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On Rationality of Nonnegative Matrix Factorization

Dmitry Chistikov∗† Stefan Kiefer† Ines Marušić† Mahsa Shirmohammadi†

James Worrell†

Abstract
Nonnegative matrix factorization (NMF) is the problem of
decomposing a given nonnegative n × m matrix M into a
product of a nonnegative n×d matrix W and a nonnegative
d×m matrix H. NMF has a wide variety of applications, in-
cluding bioinformatics, chemometrics, communication com-
plexity, machine learning, polyhedral combinatorics, among
many others. A longstanding open question, posed by Cohen
and Rothblum in 1993, is whether every rational matrix M
has an NMF with minimal d whose factors W and H are also
rational. We answer this question negatively, by exhibiting
a matrix M for which W and H require irrational entries.

As an application of this result, we show that state
minimization of labeled Markov chains can require the
introduction of irrational transition probabilities.

We complement these irrationality results with an NP-
complete version of NMF for which rational numbers suffice.

1 Introduction

Nonnegative matrix factorization (NMF) is the task
of factoring a matrix of nonnegative real numbers M
(henceforth a nonnegative matrix) as a product M =
W · H such that the matrices W and H are also
nonnegative. As well as being a natural problem in
its own right [37, 11], NMF has found many appli-
cations in various domains, including machine learn-
ing, combinatorics, and communication complexity; see,
e.g., [39, 22, 28, 41] and the references therein. In topic
modeling [5], NMF corresponds to reconstructing docu-
ments in a given corpus as convex combinations of (i.e.,
distributions on) a small number of topics, where each
topic is a distribution on words.

For an NMF M = W · H, the number of columns
in W is called the inner dimension. The smallest inner
dimension of any NMF of M is called the nonnegative
rank (over the reals) of M ; an early reference is the
paper by Gregory and Pullman [25]. Similarly, the
nonnegative rank of M over the rationals is defined as
the smallest inner dimension of an NMF M = W · H
with matrices W,H that have only rational entries.
Cohen and Rothblum [11] posed the following problem
in 1993:

“Problem. Show that the nonnegative ranks

∗Max Planck Institute for Software Systems (MPI-SWS).
†University of Oxford.

of a rational matrix over the reals and over
the rationals coincide, or provide an example
where the two ranks are different.”

In this paper, we solve the above problem by providing
an example of a rational matrix M that has different
nonnegative ranks over R and over Q. In other words,
any NMF M = W ·H with minimal inner dimension has
irrational entries in W and H. Our counterexample is
almost optimal inasmuch as M has rank 4, whereas for
matrices of rank at most 2 the nonnegative ranks over R
and Q coincide [11]. This irrationality phenomenon car-
ries over to other optimization problems: for example,
as a corollary of our main result we show that min-
imizing labeled Markov chains may require irrational
numbers as transition probabilities.

The above rationality problem of Cohen and Roth-
blum was reiterated by Vavasis [38] in the context of
the computational complexity of computing the non-
negative rank of a matrix. Having shown NP-hardness
of deciding whether the nonnegative rank of a ma-
trix is upper-bounded by a given number, Vavasis asks
whether this problem (and various related problems
concerning NMF) is in NP [38, Section 5]. While our
negative resolution of the Cohen–Rothblum problem
does not exclude NP membership, it does rule out a
hypothetical “simple” argument for membership in NP,
wherein a certificate is an NMF with rational entries of
small bit size.

Deciding whether a given matrix has nonnegative
rank at most k is easily seen to be reducible to the
decision problem for the existential theory of real closed
fields and therefore belongs to PSPACE (see, e.g., [7]).
Beyond this generic upper bound, the problem has been
attacked from many different angles. Here we highlight
the results of Moitra [28], who found semi-algebraic
descriptions of the sets of matrices of nonnegative rank
at most r in which the number of variables is O(r2), and
Arora et al. [4], who identified several variants of the
problem that are efficiently solvable. One such variant
that has been widely studied, separable NMF [14],
asks for factorizations M = W · H with the following
unambiguity property: for every column of W there is
a row whose only nonzero entry lies in that column. In



terms of topic modeling, this means that every topic
has an anchor word, occurring in no other topic. If
a matrix M has such a factorization then there is a
rational one that can moreover be found in polynomial
time [4].

Complementing our irrationality result, we intro-
duce a different restriction of NMF, also with a natural
interpretation in terms of unambiguity: we require that
every column of M (document in the corpus) be re-
constructed as a convex combination of columns of W
without common nonzero entries (non-overlapping top-
ics). We show that the decision problem for this NMF
variant is NP-complete, and that among such factor-
izations there is always a rational one of minimal inner
dimension.

Summary. Our main result (Section 4) is the res-
olution of the Cohen–Rothblum problem: nonnegative
ranks over the reals and rationals may differ. As a
corollary, in Section 5 we show that minimizing labeled
Markov chains may require irrational numbers. Finally,
in Section 6 we define an NP-complete variant of non-
negative rank, called unambiguous rank, which is the
same over the reals and rationals.

Full details of proofs of Section 4 can be found in [9].

2 Related Work and Main Ideas

Rationality of solutions to optimization problems is a
central topic in computer science, in part due to its con-
nection to the computational complexity of finding op-
timal solutions. For various computational problems as-
sociated with partially observable Markov decision pro-
cesses [40], Nash equilibria [18], concurrent stochastic
games [17], and Shapley’s stochastic games [33], it has
been shown that irrational numbers may be needed to
express optimal solutions. In conjunction with this,
complexity-theoretic lower bounds have been derived,
e.g., hardness for the SQRT-SUM problem.

In the last few years, there has been progress
towards resolving the Cohen–Rothblum problem. It was
already known to Cohen and Rothblum [11] that the
nonnegative ranks over R and Q coincide for matrices of
rank at most 2. (Note that the usual ranks over R and Q
coincide for all rational matrices.) In 2015, Kubjas et
al. [26, Corollary 4.6] extended this result to matrices
of nonnegative rank (over R) at most 3. On the other
hand, Shitov [34] proved that the nonnegative rank of
a matrix can indeed depend on the underlying field: he
exhibited a nonnegative matrix with irrational entries
whose nonnegative rank over a subfield of R is different
from its nonnegative rank over R. Independently and
concurrently with our work [9], Shitov [35] has proposed
a rational matrix whose nonnegative ranks over R and Q
are different.

Recently, the authors of this paper obtained a re-
lated result on the restricted nonnegative rank, a notion
introduced and studied by Gillis and Glineur [23]. The
restricted nonnegative rank of a nonnegative matrix M
is the smallest inner dimension of an NMF M = W ·H
such that the columns of W span the same vector space
as the columns of M (note that for any NMF M = W ·H
the column space of W contains the one of M). In [10],
we exhibited a rational matrix whose restricted nonneg-
ative ranks over R and Q differ.

Our approach in the present paper draws on the
ideas from [10] and extends them in a substantial way. It
has long been known [11] that NMF can be interpreted
geometrically as finding a set of vectors (columns of W )
inside a unit simplex whose convex hull contains a
given set of points (columns of M). The common part
of [10] and the present paper finds, in the restricted
setting (i.e., where the columns of W and M span
the same vector space), a rigid structure that exhibits
irrationality. More specifically, we construct a rational
matrix M ′ whose restricted NMF M ′ = W · H ′ with
minimal inner dimension is unique (up to permutation
and rescaling of columns of W ) and has irrational
entries in the factors W and H ′. If we knew that this
factorization were unique among all NMFs, we would be
done. This, however, requires ruling out several classes
of other hypothetical factorizations of the matrix.

