruited 661 participants (395 females) and split 

them into four age groups: younger adolescents (11.27 - 13.38 years), mid-

adolescents (13.39 - 15.89 years), older adolescents (15.90 - 18.00 years), and 

adults (18.01 - 33.15 years). 

We showed that younger adolescents’ and mid-adolescents’ (11.27 to 15.89 

years) face memory and face perception abilities were less proficient than those 

of older adolescents and adults (15.90 and over). General cognitive ability 

predicted face cognition scores but showed a different developmental trajectory 

with continuous improvements throughout adolescence and into adulthood. 

Thus, face cognition abilities mature relatively late, at around 16 years of age, and 

this protracted development is at least partly independent of general cognitive 

ability.  

The improvements in the ability to memorize, recognize and perceive faces during 

adolescence may be related to broader changes in adolescents’ social lives. 

Adolescents spend less time supervised by parents and caregivers and 

increasingly engage with peers (Lam et al., 2014). This may lead to more exposure 

to novel faces than earlier in life. New social roles in adolescence may also 

increase the focus on facial information such as attractiveness and status (Scherf 

et al., 2012). This may, in turn, provide the environmental enrichment necessary 
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for becoming a face expert (Bukach et al., 2006). Whether the maturation of face 

cognition is indeed driven by environmental inputs remains to be tested in future 

intervention studies examining age-related differences in learning face 

recognition, identity, expression and gaze perception. More work is also needed 

to establish to what extend developmental trends in face cognition model 

changes in social cognition in general. Such studies will help us better understand 

whether adolescence is a sensitive period for social development, during which 

time the brain is particularly susceptible to changes in socio-cultural information 

(Andersen & Teicher, 2008; Blakemore & Mills, 2014). 

 

7.1.2. Do the effects of social exclusion on cognitive performance differ between 

age groups? 

If adolescence is indeed a sensitive period of social development, we would 

expect social stress to have a particularly detrimental effect on adolescents 

(Buwalda et al., 2011; Fuhrmann et al., 2015). Most studies that have 

experimentally investigated social stress in adolescence have used animal models. 

Such studies have shown that adolescent rats show reduced recovery from defeat 

stress compared to adult rats, for instance (Ver Hoeve et al., 2013). Rodent 

studies have also highlighted that social isolation may have similarly detrimental 

effects as direct confrontation during adolescence. Social isolation during 

adolescence (but not earlier or later) was shown to have irreversible effects on 

exploratory behaviour in rats (Einon & Morgan, 1977). However, little 

experimental evidence is available for the effects of social isolation and exclusion 

human adolescence. 
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Chapter 4 investigated and compared the effects of cyber-ostracism on cognitive 

performance in 99 females in three age groups: young adolescents (10.1 - 14.0 

years), mid-adolescents (14.3 - 17.9 years) and adults (18.3 - 38.1 years). 

Participants in all age groups completed verbal n-back and visuospatial dot-matrix 

working memory tasks, as well as a mood questionnaire, after social inclusion and 

social exclusion in the online ball-tossing game Cyberball.  

All age groups showed a similar and significant drop in mood after Cyberball 

exclusion but the effect of social exclusion on cognitive performance was age-

dependent. Only young adolescents (aged 10.1 - 14.0 years) showed a reduction 

in performance on n-back and visuo-spatial working memory tasks after social 

exclusion. In contrast, performance did not differ between social inclusion and 

exclusion for mid-adolescents and adults (aged 14.3 and over).  

These results are relevant to understanding the effects of ostracism in schools. 

They suggest that experiencing social exclusion may place a particular burden on 

young adolescents, compared to older age groups. Exclusion reduces cognitive 

performance, which, in turn, may impact educational achievement (Nakamoto & 

Schwartz, 2010; Rigby, 2000; Sharp, 1995). This underlines the need to develop 

effective ostracism interventions in schools and to consider age differences in 

response to social exclusion in the design and timing of interventions. As the 

study did not include any younger age groups, however, we do not yet know 

whether sensitivity to social exclusion peaks in early adolescence or instead 

decreases continuously from early childhood. This question needs to be 

addressed by future cross-sectional and longitudinal studies. 
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7.1.3. Do some age groups benefit more from cognitive training than others? 

If adolescence is a period of high levels of plasticity, as suggested by the previous 

two studies, we would not only expect stress to have detrimental effects during 

adolescence but also predict that enrichment should have positive effects during 

this time of life (Fuhrmann et al., 2015). However, education policies often focus 

on early education as a key window for interventions (Heckman, 2000, 2006). 

Much less is known about the effect of enrichment in older age groups. In Chapter 

5, we used a cognitive training intervention to investigate the possibility that 

cognitive skills related to maths performance in schools are more efficiently 

acquired later in development. 

A total of 663 adolescents and adults aged 11 - 33 years were trained in different 

cognitive tasks for 10 minutes a day, for up to 20 days. Participants were tested 

on a range of cognitive tasks before and after the training, and several months 

after training had ceased. They were assigned at random to one of three training 

groups. One training group was trained to discriminate small from large 

numerosities, an important skill, as we often have to compare and judge 

quantities in our everyday life (Halberda & Feigenson, 2008). The second group 

was trained in relational reasoning, which is the ability to detect abstract 

relationships between groups of items and is related to fluid intelligence (Mackey 

et al., 2011). Both numerosity discrimination and relational reasoning correlate 

with mathematics performance (Halberda et al., 2008; Knuth, Kalish, Ellis, 

Williams, & Felton, 2012). The third group was trained in face perception, the 

control task. As discussed in section 7.1.1, face perception also improves during 

adolescence and may be susceptible to training. However, it was chosen as a 
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control task as it relies on different cognitive processes and neural circuits than 

those involved in numerosity discrimination and relational reasoning (Cantlon, 

Brannon, Carter, & Pelphrey, 2006; Cohen Kadosh, Johnson, Henson, et al., 2013; 

Mackey, 2012).  

Training in the numerosity discrimination task yielded some improvement in 

performance, but only in late adolescence and adulthood (aged 15.90 and over). 

All age groups improved when trained in relational reasoning, but older 

adolescents and adults showed the highest training benefits (again, aged 15.90 

and over). Face perception showed some training effects overall but no age-

related differences emerged. There was no evidence of far-transfer from 

relational reasoning training to working memory performance or from face 

perception training to face memory performance. 

