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Abstract— In this paper a Digital Sinusoidal Pulse Width Modulation (DSPWM) multilevel 

technique of 27-levels based on FPGA is introduced, as an alternative to control of the DC/AC 

multilevel power converters. The implementation of this technique with a Field Programmable 

Gate Array (FPGA) XC3S500E model is achieved in the Xilinx Spartan 3E-FPGA platforms. An 

experimental prototype is implemented by three-cascaded H-bridges controlled by the DSPWM 

multilevel technique, generating high efficiency, low cost and lower harmonic content. The 

efficiency of the DSPWM multilevel technique using R, RL, RC and RLC loads connected to the 

power network is verified.  

 

Keywords—DSPWM, FPGA, multilevel H-bridges, cascaded DC/AC converters. 

 

I. INTRODUCTION 

Through the years, the research attention in the DC/AC multilevel power converters controlled 

by Pulse Width Modulation (PWM) has increased, in merit to identify technical advantages in the 

power quality problems solution [1]. Among the different types of multilevel topologies of the 

DC/AC power converters, three are considered, i.e. Diode-clamped, flying capacitor and 

cascaded H-bridge [2]. Then, when the multilevel signal implementation is required with a low 

harmonic content, the cascaded H-bridge topology is used. This topology appeared for the first 

time in 1975 [3] and this is mainly implemented because it is possible to generate a greater 

number of levels with a lesser number of switches and electronic components [4-5]. 

Subsequently, the Total Harmonic Content (THD) is lower among the number of levels 
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containing a sinusoidal signal [6-7]. In addition, the series connection of multilevel power 

converters reduces the voltage stress of each switch in the H-bridge module, making DC/AC 

multilevel converters suitable for high power applications.  

Several types of modulation methods have been proposed for multilevel converters based on 

two approaches, i.e. Pulse Width Modulation (PWM) and Vector Modulation (VM). The vector 

modulation method generates the converter commutation states from a reference vector, its 

implementation is more complex and it is more computationally demanding, as this technique 

requires the coding of N3 different voltage combinations for the output voltage generation of N-

levels [8]. The pulse width modulation is generated by the comparison of modulated and carrier 

signals. In the multilevel signal generation, several carriers are used; its advantage is the 

implementation simplicity and low computational cost, because to generate a multilevel signal of 

n-levels, it is only necessary the comparison between a modulated signal and n-1 carriers [9]. 

To achieve this aim, the DC/AC multilevel converters control has been progressively migrated 

from analog to digital operation [10], i.e. the digital modulation techniques are quickly becoming 

the most generalized framework in modern power electronics applications. Digital Sinusoidal 

Pulse Width Modulation (DSPWM) is a modulation technique created by the internal generation 

of the modulated and carrier signals in a digital controller. Hence, different digital controllers, 

such as microprocessors, Digital Signal Processor (DSP), Application Specific Integrated Circuits 

(ASIC) and Field Programmable Gate Array (FPGA) are gaining importance in power electronics 

applications [11], as these allow the DSPWM to be implemented easily with advantages in terms 

of better performance, reduction of harmonic distortion and low cost of experimental prototypes. 

However, the operation of some digital controllers is linked to disadvantageous issues, e.g. the 

use of ASICs is sometimes an effective solution in applications designed for large markets, since 

its development cost is only justified by large volumes. In DSPs the execution time 

synchronization is complex and in microcontrollers the generation of multiple output signals is 

insufficient [12-13].  

The importance of developing digital controllers in low-level programming devices (direct 

control over hardware), such as FPGAs, in the control of switching power converters, remains in 

the concurrency advantages (it allows the division of complex logical algorithms in a large 

number of small tasks, which are simultaneously solved) [14-17]; i.e. it is possible the control of 

multiple switches with high processing speed. This is ideal when a very high switching frequency 

and bandwidth are required. At the same time, the FPGA is dynamically and partially re-

configurable, a fact that can be exploited in order to reduce the total power consumption. The 

hardware re-configuration allows the constantly non-required functions to be stored in a low 

power memory and these with the predefined register in the FPGA are configured [18]. Besides, 

the VHDL (combination between VHSIC (Very High Speed Integrated Circuits) and HDL 

(Hardware Description Language)) is designed and optimized to describe the behavior of digital 

systems; which ranges from simple logic gates to custom chips [19]. When the VHDL language 

is combined with the characteristics of an FPGA as, concurrency and re-configuration, it allows 



feasible and efficient implementations of DSPWM control, in merit to its flexibility, versatility 

and simplicity properties [20]. 

The DSPWM multilevel technique can be applied in some research works, such as: In [21-23], 

research investigation on cascaded H-bridge multilevel converters of 27-levels controlled by 

DSPs is reported, thus generating a complex synchronization of execution time and an excess of 

unnecessary software, due to the DSP serial programming process. In [24], a DC/AC multilevel 

converter topology that gets all the additive and subtractive combinations of the input DC levels 

in a real-time simulator is proposed. However, the authors present the multilevel topology 

simulation generating of 9 and 27-levels, but only an experimental prototype to generate 9-levels 

is implemented; which is acceptable but not enough, since the control strategy to generate 27-

levels through the proposed topology is not detailed. In [25], the control of cascaded H-bridge in 

a photovoltaic system based on sinusoidal PWM techniques through an FPGA is reported. This is 

a potential application; however, the authors only report the system simulation. In [26], the 

control of a voltage source inverter with multilevel technique is performed using the Space 

Vector Pulse Width Modulation (SVPWM) technique in an FPGA; nevertheless, the authors 

generate only a 5-levels multilevel signal, which generates a higher Total Harmonic Distortion 

(THD) in the AC network. To reduce this THD, the number of levels in the output voltage must 

be increased; this results in an increase of unnecessary software. 