Towards this goal, one might want to take advan-
tage of the work on uniqueness properties of NMF, stud-
ied, for instance, by Thomas [37], Laurberg et al. [27],
and Gillis [21]. Here we pursue a different strategy.
We show that for a larger matrix M =

(
M ′ Wε

)
,

where Wε is a nonnegative rational matrix which is
entry-wise close to W , the only NMF (restricted or oth-
erwise) of the same inner dimension has the same left
factor W—thus extending the uniqueness property to
the non-restricted setting.

The guiding idea behind our construction of M
is that by including all columns of W into the set of
columns of M we can exclude certain “undesirable” fac-
torizations, thereby ensuring that M has no rational
NMF. We show this by a constraint propagation ar-
gument. Unfortunately for this construction, the ma-
trix W itself has irrational entries. However, we show
that we can instead take any nonnegative rational ma-
trix Wε within a sufficiently small neighbourhood of W ,
and the undesirable factorizations will still be excluded.
In the text we describe such a neighbourhood explicitly
and pick a specific rational matrix Wε from it, thus ob-
taining the matrix M of the above form and proving the
main result of the paper.

Conceptually, the existence of a suitable matrix Wε

can be understood in terms of upper semi-continuity of



the nonnegative rank over R, proved by Bocci et al. [6].
By this property, if a matrix M has nonnegative rank r
over R, then all nonnegative matrices in a sufficiently
small neighborhood of M have nonnegative rank r or
greater (over R). In the same manner, our proof extends
the non-existence of undesirable factorizations from the
matrix W to Wε.

3 Preliminaries

Given an ordered field F, we denote by F+ the set of
its nonnegative elements. Given a vector v ∈ Fn, we
write vi for its ith entry. Such a vector v is called
pseudo-stochastic if its entries sum up to one. A pseudo-
stochastic vector v is called stochastic if its entries are
also nonnegative.

For any matrix M , we write Mi,: for its ith row, M:,j

for its jth column, and Mi,j for its (i, j)th entry. Given
non-empty subsets I and J of the rows and columns
of M , respectively, we write MI,J for the submatrix
(Mi,j)i∈I,j∈J of M .

A matrix is called nonnegative (resp., zero or ratio-
nal) if so are all its entries. A nonnegative matrix is
column-stochastic (resp., row-stochastic) if its columns
(rows) are stochastic. Column-stochastic matrices will
henceforth simply be called stochastic matrices.

3.1 Nonnegative Rank. Let F be an ordered field,
such as the reals R or the rationals Q. Given a
nonnegative matrix M ∈ Fn×m+ , a nonnegative matrix
factorization (NMF) over F of M is any representation
of the form M = W ·H where W ∈ Fn×d+ and H ∈ Fd×m+

are nonnegative matrices. We refer to d as the inner
dimension of the NMF, and hence refer to the NMF
M = W ·H as being d-dimensional.

The nonnegative rank over F of M is the small-
est nonnegative integer d such that there exists a d-
dimensional NMF over F of M . An equivalent charac-
terization [11] of the nonnegative rank of M over F is as
the smallest number d such that M is equal to the sum
of d rank-1 matrices in Fn×m+ . It is easy to see that

rank(M) ≤ rank+(M) ≤ min{n,m}

where rank(M) and rank+(M) denote the rank and the
nonnegative rank, respectively.

Given a nonzero matrix M ∈ Fn×m+ , by removing
the zero columns of M and dividing each remaining col-
umn by the sum of its elements, we obtain a stochas-
tic matrix with equal nonnegative rank. Similarly, if
M = W ·H then after removing the zero columns in W
and multiplying with a suitable diagonal matrix D, we
get

M = W ·H = WD ·D−1H

where WD is stochastic. If M is stochastic then
(writing 1 for a row vector of ones) we have

1 = 1M = 1WD ·D−1H = 1D−1H,

hence D−1H is stochastic as well. Thus, without loss of
generality one can consider NMFs M = W ·H in which
M , W , and H are all stochastic matrices [11, Theorem
3.2]. In such a case, we will call the factorization
M = W ·H stochastic. An NMF M = W ·H is called
rational if matrices W and H are rational.

In this paper, our main goal is to compare the
respective nonnegative ranks of rational matrices M
over R and Q. The nonnegative rank over R will
henceforth simply be called nonnegative rank.

3.2 Nested Polygons. In this paper, all polygons
are assumed to be convex. Given two polygons, R ⊆
P ⊆ R2, a polygon Q ⊆ R2 is said to be nested
between R and P if R ⊆ Q ⊆ P. Such a polygon is said
to be minimal if it has the minimum number of vertices
among all polygons nested between R and P. In this
subsection we recall from [2] a standardized form for
minimal nested polygons, which will play an important
role in the subsequent development.

Fix two polygons R and P, with R ⊆ P. A
supporting line segment is a directed line segment that
has both endpoints on the boundary of the outer
polygon P and touches the inner polygon R on its left.
A nested polygon with vertices q1, . . . , qk, listed in anti-
clockwise order, is said to be supporting if the directed
line segments q1q2, q2q3, . . . , qk−1qk are all supporting.
Such a polygon is uniquely determined by the vertex q1

(see [2, Section 2]) and is henceforth denoted by Sq1 . It
is shown in [2] that one can always find a nested polygon
that is both minimal and supporting. More specifically,
from [2, Lemma 4] we have:

Lemma 3.1. Consider a minimal nested polygon with
vertices q1, . . . , qk, listed in anti-clockwise order,
where q1 lies on the boundary of P. The supporting
polygon Sq1 is also minimal.

4 NMF Requires Irrational Numbers

In this section we give the main contribution of this
paper: a rational matrix whose respective nonnegative
ranks over R and Q are different.

Theorem 4.1. Let M =
(
M ′ Wε

)
∈ Q6×11

+ , where



matrices M ′ ∈ Q6×6
+ and Wε ∈ Q6×5

+ are as follows:

M ′ =



5
44

5
11

85
121 0 0 0

0 0 0 2
11

3
11

7
33

1
11

1
44

2
121

1
44

15
88

17
88

1
44

1
44

8
121

1
44

19
88

5
24

3
11

3
11

12
121

8
11

2
11

2
33

1
2

5
22

14
121

1
22

7
44

43
132


,

Wε =



0 133
165

640
2233 0 0

1
111540 0 0 17209

58047
997
5082

114721
892320

1
146850

17
506

385
1759

2921
203280

47
1248

413
5874

1
102718

2915
10554

4381
203280

36
169

22
267

18674
51359

1
116094

3252
4235

276953
446160

1009
24475

16239
51359

1100
5277

1
101640


.

The nonnegative rank of M over R is 5, while the
nonnegative rank of M over Q is 6.

In [10] the authors of this paper exhibited a matrix
(which can be obtained from M ′ by rescaling and per-
muting rows and columns) whose respective restricted
nonnegative ranks over R and Q (cf. Section 2) are dif-
ferent. Theorem 4.1 refers to general nonnegative rank.