These findings suggest that skills related to mathematics are more efficiently 

learned in late adolescence and adulthood than earlier in adolescence. This 

highlights the relevance of this relatively late developmental stage for learning 

and, in contrast to the common assumption that ‘earlier is better’ for learning, 

underlines the need to investigate late adolescence as a potential window of 

opportunity for educational interventions. As the study did not include older 

adults, no conclusions can be drawn about the offset of sensitive periods, i.e. we 

do not know at what age training effects might start to reduce again. We also 

cannot be sure what the mechanisms of developmental increases in training 

effects are (e.g. plasticity, strategy learning or skill learning). These questions will 

need to be elucidated by future studies combining cognitive training with 

neuroimaging. 



183 
 

7.1.4. What are the neurocognitive correlates of academic diligence? 

While the previous three studies compared average behaviour of adolescent and 

adult age groups, the final study of this thesis took a closer look at a relatively 

narrow age range (14 to 15 years) and sought to investigate individual differences 

in adolescent brain structure and function. 

Adolescence is often described as a time of protracted development of self-

control and increased reward seeking (Casey et al., 2008; Steinberg, 2008; 

Steinberg et al., 2017). The dual-systems hypothesis holds that this 

developmental ’imbalance’ originates in the relative maturity of subcortical 

reward systems compared to late-developing frontal control systems (Casey et al., 

2008; Hall, 1904; Steinberg, 2008). Most dual-systems studies have focussed on 

explaining increased risk-taking behaviours in adolescence (Casey et al., 2008; 

Steinberg, 2008; van den Bos et al., 2015). However, reward processing and self-

control are also known to affect many other phenomena including educational 

outcomes (Duckworth & Steinberg, 2015; Steinbeis & Crone, 2016). 

In Chapter 6, we investigated whether the interplay between inferior frontal 

control and striatal reward systems is related to individual differences in academic 

diligence, the ability to pursue long-term educational goals, and a predictor of 

educational attainment (Galla et al., 2014). We combined behavioural data, 

structural MRI and functional MRI during an emotional-go-no-go self-control task 

to assess neurocognitive correlates of diligence in 40 girls aged 14 - 15.  

The results only partially supported the dual-systems hypothesis by showing a link 

between inferior frontal activation and diligence. However, we found no clear 
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association between diligence and inferior frontal structure or striatal function 

and structure. Instead, we found prominent activation of temporal areas during 

the go-no-go task. It is possible that some of our null-findings are due to 

limitations of our sample. There was a range of individual diligence scores (34.44% 

to 96.67%), but diligence was high overall in our sample: participants chose to do 

simple and boring maths over playing games 84.14% of the time on average. It is 

possible that larger sample sizes with even more variability in diligence are 

needed to detect a stronger correlation between diligence and brain structure 

and function. This possibility will have to be investigated by future studies - so far 

there have only been a handful of studies investigating neural correlates of 

diligence and related constructs and very few have probed striatal functioning 

(Myers et al., 2016; Nemmi et al., 2016). 

Nonetheless, our findings echo previous studies and reviews highlighting the 

limited ability of the dual-systems framework to explain the wide range of 

adolescent self-control observed in naturalistic settings (Crone & Dahl, 2012; 

Pfeifer & Allen, 2012). In conjunction with previous research, it also highlights that 

it may be useful to move away from the focus on the duality of fronto-striatal 

systems and instead explore more extended brain networks, including temporal 

areas (Baum et al., 2017; Vara, Pang, Doyle-Thomas, et al., 2014; Vara, Pang, 

Vidal, et al., 2014). 
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7.2. Implications for Policy and Practise 

The findings presented in this thesis highlight some facets of adolescent 

development that may inform educational policy and practise. This section 

discusses implications of this research in the context of previous theoretical and 

empirical work and highlights five areas of adolescent development particularly 

relevant to education: (I) protracted social development; (II) malleability of 

cognitive ability; (III) enhanced learning of complex cognitive skills; (IV) limited 

transfer from cognitive training; and (V) individual differences. 

 

7.2.1. Adolescence as a key period for social development 

Chapter 3 showed that even very fundamental aspects of social cognition such as 

face identity perception and recognition undergo protracted development during 

adolescence and do not mature until around 16 years of age. This finding mirrors 

a growing body of work from many labs around the world, identifying adolescence 

as a time of substantial development in almost all aspects of social cognition 

including mentalizing (Dumontheil, Apperly, et al., 2010), processing social 

emotions like embarrassment or guilt (Burnett, Bird, Moll, Frith, & Blakemore, 

2009; Goddings et al., 2012), peer influence (Blakemore, 2012; Casey, 2013; 

Crone & Dahl, 2012; Kilford et al., 2016; Steinberg, 2008), and sharing (Meuwese, 

Crone, de Rooij, & Guroglu, 2015; Steinbeis & Singer, 2013). 

These changes in social cognition highlight that adolescence is a key time for 

social development (Blakemore & Mills, 2014). As such, social stress and bullying 

during adolescence can have lasting effects on mental health and educational 
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attainment (Blakemore & Mills, 2014; Fuhrmann et al., 2015). Bullying is relatively 

common in childhood and adolescence: about 34% of schoolchildren are bullied. 

Victims are often perpetrators themselves and only about 42% of schoolchildren 

are neither bully nor are bullied themselves (Forero, McLellan, Rissel, & Bauman, 

1999). Bullying is bi-directionally associated with severe and long-lasting effects 

on mental health (Arseneault, Bowes, & Shakoor, 2009). Children with depressive 

symptoms are more likely to be bullied (Arseneault et al., 2006) and chronically 

bullied children are more likely to have suicidal ideations and depression up to 17 

years later - particularly among girls (Arseneault et al., 2009; Klomek et al., 2009). 

Correlational studies have linked bullying to reduced educational attainment, as 

well as mental health problems (Rigby, 2000; Sharp, 1995; Sigurdson, Undheim, 

Wallander, Lydersen, & Sund, 2015).  

Chapter 4 built on previous research and provided experimental evidence that 

social exclusion, a common form of bullying (J. Wang, Iannotti, Luk, & Nansel, 

2010), can have detrimental effects on cognitive performance in adolescence, 

particularly before the age of 14. 

