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ABSTRACT

Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that
represents a coronal loop or plume, is modelled accounting for the effects of finite gas pressure,
weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between
the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary
equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance,
determined by the derivatives of the combined radiative cooling and heating function, with respect
to the density, temperature and magnetic field at the thermal equilibrium affect the wave rather
strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual
amplification of the wave. In the latter case the coronal plasma acts as an active medium for the
slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important
for coronal slow waves, and could be responsible for certain discrepancies between theoretical
results and observations, in particular the increased or decreased damping lengths and times,
detection of the waves at certain heights only, and excitation of compressive oscillations. The
results obtained open up a possibility for the diagnostics of the coronal heating function by slow
magnetoacoustic waves.

Subject headings: Sun: oscillations — Sun: corona — magnetohydrodynamics (MHD) — waves

1. Introduction

Magnetohydrodynamic (MHD) waves are de-
tected everywhere in the solar atmosphere, and
play a significant role in the structure and dy-
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namics of the corona (see, e.g. Jess et al. 2015;
Nakariakov et al. 2016, for recent comprehen-
sive reviews). During the last few decades these
waves have been intensively studied observation-
ally, from ground and space based instruments,
and theoretically, in particular as a possible source
of coronal plasma heating and solar wind acceler-
ation. In addition, the waves provide us with im-
portant seismological information about the phys-
ical parameters of the corona, which are difficult or
even impossible to measure directly. The seismo-
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logical diagnostics not only provides the informa-
tion about the physical parameters of the medium,
but also allows us to reveal main physical mecha-
nisms operating in the plasma. In particular, seis-
mological techniques could be used for the evalua-
tion of the relative importance of different heating
mechanisms (e.g. De Moortel & Browning 2015)
and determination of the coronal heating function.

Coronal oscillations are often observed as prop-
agating quasi-periodic extreme-ultraviolet (EUV)
and soft X-ray intensity disturbances, in par-
ticular with the high-resolution imaging tele-
scopes SOHO/EIT (e.g. DeForest & Gurman
1998; Berghmans & Clette 1999), TRACE (e.g. De
Moortel et al. 2000; De Moortel 2009), SDO/AIA
(e.g. Kiddie et al. 2012; Krishna Prasad et al.
2012; Su 2014), and Hinode/XRT (e.g. Sakao
et al. 2007). These propagating quasi-periodic
disturbances are usually detected in legs of long
loops and in open coronal structures, for exam-
ple in polar plumes. These waves are essentially
compressive, and propagate along the apparent
direction of the magnetic field, at approximately
the local sound speed that is determined by the
plasma temperature (e.g. Marsh et al. 2009; Yuan
& Nakariakov 2012), and are therefore confidently
interpreted as propagating slow magnetoacoustic
waves. Propagating compressive waves detected
in coronal loops and in polar plumes appear to
be similar, with the exception that the oscilla-
tion period in plumes is typically longer than in
loops (e.g. Nakariakov 2006; Krishna Prasad et al.
2014). However, long period oscillations have been
detected in loops of plasma fans of coronal active
regions too (e.g. Yuan et al. 2011; Krishna Prasad
et al. 2012; Abedini 2016). These waves could
also be detected as a periodic Doppler shift and
the enhancement of emission in the blue wing of
the emission line (e.g. Banerjee et al. 2009; Ver-
wichte et al. 2010; Kitagawa et al. 2010). Many
authors studied the speed of propagating distur-
bances detected simultaneously at different EUV
wavelengths corresponding to different tempera-
tures (e.g. King et al. 2003; Kiddie et al. 2012;
Uritsky et al. 2013). The speed of the EUV dis-
turbances situated at non-sunspot regions was
not found to show a clear dependence on the tem-
perature, whereas those disturbances propagating
above the sunspots show a clear temperature de-
pendence. In particular, Uritsky et al. (2013) es-

timated the speed of a propagating wave in warm
fan-like structures, and found that the speed obeys
a square-root temperature dependence predicted
for slow magnetoacoustic waves, i.e. the phase
speed of the disturbance increases with the plasma
temperature. Analysis of the relationship between
relative density and temperature perturbations in
those waves allowed to estimate the value of the
adiabatic index γ (Van Doorsselaere et al. 2011).

The period of the coronal slowly propagat-
ing EUV intensity perturbations is likely to be
determined by the conditions at the footpoints
of the coronal waveguiding structures. Chae &
Goode (2015) showed that in response to impul-
sive disturbances the gravitationally stratified at-
mosphere came to oscillate along the field with
a period determined by the acoustic cut-off fre-
quency. There is a possibility of leakage of these
oscillations along the magnetic fan structures to
the corona as it was demonstrated numerically by
Botha et al. (2011), and observationally by Sych
et al. (2009, 2015).