In the rest of this section we give an overview of the
proof of Theorem 4.1. Full details are given in [9].

Note that matrix M is stochastic. As argued in
Section 3.1, we only need to consider stochastic NMFs
of M in order to determine its nonnegative rank.

The trivial factorization M = I · M , with I the
6× 6 identity matrix, shows that the nonnegative rank
of M is at most 6 over both Q and R. Next we show
that M has nonnegative rank at most 5 over R. Indeed
matrix M ′ has a 5-dimensional NMF M ′ = W · H ′,
where matrix W is:

0 5
7 + 5

√
2

77
15+5

√
2

77 0 0

0 0 0 20+2
√

2
77

48−8
√

2
187√

2
11 0 4−

√
2

77
3
14 +

√
2

308
14−8

√
2

187

−1+
√

2
11

4+
√

2
77 0 39

154 + 5
√

2
308

21−12
√

2
187

8−4
√

2
11

12−4
√

2
77

4
11 0 104+28

√
2

187

4+2
√

2
11

6−2
√

2
77

30−4
√

2
77

3
11 −

√
2

22 0


and matrix H ′ is:

1+
√

2
4 0

√
2

11
1
4 −

√
2

8 0 1
6 +

√
2

12

0 1
2 −

√
2

8 1−
√

2
11 0 0 0

3−
√

2
4

1
2 +

√
2

8 0 0 0 0

0 0 0 0 21
34 + 7

√
2

68
5
6 −

√
2

12

0 0 0 3
4 +

√
2

8
13
34 −

7
√

2
68 0



Moreover, matrix Wε has a 5-dimensional NMF
Wε = W ·Hε with Hε given in Figure 1. Thus matrix M
has the following stochastic 5-dimensional NMF:

(4.1) M = W ·
(
H ′ Hε

)
.

Notice that the matrix Wε, which corresponds to
the last 5 columns of M , can be seen as a perturbation of
the left factor W in (4.1). Intuitively, we have included
Wε in M in order to rule out 5-dimensional NMFs of M
other than (4.1).

Factorization (4.1) shows that M has nonnegative
rank at most 5 over R. Crucially the entries of the
factors W , H ′, and Hε are irrational, and the core of
the proof of Theorem 4.1 consists in showing that M
has no 5-dimensional NMF over Q.

To this end, we will classify NMFs M = L · R
of inner dimension 4 and 5 into four types according
to the “zero pattern” in the first two rows of the left
factor L (illustrated in Figure 2 for inner dimension 5).
In Lemma 4.1 we formally define these four NMF types,
and show (using the occurrence of the zero entries
in M) that any NMF of M of inner dimension at
most 5 matches one of these four types. As argued in
Section 3.1, it suffices to consider stochastic NMFs ofM .

Lemma 4.1. Let M be the matrix from Theorem 4.1.
Let M = L·R be a stochastic and at most 5-dimensional
NMF. Consider the following notation:

• k is the number of columns in L whose first and
second coordinates are 0,

• k1 is the number of columns in L whose first
coordinate is strictly positive and second coordinate
is 0, and

• k2 is the number of columns in L whose second
coordinate is strictly positive and first coordinate
is 0.

Then, the NMF M = L ·R has one of the following four
types:

1) k = 1, k1 = 2, k2 = 2;

2) k = 2, k1 = 1;

3) k = 2, k2 = 1;

4) k = 3, k1 = 1, k2 = 1.

Proof. The NMF M = L · R corresponds to represent-
ing each column of M as a convex combination of the
columns of L, with the coefficients of the convex com-
bination specified by the entries of the right factor R.
As L has at most 5 columns,

(4.2) k + k1 + k2 ≤ 5.



30419
40560 + 28679

√
2

162240
−2728
46725 + 5791

√
2

140175
2741
98049 −

642
√

2
32683

−689
10554 + 15595

√
2

337728
389
1848 −

5501
√

2
36960

0 163318
140175 −

7277
√

2
62300

5958
32683 −

50543
√

2
392196 0 0

0 −2137
20025 + 6047

√
2

80100
11062
14007 + 8321

√
2

56028 0 0

7443
8840 −

51313
√

2
86190 0 0 148897

179418 + 172627
√

2
1435344

−1741
26180 + 1847

√
2

39270

−408157
689520 + 1154473

√
2

2758080 0 0 7039
29903 −

318541
√

2
1913792

134461
157080 + 1163

√
2

11424





Figure 1: Matrix Hε.

Since the columns M:,1,M:,2,M:,3 are linearly inde-
pendent, matrix L has at least three columns whose
second coordinate is 0. Likewise, since the columns
M:,4,M:,5,M:,6 are linearly independent, L has at least
three columns whose first coordinate is 0. That is,

(4.3) k + k1 ≥ 3 and k + k2 ≥ 3.

Together with (4.2), this implies that

2k ≥ 6− k1 − k2 ≥ 1 + k

and therefore k ≥ 1.
The columns M:,1,M:,2,M:,3 have first coordinate

strictly positive and second coordinate 0, while the
columns M:,4,M:,5,M:,6 have second coordinate strictly
positive and first coordinate 0. Therefore, in order for
these columns to be covered by the columns of L, we
need to have:

(4.4) k1 ≥ 1 and k2 ≥ 1.

Together with (4.2), this implies that

k ≤ 5− k1 − k2 ≤ 3.

We conclude that k ∈ {1, 2, 3}. The result follows from
inequalities (4.2), (4.3), and (4.4). �

We observe from Lemma 4.1 that any type-1 or
type-4 NMF of M has inner dimension 5, while any
type-2 or type-3 NMF of M has inner dimension 4 or 5.

In the rest of this section, we give separate argu-
ments excluding rational NMFs of M of each of the
four types.1 These arguments are sketched below, with
full details for all four types in [9]. Our arguments, in
particular, show that M has no 4-dimensional NMF,
rational or not, thus showing that M has nonnegative
rank exactly 5 over R, and concluding the proof of The-
orem 4.1.

1In fact one can show [9] that factorization (4.1), which has
type 1, is the unique at most 5-dimensional NMF of M over R.

4.1 Geometry behind the Proof of Theo-
rem 4.1. To rule out 5-dimensional rational NMFs
of M of types 1, 2, and 3, we employ geometric argu-
ments concerning nested polygons in the plane (see Sec-
tions 4.2 and 4.3). These arguments rely on a geometric
interpretation of the specific NMF M = W ·

(
H ′ Hε

)
that was given in (4.1). More precisely, we define a
polytope P ⊆ R3, shown in Figure 3, such that each of
the columns of M and W can be associated with points
in P, with the points corresponding to the columns of M
lying in the convex hull of those corresponding to the
columns of W . This construction ultimately relies on
a general geometric interpretation of NMF in terms of
nested polytopes, introduced in [23].

4.1.1 Nested Polytopes. To set up this geometric
connection, observe that matrix M is stochastic and
has rank 4, and hence the columns of M affinely
span a 3-dimensional affine subspace V ⊆ R6. All
vectors in V are pseudo-stochastic, i.e., their entries
sum to 1. The stochastic vectors in V (equivalently,
the nonnegative vectors in V) form a 3-dimensional
polytope, say P ′ ⊆ V. Clearly we have M:,i ∈ P ′ for
each i ∈ {1, . . . , 11}.

