

warwick.ac.uk/lib-publications

Original citation:
Bhattacharya, Sayan, Henzinger, Monika and Nanongkai, Danupon (2016) New deterministic
approximation algorithms for fully dynamic matching. In: 48th Annual ACM Symposium on
Theory of Computing, Cambridge, MA, USA, 19-21 Jun 2016 . Published in: Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing pp. 398-411.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/97555

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© ACM, 2016. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing pp. 398-
411. (2016) http://doi.acm.org/10.1145/10.1145/2897518.2897568

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/145690371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/97555
http://doi.acm.org/10.1145/10.1145/2897518.2897568
mailto:wrap@warwick.ac.uk

New Deterministic Approximation Algorithms for Fully
Dynamic Matching

[Extended Abstract]

Sayan Bhattacharya
IMSc, Chennai

bsayan@imsc.res.in

Monika Henzinger∗
University of Vienna

monika.henzinger@univie.ac.at

Danupon Nanongkai†
KTH, Stockhom

danupon@kth.se

ABSTRACT
We present two deterministic dynamic algorithms for the
maximum matching problem. (1) An algorithm that main-
tains a (2 + ε)-approximate maximum matching in general
graphs with O(poly(logn, 1/ε)) update time. (2) An algo-
rithm that maintains an αK approximation of the value of
the maximum matching with O(n2/K) update time in bi-
partite graphs, for every sufficiently large constant positive
integer K. Here, 1 ≤ αK < 2 is a constant determined by
the value of K. Result (1) is the first deterministic algo-
rithm that can maintain an o(logn)-approximate maximum
matching with polylogarithmic update time, improving the
seminal result of Onak et al. [STOC 2010]. Its approxima-
tion guarantee almost matches the guarantee of the best ran-
domized polylogarithmic update time algorithm [Baswana et
al. FOCS 2011]. Result (2) achieves a better-than-two ap-
proximation with arbitrarily small polynomial update time
on bipartite graphs. Previously the best update time for this
problem was O(m1/4) [Bernstein et al. ICALP 2015], where
m is the current number of edges in the graph.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

General Terms
Algorithms, Theory

Keywords
Data Structures, Dynamic Graph Algorithms

∗The research leading to this work has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 317532
and from the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement number 340506.
†Support by Swedish Research Council grant 2015-04659.

1. INTRODUCTION
In this paper, we consider the dynamic maximum car-

dinality matching problem. In this problem an algorithm
has to quickly maintain an (integral) maximum-cardinality
matching or its approximation, when the n-node input graph
is undergoing edge insertions and deletions. We consider
two versions of this problem: In the matching version, the
algorithm has to output the change in the (approximate)
matching, if any, after each edge insertion and deletion. In
the value version, the algorithm only has to output the value
of the matching. (Note that an algorithm for the matching
version can be used to solve the value version within the
same time.) When stating the running time below, we give
the time per update1. If not stated otherwise, these results
hold for both versions.

The state of the art for maintaining an exact solution for
the value version of this problem is a randomized O(n1.495)-
time algorithm [16]. This is complemented by various hard-
ness results which rules out polylogarithmic update time
[1, 8, 11]. As it is desirable for dynamic algorithms to
have polylogarithmic update time, the recent work has fo-
cused on achieving this goal by allowing approximate solu-
tions. The first paper that achieved this is by Onak and Ru-
binfeld [13], which gave a randomized O(1)-approximation
O(log2 n)-time algorithm and a deterministic O(logn) ap-
proximation O(log2 n)-time algorithm. As stated in the two
open problems in [13], this seminal paper opened up the
doors for two research directions:

1. Designing a (possibly randomized) polylogarithmic time
algorithm with smallest approximation ratio.

2. Designing a deterministic polylogarithmic time algo-
rithm with constant approximation ratio.

The second question is motivated by the fact that random-
ized dynamic approximation algorithms only fulfill their ap-
proximation guarantee when used by an oblivious adversary,
i.e., an adversary that gives the next update without know-
ing the outputs of the algorithm resulting from earlier up-
dates. This limits the usefulness of randomized dynamic
algorithms. In contrast, deterministic dynamic algorithms
fulfill their approximation guarantee against any adversary,
even non-oblivous ones. Thus, they can be used, for ex-
ample, as a “black box” by any other (potentially static)

1In this discussion, we ignore whether the update time is
amortized or worst-case as this is not the focus of this paper.
The update time of our algorithm is amortized.

algorithm, while this is not generally the case for random-
ized dynamic algorithms. This motivates the search for de-
terministic fully dynamic approximation algorithms, even
though a randomized algorithm with the same approxima-
tion guarantee might exists.

(1) Up to date, the best answer to the first question is
the randomized 2 approximation O(logn) update time al-
gorithm from [2]. It remains elusive to design a better-than-
two approximation factor with polylogarithmic update time.
Some recent works have focused on achieving such approxi-
mation factor with lowest update time possible. The current
best update time is O(m1/4/ε2.5) [4, 3], which is determin-
istic and guarantees a (3/2 + ε) approximation factor.

(2) For the second question, deterministic polylogarithmic-
time (1 + ε)-approximation algorithms were known for the
special case of low arboricity graphs [12, 11, 15]. On gen-
eral graphs, the paper [5] achieved a deterministic (3 + ε)-
approximation polylogarithmic-time algorithm by maintain-
ing a fractional matching; this algorithm however works only
for the value version. No deterministic o(logn) approxima-
tion algorithm with polylogarithmic update time was known
for the matching version. (There were many deterministic
constant approximation algorithms with o(m) update time
for the matching version (e.g. [12, 5, 7, 4, 3]). The fastest

among them requires O(m1/4/ε2.5) update time [4].)

Our Results. We make progress on both versions of the
problem as stated in Theorems 1 and 2.

Theorem 1. For every ε ∈ (0, 1), there is a determin-
istic algorithm that maintains a (2 + ε)-approximate maxi-
mum matching in a graph in O(poly(logn, 1/ε)) update time,
where n denotes the number of nodes in the graph.

Theorem 1 answers Onak and Rubinfeld’s second ques-
tion positively. In fact, our approximation guarantee almost
matches the best (2-approximation) one provided by a ran-
domized algorithm [2].2 Our algorithm for Theorem 1 is
obtained by combining previous techniques [5, 7, 15] with
two new ideas that concern fractional matchings. First, we
dynamize the degree splitting process previously used in the
parallel and distributed algorithms literature [9] and use it
to reduce the size of the support of the fractional matching
maintained by the algorithm of [5]. This helps us main-
tain an approximate integral matching cheaply using the
result in [7]. This idea alone already leads to a (3 + ε)-
approximation deterministic algorithm. Second, we improve
the approximation guarantee further to (2 + ε) by proving
a new structural lemma that concerns the ratio between (i)
the maximum (integral) matching in the support of a max-
imal fractional matching and (ii) the maximum (integral)
matching in the whole graph. It was known that this ratio
is at least 1/3. We can improve this ratio to 1/2 with a
fairly simple proof (using Vizing’s theorem [17]). We note
that this lemma can be used to improve the analysis of an
algorithm in [5] to get the following result: There is a deter-
ministic algorithm that maintains a (2 + ε) approximation
to the size of the maximum matching in a general graph in
O(m1/3/ε2) amortized update time.
2By combining our result with the techniques of [6] in
a standard way, we also obtain a deterministic (4 + ε)-
approximationO(poly lognpoly(1/ε) logW)-time for the dy-
namic maximum-weight matching problem, where W is the
ratio between the largest and smallest edge weights.

Theorem 2. For every sufficiently large positive integral
constant K, we can maintain an αK-approximation to the
value of the maximum matching3 in a bipartite graph G =
(V,E), where 1 ≤ αK < 2. The algorithm is deterministic

and has an amortized update time of O(n2/K).

We consider Theorem 2 to be a step towards achieving a
polylogarithmic time (randomized or deterministic) fully dy-
namic algorithm with an approximation ratio less than 2,
i.e., towards answering Onak and Rubinfeld’s first question.
This is because, firstly, it shows that on bipartite graphs
the better-than-two approximation factor can be achieved
with arbitrarily small polynomial update time, as opposed
to the previous best O(m1/4) time of [3]. Secondly, it rules
out a natural form of hardness result and thus suggests that
a polylogarithmic-time algorithm with better-than-two ap-
proximation factor exists on bipartite graphs. More pre-
cisely, the known hardness results (e.g. those in [14, 1, 11,
8]) that rule out a polylogarithmic-time α-approximation
algorithm (for any α > 0) are usually in the form “assum-
ing some conjecture, there exists a constant δ > 0 such that
for any constant ε > 0, there is no (1 − ε)α-approximation
algorithm that has nδ−ε update time”; for example, for dy-
namically 2-approximating graph’s diameter, this statement
was proved for α = 2 and δ = 1/2 in [8], implying that
any better-than-two approximation algorithm for this prob-
lem will require an update time close to n1/2. Our result
in 2 implies that a similar statement cannot be proved for
α = 2 for the bipartite matching problem since, for any con-
stant δ > 0, there is a (2− ε)-approximation algorithm with

update time, say, O(nδ/2) for some ε > 0.
To derive an algorithm for Theorem 2, we use the fact

that in a bipartite graph the size of the maximum frac-
tional matching is the same as the size of the maximum inte-
gral matching. Accordingly, a maximal fractional matching
(which gives 2-approximation) can be augmented by a frac-
tional b-matching, for a carefully chosen capacity vector b,
to obtain a better-than-two approximate fractional match-
ing. The idea of “augmenting a bad solution” that we use
here is inspired by the approach in the streaming setting by
Konrad et al. [10]. But the way it is implemented is differ-
ent as [10] focuses on using augmenting paths while we use
fractional b-matchings.

Organization. In Section 1.1, we define some basic con-
cepts and notations that will be used throughout the rest of
this paper. In Section 2, we give an overview of our algo-
rithm for Theorem 1. In Section 3, we highlight the main
ideas behind our algorithm for Theorem 2. Finally, we con-
clude with some open problems in Section 4. All the missing
details can be found in the full version of the paper.

1.1 Notations and preliminaries
Let n = |V | and m = |E| respectively denote the number

of nodes and edges in the input graph G = (V,E). Note that
m changes with time, but n remains fixed. Let degv(E′)
denote the number of edges in a subset E′ ⊆ E that are
incident upon a node v ∈ V . An (integral) matching M ⊆ E
is a subset of edges that do not share any common endpoints.
The size of a matching is the number of edges contained in
it. We are also interested in the concept of a fractional

3We can actually maintain an approximate fractional match-
ing with the same performance bounds.

matching. Towards this end, we first define the notion of
a fractional assignment. A fractional assignment w assigns
a weight w(e) ≥ 0 to every edge e ∈ E. We let Wv(w) =∑

(u,v)∈E w(u, v) denote the total weight received by a node
v ∈ V under w from its incident edges. Further, the support
of w is defined to be the subset of edges e ∈ E with w(e) >
0. Given two fractional assignments w,w′, we define their
addition (w + w′) to be a new fractional assignment that
assigns a weight (w + w′)(e) = w(e) + w′(e) to every edge
e ∈ E. We say that a fractional assignment w forms a
fractional matching iff we have Wv(w) ≤ 1 for all nodes
v ∈ V . Given any subset of edges E′ ⊆ E, we define w(E′) =∑
e∈E′ w(e). We define the size of a fractional matching w

to be w(E). Given any subset of edges E′ ⊆ E, we let
Optf (E′) (resp. Opt(E′)) denote the maximum possible

size of a fractional matching with support E′ (resp. the
maximum possible size of an integral matching M ′ ⊆ E′).
Theorem 3 follows from the half-integrality of the matching
polytope in general graphs and its total unimodularity in
bipartite graphs.

