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Compiling Graph Programs to C

Christopher Bak⋆ and Detlef Plump

The University of York, United Kingdom
(cb574|detlef.plump)@york.ac.uk

Abstract. We show how to generate efficient C code for a high-level
domain-specific language for graphs. The experimental language GP 2 is
based on graph transformation rules and aims to facilitate formal reason-
ing on programs. Implementing graph programs is challenging because
rule matching is expensive in general. GP 2 addresses this problem by
providing rooted rules which under mild conditions can be matched in
constant time. Using a search plan, our compiler generates C code for
matching rooted graph transformation rules. We present run-time ex-
periments with our implementation in a case study on checking graphs
for two-colourability: on grid graphs of up to 100,000 nodes, the com-
piled GP 2 program is as fast as the tailor-made C program given by
Sedgewick.

1 Introduction

GP 2 is an experimental domain-specific language for graphs whose basic com-
mand is the application of graph transformation rules. The language has a simple
syntax and semantics to support formal reasoning on programs (see [14] for a
Hoare-logic approach to verifying graph programs). GP 2’s initial implementa-
tion is an interpreter running in one of two modes, either fully exploring the
non-determinism inherent to transformation rules or attempting to produce a
single result [3]. In this paper, we report on a compiler for GP 2 which trans-
lates programs directly into efficient C code.

The bottleneck for generating fast code for graph transformation rules is the
cost of graph matching. In general, to match the left-hand graph L of a rule
within a host graph G requires time size(G)size(L) (which is polynomial since
L is fixed). As a consequence, linear-time imperative programs operating on
graphs may be slowed down to polynomial time when they are recast as rule-
based graph programs. To speed up graph matching, GP 2 allows to distinguish
some nodes in rules and host graphs as so-called roots, and to match roots in
rules with roots in host graphs. This concept goes back to Dörr [7] and was also
studied by Dodds and Plump [6].

Our compiler, described in Section 3, translates GP 2 source code directly
into C code, bridging the large gap between graph transformation rules and
C. We use a search plan to generate code for graph matching, deconstructing
each matching step into a sequence of primitive matching operations from which
structured code is generated. The code generated to evaluate rule conditions

⋆ This author’s work was partially supported by an EPSRC Doctoral Training Grant
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is interleaved in the matching code such that conditions are evaluated as soon
as their parameters are assigned values, to rule out invalid matches at the first
opportunity. Another non-standard aspect of the compiler is that programs are
analysed to establish when the state (host graph) needs to be recorded for poten-
tial backtracking at runtime. Backtracking is required by GP 2’s transaction-like
branching constructs if-then-else and try-then-else which may contain ar-
bitrary subprograms as guards.

In [4] we identified fast rules, a large class of conditional rooted rules, and
proved that they can be applied in constant time if host graphs have a bounded
node degree (an assumption often satisfied in practice). In Section 4, we demon-
strate the practicality of rooted graph programs with fast rules in a case study
on graph colouring: we give a GP 2 program that 2-colours host graphs in linear
time. We show that on grid graphs of up to 100,000 nodes, the compiled GP 2
program matches the speed of Sedgewick’s tailor-made implementation in C [17].
In this way, users get the best of both worlds: they can write visual, high-level
graph programs with the performance of a relatively low-level language.

2 The Graph Programming Language GP 2

GP 2 is the successor to the graph programming language GP [12]. This section
gives a brief introduction to GP 2. The original language definition is [13], an
up-to-date version is given in the PhD thesis of the first author [2].

2.1 Conditional Rule Schemata

GP 2’s principal programming constructs are conditional rule schemata (abbrevi-
ated to rule schemata or, when the context is clear, rules). Rule schemata extend
standard graph transformation rules1 with expressions in labels and with appli-
cation conditions. Figure 1 shows the declaration of a conditional rule schema
rule. The numbered nodes are the interface nodes. Nodes that are in the left-
hand side but not in the interface are deleted by the rule. Similarly, nodes that
are in the right-hand side but not in the interface are added.

rule(i:int; x:list)

i

1

x:3

2

⇒ i*i

1

x

2

where indeg(1) > 1 and not edge(1,1)

Fig. 1: Declaration of a conditional rule schema

1 in the double-pushout approach with injective matching
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The top line of the declaration states the name of the rule schema and lists the
variables that are used in the labels and in the condition. All variables occurring
in the right-hand side and in the condition must also occur in the left-hand side
because their values a runtime are determined by matching the left-hand side
with a subgraph of the host graph.