We will now fix a particular parameterization of V
and P ′; that is, we define an injective affine function
f : R3 → R6 and a polytope P ⊆ R3 such that

(4.5) f(R3) = V and f(P) = P ′.

Specifically, define f(x) = Cx+ d, where

C =
1

11
·


0 10 0
0 0 4
−1 −2 1/2
−1 0 5/2
4 0 0
−2 −8 −7

 and d =
1

11
·


0
0
2
1
0
8

 .

Furthermore, write P = {x ∈ R3 | f(x) ≥ 0 }.



0 + + 0 0

0 0 0 + +

· · · · ·
· · · · ·
· · · · ·
· · · · ·





type 1

0 0 + · ·

0 0 0 + +

· · · · ·
· · · · ·
· · · · ·
· · · · ·





type 2

0 0 0 + +

0 0 + · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·





type 3

+ 0 0 0 0

0 + 0 0 0

· · · · ·
· · · · ·
· · · · ·
· · · · ·





type 4

Figure 2: In any 5-dimensional NMF M = L · R, matrix L matches one of the four patterns above, up to a
permutation of its columns. Here + denotes any strictly positive number.

Now, defining

r1 =

3/4
1/8
0

, r2 =

3/4
1/2
0

, r3 =

 3/11
17/22

0

,
r4 =

 2
0

1/2

, r5 =

1/2
0

3/4

, r6 =

 1/6
0

7/12

,
we have that f(ri) = M ′:,i for each i ∈ {1, 2, . . . , 6}.
Moreover, defining

qε1 =


99
169

0
1

40560

, qε2 =


121
534
133
150

0

, qε3 =


9337
9338
64
203

0

,
qε4 =


1

42216

0
17209
21108

, qε5 =


813
385

0
997
1848

,
we have that f(qεi ) = (Wε):,i for each i ∈ {1, 2, . . . , 5}.
Thus, all the columns of matrix M lie in the image of f .
It immediately follows that f(R3) = V, and thence that
f(P) = P ′.

Moreover we have that ri ∈ P, as f(ri) = M ′:,i ∈ P ′
for all i ∈ {1, 2, . . . , 6}. Likewise we have qεi ∈ P, as
f(qεi ) = (Wε):,i ∈ P ′ for all i ∈ {1, 2, . . . , 5}.

Figure 3 depicts P, which has 6 faces corresponding
to the inequalities of the system Cx + d ≥ 0. In more
detail, P is the intersection of the following half-spaces:
y ≥ 0 (blue), z ≥ 0 (brown), − 1

2x − y + 1
4z + 1 ≥ 0

(green), −x + 5
2z + 1 ≥ 0 (yellow), x ≥ 0 (pink),

− 1
4x − y −

7
8z + 1 ≥ 0 (transparent front). The figure

also shows the position of the points r1, . . . , r6 (black
dots). 2

Next we observe that the columns of matrix W

2In [10], the authors of this paper used the same polytope P
and the same points r1, . . . , r6 (see Figure 3) to prove a related
result about the restricted nonnegative rank.

in (4.1) are also in P ′. Indeed, defining

q∗1 =

2−
√

2
0
0

, q∗2 =

 3−
√

2
7

11+
√

2
14
0

, q∗3 =

 1
3+
√

2
14
0

,
q∗4 =

 0
0

10+
√

2
14

, q∗5 =

 26+7
√

2
17
0

12−2
√

2
17

,
we have f(q∗i ) = W:,i ∈ P ′ and hence q∗i ∈ P for each
i ∈ {1, 2, . . . , 5}. That is, the NMF M = W ·

(
H ′ Hε

)
in (4.1) is restricted: the columns of M and the columns
of W span the same vector space.

Applying the inverse of the map f column-wise to
the NMFs M ′ = W · H ′ and Wε = W · Hε, we obtain
respectively(

r1 r2 r3 r4 r5 r6

)
=
(
q∗1 q∗2 q∗3 q∗4 q∗5

)
·H ′(4.6)

and (
qε1 qε2 qε3 qε4 qε5

)
=
(
q∗1 q∗2 q∗3 q∗4 q∗5

)
·Hε .(4.7)

Recall that the matrix H ′ is stochastic; hence equations
(4.6) and (4.7) imply that the points ri and qεi are
contained in the convex hull of the points q∗i . In
Figure 3, points q∗1 , q

∗
2 , q
∗
3 are the vertices of the triangle

on the brown xy-face, while points q∗1 , q
∗
4 , q
∗
5 are the

vertices of the triangle on the blue xz-face. The former
triangle contains r1, r2, r3, while the latter triangle
contains r4, r5, r6. Points qε1, . . . , q

ε
5 (not shown in

Figure 3) are close to q∗1 , . . . , q
∗
5 , with qε2, q

ε
3 lying in the

interior of the triangle on the xy-face and qε1, q
ε
4, q

ε
5 lying

in the interior of the triangle on the xz-face.
It is important to note that when we exclude certain

NMFs M = L·R in the following subsections, we cannot
a priori assume that the columns of L are in V.

4.1.2 Nested Polygons. In this subsection, we fo-
cus on the two faces of polytope P that contain the
interior points r1, . . . , r6, respectively called P0 and P1.
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Figure 3: The two images show orthogonal projections of the 3-dimensional polytope P. The black dots indicate
6 interior points: 3 points (r1, r2, r3) on the brown xy-face, and 3 points (r4, r5, r6) on the blue xz-face.
The two slightly different projections are designed to create a 3-dimensional impression using stereoscopy. The
“parallel-eye” technique should be used, see, e.g., [36].

Let us write V0 ⊆ R6 for the affine span of column
vectors M:,1,M:,2,M:,3. We can also characterize V0

as the image of the xy-plane in R3 under the map
f : R3 → R6. Indeed, we have that f(r1) = M:,1,
f(r2) = M:,2, and f(r3) = M:,3. Thus the image of the
xy-plane under f is a 2-dimensional affine space that
includes V0 and hence is equal to V0. Define the polygon
P0 ⊆ R3 by

P0 = {(x, y, 0)> : (x, y, 0)> ∈ P}.

Then, f restricts to a bijection between P0 and the set
of nonnegative vectors in V0. We have the following
lemma:

Lemma 4.2. Let R ⊆ P0 be the triangle with vertices
r1, r2, r3 (see Figure 4). If q1 = (u, 0, 0)>, where
0 ≤ u < 2 −

√
2, then the supporting polygon Sq1 has

more than 3 vertices.

Let us write V1 ⊆ R6 for the affine span of column
vectors M:,4,M:,5,M:,6. We can also characterize V1

as the image of the xz-plane in R3 under the map
f : R3 → R6. Indeed, we have that f(r4) = M:,4,
f(r5) = M:,5, and f(r6) = M:,6. Thus the image of the
xz-plane under f is a 2-dimensional affine space that
includes V1 and hence is equal to V1. Define the polygon
P1 ⊆ R3 by

P1 = {(x, 0, z)> : (x, 0, z)> ∈ P}.

Then, f restricts to a bijection between P1 and the set
of nonnegative vectors in V1. We have the following
lemma:

Lemma 4.3. Let R ⊆ P1 be the triangle with vertices
r4, r5, r6 (see Figure 5). If q1 = (u, 0, 0)>, where
2 −
√

2 < u ≤ 1, then the supporting polygon Sq1 has
more than 3 vertices.