Propagating slow magnetoacoustic waves in
coronal plasma structures are usually observed
to damp rapidly with height. Theoretical mod-
elling has addressed several mechanisms poten-
tially responsible for the wave amplitude evolu-
tion, such as thermal conduction, viscosity, grav-
itational stratification, magnetic flux tube diver-
gence, field geometry and nonlinear cascade (e.g.
Ofman et al. 2000; Nakariakov et al. 2000b; Tsik-
lauri & Nakariakov 2001; De Moortel & Hood
2003; Selwa et al. 2005; Ofman 2005; Owen et al.
2009). In particular, it has been found numerically
that the damping lengths vary with the periods
(Gupta 2014; Mandal et al. 2016). The vast ma-
jority of these studies has been performed in the
approximation of the infinite magnetic field, when
the model describes the plasma flows strictly along
the magnetic field. In other words, the waves have
been considered as plane acoustic waves with the
wave fronts perpendicular to the field. This one-
dimensional approach is well justified in the case
when the effect of the magnetic field on the plasma
motions dominates, in other words when the ra-
tio of the gas and magnetic pressures, known as
the plasma parameter β, is very small. However,
it is known that in the finite β case, the effects
of the wave front obliqueness, which are intrinsic
for the waves guided by field-aligned plasma non-
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uniformities, become important. In particular,
in this regime the speed of the slow magnetoa-
coustic waves propagating apparently along the
field approaches the subsonic and sub-Alfvénic
tube (cusp) speed (e.g. Roberts & Webb 1978),
the cut-off frequency (Roberts 2006; Afanasyev
& Nakariakov 2015a; Zhugzhda & Sych 2014)
becomes dependent on the magnetic field, the
effectiveness of the nonlinear cascade decreases
(Afanasyev & Nakariakov 2015b), and the geo-
metrical dispersion is introduced (Zhugzhda &
Goossens 2001). If the parallel, along the field,
wavelength of the perturbations is much longer
than the transverse size of the waveguiding plasma
non-uniformity, the obliqueness effects could be
accounted for by the thin flux tube approximation
(e.g. Roberts & Webb 1979; Zhugzhda 1996) that
reduces the three-dimensional consideration to a
one-dimensional one too. However, it is still not
clear how so rapidly damped coronal slow waves
could reach the heights of about one solar radius
above the surface, for example, detected by Ofman
et al. (1997).

Another important physical effect that is in-
trinsic for the corona is the apparent thermal
equilibrium of the waveguiding plasma struc-
tures. Indeed, as coronal field-aligned plasma
non-uniformities such as loops and plumes, have
the life time much longer than the radiative cool-
ing and thermal conductive times, there must be a
process that compensates the losses of the internal
energy, the enigmatic coronal heating process (e.g.
Parnell & De Moortel 2012, for a recent review).
Thermal equilibrium should be taken into account
in the consideration of MHD wave dynamics to-
gether with the mechanical equilibrium. A com-
pressive wave can modify differently the different
equilibrium quantities responsible for the internal
energy losses and gains, e.g. the density, tem-
perature, magnetic field, causing a local thermal
equilibrium misbalance (i.e. the “cooling/heating
misbalance”) that, in turn, affects the wave dy-
namics (Nakariakov et al. 2000a, e.g.). The effect
of cooling/heating misbalance has been intensively
studied in the context of the cool prominence for-
mation and oscillation (e.g. Arregui et al. 2012,
for a comprehensive review). The main attention
was paid to the enhanced damping of the oscil-
lations caused by the non-adiabatic effects and
induced plasma condensation. For hotter plasma

structures, it was recently shown that the cool-
ing/heating misbalance could significantly modify
the damping and non-linear evolution of standing
slow magnetoacoustic waves in coronal loops (Ku-
mar et al. 2016). In the latter work the effects of
the finite plasma-β were neglected.

The aim of this paper is to study the effect
of the local cooling/heating misbalance on long-
wavelength slow magnetoacoustic waves guided by
a field-aligned plasma non-uniformity, in terms of
the thin flux tube approximation. The mathe-
matical formalism is similar to that adopted by
Afanasyev & Nakariakov (2015b), with additional
terms in the dispersion relation and the evolution-
ary equation, which account for the effect of the
cooling/heating misbalance. The paper is organ-
ised as follows. In Section 2 we present and dis-
cuss the governing equations. In Section 3 we de-
rive the wave equation for weakly nonlinear slow
waves in the presence of finite thermal conduction,
viscosity and plasma-β, and allowing for the lo-
cal thermal equilibrium misbalance. In Section 4
we obtain dispersion relations, and determine the
threshold of the thermal over-stability. In Sec-
tion 5 we derive and analyse the Burgers–Malthus
equation that describes the slow wave evolution in
the presence of weakly nonlinear, dissipative and
cooling/heating misbalance effects. Our findings
are summarised and discussed in Section 6.

2. Governing equations and equilibrium

Dynamics of long-wavelength slow magnetoa-
coustic waves in a straight untwisted and non-
rotating field-aligned plasma non-uniformity is
described by the first-order thin flux tube ap-
proximation derived by Roberts & Webb (1978);
Zhugzhda (1996). The governing equations com-
prise the energy, momentum, transverse total pres-
sure balance, induction, mass continuity and state
equations,

dp

dt
− γp

ρ

dρ

dt
= (γ − 1)

[
Q(ρ, T,B) + κ

∂2T

∂z2

]
, (1)

ρ
(∂u
∂t

+ u
∂u

∂z

)
+
∂p

∂z
=

2

3
η
∂v

∂z
+

4

3
η
∂2u

∂z2
, (2)

p+
B2

8π
= pextT , (3)

∂B

∂t
+ u

∂B

∂z
+ 2Bv = 0, (4)
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∂ρ

∂t
+ 2ρv +

∂

∂z
(ρu) = 0, (5)

p =
kB
m
ρT, (6)

where ρ is the plasma density, p is the plasma pres-
sure, T is the temperature, u is the speed of bulk
flow along the tube, v is the radial derivative of the
radial component of the plasma velocity, B is the
longitudinal component of magnetic field strength.
All these parameters are measured at the axis of
the flux tube; and pextT is the total external pres-
sure. The coefficient γ is the adiabatic index; kB
is the Boltzmann constant and m is the mean par-
ticle mass, i.e. about a half of the proton mass.
The coefficients η and κ describe the viscosity and
field aligned thermal conduction, respectively.