Each variable is declared with a type which is either int, char, string, atom
or list. Types form a subtype hierarchy in which integers and character strings
are basic types, both of which are atoms. Atoms in turn are considered as lists
of length one. Labels in host graphs are variable-free expressions containing only
constructor operations such as list or string concatenation. Lists are constructed
by the colon operator which denotes list concatenation.2 String concatenation is
represented by a dot.

To avoid ambiguity in variable assignments when constructing a mapping
between the left-hand graph of a rule schema and a host graph, we require that
expressions in the left graph are simple: they (1) contain no arithmetic operators,
(2) contain at most one occurrence of a list variable, and (3) do not contain
string expressions with more than one occurrence of a string variable. Labels in
the right-hand side of a rule schema may contain arithmetic expressions.

The labels of nodes and edges can be marked with colours from a fixed set, in
addition to a dashed mark for edges only. Marked items match only host graph
items with the same mark. There is a special mark any that matches arbitrary
host graph marks. Nodes with thick borders are root nodes. Their purpose is to
speed up graph matching, discussed in more detail in the next section.

The programmer can specify a textual condition to add further control to
where the rule is applicable, declared by the keyword where followed by a boolean
expression. GP 2 offers a number of predicates for querying the host graph. For
example, the predicate indeg(1) > 1 in Figure 1 ensures that node 1 is only
matched to suitable host graph nodes with more than one incoming edge.

2.2 Fast Rule Schemata

The idea of rooted graph transformation [4] is to equip both rule and host graphs
with root nodes which support efficient graph matching. Root nodes in rules
must match compatible root nodes in the host graph. In this way, the search
for a match is localised to the neighbourhood of the host graph’s root nodes.
It is possible to identify a class of rooted rule schemata that are applicable in
constant time if the host graph satisfies certain restrictions.

A conditional rule schema 〈L ⇒ R, c〉 is fast if (1) each node in L is reach-
able from some root (disregarding edge directions), (2) neither L nor R contain
repeated list, string or atom variables, and (3) the condition c contains neither
an edge predicate nor a test e1=e2 or e1!=e2 where both e1 and e2 contain a
list, string or atom variable.

2 Not to be confused with Haskell’s colon operator which adds an element to the
beginning of a list.

3



The first condition ensures that matches can only occur in the neighbourhood
of roots. The other conditions rule out linear-time operations, such as copying
lists or strings in host graph labels of unbounded length. In [4] it is shown
that fast rule schemata can be matched in constant time if there are upper
bounds on the maximal node degree and the number of roots in host graphs.
The remaining steps of rule application, namely checking the dangling condition
and the application condition, removing items from L −K, adding items from
R−K, and relabelling nodes, are achievable in constant time.

2.3 Programs

GP 2 programs consist of a finite number of rule schema declarations and a main
command sequence which controls their application order. Execution starts at
the top-level procedure Main. The user may declare other named procedures,
which consist of a mandatory command sequence and optional local rule and
procedure declarations. Recursive procedures are not allowed.

The control constructs are: application of a set of conditional rule schemata
{r1, . . . , rn}, where one of the applicable schemata in the set is non-deterministi-
cally chosen; sequential composition P ;Q of programs P and Q; as-long-as-
possible iteration P ! of a program P ; and conditional branching statements
if C then P else Q and try C then P else Q, where C, P and Q are
arbitrary command sequences. The meaning of these constructs is formalised
with a small-step operational semantics [2].

We just discuss the branching statements. To execute if C then P else Q

on a graph G, first C is executed on G. If this produces a graph, then this result
is thrown away and P is executed on G. Alternatively, if C fails on G, then Q

is executed on G. In this way, graph programs can be used to test a possibly
complex condition on a graph without destroying the graph. If one wants to
continue with the graph resulting from C, the command try C then P else Q

can be used. It first executes C on G and, if this fails, executes Q on G. However,
if C produces a graph H, then P is executed on H rather than on G.

3 The GP 2 Compiler

The language is implemented with a compiler, written in C, that translates GP
2 source code to C code. The generated code is executed with the support of
a runtime library containing the data structures and operations for graphs and
morphisms. We describe how we convert high-level, non-deterministic and rule-
based programs into deterministic, imperative programs in C.

