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Abstract. Retinopathy of Prematurity (ROP) is an ocular disease
observed in premature babies, considered one of the largest preventable
causes of childhood blindness. Problematically, the visual indicators of
ROP are not well understood and neonatal fundus images are usually
of poor quality and resolution. We investigate two ways to aid clinicians
in ROP detection using convolutional neural networks (CNN): (1) We
fine-tune a pretrained GoogLeNet as a ROP detector and with small
modifications also return an approximate Bayesian posterior over dis-
ease presence. To the best of our knowledge, this is the first completely
automated ROP detection system. (2) To further aid grading, we train
a second CNN to return novel feature map visualizations of pathologies,
learned directly from the data. These feature maps highlight discrimina-
tive information, which we believe may be used by clinicians with our
classifier to aid in screening.

1 Introduction and Background

Retinopathy of Prematurity (ROP) has entered a third global epidemic [1].
Higher neonatal survival rates in developing countries and new clinical practices
in the West [2] have led to a sharp increase in the number of premature babies at
risk of this iatrogenic, sight-threatening disease. The preterm retina can develop
abnormally at any time up to 36 weeks gestational age [3] and is treatable, thus
screening plays an important role. However, screening is labour-intensive and
challenging, due to insufficient understanding of ROP symptomatology, lack of
gold-standard ground-truth data and poor quality fundus imaging. We inves-
tigate two methods how CNNs can be used to aid in ROP detection. (1) We
detail what we believe to be the first fully automated ROP detector, which can
classify per image and per examination. It harnesses traditional deep learning
and modern variational Bayesian techniques. We provide information on practi-
cal tweaks that did and did not work in achieving our goal. (2) We demonstrate
how the feature maps of deep CNNs can be used to create visualizations of the
pathologies, indicative of disease, learned directly from the data.

ROP is difficult to detect, but conveniently it co-occurs with plus-disease
[4], which is easier to diagnose. Plus-disease is characterized by increased dila-
tion and tortuosity of the retinal vasculature about the posterior pole (central
zone about optic disc) [5], together called plusness. Figure 1 shows a reference
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Fig. 1. Standard reference image
for identifying plus-disease [4].

image of plus-disease from [4], which very
clearly shows vascular dilation and tortu-
osity, but has been criticized for showing
these quantities as more progressed than usu-
ally seen in clinic. In practice, these two
quantities prove difficult to measure sys-
tematically and repeatably. Some common
practical issues are: defining the segmenta-
tion boundary for vessel extraction, measur-
ing vessel dilation/tortuosity, and discerning
retinal from choroidal vessels. Other symp-
toms [6,7], are known but their use as indi-
cators in screening are limited.

Most semi-automated techniques for ROP case detection rely on measuring
plusness via a manual registration followed by semi- or fully-automated vessel
segmentation, and by various mechanisms to extract width and tortuousity infor-
mation [8]. Jomier et al. [9] measure width and tortuosity in all four quadrants
of a vessel segmentation, which is then fed into a neural network, returning a
classification of disease presence. Wallace et al. [10] do not seek to build a detec-
tion system and differentiate between arteriolar and venular diameter, finding
that venular diameter is unimportant in classification. Their system requires sig-
nificant hand preprocessing to make this work. Swanson et al. [11] use a custom
vessel segmentation software to semi-automatically measure a tortuosity- and
dilation-index for user-selected vessels. They identify plus-positive images as hav-
ing a tortuosity-index above a certain threshold. In contrast to these methods,
we use automated registration and feed the entire registered image into a CNN
classifier. We are also able to return per-examination classifications; whereas,
existing methods only return per-image classifications.

2 Proposed Method

Neonatal fundus images are usually of poor quality (see Fig. 2), captured from
the unsedated premature babies, on a low resolution (640×480 px RGB) camera.
They exhibit high levels of variation with different translations and orientations,

(a) Partial occlusion (b) Strong fades (c) Choroidal vessels (d) Blurring

Fig. 2. Examples factors impeding detection in the neonatal fundus. Only c) is diseased.
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high levels of motion blur, illumination artifacts, and strongly visible choroidal
vessels. Compared with adult fundus images, like in the Kaggle diabetic retinopa-
thy competition1, these are much degraded and harder to use for classification.
The existing techniques mentioned depend on reliable vessel segmentation, which
is extremely difficult in the neonatal fundus and sometimes requires some user-
intervention to touch up results. Our images are also few in number (∼ 1500)
with high class-imbalance (∼ 10%). Below we describe our CNN-based classifier
and pathology visualization.

