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Abstract

National Grid, the gas operator in the United Kingdom, has experienced challenges in eval-

uating the capability of its gas transmission network to maintain function in the event of risks

particularly to withstand the impact of compressor failures. We propose a mathematical pro-

gramming model to support the operator in dealing with the problem. Several solution techniques

are developed to solve the various versions of the problem e�ciently. In the case of little data

on compressor failure, an uncertainty theory is applied to solve this problem if the compressor

failures are independent; while a robust optimisation technique is developed to solve it if the

compressor failures are dependent. Otherwise, when there are data on compressor failure, Monte

Carlo simulation is applied to �nd the expected capability of the gas transmission network. Com-

putational experiments, carried out on a case study at National Grid, demonstrate the e�ciency

of the proposed model and solution techniques. A further analysis is performed to determine the

impact of compressor failures and suggest e�cient maintenance policies for National Grid.

Keywords: gas transmission network; capability evaluation; uncertainty; compressor failure.

1 Introduction

Gas currently plays an essential role in natural energy sources because of its low carbon dioxide

emission and abundant reserves. It has a primary role in electricity generation. According to

the International Energy Outlook 2016, world demand for energy will grow by 48% between 2012

and 2040, and fossil fuels are expected to account for more than three-quarters of this. Natural

gas is the fastest-growing fossil fuel with global consumption increasing by 1.9% per year. Hence,

e�cient and e�ective gas transportation networks are a critical requirement for gas operators. Gas

transportation networks involve three major subsystems: namely, the gathering system (from oil-

shores to terminals), the transmission system (from terminals to o�-takes), and the distribution
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system (from o�-takes to customers). Unlike the gathering system and the distribution system which

are characterised by low pressure, small diameter pipelines, the transmission system is characterised

by long, large diameter pipelines operated at high pressures. The e�cient performance of the gas

transmission system thus poses a challenge in maintaining the safe regulation of pressure such that

gas demands at o�-takes are satis�ed. Controlling pressure and �ow in the gas transmission system

depends on a number of compressor stations at which several compressors operate in serial and/or

parallel. Compressor station/unit failures are extremely challenging for gas transmission. Evaluation

of the impact of failures on gas transmission capability is a signi�cant issue for gas operators.

The maximum �ow problem can be used to evaluate network capability. It is one of the classic

optimisation problems with many real applications in electrical power systems, computer networks,

communication networks, logistic networks and transportation networks [1, 2, 3]. However, the un-

certain maximum �ow problem has not received as much attention by researchers. The few relevant

works in the literature may be categorised into two approaches: uncertainty theory and robust op-

timisation. Uncertainty theory is �rst introduced by Liu [4] for solving project scheduling problem

with uncertain duration times. Under the framework of uncertainty theory, Han et al. [5] investigate

the maximum �ow problem in an uncertain network. They introduce the concept of maximum �ow

function of network, and then use the so-called 99-method to give the uncertainty distribution and

the expected value of the maximum �ow of uncertain network. Ding [6] formulates an α-maximum

�ow model to �nd the distribution of the maximum �ow for the problem with uncertain capacity

on any arc, proving an equivalence relationship between the α-maximum �ow model and the classic

maximum �ow model. A polynomial algorithm is developed based on properties of α-maximum �ow

model. Shi et al. [7] investigate two maximum �ow models of an uncertain random network under

the framework of chance theory. They consist of the expected value constrained maximum �ow and

the chance constrained maximum �ow with uncertain random arc capacities. The authors propose

two algorithms to solve these models, and prove that there exists an equivalence relationship between

the models and the deterministic ones. Alipour and Mirnia [8] formulate uncertain dynamic network

�ow problems in which arc capacities are uncertain (may vary with time or not), and �ow varies

over time in each arc. They build an algorithm to solve the problems with independent uncertain

factors. The algorithm cannot be applied for the problems with correlated uncertain factors or time-

dependent distribution functions. Models built within the framework of uncertain or chance theory

focus mainly on the maximum �ow problem with uncertain capacity on arcs. A lack of models for

the maximum �ow problem with uncertain capacity on nodes exists. For the uncertain maximum