4.2 Ruling out Rational Type-1 NMFs. In this
subsection, we argue that any type-1 NMF of M re-
quires irrational numbers (our argument will, in fact,
only depend on the matrix M ′ and not on Wε).

Fix a type-1 NMF M = L · R, i.e., such that L
matches the type-1 zero pattern in Figure 2. Consider-
ing the respective zero patterns of M and L it is clear
that: (i) M:,1,M:,2,M:,3 all lie in the convex hull of
L:,1, L:,2, L:,3, and (ii) M:,4,M:,5,M:,6 all lie in the con-
vex hull of L:,1, L:,4, L:,5. At a high level, our proof
strategy is to use facts (i) and (ii) to respectively derive
two inequalities which together force L = W for W the
left factor in (4.1).

The affine span of column vectors L:,1, L:,2, L:,3

includes V0 and has dimension at most two, and hence
is equal to V0. In particular, L:,1, L:,2, L:,3 must all lie
in V0. Since L:,1, L:,2, L:,3 are moreover nonnegative,
there are uniquely defined points q1, q2, q3 ∈ P0 such
that f(qi) = L:,i for i ∈ {1, 2, 3}. Since NMF M =
L · R is stochastic, the convex hull of q1, q2, q3 includes
r1, r2, r3, i.e., triangle q1q2q3 is nested between triangle
r1r2r3 and polygon P0. Since L:,1 has 0 in its first two
coordinates, by inspecting the definition of the map f
we see that q1 = (u, 0, 0)> for some u ∈ [0, 1]. By
Lemma 3.1 it follows that the supporting polygon Sq1
has three vertices. Hence Lemma 4.2 implies u ≥ 2−

√
2.

Considering the polygon P1, we have q1 ∈ P1 (recall
that f(q1) = L:,1). Arguing as in the case of P0,
there are uniquely defined points q4, q5 ∈ P1 such that
f(qi) = L:,i for i ∈ {4, 5}. Similarly as before, triangle
q1q4q5 is nested between triangle r4r5r6 and polygon P1.
Then Lemmas 3.1 and 4.3 imply that u ≤ 2−

√
2. Thus,

u = 2−
√

2. This means that q1 = (2−
√

2, 0, 0)> = q∗1 .
Hence

L:,1 = f(q1) = f(q∗1) = W:,1.
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Thus, matrix L is not rational.
We remark that this argument could be strength-

ened [9] to show that any type-1 NMF of M coincides
with the one given in (4.1), up to a permutation of the
columns of W and the rows of

(
H ′ Hε

)
.

4.3 Ruling out Type-2 and Type-3 NMFs. In
this subsection, we rule out type-2 NMFs of matrix M ;
type-3 NMFs of M are ruled out analogously. We use
similar geometric arguments as in Section 4.2.

Towards a contradiction, suppose there exists a
type-2 NMF M = L ·R. Then, up to some permutation
of its columns, L matches the pattern

0 0 + · ·
0 0 0 + +
· · · · ·
· · · · ·
· · · · ·
· · · · ·

 and


0 0 + ·
0 0 0 +
· · · ·
· · · ·
· · · ·
· · · ·


according to whether the inner dimension of the NMF
M = L · R is 5 or 4, respectively. It is clear that, in
either case, M:,1,M:,2,M:,3 all lie in the convex hull of
L:,1, L:,2, L:,3.

Let us consider again the affine space V0 ⊆ R6 and
the polygon P0 ⊆ R3 from Section 4.1.2. Recall that P0

is visualized in Figure 4. By reasoning analogously
as in Section 4.2, there are uniquely defined points
q1, q2, q3 ∈ P0 such that f(qi) = L:,i for every i ∈
{1, 2, 3}. It follows that the convex hull of q1, q2, q3

includes r1, r2, r3. Since columns L:,1 and L:,2 have 0
in their first two rows, inspecting the definition of the
map f , we see that q1 and q2 lie on the x-axis in R3.
Define q̂1 = (0, 0, 0)> and q̂2 = (1, 0, 0)>. The triangle

q̂1q̂2q3 contains the triangle q1q2q3, hence the convex
hull of q̂1, q̂2, q3 also includes vertices r1, r2, r3. It follows
that the vertices q̂1, r3, q3 are in anti-clockwise order,
and that the vertices q̂2, q3, r2 are in anti-clockwise
order. By inspecting the location of these points (see
Figure 4), one can see that q3 is then outside P0, a
contradiction.

4.4 Ruling out Type-4 NMFs. Recall that we
have already excluded NMFs of the matrix M =(
M ′ Wε

)
of types 1, 2, and 3; in this subsection,

we exclude NMFs of type 4. In fact, the previous
subsections prove the stronger result that there is no
NMF of types 1, 2, 3 for the matrix M ′ alone. Here we
spell out the role of Wε, effectively explaining why the
matrix M is defined the way it is.

Observe that adding to M ′ new columns from the
convex hull of the columns of W shrinks the set of
possible nonnegative factorizations. Given this, our goal
is to find a matrix satisfying the following desiderata:

• its entries are rational,

• its columns belong to the convex hull of the
columns of W , and

• it has no type-4 NMF.

The first two items ensure that M , while being rational,
admits a nonnegative factorization with left factor W ,
ensuring that the nonnegative rank of M over R is
(at most) 5. The third condition, combined with the
arguments from the previous subsections, ensures that
the nonnegative rank of M over Q is 6.

It turns out that the matrix W , while manifestly
failing the first requirement, satisfies the last two items
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above:

Claim 4.1. The matrix W and, therefore, the ma-
trix M have no type-4 NMF.

Motivated by this observation, we arrive at the main
technical result of this section, a strengthening of
Claim 4.1 showing that no matrix in a suitably small
neighborhood of W admits a type-4 NMF:

Lemma 4.4. For all stochastic matrices W̃ ∈ R6×5
+

satisfying the entry-wise constraints given in Figure 6,
there exists no type-4 NMF W̃ = L ·R.

In particular, the constraints of Lemma 4.4 are sat-
isfied by the matrix Wε from Theorem 4.1. Therefore,
the matrix M has no type-4 NMF. Since we have al-
ready exhibited an NMF Wε = W ·Hε, the matrix Wε

satisfies all three desiderata, thus concluding the proof.
Proof of Lemma 4.4: outline. The idea of the

proof is to derive a contradiction from the assumption
that there exists a stochastic matrix W̃ ∈ R6×5

+ that
satisfies all constraints in Figure 6 and has a type-4
NMF W̃ = L · R, i.e., such that L matches the
type-4 zero pattern in Figure 2. To this end, we use
constraint propagation to successively derive lower and
upper bounds for various entries of the matrices L and R
until we reach a contradiction. To give a flavor of the
argument, we derive one of the required bounds below.
The complete argument can be found in [9].

Specifically, towards a contradiction, assume that
there exists some stochastic matrix W̃ ∈ R6×5

+ that
satisfies all constraints in Figure 6 and has a type-4

NMF W̃ = L · R. Observe that all columns of W̃ lie
in the convex hull of the columns of L since W̃:,j =
L · R:,j for each j ∈ {1, . . . , 5}. Let us consider the

4th column W̃:,4. Since L:,2 is the only column of L
with a strictly positive second coordinate, we have
W̃2,4 = L2,2 ·R2,4. We thus obtain the constraint

0.29 ≤ W̃2,4 = L2,2 ·R2,4 ≤ R2,4.

