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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS∗1

ARTUR CZUMAJ† AND PETER DAVIES‡2

13

Abstract. In this paper we improve the deterministic complexity of two fundamental communica-4
tion primitives in the classical model of ad-hoc radio networks with unknown topology: broadcasting5
and wake-up. We consider an unknown radio network, in which all nodes have no prior knowledge6
about network topology, and know only the size of the network n, the maximum in-degree of any7
node ∆, and the eccentricity of the network D.8

For such networks, we first give an algorithm for wake-up, based on the existence of small9

universal synchronizers. This algorithm runs in O(
min{n,D∆} log n log ∆

log log ∆
) time, the fastest known in10

both directed and undirected networks, improving over the previous best O(n log2 n)-time result11
across all ranges of parameters, but particularly when maximum in-degree is small.12

Next, we introduce a new combinatorial framework of block synchronizers and prove the existence13
of such objects of low size. Using this framework, we design a new deterministic algorithm for the14
fundamental problem of broadcasting, running in O(n logD log log D∆

n
) time. This is the fastest15

known algorithm for the problem in directed networks, improving upon the O(n logn log logn)-time16
algorithm of De Marco (2010) and the O(n log2 D)-time algorithm due to Czumaj and Rytter (2003).17
It is also the first to come within a log-logarithmic factor of the Ω(n logD) lower bound due to18
Clementi et al. (2003).19

Our results also have direct implications on the fastest deterministic leader election and clock20
synchronization algorithms in both directed and undirected radio networks, tasks which are commonly21
used as building blocks for more complex procedures.22

Key words. Radio Networks, Broadcasting, Wake-up, Deterministic23

AMS subject classifications. 68M10, 68W15, 05C8524

1. Introduction.25

1.1. Model of communication networks. We consider the classical model26

of ad-hoc radio networks with unknown structure. A radio network is modeled by27

a (directed or undirected) network N = (V,E), where the set of nodes corresponds28

to the set of transmitter-receiver stations. The nodes of the network are assigned29

different identifiers (IDs), and throughout this paper we assume that all IDs are distinct30

numbers in {1, . . . , |V |}. A directed edge (v, u) ∈ E means that node v can send a31

message directly to node u. To make propagation of information feasible, we assume32

that every node in V is reachable in N from any other.33

In accordance with the standard model of unknown (ad-hoc) radio networks (for34

more elaborate discussion about the model, see, e.g., [1, 2, 6, 10, 11, 14, 20, 22, 25]),35

we make the assumption that a node does not have any prior knowledge about the36

topology of the network, its in-degree and out-degree, or the set of its neighbors. We37

assume that the only knowledge of each node is its own ID, the size of the network n,38

the maximum in-degree of any node ∆, and the eccentricity of the network D, which39

is the maximum distance from the source node to any node in N.40
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2 A. CZUMAJ AND P. DAVIES

Nodes operate in discrete, synchronous time steps, but we do not need to assume41

knowledge of a global clock. When we refer to the “running time” of an algorithm,42

we mean the number of time steps which elapse before completion (i.e., we are not43

concerned with the number of calculations nodes perform within time steps). In each44

time step a node can either transmit a message to all of its out-neighbors at once or45

can remain silent and listen to the messages from its in-neighbors. Some variants of46

the model make restrictions upon message size (e.g. that they should be O(log n) bits47

in length); our algorithms only forward the source message so comply with any such48

restriction.49

The distinguishing feature of radio networks is the interfering behavior of trans-50

missions. In the most standard radio networks model, the model without collision51

detection (see, e.g., [1, 2, 11, 25]), which is studied in this paper, if a node v listens in a52

given round and precisely one of its in-neighbors transmits, then v receives the message.53

In all other cases v receives nothing; in particular, the lack of collision detection means54

that v is unable to distinguish between zero of its in-neighbors transmitting and more55

than one.56

The model without collision detection describes the most restrictive interfering57

behavior of transmissions; also considered in the literature is a less restrictive variant,58

the model with collision detection, where a node listening in a given round can59

distinguish between zero of its in-neighbors transmitting and more than one (see, e.g.,60

[14, 25]).61

1.2. Discussion of assumptions of node knowledge. We consider the model62

that assumes that all nodes have knowledge of the parameters n,D, and ∆. While63

these assumption may seem strong, they are standard in previous works when running64

time dependencies upon the parameters appear. For example, the O(n log2D)-time65

algorithm of [12] requires knowledge of n and D, and the O(D∆ log n
∆ )-time algorithm66

of [11] requires knowledge of n and ∆ (though they provide methods of removing67

these knowledge assumptions at the expense of extra running time factors). Similar68

assumptions also appear in previous related work.69

Furthermore, we note that nodes need only know common upper bounds for the70

parameters, rather than the exact values (these upper bounds will replace the true71

values in the running time expression). Therefore, even if only some polynomial upper72

bound for D is known, and no knowledge about ∆ is assumed at all, our broadcasting73

algorithm still runs within O(n logD log logD) time, and remains the fastest known74

algorithm. Similarly, with only a polynomial upper bound on ∆ and no bound on75

D, our wake-up algorithm still runs in O(n logn log ∆
log log ∆ )-time. In this latter case, the76

algorithm is also faster than previous algorithms when only n is known.77

For both algorithms (as with all broadcasting and wake-up algorithms with at78

least linear dependency on n) this assumption too can be removed by standard double-79

and-test techniques, at the cost of never having acknowledgment of completion. The80

task of achieving acknowledgment in such circumstances is addressed in [26].81

Note that to avoid non-well-defined expressions, we will use log(x) to mean82

min{1, log2(x)} wherever logarithms appear.83

1.3. Communications primitives: broadcasting and wake-up. In this pa-84

per we consider two fundamental communications primitives, namely broadcasting and85

wake-up, and consider deterministic protocols for each of these tasks.86

1.3.1. Broadcasting. Broadcasting is one of the most fundamental problems in87

communication networks and has been extensively studied for many decades (see, e.g.,88
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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS 3

[25] and the references therein).89

The premise of the broadcasting task is that one particular node, called the source,90

has a message which must become known to all other nodes. We assume that all other91

nodes start in a dormant state and do not participate until they are “woken up” by92

receiving the source message (this is referred to in some works as the “no spontaneous93

transmissions” rule). As a result, while the model does not assume knowledge of a94

global clock, we can make this assumption in practice, since the current time can be95

appended to the source message as it propagates, and therefore will be known be all96

active nodes. This is important since it allows us to synchronize node behavior into97

fixed-length blocks.98

1.3.2. Wake-up. The wake-up problem (see, e.g., [17]) is a related fundamental99

communication problem that arises in networks where there is no designated “source”100

node, and no synchronized time-step at which all nodes begin communicating. The101

goal is for all nodes to become “active” by receiving some transmission. Rather than102

a single source node which begins active, we instead assume that some subset of103

nodes spontaneously become active at arbitrary time-steps. The task can be seen as104

broadcast from multiple sources, without the ability to assume a global clock. This105

last point is important, and results in wake-up protocols being slower than those for106

broadcast, since nodes cannot co-ordinate their behavior.107

1.4. Related work. As a fundamental communications primitive, the task of108

broadcasting has been extensively studied for various network models for many decades.109

For the model studied in this paper, directed radio networks with unknown struc-110

ture and without collision detection, the first sub-quadratic deterministic broadcasting111

algorithm was proposed by Chlebus et al. [6], who gave an O(n11/6)-time broadcasting112

algorithm. After several small improvements (cf. [7, 24]), Chrobak et al. [10] designed113

an almost optimal algorithm that completes the task in O(n log2 n) time, the first to114

be only a poly-logarithmic factor away from linear dependency. Kowalski and Pelc [20]115

improved this bound to obtain an algorithm of complexity O(n log n logD) and Czumaj116

and Rytter [12] gave a broadcasting algorithm running in time O(n log2D). Finally, De117