2.1 Classifier

The classifier consists of the traditional deep learning pipeline: preprocessing,
data augmentation, pretrained CNN, finetuning layers. Presently there are vary-
ing gradations of ROP and plus-disease, such as APROP and pre-plus, but we
only distinguish ‘diseased/healthy’, since our dataset was compiled in the late
90s, before these alternatives were used by the mainstream2.

Fig. 3. Fully automated image registration, preprocessing and augmentation pipeline.

Preprocessing and Data Augmentation. Fundus images are translation
registered using [12] and cropped to 240 × 240 px about the posterior pole,
chosen based by cross-validation. The crop size seems small, but biologically
reasonable [5]. Post-registration we high pass filter the RGB channels, remov-
ing low frequency illumination changes and global color information. This also
removes retinal pigmentation, but we assume ethnicity plays a negligible role in
plus screening. For variations in the data, which we cannot ‘normalize out’, we
use data augmentation, such that the particular variation is uniformly sampled.
In our case we randomly flip, rotate and take subcrops of 96 % of the original
image size. The pipeline is shown in Fig. 3.

The Per-Image Classifier. Our per-image classifier consists of a 2-way soft-
max classifier with affine layer, stacked on top of an ImageNet pretrained

1 https://www.kaggle.com/c/diabetic-retinopathy-detection.
2 Neonatal fundus imaging quality has not improved since, only the labels are different.

https://www.kaggle.com/c/diabetic-retinopathy-detection
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Fig. 4. (a) An inception module consists of a combination of multiscale convolutions.
Lettered blocks contain learnable parameters. The GoogLeNet contains 9 inception
modules laid end-to-end. (b) The beta distribution is used in the per-exam classifier.
It is biased towards healthy images. Solid line: PDF, dashed line: mean.

GoogLeNet [13]. The GoogLeNet is formed of a stack of 9 inception modules,
which are a combination of convolutional layers and max-pooling (see Fig. 4(a)).
Please refer to [13] for more details. For training we minimize a binary cross-
entropy loss over the model output and target labels using RMSProp [14].

It is common to just retrain the linear classifier on the end of the network,
but we found improved performance, if we included some of the convolutional
layers within the 9th inception module. Retraining too many layers led to severe
overfitting, however, and so we used an iterative procedure of finetuning the final
n layers, and if compared to the previous n − 1 layers validation performance
increased, then we proceeded to n+1 layers, and so on. With parallel layers, we
tried all combinations, for instance A, B and A & B in Fig. 4(a). In the end, we
retrained layers ACDEF of inception module 9 with the 2-way softmax classifier.

Bayesian CNNs. CNNs return point-estimate class predictions y∗ ∈ R
D,

where
∑D

d=1 y∗,d = 1 given an input image X∗ ∈ R
N×M×C . These are overconfi-

dent, and a more informative prediction is the posterior predictive distribution
p(y∗|X∗,D) where D is the training data. This can be found from the marginal

p(y∗|X∗,D) =
∫

p(y∗|X∗,w)p(w|D) dw, (1)

where p(y∗|X∗,w) represents the CNN output given image X∗ and weights w,
and p(w|D) is a posterior over the weights, given D. Standard CNN training
follows the maximum likelihood priniciple, or maximum a posteriori when reg-
ularlization is involved, so ‘traditional’ predictions are made with p(w|D) =
δ(w−wML) or p(w|D) = δ(w−wMAP), where δ(x) is the Dirac delta function.

Recently it has been shown [15] that training CNNs with sampling behaviour,
such as dropout [16], is equivalent to fitting an approximation q(w;λ), where
λ are referred to as the variational parameters, to the true Bayesian posterior
p(w|D) over the CNN’s weights. Furthermore, these samples are true samples
from the approximate posterior. So to approximate Eq. 1, we replace p(w|D)



72 D.E. Worrall et al.

with q(w;λ) and Monte Carlo sample w(k) ∼ q(w;λ). For instance, dropout
corresponds to wi = ziλi, zi ∼ Bernoulli(zi; 0.5), where wi is a set of incoming
weights to a neuron. To yield a classification we can then simply threshold the
cumulative distribution function of the posterior predictive Pr{y∗,d > t} > s%,
which in words means, the probability mass of the dth output above threshold t
is greater than s%. We can optimize s and t to trade sensitivity–specificity.

