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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS*

ARTUR CZUMAJ? AND PETER DAVIES?
1

Abstract. In this paper we improve the deterministic complexity of two fundamental communica-
tion primitives in the classical model of ad-hoc radio networks with unknown topology: broadcasting
and wake-up. We consider an unknown radio network, in which all nodes have no prior knowledge
about network topology, and know only the size of the network n, the maximum in-degree of any
node A, and the eccentricity of the network D.

For such networks, we first give an algorithm for wake-up, based on the existence of small
min{n,DA} lognlog A
loglog A
both directed and undirected networks, improving over the previous best O(n log? n)-time result

across all ranges of parameters, but particularly when maximum in-degree is small.

Next, we introduce a new combinatorial framework of block synchronizers and prove the existence
of such objects of low size. Using this framework, we design a new deterministic algorithm for the
fundamental problem of broadcasting, running in O(nlog D log log DTA) time. This is the fastest
known algorithm for the problem in directed networks, improving upon the O(nlognloglogn)-time
algorithm of De Marco (2010) and the O(nlog? D)-time algorithm due to Czumaj and Rytter (2003).
It is also the first to come within a log-logarithmic factor of the Q(nlog D) lower bound due to
Clementi et al. (2003).

Our results also have direct implications on the fastest deterministic leader election and clock
synchronization algorithms in both directed and undirected radio networks, tasks which are commonly
used as building blocks for more complex procedures.

universal synchronizers. This algorithm runs in O( ) time, the fastest known in

Key words. Radio Networks, Broadcasting, Wake-up, Deterministic
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1. Introduction.

1.1. Model of communication networks. We consider the classical model
of ad-hoc radio networks with unknown structure. A radio network is modeled by
a (directed or undirected) network M = (V, E), where the set of nodes corresponds
to the set of transmitter-receiver stations. The nodes of the network are assigned
different identifiers (IDs), and throughout this paper we assume that all IDs are distinct
numbers in {1,...,|V|}. A directed edge (v,u) € E means that node v can send a
message directly to node u. To make propagation of information feasible, we assume
that every node in V' is reachable in 91 from any other.

In accordance with the standard model of unknown (ad-hoc) radio networks (for
more elaborate discussion about the model, see, e.g., [1, 2, 6, 10, 11, 14, 20, 22, 25]),
we make the assumption that a node does not have any prior knowledge about the
topology of the network, its in-degree and out-degree, or the set of its neighbors. We
assume that the only knowledge of each node is its own ID, the size of the network n,
the mazimum in-degree of any node A, and the eccentricity of the network D, which
is the maximum distance from the source node to any node in 1.
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2 A. CZUMAJ AND P. DAVIES

Nodes operate in discrete, synchronous time steps, but we do not need to assume
knowledge of a global clock. When we refer to the “running time” of an algorithm,
we mean the number of time steps which elapse before completion (i.e., we are not
concerned with the number of calculations nodes perform within time steps). In each
time step a node can either transmit a message to all of its out-neighbors at once or
can remain silent and listen to the messages from its in-neighbors. Some variants of
the model make restrictions upon message size (e.g. that they should be O(logn) bits
in length); our algorithms only forward the source message so comply with any such
restriction.

The distinguishing feature of radio networks is the interfering behavior of trans-
missions. In the most standard radio networks model, the model without collision
detection (see, e.g., [1, 2, 11, 25]), which is studied in this paper, if a node v listens in a
given round and precisely one of its in-neighbors transmits, then v receives the message.
In all other cases v receives nothing; in particular, the lack of collision detection means
that v is unable to distinguish between zero of its in-neighbors transmitting and more
than one.

The model without collision detection describes the most restrictive interfering
behavior of transmissions; also considered in the literature is a less restrictive variant,
the model with collision detection, where a node listening in a given round can
distinguish between zero of its in-neighbors transmitting and more than one (see, e.g.,
[14, 25)).

1.2. Discussion of assumptions of node knowledge. We consider the model
that assumes that all nodes have knowledge of the parameters n, D, and A. While
these assumption may seem strong, they are standard in previous works when running
time dependencies upon the parameters appear. For example, the O(n log? D)-time
algorithm of [12] requires knowledge of n and D, and the O(DAlog % )-time algorithm
of [11] requires knowledge of n and A (though they provide methods of removing
these knowledge assumptions at the expense of extra running time factors). Similar
assumptions also appear in previous related work.

Furthermore, we note that nodes need only know common upper bounds for the
parameters, rather than the exact values (these upper bounds will replace the true
values in the running time expression). Therefore, even if only some polynomial upper
bound for D is known, and no knowledge about A is assumed at all, our broadcasting
algorithm still runs within O(nlog Dloglog D) time, and remains the fastest known
algorithm. Similarly, with only a polynomial upper bound on A and no bound on
D, our wake-up algorithm still runs in O(%)—time. In this latter case, the
algorithm is also faster than previous algorithms when only n is known.

For both algorithms (as with all broadcasting and wake-up algorithms with at
least linear dependency on n) this assumption too can be removed by standard double-
and-test techniques, at the cost of never having acknowledgment of completion. The
task of achieving acknowledgment in such circumstances is addressed in [26].

Note that to avoid non-well-defined expressions, we will use log(z) to mean
min{1,log,(x)} wherever logarithms appear.

1.3. Communications primitives: broadcasting and wake-up. In this pa-
per we consider two fundamental communications primitives, namely broadcasting and
wake-up, and consider deterministic protocols for each of these tasks.

1.3.1. Broadcasting. Broadcasting is one of the most fundamental problems in
communication networks and has been extensively studied for many decades (see, e.g.,
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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS 3

[25] and the references therein).

The premise of the broadcasting task is that one particular node, called the source,
has a message which must become known to all other nodes. We assume that all other
nodes start in a dormant state and do not participate until they are “woken up” by
receiving the source message (this is referred to in some works as the “no spontaneous
transmissions” rule). As a result, while the model does not assume knowledge of a
global clock, we can make this assumption in practice, since the current time can be
appended to the source message as it propagates, and therefore will be known be all
active nodes. This is important since it allows us to synchronize node behavior into
fixed-length blocks.

1.3.2. Wake-up. The wake-up problem (see, e.g., [17]) is a related fundamental
communication problem that arises in networks where there is no designated “source’
node, and no synchronized time-step at which all nodes begin communicating. The
goal is for all nodes to become “active” by receiving some transmission. Rather than
a single source node which begins active, we instead assume that some subset of
nodes spontaneously become active at arbitrary time-steps. The task can be seen as
broadcast from multiple sources, without the ability to assume a global clock. This
last point is important, and results in wake-up protocols being slower than those for
broadcast, since nodes cannot co-ordinate their behavior.

)

1.4. Related work. As a fundamental communications primitive, the task of
broadcasting has been extensively studied for various network models for many decades.

For the model studied in this paper, directed radio networks with unknown struc-
ture and without collision detection, the first sub-quadratic deterministic broadcasting
algorithm was proposed by Chlebus et al. [6], who gave an O(n'/6)-time broadcasting
algorithm. After several small improvements (cf. [7, 24]), Chrobak et al. [10] designed
an almost optimal algorithm that completes the task in O(nlog®n) time, the first to
be only a poly-logarithmic factor away from linear dependency. Kowalski and Pelc [20]
improved this bound to obtain an algorithm of complexity O(n lognlog D) and Czumaj
and Rytter [12] gave a broadcasting algorithm running in time O(n log? D). Finally, De
Marco [23] designed an algorithm that completes broadcasting in O(nlognloglogn)
time steps. Thus, in summary, the state of the art result for deterministic broadcasting
in directed radio networks with unknown structure (without collision detection) is the
complexity of O(nmin{logn loglogn,log? D}) [12, 23]. The best known lower bound
is Q(nlog D) due to Clementi et al. [11].