�ow problem solved by robust optimisation, readers can refer to [9] and [10]. Bertsimas and Sim

[9] propose an approach to address data uncertainty (e.g., both the cost coe�cients and the data

in the constraints) for network �ow problems that allows control of the degree of conservatism of

the solution. In [10], the authors investigate uncertainty in the network structure (e.g, nodes and

arcs) and assume that the network parameters (e.g., capacities) are known and deterministic. In

particular, they study the robust and adaptive versions of the maximum �ow problem in networks

with node and arc failures. In general, the approaches have not considered impact of degeneration
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of node's capacity on maximum �ow in network.

For literature reviews of optimisation problems related to gas networks, we refer to [11] and [12].

Zheng et al. [11] focus on three speci�c aspects, production, transportation and marketing, and

consider six general problems: production scheduling, maximal recovery, network design, fuel cost

minimisation, and regulated and deregulated market problems. Their survey discusses mathematical

formulations and existing optimisation methods. Rios-Mercado and Borraz-Sanchez [12] present the

relevant research works in the natural gas transport industry, studying short-term storage, pipeline

resistance and gas quality satisfaction, and fuel cost minimisation. For the theoretical foundations

and the applications of long-term basis storage, readers can refer to [13], [14], [15] and [16]. Studies

on pipeline resistance and gas quality satisfaction can be found in [17], [18], [19] and [20]. Fuel cost

minimisation is discussed in [21], [22], [23] and [24]. Although these surveys address applications of

optimisation theory to the gas transmission and storage to satisfy contractual demands, there is a

limited literature on the uncertain maximum �ow problem in gas transmission network. Koch et al.

[25] propose many mathematical programming models and algorithms to evaluate the gas network

capability, but their models and algorithms can only solve deterministic problems. Recently, Praks

and Kopustinskas [26, 27], Praks et al. [28] have developed models for determining the maximum

network capability under impact of uncertainty. Praks and Kopustinskas [26] build a reliability

model based using Monte Carlo methods to test various �what-if� scenarios. Their methods can be

used not only for evaluating the current situation of security of supply, but also for testing e�ects of

new network components (e.g., new pipelines) in various development strategies of the gas transmis-

sion network. Praks and Kopustinskas [27] and Praks et al. [28] develop a probabilistic gas network

simulator (ProGasNet) software tool to estimate supply reliability, e�ect of time-dependent storage

discharge, quantitative e�ects of new infrastructure, security of supply under di�erent disruption

scenarios. The tool is useful to compare and evaluate di�erent supply options, new network develop-

ment plans and analyse potential crisis situations. However, none of this work have not considered

gas network capability under impact of compressor station uncertainty. Praks et al. [29] develop

a Monte Carlo simulation-based approach to analyse disruptions of components (e.g., pipelines,

terminals and compressor stations) in the European gas transmission network. They construct a

vulnerability identi�cation algorithm for determining a combination of component failures leading

to the most signi�cant security of supply disruptions. In the simulation, they do not consider the

operational con�guration of compressor units in stations (i.e., serial, parallel, or both). In addition,

the Monte Carlo simulation-based approach is time-consuming as the number of components in the

gas transmission network becomes signi�cant.

Other works relevant to uncertainty in the gas network include [30], [31] and [32]. Carvalho et al. [30]

introduce a model to deal with network congestion on various geographical scales. They propose a

resilient response strategy to energy shortages and evaluate its e�ectiveness in a variety of scenarios.

As a result, with the fair distribution strategy Europe's gas supply network can be robust even to

major supply disruptions. Olanrewaju et al. [31] build a linear programming model to investigate

the impact of the Ukraine transit capacity's loss on gas supply from Russia to Europe. The model
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is tested in a low-demand case and a high-demand case arising the winter of 2014/2015. The results

show that gas sources from inter-connectors, storages and lique�ed natural gas import terminals

compensate for the supply shortfall. To mitigate the e�ect of supply shortage, the authors also

consider increasing the capacities of selected pipelines within the Europe against enhancing the

maximum storage withdrawal rates in southeast Europe. The comparison concludes that the high

storage withdrawal rates can give lower demand curtailment than extending the inter-connector

capacity in both scenarios. Wollega [32] propose a heuristic simulation and optimisation algorithm

for large scale natural gas storage valuation under uncertainty.