Marco [23] designed an algorithm that completes broadcasting in O(n log n log log n)118

time steps. Thus, in summary, the state of the art result for deterministic broadcasting119

in directed radio networks with unknown structure (without collision detection) is the120

complexity of O(nmin{log n log log n, log2D}) [12, 23]. The best known lower bound121

is Ω(n logD) due to Clementi et al. [11].122

Broadcasting has been also studied in various related models, including undirected123

networks, randomized broadcasting protocols, models with collision detection, and124

models in which the entire network structure is known. For example, if the underlying125

network is undirected, then an O(n logD)-time algorithm due to Kowalski [19] exists. If126

spontaneous transmissions are allowed and a global clock available, then deterministic127

broadcast can be performed in O(n) time in undirected networks [6]. Randomized128

broadcasting has been also extensively studied, and in a seminal paper, Bar-Yehuda129

et al. [2] designed an almost optimal broadcasting algorithm achieving the running130

time of O((D + log n) · log n). This bound has been later improved by Czumaj and131

Rytter [12], and independently Kowalski and Pelc [21], who gave optimal randomized132

broadcasting algorithms that complete the task in O(D log n
D + log2 n) time with high133

probability, matching a known lower bound from [22].134

Haeupler and Wajc [15] improved this bound for undirected networks in the model135

that allows spontaneous transmissions and designed an algorithm that completes136

broadcasting in O(D log n log log n/ logD + logO(1) n) time with high probability. In137
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4 A. CZUMAJ AND P. DAVIES

the model with collision detection for undirected networks, an O(D + log6 n)-time138

randomized algorithm due to Ghaffari et al. [14] is the first to exploit collisions and139

surpass the algorithms (and lower bound) for broadcasting without collision detection.140

For more details about broadcasting algorithms in various model, see e.g., [25]141

and the references therein.142

The wake-up problem (see, e.g., [17]) is a related communication problem that arises143

in networks where there is no designated “source” node, and no synchronized time-step144

at which all nodes begin communicating. Before any more complex communication can145

take place, we must first require all nodes to be “active,” i.e., aware that they should be146

communicating. This is the goal of wake-up, and it is a fundamental starting point for147

most other tasks in this setting, for example leader election and clock synchronization148

[9].149

The first sub-quadratic deterministic wake-up protocol was given in by Chrobak150

et al. [9], who introduced the concept of radio synchronizers to abstract the essence151

of the problem. They give an O(n5/3 log n)-time protocol for the wake-up problem.152

Since then, there have been two improvements in running time, both making use of the153

radio synchronizer machinery: firstly to O(n3/2 log n) [4], and then to O(n log2 n) [3].154

Unlike for the problem of broadcast, the fastest known protocol for directed networks155

is also the fastest for undirected networks. Randomized wake-up has also been studied156

(see, e.g., [9, 18]). A recent survey of the current state of research on the wake-up157

problem is given in [17].158

1.5. New results. In this paper we present a new construction of universal159

radio synchronizers and introduce and analyze a new concept of block synchronizers to160

improve the deterministic complexity of two fundamental communication primitives161

in the model of ad-hoc radio networks with unknown topology: broadcasting and162

wake-up.163

By applying the analysis of block synchronizers, we present a new deterministic164

broadcasting algorithm (Algorithm 1) in directed ad-hoc radio networks with un-165

known structure, without collision detection, that for any directed network N with166

n nodes, with eccentricity D, and maximum in-degree ∆, completes broadcasting167

in O(n logD log log D∆
n ) time-steps. This result almost matches a lower bound of168

Ω(n logD) due to Clementi et al. [11], and improves upon the previous fastest al-169

gorithms due to De Marco [23] and due to Czumaj and Rytter [12], which require170

O(n log n log log n) and O(n log2D) time-steps, respectively.171

Our result reveals that a non-trivial speed-up can be achieved for a broad spectrum172

of network parameters. Since ∆ ≤ n, our algorithm has the complexity at most173

O(n logD log logD). Therefore, in particular, it significantly improves the complexity174

of broadcasting for shallow networks, where D � nO(1). Furthermore, the dependency175

on ∆ reduces the complexity even further for networks where the product D∆ is near176

linear in n, including sparse networks which can appear in many natural scenarios.177

Our broadcasting result has also direct implications on the fastest deterministic178

leader election algorithm in directed and undirected radio networks. It is known that179

leader election can be completed in O(log n) times broadcasting time (see, e.g., [10, 13])180

(assuming the broadcast algorithm extends to multiple sources, which is the case here181

as long as we have a global clock), and so our result improves the bound to achieve182

a deterministic leader election algorithm running in O(n log n logD log log D∆
n ) time.183

For undirected networks the best result is O(n log3/2 n
√

log log n) time [8] (we note184

that the O(n logD) broadcast protocol of [19] cannot be used at a log n slowdown185

for leader election, since it relies on token traversal and does not extend to multiple186
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sources). Our result therefore favorably compares for shallow networks (for small D)187

even in undirected networks.188

We also present a deterministic algorithm (Algorithm 2) for the related task of189

wake-up. We show the existence of universal radio synchronizers of delay g(k) =190

O(n logn log k
log log k ), and demonstrate that this yields a wake-up protocol taking time191

O(min{n,D∆} logn log ∆
log log ∆ ). This improves over the previous best result for both directed192

and undirected networks, the O(n log2 n)-time protocol of [3]; the improvement is193

largest when ∆ is small, but even when it is polynomial in n, our algorithm is a194

log log n-factor faster.195

Our improved result for wake-up has direct applications to communication algo-196

rithms in networks that do not have access to a global clock, where wake-up is an197

essential starting point for most more complex communication tasks. For example,198

wake-up is used as a subroutine in the fastest known protocols for fundamental tasks199

of leader election and clock synchronization (cf. [9]). These are two fundamental tasks200

in networks without global clocks, since they allow initially unsynchronized networks201

to be brought to a state in which synchronization can be assumed, and results from202

the better-understood setting with a global clock can then be applied. Our wake-up203

protocol yields O(min{n,D∆} log2 n log ∆
log log ∆ )-time leader election and clock synchronization204

algorithms, which are the fastest known in both directed and undirected networks.205

1.6. Previous approaches. Almost all deterministic broadcasting protocols206

with sub-quadratic complexity (that is, since [6]) have made use of the concept of207

selective families (or some similar variant thereof, such as selectors). These are families208

of sets for which one can guarantee that any subset of [n] := {1, 2, . . . , n} below a209

certain size has an intersection of size exactly 1 with some member of the family.210

They are useful in the context of radio networks because if the members of the family211

are interpreted to be the set of nodes which are allowed to transmit in a particular212

time-step, then after going through each member, any node with an active in-neighbor213

and an in-neighborhood smaller than the size threshold will be informed. Most of the214

recent improvements in broadcasting time have been due to a combination of proving215

smaller selective families exist, and finding more efficient ways to apply them (i.e.,216

choosing which size of family to apply at which time).217

One of the drawbacks of selective-family based algorithms is that applying them218

requires coordination between nodes. For the problem of broadcast, this means that219

some time may be wasted waiting for the current selective family to finish, and also220

that nodes cannot alter their behavior based on the time since they were informed,221

which might be desirable. For the problem of wake-up, this is even more of a difficulty;222

since we cannot assume a global clock, we cannot synchronize node behavior and hence223

cannot use selective families at all.224

To tackle this issue, Chrobak et al. [9] introduced the concept of radio synchronizers.225

These are a development of selective families which allow nodes to begin their behavior226

at different times. A further extension to universal synchronizers in [4] allowed227

effectiveness across all in-neighborhood sizes. However, the adaptability to different228

node start times comes at a cost of increased size, meaning that synchronizer-based229

wake-up algorithms were slightly slower than selective family-based broadcasting230

algorithms.231

The proofs of existence for selective families and synchronizers follow similar lines:232

a probabilistic candidate object is generated by deciding on each element independently233

at random with certain carefully chosen probabilities, and then it is proven that the234
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6 A. CZUMAJ AND P. DAVIES

candidate satisfies the desired properties with positive probability, and so such an235

object must exist. The proofs are all non-constructive (and therefore all resulting236

algorithms non-explicit; cf. [16, 5] for explicits construction of selective families).237