Broadcasting has been also studied in various related models, including undirected
networks, randomized broadcasting protocols, models with collision detection, and
models in which the entire network structure is known. For example, if the underlying
network is undirected, then an O(n log D)-time algorithm due to Kowalski [19] exists. If
spontaneous transmissions are allowed and a global clock available, then deterministic
broadcast can be performed in O(n) time in undirected networks [6]. Randomized
broadcasting has been also extensively studied, and in a seminal paper, Bar-Yehuda
et al. [2] designed an almost optimal broadcasting algorithm achieving the running
time of O((D + logn) -logn). This bound has been later improved by Czumaj and
Rytter [12], and independently Kowalski and Pelc [21], who gave optimal randomized
broadcasting algorithms that complete the task in O(Dlog 5 + log? n) time with high
probability, matching a known lower bound from [22].

Haeupler and Wajc [15] improved this bound for undirected networks in the model
that allows spontaneous transmissions and designed an algorithm that completes
broadcasting in O(D lognloglogn/log D + log@® n) time with high probability. In
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4 A. CZUMAJ AND P. DAVIES

the model with collision detection for undirected networks, an O(D + log® n)-time
randomized algorithm due to Ghaffari et al. [14] is the first to exploit collisions and
surpass the algorithms (and lower bound) for broadcasting without collision detection.

For more details about broadcasting algorithms in various model, see e.g., [25]
and the references therein.

The wake-up problem (see, e.g., [17]) is a related communication problem that arises
in networks where there is no designated “source” node, and no synchronized time-step
at which all nodes begin communicating. Before any more complex communication can
take place, we must first require all nodes to be “active,” i.e., aware that they should be
communicating. This is the goal of wake-up, and it is a fundamental starting point for
most other tasks in this setting, for example leader election and clock synchronization
[9].

The first sub-quadratic deterministic wake-up protocol was given in by Chrobak
et al. [9], who introduced the concept of radio synchronizers to abstract the essence
of the problem. They give an O(n5/ 31ogn)-time protocol for the wake-up problem.
Since then, there have been two improvements in running time, both making use of the
radio synchronizer machinery: firstly to O(n®/2logn) [4], and then to O(nlog?n) [3].
Unlike for the problem of broadcast, the fastest known protocol for directed networks
is also the fastest for undirected networks. Randomized wake-up has also been studied
(see, e.g., [9, 18]). A recent survey of the current state of research on the wake-up
problem is given in [17].

1.5. New results. In this paper we present a new construction of universal
radio synchronizers and introduce and analyze a new concept of block synchronizers to
improve the deterministic complexity of two fundamental communication primitives
in the model of ad-hoc radio networks with unknown topology: broadcasting and
wake-up.

By applying the analysis of block synchronizers, we present a new deterministic
broadcasting algorithm (Algorithm 1) in directed ad-hoc radio networks with un-
known structure, without collision detection, that for any directed network 91 with
n nodes, with eccentricity D, and maximum in-degree A, completes broadcasting
in O(nlog D loglog %) time-steps. This result almost matches a lower bound of
Q(n log D) due to Clementi et al. [11], and improves upon the previous fastest al-
gorithms due to De Marco [23] and due to Czumaj and Rytter [12], which require
O(nlognloglogn) and O(nlog® D) time-steps, respectively.

Our result reveals that a non-trivial speed-up can be achieved for a broad spectrum
of network parameters. Since A < n, our algorithm has the complexity at most
O(nlog Dloglog D). Therefore, in particular, it significantly improves the complexity
of broadcasting for shallow networks, where D < n©("). Furthermore, the dependency
on A reduces the complexity even further for networks where the product DA is near
linear in n, including sparse networks which can appear in many natural scenarios.

Our broadcasting result has also direct implications on the fastest deterministic
leader election algorithm in directed and undirected radio networks. It is known that
leader election can be completed in O(logn) times broadcasting time (see, e.g., [10, 13])
(assuming the broadcast algorithm extends to multiple sources, which is the case here
as long as we have a global clock), and so our result improves the bound to achieve
a deterministic leader election algorithm running in O(nlognlog D log log DTA) time.

For undirected networks the best result is O(nlog®? ny/loglogn) time [8] (we note
that the O(nlog D) broadcast protocol of [19] cannot be used at a logn slowdown
for leader election, since it relies on token traversal and does not extend to multiple
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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS 5

sources). Our result therefore favorably compares for shallow networks (for small D)
even in undirected networks.
We also present a deterministic algorithm (Algorithm 2) for the related task of
wake-up. We show the existence of universal radio synchronizers of delay g(k) =
(%), and demonstrate that this yields a wake-up protocol taking time
O( min{n,DA}lognlog A
loglog A

and undirected networks, the O(nlog®n)-time protocol of [3]; the improvement is
largest when A is small, but even when it is polynomial in n, our algorithm is a
log log n-factor faster.

Our improved result for wake-up has direct applications to communication algo-
rithms in networks that do not have access to a global clock, where wake-up is an
essential starting point for most more complex communication tasks. For example,
wake-up is used as a subroutine in the fastest known protocols for fundamental tasks
of leader election and clock synchronization (cf. [9]). These are two fundamental tasks
in networks without global clocks, since they allow initially unsynchronized networks
to be brought to a state in which synchronization can be assumed, and results from
the better-understood setting with a global clock can then be applied. Our wake-up
protocol yields O( min{"’iﬁ‘i}gi nlog &) time leader election and clock synchronization
algorithms, which are the fastest known in both directed and undirected networks.

). This improves over the previous best result for both directed

1.6. Previous approaches. Almost all deterministic broadcasting protocols
with sub-quadratic complexity (that is, since [6]) have made use of the concept of
selective families (or some similar variant thereof, such as selectors). These are families
of sets for which one can guarantee that any subset of [n] := {1,2,...,n} below a
certain size has an intersection of size exactly 1 with some member of the family.
They are useful in the context of radio networks because if the members of the family
are interpreted to be the set of nodes which are allowed to transmit in a particular
time-step, then after going through each member, any node with an active in-neighbor
and an in-neighborhood smaller than the size threshold will be informed. Most of the
recent improvements in broadcasting time have been due to a combination of proving
smaller selective families exist, and finding more efficient ways to apply them (i.e.,
choosing which size of family to apply at which time).

One of the drawbacks of selective-family based algorithms is that applying them
requires coordination between nodes. For the problem of broadcast, this means that
some time may be wasted waiting for the current selective family to finish, and also
that nodes cannot alter their behavior based on the time since they were informed,
which might be desirable. For the problem of wake-up, this is even more of a difficulty;
since we cannot assume a global clock, we cannot synchronize node behavior and hence
cannot use selective families at all.

To tackle this issue, Chrobak et al. [9] introduced the concept of radio synchronizers.
These are a development of selective families which allow nodes to begin their behavior
at different times. A further extension to universal synchronizers in [4] allowed
effectiveness across all in-neighborhood sizes. However, the adaptability to different
node start times comes at a cost of increased size, meaning that synchronizer-based
wake-up algorithms were slightly slower than selective family-based broadcasting
algorithms.