This work highlights the importance of adolescence for social development and 

underlines the need for adequate, age-appropriate social and mental health 

support in schools so that schools can foster an enriching, supportive learning 

environment for adolescents. School-based bullying interventions are usually 

relatively effective. A meta-analysis found that bullying decreased by 20 - 23% on 

average after such interventions (Ttofi & Farrington, 2011). Programs involving 

parents (e.g. parent training) were found to be particularly effective while 

interventions involving peers (e.g. peer mentoring) were found to be counter-
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productive and led to an increase in victimization (but see Paluck, Shepherd, & 

Aronow, 2016). 

 

7.2.2. Cognitive ability is not fixed 

The study presented in Chapter 5, as well as previous work by others (Crone et al., 

2009; Dumontheil, Houlton, et al., 2010; Li et al., 2004; Mackey et al., 2011; 

Mackey et al., 2013), showed that reasoning is not fixed after childhood. In a 

lifespan study, Li and colleagues showed that reasoning scores increase up until 

the mid-twenties and start to decline only in the mid-thirties (Li et al., 2004). 

Reasoning has also been found to be highly susceptible to training. Mackey and 

colleagues (2010) showed that children aged 7 - 9 from low socio-economic 

background increase their IQ by 10 points after 8 weeks of reasoning training. In 

2013, the same group provided evidence that reasoning training induces plasticity 

by showing that 70 h of reasoning training in adults (mean age: 22) altered brain 

connectivity at rest and strengthened fronto-parietal and parietal-striatal 

connections (Mackey et al., 2013). The research presented in Chapter 5 added to 

this previous evidence by showing that reasoning training is effective throughout 

adolescence and early adulthood; and that the effects of reasoning training even 

increase over this age range. 

This is relevant to education. Matrix reasoning tests, like those used in the training 

study in Chapter 5, were originally designed to measure aptitude and are often a 

part of IQ and fluid intelligence tests (Wechsler, 1999), as well as school-entrance 

exams (Spring, 2016). However, the findings from this area of research do not 



188 
 

support the notion that matrix reasoning gives an indication of some kind of 

innate, fixed ability (Jensen, 1969). Instead, they highlight that reasoning is a late-

developing, highly malleable skill. This calls into question whether IQ tests can be 

‘tutor-proof’ and thus suitable for school entry exams.  

 

7.2.3. Earlier is not always better for learning 

At present, education policy tends to emphasize the importance of investing in 

early-childhood intervention (Allen & Smith, 2009; Barnett, 2011; Heckman, 2000, 

2006). Plasticity is undoubtedly high early in development, making the early 

environment of primary importance for the development of many aspects of 

cognition, including visual or language development (Kuhl, 2010; Maurer & Lewis, 

2012). However, previous research has called into question the rather extreme 

conclusions that have sometimes been drawn from research into early sensitive 

periods, particularly the ‘myth of three’ - the idea that the first three years of life 

are the critical period for learning after which educational trajectories are more or 

less fixed (Howard-Jones et al., 2012; Wenger & Lövdén, 2016).  

Numerous studies have shown that complex cognitive skills relevant to education, 

including reasoning, numeracy and cognitive control, continue to develop into 

adolescence and adulthood (Baltes et al., 2006; Baum et al., 2017; Halberda et al., 

2012; Li et al., 2004; Murre et al., 2013). There is also good evidence that these 

skills can be trained into adulthood and even old age (Baltes et al., 2006; Mackey, 

2012; Mackey et al., 2011; Melby-Lervåg & Hulme, 2013). Additionally, the study 

presented in Chapter 5 showed that both reasoning and numeracy might be 
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trained more effectively relatively late in development, from 15 onwards, than 

earlier in adolescence. 

These findings may explain why some early childhood interventions have had 

limited success (Barnett, 2011; Howard-Jones et al., 2012; Leonard, 2000; Wenger 

& Lövdén, 2016). For instance, ‘hot-housing’, i.e. attempts to teach young children 

complex cognitive skills like reading and arithmetic, have not been very effective 

(Barnett, 2011; Wenger & Lövdén, 2016). It is likely that attention and working 

memory have to be sufficiently developed before complex cognitive skills relying 

heavily on these executive functions can be learned (Livesey & Dawson, 1981; 

Thomas, 2012). Therefore reading and complex arithmetic may simply not be 

within the ‘zone of proximal development’ (Vygotsky, 1978) of very young 

children. Educational efforts for young children may be more effective when 

focussed on foundational language, motor and social skills, which will help 

children acquire more complex cognitive skills later in development (Kuhl, 2004; 

Thomas, 2012).   

Our findings support previous calls and efforts to invest in life-long learning 

(Knowland & Thomas, 2014; Thomas, 2008; Wenger & Lövdén, 2016). Early 

investment may be necessary to create educational potential, but without 

continued educational investment throughout childhood, adolescence and 

adulthood, learners may not be able to realize this potential (Knowland & 

Thomas, 2014; Livesey & Dawson, 1981). Programs facilitating the acquisition of 

cognitive skills like literacy past childhood may also be critical for improving 

quality of life for disadvantaged adolescents and adults, particularly in the 

developing world (Deshpande, Desrochers, Ksoll, & Shonchoy, 2017). In ageing 
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Western countries, lifelong education is becoming increasingly important for 

national economies as well (Knowland & Thomas, 2014; The Royal Society, 2011). 

 

7.2.4. Transfer effects are limited 

There was no evidence of transfer from cognitive training to untrained cognitive 

tasks in the training study presented in Chapter 5. Training on relational 

reasoning, for example, had no effect on the other skills tested, including working 

memory, even though these skills are known to be related (Kane et al., 2004). This 

mirrors much of the cognitive training literature, which shows that although 

transfer to closely-related skills (near-transfer, e.g. from one working memory 

task to another) is relatively robust (Schwaighofer et al., 2015), cognitive training 

often does not generalize to other, less closely related cognitive domains or 

classroom behaviour (far-transfer;  Dunning, Holmes, & Gathercole, 2013; Melby-

Lervåg & Hulme, 2013; Owen et al., 2010; Schwaighofer et al., 2015).  