Theorem 3. Consider any subset of edges E′ ⊆ E in
the graph G = (V,E). We have: Opt(E′) ≤ Optf (E′) ≤
(3/2) ·Opt(E′). Further, if the graph G is bipartite, then we
have: Optf (E′) = Opt(E′).

Next, we recall that Gupta and Peng [7] gave a dynamic
algorithm that maintains a (1 + ε)-approximate maximum
matching in O(

√
m/ε2) update time. A simple modification

of their algorithm gives the following result.

Theorem 4. [7] If the maximum degree in a dynamic
graph never exceeds some threshold d, then we can main-
tain a (1 + ε)-approximate maximum matching in O(d/ε2)
update time.

Finally, we say that a fractional matching w is α-maximal,
for α ≥ 1, iff Wu(w) +Wv(w) ≥ 1/α for every edge (u, v) ∈
E. Using LP-duality and complementary slackness condi-
tions, one can show the following result.

Lemma 1. We have Optf (E) ≤ 2α · w(E) for every α-
maximal fractional matching w in a graph G = (V,E).

2. GENERAL GRAPHS
We give a dynamic algorithm for maintaining an approx-

imate maximum matching in a general graph. We consider
the following dynamic setting. Initially, the input graph is
empty. Subsequently, at each time-step, either an edge is in-
serted into the graph, or an already existing edge is deleted
from the graph. The node-set of the graph, however, re-
mains unchanged. Our main result in this section is stated
in Theorem 1. Throughout this section, we will use the no-
tations and concepts introduced in Section 1.1.

2.1 Maintaining a large fractional matching
Our algorithm for Theorem 1 builds upon an existing

dynamic data structure that maintains a large fractional
matching. This data structure was developed in [5], and
can be described as follows. Fix a small constant ε > 0.
Define L = dlog(1+ε) ne, and partition the node-set V into
L + 1 subsets V0, . . . , VL. We say that the nodes belonging
to the subset Vi are in “level i”. We denote the level of a
node v by `(v), i.e., v ∈ Vi iff `(v) = i. We next define the

“level of an edge” (u, v) to be `(u, v) = max(`(u), `(v)). In
other words, the level of an edge is the maximum level of
its endpoints. We let Ei = {e ∈ E : `(e) = i} denote the
set of edges at level i, and define the subgraph Gi = (V,Ei).
Thus, note that the edge-set E is partitioned by the subsets
E0, . . . , EL. For each level i ∈ {0, . . . , L}, we now define a
fractional assignment wi with support Ei. The fractional
assignment wi is uniform, in the sense that it assigns the
same weight wi(e) = 1/di, where di = (1+ε)i, to every edge
e ∈ Ei in its support. In contrast, wi(e) = 0 for every edge
e ∈ E \ Ei. Throughout the rest of this section, we refer to
this structure as a “hierarchical partition”.

Theorem 5. [5] We can maintain a hierarchical parti-
tion dynamically in O(logn/ε2) update time. The algorithm

ensures that the fractional assignment w =
∑L
i=0 wi is a

(1 + ε)2-maximal matching in G = (V,E). Furthermore, the
algorithm ensures that 1/(1 + ε)2 ≤Wv(w) ≤ 1 for all nodes
v ∈ V at levels `(v) > 0.

Corollary 1. The fractional matching w in Theorem 5
is a 2(1 + ε)2-approximation to Optf (E).

Proof. Follows from Lemma 1 and Theorem 5.

Corollary 2. Consider the hierarchical partition in The-
orem 5. There, we have degv(Ei) ≤ di for all nodes v ∈ V
and levels 0 ≤ i ≤ L.

Proof. The corollary holds since 1 ≥Wv(w) ≥Wv(wi) =∑
(u,v)∈Ei

wi(u, v) = (1/di) · degv(Ei).

Accordingly, throughout the rest of this section, we refer
to di as being the degree threshold for level i.

2.2 An overview of our approach
We will now explain the main ideas that are needed to

prove Theorem 1. Due to space constraints, we will focus
on getting a constant approximation in O(poly logn) update
time. See the full version of the paper for the complete proof
of Theorem 1. First, we maintain a hierarchical partition as
per Theorem 5. This gives us a 2(1 + ε)2-approximate max-
imum fractional matching (see Corollary 1). Next, we give
a dynamic data structure that deterministically rounds this
fractional matching into an integral matching without losing
too much in the approximation ratio. The main challenge is
to ensure that the data structure has O(poly logn) update
time, for otherwise one could simply use any deterministic
rounding algorithm that works well in the static setting.

2.2.1 An ideal skeleton
Our dynamic rounding procedure, when applied on top of

the data structure used for Theorem 5, will output a low-
degree subgraph that approximately preserves the size of the
maximum matching. We will then extract a large integral
matching from this subgraph using Theorem 4. To be more
specific, recall that w is the fractional matching maintained
in Theorem 5. We will maintain a subset of edges E′ ⊆ E
in O(poly logn) update time that satisfies two properties.

There is a fractional matching w′ with support E′

such that w(E) ≤ c · w′(E′) for some constant c ≥ 1. (1)

degv(E′) = O(poly logn) for all nodes v ∈ V. (2)

Equation 1, along with Corollary 1 and Theorem 3, guaran-
tees that the subgraph G′ = (V,E′) preserves the size of the
maximum matching in G = (V,E) within a constant factor.
Equation 2, along with Theorem 4, guarantees that we can
maintain a matching M ′ ⊆ E′ in O(poly logn/ε2) update
time such that Opt(E′) ≤ (1+ε) · |M ′|. Setting ε to be some
small constant (say, 1/3), these two observations together
imply that we can maintain a O(1)-approximate maximum
matching M ′ ⊆ E in O(poly logn) update time.

To carry out this scheme, we note that in the hierarchi-
cal partition the degree thresholds di = (1 + ε)i get smaller
and smaller as we get into lower levels (see Corollary 2).
Thus, if most of the value of w(E) is coming from the lower
levels (where the maximum degree is already small), then
we can easily satisfy equations 1, 2. Specifically, we fix a

level 0 ≤ L′ ≤ L with degree threshold dL′ = (1 + ε)L
′

=

Θ(poly logn), and define the edge-set Y =
⋃L′

j=0Ej . We

also define w+ =
∑
i>L′ wi and w− =

∑
i≤L′ wi. Note that

w(E) = w+(E) +w−(E). Now, consider two possible cases.

Case 1. w−(E) ≥ (1/2) ·w(E). In other words, most of the
value of w(E) is coming from the levels [0, L′]. By Corol-

lary 2, we have degv(Y) ≤
∑L′

j=0 dj ≤ (L′ + 1) · dL′ =

Θ(poly logn) for all nodes v ∈ V . Thus, we can simply
set w′ = w+ and E′ = Y to satisfy equations 1, 2.

Case 2. w+(E) > (1/2) ·w(E). In other words, most of the
value of w(E) is coming from the levels [L′ + 1, L]. To deal
with this case, we introduce the concept of an ideal skeleton.
See Definition 1. Basically, this is a subset of edges Xi ⊆ Ei
that scales down the degree of every node by a factor of
di/dL′ . We will later show how to maintain a structure akin
to an ideal skeleton in a dynamic setting. Once this is done,
we can easily construct a new fractional assignment ŵi that
scales up the weights of the surviving edges in Xi by the
same factor di/dL′ . Since wi(e) = 1/di for all edges e ∈ Ei,
we set ŵi(e) = 1/dL′ for all edges e ∈ Xi. To ensure that
Xi is the support of the fractional assignment ŵi, we set
ŵi(e) = 0 for all edges e ∈ E \ Xi. Let X = ∪i>L′Xi and
ŵ =

∑
i>L′ ŵi. It is easy to check that this transformation

preserves the weight received by a node under the fractional
assignment w+, that is, we have Wv(ŵ) = Wv(w+) for all
nodes v ∈ V . Accordingly, Lemma 2 implies that if we set
w′ = ŵ and E′ = X, then equations 1, 2 are satisfied.

Definition 1. Consider any level i > L′. An ideal skeleton
at level i is a subset of edges Xi ⊆ Ei such that deg(v,Xi) =
(dL′/di) · deg(v,Ei) for all nodes v ∈ V . Define a fractional
assignment ŵi on support Xi by setting ŵi(e) = 1/dL′ for
all e ∈ Xi. For every other edge e ∈ E \Xi, set ŵi(e) = 0.
Finally, define the edge-set X =

⋃
i>L′ Xi and the fractional

assignment ŵ =
∑
j>L′ ŵj .

Lemma 2. We have: degv(X) = O(poly logn) for all nodes
v ∈ V , and ŵ(E) = w+(E). The edge-set X and the frac-
tional assignment ŵ are defined as per Definition 1.

Proof. Fix any node v ∈ V . Corollary 2, Definition 1 im-
ply that: degv(X) =

∑
j>L′ degv(Xj) =

∑
j>L′(dL′/dj) ×

degv(Ej) ≤
∑
j>L′(dL′/dj)dj = (L−L′)dL′ = O(poly logn).

To prove the second part, consider any level i > L′. Defi-
nition 1 implies that Wv(ŵi) = (1/dL′) · degv(Xi) = (1/di) ·
degv(Ei) = Wv(wi). Accordingly, we infer that: Wv(ŵ) =

∑
i>L′Wv(ŵi) =

∑
i>L′Wv(wi) = Wv(w+). Summing over

all the nodes, we get:
∑
v∈V Wv(ŵ) =

∑
v∈V Wv(w+). It

follows that ŵ(E) = w+(E).

2.2.2 A degree-splitting procedure
It remains to show to how to maintain an ideal skele-

ton. To gain some intuition, let us first consider the prob-
lem in a static setting. Fix any level i > L′, and let λi =
di/dL′ . An ideal skeleton at level i is simply a subset of
edges Xi ⊆ Ei that scales down the degree of every node
(w.r.t. Ei) by a factor λi. Can we compute such a sub-
set Xi in O(|Ei| · poly log n) time? Unless we manage to
solve this problem in the static setting, we cannot expect
to get a dynamic data structure for the same problem with
O(poly logn) update time. The SPLIT(Ei) subroutine de-
scribed below answers this question in the affirmative, albeit
for λi = 2. Specifically, in linear time the subroutine outputs
a subset of edges where the degree of each node is halved. If
λi > 2, then to get an ideal skeleton we need to repeatedly
invoke this subroutine log2 λi times: each invocation of the
subroutine reduces the degree of each node by a factor of
two, and hence in the final output the degree of each node is
reduced by a factor of λi.

4 This leads to a total runtime of
O(|Ei| · log2 λi) = O(|Ei| · logn) since λi = di/dL′ ≤ di ≤ n.

The SPLIT(E) subroutine, where E ⊆ E. To highlight
the main idea, we assume that (1) degv(E) is even for every
node v ∈ V , and (2) there are an even number of edges in E .
Hence, there exists an Euler tour on E that visits each edge
exactly once. We construct such an Euler tour in O(|E|)
time and then collect alternating edges of this Euler tour in
a set H. It follows that (1) H ⊆ E with |H| = |E|/2, and
(2) degv(|H|) = (1/2) · degv(|E|) for every node v ∈ V . The
subroutine returns the set of edges H. In other words, the
subroutine runs in O(|E|) time, and returns a subgraph that
halves the degree of every node.