The proofs of existence for selective families and synchronizers follow similar lines:
a probabilistic candidate object is generated by deciding on each element independently
at random with certain carefully chosen probabilities, and then it is proven that the

This manuscript is for review purposes only.



6 A. CZUMAJ AND P. DAVIES

candidate satisfies the desired properties with positive probability, and so such an
object must exist. The proofs are all non-constructive (and therefore all resulting
algorithms non-explicit; cf. [16, 5] for explicits construction of selective families).

Returning to the problem of broadcasting, a breakthrough came in 2010 with a
paper by De Marco [23] which took a new approach. Rather than having all nodes
synchronize their behavior, it instead had them begin their own unique pattern,
starting immediately upon being informed. These behavior patterns were collated into
a transmission matrix. The existence of a transition matrix with appropriate selective
properties was then proven probabilistically. The ability for a node to transmit with a
frequency which decayed over time allowed De Marco’s method to inform nodes with
a very large in-neighborhood faster, and this in turn reduced total broadcasting time
from O(nlog® D) [12] to O(nlognloglogn).

A downside of this new approach is that having nodes begin immediately, rather
than wait until the beginning of the next selector, gives rise to a far greater number of
possible starting-time scenarios that have be accounted for during the probabilistic
proof. This caused the logarithmic factor in running time to be log n rather than log D.
Furthermore, the method was comparatively slow to inform nodes of low in-degree,
compared to a selective family of appropriate size. These are the difficulties that our
approach overcomes.

1.7. Overview of our approach. Our wake-up result follows a similar line to
the previous works; we prove the existence of smaller universal synchronizers than
previously known, using the probabilistic method. Our improvement stems from new
techniques in analysis rather than method, which allow us to gain a log-logarithmic
factor by choosing what we believe are the optimal probabilities by which to construct
a randomized candidate.

Our broadcasting result takes a new direction, some elements of which are new
and some of which can be seen as a compromise between selective family-type objects
and the transmission schedules of De Marco [23]. We first note that nodes of small
in-degree can be quickly dealt with by repeatedly applying (n, % )-selective families
“in the background” of the algorithm. This allows us to tailor the more novel part
of the approach to nodes of large in-degree. We have nodes performing their own
behavior patterns with decaying transmission frequency over time, but they are semi-
synchronized to “blocks” of length roughly %, in order to cut down the number of
circumstances we must consider. This idea is formalized by the concept of block
synchronizers, combinatorial objects which can be seen as an extension of the radio
synchronizers used for wake-up.

An important new concept used in our analysis of block synchronizers (and also
in our proof of small universal synchronizers) is that of cores. Cores reduce a set of
nodes and starting times to a (usually smaller) set of nodes which are active during a
critical period. In this way we can combine many different circumstances into a single
case, and demonstrate that for our purposes they all behave in the same way.

The most technically involved part of both of the proofs is the selection of
the probabilities with which we generate a randomized candidate object (universal
synchronizer or block synchronizer). Intuitively, when thinking about radio networks,
a node in our network is aiming to inform its out-neighbors, and it should assume
that as time goes on, only those with large in-neighborhoods will remain uninformed
(because these nodes are harder to inform quickly). Therefore a node should transmit
with ever-decreasing frequency, roughly inversely proportional to how large it estimates
remaining uninformed neighbors’ in-neighborhoods must be. However, the size of these
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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS 7

in-neighborhoods cannot be estimated precisely, and so we must tweak the probabilities
slightly to cover the possible range. In block synchronizers we do this using phases of
length O(loglog %) during which nodes halve their transmission probability every
step, but since behavior must be synchronized to achieve this we cannot do the same
for radio synchronizers. Instead, we allow our estimate to be further from the true
value, and require more time-steps around the same value to compensate.

As with previous results based on selective families, synchronizers, or similar
combinatorial structures, the proofs of the structures we give are non-constructive,
and therefore the algorithms are non-explicit.

2. Combinatorial tools. Our communications protocols rely upon the existence
of objects with certain combinatorial properties, and we will separate these more
abstract results from their applications to radio networks. In this section, we will define
the combinatorial objects we will need. Next, in Sections 3—4, we will demonstrate
in detail how these combinatorial objects can be used to obtain fast algorithms for
broadcasting and wake-up.

2.1. Selective families. We begin with a brief discussion about selective families,
whose importance in the context of broadcasting was first observed by Chlebus et
al. [6]. A selective family is a family of subsets of [n] := {1,...,n} such that every
subset of [n] below a certain size has intersection of size exactly 1 with a member of
the family. For the sake of consistency with successive definitions, rather than defining
the family of subsets .S;, we will instead use the equivalent definition of a set of binary
sequences SY (that is, SY =1 if and only if v € ;).

For some m € N, let each v € [n] have its own length-m binary sequence SV =
S§S7Ss ... Sh_1.

DEFINITION 2.1. S = {S"},¢[n is an (n, k)-selective family if for any X C [n]
with 1 < | X| <k, there exists j, 0 < j < m, such that ) Sy =1. (We say that
such j hits X.)

2.1.1. Existence of small selective families. The following standard lemma
(see, e.g., [11]) posits the existence of (n, k)-selective families of size O(klog 7). This
has been shown to be asymptotically optimal [11].

LEMMA 2.2 (Small selective families). For some constant ¢ and for any
1 <k <n, there exists an (n,k)-selective family of size at most m = cklog 3.

2.1.2. Application to radio networks. During the course of radio network
protocols we can “apply” a selective family S on an n-node network by having each
node v transmit in time-step j if and only if v has a message it wishes to transmit and
SY =1 (see, e.g., [6, 11]). Some previous protocols involved nodes starting to transmit
immediately if they were informed of a message during the application of a selective
family (or a variant called a selector designed for such a purpose), but here we will
require nodes to wait until the current selective family is completed before they start
participating. That is, nodes only attempt to transmit their message if they knew it
at the beginning of the current application.

The result of applying an (n, k)-selective family is that any node u which has
between 1 and k active neighbors before the application will be informed of a message
upon its conclusion. This is because there must be some time-step j which hits the
set of u’s active neighbors, and therefore exactly one transmits in that time-step, so u
receives a message. This method of selective family application in radio networks was
first used in [6].
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8 A. CZUMAJ AND P. DAVIES

2.2. Radio synchronizers. Radio synchronizers are an extension of selective
families designed to account for nodes in a radio network starting their behavior
patterns at different times, and without access to a global clock. They were first
introduced in [9] and used in an algorithm for performing wake-up, and this is also
the purpose for which we will apply them.

To define radio synchronizers, we first define the concept of activation schedule.

DEFINITION 2.3. An n-activation schedule is a function w : [n] — N.

We will extend the definition to subsets X C [n] by setting w(X) = min,e x w(v).
As for selective families, let each v € [n] have its own length-m binary sequence

SY = 8555755 ...5%,_1. We then define radio synchronizers as follows:

DEFINITION 2.4. S = {S"},¢c[y 45 called an (n, k,m)-radio synchronizer if for
any activation schedule w and for any X C [n] with 1 < |X| < k, there exists j,
w(X) <j <w(X)+m, such that 3 e S7_ ) =1.

One can see that the definition is very similar to that of selective families (Definition
2.1), except that now each v’s sequence is offset by the value w(v). To keep track of
this shift in expressions such as the sum in the definition, we will call such values j
columns. As with selective families, we say that any column j satisfying the condition
in Definition 2.4 hits X.