The function Q(ρ, T,B) is the cooling/heating
function that accounts for the optically thin ra-
diative cooling and coronal heating. The radiative
cooling can be modelled by the expression ρ2T (T ).
The function T depends on the temperature of
the plasma. This dependence, especially its fine
structure, based on the detailed knowledge of the
atomic physics effects associated with the presence
of minor species, is not known exactly. Different
authors give rather different dependences in the
temperature range from a few to several millions
K (e.g. Schure et al. 2009; Soler et al. 2012). In
almost all the cases, the derivative of T with re-
spect to the temperature is highly non-monotonic
in the coronal temperature range (e.g. Somov et al.
2007). Also, as the specific heating mechanism of
the coronal plasma remains unknown, we assume
that the heating function depends, in general, on
the thermodynamical parameters, i.e. the temper-
ature T and density ρ, and possibly the magnetic
field B too (e.g. Hood 1992). Because of those un-
certainties in both radiative cooling and heating
functions, we treat the derivatives of the function
Q(ρ, T,B) with respect to its arguments in the
thermal equilibrium as free parameters.

The set of Eqs. (1–6) is similar to the equations
used in Afanasyev & Nakariakov (2015b), but in
addition accounts for the effects of field-aligned
thermal conduction and cooling/heating misbal-
ance. The set of Eqs. (1–6) does not include the
rotation of the flux tube and the magnetic field
twist. These two quantities are assumed to be zero
in the equilibrium. Their perturbations constitute
a torsional wave that is linearly decoupled from

the slow magnetoacoustic wave (e.g. Vasheghani
Farahani et al. 2011), and hence is not considered
in our analysis. Also, we neglect the effects as-
sociated with the dispersion connected with the
finite ratio of the flux tube diameter and wave-
length, i.e. the geometrical dispersion, discussed
in (Zhugzhda & Goossens 2001). The effects of
the field-aligned non-uniformity of the plasma,
in particular the appearance of the tube cut-off
frequency (e.g. Roberts 2006; Zhugzhda & Sych
2014; Afanasyev & Nakariakov 2015a), are also ne-
glected.

3. Dynamics of small perturbations

Consider perturbations of a mechanical equilib-
rium that are characterised by constant quantities
p0, ρ0, B0, T0, and pextT , without steady flows. In
addition, the thermal equilibrium Q(ρ0, T0, B0) =
0 is fulfilled, i.e. the heating compensates the ra-
diative losses in the equilibrium. The parallel ther-
mal conduction does not contribute to the equilib-
rium, as the equilibrium temperature is constant.
We assume that the effects of quadratic nonlinear-
ity, dissipation and local radiation/heating misbal-
ance are weak and of the same order of magnitude
with each other. Let the perturbations of the equi-
librium physical quantities be small,

p = p0 + p1, ρ = ρ0 + ρ1, T = T0 + T1, (7)

B = B0 +B1, v = v1, u = u1,

where the subscript 1 denotes small but finite per-
turbations. In the following we omit this subscript
for the variables u and v.

Following the procedure described in Afanasyev
& Nakariakov (2015b) and Kumar et al. (2016), we
substitute expansion (7) in Eqs. (1–6) and, taking
into account quadratically nonlinear terms every-
where except the terms on the right hand sides of
Eqs. (1) and (2) where we keep linear terms only,
we obtain

∂p1
∂t
− C2

S

∂ρ1
∂t

= −u∂p1
∂z

+ C2
Su
∂ρ1
∂z

+ γ
ρ1
ρ0

∂p1
∂t

+ (γ − 1)
(
aρρ1 + aTT1 + aBB1 + κ

∂2T1
∂z2

)

+

[
γp1 − C2

S(γ + 1)ρ1

]
ρ0

∂ρ1
∂t

, (8)

4



ρ0
∂u

∂t
+
∂p1
∂z

= −ρ0u
∂u

∂z
− ρ1

∂u

∂t

+
2

3
η
∂v

∂z
+

4

3
η
∂2u

∂z2
, (9)

p1 +
B0B1

4π
= −B

2
1

8π
, (10)

∂B1

∂t
+ 2B0v = −u∂B1

∂z
− 2vB1, (11)

∂ρ1
∂t

+ 2ρ0v + ρ0
∂u

∂z
= −2ρ1v −

∂

∂z
(ρ1u), (12)

p1 −
kB
m

(ρ0T1 + T0ρ1) =
kB
m
T1ρ1, (13)

where C2
S = γp0/ρ0 is the sound speed. We use

the Taylor expansion of the cooling/heating func-
tion Q near the equilibrium, with aρ = ∂Q/∂ρ,
aT = ∂Q/∂T and aB = ∂Q/∂B taken at ρ0, T0
and B0, respectively. As mentioned above, in our
study we consider the values of aρ, aT and aB to
be unknown, and hence treat them as free param-
eters. We use the standard expressions for the es-
timation of the field-aligned thermal conductivity,
κ ≈ 10−11T 5/2 W m−1 K−1 and the dynamic vis-
cosity, η ≈ 10−17T 5/2 kg m−1 s−1 (e.g. De Moortel
& Hood 2003), and hence neglect the possible en-
hancement of the transport coefficients by micro-
turbulence. Both the nonlinear and non-adiabatic
terms that are assumed to be small are gathered
on the right hand sides of the equations. With the
use of the expression C2

S = γkBT0/m, the ideal gas
law given by Eq. (13) can be written as

p1 −
C2

S

γ

(
ρ0
T0
T1 + ρ1

)
=

C2
S

γT0
T1ρ1. (14)

The total pressure pextT in the external medium
was assumed to be constant, and consequently
the effect of the slow magnetoacoustic waves on
the external medium was neglected. This assump-
tion is justified if the phase speed of the wave is
lower than the characteristic speeds in the exter-
nal medium (see the discussion in Roberts & Webb
1979; Zhugzhda 1996). However, the perturbation
of the external medium must be accounted for in
the consideration of the fast magnetoacoustic wave
(e.g. Vasheghani Farahani et al. 2014).