Returning to the problem of broadcasting, a breakthrough came in 2010 with a238

paper by De Marco [23] which took a new approach. Rather than having all nodes239

synchronize their behavior, it instead had them begin their own unique pattern,240

starting immediately upon being informed. These behavior patterns were collated into241

a transmission matrix. The existence of a transition matrix with appropriate selective242

properties was then proven probabilistically. The ability for a node to transmit with a243

frequency which decayed over time allowed De Marco’s method to inform nodes with244

a very large in-neighborhood faster, and this in turn reduced total broadcasting time245

from O(n log2D) [12] to O(n log n log log n).246

A downside of this new approach is that having nodes begin immediately, rather247

than wait until the beginning of the next selector, gives rise to a far greater number of248

possible starting-time scenarios that have be accounted for during the probabilistic249

proof. This caused the logarithmic factor in running time to be log n rather than logD.250

Furthermore, the method was comparatively slow to inform nodes of low in-degree,251

compared to a selective family of appropriate size. These are the difficulties that our252

approach overcomes.253

1.7. Overview of our approach. Our wake-up result follows a similar line to254

the previous works; we prove the existence of smaller universal synchronizers than255

previously known, using the probabilistic method. Our improvement stems from new256

techniques in analysis rather than method, which allow us to gain a log-logarithmic257

factor by choosing what we believe are the optimal probabilities by which to construct258

a randomized candidate.259

Our broadcasting result takes a new direction, some elements of which are new260

and some of which can be seen as a compromise between selective family-type objects261

and the transmission schedules of De Marco [23]. We first note that nodes of small262

in-degree can be quickly dealt with by repeatedly applying (n, nD )-selective families263

“in the background” of the algorithm. This allows us to tailor the more novel part264

of the approach to nodes of large in-degree. We have nodes performing their own265

behavior patterns with decaying transmission frequency over time, but they are semi-266

synchronized to “blocks” of length roughly n
D , in order to cut down the number of267

circumstances we must consider. This idea is formalized by the concept of block268

synchronizers, combinatorial objects which can be seen as an extension of the radio269

synchronizers used for wake-up.270

An important new concept used in our analysis of block synchronizers (and also271

in our proof of small universal synchronizers) is that of cores. Cores reduce a set of272

nodes and starting times to a (usually smaller) set of nodes which are active during a273

critical period. In this way we can combine many different circumstances into a single274

case, and demonstrate that for our purposes they all behave in the same way.275

The most technically involved part of both of the proofs is the selection of276

the probabilities with which we generate a randomized candidate object (universal277

synchronizer or block synchronizer). Intuitively, when thinking about radio networks,278

a node in our network is aiming to inform its out-neighbors, and it should assume279

that as time goes on, only those with large in-neighborhoods will remain uninformed280

(because these nodes are harder to inform quickly). Therefore a node should transmit281

with ever-decreasing frequency, roughly inversely proportional to how large it estimates282

remaining uninformed neighbors’ in-neighborhoods must be. However, the size of these283

This manuscript is for review purposes only.



DETERMINISTIC COMMUNICATION IN RADIO NETWORKS 7

in-neighborhoods cannot be estimated precisely, and so we must tweak the probabilities284

slightly to cover the possible range. In block synchronizers we do this using phases of285

length O(log log D∆
n ) during which nodes halve their transmission probability every286

step, but since behavior must be synchronized to achieve this we cannot do the same287

for radio synchronizers. Instead, we allow our estimate to be further from the true288

value, and require more time-steps around the same value to compensate.289

As with previous results based on selective families, synchronizers, or similar290

combinatorial structures, the proofs of the structures we give are non-constructive,291

and therefore the algorithms are non-explicit.292

2. Combinatorial tools. Our communications protocols rely upon the existence293

of objects with certain combinatorial properties, and we will separate these more294

abstract results from their applications to radio networks. In this section, we will define295

the combinatorial objects we will need. Next, in Sections 3–4, we will demonstrate296

in detail how these combinatorial objects can be used to obtain fast algorithms for297

broadcasting and wake-up.298

2.1. Selective families. We begin with a brief discussion about selective families,299

whose importance in the context of broadcasting was first observed by Chlebus et300

al. [6]. A selective family is a family of subsets of [n] := {1, . . . , n} such that every301

subset of [n] below a certain size has intersection of size exactly 1 with a member of302

the family. For the sake of consistency with successive definitions, rather than defining303

the family of subsets Si, we will instead use the equivalent definition of a set of binary304

sequences Sv (that is, Svi = 1 if and only if v ∈ Si).305

For some m ∈ N, let each v ∈ [n] have its own length-m binary sequence Sv =306

Sv0S
v
1S

v
2 . . . S

v
m−1.307

Definition 2.1. S = {Sv}v∈[n] is an (n, k)-selective family if for any X ⊆ [n]308

with 1 ≤ |X| ≤ k, there exists j, 0 ≤ j < m, such that
∑
v∈X S

v
j = 1. (We say that309

such j hits X.)310

2.1.1. Existence of small selective families. The following standard lemma311

(see, e.g., [11]) posits the existence of (n, k)-selective families of size O(k log n
k ). This312

has been shown to be asymptotically optimal [11].313

Lemma 2.2 (Small selective families). For some constant c and for any314

1 ≤ k ≤ n, there exists an (n, k)-selective family of size at most m = ck log n
k .315

2.1.2. Application to radio networks. During the course of radio network316

protocols we can “apply” a selective family S on an n-node network by having each317

node v transmit in time-step j if and only if v has a message it wishes to transmit and318

Svj = 1 (see, e.g., [6, 11]). Some previous protocols involved nodes starting to transmit319

immediately if they were informed of a message during the application of a selective320

family (or a variant called a selector designed for such a purpose), but here we will321

require nodes to wait until the current selective family is completed before they start322

participating. That is, nodes only attempt to transmit their message if they knew it323

at the beginning of the current application.324

The result of applying an (n, k)-selective family is that any node u which has325

between 1 and k active neighbors before the application will be informed of a message326

upon its conclusion. This is because there must be some time-step j which hits the327

set of u’s active neighbors, and therefore exactly one transmits in that time-step, so u328

receives a message. This method of selective family application in radio networks was329

first used in [6].330
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8 A. CZUMAJ AND P. DAVIES

2.2. Radio synchronizers. Radio synchronizers are an extension of selective331

families designed to account for nodes in a radio network starting their behavior332

patterns at different times, and without access to a global clock. They were first333

introduced in [9] and used in an algorithm for performing wake-up, and this is also334

the purpose for which we will apply them.335

To define radio synchronizers, we first define the concept of activation schedule.336

Definition 2.3. An n-activation schedule is a function ω : [n]→ N.337

We will extend the definition to subsets X ⊆ [n] by setting ω(X) = minv∈X ω(v).338

As for selective families, let each v ∈ [n] have its own length-m binary sequence339

Sv = Sv0S
v
1S

v
2 . . . S

v
m−1. We then define radio synchronizers as follows:340

Definition 2.4. S = {Sv}v∈[n] is called an (n, k,m)-radio synchronizer if for341

any activation schedule ω and for any X ⊆ [n] with 1 ≤ |X| ≤ k, there exists j,342

ω(X) ≤ j < ω(X) +m, such that
∑
v∈X S

v
j−ω(v) = 1.343

One can see that the definition is very similar to that of selective families (Definition344

2.1), except that now each v’s sequence is offset by the value ω(v). To keep track of345

this shift in expressions such as the sum in the definition, we will call such values j346

columns. As with selective families, we say that any column j satisfying the condition347

in Definition 2.4 hits X.348

In [4], the concept of radio synchronizers was extended to universal radio syn-349

chronizers which cover the whole range of k from 1 to n. Let g : [n] → N be a350

non-decreasing function, which we will call the delay function.351

Definition 2.5. S = {Sv}v∈[n] is called an (n, g)-universal radio synchro-352

nizer if for any activation schedule ω, and for any X ⊆ [n], there exists column j,353