In [4], the concept of radio synchronizers was extended to universal radio syn-
chronizers which cover the whole range of k from 1 to n. Let g : [n] — N be a
non-decreasing function, which we will call the delay function.

DEFINITION 2.5. S = {S"},¢n is called an (n,g)-universal radio synchro-

nizer if for any activation schedule w, and for any X C [n], there exists column j,
w(X) <j <w(X)+g(|X]), such that 3 e x S}y =1

2.2.1. New result: Existence of small universal radio synchronizers. We
obtain a new, improved construction of universal radio synchronizers, which improves
over the previous best result of Chlebus et al. [3] of universal synchronizers with

9(q) = O(qlog qlogn).

THEOREM 2.6. For any n € N, there exists an (n, g)-universal radio synchro-

nizer with g(q) = O(%)

Our approach will be to randomly generate a candidate synchronizer, and then
prove that with positive probability it does indeed satisfy the required property. Then,
for this to be the case, at least one such object must exist. We will prove Theorem 2.6
in Section 5.

2.2.2. Application of universal radio synchronizers to radio networks.
One can apply universal radio synchronizers to the problem of wake-up in radio
networks by having w(v) represent the time-step in which node v becomes active
during the course of a protocol (either spontaneously or by receiving a transmission).
Subsequently, v interprets SV as the pattern in which it should transmit, starting
immediately from time-step w(v). That is, in each time-step j after activation, v
checks the next value in SV (i.e., S;,’_w(v)), transmits if it is 1 and stays silent otherwise.
Then, the selective property specified by the definition guarantees that any node u
with an in-neighborhood of size ¢ hears a transmission within at most g(q) steps of its
first in-neighbor becoming active.

We will present this approach in details in Section 3.2, where we will obtain a
new, improved algorithm for the wake-up problem.
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2.3. Block synchronizers. Next, we introduce block synchronizers, which are a
new type of combinatorial object designed for use in a fast broadcasting algorithm.
They can be seen as an extension of both radio synchronizers and the transmission
matrix formulation of De Marco [23].

Let w be an n-activation schedule (cf. Definition 2.3). Let each v € [n] have
its own length-m binary sequence SV = S{S753 ... Sy, _;. For any fixed B, define a
function pup : N — N which rounds its input up to the next multiple of B, that is,
pp(z) = min{pB : p > &, p € N}; we will call s(v) := pp(w(v)) the start column of v.
We extend s to subsets of [n] in the obvious way, s(X) = up(w(X)).

DEFINITION 2.7. S = {S"},¢cn is an (n, A, r, B)-block synchronizer if for any
activation schedule w and any set X C [n] with |X| < A, there exists a column j,

s(X)<j<s(X)+B- [@—I: such that Z’UEX Jj—s(v) =L

Block synchronizers differ from radio synchronizers in two ways: Firstly, on
top of the offsetting effect of the activation schedule, there is also the function ppg
that effectively “snaps” behavior patterns to blocks of size B, hence the name block
synchronizer. Secondly, the size of the range in which we must hit X is linearly
dependent on |X|. This could be generalized to a generic non-decreasing function
9(|X|) as with universal radio synchronizers, but here for simplicity we choose to use
the specific function which works best for our broadcasting application. The parameter
r is the increment by which each block increases the size of sets we can hit.

2.3.1. New result: Existence of small block synchronizers. We will show
the existence of small block synchronizers in the following theorem.

THEOREM 2.8. For any n,D,A € N with D, A < n < DA, there exists an
(n, A, %,0(4% log Dloglog 22 )) block synchronzzer

We will prove the existence of a small block synchronizer by randomly generating
a candidate S, and proving that it indeed has the required properties with positive
probability, in a similar fashion to the proof of small radio synchronizers. We will
prove Theorem 2.8 in Section 6.

7Da

2.3.2. Application of block synchronizers to radio networks. The idea
of our broadcasting algorithm will be that any node v waits until the start of the
first block after its activation time w(v), and then begins its transmission pattern
S?. The definition of block synchronizer aims to model this scenario. The hitting
condition ensures that any node with an in-neighborhood of size ¢ < A will be informed
within B[ 2] time-steps of the start of the block in which its first in-neighbor begins
transmitting.

We will present this approach in details in Section 3.1, where we will obtain a
new, improved algorithm for the broadcasting problem.

3. Algorithms for broadcasting and wake-up. In this section we use the
machinery developed in the previous section to design our algorithms for broadcasting
and wake-up in radio networks.

3.1. Broadcasting. We will assume that DA > n, otherwise an earlier
O(DAlog % )-time protocol from [11] can be used to achieve O(DA log %) = O(nlog D)
time.

Let S be an (n,A, %, B)-block synchronizer, with B = ¢ log D loglog 22 (cf.
Theorem 2.8), and recall that us(x) = min{pB:p > &,p € N}, i.e. the start of the
first block after x. We will say that the source node becomes active at time-step 0, and

This manuscript is for review purposes only.
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10 A. CZUMAJ AND P. DAVIES

any other node v becomes active in a time-step ¢ if it received its first transmission at
time-step 7 — 1. Our broadcasting algorithm is the following (Algorithm 1):

Algorithm 1 Broadcast at a node v

Let ¢ be the time-step in which v becomes active

for j from 0 to DB — 1, in time-step pp(i) + j do
v transmits source message iff 7 =

end for

3.2. Wake-up. Let S be an (n,g)-universal radio synchronizer with g(q) =
% (cf. Theorem 2.6). We will say that a node v becomes active in a time-step
1 if it either spontaneous wakes up at i, or received its first transmission at time-step

¢ — 1. Our wake-up algorithm is the following (Algorithm 2):

Algorithm 2 Wake-up at a node v

Let 7 be the time-step in which v becomes active
for j from 0 to g(n) — 1, in time-step 7 + j do

v transmits source message iff 57 =
end for

4. Analysis of broadcasting and wake-up algorithms. In this section we
show that our algorithms for broadcasting and wake-up have the claimed running
times. Our analysis critically relies on the constructions of small block synchronizers
and small universal radio synchronizers, as presented in Theorems 2.8 and 2.6.

We begin with the analysis of the broadcasting algorithm.

THEOREM 4.1. Algorithm 1 performs broadcast in O(nlog D loglog %) time-
steps.

To begin the analysis, fix some arbitrary node v and let P be a shortest path from
the source (or first informed node) x to v. Number the nodes in this path consecutively,
e.g., Py = w and Pyjs(z,0) = v. Classify all other nodes into layers dependent upon the
furthest node along the path P to which they are an in-neighbor (some nodes may not
be an in-neighbor to any node in P; these can be discounted from the analysis). That
is, layer Ly = {v € V' : maxy, in-neighbour to p; ¢ = £} for £ < dist(z,v). We separately
define layer Lg;s¢(z,0)+1 to be {v}.

(For a depiction of layer numbering, see Figure 1.)

At any time step, we call a layer leading if it is the foremost layer containing an
active node, and our goal is to progress through the network until the final layer is
leading, i.e., v is active. The use of layers allows us to restrict to the set of nodes of
our main interest: if we focus on the path node whose in-neighborhood contains the
leading layer, we cannot have interference from earlier layers since they contain no
in-neighbors of this path node, and we cannot have interference from later layers since
they are not yet active.