Failed Experiments. Here we list some of the techniques, we found to hurt
performance. Vesselness features: we tried including Frangi vesselness descriptors
[17] both as a 4th input channel and as a mask on the input, we presume the
network works on a similar representation of the data already. ADAM solver : this
led to severe overfitting. Large crops: increasing the crop size led to underfitting.
More fully-connected layers on output : this led to overfitting, even with dropout.
Loss function reweighting to remedy class-imbalance: We found oversampling the
smaller class better, because with data augmentation this leads to the network
seeing more data per epoch. Training the softmax classifier from lower layer
outputs: this led to underfitting. Interestingly, one would initially suspect that
higher layers are more dataset specific, we found this not to be a problem.
Removing global average pooling (GAP): this increased the dimensionality of the
output and the number of retrainable parameters, leading to overfitting.

Per-Exam Classifier. Each exam consists of different images of the same eye
from differing views and with different artifacts. We build a per-exam classifier
by assuming a Beta distribution p(π|a, b) = Beta(π; a, b) prior over the probabil-
ity π that a given eye is diseased in an examination and a Bernoulli distribution
p(ci|π) = cπ

i (1 − ci)1−π on the probability an image i is classified as diseased ci

given π. The posterior over π is Beta(π;N1 + a,N0 + b), where N1 and N0 are
number of images classified as diseased and healthy, respectively, in that exam-
ination. When using the Bayesian predictive distribution, we use classifications
from the thresholded cumulative distribution. The posterior predictive distrib-
ution is p(c∗ = 1|{ci}N0+N1

i=1 ) = N1+a
N0+N1+a+b , where c∗ is the diseased/healthy

classification for this exam. We found a = 0.8, b = 1.5 through Empirical Bayes
on the training data, which places a prior on images being healthy.

2.2 Visualization

We visualize diseased regions of the fundus, by examining the CNN feature maps.
GoogLeNet feature maps are too small (7 × 7 px), so we trained a separate 7-
layer CNN with 3 × 3 1-padded kernels and 3 × 3 stride 2 max-pooling after
every even convolution with 31 × 31 px output feature maps. There is evidence
[18] that CNNs trained for the same task learn similar representations at the
deepest layers.

For meaningful visualizations, we need to associate activations with a label
(diseased/healthy). For this, we manipulate the GAP-layer, found just before
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Fig. 5. The linearity of GAP and affine layers means we can swap their order, applying
the affine transformation to each stack of pixels in the input.

the softmax classifier. For feature maps Aijk with spatial indices i, j and chan-
nels k, GAP-layers return a spatial mean ak =

∑
i,j Aijk. For GAP-layers feeding

directly into a softmax, we need only look at the associated feature maps, but
if there is an affine layer between the GAP and the softmax, then we swap the
order of the GAP and affine layers,

softmax

⎛

⎝W
∑

i,j

Aij: + b

⎞

⎠ = softmax

⎛

⎝
∑

i,j

(WAij: + b)

⎞

⎠ , (2)

where Aij: is the vector with entries ak. The result is a plusness feature map
and a health feature map. A schematic of the process is in Fig. 5 and examples
of feature maps overlaid on input images are in Fig. 6.

3 Experiments and Results

Here we run experiments on two large and difficult ROP datasets, comparing
results against a baseline and competing methods papers.

Datasets Canada dataset : there are 1459 usable images from 35 patients, and
347 exams of 2–8 images per eye. There is one label per-exam (plus/no-plus)
and per-eye, but not per-image. We assume all images from an examination
share the same label. We used this dataset for training as well as validation.
London dataset : there are 106 individually labelled images with 4 expert labels
per image. For this dataset we cannot group by exam and use this dataset for
testing only.

9-fold validation. Table 1 shows results for 9-fold cross-validation on the
Canada dataset for our system and a näıve baseline, a 9-layer scratch-trained
CNN. Each patient is assigned to a single fold. We contrast the Bayesian model
against the ‘traditional’ maximum likelihood solution CNN. Key statistics are
averaged over the folds. Class-normalized accuracy is the mean of sensitivity and
specificity and Fleiss’ Kappa (FK) [19] is a measure of agreement. FK of 1.0 is
full agreement, 0.0 is random agreement and < 0.0 is no agreement.