2.3 From ideal to approximate skeleton
We now shift our attention to maintaining an ideal skele-

ton in a dynamic setting. Specifically, we focus on the fol-
lowing problem: We are given an input graph Gi = (V,Ei),
with |V | = n, that is undergoing a sequence of edge inser-
tions/deletions. The set Ei corresponds to the level i edges
in the hierarchical partition (see Section 2.1). We always
have degv(Ei) ≤ di for all nodes v ∈ V (see Corollary 2).
There is a parameter 1 ≤ λi = di/dL′ ≤ n. In O(poly log n)
update time, we want to maintain a subset of edges Xi ⊆ Ei
such that degv(Xi) = (1/λi) · degv(Ei) for all nodes v ∈ V .
The basic building block of our dynamic algorithm will be
the (static) subroutine SPLIT(E) from Section 2.2.2.

Unfortunately, we will not be able to achieve our initial
goal, which was to reduce the degree of every node by exactly
the factor λi in a dynamic setting. For one thing, there
might be some nodes v with degv(Ei) < λi. It is clearly not
possible to reduce their degrees by a factor of λi (otherwise
their new degrees will be between zero and one). Further,
we will need to introduce some slack in our data structures
if we want to ensure polylogarithmic update time.

We now describe the structures that will be actually main-
tained by our dynamic algorithm. We maintain a partition
4To highlight the main idea, we assume that λi is a power
of 2.

of the node-set V into two subsets: Bi ⊆ V and Ti = V \B.
The nodes in Bi (resp. Ti) are called “big” (resp. “tiny”).
We also maintain a subset of nodes Si ⊆ V that are called
“spurious”. Finally, we maintain a subset of edges Xi ⊆ Ei.
Fix two parameters ε, δ ∈ (0, 1). For technical reasons that
will become clear later on, we require that:

ε = 1/100, and δ = ε2/L (3)

We ensure that the following properties are satisfied.

degv(Ei) ≥ εdi/L for all nodes v ∈ Bi \ Si. (4)

degv(Ei) ≤ 2εdi/L for all nodes v ∈ Ti \ Si. (5)

|Si| ≤ δ · |Bi| (6)

(1− ε)
λi

· degv(Ei) ≤ degv(Xi) ≤
(1 + ε)

λi
· degv(Ei)

for all nodes v ∈ Bi \ Si. (7)

degv(Xi) ≤ (1/λi) · (2εdi/L) for all nodes v ∈ Ti \ Si. (8)

degv(Xi) ≤ (1/λi) · di for all nodes v ∈ Si. (9)

Equation 4 implies that all the non-spurious big nodes
have large degrees in Gi = (V,Ei). On a similar note, equa-
tion 5 implies that all the non-spurious tiny nodes have small
degrees in Gi. Next, by equation 6, the number of spurious
nodes is negligibly small in comparison with the number of
big nodes. By equation 7, the degrees of the non-spurious big
nodes are scaled by a factor that is very close to λi. Thus,
the non-spurious big nodes satisfy an approximate version
of the degree-splitting property required by Definition 1.

Moving on, by equation 8, the degrees of the non-spurious
tiny nodes in Xi are at most (1/λi) · (2εdi/L) = 2εdL′/L.
Since each edge in Xi receives weight 1/dL′ under the as-
signment ŵi (see Definition 1), we infer that Wv(ŵi) =
(1/dL′) · degv(Xi) ≤ 2ε/L for all nodes v ∈ Ti \ Si. Since
there are at most (L − L′) relevant levels in a hierarchical
partition, we infer that:∑

i>L′:v∈Ti\Si

Wv(ŵi) ≤ L · (2ε/L) = 2ε (10)

Since for a non-spurious tiny node v ∈ Ti \ Si we have
degv(Ei) ≤ 2εdi/L (see equation 5) and Wv(wi) = (1/di) ·
degv(Ei) ≤ 2ε/L, an exactly similar argument gives us:∑

i>L′:v∈Ti\Si

Wv(wi) ≤ L · (2ε/L) = 2ε (11)

Equations 10, 11 have the following implication: The levels
where v is a non-spurious tiny node contribute a negligible
amount towards the weights Wv(w+) and Wv(ŵ) (see Sec-
tion 2.2.1). Hence, although we are no longer guaranteed
that the degrees of these nodes will be scaled down exactly
by the factor λi, this should not cause too much of a problem
– the sizes of the fractional assignments w+(E) and ŵ(E)
should still be close to each other as in Section 2.2.1.

Finally, Corollary 2 states that the degree of a node in Ei
is at most di. Hence, according to the definition of an ideal
skeleton (see Definition 1), the degree of a node in Xi ought
not to exceed (1/λi) · di = dL′ . Equation 9 ensures that the
spurious nodes satisfy this property.

If the set of edges Xi satisfies the conditions described
above, then we say that we have an approximate-skeleton at
our disposal. This is formally stated as follows.

Definition 2. Fix any level i > L′, and suppose that there
is a partition of the node-set V into two subsets Bi ⊆ V and
Ti = V \Bi. Further, consider another subset of nodes Si ⊆
V and a subset of edges Xi ⊆ Ei. The tuple (Bi, Ti, Si, Xi)
is an approximate-skeleton iff it satisfies equations (4) – (9).

One may object at this point that we have deviated from
the concept of an ideal skeleton (see Definition 1) so much
that it will impact the approximation ratio of our final algo-
rithm. To address this concern, we now state the following
theorem whose proof appears in Section 2.5.

Theorem 6. For each level i > L′, consider an approx-
imate skeleton as per Definition 2. Let X =

⋃
i>L′ Xi de-

note the set of edges from these approximate-skeletons. Let
Y =

⋃
i≤L′ Ei denote the set of edges from the remaining

levels in the hierarchical partition. Then we have:

1. There is a fractional matching w′ on support X ∪ Y
such that w(E) ≤ O(1) · w′(X ∪ Y). Here, w is the
fractional matching given by Theorem 5.

2. degv(X ∪ Y) = O(poly logn) for all v ∈ V .

In other words, the set of edges X∪Y satisfies equations 1, 2.

As per the discussion immediately after equations 1, 2, we
infer the following guarantee.

Corollary 3. Suppose that for each level i > L′ there is
a dynamic algorithm that maintains an approximate-skeleton
in O(poly logn) update time. Then we can also maintain a
O(1)-approximate maximum matching in the input graph G
in O(poly logn) update time.

It remains to show how to maintain an approximate skele-
ton efficiently in a dynamic setting. Accordingly, we state
the following theorem whose proof appears in Section 2.4.

Theorem 7. Consider any level i > L′. In O(poly logn)
update time, we can maintain an approximate-skeleton at
level i as per Definition 2.

Corollary 3 and Theorem 7 imply that we can maintain a
O(1)-approximate maximum matching in a dynamic graph
in O(poly logn) update time.

2.4 Maintaing an approximate skeleton: Proof
of Theorem 7

Fix a level i > L′. We will show how to efficiently main-
tain an approximate skeleton at level i under the assump-
tion that λi = 2. In the full version of the paper, if λi >
2, then we iteratively apply the algorithm presented here
O(log2 λi) = O(log2(di/dL′)) = O(logn) times, and each it-
eration reduces the degrees of the nodes by a factor of two.
Hence, after the final iteration, we get a subgraph that is an
approximate skeleton as per Definition 2.

We maintain the set of edges EBi = {(u, v) ∈ Ei : {u, v}∩
Bi 6= ∅} that are incident upon the big nodes. Further, we
associate a “status bit” with each node v ∈ V , denoted by
Status[v] ∈ {0, 1}. We ensure that they satisfy two condi-
tions: (1) If Status[v] = 1, then degv(Ei) ≥ εdi/L (which
is the threshold for non-spurious big nodes in equation 4).
(2) If Status[v] = 0, then degv(Ei) ≤ 2εdi/L (which is
the threshold for non-spurious tiny nodes in equation 5).

Whenever an edge incident upon v is inserted into (resp.
deleted from) Ei, we update the status bit of v in a lazy
manner (i.e., we flip the bit only if one of the two condi-
tions is violated). We define an “epoch” of a node v to be
the time-interval between any two consecutive flips of the
bit Status[v]. Since there is a gap of εdi/L between the
thresholds in equations 4, 5, we infer that:

In any epoch of a node v, at least εdi/L edge

insertions/deletions incident upon v takes place in Ei. (12)

Our dynamic algorithm runs in “phases”. In the beginning
of a phase, there are no spurious nodes, i.e., we have Si = ∅.
During a phase, we handle the insertion/deletion of an edge
in Ei as follows.

2.4.1 Handling the insertion/deletion of an edge
Consider the insertion/deletion of an edge (u, v) in Ei. To

handle this event, we first update the set Ei and the status
bits of u, v. If {u, v}∩Bi 6= ∅ , then we also update the edge-
set EBi . Next, for every endpoint x ∈ {u, v}\Si, we check if
the node x violates any of the equations 4, 5, 7. If yes, then
we set Si ← Si ∪{x}. Finally, we check if |Si| > δ · |Bi|, and
if yes, then we terminate the phase by calling the subroutine
TERMINATE-PHASE(.).

2.4.2 The subroutine TERMINATE-PHASE(.)
We scan through the nodes in Si. For each such node

v ∈ Si, if Status[v] = 1, then we set Bi ← Bi ∪ {v},
Ti ← Ti \ {v}, and ensure that all the edges (u, v) ∈ Ei
incident upon v are included in EBi . Else if Status[v] = 0,
then we set Ti ← Ti ∪ {v}, Bi ← Bi \ {v}, and ensure that
all the edges (u, v) ∈ Ei incident upon v are excluded from
EBi . Finally, we set Si ← ∅ and Xi ← SPLIT(EBi) (see
Section 2.2.2). From the next edge insertion/deletion in Ei,
we begin a new phase.

2.4.3 Correctness.
At the start of a phase, clearly all the properties hold.

This fact, along with the observation that an edge is never
inserted into Xi during the middle of a phase, implies that
equations 8, 9 hold all the time. Whenever a node violates
equations 4, 5, 7, we make it spurious. Finally, whenever
equation 6 is violated, we terminate the phase. This ensures
that all the properties hold all the time.

2.4.4 Analyzing the amortized update time.
Handling an edge insertion/deletion in Ei in the middle

of a phase needs O(1) update time. Just before a phase
ends, let b and s respectively denote the number of big and
spurious nodes. Since a phase ends only when equation 6 is
violated, we have s ≥ δ ·b. In the subroutine TERMINATE-
PHASE(.), updating the edge-set EBi requires O(s·di) time,
since we need to go through all the s nodes in S, and for
each such node, we need to check all the edges incident upon
it (and a node can have at most di edges incident upon it
by Corollary 2). At this stage, the set Bi consists of at most
(s+b) nodes, and so the set EBi consists of at most (s+b)di
edges. Hence, the call to the subroutine SPLIT(EBi) takes
O((s+b)di) time. Accordingly, the total time taken to termi-
nate the phase is O((s+ b)di) = O((s+ s/δ)di) = O(sdi/δ).
We thus reach the following conclusion: The total time spent
on a given phase is equal to O(sdi/δ), where s is the num-
ber of spurious nodes at the end of the phase. Since Si = ∅

in the beginning of the phase, we can also interpret s as
being the number of nodes that becomes spurious during
the phase. Let C denote a counter that is initially set
to zero, and is incremented by one each time some node
becomes spurious. From the preceding discussion, it fol-
lows that the total update time of our algorithm, across all
the phases, is at most O(Cdi/δ). Let t be the total num-
ber of edge insertions/deletions in Ei. We will show that
C = O(tL/(ε2di)). This will imply an amortized update
time of O((1/t) · Cdi/δ) = O(L/ε2δ) = O(poly log n). The
last equality holds due to equation 3.