LEMMA 4.2. Let h : [A] — N be a non-decreasing function, and define
T(n,D, A, h) to be the supremum of the function Zil h(q;), where integers 1 < ¢; < A
satisfy the additional constraint Zle q¢; < n. If a broadcast or wake-up protocol en-

sures that any layer (under any choice of v) of size q remains leading for no more
than h(q) time-steps, then all nodes become active within T'(n, D, A, h) time-steps.

This manuscript is for review purposes only.
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Source () | Destination

Fic. 1. An example of layer numbering.

156 Proof. Let q; = |L;|. Layer Lgisi(zv)+1 must be leading (and thus node v active)
157 once no other layers are leading, and so this occurs within 3% **) p(g,) time-steps
458 after layer Ly becomes leading. Since Z?ff(m"v) hgi) < o2 h(g) and 2 ¢ < n,
459 this is no more than T'(n, D, A, h) time-steps.

460 Since v was chosen arbitrarily, all nodes must be active within T'(n, D, A, h)
461 time-steps of x becoming active. O
462 We make use of Lemma 4.2 to give bounds on the running times of our algorithms:
463 LEMMA 4.3. Algorithm 1 ensures that any layer of size q remains leading for fewer

164 than B[] time-steps.

465 Proof. For all nodes w, let w(w) be the time-step that w becomes active during
466 the course of the algorithm. By definition of a block selector, for any layer L; of size
167 g; there is a time-step j < s(L;) + B[ %] in which exactly one element of L; transmits.
468 Then, either path node P; hears the transmission (and so layer L; is no longer leading
469 in time-step j + 1), or P; has active in-neighbors not in L;, in which case these must
470 be in a later layer so L; is not leading. Thus, L; can remain leading for no more than

171 (L) 4+ B[ 2] — w(L;) < B[2] time-steps. O
472 With these tools, we are now ready to complete the proof of Theorem 4.1.
A73 Proof of Theorem 4.1. By Lemma 4.2, Algorithm 1 ensures that all nodes are

174 active (and have therefore heard the source message) within T'(n, D, A, h) time-steps,
475 where h(q) = B[t"]. We will use an upper bound T'(n, D, A, 1'), where b/ (q) = BLE2
176 Since A’ is linear and increasing, Zil h'(g;) subject to ZiD:1 ¢; < n is maximized
477  whenever ZZ—ZI ¢; = n, for example at ¢; = 3 for all i € [D]. So, the algorithm
178 completes broadcast within

D n
5+ 2r DA
479 Zh’(%) :ZBD . :3BD:3c/n10ngoglogT
i=1 1=1
480 time-steps. O
481 In a similar way, we can analyze Algorithm 2:
182 THEOREM 4.4. Algorithm 2 performs wake-up in O(min("’ﬁsl)o:i" 52 fime-

483 steps.

This manuscript is for review purposes only.



484
485
486
487
488

489

09

—_
[\

515

516

N

[ SN, S
e
N = O © 00 ~

[ BRSNS B, B, B,
NN NN NN N
(G2 BN

12 A. CZUMAJ AND P. DAVIES

Proof. By Lemma 4.2, and the selective property of the universal synchroniz-
ers proven in Theorem 2.6, Algorithm 2 ensures that all nodes are active within

T(n,D, A, g) time-steps, where g(q) = %. Since g is convex and increasing,

Zil 9(g;) subject to Zil ¢ <nand ¢; <A is maximized at ¢; = A if i < %, and
¢; = 0 otherwise. Hence, the algorithm completes wake-up within

min(D, %) min(D, %) .
(A) = Z cAlogAlogn _ cmin(n, DA)lognlog A
i=1 ! i1 log log A loglog A
time-steps. 0

5. Small universal radio synchronizers: Proof of Theorem 2.6. In this
section we will prove our main result about the existence of small universal radio
synchronizers, Theorem 2.6. We first restate the theorem:

THEOREM 2.6. For any n € N, there exists an (n, g)-universal radio synchro-

nizer with g(q) = O(%).

Our approach will be to randomly generate a candidate synchronizer, and then
prove that with positive probability it does indeed satisfy the required property. Then,
for this to be the case, at least one such object must exist. We note that, since we
are only concerned with asymptotic behavior, we can assume that n is at least a
sufficiently large constant.

Let ¢ be a constant to be chosen later. Our candidate S = {S"},¢[,) will be
generated by independently choosing each S¥ (for j < g(n)) to be 1 with probability

clogn
6(j+clogn)
In analyzing whether S hits all sets X C [n] under any activation schedule, we

must first define the concept of a core to reduce the number of possibilities we must
consider.

and 0 otherwise.

DEFINITION 5.1. Fiz any X C [n] and any activation schedule w. Let X; be the
elements of X which are active by column j, t.e., X; = {v € X :w(v) < j}. Let j" be
the smallest j such that j —w(X) > ¢(|X;|). For every v, define ¥(v) = w(v) — w(X),
i.e., ¥ is w shifted so that (X) = 0.

The core Cx ,, of a subset X C [n] with respect to activation schedule w is defined
to be

{(v,9(v)) s w(v) <j'}

This definition aims to narrow our focus to only the important elements in a
particular subset X. Cores cut down the number of possibilities by removing redundant
elements which only become active after the set must already have been hit, and by
shifting activation times to begin at zero (which, as we show, can be done without
loss of generality). We do not want cores to be subject to an overriding activation
schedule, so we include the activation times of elements of a core within its definition.
When we talk about “hitting” a core, we mean using these incorporated activation
times rather than an activation schedule, and we assume that column numberings
start at 0 at the beginning of the core.

We note that if S hits a core Cx , within g(|Cx .|) columns under v, then it hits
the set X within ¢(|X|) columns under w.This result allows us to ‘shift’ the activation
times, and analyze a core independently of the many activation schedules from which
it could be derived. We now need only prove that our candidate synchronizer hits all
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possible cores, since this will imply that it hits all subsets of [n] under all activation
schedules.
We make one further definition which will simplify our analysis:

DEFINITION 5.2. For a core C and column j, let C(j) denote {(v,9(v)) € C :
Y() < j}. The load of column j of core C, denoted fc(j), is defined to be fo(j) =

clogn
2wy (@)ECH) G0 seTogm)”

Note that load of a column j of core C' is the expected number of 1s in
a column, under the probabilities used for our candidate S, that is, fo(j) =
2 wwyect) FrlS;-pow) = 1-

If fo(j) is close to constant, then the probability of S hitting C' in column j will
also be almost constant. We therefore wish to bound fc(j), both from above and
below.

. . log log |C
LEMMA 5.3. For all j < g(|C|), fo(j) > T528E].

Proof. The minimum contribution each v € C(j) can add to fo(j) is ﬁ.

Hence, fo(j) > % -|C(5)]. To bound this quantity, we separate into two cases:
Case 1: j < clogn. In this case we can obtain an adequate bound simply using that

IC| > 1

clogn clogn 1 < loglog |C]

S S— 1 _— >
6(j + clogn) G = 6(j + clogn) = 12 =~ 12log|C]|

Case 2: j > clogn. If j < g(|C]), then we also have j < g(|C(j)|). This can be
seen by examining any set X and activation schedule w from which C' can be
derived, and noting that

J+w(X) <g(IC) +w(X) = g(1X;]) + w(X) < '
by Definition 5.1, and so
J=0+wX))—wX) <g(IXjrux)l) = 9(ICGI)

also by Definition 5.1.
_ cqlogqlogn

Recalling (cf. Theorem 2.6) that g(q) = “4ELEE", rearranging gives |C(j)| >

%ﬂ%@lﬂ. Therefore total load is bounded by

clogn

jloglog|C()| _ loglog|C'|
6(j + clogn)

1) >
fe(j) > 6(j + clogn)log|C(j)| = 12log|C| O

e >

This lemma provides a lower bound on fc(j). We also need an upper bound, but
we cannot obtain a good one for all j, since transmission load in a particular column
can be as large as |C|. We instead prove that the set of columns with load within our
desired range is sufficiently large.