Eliminating all the variables in Eqs. (8–13) in
favour of u that is a natural variable of a slow mag-
netoacoustic wave, we obtain the wave equation

∂

∂t

[∂2u
∂t2
− C2

T

∂2u

∂z2

]
=
ρ0CT

C2
S

∂

∂t

[ N
(C2

S + V 2
A)

]

+
(γ − 1)2C2

TκT0
C2

Sρ0

∂4u

∂z4
− (γ − 1)2κT0

(C2
S + V 2

A)ρ0

∂4u

∂t2∂z2

− ηC2
T

3ρ0V 2
A

∂4u

∂t2∂z2
− 4ηCT

3ρ0

∂4u

∂t∂z3

− (γ − 1)

(C2
S + V 2

A)ρ0
A∂

2u

∂t2
+

(γ − 1)C2
T

C2
Sρ0

A∂
2u

∂z2
, (15)

where VA = B0/(4πρ0)1/2 is the Alfvén speed,
CT = CSVA/(C

2
S + V 2

A)1/2 is the tube (also called
“cusp”) speed and; N is the quadratically nonlin-
ear term,

N =
C4

SV
2
A

C2
Tρ0

∂

∂z

(
u
∂u

∂z

)
+
C2

SV
2
A

CTρ0

∂

∂z

(
u
∂u

∂t

)
+

(γ − 1)C2
S

ρ0

∂

∂t

(
u
∂u

∂t

)
− C4

S

V 2
Aρ0

∂

∂t

(
u
∂u

∂t

)
−B0

4π

∂

∂t

[ B0C
4
S

CTV 2
Aρ

2
0

(
u
∂u

∂z

)
+

4πC4
S

B0V 2
Aρ0

(
u
∂u

∂t

)]
+V 2

A

∂

∂t

[4πC2
S

B2
0

(
u
∂u

∂t

)
− C2

S

CTρ0

(
u
∂u

∂z

)]
; (16)

and the derivatives of the cooling/heating func-
tions at the equilibrium are combined in the pa-
rameter

A = aρρ0 + (γ − 1)aTT0 −
aBB0C

2
S

V 2
A

. (17)

In the derivation we neglected terms that contain
products of the coefficients κ and η with each other
and also with aρ, aT, and aB, taking that the as-
sociated effects are small in the considered case of
weak dissipation and cooling/heating misbalance.

In addition, we obtain the linear relations of
variables p1, ρ1, B1, T1 and v with u,

p1 ≈ ρ0CTu, ρ1 ≈ ρ0
CT

C2
S

u, B1 ≈ −
B0CT

V 2
A

u, (18)

v ≈ CT

2V 2
A

∂u

∂t
, T1 ≈

(γ − 1)T0CT

C2
S

u,

which are obtained from the left hand side of the
set of Eqs. (8–13), neglecting the nonlinear and
non-adiabatic terms.

Eq. (15) is a self-consistent partial differen-
tial equation for a single scalar variable u, and
can be used for modelling the dynamics of a
weakly-nonlinear, weakly-nonadiabatic slow mag-
netoacoustic wave guided by a magnetic flux tube,
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accounting for the effects of weak nonlinearity,
weak dissipation, and weak misbalance of the
radiative losses and unspecified heating. These
equations contain only one dependent variable
u(z, t). In the linear, adiabatic limit the right
hand side of Eq. (15) is zero, and the equation
reduces to the standard wave equation describing
two waves of an arbitrary smooth shape propagat-
ing in the opposite directions along the field at the
speed CT.

It is evident that in the small plasma-β limit,
CS/VA → 0, the speed CT tends to the sound
speed CS, and the perturbations of the magnetic
field and the perpendicular flow speed in the slow
magnetoacoustic wave vanish. Thus, the wave be-
comes purely longitudinal, with the plasma flows
directed strictly along the equilibrium magnetic
field. Therefore, in the β → 0 limit one can use the
infinite field approximation, describing the slow
magnetoacoustic waves guided by the magnetic
flux tube as plane acoustic waves. In this limit,
Eq. (15) reduces to

∂

∂t

[∂2u
∂t2
− C2

S

∂2u

∂z2

]
=
ρ0
CS

∂

∂t

[N(CS�VA)

V 2
A

]
+

(γ − 1)2κT0
ρ0

∂4u

∂z4
− 4ηCS

3ρ0

∂4u

∂t∂z3

+
(γ − 1)

ρ0
A(CS�VA)

∂2u

∂z2
, (19)

where

N(CS�VA) =
C2

SV
2
A

ρ0

∂

∂z

(
u
∂u

∂z

)
+
CSV

2
A

ρ0

∂

∂z

(
u
∂u

∂t

)
+

(γ − 1)C2
S

ρ0

∂

∂t

(
u
∂u

∂t

)
− ∂

∂t

[C3
S

ρ0

(
u
∂u

∂z

)]
+
∂

∂t

[C2
S

ρ0

(
u
∂u

∂t

)
− CSV

2
A

ρ0

(
u
∂u

∂z

)]
. (20)

4. Linear dispersion relation

Neglecting nonlinear terms, we assume the har-
monic dependence of perturbed quantities on time
t and the field-aligned coordinate z, ∝ exp(−iωt+
ikz), where ω is the frequency and k is the par-
allel wavenumber, and obtain from Eq. (15) the

dispersion relation

ω2 − C2
Tk

2 ≈ −i
{

(γ − 1)2C2
TκT0

ρ0ωC2
S

k4

− (γ − 1)2κT0
ρ0(C2

S + V 2
A)
ωk2 − ηC2

T

3ρ0V 2
A

ωk2 +
4ηCT

3ρ0
k3 (21)