ω(X) ≤ j < ω(X) + g(|X|), such that
∑
v∈X S

v
j−ω(v) = 1.354

2.2.1. New result: Existence of small universal radio synchronizers. We355

obtain a new, improved construction of universal radio synchronizers, which improves356

over the previous best result of Chlebus et al. [3] of universal synchronizers with357

g(q) = O(q log q log n).358

Theorem 2.6. For any n ∈ N, there exists an (n, g)-universal radio synchro-359

nizer with g(q) = O( q log q logn
log log q ).360

Our approach will be to randomly generate a candidate synchronizer, and then361

prove that with positive probability it does indeed satisfy the required property. Then,362

for this to be the case, at least one such object must exist. We will prove Theorem 2.6363

in Section 5.364

2.2.2. Application of universal radio synchronizers to radio networks.365

One can apply universal radio synchronizers to the problem of wake-up in radio366

networks by having ω(v) represent the time-step in which node v becomes active367

during the course of a protocol (either spontaneously or by receiving a transmission).368

Subsequently, v interprets Sv as the pattern in which it should transmit, starting369

immediately from time-step ω(v). That is, in each time-step j after activation, v370

checks the next value in Sv (i.e., Svj−ω(v)), transmits if it is 1 and stays silent otherwise.371

Then, the selective property specified by the definition guarantees that any node u372

with an in-neighborhood of size q hears a transmission within at most g(q) steps of its373

first in-neighbor becoming active.374

We will present this approach in details in Section 3.2, where we will obtain a375

new, improved algorithm for the wake-up problem.376
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2.3. Block synchronizers. Next, we introduce block synchronizers, which are a377

new type of combinatorial object designed for use in a fast broadcasting algorithm.378

They can be seen as an extension of both radio synchronizers and the transmission379

matrix formulation of De Marco [23].380

Let ω be an n-activation schedule (cf. Definition 2.3). Let each v ∈ [n] have381

its own length-m binary sequence Sv = Sv0S
v
1S

v
2 . . . S

v
m−1. For any fixed B, define a382

function µB : N → N which rounds its input up to the next multiple of B, that is,383

µB(x) = min{pB : p ≥ x
B , p ∈ N}; we will call s(v) := µB(ω(v)) the start column of v.384

We extend s to subsets of [n] in the obvious way, s(X) = µB(ω(X)).385

Definition 2.7. S = {Sv}v∈[n] is an (n,∆, r, B)-block synchronizer if for any386

activation schedule ω and any set X ⊆ [n] with |X| ≤ ∆, there exists a column j,387

s(X) ≤ j < s(X) +B · d |X|r e, such that
∑
v∈X S

v
j−s(v) = 1.388

Block synchronizers differ from radio synchronizers in two ways: Firstly, on389

top of the offsetting effect of the activation schedule, there is also the function µB390

that effectively “snaps” behavior patterns to blocks of size B, hence the name block391

synchronizer. Secondly, the size of the range in which we must hit X is linearly392

dependent on |X|. This could be generalized to a generic non-decreasing function393

g(|X|) as with universal radio synchronizers, but here for simplicity we choose to use394

the specific function which works best for our broadcasting application. The parameter395

r is the increment by which each block increases the size of sets we can hit.396

2.3.1. New result: Existence of small block synchronizers. We will show397

the existence of small block synchronizers in the following theorem.398

Theorem 2.8. For any n,D,∆ ∈ N with D, ∆ ≤ n < D∆, there exists an399

(n,∆, nD , O( nD logD log log D∆
n ))-block synchronizer.400

We will prove the existence of a small block synchronizer by randomly generating401

a candidate S, and proving that it indeed has the required properties with positive402

probability, in a similar fashion to the proof of small radio synchronizers. We will403

prove Theorem 2.8 in Section 6.404

2.3.2. Application of block synchronizers to radio networks. The idea405

of our broadcasting algorithm will be that any node v waits until the start of the406

first block after its activation time ω(v), and then begins its transmission pattern407

Sv. The definition of block synchronizer aims to model this scenario. The hitting408

condition ensures that any node with an in-neighborhood of size q ≤ ∆ will be informed409

within Bd qr e time-steps of the start of the block in which its first in-neighbor begins410

transmitting.411

We will present this approach in details in Section 3.1, where we will obtain a412

new, improved algorithm for the broadcasting problem.413

3. Algorithms for broadcasting and wake-up. In this section we use the414

machinery developed in the previous section to design our algorithms for broadcasting415

and wake-up in radio networks.416

3.1. Broadcasting. We will assume that D∆ > n, otherwise an earlier417

O(D∆ log n
∆ )-time protocol from [11] can be used to achieve O(D∆ log n

∆ ) = O(n logD)418

time.419

Let S be an (n,∆, nD ,B)-block synchronizer, with B = c nD logD log log D∆
n (cf.420

Theorem 2.8), and recall that µB(x) = min{pB : p ≥ x
B , p ∈ N}, i.e. the start of the421

first block after x. We will say that the source node becomes active at time-step 0, and422
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any other node v becomes active in a time-step i if it received its first transmission at423

time-step i− 1. Our broadcasting algorithm is the following (Algorithm 1):424

Algorithm 1 Broadcast at a node v

Let i be the time-step in which v becomes active
for j from 0 to DB − 1, in time-step µB(i) + j do

v transmits source message iff Svj = 1
end for

3.2. Wake-up. Let S be an (n, g)-universal radio synchronizer with g(q) =425
cq log q logn

log log q (cf. Theorem 2.6). We will say that a node v becomes active in a time-step426

i if it either spontaneous wakes up at i, or received its first transmission at time-step427

i− 1. Our wake-up algorithm is the following (Algorithm 2):428

Algorithm 2 Wake-up at a node v

Let i be the time-step in which v becomes active
for j from 0 to g(n)− 1, in time-step i+ j do

v transmits source message iff Svj = 1
end for

4. Analysis of broadcasting and wake-up algorithms. In this section we429

show that our algorithms for broadcasting and wake-up have the claimed running430

times. Our analysis critically relies on the constructions of small block synchronizers431

and small universal radio synchronizers, as presented in Theorems 2.8 and 2.6.432

We begin with the analysis of the broadcasting algorithm.433

Theorem 4.1. Algorithm 1 performs broadcast in O(n logD log log D∆
n ) time-434

steps.435

To begin the analysis, fix some arbitrary node v and let P be a shortest path from436

the source (or first informed node) x to v. Number the nodes in this path consecutively,437

e.g., P0 = x and Pdist(x,v) = v. Classify all other nodes into layers dependent upon the438

furthest node along the path P to which they are an in-neighbor (some nodes may not439

be an in-neighbor to any node in P ; these can be discounted from the analysis). That440

is, layer L` = {u ∈ V : maxu in-neighbour to Pi i = `} for ` ≤ dist(x, v). We separately441

define layer Ldist(x,v)+1 to be {v}.442

(For a depiction of layer numbering, see Figure 1.)443

At any time step, we call a layer leading if it is the foremost layer containing an444

active node, and our goal is to progress through the network until the final layer is445

leading, i.e., v is active. The use of layers allows us to restrict to the set of nodes of446

our main interest: if we focus on the path node whose in-neighborhood contains the447

leading layer, we cannot have interference from earlier layers since they contain no448

in-neighbors of this path node, and we cannot have interference from later layers since449

they are not yet active.450

Lemma 4.2. Let h : [∆] → N be a non-decreasing function, and define451

T (n,D,∆, h) to be the supremum of the function
∑D
i=1 h(qi), where integers 1 ≤ qi ≤ ∆452

satisfy the additional constraint
∑D
i=1 qi ≤ n. If a broadcast or wake-up protocol en-453

sures that any layer (under any choice of v) of size q remains leading for no more454

than h(q) time-steps, then all nodes become active within T (n,D,∆, h) time-steps.455
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Fig. 1. An example of layer numbering.