Let Fo = {j < g(|C]) : 288l < r.(j) < 1loglog |C|}. We prove the following

12log |C]
bound:
c|C|lognlog|C|
LEMMA 5.4. |F¢| > “TotegTog|C] -

Proof. Let us first upper-bound the total load over all columns j < g(|C|):

L clogn
Z feld) = Z Z (j — () + clogn)

i<g(IC)) 3<g(IC) (v, (v)€C()
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14 A. CZUMAJ AND P. DAVIES

_ clogn
N Z Z —1(v) 4 clogn)

(v, (v)€C j<g( iC|)
(by standard integral bound)
< / (Ich-1 | clogn i
(v p(v))ec PW—1 6(7 — ¥(v) + clogn)

(evaluating integral)

_clogn g~ 1n<g<|c>1w<u>+clogn>

clogn —1

(v,9(v))eC
< clogn - |C] n 9(|C]) + clogn — 1
6 clogn —1

(substituting g's definition)
c|C|lognlog |C|

_ dCllogn | [ "Tloglogict T ¢logn —1
N 6 clogn —1
c|C|log nlog|C|

Cl1 " loglog[C]

< dCllogn loglog IO — |
6 sclogn

Cl1
S Ci |60gn 1n(4|0|11)

1.1In2log|C| 4+ 1n4
= - 0%' [+ In c|C|logn

< 0.45¢|C|lognlog|C|

In the penultimate inequality we use that %‘flgl +1 < 4|C|*!, which is obvious

for sufficiently large |C| and can be checked manually for small |C| (remembering
that we consider log(z) to mean min{log,(z),1}). The final inequality can be checked
similarly.

Since fo(7) > 0 for any j < g(|C]), the inequality above implies that the number
0.9¢|C| log nlog |C|

loglog |C| '
Therefore, since by Lemma 5.3 all elements j ¢ F¢ must have fo(j) > %log log |CY,
c|C|lognlog|C|

log log |C|

of columns j < ¢(|C|) with fo(j) > L loglog|C| must be fewer than

and since g(|C|) = , we obtain:

0.9¢|C|lognlog|C|  ¢|C|lognlog|C]
Fel > g(IC)) — = O
Fel = g(C]) log log |C] 10loglog |C]

Next, we will give a lower bound for the probability that j hits C', which will later
be shown to imply that columns in the set F¢ (and hence the candidate synchronizer
as a whole) have a good probability of hitting C. The following lemma, or variants
thereof, has been used in several previous works such as [23], but we prove it here for
completeness.

LEMMA 5.5. Let x;, i € [n] be independent {0, 1}-valued random variables with
Priz; = 1] < 1Vi, and let f = >iem Prlzi =1]. Then Pr[y o, i =1] = fa-r.
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Proof.

lezl ZPr[szl/\sci:OVi#j]
i€[n] J€[n]
> Y Prlz; = 1] Prlz; = 0Vi]
Jjeln]
> f - Pr[z; = 0Vi]
=f- ] (0 =Prlz; =1])
i€[n]
> f. H 4—Prlzi=1]
i€[n]

— f . 47 Z?E[‘H] Pl‘[ﬁ,’,:l]
= f4=7 ]

For any j, applying this lemma with z, = S w(v)r We get that the probability
that j hits C is at least fo(j) - 47,

LEMMA 5.6. For any core C, the probability that there is no column j < g(|C|)
. . —clel
that hits C' is at most 1 —nTomz,

Proof. By Lemma 5.5, each column j independently hits C' with probability at
least fo(j) -4~ (). To proceed with the analysis we will focus on the columns in F¢,
that is, columns j < g(|C]) with % < fe(j) < 2loglog|C|.

Let us consider the function 1 — 24~ for x > 0, and notice that this function
has a global minimum at p = 1/1In4, is decreasing for < p, and is increasing for
x > p. For simplicity of notation, let h denote the number of columns j € F¢o with
1< fe(j) < 4 loglog|C|. Then, the probability that no columns hit is upper bounded
as follows:

Pr[no column hits] < H (1— fe(j) -4=fel@)

i<g(IC|)
< H 1 *fc .4—fe@) )
j€Fc
= 11 (1= fo(j)aIeW) 11 (1= fe(h)-477eW)
JjE€Fc, jE€EFC,
n<fo(4)<3$ loglog|C| loglos |0l < fo(j)<u

121og |C]

(since products are maximised by setting fco(j) = %log log |C| and fc(5) = lfglfggl‘cc”, respectively)

loglog |C| log log |C|
< _ ool Ee=R=Rhal |
- H (1 2log|C| H ! 14log|C|

JjeFc, JjeFc,
n<fo(i)< 4 loglog|C| loglog O] _ .. (j)<p
< (1 loglog |C|\" L log log |C] Fol=h
- 2log |C] 141log|C|
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16 A. CZUMAJ AND P. DAVIES

|Fol
<(1_ loglog |C
- 141og |C|
(by Lemma 5.4)

c|C| log nlog |C|

oglog [C]
< 1_loglog|C| T0Tog Tog
- 141og |C|

(using 1 —z < e~ % for z € (0,1))
—clCllogn
<e 140

—c|C|
= nT40m2 0

We now have a lower bound on the probability that .S hits a particular core, but
it remains to bound the number of possible cores we must hit.
Let C; be the set of possible cores of size q.

LEMMA 5.7. |Cy| < n32.

Proof. There are at most n - g(n) possible pairs of (v, (v)), and thus at most

("'gq(")) ways of choosing a size-g subset. So, |Cy| is at most ("'gq(”)) <(n-g(n)) =

)9 < n34 (for sufficiently large n). 0

(cn2 logZ n
loglogn

We are now ready to prove our existence result:
LEMMA 5.8. With positive probability, S is an (n, g)-universal synchronizer.

Proof. We will set ¢ to be 7001n2. By union bound, using Lemmas 5.6 and 5.7,

Pr[S is an (n, g)-universal synchronizer]| < Z Z Pr[C is not hit]

q=1CeC,
n n n
<3N prwhe <Y p¥ it = 3 n@ e
q=1CeCy q=1 q=1
n
< Zn*Qq <1
q=1

We are now ready to prove Theorem 2.6:

Proof. Since our candidate S satisfies the properties of an (n, g)-universal radio
synchronizer with positive probability, such an object must exist. This completes the
proof of Theorem 2.6. O

6. Small block synchronizers: Proof of Theorem 2.8. In this section we
will prove our main result about the existence of small block synchronizers, Theorem
2.8. We first restate the theorem:

THEOREM 2.8. For any n,D,A € N with D, A < n < DA, there exists an
(n, A, %,0(% log Dloglog 22))-block synchronizer.