In summary, some research has been devoted to various perspectives in the gas transmission net-

work under uncertainty. However, the evaluation of the capability of gas transmission network to

withstand the impact of compressor failures has not much received attention, especially considering

the operational con�guration of compressor units in stations (i.e., serial, parallel, or both). National

Grid operates a complex and large-scale gas transmission network in the UK that includes pipelines,

compressor stations, regulators, valves and other components. They have experienced challenges

in evaluating network capability to withstand the impact of compressor failures. To address this

issue, a network reduction technique is applied to reduce the original network by aggregating sets of

demand nodes among compressor stations into demand zones. A mathematical programming model

is built on this reduced network to �nd maximum network capability. The objective function is

maximisation of gas �ows in the network such that all constraints are satis�ed. In the case of little

data on compressor failure, we apply the uncertain theory of Ding [6] with an extension of uncertain

capacity on nodes for solving the problem if compressor failures are independent, and develop a

robust optimisation model to solve it when compressor failures are dependent. When there are data

on compressor failure, we use Monte Carlo simulation to obtain the expected network capability.

Computational experiments have carried out on a case study using actual data from National Grid to

demonstrate the e�ciency and e�ectiveness of our models. In addition, we provide a comprehensive

analysis to �nd the most critical compressor stations for maintenance policies at National Grid.

The remaining of this paper is organised as follows. Section 2 describes the details of the UK gas

transmission network, and the transformation of the original network into an associated reduced

network. Section 3 presents a mathematical programming model for evaluating the gas transmission

network capability under impact of compressor failures. The solution techniques for this problem,

such as uncertain theory, robust optimisation and Monte Carlo simulation, are presented in the

section as well. The case study at National Grid and the corresponding computational results of

the proposed model and solution techniques are shown in Section 4. Finally, conclusions and future

work are provided in Section 5.

2 The UK Gas Transmission Network

National Grid runs a complex UK gas transmission network that consists of about 7,000 km pipes,

24 compressor stations, each of which comprises several compressor units in serial and/or parallel
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Table 1: List of compressor stations.

Label Compressor Label Compressor Label Compressor

ABE Aberdeen CHU Churchover LOC Lockerley
ALR Alrewas DIS Diss LON Longtown
AVO Avonbridge FEL Felindre MOF Mo�at
AYL Aylesbury FER St Fergus PET Peterborough
BIS Bishop Auckland HAT Hatton WAR Warrington
CAM Cambridge HUN Huntingdon WIS Wisbech

CAR/NEK Carnforth/Nether Kellet KIL Kings Lynh WOO Wooler
CHE Chelmsford KIR Kirriemuir WOR Wormington

operation, 6 major terminals, 8 storage sites, more than 200 exit points, and other components (e.g.,

regulators and valves). Figure 1 shows the pipeline network to transmit gas from terminals to exit

points. The large-scale network poses many challenges to National Grid in meeting the demands of

its customers, and requires much e�ort in modelling and optimisation. To reduce the modelling and

computational e�ort, we apply a network reduction technique introduced by [33]. Sets of supply

and/or demand nodes bounded by compressor stations are aggregated into zones. In this case, we

obtain 36 zones. Based on historical data, we compute net �ows for each zone, subtracting total

supply and demand. We de�ne a supply zone to be when the net �ow is greater than 70 million

cubic meter, a demand zone if the net �ow is less than -70 million cubic meter, and a transit zone

for the remaining cases. Table 1 shows the list of compressor stations and their label. The list of

aggregated zones and the information of zonal type (i.e., supply, demand or transit) are provided in

Table 2.