Proceeding in this manner, at length we arrive at the
statement of the lemma.

With Lemma 4.4 in hand, we observe that the
decimal expansion of Wε can be rounded as in Figure 7.
Since matrix Wε satisfies the system of constraints in
Figure 6, we conclude that Wε and hence M has no
type-4 factorization.

A non-constructive alternative. Instead of de-
ducing the result of this subsection from Lemma 4.4,
one can alternatively rely on its weaker form, Claim 4.1,
and give a non-constructive proof of the existence of an
appropriate Wε (satisfying the three desiderata above)
via a topological argument that we sketch below. How-
ever, we emphasize that we do not know how to prove
Claim 4.1 without following the arguments that prove
Lemma 4.4.

We first employ the geometric constructions of
Subsection 4.1 to argue that any neighbourhood of
the matrix W contains a rational matrix that factors
through W (i.e., whose columns belong to the convex
hull of the columns of W ). Indeed, consider the set W
of all stochastic real matrices of size 6 × 5 that have a
stochastic NMF with left factor W . Observe thatW can
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Figure 6: Entry-wise constraints, where ε = 10−5.

0 0.81 0.2866 0 0

0.9 · 10−5 0 0 0.296 0.1962

0.1 0.7 · 10−5 0.03360 0.219 0.0144

0.04 0.0703 0.97 · 10−5 0.276 0.0216

0.2 0.08 0.4 0.9 · 10−5 0.7679

0.621 0.04 0.316 0.208 0.98 · 10−5




Wε ≈

Figure 7: Matrix Wε with entries rounded off.

be characterized as the set of matrices whose columns
lie in the image under f of a full-dimensional set in R3,
namely of the convex hull C = conv{q1, . . . , q5}. Since
the map f is specified by matrices with rational coef-
ficients, it immediately follows that the set of rational
matrices is dense in W, as we wished to prove.

Now suppose for the sake of contradiction that every
rational matrix in W has a type-4 NMF. By the above,
for all δ > 0 there exists a nonnegative matrix Wδ in the
δ-neighbourhood ofW which factors throughW and has
a type-4 NMF Wδ = Lδ ·Rδ. By compactness, there ex-
ists a subsequence of matrices Wδ with decreasing δ such
that the corresponding sequences Lδ and Rδ converge.
Taking the limit, we arrive at the equality W = L · R
where the right-hand side is also a type-4 NMF—which
contradicts Claim 4.1. This completes the proof. (Note
that Lemma 4.4 contains a constructive version of this
argument.)

It is worth mentioning that this reasoning follows
similar lines as the upper semi-continuity argument
for nonnegative rank [6]: the nonnegative rank of any
(rational or irrational) matrix Wε which is entry-wise
close enough to W can only be larger than or equal to
that of W .

5 Labeled Markov Chain Minimization
Requires Irrationality

Our solution to the Cohen–Rothblum problem can be
applied to the analogous question for labeled Markov
chains (LMCs):

Given an LMC with rational transition prob-
abilities, is there always a minimal equivalent
LMC with rational transition probabilities?

In this section, we answer this question negatively.
LMCs are a fundamental model, variants of which

occur under different names in the literature includ-
ing (generative) probabilistic automata [1] and hidden
Markov chains [24]. These models are widely employed
in fields such as speech [31] and gesture [8] recognition,
signal processing [12], climate modeling [3], and compu-
tational biology [16], e.g., sequence analysis [15].

Let us first introduce some notation that we will
use in this section. Let N and N0 denote the set
of all positive and nonnegative integers, respectively.
For any n ∈ N, we write [n] for the set {1, 2, . . . , n}
and In for the identity matrix of order n. We write
ei = (0, . . . , 1, . . . , 0) for a coordinate row vector with 1
in its ith coordinate. We write 1 for a column vector of
ones.

Given a finite alphabet Σ, we write Σ∗ for the set
of all words over Σ. The length of a word w ∈ Σ∗ is



denoted by |w|. For any n ∈ N0, we write Σn for the
set of all words in Σ∗ of length n. We write λ for the
empty word, i.e., the word of length 0. Given two words
x, y ∈ Σ∗, we denote their concatenation by xy.

Formally, a labeled Markov chain (LMC ) is a tuple
M = (n,Σ, µ) where n ∈ N is the number of states, Σ is
a finite alphabet of labels, and function µ : Σ→ [0, 1]n×n

is such that
∑
σ∈Σ µ(σ) is a row-stochastic matrix. For

each label σ, every entry µ(σ)i,j is called a transition
probability.

The intuitive behavior of an LMC M is as follows:
At the start, M is in a specific initial state. At any
time point after that M is in some state i, and at the
next time step M moves to a state j emitting label σ,
with probability µ(σ)i,j . For any k ∈ N0, after k time
steps M is in some state j having generated a word of
length k.

We extend the function µ to words by defining
µ(λ) := In and µ(σ1 . . . σk) := µ(σ1) · · ·µ(σk) for
all k ∈ N and all σ1, . . . , σk ∈ Σ. It is easy to see that
µ(xy) = µ(x)·µ(y) for all words x, y ∈ Σ∗. Hence for any
word w ∈ Σ∗: if M is in state i, it emits w and moves
to state j in |w| time steps, with probability µ(w)i,j .

Formally, the LMC M defines a function
‖M‖ : Σ∗ → [0, 1] such that for every w ∈ Σ∗,

‖M‖(w) :=

n∑
j=1

e1 · µ(w)1,j = e1 · µ(w) · 1.

The value ‖M‖(w) corresponds to the probability
that M generates the word w in |w| time steps. Hence
for any k ∈ N0, the restriction of ‖M‖ to Σk is a prob-
ability distribution. For example, in Figure 8 we have
‖M‖(a1b1) = 1

12 = ‖M′‖(a1b1).
Given two LMCs M, M′ over an alphabet Σ, we

say thatM is equivalent to M′ if for any word w ∈ Σ∗,
M and M′ generate w (in |w| time steps) with equal
probability, i.e., ‖M‖(w) = ‖M′‖(w). An LMC is
minimal if no equivalent LMC has fewer states.

To construct the reduction in Proposition 5.1, we
adapt reductions from NMF to the trace-refinement
problem in Markov decision processes [19] and to LMC
coverability [10].

Proposition 5.1. Given a nonnegative matrix M ∈
Qn×m+ , one can compute in polynomial time an LMC
M = (m+ 2,Σ, µ) with rational transition probabilities
such that for all d ∈ N:

(i) any d-dimensional NMF M = W ·H determines an
LMC M′ = (d+2,Σ, µ′) which is equivalent to M,
and

(ii) any LMCM′ = (d+2,Σ, µ′) which is equivalent to
M determines a d-dimensional NMF M = W ·H.

In both (i) and (ii), the NMF M = W · H is rational
if and only if the LMC M′ has rational transition
probabilities.

Proof. Let M ∈ Qn×m+ . As argued in Section 3.1,
without loss of generality we may assume that M
is stochastic and consider factorizations of M into
stochastic matrices only.