+
(γ − 1)(ω2 − V 2

Ak
2)

ωρ0(C2
S + V 2

A)
A
}
. (22)

This equation has been derived under the assump-
tion that the non-adiabatic effect caused by the
finite thermal conduction, viscosity and misbal-
ance of radiation and heating is small. Thus, the
terms on the right hand side are much smaller
than on the left hand side. Considering the waves
that propagate in the positive direction of z, and
taking that the wavenumber k is real, we obtain
ω ≈ CTk and ωR � ωI, where ωR and ωI are
the real and imaginary parts of the frequency, re-
spectively. Thus, dispersion relation (22) can be
simplified to

ω ≈ CTk − i
[ (γ − 1)2κT0C

2
T

2ρ0C4
S

+
η

6ρ0

(
3 +

V 2
A

C2
S + V 2

A

)]
k2 +

i(γ − 1)C2
T

2ρ0C4
S

A. (23)

Hence, the real and imaginary parts of omega are

ωR ≈ CTk, (24)

ωI ≈ Pk2 +R, (25)

respectively, where

P = −
[ (γ − 1)2κT0C

2
T

2ρ0C4
S

+
η

6ρ0

(
3 +

V 2
A

C2
S + V 2

A

)]
,

R =
(γ − 1)C2

T

2ρ0C4
S

A. (26)

The imaginary part of the frequency, given by
Eq. (25) consists of two terms. The first term, P,
that accounts for the effects of the thermal con-
ductivity κ and viscosity η, is always negative,
hence always contributes to the damping of the
slow waves. The damping time is inversely pro-
portional to k2, i.e. the waves of shorter wave-
lengths decay more rapidly than of longer ones.
This is consistent with the previous findings (see,
e.g., Nakariakov et al. 2000b; De Moortel & Hood
2003; Mandal et al. 2016).
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The second term, R, can be either positive or
negative, depending on the local dependences of
the cooling/heating function Q(ρ, T,B) on its ar-
guments at the equilibrium. When R < 0 this
term contributes to damping. However, the damp-
ing caused by this term is independent of k. In
the case R > 0, this term suppresses damping,
and can even lead to the increase in the wave am-
plitude, the phenomenon known as thermal over-
stability (e.g. see Nakariakov et al. 2000a; Ku-
mar et al. 2016, for this effect on magnetoacoustic
waves). The critical value of R that separates the
damping and over-stable regimes is

Rcrit =
[ (γ − 1)2κT0C

2
T

2ρ0C4
S

+
η

6ρ0

(
3+

V 2
A

C2
S + V 2

A

)]
k2.

(27)
For R > Rcrit, the plasma becomes thermally
over-stable, and a slow magnetoacoustic perturba-
tion grows in time. The value ofRcrit reduces with
the increase in the oscillation wavelength, 2π/k.

5. Weakly nonlinear wave evolution

Following the procedure described in detail
in Afanasyev & Nakariakov (2015b) (see, also,
Nakariakov et al. 2000b) we adopt the single wave
approximation, and use Eq. (15) to derive the
evolutionary equation for the weakly nonlinear
perturbations,

∂u

∂Z
= −αNLu

∂u

∂ξ
+ αD

∂2u

∂ξ2
+ αMu, (28)

αNL =
CT

2(C2
S + V 2

A)

[
3 + (γ + 1)

V 2
A

C2
S

]
,

αD =
(γ − 1)2κT0CT

2ρ0C4
S

+
η

6ρ0CT

(
3 +

V 2
A

C2
S + V 2

A

)
,

αM =
(γ − 1)CT

2ρ0C4
S

[
aρρ0 + (γ − 1)aTT0 −

aBB0C
2
S

V 2
A

]
,

where we introduced the new independent vari-
ables ξ = z − CTt and Z = εz in the frame of ref-
erence moving at the tube speed CT, ε is a small
parameter characterising the weak rate of the wave
evolution caused by the right hand side terms in
Eq. (15). In the limit κ = 0, and R = 0, Eq. (28)
reduces to the Burgers equation for slow waves, de-
rived by Afanasyev & Nakariakov (2015b). In the
case when the effects of the local radiation/heating
misbalance are small but finite, Eq. (28) is a gen-
eralised Burgers equation with the additional lin-

ear term (the “Malthus” term) that accounts for
the effect of non-zero derivatives of the radiative
cooling/heating function. This equation can be
called the Burgers–Malthus equation, or a version
of the Burgers–Fisher equation with a linear reac-
tion term. The coefficients αNL and αD are always
positive, while αM can be either positive or nega-
tive, depending upon the specific form of the cool-
ing/heating misbalance. In the case of a negligibly
small initial amplitude and dissipation, αNL = 0
and αD = 0, Eq. (28) reduces to the Malthus equa-
tion.

In the limit CS � VA, the coefficients in
Eq. (28) reduce to

αNL =
(γ + 1)

2CS
,

αD =
(γ − 1)2κT0

2ρ0C3
S

+
2η

3ρ0CS
, (29)

αM =
(γ − 1)

2ρ0C3
S

[
aρρ0 + (γ − 1)aTT0

]
,

and the governing equation corresponds to the
case of plane acoustic waves.