3.1 Rule Application

Implementing a graph matching algorithm in the context of graph transforma-
tion systems is a well-researched problem. A frequently-used technique is the
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bool match rule (morphism ∗m) {
return match n0 ;

}

bool match n0 (morphism ∗m) {
for ( root nodes N o f the host graph ) {

i f (N i s not a va l i d match for n0 ) continue ;
else {

f l a g N as matched ;
update morphism ;
i f ( match e0 ) return t rue ;

}
}
return f a l s e ;

}

bool match e0 (morphism ∗m) {
for ( outedges E o f match ( n0 ) ) {

i f (E i s not a va l i d match for e0 ) continue ;
else {

f l a g E as matched ;
update morphism ;
return t rue ;

}
}
return f a l s e ;

}

Fig. 2: Skeleton of the rule matching code.

search plan, a decomposition of the matching problem into a sequence of prim-
itive matching operations [7]. The compiler supports operations to match an
isolated node, to match an edge incident to an already-matched node, and to
match a node incident to an already-matched edge. A search plan is constructed
by an undirected depth-first traversal of the left-hand side of a rule. When a
node or edge is first visited, an operation to match that item is appended to
the current search plan. Every iteration of the depth-first search starts at a root
node, if one exists, to ensure that the initial “find node” operation is as cheap as
possible. If all root nodes have been visited, it starts at an arbitrary unexplored
node.

The generated code is a nested chain of matching functions corresponding to
the search plan operations. The top-level function is named match R for rule R.
The pseudocode in Figure 2 illustrates this structure for a rule that matches a
root node with a looping edge.

Four checks are made to test if a host graph item h is a valid match for a
particular rule item. They are listed below.
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1. h is flagged as matched (note that we use injective matching).
2. The rule item is not marked any and h’s mark is not equal to the rule item’s

mark.
3. h is not structurally compatible with respect to the rule and the current

partial morphism.
4. h’s label cannot match the expression of the rule item’s label.

The third check differs for nodes and edges. Host graph nodes are ruled out
if their degrees are too small. For example, a rule node with two outgoing edges
cannot match a host graph node with only one outgoing edge. Host graph edges
are checked for source and target consistency. For example, if the target of a rule
edge is already matched, the host edge’s target must correspond with that node.

To evaluate rule conditions, the compiler writes a function for each predicate
and a function to evaluate the whole condition. The predicate functions modify
the values of global boolean variables that are queried by the condition evalu-
ator. The condition is checked directly after each call to a predicate function.
If the condition is true or all variables in the condition have not been assigned
values, matching continues. Otherwise, the match fails and the current matcher
returns false, triggering a backtrack. At runtime, the predicate functions are
called as soon as they are needed. For example, the function to check the pred-
icate indeg(1) = indeg(2) is called immediately after rule node 1 is matched
and immediately after rule node 2 is matched. This is done in order to detect
an invalid match as soon as possible. To make this possible, a complex data
structure is used at compile time to represent conditional rule schemata. The
data structure links nodes and variables in the rule to each condition predicate
querying that node or variable.

A rule schema contains complete information on the behaviour of the rule,
including which items are added, which items are deleted, which items are rela-
belled, and which variables are required in updated labels. The rule is analysed
at compile time to generate code to apply the rule given a morphism. Host graph
modifications are performed in the following order to prevent conflicts and dan-
gling edges: delete edges, relabel edges, delete nodes, relabel nodes, add nodes,
add edges. The appropriate host nodes, host edges and values of variables are
pulled from morphism data structures populated during the matching step.

3.2 Program Analysis for Graph Backtracking

The semantics of GP 2’s loop and conditional branching commands require the
host graph to be backtracked to a previous state in certain circumstances. For
example, the if-then-else statement throws away the graph obtained by ex-
ecuting the condition before taking the then or else branch. Therefore there
needs to be a mechanism to preserve older host graph states. We achieve this
by maintaining a stack of changes made to the host graph. This is more space-
efficient than storing multiple copies of the host graph. This concept is taken from
the implementation of the first version of the GP language [11]. At compile time
the program text is analysed to determine which portions of the program require
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recording of the host graph state. This analysis is quite subtle. For instance, a
condition that requires graph backtracking in an if-then-else statement may
not require graph backtracking in a try-then-else statement. We omit the de-
tails for lack of space. The first author’s PhD thesis [2] describes the program
analysis in detail, including the algorithm used by the compiler.