Note that during a phase a node v becomes spurious be-
cause of one of two reasons: (1) It violated equations 4 or 5.
In this case, the node’s status bit is flipped. Hence, by equa-
tion 12, between any two such events, at least εdi/L edge
insertions/deletions occur incident upon v. (2) It violates
equation 7. In this event, note that in the beginning of the
phase we had v ∈ Bi, degv(Xi) = (1/2) ·degv(Ei) = (1/λi) ·
degv(Ei) and degv(Ei) ≥ εdi/L. The former guarantee
holds since we set Xi ← SPLIT(EBi) at the end of the pre-
vious phase, whereas the latter guarantee follows from equa-
tion 4. On the other hand, when the node v violates equa-
tion 7, we find that degv(Xi) differs from (1/λi) · degv(Ei)
by at least (ε/λi) · degv(Ei) = (ε/2) · degv(Ei). Accord-
ingly, during this time-interval (that starts at the begin-
ning of the phase and ends when equation 7 is violated),
at least Ω(ε2di/L) edge insertions/deletions incident upon
v must have taken place in Ei. To summarize, for each
unit increment in C, we must have Ω(ε2di/L) edge inser-
tions/deletions in Ei. Thus, we have C = O(t/(ε2di/L)) =
O(tL/(ε2di)).

2.5 Approximation guarantee from approxi-
mate skeletons: Proof of Theorem 6

We devote this section to the complete proof of Theo-
rem 6. At a high level, the main idea behind the proof
remains the same as in Section 2.2.1. We will have to over-
come several intricate obstacles, however, because now we
are dealing with the relaxed notion of an approximate skele-
ton as defined in Section 2.3.

We start by focussing on the second part of Theorem 6,
which states that the degree of every node in X ∪ Y is at
most O(poly logn). This is stated and proved in Lemma 3.

Lemma 3. Consider the subsets of edges X ⊆ E and
Y ⊆ E as per Theorem 6. Then we have degv(X ∪ Y) =
O(poly logn) for every node v ∈ V .

Proof. We first bound the degree of a node v ∈ V in X.
Towards this end, consider any level i > L′. By equation 9,
we have that degv(Xi) ≤ (1/λi) · di = dL′ for all spurious
nodes v ∈ Si. By equation 8, we have degv(Xi) ≤ (1/λi) ·
(2εdi/L) = 2εdL′/L ≤ dL′ for all non-spurious tiny nodes
v ∈ Ti \ Si. Finally, by equation 7 and Corollary 2, we
have that degv(Xi) ≤ ((1 + ε)/λi) · degv(Ei) ≤ (1 + ε) ·
(di/λi) = (1 + ε) · dL′ for all non-spurious big nodes v ∈
Bi \ Si. By Definition 2, a node belongs to exactly one of
the three subsets – Si, Ti\Si and Bi\Si. Combining all these
observations, we get: degv(Xi) ≤ (1+ε)·dL′ = O(poly log n)
for all nodes v ∈ V . Now, summing over all i > L′, we get:
degv(X) =

∑
i>L′ degv(Xi) ≤ (L − L′) · O(poly logn) =

O(poly logn) for all the nodes v ∈ V .
Next, we bound the degree of a node v ∈ V in Y . Note

that the degree thresholds in the levels [0, L′] are all at most

dL′ . Specifically, for all i ≤ L′ and v ∈ V , Corollary 2
implies that degv(Ei) ≤ di ≤ dL′ = O(poly logn). Hence,
for every node v ∈ V , we have degv(Y) =

∑
i≤L′ degv(Ei) ≤

(L′ + 1) ·O(poly logn) = O(poly logn).
To summarize, the maximum degree of a node in the edge-

sets X and Y is O(poly logn). Hence, for every node v ∈ V ,
we have: degv(X∪Y) = degv(X)+degv(Y) = O(poly log n).
This concludes the proof of the lemma.

We now focus on the first part of Theorem 6, which guar-
antees the existence of a large fractional matching with sup-
port X ∪ Y . This is stated in the lemma below. Note that
Lemma 3 and Lemma 4 together imply Theorem 6.

Lemma 4. Consider the subsets of edges X ⊆ E and Y ⊆
E as per Theorem 6. Then there exists a fractional matching
w′ on support X ∪ Y such that w(E) ≤ O(1) · w′(E). Here,
w is the fractional matching given by Theorem 5.

We devote the rest of this section to the proof of Lemma 4.
As in Section 2.2.1, we start by defining two fractional as-
signments w+ =

∑
i>L′ wi and w− =

∑
i≤L′ wi. In other

words, w+ captures the fractional weights assigned to the
edges in levels [L′+1, L] by the hierarchical partition, whereas
w− captures the fractional weights assigned to the edges in
the remaining levels [0, L′]. The fractional assignment w+

has support ∪i>L′Ei, whereas the fractional assignment w−

has support ∪i≤L′Ei = Y . We have w = w+ + w− and
w(E) = w+(E) + w−(E). If at least half of the value of
w(E) is coming from the levels [0, L′], then there is nothing
to prove. Specifically, suppose that w−(E) ≥ (1/2) · w(E).
Then we can set w′ = w− and obtain w(E) ≤ 2 · w−(E) =
2 · w−(Y) = 2 · w′(Y) = 2 · w′(X ∪ Y). This concludes the
proof of the lemma. Accordingly, from this point onward,
we will assume that at least half of the value of w(E) is
coming from the levels i > L′. Specifically, we have:

w(E) ≤ 2 · w+(E) (13)

Given equation 13, we will construct a fractional matching
with support X whose size is within a constant factor of
w(E).5 We want to follow the argument applied to ideal
skeletons in Section 2.2.1 (see Definition 1). Accordingly,
for every level i > L′ we now define a fractional assignment
ŵi with support Xi.

ŵi(e) = 1/dL′ for all edges e ∈ Xi
= 0 for all edges e ∈ E \Xi. (14)

We next define the fractional assignment ŵ.

ŵ =
∑
i>L′

ŵi (15)

In Section 2.2.1 (see Lemma 2), we observed that ŵ is a
fractional matching with support X whose size is exactly the
same as w+(E). This observation, along with equation 13,
would have sufficed to conclude the proof of Lemma 4. The
intuition was that at every level i > L′, the degree of a
node v ∈ V in Xi is exactly (1/λi) times its degree in Ei.
On the other hand, the weight of an edge e ∈ Xi under
ŵi is exactly λi times its weight under wi. This ensured

5Recall that w is the fractional matching given by the hier-
archical partition. See Section 2.1.

that the weight of node remained unchanged as we transi-
tioned from wi to ŵi, that is, Wv(wi) = Wv(ŵi) for all nodes
v ∈ V . Unfortunately, this guarantee will no longer hold for
approximate-skeletons. It still seems natural, however, to
compare the weights a node receives under these two frac-
tional assignments wi and ŵi. This depends on the status
of the node under consideration, depending on whether the
node belongs to the set Bi \ Si, Ti \ Si or Si (see Defini-
tion 2). Towards this end, we derive Claims 1, 2, 3. The
first claim states that the weight of a non-spurious big node
under ŵi is very close to its weight under wi. The second
claim states that the weight of a non-spurious tiny node un-
der ŵi is very small (less than 2ε/L). The third claim states
that the weight of a spurious node under ŵi is at most one.

Claim 1. For all i > L′ and v ∈ Bi \ Si, we have:

(1− ε) ·Wv(wi) ≤Wv(ŵi) ≤ (1 + ε) ·Wv(wi).

Proof. Fix any level i > L′ and any node v ∈ Bi \ Si.
The claim follows from equation 7 and the facts below:

(1) λi = di/dL′ .

(2) Wv(ŵi) = (1/dL′) · degv(Xi). See equation 14.

(3) Wv(wi) = (1/di) · degv(Ei). See Section 2.1.

Claim 2. For all levels i > L′ and non-spurious tiny
nodes v ∈ Ti \ Si, we have Wv(ŵi) ≤ 2ε/L.

Proof. Fix any level i > L′ and any node v ∈ Ti \ Si.
The claim follows from equation 8 and the facts below:

(1) λi = di/dL′ .

(2) Wv(ŵi) = (1/dL′) · degv(Xi). See equation 14.

Claim 3. For all i > L′ and v ∈ Si, we have Wv(ŵi) ≤ 1.

Proof. Fix any level i > L′ and any node v ∈ Si. The
claim follows from equation 9 and the facts below:

(1) λi = di/dL′ .

(2) Wv(ŵi) = (1/dL′) · degv(Xi). See equation 14.

Unfortunately, the fractional assignment ŵ need not nec-
essarily be a fractional matching, the main reason being that
at a level i > L′ the new weight Wv(ŵi) of a spurious node
v ∈ Si can be much larger than its original weight Wv(wi).
Specifically, Claim 3 permits that Wv(ŵi) = 1 for such a
node v ∈ Si. If there exists a node v ∈ V that belongs
to Si at every level i > L′, then we might have Wv(ŵ) =∑
i>L′Wv(ŵi) =

∑
i>L′ 1 = (L− L′) >> 1 ≥Wv(w).

To address this concern regarding the weights of the spuri-
ous nodes, we switch from ŵ to a new fractional assignment
w′′, which is defined as follows. For every level i > L′, we
construct a fractional assignment w′′i that sets to zero the
weight of every edge in Xi that is incident upon a spuri-
ous node v ∈ Si. For every other edge e, the weight w′′i (e)
remains the same as ŵi(e). Then we set w′′ =

∑
i>L′ w

′′
i .

w′′i (u, v) = ŵi(u, v) if (u, v) ∈ Xi and {u, v} ∩ Si = ∅
= 0 if (u, v) ∈ Xi and {u, v} ∩ Si 6= ∅.
= 0 else if (u, v) ∈ E \Xi (16)

w′′ =
∑
i>L′

w′′i (17)

The above transformation guarantees that Wv(w′′i) = 0
for every spurious node v ∈ Si at level i > L′. Thus, the ob-
jection raised above regarding the weights of spurious nodes
is no longer valid for the fractional assignment w′′i . We now
make three claims on the fractional assignments ŵ and w′′.

Claim 4 bounds the maximum weight of a node under w′′.
Its proof appears in Section 2.5.1.

Claim 4. We have Wv(w′′) ≤ 1 + 3ε for all v ∈ V .

Claim 5 states that the size of w′′ is close to the size of ŵ.
Its proof appears in Section 2.5.2.

Claim 5. We have w′′(E) ≥ ŵ(E)− 4ε · w+(E).

Claim 6 states that the size of ŵ is within a constant factor
of the size of w+. Its proof appears in Section 2.5.3.

Claim 6. We have ŵ(E) ≥ (1/8) · w+(E).