5.1. Analytical estimations

It is possible to estimate the characteristic dis-
tances of the evolutionary processes caused sepa-
rately by the specific mechanisms. If the effects
of nonlinearity and radiative cooling/heating mis-
balance are neglected, αNL = 0 and αM = 0,
respectively, and the initial perturbation is as-
sumed to be harmonic, u(ξ, Z = 0) ∝ sin(kξ),
where k is the wavenumber, one obtains that
u ∝ exp(−Z/ZD), where ZD = (αDk

2)−1 is the
damping length. For a fixed oscillation period, P ,
using k = 2π(CTP )−1, the damping length be-
comes

ZD =
C2

TP
2

4π2αD
. (30)

Considering the values of ZD to be caused sep-
arately by thermal conduction and viscosity, de-
scribed by the first and second terms, respec-
tively, on the right hand side of the expression
for αD, one can compare the effects of these dis-
sipative mechanisms on the slow wave. In partic-
ular, for the broad range of the typical parame-
ters of non-flaring active regions, the temperature
7 × 105–2 × 106 K, and the mass density 10−14–
10−10 kg m−3, the ratio of the values of ZD caused
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only by thermal conduction and only by viscosity
is from 2.5 to 14.4. Thus, in the corona the effect
of thermal conduction on the slow wave damping
is stronger than of viscosity, which is consistent
with the findings of De Moortel & Hood (2003).
In the low-β limit, the dependence of the ratio of
the damping length to the wavelength can be es-
timated as

ZD

CTP
≈ ρ0P

T
3/2
0

. (31)

For αM 6= 0, and still neglecting nonlinear ef-
fects, the damping length becomes ZD = (αDk

2 −
αM)−1, or

ZD =
C2

TP
2

4π2αD − C2
TP

2αM
. (32)

This expression is consistent with dispersion re-
lations (24) and (25). For αM < 0 (R < 0) the
cooling/heating misbalance decreases the damp-
ing length; while for αM > 0 it increases it. In
the particular case αM = αcrit

M = 4π2αD/C
2
TP

2

that corresponds to R = Rcrit, the oscillation be-
comes decayless, ZD = ∞. For αM > αcrit

M , an
over-stability takes place (ZD < 0), c.f. Eq. (27).
In the limit αD � αM, ZD ≈ −α−1M , and the over-
stability occurs for any αM > 0.

Neglecting the dissipative effects, αD = 0, but
accounting for nonlinear effects, Eq. (28) has the
implicit solution

u−F
{
ξ − αNL

αM
[1− exp(−αMZ)]u

}
exp(αMZ) = 0,

(33)
where the function F (ξ) is the profile of the wave
at the initial time, u(ξ, Z = 0) = F (ξ) (e.g.
Nakariakov et al. 2000a). This equation describes
the nonlinear steepening of the initial perturba-
tion. The distance at which the wave breaks, i.e.
the shock is formed, is given by the expression

ZB =
1

αM
log

(
1− αM

αNL
f ′
)
, (34)

where f ′ is the value of the derivative of the
function f at the inflection point, with f being
the inverse function of the initial shape of the
wave, ξ = f(u), i.e. f is the function inverse to
F . In particular, for u(ξ, Z = 0) = A sin(kξ),
f ′ = (Ak)−1. As αNL > 0, the shock forms at the
slope with the negative derivate, ∂F/∂ξ < 0. We

would like to stress that in the expressions in this
section the amplitude A is dimensional, having the
units of the speed. For an initially harmonic wave,
the expression for the breaking distance becomes

ZB =
1

αM
log

(
1 +

αM

αNLAk

)

=
1

αM
log

(
1 +

αMCTP

2παNLA

)
.

(35)

For αM → 0, the breaking distance is ZB =
−f ′/αNL. For an initially harmonic wave, the
breaking distance

ZB =
1

αNLAk
=

CTP

2παNLA
(36)

(see, e.g. Afanasyev & Nakariakov 2015b, for dis-
cussion).

The ratio ZB/ZD determines the mutual impor-
tance of the effects of nonlinear steepening and
damping. Figure 1 shows the dependence of this
ratio on the value of αM. We can see that the cool-
ing/heating misbalance affects the relative impor-
tance of nonlinear and dissipative effects rather
significantly, and thus should be taken into ac-
count. In a general case when ZB and |ZD| are
of the same order of magnitude, estimating ex-
pressions (32) and (36) should be used with cau-
tion, because of the mutual influence of the effects
of nonlinear steepening, dissipation and either en-
hanced or reduced damping or over-stability due
to the cooling/heating misbalance.

5.2. Numerical solutions

To illustrate the possible scenarios of the wave
evolution in the case when all three considered
physical mechanisms, the nonlinearity, dissipation
and cooling/heating misbalance operate simulta-
neously, we solve Eq. (28) numerically with the
use of the pdsolve function of Maple 2016.1.

Fig. 2 shows the effect of the cooling/heating
misbalance on the slow wave evolution in a typical
coronal active region loop. The left panel corre-
sponds to the case without the misbalance. The
wave experiences slight steepening caused by the
nonlinear cascade, and decay because of the dissi-
pation caused by thermal conduction and viscos-
ity. This behaviour is consistent with the mod-
els developed in Nakariakov et al. (2000b); Ofman
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Fig. 1.— Dependence of the ratio of the break-
ing and damping distances on the parameter
of the cooling/heating misbalance in a plasma
with the temperature 700,000 K, mass density
10−12 kg m−3, and magnetic field 10 G. The red
(solid) curve corresponds to a tube wave of the
period of 300 s and with the initial amplitude of
1.3×104 m s−1; the blue (dotted) to the period of
180 s and amplitude of 1.3×104 m s−1; the yellow
(dashed) to the period of 180 s and amplitude of
7× 103 m s−1; and the green (dot-dashed) to the
period of 300 s and amplitude of 7× 103 m s−1.

et al. (2000); Afanasyev & Nakariakov (2015b).
The middle panel shows the over-stable regime
caused by a positive αM. In this case, the cool-
ing/heating misbalance amplifies the wave more
effectively than the dissipation causes the wave
decay, and the wave amplitude increases — the
effect of the thermal over-stability of slow mag-
netoacoustic waves. Because of the suppressed
decay, the nonlinear cascade effectively steepens
the wave shape, forming a shock at the negative
slope. When the wave becomes sufficiently steep,
the dissipation that enhances with the wave steep-
ening because of its dependence on the wavenum-
ber squared, stops the further increase in the wave
amplitude. The right panel shows the case of a
negative αM. In this case, the cooling/heating
misbalance contributes to the wave damping. In
this case, the wave amplitude decreases with the
travel distance much more rapidly than it is caused
by thermal conduction and viscosity (c.f. the left
panel). Fig. 3 shows a similar behaviour, but for
the conditions typical for a polar plume. The ef-
fect of the cooling/heating misbalance on a slow
wave is similar to the case of a coronal loop, dis-
cussed above.