3.3 Program Translation

The main function of the generated C program is responsible for calling the
matching and application functions as designated by the command sequence of
the GP 2 program. Executing the program amounts to applying a sequence of
rules. The code generator writes a short code fragment for each rule call and
translates each control construct into an equivalent C control construct. The
runtime code is supported by a number of global variables, including the host
graphs and morphisms. A global boolean variable success, initialised to true,
stores the outcome of a computation to support the control flow of the program.

A standard rule call generates code trying to match the rule. If a match is
found, the code calls the rule application function and sets the success flag to
true. If not, control passes to failure code. Certain classes of rules allow simpler
code to be generated. For example, a rule with an empty left-hand side does not
generate code to call a matching function. The failure code is context-sensitive.
If there is a failure at the top level, the program is terminated after reporting to
the user and freeing memory. Failure in a condition guard sets the global success
flag to false so that control goes to the else branch of the conditional statement.
Failure in a loop sets the success flag to false and calls the function undoChanges

(described below) to restore the host graph to the state at the start of the most
recent loop iteration.

Figure 3 summarises the translation of some GP 2 control constructs to C.
The rule set call {R1, R2} is tackled by applying the rules in textual order until
either one rule matches or they all fail. The do-while loop is used to exit the rule
set if a rule matches before the last rule has been reached. The condition of a
branching statement is executed in a do-while loop: if failure occurs before the
last command of the condition, the break statement is used to exit the condition,
and control is assumed by the then/else branch. GP 2’s loop translates directly
to a C while loop. One subtlety is the looped command sequence, where the
line if(!success) break; is printed after the code for all commands except
the last. A second subtlety is that success is set to true after exiting a loop
because GP 2’s semantic rules state that a loop cannot fail. Command sequences
are handled by generating the code for each command in the designated order.
When a procedure call is encountered in the program text, the code generator
inlines the command sequence of the procedure at the point of the call.

Restore points (the variables named rp in Figure 3) are created and assigned
to the top of the graph change stack when graph backtracking is required. The
function undoChanges restores a previous host graph state by popping and un-
doing changes from the stack until the restore point is reached. The function
discardChanges pops the changes but does not undo them. It is only called at

7



Command Generated Code

{R1, R2}

do {
i f (matchR1(M R1) ) {
<su c c e s s code>
break ;

}
i f (matchR2(M R2) ) <su c c e s s code>
else < f a i l u r e code>

} while ( f a l s e )

if C then P

else Q

int rp = <top o f GCS>;
do C while ( f a l s e ) ;
undoChanges ( host , rp ) ;
i f ( su c c e s s ) P else Q;

try C then P

else Q

int rp = <top o f GCS>;
do C while ( f a l s e ) ;
i f ( su c c e s s ) P
else {

undoChanges ( host , rp ) ;
Q

}

(P; Q)!

int rp = <top o f GCS>;
while ( su c c e s s ) {

P
i f ( ! s u c c e s s ) break ;
Q
i f ( su c c e s s ) discardChanges ( rp ) ;

}
su c c e s s = true ;

Fig. 3: C code for GP 2 control constructs

the end of a successful loop iteration to prevent a failure in a future loop itera-
tion from causing the host graph to roll back beyond the start of its preceding
iteration. Each restore point has a unique identifier to facilitate multiple graph
backtracking points.

The compiler respects the formal semantics of GP 2 (given in [13] and in
updated form in [2]) in that any output graph of the generated code is admissible
by the semantics. Similarly, a program run ending in failure is possible only if
the semantics allows it. We did not formally prove this kind of soundness—that
would be a tremendous project far beyond the scope of this work. Also, there
is no guarantee that a program run terminates if a terminating execution path
exists (this would require a breadth-first strategy which is impractical).
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3.4 Runtime Library

The runtime library is a collection of data structures and operations used by
the generated code during rule matching, rule application and host graph back-
tracking. As aforementioned, graph backtracking is performed by a graph change
stack. We describe the other core data structures of the runtime library.

The host graph structure stores node and edge structures in dynamic arrays.
Free lists are used to prevent fragmentation. Nodes and edges are uniquely iden-
tified by their indices in these arrays. The graph structure also stores the node
count, the edge count, and a linked list of root node identifiers for fast access to
the root nodes in the host graph. A node structure contains the node’s identi-
fier, its label, its degrees, references to its inedges and outedges, a root flag, and
a matched flag. An edge structure contains the edge’s identifier, its label, the
identifiers of its source and target, and a matched flag.