Per-exam results are mostly higher than per-image, as expected, since aver-
aging over exams smooths over erroneous per-image labels. For both per-image
and per-exam classification, the Bayesian model adds about 5 % class-normalized
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Table 1. 9-fold cross-validation results on the Canada dataset. Bold denotes the best
result for each row within per-image or per-exam.

Experiment Per-image Per-exam

Bayes. Trad. Base. Jomier[9] Wallace[10] Bayes. Trad. Base.

Raw Acc 0.918 0.892 0.833 - - 0.936 0.919 0.852

Sensitivity 0.825 0.809 0.598 0.800 0.950 0.954 0.852 0.625

Specificity 0.983 0.909 0.846 0.920 0.780 0.947 0.929 0.860

Precision 0.607 0.547 0.295 - - 0.713 0.665 0.322

Norm. Acc 0.904 0.859 0.722 0.860 0.865 0.951 0.890 0.742

Fleiss’ Kappa 0.590 0.547 0.246 - - 0.714 0.657 0.278

accuracy, with significant gains in sensitivity per-exam. Comparing to other
methods, we are competitive, although losing on per-image sensitivity to Wallace
et al.. We note though that the comparison of results is not straight-forward,
since they use smaller test sets (20 images) and Jomier et al. use different
methodology, testing only non-borderline images. Looking at FK, we see agree-
ment is 0.54 − 0.72 for our model, considered “moderate” to “substantial”.

Multigrader Agreement. With the London dataset there is no groundtruth,
so we report the FK score only. For a single prediction, we ensemble the outputs
of the 9 cross-validation trained CNNs, taking a mean and thresholding at 50 %,
results are in Table 2. Among the experts there is an FK of 0.427, but with
our system this drops to 0.366/0.372. It turns out that the system agrees very
strongly with one expert and disagrees strongly with another (see Table 2), and
that the agreement with the closest expert is stronger than amongst the closest
and furthest experts (0.194). For comparison, [20] report an FK of 0.32 for inter-
clinician agreement, albeit on a separate dataset.

Table 2. Multigrader agreement is similar to levels found in [20].

Experiment Experts alone All experts Closest expert Furthest expert

Bayes. Trad. Bayes. Trad. Bayes. Trad.

Fleiss’ Kappa 0.427 0.366 0.372 0.551 0.546 −0.118 −0.084

Pre-GAP Visualization. Figure 6 shows the pre-GAP visualization, where
red indicates diseased and blue healthy. The blue channel has been intensified
for easier visualization. There is a clear indication that the CNN focuses on the
vasculature in its decision-making, and that this is by far the most important
indicator for plus-disease. This agrees with the current guidance for clinicians as
per [4], which focuses on qualitative measurements of the width and tortuosity
of retinal blood vessels.
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(a) Healthy retina (b) Healthy retina (c) Diseased retina (d) Diseased retina

Fig. 6. Visualizations of learned retinal pathologies with the projected pre-GAP acti-
vation layer superimposed. Blue is healthy tissue and red is diseased tissue. The CNN
has learned that wide and tortuous vessels correlate with plus-disease, as we expect.
(Color figure online)

4 Conclusion, Limitations and Future Work

We have presented the first fully automated ROP detection system. We have
listed techniques to finetune a GoogLeNet to small datasets, which did and did
not work for us. We have also demonstrated a simple Bayesian framework to
increase the accuracy of the output of a dropout trained CNN. The system
copes with single images or multiple images from a single examination. For
understanding we have also demonstrated how to return augmented pathology
visualizations from CNNs with large enough feature maps. The code and dataset
are available to download upon request.

Our multigrader experiments show that it is possible to train classifiers on
subjective labels. These classifiers exhibit good agreement with some of the
expert labelers. From a supervised learning perspective, a classifier can only ever
be as good as its training data, as such we need to look to less human-dependent
training data if we are to surpass human performance. This may involve har-
nessing unsupervised and semi-supervised learning. It would also be sensible to
explore building spatio-temporal models of ROP progression, to see if sequences
of images form better predictors of disease than single instances in time.
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