Because of this lack of robust evidence of generalizability, commercial cognitive 

training programs available may not be useful in the classroom yet (Goswami, 

2006; Owen et al., 2010). When using cognitive training as a tool for education or 

interventions, far-transfer is important. The aim of practitioners is usually not only 

to improve performance on specific tasks, but to train generalizable skills (see 

Chapter 5). Future research will therefore need to invest in improving the efficacy 

of cognitive training interventions. 
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7.2.5. Individual differences matter 

The extent of variability in brain and cognitive development between people of 

the same age is substantial (Baltes et al., 2006; Mills et al., 2014; Mills & Tamnes, 

2014). This variability is sometimes as large, or larger than, variability between 

age groups (Figure 7.1). 

Adolescence has been proposed to be a time of heightened inter-individual 

variability, particularly in terms of self-control (Crone & Dahl, 2012) and in the 

maturation of the brain structures sub-serving it (Mills et al., 2014). On average, 

adolescents may be hyper-sensitive to rewards (van Leijenhorst et al., 2010) and 

more impulsive than other age groups (Somerville et al., 2011). At the level of the 

individual, however, many adolescents show remarkable levels of self-control 

(Crone & Dahl, 2012; Galla et al., 2014). Chapter 6, for instance, highlighted that 

many adolescents are able to diligently complete a tedious academic task. This 

highlights the need to refine our understanding of the neurocognitive 

mechanisms of adolescent self-control and to develop alternatives to the dual 

systems hypotheses. Promising avenues include exploring whether self-control 

consist of separable sub-components, which may develop at different rates 

(Crone & Steinbeis, 2017). Future research should also develop candidate 

neurocognitive mechanisms for developmental increases in self-control other 

than fronto-striatal systems. Probing changes in modularity of extended neural 

networks may be a particularly promising line of research here (Baum et al., 

2017). 

More generally, this evidence highlights that most of the effects discussed in this 

thesis are likely moderated by individual differences. Training effects may differ 
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systematically between people, with motivation and diligence predicting training 

gains (Jaeggi, Buschkuehl, Shah, & Jonides, 2014). Reactions to stress will also 

show variability between adolescents. Friendship support, for instance, has been 

shown to increase resilience to stress (van Harmelen et al., 2017). The individual 

differences approach to development thus highlights exciting avenues for 

extending and refining our understanding of adolescence in future research 

(Brown, 2017; Kievit et al., 2017). 
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Figure 7.1. Individual Differences in Brain Maturation. Measures of brain structure 

of 886 participants aged 3 to 20 (reprinted with permission from Elsevier from 

Brown et al., 2012). The four panels show examples of different measures of brain 

morphology: total cortical area in mm2 by thousands (upper left), mean cortical 

thickness in mm (lower left), volume of the left hippocampus in mm3 by 

thousands (upper right), and volume of the right thalamus in cubic mm3 by 

thousands (lower right). A spline‐fit curve (solid line) with 95% confidence 
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intervals (dashed lines) is shown. Larger circles represent female participants, 

smaller circles male participants. Different sites and scanners are colour-coded. 

 

7.2.6. Specificity of developmental trajectories 

Based on work on plasticity in early childhood (Kuhl, 2004; Lewis & Maurer, 2005), 

and differences in the timing of maturation of different brain regions during 

adolescence (Tamnes et al., 2013), we predicted in Chapter 1.3.1 in the 

introduction that different cognitive domains should show variation in the on- and 

offset of heightened sensitivity to environmental input. The experimental findings 

from this thesis are consistent with this proposal. 

Chapter 3 showed that developmental trajectories show similarities within 

domains and differences between domains. Both face memory and face 

perception, as core components of face cognition, mature at around 16 years of 

age, while reasoning, a skill unrelated to face cognition, shows a divergent 

developmental trajectory and continues to mature into adulthood. 

Chapter 4 and 5 highlighted that sensitivity to negative environmental input and 

positive environmental input might differ, too. Chapter 4 showed that cognitive 

performance was particularly vulnerable to disruption by social exclusion during 

early adolescence (between ages 10 and 14), but not later in development. In 

contrast, Chapter 5 showed that environmental enrichment, in the form of 

cognitive training, was more effective in older age groups (above the age of 16) 

compared to younger age groups. This effect in and of itself showed specificity. 

Heightened learning in older age groups was restricted to maths-related skills 
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(numerosity discrimination and relational reasoning) and was not evident for face 

perception. 

This highlights the notion that interventions need to carefully consider the specific 

developmental trajectories and periods of sensitivity of the cognitive skill they are 

interested in targeting (e.g. working memory, reasoning, self-control). Previous 

research on learning and plasticity of other skills may not be sufficiently 

informative of when in development interventions may be most effective. 

 

7.3. Methodological Considerations 

Apart from the specific methodological limitations associated with each study 

discussed in the experimental chapters and the summary of findings above, there 

are some general limitations of the experimental chapters of thesis that will need 

to be addressed by future studies. These limitations include the following issues: 

(I) the use of cross-sectional designs; (II) possible gender differences; (III) the need 

for naturalistic measures; and (IV) the need to investigate broader age ranges. 

 

7.3.1. Cross-sectional versus longitudinal designs 

As highlighted in the Chapter 3, the methods chapter, the choice of cross-

sectional versus longitudinal designs affects the kind of conclusions we can draw 

from our data. While the training study presented in Chapter 5 had longitudinal 

components, Chapter 3, 4, and 6 were purely cross-sectional. We chose cross-

sectional designs because their cost- and time-effectiveness. It should be noted, 
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however, that our ability to describe developmental change in cross-sectional 

studies is limited due to inter-individual variability (Grimm, Davoudzadeh, & Ram, 

2017; Little, 2013). 

The study on age-related differences in face cognition presented in Chapter 3, in 

particular, should be seen as a basis for designing future longitudinal studies that 

aim to investigate developmental change within the same set or subset of people. 

Similarly, longitudinal studies observing developmental changes in mean and 

variance of diligence (see Chapter 6) would be highly informative about 

developmental trends. 

 

7.3.2. Gender differences 

It is conventional for smaller developmental behavioural and neuroimaging 

studies to include only one gender. The studies presented in Chapter 4 and 6 of 

this thesis, for instance, included only girls. The main reason for this were the 

well-established differences in pubertal onset between the sexes (Sisk & Foster, 

2004). 