Proof. Let qi = |Li|. Layer Ldist(x,v)+1 must be leading (and thus node v active)456

once no other layers are leading, and so this occurs within
∑dist(x,v)
i=1 h(qi) time-steps457

after layer L1 becomes leading. Since
∑dist(x,v)
i=1 h(qi) ≤

∑D
i=1 h(qi) and

∑D
i=1 qi ≤ n,458

this is no more than T (n,D,∆, h) time-steps.459

Since v was chosen arbitrarily, all nodes must be active within T (n,D,∆, h)460

time-steps of x becoming active.461

We make use of Lemma 4.2 to give bounds on the running times of our algorithms:462

Lemma 4.3. Algorithm 1 ensures that any layer of size q remains leading for fewer463

than Bd q+rr e time-steps.464

Proof. For all nodes w, let ω(w) be the time-step that w becomes active during465

the course of the algorithm. By definition of a block selector, for any layer Li of size466

qi there is a time-step j < s(Li) +Bd qir e in which exactly one element of Li transmits.467

Then, either path node Pi hears the transmission (and so layer Li is no longer leading468

in time-step j + 1), or Pi has active in-neighbors not in Li, in which case these must469

be in a later layer so Li is not leading. Thus, Li can remain leading for no more than470

s(Li) + Bd qir e − ω(Li) < Bd qi+rr e time-steps.471

With these tools, we are now ready to complete the proof of Theorem 4.1.472

Proof of Theorem 4.1. By Lemma 4.2, Algorithm 1 ensures that all nodes are473

active (and have therefore heard the source message) within T (n,D,∆, h) time-steps,474

where h(q) = Bd q+rr e. We will use an upper bound T (n,D,∆, h′), where h′(q) = B q+2r
r .475

Since h′ is linear and increasing,
∑D
i=1 h

′(qi) subject to
∑D
i=1 qi ≤ n is maximized476

whenever
∑D
i=1 qi = n, for example at qi = n

D for all i ∈ [D]. So, the algorithm477

completes broadcast within478

D∑
i=1

h′(
n

D
) =

D∑
i=1

B
n
D + 2r

r
= 3BD = 3c′n logD log log

D∆

n
479

time-steps.480

In a similar way, we can analyze Algorithm 2:481

Theorem 4.4. Algorithm 2 performs wake-up in O(min(n,D∆) logn log ∆
log log ∆ ) time-482

steps.483
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Proof. By Lemma 4.2, and the selective property of the universal synchroniz-484

ers proven in Theorem 2.6, Algorithm 2 ensures that all nodes are active within485

T (n,D,∆, g) time-steps, where g(q) = cq log q logn
log log q . Since g is convex and increasing,486 ∑D

i=1 g(qi) subject to
∑D
i=1 qi ≤ n and qi ≤ ∆ is maximized at qi = ∆ if i ≤ n

∆ , and487

qi = 0 otherwise. Hence, the algorithm completes wake-up within488

min(D, n∆ )∑
i=1

g(∆) =

min(D, n∆ )∑
i=1

c∆ log ∆ log n

log log ∆
=
cmin(n,D∆) log n log ∆

log log ∆
489

time-steps.490

5. Small universal radio synchronizers: Proof of Theorem 2.6. In this491

section we will prove our main result about the existence of small universal radio492

synchronizers, Theorem 2.6. We first restate the theorem:493

Theorem 2.6. For any n ∈ N, there exists an (n, g)-universal radio synchro-494

nizer with g(q) = O( q log q logn
log log q ).495

Our approach will be to randomly generate a candidate synchronizer, and then496

prove that with positive probability it does indeed satisfy the required property. Then,497

for this to be the case, at least one such object must exist. We note that, since we498

are only concerned with asymptotic behavior, we can assume that n is at least a499

sufficiently large constant.500

Let c be a constant to be chosen later. Our candidate S = {Sv}v∈[n] will be501

generated by independently choosing each Svj (for j < g(n)) to be 1 with probability502
c logn

6(j+c logn) and 0 otherwise.503

In analyzing whether S hits all sets X ⊆ [n] under any activation schedule, we504

must first define the concept of a core to reduce the number of possibilities we must505

consider.506

Definition 5.1. Fix any X ⊆ [n] and any activation schedule ω. Let Xj be the507

elements of X which are active by column j, i.e., Xj = {v ∈ X : ω(v) ≤ j}. Let j′ be508

the smallest j such that j − ω(X) ≥ g(|Xj |). For every v, define ψ(v) = ω(v)− ω(X),509

i.e., ψ is ω shifted so that ψ(X) = 0.510

The core CX,ω of a subset X ⊆ [n] with respect to activation schedule ω is defined511

to be512

{(v, ψ(v)) : ω(v) < j′}513

This definition aims to narrow our focus to only the important elements in a514

particular subset X. Cores cut down the number of possibilities by removing redundant515

elements which only become active after the set must already have been hit, and by516

shifting activation times to begin at zero (which, as we show, can be done without517

loss of generality). We do not want cores to be subject to an overriding activation518

schedule, so we include the activation times of elements of a core within its definition.519

When we talk about “hitting” a core, we mean using these incorporated activation520

times rather than an activation schedule, and we assume that column numberings521

start at 0 at the beginning of the core.522

We note that if S hits a core CX,ω within g(|CX,ω|) columns under ψ, then it hits523

the set X within g(|X|) columns under ω.This result allows us to ‘shift’ the activation524

times, and analyze a core independently of the many activation schedules from which525

it could be derived. We now need only prove that our candidate synchronizer hits all526
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possible cores, since this will imply that it hits all subsets of [n] under all activation527

schedules.528

We make one further definition which will simplify our analysis:529

Definition 5.2. For a core C and column j, let C(j) denote {(v, ψ(v)) ∈ C :530

ψ(v) ≤ j}. The load of column j of core C, denoted fC(j), is defined to be fC(j) =531 ∑
(v,ψ(v))∈C(j)

c logn
6(j−ψ(v)+c logn) .532

Note that load of a column j of core C is the expected number of 1s in533

a column, under the probabilities used for our candidate S, that is, fC(j) =534 ∑
(v,ψ(v))∈C(j) Pr[Svj−Bφ(v) = 1].535

If fC(j) is close to constant, then the probability of S hitting C in column j will536

also be almost constant. We therefore wish to bound fC(j), both from above and537

below.538

Lemma 5.3. For all j < g(|C|), fC(j) > log log |C|
12 log |C| .539

Proof. The minimum contribution each v ∈ C(j) can add to fC(j) is c logn
6(j+c logn) .540

Hence, fC(j) ≥ c logn
6(j+c logn) · |C(j)|. To bound this quantity, we separate into two cases:541

Case 1: j < c log n. In this case we can obtain an adequate bound simply using that542

|C| ≥ 1:543

c log n

6(j + c log n)
· |C(j)| ≥ c log n

6(j + c log n)
>

1

12
≥ log log |C|

12 log |C|
544

Case 2: j ≥ c log n. If j < g(|C|), then we also have j < g(|C(j)|). This can be545

seen by examining any set X and activation schedule ω from which C can be546

derived, and noting that547

j + ω(X) < g(|C|) + ω(X) = g(|Xj′ |) + ω(X) ≤ j′548

by Definition 5.1, and so549

j = (j + ω(X))− ω(X) < g(|Xj+ω(X)|) = g(|C(j)|)550

also by Definition 5.1.551

Recalling (cf. Theorem 2.6) that g(q) = cq log q logn
log log q , rearranging gives |C(j)| >552

j log log |C(j)|
c logn log |C(j)| . Therefore total load is bounded by553

fC(j) ≥ c log n

6(j + c log n)
· |C(j)| > j log log |C(j)|

6(j + c log n) log |C(j)|
≥ log log |C|

12 log |C|554

This lemma provides a lower bound on fC(j). We also need an upper bound, but555

we cannot obtain a good one for all j, since transmission load in a particular column556

can be as large as |C|. We instead prove that the set of columns with load within our557

desired range is sufficiently large.558

Let FC = {j < g(|C|) : log log |C|
12 log |C| < fC(j) < 1

2 log log |C|}. We prove the following559

bound:560

Lemma 5.4. |FC | ≥ c|C| logn log |C|
10 log log |C| .561

Proof. Let us first upper-bound the total load over all columns j < g(|C|):562 ∑
j<g(|C|)

fC(j) =
∑

j<g(|C|)

∑
(v,ψ(v))∈C(j)

c log n

6(j − ψ(v) + c log n)

This manuscript is for review purposes only.