Figure 2 shows the associated reduced network for the UK gas transmission network. In the �gure,

green, red and blue nodes represent supply, demand and transit zones respectively. The compressor

stations are represented by orange nodes. Our reduced network includes 4 supply zones (denoted by

green nodes 1-4), 8 demand zones (denoted by red nodes 5-12), 24 transit zones (denoted by blue

nodes 13-36), and 24 compressor stations (denoted by orange nodes with of compressor labels). The

possible directions of gas �ows among zones in the reduced network are shown.

In the gas transmission network, compressor stations manipulate pressure and gas �ows from sup-

ply zones through transit zones to satisfy the customer's demand in demand zones. The network

capability depends on the capacity of compressor stations. Therefore, if serious disruption at a com-

pressor station occurs, the network capability is reduced, leading to unsatis�ed customer demand.

In the next section, we introduce a model to evaluate the impact of compressor station disruption to

the network capability. The model can determine the most critical compressor stations to produce

e�cient maintenance policies for mitigation of the network capability loss.
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Figure 1: The UK gas transmission network (National Grid source).
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Figure 2: An associated reduced network for the UK gas transmission network.
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Table 2: List of aggregated zones.

Zone Compressors Type Zone Compressors Type

1 (•, FER) Supply 19 (MOF, LON) Transit
2 (BIS, CAR/NEK, HAT) Supply 20 (LON, BIS) Transit
3 (KIL, CAM, DIS) Supply 21 (LON, CAR/NEK) Transit
4 (•,FEL) Supply 22 (BIS, CAR/NEK, HAT) Transit
5 (KIR, AVO) Demand 23 (HAT, WIS, HUN) Transit
6 (AVO, WOO) Demand 24 (HAT, PET) Transit
7 (CAR/NEK, WAR) Demand 25 (ALR, PET) Transit
8 (WAR, ALR) Demand 26 (ALR, CHU) Transit
9 (CHE, CAM) Demand 27 (PET, WIS) Transit
10 (HUN, AYL, CAM) Demand 28 (CHU, PET) Transit
11 (AYL, LOC) Demand 29 (WIS, KIL) Transit
12 (LOC, WOR) Demand 30 (PET, HUN) Transit
13 (FER, ABD) Transit 31 (HUN, CAM) Transit
14 (ABD, WOO) Transit 32 (KIL, CAM, DIS) Transit
15 (ABD, KIR) Transit 33 (DIS, CHE) Transit
16 (AVO, MOF) Transit 34 (CHU, WOR) Transit
17 (AVO, LON) Transit 35 (WOR, FEL) Transit
18 (WOO, BIS) Transit 36 (•,FEL) Transit

3 Capability Evaluation of Gas Network under Disruption

To measure and evaluate capability of gas transmission network under disruption of compressor

stations, we modify maximum �ow problem by some additional constraints. Since the UK gas trans-

mission network is complex and large-scale, we implement the uncertain maximum �ow algorithm

on the reduced network.

We introduce notations to formulate the maximum �ow problem under disruption as follows.

Sets and parameters:

S = set of supply nodes

D = set of demand nodes

T = set of transit nodes

C = set of compressor station nodes

V = set of all nodes (V = S ∪D ∪ T ∪ C)
A = set of all arcs

Ab = set of bi-directional arcs (i.e., Ab ⊆ A)
Vj = set of nodes whose arc enters into compressor j ∈ C
s, d = dummy source and destination nodes, respectively

b̃j = uncertain capacity of compressor station j ∈ C
Decision variables:

xds = �ow rate from dummy destination to dummy source

xij = �ow rate in arc (i, j) ∈ A
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yij = binary decision variables for controlling �ow direction

Figure 3 presents a graph representation of the maximum �ow problem under disruption of com-

pressor stations when we add dummy source and destination nodes. The dummy source node s is

connected into the supply nodes, while the demand nodes are connected into the dummy destination

node d. A �ow is connected from node d to node s (denoted by xds). A mathematical program-

ming model of the maximum �ow problem under disruption of compressor stations (e.g., uncertain

capacity b̃j of compressor station) is then:

[UMFP]

max xds (1)

s.t.
∑

`:(j,`)∈A
xj` −

∑
i:(i,j)∈A

xij = 0 ∀j ∈ V, (2)

∑
i∈S

xsi = xds, (3)

∑
i∈D

xid = xds, (4)

yij + yji ≤ 1 ∀(i, j) ∈ Ab, (5)

xij ≤ Myij ∀(i, j) ∈ Ab, (6)

∑
i∈Vj

xij ≤ b̃j ∀j ∈ C, (7)

xij ≥ 0, yij ∈ {0, 1} ∀(i, j) ∈ A, (8)

where M is the maximum capacity of all compressor stations.