It should be noted, however, that there is relatively little reliable evidence of 

gender differences in cognition. Chapter 4 discussed and replicated gender-

differences for one of the few cognitive domains that is known to show robust 

differences: face cognition (Hyde, 2016; Sommer et al., 2013). For many other 

cognitive functions, including verbal and mathematical skills, gender differences 

are not thought to be reliable (Hyde, 2016).  
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For brain development, too, there are only few clear sex-related differences, the 

main being that males have larger overall brain volumes than females (Giedd et 

al., 1999; Lenroot et al., 2007; Mills et al., 2016). Other differences reported by 

earlier studies (Giedd et al., 1999; Lenroot et al., 2007) have not replicated in 

recent, large-scale studies (Mills et al., 2016). 

There are, however, well-established differences in the prevalence of different 

mental illnesses. Females have a higher prevalence of mood and anxiety disorders 

than males, for instance (Steel et al., 2014). It is therefore possible that the 

findings reported in Chapter 4 do not generalize to males: adolescent girls may be 

more susceptible to some of the negative effects of social stress (e.g. be more 

likely to ruminate or become anxious) than boys (see Hawes et al., 2012). We also 

cannot rule out that there may be gender differences in levels or developmental 

patterns of diligence (see Eskreis-Winkler, Shulman, Beal, & Duckworth, 2014) for 

some mixed evidence of gender differences in a diligence-related construct; 

Chapter 6). These possible gender differences will need to be investigated 

systematically by future studies with larger sample sizes. 

 

7.3.3. The need for real-life measures 

For both the cognitive training study (Chapter 5) and the imaging study (Chapter 

6) we tried to collect academic grades to assess whether laboratory measures of 

training effects and diligence predicted real-life academic outcomes, but struggled 

with a number of difficulties.  
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First of all, UK school subjects and grading systems vary widely between schools, 

making it difficult to compare grades between participants. We attempted to 

address this issue for the study in Chapter 6 by collecting two waves of grades for 

the imaging study in order to predict how measures collected in the laboratory 

predict changes in grades rather than grades as such, which may be more reliable. 

However, only just over half of our participants responded to the second wave of 

data-collection, leaving us unable to analyse this data. 

Future studies may therefore benefit from administering standardized tests of 

maths and reading ability instead of or alongside collecting school grades. 

Examples of such test include the Kaufman Test of Educational Attainment 

(Kaufman & Kaufman, 2004) or the Neale Analysis of Reading Ability test (Neale, 

1999; see Dunning et al., 2013 for more examples). Research including such 

measures of educational attainment may help us assess the relevance of this 

thesis in the real world by assessing whether laboratory measures of cognitive 

performance (Chapter 4), reasoning or numeracy tasks (Chapter 5) and diligence 

tasks (Chapter 6) generalize to school performance.  

Future research on social cognition would similarly benefit from investigating 

whether measures collected in the lab generalize to every-day behaviour. The 

study presented in Chapter 3, for instance, could by extended by assessing 

whether changes in face cognition skills during adolescence are related to how 

and with whom adolescents spend their time (Lam et al., 2014). 
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7.3.4. Modelling development 

Our ability to gain a meaningful understanding of development from experimental 

studies is limited by a number of pragmatic design decisions: (I) which measures 

are used to assess development (e.g. age or puberty); (II) the range that is 

assessed for these measures (e.g. ages 11-33, or ages 14-15); and (III) how 

measures are modelled statistically (e.g. as a categorical or continuous variable). 

The reader may refer to Chapter 2.4.2 for an extensive discussion of implications 

modelling age as a continuous or categorical variable (the latter was the case in 

this thesis). However, (I) and (II) warrant further consideration.  

All studies in this thesis assessed age as a proxy for development. Age was chosen 

because it is a variable that can be assessed accurately, precisely and easily, while 

puberty is difficult to assess in self-report, and even using hormonal assays 

(Goddings et al, 2012). However, puberty may explain additional variance in 

development over and above age (Goddings, Mills, Clasen, Giedd, Viner & 

Blakemore, 2014) and is of particular relevance to sensitive periods. Theoretical 

work often posits that puberty, with its profound biological changes, triggers the 

onset of sensitive periods (Fawcett & Frankenhuis, 2015; Rodriguez de Fonseca et 

al., 1993). This suggestion remains untested at present, however, and will need to 

be followed up by future research. 

Finally, the age ranges studied in this thesis were limited to adolescence and early 

adulthood. While other studies and reviews have provided excellent insights into 

earlier (Crone & Steinbeis, 2017; Röder, Ley, Shenoy, Kekunnaya, & Bottari, 2013; 

Sugita, 2008) and later (Baltes et al., 2006; Baltes, Staudinger, & Lindenberger, 
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1999; Thomas, 2008) development, we did not collect data on childhood or 

middle- and old age. This means we cannot compare development or learning 

directly between children, adolescents and adults and thus limits our ability draw 

conclusions about the on- and offset of sensitive periods of development. 

Chapter 4, for instance, showed that 10 - 14 year olds were more affected by 

social stress than older age groups but we do not yet know how this age group 

compares with children. Similarly, Chapter 5 showed that adolescents and adults 

aged 15 - 33 benefited from cognitive training to a greater extent than younger 

age groups, but we do not yet know how older adults would respond to training. 

To be able to describe possible sensitive periods beyond childhood, future studies 

will need to investigate changes in plasticity and learning over the lifespan by 

including broader age ranges and elucidating whether the effects of the 

environment on human behaviour are quadratic (and thus consistent with a 

sensitive period, see Figure 1.5A in the Chapter 1) or linear (and therefore 

informative of age-related changes in plasticity but not consistent with sensitive 

periods, see Figure 1.5C).  

 

7.4. Directions for Future Research 

In addition to specific lines of inquiry proposed above to extend and improve the 

work presented in this thesis, this section explores three broader empirical, 

theoretical and methodological directions for future research. To better 

understand adolescent development, the following avenues of research could be 

insightful: (I) integrating research on adolescent development with insights from 



201 
 

lifespan psychology; (II) investigating mechanisms of learning other than plasticity; 

and (III) applying latent variable and multivariate models to large datasets.  