A label is represented as a structure containing the mark (an enumerated
type), a pointer to the list and the length of the list. GP 2 lists are represented
internally as doubly-linked lists. Each element of the list stores a type marker
and a union of integers and strings, equivalent to GP 2’s atom type. Lists are
stored centrally in a hash table to prevent unnecessary and space-consuming
duplication of lists for large host graphs with repeated labels.

The morphism data structure needs to capture the node-to-node and edge-to-
edge mappings, and the assignment mapping variables to their values. Thus the
data structure used to represent morphisms contains the following four substruc-
tures: (1) an array of host node identifiers, (2) an array of host edge identifiers,
(3) an array of assignments, and (4) a stack of variable identifiers. At compile
time each node, edge and variable in a rule is identified with an index of its
array in the morphism, allowing quick access to the appropriate elements. The
stack is used to record assignment indices in the order in which the variables are
assigned values. This is needed because the variables encountered at runtime are
not guaranteed to agree with the compile-time order.

4 Case Study: 2-Colouring

Vertex colouring has many applications [18] and is among the most frequently
considered graph problems. We focus on 2-colourability: a graph is 2-colourable,
or bipartite, if one of two colours can be assigned to each node such that the
source and target of each non-loop edge have different colours.

Figure 4 shows a rooted GP 2 program for 2-colouring. The input is a con-
nected, unmarked and unrooted graph G. If G is bipartite, the output is a valid
2-colouring of G. Otherwise, the output is G. The edges in this program are
bidirectional edges, graphically denoted by lines without an arrowhead. Such a
rule matches a host graph edge incident to two suitable nodes independent of
the edge’s direction. (This is syntactic sugar: a rule with one bidirectional edge
is equivalent to a rule set containing two rules with the edge pointing in different
directions.) The rules colour red and joined blues are omitted, which are the
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“inverted” versions of the rules colour blue and joined reds with respect to
the node marks. In particular, the right-hand side of joined blues also has a
grey root node.

Main = try (init; Colour!; if g root then fail)

Colour = (ColourNode; try Invalid then break)!;

try {back red, back blue} else break

ColourNode = {colour blue, colour red}
Invalid = {joined reds, joined blues}

x

1

⇒

init(x:list)

x

1

x

1

⇒

g root(x:list)

x

1

x

1

y

2

a
⇒

colour blue(a,x,y:list)

x

1

y

2

a

x

1

y

2

a
⇒

joined reds(a,x,y:list)

x

1

y

2

a

x 1

y 2

a ⇒

back red(a,x,y:list)

x 1

y 2

a

x 1

y 2

a ⇒

back blue(a,x,y:list)

x 1

y 2

a

Fig. 4: The program 2colouring

At its core, 2colouring is an undirected depth-first traversal in which the
source node is chosen non-deterministically. The root node represents the current
position in the traversal. The rule init prepares the search by matching an
arbitrary host graph node, making it the root node, and colouring it red. Each
iteration of the Colour! loop does the following:

1. ColourNode: move the root node to an adjacent uncoloured node and colour
it with the opposite colour. Dash the edge connecting the current root node
to the previous one.

2. try Invalid else break: check if the current root node is adjacent to any
nodes with the same colour. If so, mark the root node grey and break the
inner loop.

3. Repeat steps (1) and (2) until no more rules are applicable.
4. try {back red, back blue} else break: move the root along a dashed

edge and undash the edge. If this is not possible, break the outer loop.

Observe that the dashed edges act as a “trail of breadcrumbs” to facilitate
backtracking. If the 2-colourability is violated at any point during the compu-
tation, the root node is marked grey, which acts as a flag for non-bipartiteness.
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Once the Colour! exits, the remainder of the program (if g root then fail)
checks if the root node is grey. If the root node is grey, then the fail command
causes the try-then-else to take the else branch, and the host graph assumes
its state before entering the branch, which returns the input graph. Otherwise,
the then branch is taken, which returns the current 2-coloured graph.

Termination is guaranteed because each rule either decreases the number
of unmarked nodes or decreases the number of dashed edges while preserving
the number of unmarked nodes. Therefore, at some point, a back rule will fail
because there exist no dashed edges, or a colouring rule will fail because there
exist no unmarked nodes.