The objective (1) is to maximise the capability of gas transmission network. Constraints (2) represent

the �ow conservation law at nodes. Constraints (3) and (4) describe the �ow conservation law at

dummy source and destination nodes, respectively. Constraints (5)-(6) allow at most one �ow to

exist between supply, demand, transit and compressor station nodes at a time. In constraints (6),

if yij = 0, xij = 0; otherwise, the constraints xij ≤ M are always satis�ed. Constraints (7) assure

that �ows through compressor stations cannot exceed the capacity of compressor stations in every

scenario. Constraints (8) de�ne non-negative variables of �ow rate and binary variables of controlling

�ow direction.

This is not a traditional maximum �ow problem due to constraints (7), uncertain capacity of com-

pressor stations. These constraints generate huge numbers of scenarios for the problem, leading to
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Figure 3: A graph representation of the uncertain maximum �ow problem.

an NP-hard problem. Therefore, we develop speci�c solution techniques for speci�c scenarios. If

the data on a compressor unit's failure is unknown, we apply uncertainty theory and robust opti-

misation for independent and dependent failures of compressor stations, respectively. Otherwise,

we implement Monte Carlo simulation to determine the expected capability of the gas transmission

network. The solution techniques are discussed in next subsections.

3.1 Individual Chance Constraint Programming

Assume that failures of compressor stations are independent, we can determine the capacity of each

compressor station based on the uncertainty theory of Ding [6]. Let zj =
∑
i∈Vj

xij , constraints (7)

become zj ≤ b̃j ∀j ∈ C. In uncertainty theory, M{b̃j ≤ zj} = P{b̃j ≤ zj} ≤ α ∀j ∈ C can be derived

into zj ≤ Φ−1j (α) ∀j ∈ C where Φj(α) is a function with belief degree α ∈ [0, 1]. The function

might, for instance, be linear, zigzag, normal, or log-normal distribution over random uncertainty

variable ξ. Figure 4 shows an illustration of linear belief degree function. Then, constraints (7) can

be written as

∑
i∈Vj

xij ≤ Φ−1j (α) ∀j ∈ C. (9)

These are linear constraints. Hence, we can solve the problem by mixed-integer linear programming

(MILP) solvers. Given that a belief degree α, we can determine the capacity of corresponding

compressor station by Φ−1j (α). For other belief degree functions, readers should consult [6].
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Figure 4: A belief degree function.

3.2 Joint Chance Constraint Programming

Assume that the failures of compressor stations are dependent, we cannot apply the uncertainty

theory of Ding [6]. For this case, we develop a robust optimisation technique to handle the constraints

(7). Given that a con�dence level α ∈ [0, 1], the minimum probability of occurring the event that

zj ≤ b̃j∀j ∈ C , we have a joint chance constraint programming as follows:

P{zj ≤ b̃j , ∀j ∈ C} ≥ α;

corresponding to

InfP∈PP{zj ≤ b̃j , ∀j ∈ C} ≥ α,

where P is the set of all probability distributions for random variable b̃j with known mean and
variance (µj , σ

2
j ).

Bonferroni's inequality leads to

SupP∈PP{∪j∈Czj > b̃j} ≤ 1− α.

In addition, we have

P{∪j∈Czj > b̃j} ≤
∑
j∈C

P{zj > b̃j} ∀P ∈ P.

Set

∑
j∈C

P{zj > b̃j} ≤ 1− α.
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Let 1− α = ε (risk level), we have

∑
j∈C

P{zj > b̃j} ≤ ε.