 

7.4.1. Lifespan perspectives 

This thesis has been concerned mainly with adolescent development. As alluded 

to in the previous section, future research could benefit from adopting a lifespan 

perspective and integrating the research presented here with research on earlier 

and later development.  

The core tenants of lifespan psychology are that development is life-long, multi-

dimensional, plastic up until old age, and that each developmental period has 

unique developmental tasks (Baltes et al., 2006; Baltes et al., 1999; Piaget, Grize, 

Szeminska, & Vinh, 1977; Tetens, 1777). Within this framework, childhood 

development is key for the acquisition of foundational skills like visual, perceptual 

and motor development (Inhelder & Piaget, 1958). Adolescence and early 

adulthood are characterized by a maturation of complex cognitive and social skills 

requiring high levels of cognitive control (Blakemore & Choudhury, 2006; Crone & 

Dahl, 2012). Later adulthood is a time of relative stability during which personality 

becomes consolidated, cognitive processes are optimized and both social and 

knowledge expertise continue to grow. Ageing, finally, is characterised by 

compensatory developments that mitigate physical and mental decline (Baltes et 

al., 2006; Baltes et al., 1999). 

There are rich opportunities for future research in investigating lifespan changes 

in brain structure, cognitive functions and plasticity. Such studies may help us 
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understand how developmental phases affect one another. Some promising 

inroads have already been made, for instance, by linking the literature on 

automatic inhibitory control in childhood to the literature on deliberate inhibitory 

control development during adolescence (Crone & Steinbeis, 2017; Steinbeis & 

Crone, 2016). This has highlighted the possibility that some of the inconsistencies 

observed in studies on dual-systems and self-control in adolescence (see Chapter 

6), may be due to different components of self-control developing at different 

rates. Late-maturing deliberate self-control tasks may be more apt to reveal 

developmental changes in adolescence than tasks relying on the automatic 

recruitment of self-control.  

Another example of insightful lifespan work comes from Tamnes and colleagues, 

who carried out a set of studies linking structural brain development during 

adolescence to ageing. This research has shown that late-developing brain areas 

are more susceptible to atrophy during ageing (Douaud et al., 2014; Tamnes, 

Walhovd, Dale, et al., 2013; Walhovd et al., 2016). This highlights the relevance of 

adolescent development for health and well-being many decades later and more 

generally, shows that combining data and theory from different developmental 

phases creates insights into development that cannot be generated when each 

developmental phase is studied in isolation. 

 

7.4.2. Learning beyond plasticity 

The theoretical and empirical focus of this thesis has been understanding changes 

in plasticity as a mechanism for learning during adolescence. However, there 
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might be a role for mechanisms for learning, other than plasticity. For instance, 

the discussion of the cognitive training study in Chapter 5 highlighted that 

increased learning of relational reasoning in late adolescence and early adulthood 

could be due to strategy learning rather than plasticity (de Keysar & Larson-Hall, 

2005; Goodwin & Johnson-Laird, 2005; Thomas, 2012).  

Similarly, the peak in cognitive performance in adolescence and adulthood 

observed, for example, for working memory (Murre et al., 2013), episodic 

memory (Janssen, Chessa, & Murre, 2005; Janssen & Murre, 2008; Janssen et al., 

2008), fluid intelligence (Li et al., 2004), numerical abilities (Halberda et al., 2012) 

or executive functions (Baum et al., 2017) may be not due to, or not only due to, 

increased plasticity, as proposed in Figure 1.5A in Chapter 1. Instead, a peak in 

cognitive performance and learning of complex cognitive skills may arise from an 

interaction between plasticity and other mechanisms of learning such as 

increasing declarative knowledge and a peak in optimization processes (e.g. 

devising and applying cognitive strategies, efficiently and flexibly allocating limited 

cognitive resources, integrating new and existing knowledge and skills) (see Figure 

7.2).  

In this theoretical model, plasticity is lower in adolescence than in childhood for 

many cognitive domains (Johnson, 2005; Thomas, 2012). However, learning of 

complex cognitive and social skills may still peak in adolescence and early 

adulthood because older age groups can access more declarative knowledge than 

children (Baltes et al., 2006; Li et al., 2004) and adolescents and young adults are 

better able to optimize cognitive resources and deploy strategies (see, for 

example, studies on optimal decision-making; Achterberg et al., 2016).  
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Figure 7.2. A Model of Lifespan Changes in Cognitive Performance and Learning. In 

this theoretical model learning is a product of plasticity (orange), optimization 

(blue) and declarative knowledge (green) (based on Baltes et al., 2006; Wenger & 

Lövdén, 2016). 

This model predicts that there is not a single period during which learning is most 

efficient, but rather, that different types of learning may be more efficient at 

different ages. This prediction fits with the literature on second language learning 

and age differences in explicit and implicit learning (de Keysar & Larson-Hall, 

2005; Thomas, 2012). Adults were often found to initially acquire a second 

language faster than children (de Keysar & Larson-Hall, 2005; Loewenthal & Bull, 

1984). Explicit learning strategies and linguistic knowledge are thought to put 

them at an advantage. However, children eventually reach a level of proficiency 

often unattainable to adult learners because they perform better where learning 

involves complex and opaque linguistic material that is impervious to strategy use, 
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such as irregular pronunciation or grammar (Granena & Long, 2013; Hopp & 

Schmid, 2011). Importantly, children’s implicit learning relies on massive, 

naturalistic exposure and is largely unreceptive to feedback or instruction (de 

Keysar & Larson-Hall, 2005), which limits the usefulness of training programs or 

interventions in childhood. 

The model proposed in Figure 7.2 is speculative and remains to be tested. First of 

all, future research will need to establish whether plasticity, optimization and 

knowledge are separable components of learning ability. Optimization may, in 

fact, be best described in several sub-components rather than one 

unidimensional construct. Latent variable models may be useful here (see section 

7.4.3). Then, future research will need to test when and how these components 

contribute to cognitive performance and learning and explore how they interact 

during development. As a third step, predictions from this model could be tested. 

We would expect, for instance, that training programs involving mass exposure 

are more effective early in development, while those recruiting strategy use may 

be more successful during adolescence. Interventions calling on extensive prior 

knowledge may be more effective later still, in adulthood. 