14 A. CZUMAJ AND P. DAVIES

=
∑

(v,ψ(v))∈C

∑
j<g(|C|)

c log n

6(j − ψ(v) + c log n)
563

≤
∑

(v,ψ(v))∈C

∫ g(|C|)−1

ψ(v)−1

c log n

6(j − ψ(v) + c log n)
dj

(by standard integral bound)

564

=
c log n

6

∑
(v,ψ(v))∈C

ln

(
g(|C|)− 1− ψ(v) + c log n

c log n− 1

)(evaluating integral)

≤ c log n · |C|
6

· ln
(
g(|C|) + c log n− 1

c log n− 1

)
565

=
c|C| log n

6
· ln

 c|C| logn log |C|
log log |C| + c log n− 1

c log n− 1


(substituting g’s definition)

≤ c|C| log n

6
· ln

 c|C| logn log |C|
log log |C|
1
2c log n

+ 1


≤ c|C| log n

6
· ln(4|C|1.1)

=
1.1 ln 2 log |C|+ ln 4

6
c|C| log n566

≤ 0.45c|C| log n log |C|567568

In the penultimate inequality we use that 2|C| log |C|
log log |C| + 1 ≤ 4|C|1.1, which is obvious569

for sufficiently large |C| and can be checked manually for small |C| (remembering570

that we consider log(x) to mean min{log2(x), 1}). The final inequality can be checked571

similarly.572

Since fC(j) ≥ 0 for any j < g(|C|), the inequality above implies that the number573

of columns j < g(|C|) with fC(j) ≥ 1
2 log log |C| must be fewer than 0.9c|C| logn log |C|

log log |C| .574

Therefore, since by Lemma 5.3 all elements j 6∈ FC must have fC(j) ≥ 1
2 log log |C|,575

and since g(|C|) = c|C| logn log |C|
log log |C| , we obtain:576

|FC | ≥ g(|C|)− 0.9c|C| log n log |C|
log log |C|

=
c|C| log n log |C|

10 log log |C|
577
578

Next, we will give a lower bound for the probability that j hits C, which will later579

be shown to imply that columns in the set FC (and hence the candidate synchronizer580

as a whole) have a good probability of hitting C. The following lemma, or variants581

thereof, has been used in several previous works such as [23], but we prove it here for582

completeness.583

Lemma 5.5. Let xi, i ∈ [n] be independent {0, 1}-valued random variables with584

Pr[xi = 1] ≤ 1
2∀i, and let f =

∑
i∈[n] Pr[xi = 1]. Then Pr[

∑
i∈[n] xi = 1] ≥ f4−f .585
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Proof.

Pr[
∑
i∈[n]

xi = 1] =
∑
j∈[n]

Pr[xj = 1 ∧ xi = 0∀i 6= j]586

≥
∑
j∈[n]

Pr[xj = 1] ·Pr[xi = 0∀i]587

≥ f ·Pr[xi = 0∀i]588

= f ·
∏
i∈[n]

(1−Pr[xi = 1])589

≥ f ·
∏
i∈[n]

4−Pr[xi=1]
590

= f · 4−
∑
i∈[n] Pr[xi=1]

591

= f4−f592593

For any j, applying this lemma with xv = Svj−ψ(v), we get that the probability594

that j hits C is at least fC(j) · 4−fC(j).595

Lemma 5.6. For any core C, the probability that there is no column j < g(|C|)596

that hits C is at most 1− n
−c|C|
140 ln 2 .597

Proof. By Lemma 5.5, each column j independently hits C with probability at598

least fC(j) · 4−fC(j). To proceed with the analysis we will focus on the columns in FC ,599

that is, columns j < g(|C|) with log log |C|
12 log |C| < fC(j) < 1

2 log log |C|.600

Let us consider the function 1 − x4−x for x > 0, and notice that this function601

has a global minimum at µ = 1/ ln 4, is decreasing for x < µ, and is increasing for602

x > µ. For simplicity of notation, let h denote the number of columns j ∈ FC with603

µ < fC(j) < 1
2 log log |C|. Then, the probability that no columns hit is upper bounded604

as follows:605

Pr[no column hits] ≤
∏

j<g(|C|)

(1− fC(j) · 4−fC(j))606

≤
∏
j∈FC

(1− fC(j) · 4−fC(j))

=
∏
j∈FC ,

µ<fC(j)≤ 1
2 log log |C|

(1− fC(j)4−fC(j))
∏
j∈FC ,

log log |C|
12 log |C| <fC(j)≤µ

(1− fC(j) · 4−fC(j))607

≤
∏
j∈FC ,

µ<fC(j)≤ 1
2 log log |C|

(
1− log log |C|

2 log |C|

) ∏
j∈FC ,

log log |C|
12 log |C| <fC(j)≤µ

(
1− log log |C|

14 log |C|

)(since products are maximised by setting fC(j) = 1
2

log log |C| and fC(j) =
log log |C|
12 log |C| , respectively)

≤
(

1− log log |C|
2 log |C|

)h
·
(

1− log log |C|
14 log |C|

)|FC |−h

This manuscript is for review purposes only.



16 A. CZUMAJ AND P. DAVIES

≤
(

1− log log |C|
14 log |C|

)|FC |
608

≤
(

1− log log |C|
14 log |C|

) c|C| logn log |C|
10 log log |C|

(by Lemma 5.4)

609

≤ e
−c|C| logn

140

(using 1− x ≤ e−x for x ∈ (0, 1))

610

= n
−c|C|
140 ln 2611612

We now have a lower bound on the probability that S hits a particular core, but613

it remains to bound the number of possible cores we must hit.614

Let Cq be the set of possible cores of size q.615

Lemma 5.7. |Cq| ≤ n3q.616

Proof. There are at most n · g(n) possible pairs of (v, ψ(v)), and thus at most617 (
n·g(n)
q

)
ways of choosing a size-q subset. So, |Cq| is at most

(
n·g(n)
q

)
≤ (n · g(n))q =618

( cn
2 log2 n

log logn )q ≤ n3q (for sufficiently large n).619

We are now ready to prove our existence result:620

Lemma 5.8. With positive probability, S is an (n, g)-universal synchronizer.621

Proof. We will set c to be 700 ln 2. By union bound, using Lemmas 5.6 and 5.7,622

Pr[S is an (n, g)-universal synchronizer] ≤
n∑
q=1

∑
C∈Cq

Pr[C is not hit]623

≤
n∑
q=1

∑
C∈Cq

n
−c|C|
140 ln 2 ≤

n∑
q=1

n3q · n
−cq

140 ln 2 =

n∑
q=1

n(3− c
140 ln 2 )q

624

≤
n∑
q=1

n−2q < 1625

626

627

We are now ready to prove Theorem 2.6:628

Proof. Since our candidate S satisfies the properties of an (n, g)-universal radio629

synchronizer with positive probability, such an object must exist. This completes the630

proof of Theorem 2.6.631

6. Small block synchronizers: Proof of Theorem 2.8. In this section we632

will prove our main result about the existence of small block synchronizers, Theorem633

2.8. We first restate the theorem:634

Theorem 2.8. For any n,D,∆ ∈ N with D, ∆ ≤ n < D∆, there exists an635

(n,∆, nD , O( nD logD log log D∆
n ))-block synchronizer.636

As in our proof of the existence of small radio synchronizers (see Section 5), we637

only consider the case where n is at least a sufficiently large constant, since we are only638

concerned with asymptotic behavior. We will again need to define the core of a subset639

of [n] (with respect to an activation schedule ω) in order to reduce the amount of640

possible circumstances we will consider. The main difference to our definition of cores641
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in Section 5 is that we need only retain the relative values of ω to the nearest block,642

rather than keeping the exact (shifted) values. This is the reason for us introducing643

the concept of blocks (and block synchronizers), and it allows the range of possible644

cores to be cut down substantially.645

Definition 6.1. Fix any X ⊆ [n] and activation schedule ω. Let Xj be the646

elements of X which are active by the start of the block containing column j, i.e.,647

Xj = {v ∈ X : s(v) ≤ j}. Let j′ be the smallest j such that j − s(X) ≥ B·|Xj |
r .648