Let ε =
∑
j∈C

εj , we get

P{zj > b̃j} ≤ εj ∀j ∈ C

⇐⇒ P{zj − b̃j > 0} ≤ εj ∀j ∈ C

⇐⇒ P{zj ≤ b̃j} ≥ 1− εj ∀j ∈ C

⇐⇒ InfP∈PP{zj ≤ b̃j} ≥ 1− εj ∀j ∈ C

where

∑
j∈C

εj ≤ 1− α.

We can set εj = 1−α
|C| , then the joint chance constraint can be derived into

zj ≤ µj + σj

√
|C|

1− α
− 1 ∀j ∈ C.

Then, constraints (7) can be written by

∑
i∈Vj

xij ≤ µj + σj

√
|C|

1− α
− 1 ∀j ∈ C. (10)

These are linear constraints. Once gain, we can solve the maximum �ow problem under disruption

of compressor failures by MILP solvers.

3.3 Monte Carlo Simulation

Compressor stations comprise a set of serial and/or parallel compressor units. Their capacity is

thus a�ected by the failures of compressor units. In the case that we know failure data for each

compressor unit, we can apply Monte Carlo simulation to evaluate the gas transmission network

capability under impact of compressor failures instead of using the approximations of uncertainty

theory and robust optimisation.
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Assume that the disruption event on compressor unit i follows Binomial distribution with failure

probability qi. Since the disruptions may occur simultaneously at many compressor units of com-

pressor stations, we generate a number of scenarios for the failures of compressor units based on

a Binomial distribution and their failure probabilities. Based on the operational con�guration of

compressor stations, we can determine their capacity under the scenarios. The model is then ap-

plied iteratively for solving all the scenarios to �nd the corresponding network capabilities. From

the results, we can determine the expected network capability.

4 Computational Experiments

In the section, we �rst describe the case study at National Grid used for evaluating the di�erent

solution approaches before reporting computational results to compare the quality of the solutions.

4.1 National Grid Case Study

As we described, we reduced National Grid's complex, large-scale gas transmission network to an

aggregated network of 4 supply zones, 8 demand zones, 24 transit zones and 24 compressor stations:

see Figure 2.

Table 4 shows the data of supplies and compressor stations' capacity levels. In this table, there

are two capacity levels (a, b) for compressor stations which use linear belief degree functions, and

three capacity levels (a, b, c) for compressor station which use zigzag belief degree functions. These

capacity levels are based on the operational con�guration of compressor units in the stations (e.g.,

serial, parallel, or both) and the capacity of compressor units. Since there is not enough data to

extract normal (or log-normal) distribution information for compressor station's capacity, we could

not test solutions using the assumption of normal (or log-normal) distribution in uncertainty theory.

Gas volumes are given in million cubic meter - mcm.

Table 5 describes mean and variance of capacity for each compressor station. These data are used

to test the robust optimisation approach for solving the case study. In particular, they are input

into constraints (10) to approximate the capacity of compressor stations.

For Monte Carlo simulation, we compute the failure probability for compressor units based on 2009-

2013 data. Let

Hi = event that compressor unit i starts successful

H̄i = event that compressor unit i fails to start

Ki = event that compressor unit i starts successful, and does not fail during process

K̄i = event that compressor unit i starts successful, but fails at a moment during process.

The failure probability of compressor unit i is de�ned as follows:

Pi = P (H̄i) + P (K̄i).
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Table 4: Data of supplies and compressor station's capacity levels.

Supply zone Capacity (mcm) Compressor Capacity (mcm) Compressor Capacity (mcm)
a b c a b c

1 154.22 FER 62 73 135 CHU 0 50 60
2 170.98 ABD 75 150 - PET 0 73 140
3 164.62 KIR 0 90 109.5 WIS 0 31 34
4 87.69 AVO 35 70 140 HUN 0 55 105

WOO 0 60 - KIL 42 56 84
MOF 0 62 - DIS 0 44.5 -
LON 1.1 76.32 - CHE 0 43 -

CAR/NEK 62 70 120 CAM 0 48 -
BIS 0 100 - AYL 0 60 -
WAR 0 80 - LOC 0 18 30
ALR 30 50 60 WOR 40 50 80
HAT 0 65 130 FEL 39 78 100

Table 5: Data of mean and variance of compressor station's capacity.