Corollary 4. We have w′′(E) ≥ (1/8− 4ε) · w+(E).

Proof. Follows from Claims 5 and 6.

To complete the proof of Lemma 4, we scale down the
weights of the edges in w′′ by a factor of (1+3ε). Specifically,
we define a fractional assignment w′ such that:

w′(e) =
w′′(e)

(1 + 3ε)
for all edges e ∈ E.

Since w′′ has support X, the fractional assignment w′ also
has support X, that is, w′(e) = 0 for all edges e ∈ E \ X.
Claim 4 implies that Wv(w′) = Wv(w′′)/(1 + 3ε) ≤ 1 for all
nodes v ∈ V . Thus, w′ is fractional matching on support
X. Since the edge-weights are scaled down by a factor of
(1 + 3ε), Corollary 4 implies that:

w′(E) =
w′′(E)

(1 + 3ε)
≥ (1/8− 4ε)

(1 + 3ε)
· w+(E). (18)

Equations 13 and 18 imply that w(E) ≤ O(1) · w′(E). This
concludes the proof of Lemma 4.

2.5.1 Proof of Claim 4
Throughout the proof, we fix any given node v ∈ V . We

will show that Wv(w′′) ≤ 1 + 3ε. We start by making a
simple observation:

Wv(w′′i) ≤Wv(ŵi) for all levels i > L′. (19)

Equation 19 holds since we get the fractional assignment w′′i
from ŵi by setting some edge-weights to zero and keeping
the remaining edge-weights unchanged (see equation 16).

By Definition 2, at every level i > L′ the node v is part
of exactly one of the three subsets – Ti \ Si, Bi \ Si and
Si. Accordingly, we can classify the levels into three types
depending on which of these subsets v belongs to at that
level. Further, recall that Wv(w′′) =

∑
i>L′Wv(w′′i). We

will separately bound the contributions from each type of
levels towards the node-weight Wv(w′′).

We first bound the contribution towards Wv(w′′) from all
the levels i > L′ where v ∈ Ti \ Si.

Claim 7. We have:∑
i>L′:v∈Ti\Si

Wv(w′′i) ≤ 2ε.

Proof. Claim 2 implies that:∑
i>L′:v∈Ti\Si

Wv(ŵi) ≤
∑

i>L′:v∈Ti\Si

(2ε/L) ≤ 2ε. (20)

The claim follows from equations 19 and 20.

We next bound the contribution towards Wv(w′′) from all
the levels i > L′ where v ∈ Bi \ Si.

Claim 8. We have:∑
i>L′:v∈Bi\Si

Wv(w′′i) ≤ 1 + ε.

Proof. Let LHS =
∑
i>L′:v∈Bi\Si

Wv(w′′i). We have:

LHS ≤
∑

i>L′:v∈Bi\Si

Wv(ŵi) (21)

≤
∑

i>L′:v∈Bi\Si

(1 + ε) ·Wv(wi) (22)

≤ (1 + ε) ·
L∑
i=0

Wv(wi) = (1 + ε) ·Wv(w)

≤ (1 + ε) (23)

Equation 21 holds because of equation 19. Equation 22 fol-
lows from Claim 1. Finally, equation 23 holds since w is a
fractional matching (see Section 2.1).

Finally, we bound the contribution towards Wv(w′′) from
all the levels i > L′ where v ∈ Si.

Claim 9. We have:∑
i>L′:v∈Si

Wv(w′′i) = 0.

Proof. Consider any level i > L′ where v ∈ Si. By equa-
tion 16, every edge in Xi incident upon v has zero weight
under w′′i , and hence Wv(w′′i) = 0. The claim follows.

Adding up the bounds given by Claims 7, 8 and 9, we get:

Wv(w′′) =
∑
i>L′

Wv(w′′i)

=
∑

i>L′:v∈Ti\Si

Wv(w′′i) +
∑

i>L′:v∈Bi\Si

Wv(w′′i)

+
∑

i>L′:v∈Si

Wv(w′′i)

≤ 2ε+ (1 + ε) + 0 = 1 + 3ε.

This concludes the proof of Claim 4.

2.5.2 Proof of Claim 5
For any given fractional assignment, the some of the node-

weights is two times the sum of the edge-weights (since each
edge has two endpoints). Keeping this in mind, instead of
relating the sum of the edge-weights under the fractional
assignments w′′, ŵ and w+ as stated in Claim 5, we will
attempt to relate the sum of the node-weights under w′′, ŵ
and w+.

As we switch from the fractional assignment ŵi to the frac-
tional assignment w′′i at some level i > L′, all we do is to set
to zero the weight of any edge incident upon a spurious node

in Si. Hence, intuitively, the difference between the sum of
the node-weights under w′′ =

∑
i>L′ w

′′
i and ŵ =

∑
i>L′ ŵi

should be bounded by the sum of the weights of the spurious
nodes across all the levels i > L′. This is formally stated in
the claim below.

Claim 10. We have:∑
v∈V

Wv(w′′) ≥
∑
v∈V

Wv(ŵ)−
∑
i>L′

∑
v∈Si

2 ·Wv(ŵi).

Proof. The left hand side (LHS) of the inequality is ex-
actly equal to two times the sum of the edge-weights under
w′′. Similarly, the first sum in the right hand side (RHS)
is exactly equal to two times the sum of the edge-weights
under ŵ. Finally, we can also express the second sum in the
RHS as the sum of certain edge-weights under ŵ.

Consider any edge (x, y) ∈ E. We will show that the
contribution of this edge towards the LHS is at least its
contribution towards the RHS, thereby proving the claim.

Case 1. (x, y) /∈ Xi for all i > L′. Then the edge (x, y)
contributes zero to the left hand side (LHS) and zero to the
right hand side (RHS).

Case 2. (x, y) ∈ Xi at some level i > L′, but none of
the endpoints of the edge is spurious, that is, {x, y} ∩ Si =
∅. In this case, by equation 16, the edge (x, y) contributes
2 · w′′i (x, y) to the LHS, 2 · ŵi(x, y) to the first sum in the
RHS, and zero to the second sum in the RHS. Further, we
have w′′i (x, y) = ŵi(x, y). Hence, the edge makes exactly
the same contribution towards the LHS and the RHS.

Case 3. (x, y) ∈ Xi at some level i > L′, and at least one
endpoint of the edge is spurious, that is, {x, y} ∩ Si 6= ∅. In
this case, by equation 16, the edge (x, y) contributes zero
to the LHS, 2 · ŵ(x, y) to the first sum in the RHS, and
at least 2 · ŵ(x, y) to the second sum in the RHS. Hence,
the net contribution towards the RHS is at most zero. In
other words, the contribution towards the LHS is at least
the contribution towards the RHS.

At every level i > L′, we will now bound the sum of the
weights of the spurious nodes v ∈ Si under ŵ by the sum of
the node-weights under wi. We will use the fact that each
spurious node gets weight at most one (see Claim 3), which
implies that

∑
v∈Si

Wv(ŵi) ≤ |Si|. By equation 6, we will
upper bound the number of spurious nodes by the number of
non-spurious big nodes. Finally, by equation 7, we will infer
that each non-spurious big node has sufficiently large degree
in Ei, and hence its weight under wi is also sufficiently large.

Claim 11. For every level i > L′, we have:∑
v∈Si

Wv(ŵi) ≤ (2δL/ε) ·
∑
v∈V

Wv(wi).

Proof. Fix any level i > L′. Claim 3 states thatWv(ŵi) ≤
1 for all nodes v ∈ Si. Hence, we get:∑

v∈Si

Wv(ŵi) ≤ |Si| (24)

Equation 6 implies that |Si| ≤ δ · |Bi| ≤ δ · (|Bi \ Si|+ |Si|).
Rearranging the terms, we get: |Si| ≤ δ

1−δ · |Bi \ Si|. Since

δ < 1/2 (see equation 3), we have:

|Si| ≤ 2δ · |Bi \ Si| (25)

From equations 24 and 25, we get:∑
v∈Si

Wv(ŵi) ≤ 2δ · |Bi \ Si| (26)

Now, equation 4 states that degv(Ei) ≥ (εdi/L) for all
nodes v ∈ Bi \ Si. Further, in the hierarchical partition
we have Wv(wi) = (1/di) · degv(Ei) for all nodes v ∈ V (see
Section 2.1). Combining these two observations, we get:
Wv(wi) ≥ ε/L for all nodes v ∈ Bi \ Si. Summing over all
nodes v ∈ V , we get:∑

v∈V

Wv(wi) ≥
∑

v∈Bi\Si

Wv(wi) ≥ (ε/L) · |Bi \ Si| (27)

The claim follows from equations 26 and 27.

Corollary 5. We have:∑
i>L′

∑
v∈Si

Wv(ŵi) ≤ (2δL/ε) ·
∑
v∈V

Wv(w+).

Proof. Follows from summing Claim 11 over all levels
i > L′, and noting that since w+ =

∑
i>L′ wi, we have

Wv(w+) =
∑
i>L′Wv(wi) for all nodes v ∈ V .

From Claim 10 and Corollary 5, we get:∑
v∈V

Wv(w′′) ≥
∑
v∈V

Wv(ŵ)− (4δL/ε) ·
∑
v∈V

Wv(w+) (28)

Since δ = ε2/L (see equation 3) and since the sum of
the node-weights in a fractional assignment is exactly two
times the sum of the edge-weights, Claim 5 follows from
equation 28.

2.5.3 Proof of Claim 6
Every edge (u, v) ∈ X = ∪i>L′Xi has at least one end-

point at a level i > L′ (see Definition 2). In other words,
every edge in X has at least one endpoint in the set V ∗ as
defined below.

Definition 3. Define V ∗ = {v ∈ V : `(v) > L′} to be the
set of all nodes at levels strictly greater than L′.

Thus, under any given fractional assignment, the sum of
the node-weights in V ∗ is within a factor of 2 of the sum of
the edge-weights inX. Since both the fractional assignments
ŵ and w+ have support X, we get the following claim.

Claim 12. We have:

2 · w+(E) ≥
∑
v∈V ∗

Wv(w+) ≥ w+(E).

2 · ŵ(E) ≥
∑
v∈V ∗

Wv(ŵ) ≥ ŵ(E).

Since we want to compare the sums of the edge-weights
under ŵ and w+, by Claim 12 it suffices to focus on the
sum of the node-weights in V ∗ instead. Accordingly, we
first lower bound the sum

∑
v∈V ∗Wv(ŵ) in Claim 13. In

the proof, we only use the fact that for each level i > L′,
the weight of a node v ∈ Bi \ Si remains roughly the same
under the fractional assignments ŵi and wi (see Claim 1).

Claim 13. We have:∑
v∈V ∗

Wv(ŵ) ≥ (1− ε) ·
∑
v∈V ∗

∑
i>L′:v∈Bi\Si

Wv(wi).

Proof. Fix any node v ∈ V ∗. By Claim 1, we have:
Wv(ŵi) ≥ (1 − ε) ·Wv(wi) at each level i > L′ where v ∈
Bi \ Si. Summing over all such levels, we get:∑
i>L′:v∈Bi\Si

Wv(ŵi) ≥ (1− ε) ·
∑

i>L′:v∈Bi\Si

Wv(wi) (29)

Since ŵ =
∑
i>L′ ŵi, we have:

Wv(ŵ) ≥
∑

i>L′:v∈Bi\Si

Wv(ŵi).