1 2

34

∗
⇒

1 2

34

∗
⇒

1 2

34

∗⇒

1 2

34

∗
⇐

1 2

34

∗
⇐

1 2

34

Fig. 5: Example run of 2colouring

Figure 5 shows the execution of 2colouring on the host graph in the upper-
left of the diagram. This graph is clearly not 2-colourable. The rule init colours
node 1 red. The rule colour blue nondeterministically matches the edge 1 →
2. It roots node 2, colours it blue and dashes the edge. The colouring rules
are applied twice more to give the lower-right graph. At this point the rule
joined blues matches the edge 4 → 2. This colours the root node grey. The
inner loop breaks, and control passes to Backtrack. Both back rules fail because
neither match a grey root node. This causes the outer loop to break. Finally,
g root succeeds, causing the try statement to fail and return the original graph.

The following result, proved in [2], assumes that input graphs are unmarked
and connected.

Proposition 1 (Time complexity of 2colouring). On graphs with bounded

node degree, the running time of 2colouring is linear in the size of graphs. On

unrestricted graphs, the running time is quadratic in the size of graphs.

Here “size of graphs” refers to the number of nodes and edges in host graphs.
The result is independent of the size of host graph labels.

11



5 Performance

To experimentally validate the time complexity of 2colouring, and to test the
performance of the language implementation, we ran the generated C code for
2colouring against an adaptation of Sedgewick’s hand-crafted C program for
2-colouring [17].

We chose two classes of input graphs. The first class is square grids (ab-
breviated grids), which are suitable because: (1) grids are 2-colourable. This
guarantees that both programs perform the same computation, namely match-
ing and colouring every node in the graph; (2) grids have bounded node degree,
which tests the linear complexity of 2colouring; (3) it is relatively simple to
generate large grids. The second class is star graphs, used to test the perfor-
mance on graphs of unbounded degree. A star graph consists of a central node
with k outgoing edges. The targets of these outgoing edges themselves have a
single outgoing edge. Star graphs share properties (1) and (3) of grid graphs.
Examples can be seen in Figure 6.

Fig. 6: Examples of a square grid graph and a star graph

5.1 2-colouring in C

This section describes a C implementation of 2-colouring based on the code in
Sedgewick’s textbook Algorithms in C [17] which uses an adjacency list data
structure for host graphs. For a graph with n nodes, an adjacency list is a node-
indexed array containing n linked lists. An edge i → j is represented by the
presence of j in the ith linked list, and vice versa if the graph is undirected.
For our purposes there is no requirement to implement a graph data structure
that supports the complete GP 2 feature set. Instead, we exploit some of the
properties of the algorithms and host graphs we wish to execute in order to
develop a minimal graph data structure.

We adapt Sedgewick’s adjacency-list data structure and functions for host
graphs. The main graph structure stores counts of the number of nodes and
edges, a node-indexed array of adjacency lists, and a node-indexed array of
integer node labels. Adjacency lists are represented internally by linked lists,
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1 bool d f sColour ( int node , int co l ou r ) {
2 Link ∗ l = NULL;
3 int new colour = co lou r == 1 ? 2 : 1 ;
4 host−>l a b e l [ node ] = new colour ;
5 for ( l = host−>adj [ node ] ; l != NULL;
6 l = l−>next )
7 i f ( host−>l a b e l [ l−>id ] == 0) {
8 i f ( ! d f sCo lour ( l−>id , new colour ) )
9 return f a l s e ;

10 }
11 else i f ( host−>l a b e l [ l−>id ] != co l our )
12 return f a l s e ;
13 return t rue ;
14 }
15
16 int main ( int argc , char ∗∗ argv ) {
17 host = buildHostGraph ( argv [ 1 ] ) ;
18 bool c o l ou rab l e = true ;
19 int v ;
20 for ( v = 0 ; v < host−>nodes ; v++)
21 i f ( host−>l a b e l [ v ] == 0)
22 i f ( ! d f sCo lour (v , 1 ) ) {
23 co l ou rab l e = f a l s e ; break ;
24 }
25 i f ( ! c o l ou rab l e )
26 // Unmark a l l nodes .
27 for ( v = 0 ; v < host−>nodes ; v++)
28 host−>l a b e l [ v ] = 0 ;
29 return 0 ;
30 }

Fig. 7: DFS 2-colouring in C

where each list element stores the node identifier of a target of one of its outgoing
edges.