For every v, define φ(v) = s(v)−s(X)
B , i.e., φ(v) is the number of blocks that pass649

between the start column of X and the start column of v. Note that φ(v) ∈ N.650

The core CX,ω of a subset X ⊆ [n] with respect to activation schedule ω is defined651

to be652

{(v, φ(v)) : v ∈ X, s(v) < j′}653

We see, as we did in Section 5, that if some object S “hits” all cores, then it hits654

all subsets of [n] under any activation schedule. By hitting a core C at column j, we655

mean that
∑

(v,φ(v))∈C S
v
j−Bφ(v) = 1, and we assume column numberings start at the656

beginning of the core. So, if S hits a core CX,ω within
B·|CX,ω|

r columns, then it hits657

the set X within B·|X|
r columns of s(X) under activation schedule ω.658

We wish to prove the existence of a small block synchronizer by randomly generat-659

ing a candidate S, and proving that it indeed has the required properties with positive660

probability, in a similar fashion to the proof of small radio synchronizers. While this661

could be achieved directly, we can in fact get a better result by proving existence of662

a slightly weaker object using this method, and then bridging the gap with selective663

families.664

Definition 6.2. S = {Sv}v∈[n] is an (n, k,∆, r, B)-upper block synchronizer665

if, for any core C with k ≤ |C| ≤ ∆, there exists column j < B·|C|
r such that666 ∑

(v,φ(v))∈C S
v
j−Bφ(v) = 1.667

An upper block synchronizer has a lower bound k on the size of the cores it must668

hit. To obtain our full block synchronizer result, we will first show the existence of669

small upper block synchronizers, and then show that these can be extended to block670

synchronizers by adding selective families to hit cores of size less than k.671

Theorem 6.3. For some constant c and for any n,D,∆ with D,∆ ≤ n < D∆,672

there exists an (n, nD ,∆,
n
D , c

n
D logD log log D∆

n )-upper block synchronizer.673

Proof. Let c be a constant to be chosen later. For simplicity of notation we now674

set k = n
D , r = n

D , and B = c nD logD log log D∆
n .675

Define ρ(j) = j mod 2 log log D∆
n . Our candidate upper block synchronizer S =676

{Sv}v∈[n] will be generated by independently choosing each Svj (for j < nB
r ) to be 1677

with probability
c logD log log D∆

n

(B+j)2ρ(j)+1 and 0 otherwise.678

We will analyze our candidate upper block synchronizer by fixing some particular679

core and bounding the probability that the candidate hits it. We begin by defining680

the load of a column (with respect to some fixed core C), and bounding it both above681

and below on a subset of columns. As before, load represents expected number of 1s682

in a column, and we want it to be constant in order to maximize hitting probability.683

Recall that we now consider column numbering to begin at the start of the core, i.e.684

min(v,φ(v))∈C φ(v) = 0.685
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Definition 6.4. Let C(j) denote {(v, φ(v)) ∈ C : Bφ(v) ≤ j}. The load of a686

column j of core C, denoted fC(j), is defined to be
∑

(v,φ(v))∈C(j) Pr[Svj−Bφ(v) = 1] =687 ∑
(v,φ(v))∈C(j)

c logD log log D∆
n

(j−Bφ(v)+B)2ρ(j)+1 .688

Since load varies across a wide range during each 2 log log D∆
n -length “phase,” we689

first consider only the columns at the start of each phase (i.e., those j with ρ(j) = 0),690

which we will call 0-columns.691

Lemma 6.5. For all B
2 ≤ j <

B·|C|
r with ρ(j) = 0, fC(j) >

1
6 .692

Proof. Recall that, when deriving a core from a set X, we ended the core at the693

first column j′ with j′−s(X) ≥ B·|Xj |
r , i.e. for all j ≤ j′−1, j−s(X) <

B·|Xj |
r . Having694

shifted column numberings, this implies that for j < B·|C|
r , j < B·|C(j)|

r . The minimum695

contribution any(v, φ(v)) ∈ C(j) can add to fC(j) is
c logD log log D∆

n

2(j+B) . Therefore total696

load is upper bounded by697

fC(j) ≥ |C(j)| ·
c logD log log D∆

n

2(j +B)
>

cj

2c(j +B)
≥ 1

6698

This lemma provides a lower bound on fC(j). We also need an upper bound, but699

we cannot obtain a good one for all j, since load in a particular column can be very700

large. We circumvent this issue by only bounding the load on a smaller set of columns.701

Let FC = {j < B·|C|
r : ρ(j) = 0, 1

6 < fC(j) < 3 log |C|Dn }. We prove a lower bound702

on |FC |.703

Lemma 6.6. If n
D ≤ |C| ≤ ∆, then |FC | ≥ c

6 |C| logD.704

Proof. We first upper bound the total load of all 0-columns j with j < B·|C|
r and705

then show that not too many of these columns can have fC(j) ≥ 3 log |C|Dn , giving a706

lower bound for the number of 0-columns in FC .707

We bound the total load of all 0-columns j with j < B·|C|
r as follows:708 ∑

j<
B·|C|
r

ρ(j)=0

fC(j) =
∑

j<
B·|C|
r

ρ(j)=0

∑
(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B)

=
∑

(v,φ(v))∈C

∑
Bφ(v)≤j<B·|C|

r

ρ(j)=0

c logD log log D∆
n

2(j −Bφ(v) +B)

=
∑

(v,φ(v))∈C

B·|C|
2r log log D∆

n

−1∑
i=

Bφ(v)

2 log log D∆
n

c logD log log D∆
n

2(2i log log D∆
n −Bφ(v) +B)

(substitution of sum index variable)

≤
∑

(v,φ(v))∈C

∫ B·|C|
2r log log D∆

n

−1

Bφ(v)

2 log log D∆
n

−1

c logD log log D∆
n

2(2i log log D∆
n −Bφ(v) +B)

di

(using standard integral bound)

=
c logD

4

∑
(v,φ(v))∈C

ln

(
B·|C|
r − 2 log log D∆

n −Bφ(v) +B

B − 2 log log D∆
n

)(evaluating integral)
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≤ c|C| logD

4
ln

(
B·|C|
r − 2 log log D∆

n +B

B − 2 log log D∆
n

)

=
c|C| logD

4
ln

(
|C|c logD log log D∆

n − 2 log log D∆
n +B

B − 2 log log D∆
n

)

≤ c|C| logD

4
ln

(
2(c|C| logD log log D∆

n +B)

B

)

=
c|C| logD

4
ln

(
2(|C|+ n

D )
n
D

)
709

≤ 1

4
c|C| logD ln

4|C|D
n

(using the assumption n
D
≤ |C|)

≤ 1

4
c|C| logD log

|C|D
n

710
711

712

Since for any j < B·|C|
r we have fC(j) > 0, the inequality above implies that there713

must be not more than 1
12c|C| logD 0-columns with fC(j) ≥ 3 log |C|Dn . By Lemma714

6.5, the number of columns j with j < B·|C|
r for which fC(j) ≤ 1

6 is at most B
2 , and715

hence the number of such 0-columns is at most B
4 log log D∆

n

. Therefore, |FC |, which is716

the number of 0-columns j with j < B·|C|
r for which 1

6 < fC(j) < 3 log |C|Dn , is upper717

bounded as follows:718

|FC | ≥
B · |C|

2r log log D∆
n

− B

4 log log D∆
n

− 1

12
c|C| logD719

=
c

2
logD

(
|C| − n

2D
− |C|

6

)
≥ c

6
|C| logD720

721

where the last inequality follows from our assumption that n
D ≤ |C|.722

With the bound of the load of 0-columns in Lemma 6.6, we can obtain a significantly723

tighter bound on a subset of all columns.724

Let FC = {j < B·|C|
r : 1

6 < fC(j) ≤ 2}.725

Lemma 6.7. For any C with n
D ≤ |C| ≤ ∆, |FC | ≥ c

12 |C| logD.726

Proof. We show that, whenever we have a 0-column with load in the range727

( 1
6 , 3 log |C|Dn ), there must be some column within the same phase for which load is in728

the range ( 1
6 , 2).729

For any j ∈ FC , let j′ = j + log fC(j)− 1. Then,730

j′ < j + log(3 log
|C|D
n

)− 1 < j + 2 log log
D∆

n
731

so j′ is in the same phase as j (i.e., j − ρ(j) = j′ − ρ(j′)). Hence,732
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fC(j
′) =