Fig. 4 shows the variation of the wave ampli-
tude with the distance from the origin for the
same conditions as in Figs. 2 and 3. It is evi-
dent that the cooling/heating misbalance may ei-
ther increase the wave damping or counteract the
dissipation. The gradual decrease in the amplifica-
tion seen in the green (dashed) curves that corre-
spond to the over-stable case, is attributed to the
increase in the dissipation because of the nonlinear
cascade — the effect of nonlinear dissipation. In
the left panel, because of this effect the amplitude
reaches the maximum and then begins decreasing
when the wave becomes sufficiently steep. In the
right panel, this regime is not evident, and the
over-stable wave seems to reach some saturation
when the amplitude and the saw-tooth shape re-
main the same during the wave propagation. The
latter case corresponds to a so-called stationary
wave regime (e.g. Chin et al. 2010).

6. Discussion and conclusions

Assuming the effects of nonlinearity, dissipa-
tion connected with finite thermal conduction and
viscosity, and misbalance of the radiative losses
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Fig. 2.— Evolution of the shape of an initially harmonic slow magnetoacoustic wave of the period of 300 s
and with the initial amplitude of 1.3 × 104 m s−1, guided by a plasma cylinder with the plasma of the
temperature 700,000 K, mass density 10−12 kg m−3, and magnetic field 10 G, which corresponds to the
sound speed of 1.27× 105 m s−1, Alfvén speed of 8.92× 105 m s−1, and tube speed of 1.26× 105 m s−1. Left
panel: the effect of the misbalance of radiative cooling and heating is neglected. The red (solid) curve shows
the initial shape of the wave. The orange (long-dash) curve at the distance 27.5 Mm from the wave origin;
the green (dotted) at 82.5 Mm; the blue (dash) at 110 Mm; and the violet (dash-dotted) at 132 Mm. The
distance along the cylinder ξ is given in m, and the wave amplitude u in m s−1 Middle panel: the same, but
for αM = 1.3× 10−8 m−1. Right panel: the same, but for αM = −1.7× 10−8 m−1.
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Fig. 3.— Evolution of the shape of an initially harmonic slow magnetoacoustic wave of the period of 600 s and
with the initial amplitude of 2×104 m s−1, guided by a plasma cylinder with the plasma of the temperature
1.4×106 K, mass density 10−12 kg m−3, and magnetic field 1 G, which corresponds to the sound speed of
1.79 × 105 m s−1, Alfvén speed of 8.92 × 105 m s−1, and tube speed of 1.76 × 105 m s−1. Left panel: the
effect of the misbalance of radiative cooling and heating is neglected. The red (solid) curve shows the initial
shape of the wave. The orange (long-dash) curve at the distance 54 Mm from the wave origin; the green
(dotted) at 98 Mm; the blue (dash) at 141 Mm; and the violet (dash-dotted) at 184 Mm. The distance
along the cylinder ξ is given in m, and the wave amplitude u in m s−1 Middle panel: the same, but for
αM = 7× 10−9 m−1. Right panel: the same, but for αM = −7× 10−9 m−1.

Fig. 4.— Evolution of the slow wave amplitude along a plasma cylinder. The red (solid) curves show the
case αM = 0, green (dashed) curves αM = 7×10−9 m−1, and blue (dot-dashed) curves αM = −7×10−9 m−1.
Left panel: the parameters of the plasma and wave are the same as in the middle panel of Fig. 2. Right
panel: the parameters of the plasma and wave are the same as in the right panel of Fig. 2.
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and unspecified heating to be weak, we derived a
self-consistent wave equation describing the prop-
agation of long-wavelength slow magnetoacoustic
waves guided by a cylindrical field-aligned non-
uniformity of a finite-β plasma. This equation
contains only one dependent variable, and hence
provides us with a convenient ground for the study
of the wave evolution by asymptotic techniques,
addressing the effects of nonlinearity, dissipation
and activity of the waveguiding medium. The ef-
fect of the activity of the medium occurs when
a wave gets amplified during its propagation. In
the considered case the activity is caused by the
cooling/heating misbalance.

Using the single-wave approximation we re-
duced the wave equation to a Burgers–Malthus
evolutionary equation that generalises the Burg-
ers equation derived in Afanasyev & Nakariakov
(2015b) by accounting for the effects of the finite
thermal conduction and cooling/heating misbal-
ance. It is established that the slow wave be-
haviour is very sensitive to the particular fea-
tures of the dependences of the radiative cool-
ing/heating function on the physical quantities
perturbed by the wave, i.e. the plasma density and
temperature, and the magnetic field. Depending
upon the specific combination of the derivatives
of the cooling/heating function with respect to
the density, temperature and the magnetic field,
taken at the equilibrium, and dissipation, slow
magnetoacoustic waves may experience enhanced
or reduced damping, or amplification. In the lat-
ter case there is no any violation of the energy
conservation, as the considered system is non-
conservative, because of the energy supply by the
heating, i.e. the plasma acts as an active medium
for the magnetoacoustic waves. The strength of
this effect depends upon the steepness of the ra-
diative cooling/heating function, which is still un-
known. For example, we could expect the depen-
dence of the heating function upon the magnetic
field to be quite steep in the case of cyclotron res-
onance mechanisms.