As in our proof of the existence of small radio synchronizers (see Section 5), we
only consider the case where n is at least a sufficiently large constant, since we are only
concerned with asymptotic behavior. We will again need to define the core of a subset
of [n] (with respect to an activation schedule w) in order to reduce the amount of
possible circumstances we will consider. The main difference to our definition of cores
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DETERMINISTIC COMMUNICATION IN RADIO NETWORKS 17

in Section 5 is that we need only retain the relative values of w to the nearest block,
rather than keeping the exact (shifted) values. This is the reason for us introducing
the concept of blocks (and block synchronizers), and it allows the range of possible
cores to be cut down substantially.

DEFINITION 6.1. Fiz any X C [n] and activation schedule w. Let X; be the
elements of X which are active by the start of the block containing column j, i.e.,
X;={veX:s(w)<j}. Let j' be the smallest j such that j — s(X) > %

For every v, define ¢p(v) = %, i.e., ¢(v) is the number of blocks that pass
between the start column of X and the start column of v. Note that ¢(v) € N.

The core Cx ., of a subset X C [n] with respect to activation schedule w is defined
to be

{(v,9(v)) :v e X,s(v) <j'}

We see, as we did in Section 5, that if some object S “hits” all cores, then it hits
all subsets of [n] under any activation schedule. By hitting a core C at column j, we
mean that Z(v,¢(v))ec S;’_B¢(U) = 1, and we assume column numberings start at the

B-|Cx ]
r

beginning of the core. So, if S hits a core Cx ,, within columns, then it hits

the set X within B'LX‘ columus of s$(X) under activation schedule w.

We wish to prove the existence of a small block synchronizer by randomly generat-
ing a candidate .S, and proving that it indeed has the required properties with positive
probability, in a similar fashion to the proof of small radio synchronizers. While this
could be achieved directly, we can in fact get a better result by proving existence of
a slightly weaker object using this method, and then bridging the gap with selective

families.

DEFINITION 6.2. S = {S"},¢[n) is an (n,k, A, r, B)-upper block synchronizer

if, for any core C with k < |C| < A, there exists column j < % such that

Y wownee S-Bow) = 1-

An upper block synchronizer has a lower bound k on the size of the cores it must
hit. To obtain our full block synchronizer result, we will first show the existence of
small upper block synchronizers, and then show that these can be extended to block
synchronizers by adding selective families to hit cores of size less than k.

THEOREM 6.3. For some constant ¢ and for any n, D, A with D,A < n < DA,
there exists an (n, 3, A, %, ¢z log Dloglog DTA)—upper block synchronizer.

Proof. Let ¢ be a constant to be chosen later. For simplicity of notation we now
set k= 5,7 =7, and B = c log Dloglog %.

Define p(j) = j mod 2loglog DTA. Our candidate upper block synchronizer S =
{S%}uen will be generated by independently choosing each 57 (for j < ?) to be 1
clog D log log %

We will analyze our candidate upper block synchronizer by fixing some particular
core and bounding the probability that the candidate hits it. We begin by defining
the load of a column (with respect to some fixed core C), and bounding it both above
and below on a subset of columns. As before, load represents expected number of 1s
in a column, and we want it to be constant in order to maximize hitting probability.
Recall that we now consider column numbering to begin at the start of the core, i.e.

min(v,d}(v))ec ¢(U) =0.

with probability and 0 otherwise.
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DEFINITION 6.4. Let C(j) denote {(v,¢(v)) € C : Bé(v) < j}. The load of a
column j of core C, denoted fc(j), is defined to be Z(v,¢(v))€€(j) Pr[S;’_B¢(U) =1]=

clog D loglog 24
Z(v #(v))eC(F) (G— B¢(v)+B)20(J)+1 :

Since load varies across a wide range during each 2log log A _length “phase,” we
first consider only the columns at the start of each phase (i.e., those J with p(5) =0),
which we will call 0-columns.

LEMMA 6.5. For all B < j < Bl with p(j) =0, fe(j) > .

Proof. Recall that, when deriving a core from a set X, we ended the core at the
first column j’ with 5/ —s(X) > 5 ‘X | Jie. forall j <j'—1,j—s(X) < B IX | . Having

shifted column numberings, this 1mpheb that for j < B ICI , 7 < B |C(J ) The minimum
contribution any(v, ¢(v)) € C(j) can add to fe(j) is clog é)(;(fgo)g . Therefore total
load is upper bounded by
clog D loglog 24 cj 1
) > 1C(J)I - _ e N > -

This lemma provides a lower bound on f¢(j). We also need an upper bound, but
we cannot obtain a good one for all j, since load in a particular column can be very
large. We circumvent this issue by only bounding the load on a smaller set of columns.

Let Fe ={j < ‘CI p(j) =0,% < fe(j) < 3log | )LD}. We prove a lower bound
on |Fel.

LEMMA 6.6. If & <|C| < A, then |Fo| > £[C|log D.

Proof. We first upper bound the total load of all 0-columns j with j < B'T‘Cl and
then show that not too many of these columns can have f¢(j) > 3log |C‘D, giving a
lower bound for the number of 0-columns in F¢.

We bound the total load of all 0-columns j with j < B |c\ as follows:

clog Dloglog 24
> fe)= > > 5 :
J<B|C\ j<%(“v¢(v))66(j) 2(.7 _B¢(U)+B>
p(3)=0 p(3)=0
B Z Z clog D loglog %
B 2(j— B B
(0D NEC ()< Bl (j — Bo(v) + B)
p(3)=0
(substitution of sum index variable)
1 Bllc‘DA -1
2rlog log ==
B Z gzg: clog D loglog DTA
- ' DA
(b (oNEC 5 Do) 2(2iloglog == — Bo¢(v) + B)
2 log log %
(using standard integral bound)
—Blel 1 DA
2r log log D& clog D loglog ==
= Z Bo(v) 2(2iloglog 24 Bn Bdl
(0,6(0))€C ” Trogiog DB 1 (2iloglog 5% — Bo(v) + B)

(evaluating integral)

_ clogD Z I B'T‘Cl o LA _B¢(v)+ B
4 B —2loglog 24

(v,¢(v))eC
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c|C|log D Bl _9loglog 22 + B
< In | — b
4 B —2loglog ==

c|C|logD1 IC|clog Dloglog 2& — 2loglog 22 + B
- n
4 BfZIOglog%

< ¢|C|log D In (2(CC| log D log log 24 Ay B))
- 4 B

2(1ICl + &
_ c|C|logD1n( (] |—|—D))

4

(using the assumption R

< fc|C\ log D1n

D

4|C|D

D
fc|C\ log D log —— ‘C|

Since for any j < % we have fe(j) > 0, the inequality above implies that there
must be not more than 5¢|C|log D 0-columns with fe(j) > 3log = lelp
1

6.5, the number of columns j with j < BJC‘ for Wthh fe(j) < 5 is at most B and

. By Lemma

hence the number of such 0-columns is at most W Therefore, |Fe¢l, Wthh is
the number of 0-columns j with j < B |C‘ for Wthh < fe(j) < 3log Ich , 1s upper
bounded as follows:
B-|C] B 1
Fel > — — —c|C|log D
Fel = 27"10glogDTA élloglogD—nA 12 Cllog
c n || c
=—logD|([C|]— == ——=—) > =|C|log D
105D (1l - 575~ 61} = Eicios
where the last inequality follows from our assumption that & < |C|. |

With the bound of the load of 0-columns in Lemma 6.6, we can obtain a significantly
tighter bound on a subset of all columns.

LetFC*{j<B‘CI 5 < fe(j) <2}
LEMMA 6.7. For any C with & < |C| < A, |[Fe| > 5|C|log D.