∑
(v,φ(v))∈C(j′)

c logD log log D∆
n

(j′ −Bφ(v) +B)2ρ(j′)+1
733

=
∑

(v,φ(v))∈C(j)

c logD log log D∆
n

(j′ −Bφ(v) +B)2ρ(j)+log fC(j)
734

=
∑

(v,φ(v))∈C(j)

c logD log log D∆
n

(j′ −Bφ(v) +B)fC(j)
735

=
2

fC(j)

∑
(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B)
· (j −Bφ(v) +B)

(j′ −Bφ(v) +B)
736

737

Since, for any (v, φ(v)) ∈ C(j), 1
3 < 1

1+
2 log log D∆

n
B

≤ (j−Bφ(v)+B)
(j′−Bφ(v)+B) ≤ 1, we can738

bound fC(j
′) from above:739

fC(j
′) ≤ 2

fC(j)

∑
(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B)
· 1 = 2740

and below:741

fC(j
′) >

2

fC(j)

∑
(v,φ(v))∈C(j)

c logD log log D∆
n

2(j −Bφ(v) +B)
· 1

3
=

2

3
742

(The reason we allow loads to be as low as 1
6 in the definition of FC is to account743

for cases where fC(j) ≤ 2 and so j′ = j.)744

Therefore j′ ∈ FC . This mapping of j to j′ is an injection from FC to FC , and so745

|FC | ≥ |FC | ≥ c
12 |C| logD.746

Now that we have proven that sufficiently many columns have loads within a747

constant-size range, we want to show that S has a good probability of hitting C on748

these columns. To do so, we again apply Lemma 5.5, setting xv = Svj−Bφ(v), and see749

that the probability of S hitting C on column j is at least fC(j) · 4−fC(j)750

Lemma 6.8. For any core C with n
D ≤ |C| ≤ ∆, with probability at least 1−D−

c|C|
63751

there is a column j < B·|C|
r on which S hits C.752

Proof. Let us first recall that FC = {j < B·|C|
r : 1

6 < fC(j) ≤ 2}, and note that753

function h(x) = 1− x4−x for 1
6 ≤ x ≤ 2 is maximized at x = 2, with h(2) = 7

8 .754

Each column j independently hits C with probability at least fC(j) · 4−fC(j), so755

the probability that none hit is bounded by:756

Pr[no column hits] ≤
∏

j<
B·|C|
r

(1− fC(j) · 4−fC(j)) ≤
∏
j∈FC

(1− fC(j) · 4−fC(j))757

≤
∏
j∈FC

7

8
≤
(

7

8

) c
12 |C| logD

= D−
c
12 |C| log 7

8 ≤ D−
c·|C|
63758

759

where the penultimate inequality follows from Lemma 6.7.760
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We have a bound on the probability of hitting a particular core, but before we761

can show that we can hit all of them, we must count the number of possible cores.762

Let Cq be the set of possible cores of size q.763

Lemma 6.9. |Cq| ≤ D2q.764

Proof. For any (v, φ(v)) ∈ C, Bφ(v) < B|C|
r , i.e., for a core of size q, φ(v) < q

r .765

Therefore there are at most n · qr possible pairs of (v, φ(v)), and thus at most
(
n· qr
q

)
766

ways of choosing a size-q subset. So, |Cq| is at most
(
nq/r
q

)
=
(
Dq
q

)
≤ (eD)

q ≤ D2q.767

We are now ready to prove the existence of a small upper block synchronizer:768

Lemma 6.10. With positive probability, S is an (n, nD ,∆,
n
D , c

n
D logD log log D∆

n )-769

upper block synchronizer.770

Proof. We will set c to be 189. By union bound,771

Pr[S is not an upper block synchronizer] ≤
∆∑

q= n
D

∑
C∈Cq

Pr[C is not hit]772

≤
∆∑

q= n
D

∑
C∈Cq

D−cq/63 ≤
∆∑

q= n
D

D2qD−cq/63 =

∆∑
q= n

D

D2qD−3q
773

=

∆∑
q= n

D

D−q <
2

D
< 1774

775

Since, with positive probability, our candidate S is an776

(n, nD ,∆,
n
D , c

n
D logD log log D∆

n )-upper block synchronizer, at least one such777

object must exist, and so we have completed our proof of Theorem 6.3.778

We can now prove Theorem 2.8:779

Proof. We construct block synchronizer S by taking an780

(n, nD ,∆,
n
D , c

n
D logD log log D∆

n )-upper block synchronizer S and inserting an781

(n, nD )-selective family R of size c̃ nD logD log log D∆
n at the beginning of each block782

(we know by Lemma 2.2 that a selective family of size c̃ nD logD exists, and we783

can pad it arbitrarily to this larger size). That is, our block size will now be784

B := |R| + B = (c + c̃) nD logD log log D∆
n , and our block synchronizer S will be785

formally defined by:786

S = {Sv}v∈[n] is defined by Svj =

{
Rvj mod B if (j mod B) < |R|,
Sv
j−d jB eR

otherwise.
787

Setting ĉ = c + c̃, we show that S satisfies the conditions of an788

(n,∆, nD , ĉ
n
D logD log log D∆

n )-block synchronizer.789

Let C be a core of size at most ∆.790

Case 1: |C| ≤ n
D . ∀(v, φ(v)) ∈ C we have φ(v) = 0, since the core ends before column791

B by Definition 6.1, and so C will be hit by the (n, nD )-selective family R. It792

will therefore be hit by S on some column j < |R| < B = Bd |C|r e. Note that793

this case is the reason we require the ceiling function in the definition of a794

block synchronizer, but not in an upper block synchronizer.795

Case 2: |C| > n
D . If |C| > n

D , then it will be hit by a column j < B·|C|
r in the upper796

block synchronizer S, which corresponds to the column j+ d jB e|R| in S. Since797
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j + d jB e|R| <
B·|C|
r + d |C|r e|R| ≤ (B + R)d |C|r e = Bd |C|r e, this satisfies the798

block synchronizer property.799

So, S hits all cores C with |C| < ∆ within Bd |C|r e columns, and therefore hits800

all sets X within Bd |X|r e under any activation schedule, fulfilling the criteria of an801

(n,∆, nD , ĉ
n
D logD log log D∆

n )-block synchronizer.802

7. Conclusions. The task of broadcasting in radio networks is a longstanding,803

fundamental problem in communication networks. Our result for deterministic broad-804

casting in directed networks combines elements from several of the previous works with805

some new techniques, and, in doing so, makes a significant improvement to the fastest806

known running time. Our algorithm for wake-up also improves over the previous807

best running time, in both directed and undirected networks, and relies on a proof of808

smaller universal synchronizers, a combinatorial object first defined in [4].809

Neither of these algorithms are known to be optimal. The best known lower bound810

for both broadcasting and wake-up is Ω(min(n logD,D∆ log n
∆ )) [11]; our broadcasting811

algorithm therefore comes within a log-logarithmic factor, but our wake-up algorithm812

remains a logarithmic factor away.813

As well as the obvious problems of closing these gaps, there are several other open814

questions regarding deterministic broadcasting in radio networks. Firstly, the lower815

bound for undirected networks is weaker than that for directed networks [21], and816

so one avenue of research would be to find an Ω(n logD) lower bound in undirected817

networks, matching the broadcasting time of [19]. Secondly, the algorithms given818

here, along with almost all previous work, are non-explicit, and therefore it remains819

an important challenge to develop explicit algorithms that can come close to the820

existential upper bound. The best constructive algorithm known to date is by [16],821

but it is a long way from optimality.822

Some variants of the model also merit interest, in particular the model with823

collision detection. It is unknown whether the capacity for collision detection improves824

deterministic broadcast time, as it does for randomized algorithms [14]. Collision825

detection does remove the requirement of spontaneous transmissions for the use of826

the O(n) algorithm of [6], but a synchronized global clock would still be required. It827

should be noted that collision detection renders the wake-up problem trivial, since828

if every active node transmits in every time-step, collisions will wake up the entire829

network within D time-steps.830
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