Hence, equation 29 implies that:

Wv(ŵ) ≥ (1− ε) ·
∑

i>L′:v∈Bi\Si

Wv(wi).

We now sum the above inequality over all nodes v ∈ V ∗.

It remains to lower bound the right hand side (RHS) in
Claim 13 by

∑
v∈V ∗Wv(w+). Say that a level i > L′ is of

Type I, II or III for a node v ∈ V ∗ if v belongs to Bi \ Si,
Si or Ti \ Si respectively. By Definition 2, for every node
v ∈ V ∗, the set of levels i > L′ is partitioned into these
three types. The sum in the RHS of Claim 13 gives the
contribution of the type I levels towards

∑
v∈V ∗Wv(w+). In

Claims 14 and 15, we respectively show that the type II and
type III levels make negligible contributions towards the sum∑
v∈V ∗Wv(w+). Note that the sum of these contributions

from the type I, type II and type III levels exactly equals∑
v∈V ∗Wv(w+). Specifically, we have:∑
v∈V ∗

∑
i>L′:v∈Bi\Si

Wv(wi) +
∑
v∈V ∗

∑
i>L′:v∈Si

Wv(wi)

+
∑
v∈V ∗

∑
i>L′:v∈Ti\Si

Wv(wi) =
∑
v∈V ∗

Wv(w+) (30)

Hence, equation 30, Claim 14 and Claim 15 lead to the
following lower bound on the right hand side of Claim 13.

Corollary 6. We have:∑
v∈V ∗

∑
i>L′:v∈Bi\Si

Wv(wi) ≥ (1− 40ε) ·
∑
v∈V ∗

Wv(w+).

From Claim 13, Corollary 6 and equation 3, we get:∑
v∈V ∗

Wv(ŵ) ≥ (1/4) ·
∑
v∈V ∗

Wv(w+) (31)

Finally, from Claim 12 and equation 31, we infer that:

ŵ(E) ≥ (1/2) ·
∑
v∈V ∗

Wv(ŵ) ≥ (1/8) ·
∑
v∈V ∗

Wv(w+)

≥ (1/8) · w+(E)

This concludes the proof of Claim 6. Accordingly, we devote
the rest of this section to the proofs of Claims 14 and 15.

Claim 14. We have:∑
v∈V ∗

∑
i>L′:v∈Si

Wv(wi) ≤ 8ε ·
∑
v∈V ∗

Wv(w+).

Proof. The proof of this claim is very similar to the proof
of Claim 11 and Corollary 5. Going through that proof,
one can verify the following upper bound on the number of
spurious nodes across all levels i > L′.∑

i>L′

|Si| ≤ (2δL/ε) ·
∑
v∈V

Wv(w+) (32)

Since each wi is a fractional matching (see Section 2.1), we
have Wv(wi) ≤ 1 for all nodes v ∈ V and all levels i > L′.
Hence, we get:∑

v∈V ∗

∑
i>L′:v∈Si

Wv(wi) ≤
∑
i>L′

|Si| (33)

From equations 32 and 33, we infer that:∑
v∈V ∗

∑
i>L′:v∈Si

Wv(wi) ≤ (2δL/ε) ·
∑
v∈V

Wv(w+) (34)

Since the sum of the node-weights under any fractional as-
signment is equal to twice the sum of the edge-weights,
Claim 12 implies that:∑

v∈V

Wv(w+) = 2 · w+(E) ≤ 4 ·
∑
v∈V ∗

Wv(w+) (35)

Claim 14 follows from equations 3, 34 and 35.

Claim 15. We have:∑
v∈V ∗

∑
i>L′:v∈Ti\Si

Wv(wi) ≤ 32ε ·
∑
v∈V ∗

Wv(w+).

Proof. Fix any node v ∈ V ∗. By equation 5, we have
degv(Ei) ≤ (2εdi/L) at each level i > L′ where v ∈ Ti \ Si.
Further, the fractional matching wi assigns a weight 1/di to
every edge in its support Ei (see Section 2.1). Combining
these two observations, we get: Wv(wi) = (1/di)·degv(Ei) ≤
2ε/L at each level i > L′ where v ∈ Ti \ Si. Summing over
all such levels, we get:∑

i>L′:v∈Ti\Si

Wv(wi) ≤ 2ε (36)

If we sum equation 36 over all v ∈ V ∗, then we get:∑
v∈V ∗

∑
i>L′:v∈Ti\Si

Wv(wi) ≤ 2ε · |V ∗| (37)

A node v ∈ V ∗ has level `(v) > L′. Hence, all the edges
incident upon this node also have level at least L′ + 1.
This implies that such a node v receives zero weight from
the fractional assignment w− =

∑
i≤L′ wi, for any edge in

the support of w− is at level at most L′. Thus, we have:
Wv(w) = Wv(w+) +Wv(w−) = Wv(w+) for such a node v.
Now, applying Theorem 5, we get:

1/(1 + ε)2 ≤Wv(w+) for all nodes v ∈ V ∗. (38)

Summing equation 38 over all nodes v ∈ V ∗ and multiplying
both sides by (1 + ε)2, we get:

|V ∗| ≤ (1 + ε)2 ·
∑
v∈V ∗

Wv(w+) (39)

Since (1 + ε)2 ≤ 4 and V ∗ ⊆ V , equations 37, 39 imply that:∑
v∈V ∗

∑
i>L′:v∈Ti\Si

Wv(wi) ≤ 8ε ·
∑
v∈V

Wv(w+) (40)

The claim follows from equations 35 and 40.

3. BIPARTITE GRAPHS
Ideally, we would like to present a dynamic algorithm on

bipartite graphs that proves Theorem 2. Due to space con-
straints, however, we will only prove a weaker result stated
in Theorem 8 and defer the complete proof of Theorem 2

to the full version. Throughout this section, we will use the
notations and concepts introduced in Section 1.1.

Theorem 8. There is a randomized dynamic algorithm
that maintains a 1.976 approximation to the maximum match-
ing in a bipartite graph in O(

√
n logn) expected update time.

In Section 3.1, we present a result from [5] which shows
how to maintain a (2 + ε)-approximation to the maximum
matching in bipartite graphs in O(

√
n/ε2) update time. In

Section 3.2, we build upon this result and prove Theorem 8.
In Section 3.3, we allude to the extensions that lead us to
the proof of Theorem 2 in the full version of the paper.

3.1 (2+ε)-approximation in O(
√
n/ε2) update time

The first step is to define the concept of a kernel. Setting
ε = 0, d = 1 in Definition 4, we note that the kernel edges in
a (0, 1)-kernel forms a maximal matching – a matching where
every unmatched edge has at least one matched endpoint.
For general d, we note that the kernel edges in a (0, d)-kernel
forms a maximal d-matching – which is a maximal subset of
edges where each node has degree at most d. In Lemma 5
and Corollary 7, we show that the kernel edges in any (ε, d)-
kernel preserves the size of the maximum matching within
a factor of 2/(1 − ε). Since d is the maximum degree of
a node in an (ε, d)-kernel, a (1 + ε)-approximation to the
maximum matching within a kernel can be maintained in
O(d/ε2) update time using Theorem 4. Lemma 6 shows
that the set of kernel edges themselves can be maintained in
O(n/(εd)) update time. Setting d =

√
n and combining all

these observations, we get our main result in Corollary 8.

Definition 4. Fix any ε ∈ (0, 1), d ∈ [1, n]. Consider any
subset of nodes T ⊂ V in the graph G = (V,E), and any
subset of edges H ⊆ E. The pair (T,H) is called an (ε, d)-
kernel of G iff: (1) degv(H) ≤ d for all nodes v ∈ V , (2)
degv(H) ≥ (1− ε)d for all nodes v ∈ T , and (3) every edge
(u, v) ∈ E with both endpoints u, v ∈ V \ T is part of the
subset H. We define the set of nodes T c = V \ T , and say
that the nodes in T (resp. T c) are“tight”(resp. “non-tight”).
The edges in H are called “kernel edges”.

Lemma 5. Consider any integral matching M ⊆ E and
let (T,H) be any (ε, d)-kernel of G = (V,E) as per Defini-
tion 4. Then there is a fractional matching w′′ in G with
support H such that

∑
v∈V Wv(w′′) ≥ (1− ε) · |M |.

The proof of Lemma 5 appears in Section 3.1.1.

Corollary 7. Consider any (ε, d)-kernel as per Defini-
tion 4. We have Opt(H) ≥ (1/2) · (1− ε) ·Opt(E).

Proof. Let M ⊆ E be a maximum cardinality matching
in G = (V,E). Let w′′ be a fractional matching with support
H as per Lemma 5. Since in a bipartite graph the size of
the maximum cardinality matching is the same as the size of
the maximum fractional matching (see Theorem 3), we get:
Opt(H) = Optf (H) ≥ w′′(H) = (1/2) ·

∑
v∈V Wv(w′′) ≥

(1/2) · (1− ε) · |M | = (1/2) · (1− ε) ·Opt(E).

Lemma 6. In the dynamic setting, an (ε, d)-kernel can be
maintained in O(n/(εd)) amortized update time.

Proof. (Sketch) When an edge (u, v) is inserted into the
graph, we simply check if both its endpoints are non-tight.

If yes, then we insert (u, v) into H. Next, for each endpoint
x ∈ {u, v}, we check if degx(H) has now become equal to d
due to this edge insertion. If yes, then we delete the node
x from T c and insert it into T . All these operations can be
performed in constant time.

Now, consider the deletion of an edge (u, v). If both u, v
are non-tight, then we have nothing else to do. Otherwise,
for each tight endpoint x ∈ {u, v}, we check if degx(H) has
now fallen below the threshold (1 − ε)d due to this edge
deletion. If yes, then we might need to change the status
of the node x from tight to non-tight. Accordingly, we scan
through all the edges in E that are incident upon x, and try
to insert as many of them into H as possible. This step takes
Θ(n) time in the worst case since the degree of the node x
can be Θ(n). However, the algorithm ensures that this event
occurs only after εd edges incident upon x are deleted from
E. This is true since we have a slack of εd between the
largest and smallest possible degrees of a tight node. Thus,
we get an amortized update time of O(n/(εd)).

Corollary 8. In a bipartite graph, one can maintain a
(2+6ε)-approximation to the size of the maximum matching
in O(

√
n/ε2) amortized update time.

Proof. (Sketch) We set d =
√
n and maintain an (ε, d)-

kernel (T,H) as per Lemma 6. This takes O(
√
n/ε) update

time. Next, we note that the maximum degree of a node
in H is d =

√
n (see Definition 4). Accordingly, we can ap-

ply Theorem 4 to maintain a (1 + ε)-approximate maximum
matching MH ⊆ H in O(

√
n/ε2) update time. Hence, by

Corollary 7, this matching MH is a 2(1+ε)/(1−ε) ≤ (2+6ε)-
approximation to the maximum matching inG = (V,E).

3.1.1 Proof of Lemma 5
First, define a fractional assignment w as follows. For

every edge (u, v) ∈ H incident on a tight node, we set w(e) =
1/d, and for every other edge (u, v) ∈ E, set w(u, v) = 0.
Since each node v ∈ V has degv(H) ≤ d, it is easy to check
that Wv(w) ≤ 1 for all nodes v ∈ V . In other words, w
forms a fractional matching in G.