Compressor Capacity (mcm) Compressor Capacity (mcm)
µ σ2 µ σ2

FER 80.00 1.00 CHU 36.67 1.00
ABD 125.00 1.00 PET 71.00 1.00
KIR 66.50 1.00 WIS 21.67 1.00
AVO 81.67 1.00 HUN 53.33 1.00
WOO 40.00 1.00 KIL 60.67 1.00
MOF 41.33 1.00 DIS 29.67 1.00
LON 51.25 1.00 CHE 28.67 1.00

CAR/NEK 84.00 1.00 CAM 32.00 1.00
BIS 66.67 1.00 AYL 40.00 1.00
WAR 53.33 1.00 LOC 16.00 1.00
ALR 46.67 1.00 WOR 56.67 1.00
HAT 65.00 1.00 FEL 72.33 1.00

Table 6 describes the derived failure probability for each compressor unit in compressor station.

Based on the failure probability of compressor units and the operational con�guration of compressor

units in stations (i.e., serial, parallel, or both), we can compute the capacity of compressor stations

under a certain scenario. Monte Carlo simulation is then applied to �nd the expected network

capability.

4.2 Computational Results

Solution algorithms based on uncertainty theory, robust optimisation and Monte Carlo simulation

were implemented in Visual Studio C++, and the mathematical programming models were solved

using IBM ILOG CPLEX version 12.5 callable library. All the computational experiments were run

on an Microsoft Windows 7 Enterprise PC with an Intel Core i7-3770 processor (3.40 GHz per chip)

and 24 GB of RAM.
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Table 6: Data of the failure probability for compressor unit in compressor station.

Compressor Unit Failure probability Compressor Unit Failure probability
ABD A 23.03 KIL A 39.09

B 7.07 B 16.67
C 21.68 C 19.29

ALR A 33.57 D 11.10
B 20.39 KIR A 11.68
C 16.62 B 12.12

AYL A 28.75 C 17.11
B 50.29 D 12.62

AVO A 29.67 E 1.00
B 70.00 LOC A 20.13
C 18.03 B 72.40
D 27.78 MOF A 45.83

BIS A 10.75 B 12.45
B 9.93 NEK A 30.13

CAM A 4.76 B 30.65
B 14.29 PET A 5.80
C 32.65 B 6.67

CAR A 38.91 C 2.78
B 30.52 FER 1A 7.22
C 36.69 1B 14.78

CHE A 12.50 1C 14.62
B 7.14 1D 12.00

CHU A 25.00 2A 19.75
B 23.40 2B 7.89

DIS A 32.21 2C 23.71
B 30.95 3A 1.00
C 27.72 3B 1.00

FEL A 1.00 WAR A 12.89
B 1.00 B 1.00
C 1.00 WIS A 5.63

HAT A 16.17 B 20.96
B 17.32 WOO A 18.15
C 15.38 B 33.06
D 1.00 WOR A 25.81

HUN A 28.64 B 4.35
B 16.03 C 11.07
C 22.68 LON A 1.00
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Table 7: Evaluation of the UK gas transmission network capability by uncertainty theory.

Belief level (%) Network capability (mcm) Time (s)

100 510.98 0.21
95 496.93 0.10
90 482.88 0.10
85 468.83 0.11
80 454.78 0.14
75 440.73 0.16
70 426.68 0.15

In the �rst computational experiment, we used uncertainty theory (i.e., individual chance constraint

programming), solving for a range of belief levels α = 0.7, 0.75, .., 1.00. The results are shown in

Table 7. This suggests that if managers' uncertainty in the availability of compressors is, e.g., at

least 90% they may reasonably assume that network capability will be better than 482.88mcm.