We define an LMC M = (m + 2,Σ, µ) as follows:
The states are 0, 1, . . . ,m,m+1, with 0 being the initial
state. The alphabet is Σ = {a1, . . . , am}∪{b1, . . . , bn}∪
{X}, and the function µ, for all i ∈ [m] and all j ∈ [n],
is defined by:

µ(ai)0,i = 1
m ,

µ(bj)i,m+1 = (M>)i,j = Mj,i,

µ(X)m+1,m+1 = 1,

and all other entries of µ(ai), µ(bj), and µ(X) are 0. See
Figure 8 for an example. It is easy to see that for every
i ∈ [m], j ∈ [n], p ∈ N0:

‖M‖(w) =


1 w = λ
1
m w = ai
1
mMj,i w = aibjX

p

0 otherwise,

where Xp denotes the p-fold concatenation of the sym-
bol X by itself.

We first prove (i). Let M = W · H where W ∈
Rn×d+ and H ∈ Rd×m+ are stochastic matrices. Define
an LMC M′ = (d + 2,Σ, µ′) where the states are
{0, 1, . . . , d, d + 1} with 0 being the initial state. The
function µ′, for all i ∈ [m], j ∈ [n], and l ∈ [d], is
defined by:

µ′(ai)0,l =
1

m
Hl,i,

µ′(bj)l,d+1 = Wj,l,

µ′(X)d+1,d+1 = 1,

and all other entries of µ′(ai), µ
′(bj), and µ′(X) are 0.

See Figure 8 for an example.
We have that ‖M′‖(λ) = 1 = ‖M‖(λ). Moreover,

for every i ∈ [m], j ∈ [n], and p ∈ N0 we have:

‖M′‖(ai) = e0 · µ′(ai) · 1

=
∑
l∈[d]

1

m
Hl,i

=
1

m
= ‖M‖(ai)

and

‖M′‖(aibjXp) = e0 · µ′(ai) · µ′(bj) · µ′(X) · 1
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Figure 8: LMC M is constructed from the matrix M =
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)
, whereas LMC M′ is obtained by NMF

M = I2 ·M .

=
∑
l∈[d]

1

m
Hl,i ·Wj,l

=
1

m
Mj,i = ‖M‖(aibjXp).

For every w ∈ Σ∗ \ {λ, ai, aibjXp | i ∈ [m], j ∈ [n], p ∈
N0 } we have ‖M′‖(w) = 0 = ‖M‖(w). Hence, M′ is
equivalent to M. This proves (i).

We now prove (ii). Suppose that M has an
equivalent LMC M′ = (d + 2,Σ, µ′). Without loss
of generality, let the states of M′ be 0, 1, . . . , d, d + 1
with 0 being the initial state. Let us define a matrix

H ∈ R{0,1,...,d,d+1}×[m]
+ where

(H:,i)
> = m · µ′(ai)0,:

for all i ∈ [m], and a matrix W ∈ R[n]×{0,1,...,d,d+1}
+

where

(Wj,:)
> = µ′(bj) · 1

for all j ∈ [n]. Since M and M′ are equivalent, for
every i ∈ [m] and j ∈ [n] we have:

1

m
Mj,i = ‖M‖(aibj)

= ‖M′‖(aibj)

= µ′(ai)0,: · µ′(bj) · 1 =
1

m
(H:,i)

> · (Wj,:)
>.

This implies that M = W ·H. Assuming M is a nonzero
matrix, there exist i ∈ [m] and j ∈ [n] such that

1

m
Mj,i = µ′(ai)0,: · µ′(bj) · 1 > 0.

Since matrices µ′(ai), µ
′(bj) are nonnegative, there exist

k, k′ ∈ {0, 1, . . . , d, d+ 1} such that

µ′(ai)0,k · µ′(bj)k,k′ · 1k′ = µ′(ai)0,k · µ′(bj)k,k′ > 0.

Without loss of generality, we may assume that
k′ = d+ 1. Then,

(5.8) µ′(ai)0,k · µ′(bj)k,d+1 > 0.

The following lemma shows that the (d + 2)-
dimensional NMF M = W · H is, essentially, d-
dimensional since one can “ignore” the first and last
row of W and column of H.

Lemma 5.1. It holds that

W ·H = W[n],[d] ·H[d],[m].

Proof. Take any l1 ∈ [n] and l2 ∈ [m]. We need to show
that (W ·H)l1,l2 = (W[n],[d] ·H[d],[m])l1,l2 . Since

(W ·H)l1,l2 =

d+1∑
l=0

Wl1,l ·Hl,l2 ,

it suffices to show that

Wl1,0 ·H0,l2 +Wl1,d+1 ·Hd+1,l2 = 0.

To this end, in the following we show that Wl1,d+1 = 0
and H0,l2 = 0.

Towards a contradiction, suppose that Wl1,d+1 > 0.
Since Wl1,d+1 = µ′(bl1)d+1,: · 1, by (5.8) we now have

‖M′‖(aibjbl1)

≥ µ′(ai)0,k · µ′(bj)k,d+1 · µ′(bl1)d+1,: · 1 > 0,

which is a contradiction withM′ being equivalent toM
since ‖M‖(aibjbl1) = 0. We conclude that Wl1,d+1 = 0.

Towards a contradiction, suppose that H0,l2 > 0.
Since H0,l2 = m · µ′(al2)0,0, by (5.8) this implies that

‖M′‖(al2aibj)
≥ µ′(al2)0,0 · µ′(ai)0,k · µ′(bj)k,d+1 > 0,

which is a contradiction withM′ being equivalent toM
since ‖M‖(al2aibj) = 0. We conclude that H0,l2 = 0,
which completes the proof. �



By Lemma 5.1, we now have

M = W ·H = W[n],[d] ·H[d],[m],

which completes the proof of (ii). �

Now, we can give a negative answer to the question from
the beginning of this section:

Corollary 5.1. There exists an LMC with rational
transition probabilities such that there is no minimal
equivalent LMC with rational transition probabilities.

Proof. Let M ∈ Q6×11
+ be the matrix from Theorem 4.1.

Since rank+(M) = 5, by Proposition 5.1 one can
compute in polynomial time an LMC M = (13,Σ, µ)
such that any minimal LMC equivalent to M has 7
states. Towards a contradiction, assume there is an
LMC M′ = (7,Σ, µ′) equivalent to M with rational
transition probabilities. Then by Proposition 5.1, M′
determines a 5-dimensional rational NMF M = W ·H.
This is a contradiction since the nonnegative rank of M
over Q is 6 by Theorem 4.1. �

As an immediate corollary of Proposition 5.1, one
can relate the computational complexity of the following
two problems:

• The NMF problem is: Given a matrix M ∈ Qn×m+

and d ∈ N, is rank+(M) ≤ d?

• The LMC minimization problem is: Given an
LMC M with rational transition probabilities and
d ∈ N, does there exist an LMC M′ with d states
such that M and M′ are equivalent?

Corollary 5.2. There is a polynomial-time reduction
from the NMF problem to the LMC minimization prob-
lem.

Our NMF-hardness result can be adapted easily
to (reactive) probabilistic automata [30]. Since the
NMF problem is NP-hard [38], minimizing both prob-
abilistic automata and LMCs is NP-hard. In con-
trast, minimization of weighted automata (which may
have negative transition weights) can be done efficiently
over Q [32]. Hence, the nonnegativity constraint makes
minimization fundamentally more difficult.