If the wave amplitude is sufficiently high, e.g.
exceeds several per cent of the equilibrium value,
or the wave amplification by thermal over-stability
is stronger than the damping by dissipation, the
wave experiences nonlinear steepening because of
the nonlinear cascade. It may either lead to
the nonlinear dissipation that is much stronger

for the same value of the transport coefficients
than the dissipation in the linear regime (see, e.g.
Afanasyev & Nakariakov 2015b), or to the occur-
rence of a stationary regime similar to described
in Chin et al. (2010), in which the wave has a saw-
tooth shape but the amplitude does not decay.
This phenomenon could be understood in terms
of the wave spectrum evolution. The terms on the
right hand side of Eq. (28) affect the wave spec-
trum differently. The first, nonlinear term causes
the nonlinear cascade via the continuous doubling
of the wavenumber. In other words, this term is
responsible for the energy transfer to larger wave
numbers. The second, dissipative term causes the
conversion of the wave energy into the internal en-
ergy of the medium, which is most effective for
larger wave numbers. The enhanced, nonlinear
dissipation occurs when these two effects oper-
ate together: the nonlinearity transfers the wave
energy from longer wavelengths where the dissi-
pation is ineffective, to the shorter wavelengths
where this energy is effectively dissipated. In the
presence of the third term that describes the cool-
ing/heating misbalance, the wave is either ampli-
fied or decayed, depending on the sign of the co-
efficient αM. It occurs with the same effectiveness
for all wave numbers. In the over-stable regime,
there could be a balance between the energy sup-
ply, transfer to larger wave numbers, and dissi-
pation, which causes the occurrence of stationary,
i.e. non-evolving propagating waves.

In several important limiting cases, namely
when either the dissipation, or cooling/heating
misbalance, or nonlinearity are negligible, we ob-
tained simple estimations for the characteristic
distances of the wave evolution. The wave damp-
ing and breaking lengths are found to be deter-
mined by the wave parameters (period, ampli-
tude), and properties of the medium (density, tem-
perature, magnetic field, and the cooling/heating
function). These estimations allow one to assess
the relative importance of different physical effects
in the slow wave evolution in specific cases.

The results obtained provide us with a start-
ing point for the possible seismological estima-
tion of the coronal heating function and therefore
identifying its mechanism. However, this perspec-
tive requires the precise knowledge of the radiative
cooling function. In addition, in realistic coronal
plasma structures for the observed periods of the
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slow waves, i.e. several minutes, it may be impor-
tant to account for stratification. In particular,
the stratification causes the increase in the ampli-
tude of the slow wave propagating upwards (see,
e.g. Nakariakov et al. 2000b; Ofman et al. 2000).
Hence, the variation of the wave amplitude caused
by the cooling/heating misbalance, is additive to
the amplification due to the stratification. In the
over-stable regime the cooling/heating misbalance
acts together with the amplification by stratifica-
tion. Also, recent observational findings indicate a
possible departure of the thermal conductivity and
dynamical viscosity coefficients from the standard
estimations (Wang et al. 2015). It would be of in-
terest to check whether this discrepancy could be
attributed to the effect of the cooling/heating mis-
balance. In addition, the results obtained could
possibly explain the occurrence of periodic com-
pressive disturbances at the coronagraph heights
(e.g. Ofman et al. 1997). A possible scenario could
be a variation of the coefficient αM with height
which leads to the amplification of the slow waves
propagating upwards in a certain range of heights.
A dedicated study of this effect would be of inter-
est too.

The main outcome of this work is the demon-
stration that the cooling/heating misbalance can
affect slow magnetoacoustic waves rather signifi-
cantly, and may be responsible for certain discrep-
ancies between the previously obtained theoretical
results and observations. In particular, this ef-
fect can cause additional, wavelength-independent
damping of the waves, or, otherwise, counteract
the damping by finite thermal conduction and
viscosity. We would like to point out that the
wave damping is determined by the dependences
of the cooling/heating misbalance function on the
plasma parameters, and not by the actual cool-
ing or heating time of the plasma structure. An-
other interesting application of the obtained re-
sults is connected with the excitation of slow mag-
netoacoustic (for example, the “longitudinal”) os-
cillations in filaments. For example, the simul-
taneous occurrence of transverse and longitudinal
oscillations by a shock wave, observed by Shen
et al. (2014). The slow magnetoacoustic oscilla-
tion in a filament could be excited by a sudden
change of the cooling/heating misbalance in the
filament plasma, caused by the interaction with
the shock. More specifically, the excitation could

take place when the sudden modification of the
cooling/heating misbalance changes the sign of
αM. Thus, a further modelling of this effect seems
to be of interest for both hot and cool coronal
plasma structures. In particular, this study could
contribute to revealing the mechanisms for the ex-
citation of large amplitude oscillations in promi-
nences (Arregui et al. 2012). Also, the Burgers–
Malthus evolutionary equation derived here pro-
vides one with a starting point for the analyti-
cal model of standing slow magnetoacoustic waves
in hot plasma loops, following the formalism de-
veloped in (Ruderman 2013; Kumar et al. 2016),
based on the use of equation (28).

We would also point out that this study demon-
strated that in the finite β case the slow wave in a
field-aligned plasma waveguide perturbs the abso-
lute value of the magnetic field in the waveguide.
The magnetic field perturbation is in anti-phase
with the perturbation of the plasma density (see
Eq. (18)). It may have an interesting effect on the
thermal radio emission from coronal plasma struc-
tures, modulating it via the wave-induced varia-
tions of the electron plasma frequency and electron
gyro frequency.
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