 

7.4.3. Latent variable and multivariate models 

This thesis, like most of cognitive neuroscience, employed univariate statistical 

tools (see Chapter 2). Such tools include univariate regression, ANOVA or GLMMs. 

However, cognitive neuroscience is an inherently multivariate discipline. We 

collect multiple dependent neuroimaging and behavioural variables to try to 

understand how brain and mind contribute to constructs such as perception, 
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language or executive function. Traditional multivariate approaches like MANOVA 

are limited in terms of their statistical power and ability to deal with incomplete 

data (McArdle, 2008). However, more powerful and flexible multivariate 

techniques like structural equation modelling (SEM) are now increasingly available 

open source and are rapidly gaining in popularity (Beaujean, 2014; Kievit et al., 

2017; Rosseel, 2012). Future research may thus benefit from directly harnessing 

the multivariate nature of cognitive neuroscience data and may soon be able to 

address the relationship between brain structure, function and behaviour more 

explicitly (Kievit et al., 2011).   

SEM is a combination of regression and factor analysis (Kievit et al., 2017). The 

relationship between multiple variables can be modelled as regression-like paths 

(e.g. frontal grey matter volume predicts cognitive performance, which predicts 

school grades). Using elements of factor analysis, SEM can also model how 

theoretical constructs (i.e. latent variables, e.g. cognitive performance) can be 

inferred from multiple observable variables (i.e. manifest variables, e.g. accuracy 

and reaction time on a working memory task) (Beaujean, 2014; Little, 2013; 

Newsom, 2015). 

A major caveat of SEM is that it requires large sample sizes (Kievit et al., 2017; 

Little, 2013). It would not be possible to model data from smaller neuroimaging 

studies like the one presented in Chapter 6 with SEM, for instance. Nonetheless, it 

is hoped, that, as funding bodies begin to fund larger samples for neuroimaging 

studies and data sharing becomes more popular (Spires‐Jones, Poirazi, & Grubb, 

2016), SEMs can be utilized more.  
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Models like SEMs could help extend the work presented in Chapter 6 and provide 

a better understanding as to how brain structure, function and connectivity of 

different brain regions contribute to constructs such as self-control (Crone & 

Steinbeis, 2017; Huizinga, Dolan, & van der Molen, 2006). Longitudinal SEMs can 

also help us understand how different cognitive functions influence one another 

over development (Grimm et al., 2017; Little, 2013) or allow us to model 

individual differences in response to cognitive training or stress. 

 

7.5. Conclusion 

This thesis investigated learning and plasticity in adolescence. It highlights that 

many cognitive and socio-cognitive functions: (I) undergo protracted changes 

during adolescence; (II) are characterized by individual differences; (III) are 

susceptible to the advantageous effects of cognitive training; and (IV) are 

susceptible to the adverse effects of social stress. This underlines that 

adolescence is a key period of life for learning complex cognitive skills. 
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Appendix 2.1: R script 

This code was developed with L. J. Knoll and M. Speekenbrink for: 

Fuhrmann, D.*, Knoll, L.J.*, Sakhardande, A., Stamp, F., Speekenbrink, M. 

& Blakemore, S-J. (2016). A window of opportunity for cognitive training in 

adolescence. Psychological Science, 27(12), 1620-1631. doi: 

10.1177/0956797616671327 *Joint first authors. 

This script simulates a developmental dataset in R (R Core Team, 2015) and 

analyses it using Generalized Linear Mixed Models.  

Suppose, we conduct a training study with three different age groups: 7 - 10 year-

olds, 11 - 14 year-olds, and 15 - 18 year-olds. Participants are randomly allocated 

to a training or control condition. The researchers hypothesize that 11 - 14 year-

olds will show higher training effects than the other two age groups. The 

dependent variable is a cognitive task with 40 trials. This variable is dichotomous 

(correct/incorrect). The researchers also want to control for IQ, in case age groups 

differ in this respect. 

############################################################
############## 
### Load the R packages you will need 
 
# Install packages - this only needs to be done once 
install.packages("car") 
install.packages("lme4") 
install.packages("lsmeans") 
install.packages("multcomp") 
install.packages("Hmisc") 
install.packages("Rmisc") 
install.packages("doBy") 
install.packages("ggplot2") 

# Load packages for use 
library(lme4) 
library(lsmeans) 
library(multcomp) 
library(Hmisc) 
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library(doBy) 
library(car) 
library(Rmisc) 
library(ggplot2) 
 
############################################################
############## 
### Simulate a simple dataset 
set.seed(1111) 
 
id= rep(1:600, times=40) # Create 600 participant IDs, repeat 
them 40 times. We want to create 40 trials per participant. 
 
x1 = sample(rep(7:18, length.out=600)) # Assign each participant 
a random age between 7 and 18. 
age = rep(x1, times=40) 
 
x2 = sample(rep(1:4, length.out=600)) # Assign each participant 
to one of 4 schools. 
school = rep(x2, times=40) 
 
x3 = sample(rep(1:2, length.out=600)) # Assign each participant 
to either training or control group. 
treatment_group = rep(x3, times=40) 
 
x4 = sample(rnorm(n = 600, mean = 100, sd = 10)) # Assign each 
participant an IQ score. 
iq = rep(x4, times=40) 
 
# Create 3, roughly even-sized categorical age groups 
age_group <- as.numeric(cut2(age, g=3)) 
 
# Turn categorical variables into factors 
id = as.factor(id) 
age_group = as.factor(age_group) 
school = as.factor(school) 
treatment_group = as.factor(treatment_group) 
 
# Give the levels of the categorical factors proper names 
levels(age_group) <- c("7-10", "11-14", "15-18") 
levels(school) <- c("School1", "School2", "School3", "School4") 
levels(treatment_group) <- c("Training", "Control") 
 
# Put all variables into one data frame called "data" 
data = data.frame(id, iq, age, age_group, school, 
treatment_group) 
 
# Create a helper variable called int - the interaction of 
age_group and treatment group 
data$int = interaction(data$age_group, data$treatment_group) 
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# Create our dependent variable, fill it with 50% 1s and 0s 
data$correct = sample(0:1, 24000, replace=T, prob=c(0.5,0.5)) 
 
# Give participants aged 11-10 who were in the training group a 
higher number of correct trials 
data[data$int=="11-14.Training",]$correct = sample(0:1, 3680, 
replace=T, prob=c(0.45,0.55)) 
 