Proof. We show that, whenever we have a 0-column with load in the range
( ,3log |C‘ ) there must be some column within the same phase for which load is in
the range ( ,2).

For any j € Fe, let j' = j + log fe(j) — 1. Then,

j' < j+log(3log

IC|D
n

DA
)—1<j+2loglog —
n

so j' is in the same phase as j (i.e., j — p(j) =5 — p(j')). Hence,
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clog D loglog DTA
(7 — Bo(v) + B2

5%
—
<
—
Il

(v,9(v))€C(5")
clog D loglog DTA
(j/ — Bo(v) + B)2ri)+log fe (i)

(]

(v,6(v))E€C(4)
clog Dloglog %

— oo et

(v,6(v))€C(4) G ¢(v) + B) fe(j)

2 Z clog Dloglog 22 (j — Bo(v) + B)

=

. . _ : - _
Jell) 2oy 20— BO) + B) (77— Boo) + B)
Since, for any (v, ¢(v)) € C(3), % < 1+210511°gDTA < ((]J/:%i(&))i%)) < 1, we can
B
bound fe(j') from above:
) 2 clog D loglog 24
fe(i) < +—— > , n_.1=2
2(j— B B
Fe3) ( wiopycey 20 — Bo(v) + B)
and below:
) 2 clog Dloglog 22 1 2
) > 3 Lk T
fe(d) 2(j—B¢(v)+B) 3 3

(v,0(v))€C(H)

1

g in the definition of F¢ is to account

(The reason we allow loads to be as low as
for cases where f¢(j) < 2 and so j' = j.)
Therefore j' € Fe. This mapping of 7 to 7’ is an injection from F¢ to F¢, and so

[Fe| > |Fe| > SC|log D. a

Now that we have proven that sufficiently many columns have loads within a
constant-size range, we want to show that S has a good probability of hitting C on
these columns. To do so, we again apply Lemma 5.5, setting =, = 8}’_ Bo(v)’ and see

that the probability of S hitting C on column j is at least fe(j) - 4= /e()

clc|
3

LEMMA 6.8. For any core C with 3 < |C| < A, with probability at least 1 — D~
there is a column j < BICL on which S hits C.

Proof. Let us first recall that Fe = {j < B'Tlc‘ i § < fe(j) < 2}, and note that

function h(z) =1 — 247" for § < < 2 is maximized at = = 2, with h(2) = .
Each column j independently hits C' with probability at least fe(5) -4~/ so

the probability that none hit is bounded by:

Pr[no column hits] < H (1= fe(y) ~4*fc(j)) < H (1— fe(5) .4*fc(j))

j<Blel jEFC
i5|Cllog D ]
<1 7 < (7) — p-lCllos i < D=5
ek 8 8
where the penultimate inequality follows from Lemma 6.7. O
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We have a bound on the probability of hitting a particular core, but before we
can show that we can hit all of them, we must count the number of possible cores.
Let C, be the set of possible cores of size g.

LEMMA 6.9. |C,| < D*.

Proof. For any (v,¢(v)) € C, Bo(v) < %, i.e., for a core of size ¢, ¢(v) < %.
Therefore there are at most n - 4 possible pairs of (v, ¢(v)), and thus at most (”q )
ways of choosing a size-g subset. So, |C,| is at most ("‘fl/r) = ([;q) <(eD) < D%. DO

We are now ready to prove the existence of a small upper block synchronizer:

LEMMA 6.10. With positive probability, S is an (n, %, A, %, ¢35 log Dlog log Ay
upper block synchronizer.

Proof. We will set ¢ to be 189. By union bound,

A
Pr[S is not an upper block synchronizer| < Z Z Pr[C is not hit]
=45 CeC,
< Z Z D~ cq/63 < Z D2qD cq/63 _ Z D2qD 3q
=73 CeCy
Z D<o <1 O
=5
Since, with  positive  probability, our candidate S is an

(n, 5,4, 3, cp log Dloglog DTA)—upper block synchronizer, at least one such

object must exist, and so we have completed our proof of Theorem 6.3. 0
We can now prove Theorem 2.8:

Proof. We construct block synchronizer S by taking an
(n, 5,4, 3, cp log Dloglog D—A) upper block synchronizer S and inserting an
(n, &)- selectlve family R of size ¢35 log D log log A at the begmnmg of each block
(We know by Lemma 2.2 that a selectlve famlly of size ¢ log D exists, and we
can pad it arbitrarily to this larger size). That is, our block size will now be

= |R| + B = (c+ &) % log Dloglog 22, and our block synchronizer S will be
formally defined by:

o\: b\:

v . ) R;')modB if (J mod B) < |R|7
S = {8"}uen) is defined by S} = S” o otherwise.
Setting ¢ = ¢ —|— E we show that S satisfies the conditions of an
(n,A, 5, ¢35 D2 ) block synchronizer.
Let C be a core of size at most A.
Case 1: [C| < §. V(v,¢(v)) € C we have ¢(v) = 0, since the core ends before column
B by Definition 6.1, and so C will be hit by the (n, 7 )-selective family R. Tt

will therefore be hit by S on some column j < |R| < B = B[‘TQ] Note that
this case is the reason we require the ceiling function in the definition of a
block synchronizer, but not in an upper block synchronizer.

Case 2: [C| > #. If |C| > &, then it will be hit by a column j < Blcl in the upper
block synchronizer S, which corresponds to the column j+ [%1 |R| in S. Since
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j+ LR < B9 4+ T90R) < (B + R)[19] = B[197, this satisfies the
block synchronizer property.

So, S hits all cores C with |C| < A within Bf‘rﬂ] columns, and therefore hits
all sets X within B(@] under any activation schedule, fulfilling the criteria of an
(n, A, ,¢% log Dloglog DTA)—block synchronizer. 0

7. Conclusions. The task of broadcasting in radio networks is a longstanding,
fundamental problem in communication networks. Our result for deterministic broad-
casting in directed networks combines elements from several of the previous works with
some new techniques, and, in doing so, makes a significant improvement to the fastest
known running time. Our algorithm for wake-up also improves over the previous
best running time, in both directed and undirected networks, and relies on a proof of
smaller universal synchronizers, a combinatorial object first defined in [4].

Neither of these algorithms are known to be optimal. The best known lower bound
for both broadcasting and wake-up is Q(min(nlog D, DAlog %)) [11]; our broadcasting
algorithm therefore comes within a log-logarithmic factor, but our wake-up algorithm
remains a logarithmic factor away.

As well as the obvious problems of closing these gaps, there are several other open
questions regarding deterministic broadcasting in radio networks. Firstly, the lower
bound for undirected networks is weaker than that for directed networks [21], and
so one avenue of research would be to find an Q(nlog D) lower bound in undirected
networks, matching the broadcasting time of [19]. Secondly, the algorithms given
here, along with almost all previous work, are non-explicit, and therefore it remains
an important challenge to develop explicit algorithms that can come close to the
existential upper bound. The best constructive algorithm known to date is by [16],
but it is a long way from optimality.

Some variants of the model also merit interest, in particular the model with
collision detection. It is unknown whether the capacity for collision detection improves
deterministic broadcast time, as it does for randomized algorithms [14]. Collision
detection does remove the requirement of spontaneous transmissions for the use of
the O(n) algorithm of [6], but a synchronized global clock would still be required. It
should be noted that collision detection renders the wake-up problem trivial, since
if every active node transmits in every time-step, collisions will wake up the entire
network within D time-steps.
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