Next, we define another fractional assignment w′. First,
for every node v ∈ T c, we define a “capacity” b(v) = 1 −
Wv(w) ∈ [0, 1]. Next, for every edge (u, v) ∈ H ∩M whose
both endpoints are non-tight, set w′(u, v) = min(b(u), b(v)).
For every other edge (u, v) ∈ E, set w′(u, v) = 0.

We finally define w′′ = w + w′. Clearly, the fractional
assignment w′′ has support H, since for every edge (u, v) ∈
E \ H, we have w(u, v) = w′(u, v) = 0. Hence, the lemma
follows from Claims 16 and 17.

Claim 16. We have Wv(w′′) ≤ 1 for all nodes v ∈ V ,
that is, w′′ is a fractional matching in G.

Proof. If a node v is tight, that is, v ∈ T , then we have
Wv(w′′) = Wv(w) + Wv(w′) = Wv(w) ≤ 1. Hence, for
the rest of the proof, consider any node from the remaining
subset v ∈ T c = V \T . There are two cases to consider here.

Case 1. If v is not matched in M , then we have Wv(w′) = 0,
and hence Wv(w′′) = Wv(w) +Wv(w′) = Wv(w) ≤ 1.

Case 2. If v is matched in M , then let u be its mate, i.e.,
(u, v) ∈ M . Here, we have Wv(w′) = w′(u, v) = min(1 −
Wu(w), 1−Wv(w)) ≤ 1−Wv(w). This implies thatWv(w′′) =
Wv(w) +Wv(w′) ≤ 1. This concludes the proof.

Claim 17. We have
∑
v∈V Wv(w′′) ≥ (1− ε) · |M |.

Proof. Throughout the proof, fix any edge (u, v) ∈ M .
We will show that Wu(w′′) +Wv(w′′) ≥ (1− ε). The claim
will then follow if we sum over all the edges in M .

Case 1. The edge (u, v) has at least one tight endpoint. Let
u ∈ T . In this case, we have Wu(w′′)+Wv(w′′) ≥Wu(w′′) =
Wu(w) +Wu(w′) ≥Wu(w) = (1/d) · degu(H) ≥ (1− ε).
Case 2. Both the endpoints of (u, v) are non-tight. Without
any loss of generality, let Wu(w) ≥ Wv(w). In this case, we
have Wu(w′′) + Wv(w′′) ≥ Wu(w′′) = Wu(w) + Wu(w′) =
Wu(w) +w′(u, v) = Wu(w) + min(1−Wu(w), 1−Wv(w)) =
Wu(w) + (1−Wu(w)) = 1. This concludes the proof.

3.2 Better than 2-approximation
The approximation guarantee derived in Section 3.1 fol-

lows from Claim 17. Looking back at the proof of this
claim, we observe that we actually proved a stronger state-
ment: Any matching M ⊆ E satisfies the property that
Wu(w′′)+Wv(w′′) ≥ (1−ε) for all matched edges (u, v) ∈M ,
where w′′ is a fractional matching with support H that
depends on M . In the right hand side of this inequality,
if we replace the term (1 − ε) by anything larger than 1,
then we will get a better than 2 approximation (see the
proof of Corollary 7). The reason it was not possible to do
so in Section 3.1 is as follows. Consider a matched edge
(u, v) ∈ M with u ∈ T and v ∈ T c. Since u is tight,
we have 1 − ε ≤ Wu(w) = Wv(w′′) ≤ 1. Suppose that
Wu(w′′) = 1 − ε. In contrast, it might well be the case
that Wv(w) is very close to being zero (which will happen
if degv(H) is very small). Let Wv(w) ≤ ε. Also note that
Wv(w′′) = Wv(w) + Wv(w′) = Wv(w) ≤ ε since no edge
that gets nonzero weight under w′ can be incident on v
(for v is already incident upon an edge in M whose other
endpoint is tight). Hence, in this instance we will have
Wu(w′′) +Wv(w′′) ≤ (1− ε) + ε = 1, where (u, v) ∈M is a
matched edge with one tight and one non-tight endpoint.

The above discussion suggests that we ought to “throw
in” some additional edges into our kernel – edges whose one
endpoint is tight and the other endpoint is non-tight with
a very small degree in H. Accordingly, we introduce the
notion of residual edges in Section 3.2.1. We show that the
union of the kernel edges and the residual edges preserves
the size of the maximum matching within a factor of strictly
less than 2. Throughout the rest of this section, we set the
values of two parameters δ, ε as follows.

δ = 1/20, ε = 1/2000 (41)

3.2.1 The main framework: Residual edges
We maintain an (ε, d)-skeleton (T,H) as in Section 3.1.

We further partition the set of non-tight nodes T c = V \ T
into two subsets: B ⊆ T c and S = T c \B. The set of nodes
in B (resp. S) are called “big” (resp. “small”). They satisfy
the following degree-thresholds: (1) degv(H) ≤ 2δd/(1− δ)
for all small nodes v ∈ S, and (2) degv(H) ≥ (2δ−ε)d/(1−δ)
for all big nodes v ∈ B. Let Er = {(u, v) ∈ E : u ∈ T, v ∈ S}
be the subset of edges joining the tight and the small nodes.
We maintain a maximal subset of edges Mr ⊆ Er subject
to the following constraints: (1) degv(Mr) ≤ 1 for all tight
nodes v ∈ T and (2) degv(Mr) ≤ 2 for all small nodes v ∈ S.
The edges in Mr are called the “residual edges”. The degree
of a node in Mr is called its “residual degree”. The corollary
below follows from the maximality of the set Mr ⊆ Er.

Corollary 9. If an edge (u, v) ∈ Er with u ∈ T , v ∈ S
is not in Mr, then either degv(Mr) = 1 or degu(Mr) = 2.

Lemma 7. We can maintain the set of kernel edges H
and the residual edges Mr in O(n logn/(εd)) update time.

Proof. (Sketch) We maintain an (ε, d)-kernel as per the
proof of Lemma 6. We maintain the node-setsB,S ⊆ T c and
the edge-set Er in the same lazy manner: A node changes
its status only after Ω(εd) edges incident upon it are either
inserted into or deleted from G (since δ is a constant), and
when that happens we might need to make Θ(n) edge inser-
tions/deletions in Er. This gives the same amortized update
time of O(n/(εd)) for maintaining the edge-set Er.

In order to maintain the set of residual edges Mr ⊆ Er,
we use a simple modification of the dynamic algorithm of
Baswana et al. [2] that maintains a maximal matching in
O(logn) update time. This holds since Mr is a maximal
b-matching in Er where each small node can have at most
two matched edges incident upon it, and each tight node can
have at most one matched edge incident upon it.

Lemma 8. Fix any (ε, d) kernel (T,H) as in Section 3.1,
any set of residual edges Mr as in Section 3.2.1, and any
matching M ⊆ E. Then we have a fractional matching w′′

on support H∪Mr such that
∑
v∈V Wv(w′′) ≥ (1+δ/4)·|M |.

Roadmap for the rest of this section. The statement of
Lemma 8 above is similar to that of Lemma 5 in Section 3.1.
Hence, using a similar argument as in Corollary 7, we in-
fer that the set of edges Mr ∪ H preserves the size of the
maximum matching within a factor of 2/(1 + δ/4). Since
degv(Mr ∪ H) = degv(H) + degv(Mr) ≤ d + 2 for all
nodes v ∈ V (see Definition 4), we can maintain a (1 + ε)-
approximate maximum matching in H ∪ Mr using Theo-
rem 4 in O(d/ε2) update time. This matching will give a
2(1+ε)/(1+δ/4) = 1.976-approximation to the size of max-
imum matching in G (see equation 41). The total update
time is O(d/ε2 + n logn/(εd)), which becomes O(

√
n logn)

if we set d =
√
n and plug in the value of ε. This concludes

the proof of Theorem 8.
It remains to prove Lemma 8, which is done in Section 3.2.2.

3.2.2 Proof of Lemma 8
We will define four fractional assignments w,wr, w′, w′′. It

might be instructive to contrast the definitions of the frac-
tional assignments w,w′ and w′′ here with Section 3.1.1.

The fractional assignment w: Set w(e) = (1 − δ)/d for ev-
ery edge e ∈ H incident upon a tight node. Set w(e) = 0
for every other edge e ∈ E. Hence, we have Wv(w) =
((1 − δ)/d) · degv(H) for all nodes v ∈ V . Accordingly,
recalling the bounds on degv(H) for various types of nodes
(see Definition 4, Section 3.2.1), we get:

Wv(w) ≤ (1− δ) for all nodes v ∈ V. (42)

Wv(w) ≤ 2δ for all small nodes v ∈ S. (43)

Wv(w) ≥ (1− δ)(1− ε) for all tight nodes v ∈ T. (44)

Wv(w) ≥ 2δ − ε for all big nodes v ∈ B. (45)

The fractional assignment wr: Set wr(e) = δ for every resid-
ual edge e ∈Mr. Set wr(e) = 0 for every other edge e ∈ E.

The fractional assignment w′: For every node v ∈ T c, we
define a “capacity” b(v) as follows. If v ∈ B ⊆ T c, then

b(v) = 1 − Wv(w). Else if v ∈ S = T c \ B, then b(v) =
1− 2δ −Wv(w). Hence, equations 42, 43 imply that:

b(v) ≥ δ for all big nodes v ∈ B. (46)

b(v) ≥ 1− 4δ for all small nodes v ∈ S. (47)

For every edge (u, v) ∈ M with u, v ∈ T c = V \ T , we
set w′(u, v) = min(b(u), b(v)). For every other edge e ∈ E,
we set w′(e) = 0. By Definition 4, every edge whose both
endpoints are non-tight is a kernel edge. Hence, an edge gets
nonzero weight under w′ only if it is part of the kernel.

The fractional assignment w′′: Define w′′ = w + wr + w′.

Roadmap for the rest of the proof. Each of the fractional
assignments w,wr, w′ assigns zero weight to every edge e ∈
E \ (H ∪Mr). Hence, the fractional assignment w′′ = w +
wr +w′ has support H ∪Mr. In Claim 18, we show that w′′

is a fractional matching in G. Moving on, in Definition 5,
we partition the set of matched edges in M into two parts.
The subset M1 ⊆ M consists of those matched edges that
have one tight and one small endpoints, and the subsetM2 =
M\M1 consists of the remaining edges. In Claims 19 and 20,
we relate the node-weights under w,w′, wr with the sizes of
the matchings M1 and M2. Adding up the bounds from
Claims 19 and 20, Corollary 10 lower bounds the sum of
the node-weights under w′′ by the size of the matching M .
Finally, Lemma 8 follows from Claim 18 and Corollary 10.

Claim 18. We have Wv(w′′) ≤ 1 for all nodes v ∈ V .

Proof. Consider any node v ∈ V . By equation 42, we
have: Wv(w) ≤ 1 − δ. Also note that Wv(wr) ≤ δ for all
tight nodes v ∈ T , Wv(wr) ≤ 2δ for all small nodes v ∈ S,
and Wv(wr) = 0 for all big nodes v ∈ B. This holds since
the degree (among the edges in Mr) of a tight, small and big
node is at most one, two and zero respectively. Next, note
that for all nodes v ∈ T c, we have Wv(w′) ≤ b(v). This holds
since there is at most one edge in M ∩ H incident upon v
(since M is a matching). So at most one edge incident upon
v gets a nonzero weight under w′, and the weight of this edge
is at most b(v). Finally, note that every edge with nonzero
weight under w′ has both the endpoints in T c. Hence, we
have Wv(w′) = 0 for all tight nodes v ∈ T . To complete the
proof, we now consider three possible cases.