6 Rationality of Unambiguous Nonnegative
Rank

Consider an NMF M = W ·H, where W has dimension
n × d and H has dimension d × m. We call such an
NMF unambiguous if each column of M is obtained as
a nonnegative combination of orthogonal columns of W :

formally, for every column j ∈ {1, . . . ,m} and every two
distinct rows k, k′ ∈ {1, . . . , d}, if Hk,j , Hk′,j 6= 0 then
W:,k and W:,k′ are orthogonal column vectors. This
condition can equivalently be formulated as:

Wi,kHk,jWi,k′Hk′,j = 0 for all i, j and k 6= k′.(6.9)

We recall the definition of the Frobenius inner
product : for matrices M,N ∈ Rn×m, this is the
usual inner product when the matrices are considered
as vectors in the nm-dimensional real vector space:
〈M,N〉 =

∑n
i=1

∑m
j=1MijNij . A sequence of matrices

M1, . . . ,Mk forms an orthogonal system if 〈Ms,Mt〉 = 0
for all matrices Ms and Mt with s 6= t.

Lemma 6.1. For any nonnegative matrix M , the fol-
lowing statements are equivalent:

(U1) there exists an expansion M = M1 + . . .+Md where
the matrices M1, . . . ,Md all have rank at most 1,
are nonnegative, and form an orthogonal system;

(U2) there exists an unambiguous NMF M = W · H of
inner dimension at most d.

Proof. We recall that an equivalent characterization [11]
of the nonnegative rank ofM is as the smallest number d
such that M is equal to the sum of d rank-1 matrices in
Rn×m+ . Indeed, a nonzero n×m matrix has rank 1 just
in case it can be written as the product uv> of an n-
dimensional column vector u and an m-dimension row
vector v>. Writing an NMF of inner dimension d in the
form

M = W ·H =

d∑
s=1

W:,s ·Hs,:,

it follows that such a factorization is equivalent to a
decomposition of M as the sum of d rank-1 matrices in
Rn×m+ .

Suppose that M = W · H is an unambiguous
NMF of inner dimension d. Then we have that M =
M1 + . . .+Md, where Ms := W:,s ·Hs,: is a nonnegative
rank-1 matrix for each s ∈ {1, . . . , d}. The unambi-
guity condition (6.9) is equivalent to the condition that
M1, . . . ,Md form an orthogonal system of matrices with
respect to the Frobenius inner product. Conversely,
given a decomposition M = M1 + . . .+Md as in (U1),
we obtain an unambiguous factorization M = W ·H by
selecting nonnegative matrices W and H subject to the
condition Ms := W:,s ·Hs,: for each s ∈ {1, . . . , d}. �

There is an analogy between property (U1) and
the following characterizations of rank and nonnegative
rank. The rank of a matrix M ∈ Rn×m is the smallest
number d such that M has an expansion as in (U1)



where all matrices Ms, s ∈ {1, . . . , d}, have rank at
most 1. If M ∈ Rn×m+ , its nonnegative rank is the
smallest number d such that M has an expansion as
in (U1) where all matrices Ms have rank at most 1 and
are nonnegative [11]. The property (U1) additionally
requires that matrices Ms have no common nonzero
positions. From the combinatorial perspective, such an
expansion corresponds to partitioning the set of nonzero
entries of M into a collection of disjoint combinatorial
rectangles (these are Cartesian products of the form
I × J with I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m}), each
of which forms the support of a rank-1 submatrix of M .

Based on this analogy, we define the unambigu-
ous nonnegative rank of a matrix M ∈ Rn×m+ , denoted
rank⊥M , as the smallest d such that M satisfies prop-
erty (U1).

For a 0-1 matrix M , Yannakakis [41] defines the un-
ambiguous communication complexity of M to be the
logarithm of what we have here called the unambiguous
nonnegative rank. A more vivid interpretation arises
from considering applications in topic modeling [5]: an
unambiguous NMF M = W ·H corresponds to repre-
senting documents (columns of M) as distributions on
non-overlapping topics (columns of W without common
nonzero entries). Here unambiguity means that, even
though every word (row index i) can be associated with
more than one topic, its use in each individual document
is restricted to some particular topic.

Theorem 6.1. The following statements hold:

1. If M ∈ Qn×m+ and rank⊥M ≤ k, then M has an
unambiguous NMF M = W ·H of inner dimension
at most k where all entries of W and H are
rational.

2. It is NP-complete to decide, given M ∈ Qn×m+ and
k ∈ N, whether rank⊥M ≤ k.

Proof. Given a bipartite graph G with two parts U =
{u1, . . . , un} and V = {v1, . . . , vm}, let M be the 0-1
adjacency matrix of G where Mi,j is 1 if and only if there
is an edge between ui and vj . In any decomposition
of M as the sum of an orthogonal system of nonnegative
matrices M = M1 + . . .+Md, each summand must itself
be a 0-1 matrix and, having rank 1, be the adjacency
matrix of a subgraph of M induced by a biclique.
Thus, such a decomposition is nothing but a partition
of the edges of G into d pairwise disjoint bicliques. It
immediately follows that deciding whether rank⊥M ≤ k
is NP-hard (see [20]). On the other hand, it is clear that
in any disjoint sum M = M1 + . . . + Md the nonzero
entries of the right-hand rank-1 matrices are all entries
of M . Thus, unambiguous rank is always witnessed by

a factorization into rational matrices and is computable
in NP. �

Theorem 6.1 complements the irrationality result of
Theorem 4.1.

7 Conclusions

In this paper we have solved the Cohen–Rothblum
problem, showing that nonnegative ranks over R and
over Q may differ. More precisely, our construction
applies to matrices of rank 4 and greater. It was already
known to Cohen and Rothblum [11] that nonnegative
ranks over R and Q coincide for matrices of rank at
most 2, and Kubjas et al. [26] showed that this also holds
for matrices of nonnegative rank (over R) at most 3.
The remaining open question is whether nonnegative
ranks over R and over Q differ for rank-3 matrices whose
nonnegative rank (over R) is at least 4—or whether our
example is optimal in this sense.

As our results show that the nonnegative ranks
over R and Q are different functions, the computability
question emerges. While it has long been known
that the nonnegative rank over R is computable in
PSPACE (see, e.g., Cohen and Rothblum [11]), this
is not known for the nonnegative rank over Q. The
problem of computing the latter is reducible to the
decision problem for the existential theory of the field of
rational numbers, whose decidability is a long-standing
and very prominent open question [29].

Finally, we would like to point out that the com-
plexity of the following geometric problem closely linked
to NMF, the nested polytopes problem, is not fully
known. This problem asks, given an ordered field F
and polytopes S ⊆ T in Fn, whether there exists a
simple polytope N such that S ⊆ N ⊆ T (cf. Gillis
and Glineur [23]). The definition of “simple” can be ei-
ther “having at most k vertices,” or “having at most k
facets,” or a combination of both. For F = R, minimiz-
ing the number of vertices or, dually, facets, is known
to require irrational numbers [10] even in the case of
full-dimensional S. While for some representations of
the polytopes such questions are known to be NP-hard
(see, e.g., Das and Goodrich [13]), their precise com-
plexity is not known in general.
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