# Delete int - we won't need it any more 
data$int = NULL 

 
############################################################
############## 
### Summarize the data 
 
# This step is not necessary to run the GLMM but can speed up the 
computation time considerably 
data_summary <- summaryBy (correct ~ id + iq + age_group + 
school + treatment_group, # Summarize the dependent variable 
for each level of the other variables. 
                    data = data,  
                    FUN = c(sum, length, mean))  
# sum: number of correct trials 
# length: total number of trials 
# mean: average accuracy - will be used for plotting 
 
############################################################
############## 
### Plot the data 
 
# Summarize the data for each age and training group 
plot_data <- summarySE(data_summary, measurevar="correct.mean", 
groupvars=c("age_group","treatment_group")) 
 
# Convert the accuracy data to % 
plot_data$correct.mean <- plot_data$correct.mean*100 
plot_data$se <- plot_data$se*100 
 
# Plot using ggplot 
ggplot(data=plot_data, aes(x=age_group, y=correct.mean, 
group=treatment_group)) + 
  geom_bar(aes(fill=treatment_group),position = "dodge", 
stat="identity")+ 
  geom_errorbar(aes(ymin=correct.mean-se, 
ymax=correct.mean+se), 
                width=.1,                   
                position=position_dodge(.9),stat="identity")+ 
  labs(x="Age group",y="Accuracy (%)")+ 
  coord_cartesian(ylim = c(40, 60))+ 
  theme(axis.ticks.x = element_blank())+ 
  theme(axis.title.y = element_text(face="bold",size=12, 
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colour="black",vjust = 1.5))+ 
  theme(axis.text.y  = element_text(size=12))+ 
  theme(axis.text.x  = element_text(face="bold",size=12, 
colour="black"))+ 
  theme(axis.title.x = element_blank())+ 
  theme(legend.title = element_text(size=12, face="bold"))+ 
  theme(legend.text = element_text(size=12))+ 
  scale_fill_brewer(palette="Blues",name="Age group") 
 
############################################################
############## 
### Run the GLMM 
 
# Set the contrast-coding scheme for our categorical fixed 
effects 
# The default is Dummy-coding, but it can be more useful to use 
an orthogonal coding scheme like Helmert-coding. For more 
information see http://stats.idre.ucla.edu/r/library/r-library-
contrast-coding-systems-for-categorical-variables/ 
contrasts(data_summary$age_group)<-contr.helmert(3) # Set 
Helmert-contrasts for the three levels of age group 
contrasts(data_summary$treatment_group)<-contr.helmert(2) # 
Set Helmert-contrasts for the two levels of training group. 
 
# Z-score IQ 
# Z-scoring can help interpret effects because the transforms 
variable's mean will be 0. Z-scoring particularly useful when 
continuous variables are part of interactions, because it can 
reduce multicollinearity. 
data_summary$iq = scale(data_summary$iq, center = TRUE, scale 
= TRUE) 
 
# Run the GLMM 
model = glmer(cbind(correct.sum, correct.length-correct.sum) 
~ # We specify dependent variable as the number of correct trials 
(correct.sum) and the number of incorrect trials (correct.length-
correct.sum) 
                 
                     age_group * treatment_group + # These are 
our fixed            effects of interest and their interaction 
                 
                     iq + # We also want to control for IQ 
   
                     (1|school/id), # These are our nested 
random effects. Participant ID is nested within school 
 
                    data=data_summary,  
               
                    family = binomial) # Use binomial as the 
dependent variable is dichotomous 
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############################################################
############## 
### Inspect the results 
 
# Look at results in an ANOVA-style table 
Anova(model,type=3) 
 
# Inspect the intercept and the slopes ("Estimate") of our 
effects 
summary(model) 
 
# The contrasts of the main effects can be accessed using lsmeans 
lsmeans(model, pairwise ~ age_group) 
 
# Some contrasts of the interaction can be inspected using 
lsmeans 
lsmeans(model, pairwise ~  age_group|treatment_group) 
 
# More complex contrasts can be analysed using custom contrasts 
dummydat <- aggregate(iq ~ age_group * treatment_group, 
data=data_summary, mean) # Create a matrix that contains our 
fixed effects 
dummydat$iq <- 0 # Set IQ to 0, This means we are considering 
effects of interest for average levels of IQ. 
dummy=model.matrix( ~ age_group * treatment_group + iq, 
data=dummydat) # Set up dummy codes to compare groups. 

# Now code the contrasts using subtraction 
contrasts <- rbind(   
"Accuracy after training compared to control is different in age 
group 7-10,  
than in age group 11-14"= 
((dummy[dummydat$treatment_group == "Training"  
        & dummydat$age_group =="7-10",]) - 
 (dummy[dummydat$treatment_group=="Control"   
        & dummydat$age_group =="7-10",])) - 
((dummy[dummydat$treatment_group == "Training"  
        & dummydat$age_group =="11-14",]) - 
 (dummy[dummydat$treatment_group=="Control"   
        & dummydat$age_group =="11-14",])), 
   
"Accuracy after training compared to control is different in age 
group 7-10,  
than in age group 15-18"= 
((dummy[dummydat$treatment_group == "Training"  
        & dummydat$age_group =="7-10",]) - 
 (dummy[dummydat$treatment_group=="Control"   
        & dummydat$age_group =="7-10",])) - 
((dummy[dummydat$treatment_group == "Training"  
        & dummydat$age_group =="15-18",]) - 
 (dummy[dummydat$treatment_group=="Control"   
        & dummydat$age_group =="15-18",])), 
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  "Accuracy after training compared to control is different in 
age group 11-14,  
than in age group 15-18"= 
((dummy[dummydat$treatment_group == "Training"  
        & dummydat$age_group =="11-14",]) - 
 (dummy[dummydat$treatment_group=="Control"   
        & dummydat$age_group =="11-14",])) - 
((dummy[dummydat$treatment_group == "Training"  
        & dummydat$age_group =="15-18",]) - 
 (dummy[dummydat$treatment_group=="Control"   
        & dummydat$age_group =="15-18",]))) 
 
summary(glht(model, contrasts)) # Inspect results 
############################################################ 

 

 

 