Comparing with the peak national demand in 2005-2015 historical data (i.e., 465.50 mcm), it can

be seen that National Grid can satisfy all the cases of national demand with belief level α ≥ 0.85

for each compressor station's capacity. If belief level α < 0.85, there exist some cases of national

demand that National Grid cannot meet. In practice, National Grid satis�ed all cases of national

demand from 2005-2015 with given the gas operator's belief level on compressor station's capacity

α = 0.90. While not o�ering a complete validation of our model, this suggests that its results are

sensible and in line with experience.

To identify the most critical compressor station, we conduct a sensitivity analysis in which each

compressor station is assumed to fail completely (i.e., its capacity is set up zero). We then solve the

corresponding problems with various belief levels to determine the network capacity (see Figure 5).

It is apparent that compressor stations St Fergus (FER) and Aberdeen (ABD) play critical roles

in the UK gas transmission network, since their failure makes the most signi�cant impact on the

network capability. These results suggest that an e�cient maintenance policy would mitigate the

loss of network capability by prioritising St Fergus and Aberdeen to keep maximum capacity at

these, so reducing the maximum loss of network capability in the case that one compressor station

failure.

In addition, this evaluation supports National Grid in forecasting national demand scenario that

risk not being satis�ed. For example, any national demand higher than 510.98 mcm (the maximum

capability of our network) would certainly be of concern. Furthermore, adopting a belief level (or

operational probability) of compressor stations of α ≤ 0.90, our concern starts from national demand

forecasts higher than 482.88 mcm.

We now turn to solution by robust optimisation (i.e., joint chance constraint programming). The

approach is applied if compressor failures are dependent, and we only obtain information of mean

and variance of compressor station's capacity. Table 8 presents computational results with a range

of various con�dence levels α = 0.7, 0.75, .., 0.99. We did not solve the case study with α = 1.00 to
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Figure 5: Sensitivity analysis for one compressor station's complete failure with α = [0.80, 1.00].

Table 8: Evaluation of the UK gas transmission network capability by robust optimisation.

Con�dence level (%) Network capability (mcm) Time (s)

99 552.27 0.11
95 499.42 0.12
90 467.29 0.13
85 453.04 0.15
80 444.37 0.12
75 436.24 0.12
70 430.23 0.12

avoid over�ow issues with (1−α) in the denominator of constraints (10). There are, not surprisingly,

di�erences with results obtained using uncertainty theory; dependencies increase the probability of

simultaneous failures reducing capacity. Moreover the methods use di�erent means of approximating

and bounding the uncertainties. In particular, the results from robust optimisation suggest that

National Grid may not satisfy some cases of national demand observed in 2005-2015 (e.g., higher

453.04 mcm) at α = 0.85. However, at α = 0.90 they could. The average computation time using

uncertain theory is a little slower than that using robust optimisation (0.14 vs. 0.12 seconds).

Finally, we apply Monte Carlo simulation (10,000 runs), taking as known the failure probability of

compressor units. Solving the case study under various scenarios of compressor failures provides

the expected network capability. Figure 6 shows the minimum (301.00 mcm), the expected (490.03

mcm), the maximum (510.98 mcm) and the standard deviation (29.37 mcm) values of the UK gas

transmission network capability. Con�dence levels of 5% and 95% on the gas network capability are

431.00 mcm and 510.98 mcm respectively. Once again, the results suggest that National Grid can

satisfy all the cases of national demand from 2005-2015 (peak demand 465.50 mcm). The results

obtained by the simulation are closer to those of uncertainty theory than robust optimisation.
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Figure 6: Evaluation of the UK gas transmission network capability by Monte Carlo simulation.

5 Conclusions and Future Work

In summary, we have developed three approaches to determine the capability of the UK gas trans-

mission network. The results, carried out on the case study, demonstrate these methods are com-

putationally practicable and give sensible results in line with current experiences. The methods

can inform National Grids planning for forecast national demands in the future and also to build

an e�cient maintenance policy. We believe that these methods can be extended to solve similar

uncertain network capability problems in other �elds. Possible future work would be to consider

other uncertainties, such as pipeline failure or supply loss.
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