Case 1. v ∈ T . Here, Wv(w′′) = Wv(w) + Wv(wr) +
Wv(w′) = Wv(w) +Wv(wr) ≤Wv(w) + δ ≤ (1− δ) + δ = 1.

Case 2. v ∈ S. Here, Wv(w′′) = Wv(w) + Wv(wr) +
Wv(w′) ≤ Wv(w) + 2δ + b(v) = Wv(w) + 2δ + (1 − 2δ −
Wv(w)) = 1.

Case 3. v ∈ B. Here, Wv(w′′) = Wv(w) + Wv(wr) +
Wv(w′) = Wv(w) + Wv(w′) ≤ Wv(w) + b(v) = Wv(w) +
(1−Wv(w)) = 1.

Definition 5. Partition the set of edges in M into two
parts: M1 = {(u, v) ∈M : u ∈ T, v ∈ S} and M2 = M \M1.

Claim 19. Recall Definition 5. We have:∑
(u,v)∈M2

Wu(w + w′) +Wv(w + w′) ≥ (1 + δ/4) · |M2|.

Proof. Fix any edge (u, v) ∈M2, and let LHS = Wu(w+
w′) +Wv(w+w′). We will show that LHS ≥ (1 + δ/4). The

claim will then follow if we sum over all such edges M2. We
recall equation 41 and consider four possible cases.

Case 1. Both endpoints are tight, that is, u, v ∈ T . Here,
from equation 44 we get: LHS ≥ 2·(1−δ−ε+δε) ≥ (1+δ/4).

Case 2. One endpoint is tight, and one endpoint is big, that
is, u ∈ T , v ∈ B. Here, from equations 44, 45 we get:
LHS ≥ (1− δ − ε+ δε) + (2δ − ε) ≥ (1 + δ − 2ε) ≥ 1 + δ/4.

Case 3. Both endpoints are non-tight, that is, u, v ∈ B ∪ S.
Without any loss of generality, let b(u) ≥ b(v). Note that
(u, v) ∈ H since both u, v ∈ T c, and hence (u, v) ∩M2 ∩H.
Thus, we have Wu(w′) = Wv(w′) = w′(u, v) = b(v) since
at most one matched edge can be incident upon a node.
Now, either v ∈ B or v ∈ S. In the former case, from
equation 47 we get: LHS ≥ Wu(w′) + Wv(w′) = 2 · b(v) ≥
2(1−4δ) ≥ (1+δ/4). In the latter case, from equation 46 we
get: LHS ≥ (Wv(w)+Wv(w′))+Wu(w′) = (b(v)+Wv(w))+
b(v) = 1 + b(v) ≥ 1 + δ ≥ 1 + δ/4.

Claim 20. Recall Definition 5. We have:∑
(u,v)∈M1

(Wu(w) +Wv(w)) +
∑
v∈V

Wv(wr) ≥ (1 + δ/4) · |M1|.

Proof. Every edge (u, v) ∈M1 has one endpoint u ∈ T .
Thus, Applying equation 44 we get: Wu(w) + Wv(w) ≥
Wu(w) ≥ 1− δ − ε. Summing over all such edges, we get:∑

(u,v)∈M1

Wu(w) +Wv(w) ≥ (1− δ − ε) · |M1| (48)

Recall that degu(Mr) ≤ 1 for every tight node u ∈ T . Ac-
cordingly, we classify each tight node as being either “full”
(in which case degu(Mr) = 1) or “deficient” (in which case
degu(Mr) = 0). Further, recall that each edge (u, v) ∈ M1

has one tight and one small endpoints. We say that an edge
(x, y) ∈ M1 is deficient if the tight endpoint of the edge
is deficient. Now, consider any deficient edge (x, y) ∈ M1

where x ∈ T and y ∈ S. Since degx(Mr) = 0, it follows
that (x, y) ∈ Er \Mr. From the maximality of Mr, we infer
that degy(Mr) = 2. Accordingly, there must be two edges

(x′, y), (x′′, y) ∈ Mr with x′, x′′ ∈ T . It follows that both
the nodes x′, x′′ are full. We say that the tight nodes x′, x′′

are conjugates of the deficient edge (x, y) ∈ M1. In other
words, we have shown that every deficient edge in M1 has
two conjugate tight nodes. Further, the same tight node x′

cannot be a conjugate of two different deficient edges in M1,
for otherwise each of those deficient edges will contribute one
towards degx′(M

r), and we will get degx′(M
r) ≥ 2, which is

a contradiction. Thus, a simple counting argument implies
that the number of conjugate tight nodes is exactly twice the
number of deficient matched edges in M1. Let D(M1), F, C
respectively denote the set of deficient matched edges in M1,
the set of full tight nodes and the set of conjugate tight
nodes. Thus, we get:

T ⊇ F ⊇ C, D(M1) ⊆M1, and |C| = 2 · |D(M1)| (49)

Now, either |D(M1)| ≤ (1/3)·|M1| or |D(M1)| > (1/3)·|M1|.
In the former case, at least a (2/3)rd fraction of the edges
in M1 are not deficient, and each such edge has one tight
endpoint that is full. Thus, we get |F | ≥ (2/3) · |M1|. In
the latter case, from equation 49 we get |F | ≥ |C| = 2 ·
|D(M1)| > (2/3) · |M1|. Thus, in either case we have |F | ≥
(2/3) · |M1|. Since each node v ∈ F ⊆ T has degv(Mr) = 1,

and since each edge e ∈Mr has weight wr(e) = δ, it follows
that Wv(wr) = δ for all nodes v ∈ F ⊆ T . Hence, we get∑
v∈T Wv(wr) ≥ δ · |F | ≥ (2δ/3) · |M1|. Next, we note that

each edge in Mr contributes the same amount δ towards
the weights of both its endpoints – one tight and the other
small. Thus, we have:∑

v∈S

Wv(wr) =
∑
v∈T

Wv(wr) ≥ (2δ/3) · |M1|.

Since B ∪ S ⊆ V and B ∩ S = ∅, we get:∑
v∈V

Wv(wr) ≥
∑

v∈B∪S

Wv(wr) ≥ (4δ/3) · |M1|.

This inequality, along with equation 48, gives us:∑
(u,v)∈M1

(Wu(w) +Wv(w)) +
∑
v∈V

Wv(wr)

≥ (1− δ − ε) · |M1|+ (4δ/3) · |M1| = (1 + δ/3− ε) · |M1|
≥ (1 + δ/4) · |M1|.

The last inequality follows from equation 41.

Corollary 10. We have:∑
v∈V

Wv(w′′) ≥ (1 + δ/4) · |M |.

Proof. Since |M | = |M1| + |M2|, the corollary follows
from adding the inequalities stated in Claims 19 and 20,
and noting that no node-weight under w′′ is counted twice
in the left hand side.

3.3 Extensions
We gave a randomized algorithm for maximum bipartite

matching that maintains a better than 2 approximation in
O(
√
n logn) update time. In the full version of the paper, we

derandomize this scheme using the following idea. Instead
of applying the randomized maximal matching algorithm
from [2] for maintaining the set of residual edges Mr, we
maintain a residual fractional matching using the determin-
istic algorithm from [5] (see Theorem 5). To carry out the
approximation guarantee analysis, we have to change the
proof of Lemma 8 (specifically, the proof of Claim 20).

To get arbitrarily small polynomial update time, we main-
tain a partition of the node-set into multiple levels. The top
level consists of all the tight nodes (see Definition 4). We
next consider the subgraph induced by the non-tight nodes.
Each edge in this subgraph is a kernel edge (see Definition 4).
Intuitively, we split the node-set of this subgraph again into
two parts by defining a kernel within this subgraph. The
tight nodes we get in this iteration forms the next level in
our partition of V . We keep doing this for K levels, where
K is a sufficiently large integer. We show that (a) this struc-

ture can be maintained in O(n2/K) update time, and (b) by
combining the fractional matchings from all these levels, we
can get an αK approximate maximum fractional matching
in G, where 1 ≤ αK < 2. By Theorem 3, this gives αK-
approximation to the size of the maximum integral matching
in G. See the full version of the paper for the details.

4. OPEN PROBLEMS
In this paper, we presented two deterministic dynamic al-

gorithms for maximum matching. Our first algorithm main-
tains a (2+ ε)-approximate maximum matching in a general

graph in O(poly(logn, 1/ε)) update time. The exponent hid-
den in the polylogorithmic factor of the update time, how-
ever, is rather huge. It will be interesting to bring down
the update time of this algorithm to O(logn/ε2) without
increasing the approximation factor. This will match the
update time in [5] for maintaining a fractional matching.

We also showed how to maintain a better than 2 approx-
imation to the size of the maximum matching on bipartite
graphs in O(n2/K) update time, for every sufficiently large
integer K. The approximation ratio approaches 2 as K be-
comes large. The main open problem here is to design a
dynamic algorithm that gives better than 2 approximation
in polylogarithmic update time. This remains open even on
bipartite graphs and even if one allows randomization.

5. REFERENCES
[1] A. Abboud and V. Vassilevska Williams. Popular

conjectures imply strong lower bounds for dynamic
problems. In FOCS, 2014.

[2] S. Baswana, M. Gupta, and S. Sen. Fully dynamic
maximal matching in O(logn) update time. In FOCS,
2011.

[3] A. Bernstein and C. Stein. Fully dynamic matching in
bipartite graphs. In ICALP, 2015.

[4] A. Bernstein and C. Stein. Faster fully dynamic
matchings with small approximation ratios. In SODA,
2016.

[5] S. Bhattacharya, M. Henzinger, and G. F. Italiano.
Deterministic fully dynamic data structures for vertex
cover and matching. CoRR, abs/1412.1318, 2014.
Announced at SODA 2015.

[6] M. Crouch and D. S. Stubbs. Improved streaming
algorithms for weighted matching, via unweighted
matching. In APPROX/RANDOM, 2014.

[7] M. Gupta and R. Peng. Fully dynamic
(1 + ε)-approximate matchings. In FOCS, 2013.

[8] M. Henzinger, S. Krinninger, D. Nanongkai, and
T. Saranurak. Unifying and strengthening hardness for
dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, 2015.

[9] A. Israeli and Y. Shiloach. An improved parallel
algorithm for maximal matching. Information
Processing Letters, 22:57–60, 1986.

[10] C. Konrad, F. Magniez, and C. Mathieu. Maximum
matching in semi-streaming with few passes. In
APPROX-RANDOM, 2012.

[11] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower
bounds from the 3SUM conjecture. In SODA, 2016.

[12] O. Neiman and S. Solomon. Simple deterministic
algorithms for fully dynamic maximal matching. In
STOC, 2013.

[13] K. Onak and R. Rubinfeld. Maintaining a large
matching and a small vertex cover. In STOC, 2010.

[14] M. Patrascu. Towards polynomial lower bounds for
dynamic problems. In STOC, 2010.

[15] D. Peleg and S. Solomon. Dynamic
(1 + ε)-approximate matchings: A density-sensitive
approach. In SODA, 2016.

[16] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In SODA, 2007.

[17] V. G. Vizing. The chromatic class of a multigraph.
Kibernetika, 3:29–39, 1965.