At runtime, the GP 2 compiler’s host graph parser is used to read the host
graph text file and construct the graph data structure. This minimises the gap
between the handwritten C code and the code generated from the GP 2 compiler,
so that the comparison between the performance of the actual computations on
the host graph is as fair as possible.

The C algorithm for 2-colouring is given in Figure 7. Code for error checking,
host graph building, and declaration of global variables is omitted. The program
takes a single command line argument: the file path of the host graph. The
function buildHostGraph initialises and adds edges to the graph (via the global
Graph pointer host) through the GP 2 host graph parser.
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Nodes are labelled 0, 1 or 2. Node labels are initialised to 0, representing
an uncoloured and unvisited node. 1 and 2 represent the two colours of the
algorithm. The function dfsColour is called recursively on all uncoloured nodes
of the host graph. It is passed a node v and a colour c as its argument. It colours v
with the contrasting colour c′, and goes through v’s adjacency list. If an adjacent
node is uncoloured, dfsColour is called on that node. If an adjacent node is also
coloured c′, the function returns false, which will propagate through its parent
calls and to the main function. If main detects a failure (line 25), it sets the label
of all nodes to 0 and exits. Otherwise, the coloured graph is returned.

Figure 8 show the comparison of runtimes of both programs. There is almost
no difference between the time it takes for either program to 2-colour grids,
a remarkable result considering the compiled GP 2 code explicitly performs
(rooted) subgraph matching at each step, while the tailored C program navigates
a simple pointer structure. However, the star graph plot makes it clear that
tailored C code is not limited by bounds on node degree. The compiled GP 2
code displays quadratic time complexity because it searches the outgoing edge
list of the central node in the same order for every rule match.
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Fig. 8: Plots of the runtimes of the 2-colouring programs in GP 2 and C

6 Related Work

There exist a number of tools and languages for programming with graph trans-
formation rules, including AGG [15], GROOVE [9] and PORGY [8]. We highlight
three implementations with code generation. PROGRES [16] generates efficient
Modula-2 or C code from transformation specifications. The code generator is
more complex than that of GP 2 because it must handle sophisticated language
features, for example arbitrary path expressions in rules and derived attributes.
Programs in GrGEN.NET [10] are compiled to highly-optimised .NET assemblies
for high performance execution. The code generator of the model transforma-
tion tool GReAT [19] has some similarity to that of GP 2: both generate pattern
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matching code that searches the host graph with user-declared root points to
prune the search space. However, there are some differences because of the dif-
ferent feature sets of the languages. For example, GReAT’s code generator must
handle passing matched objects from one rule to another, while GP 2’s code
generator must handle application conditions during graph matching.

The concept of rooted rules has been used in various forms in implementations
of graph transformation. To mention a couple of examples, rules in GrGEN.NET
and GReAT can return graph elements to restrict the location of subsequent rule
applications [10, 1], and the strategy language of PORGY restricts matches of
rules to a subgraph of the host graph called the position which can be trans-
formed by the program [8].

7 Conclusion and Future Work

We have reviewed the visual programming language GP 2 based on graph trans-
formation rules and described a compiler that translates high-level GP 2 pro-
grams to C code. A novel aspect of our implementation is generating search
plans at compile time and using them to systematically generate structured and
readable C code. Another distinctive feature is the static analysis of programs
to determine if code needs to be generated to facilitate the recording of the host
graph state. Using the compiler, we show that the generated C code for a depth-
first 2-colouring program performs as quickly as a handcrafted C program also
based on depth-first search on a class of host graphs with bounded node degree.
These initial results are good, but more case studies ought to be investigated
to further demonstrate the efficiency of the generated code, in particular pro-
grams that transform the host graph structurally, such as a reduction program
to identify membership in a specific graph class.

A limitation of the GP 2 implementation is that it makes little effort to
optimise rule matching for rules without root nodes. One method of speeding up
matching is to compute optimal search plans at runtime based on an analysis
of the host graph. This has been implemented in GrGEN.NET [5]. Another
approach is to optimise rule matching at compile time. An example of such an
optimisation is transforming a looped rule call to code that finds all matches
in the host graph and performs the modifications in one step, which in general
is more efficient than finding one match and starting a new search for the next
match. This requires some care because pairs of matches could be in conflict.
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