In this paper, a DSPWM multilevel technique of 27-levels based on the Xilinx Spartan 3E 

FPGA platform (XC3S500E model) is implemented, as an alternative of control to a DC/AC 

multilevel power converter formed by three-cascaded H-bridges, for the THD reduction in 

different load types. The paper scope is enhanced with the incorporation of R, RL, RC and RLC 

loads in the power system. Through the parallel data processing of the FPGA architecture a good 

resolution, high efficiency, low harmonic content and low cost are acquired in the prototype 

implementation. The paper organization is as follows: in Section II, the technical implementation 

of the DSPWM multilevel signal of 27-levels is detailed; in Section III, the DSPWM multilevel 

signal simulation of 27-levels is presented; in Section IV, the results of the prototype 

implementation detailed in Section II are given and analyzed, and finally in Section IV, the main 

conclusions of this research work are drawn. 

 

II. DIGITAL SINUSOIDAL PULSE WIDTH MODULATION (DSPWM) MULTILEVEL TECHNIQUE 

DESCRIPTION 

Different types of multilevel modulation methods are already well established. The Phase 

Shifted PWM (PSPWM), Phase Disposition PWM (PDPWM), Phase Opposition Disposition 

PWM (PODPWM) and Selective Harmonic Elimination PWM (SHEPWM) are some examples 

of sinusoidal Pulse Width Modulation methods. The PSPWM, PDOWM and PODPWM 

multilevel methods in the power converters controlled with high frequency switching are applied; 

The SHEPWM technique is applied in converters with very high power, controlled through low 

frequency switching algorithms [27-29]. In this paper, the DSPWM implementation is made 

based on the phase disposition method, since this modulation method achieves a lower THD with 

a higher number of voltage levels in the output signal, in comparison to the methods cited in [30]. 



The DSPWM generation signal is achieved through direct comparison of a sinusoidal 

reference signal (modulating signal) and a high frequency triangular signal (carrier signal).  

The DSPWM multilevel generation is represented by the expression: 

nL= n-1                                                                      (1) 

where n is the number of levels. The modulation index ma is generated from the carrier signal 

frequency fc and the modulating signal frequency fm is, 

m
a
=

f
C

f
m    

                                                                   (2) 

Its function is to reduce stress on the converter switching devices due to high power handling. 

This is achieved by properly executing the gating signals for the switches control. These 

modulation techniques need more computational capacity; this requirement is satisfied when the 

modulation technique in a FPGA is implemented. 

A. Modulated Signal Formation 

The modulation signal has a frequency of 60Hz; it is created by the data stored in ROM, 

corresponding to the sinusoidal signal peak-to-peak amplitude. This amount of data has been 

selected for high precision of the modulation signal. Table 3 shows the stored content in ROM. 

An array of 500 locations in the ROM is selected from Table 1. The FPGA model XC3S500E 

operates at 50MHz, since a sinusoidal modulation signal of 60Hz is needed, then this frequency 

is decreased. The base modulation signal frequency fBMS is obtained as,  

 f
BMS

=
f

FPGA

f
SMS

                                                                    (3) 

where fFPGA is the frequency to operate the FPGA model XC3S500E and fSMS is the frequency of 

the sinusoidal modulation signal. 

Finally, the 500 data store in ROM are assigned by the base modulation signal frequency as,  

f
DS
=

f
BMS

500
                                                                    (4) 

where fBMS is the base modulation signal frequency and fDS is the frequency of stored data in 

ROM. 

Table 2 shows the process to generate the base modulated signal frequency; this is achieved 

with fDS by using a counting process of 1666 clock cycles. Table 3 details the process followed to 

select the 500 ROM locations. In Table 4, the process of value assignation in the corresponding 

ROM locations to generate the sinusoidal signal is shown. The described tasks in Tables 2, 3 and 

4 are simultaneously processed by the FPGA. The stored data in ROM are continuously assigned 

every 1666 clock cycles. Therefore, the advantages of simplicity, efficiency, versatility and 

flexibility are achieved. 



B. Carrier Signals Formation 

Triangular carriers were synthesized using the master clock pulses of the FPGA, which may 

run at 50MHz. The carrier signal frequency is 10 times higher than the modulating signal 

frequency; therefore, the signal carrier frequency fSC is obtained as, 

 

f
SC
=

f
FPGA

f
DS( )*10

                                                                (5) 

where fFPGA is the frequency to operate the FPGA model XC3S500E and fDS is the 500 data stores 

in ROM. 

Table 5 shows the process to generate the carrier signal base frequency by (4) and (5). By 

increasing its level to a maximum T the main triangular waveform (carrier) is generated, and then 

decreasing it to zero following a stair pattern. This sequence is continuously repeated until the 

overall process stops, as shown in Table 6.  

Carrier

Carrier +350®Carrier 1( )
Carrier +700®Carrier 2( )
Carrier +1050®Carrier 3( )
.

.

.

Carrier +8050®Carrier 24( )
Carrier +8400®Carrier 25( )
Carrier +8750®Carrier 26( )

                                                      (6) 

To form each of the remaining triangular signals, an offset is added to the main triangular 

signal until reaching the peak value, as shown in (6). The modulating signal and the sum of n 

carrier signals must have the same peak-to-peak amplitude. Finally, the sinusoidal modulation 

signal is continuously compared against each of the n carrier signals, generating a train of on-to-

off switching pulses. That is, if the reference is larger than n carrier signals, then the pulse is 

active, but if the reference is smaller than n carrier signals, then the pulse is turned off, i.e.: 

Modulated >Carrier n( )®DSPWM =1                                               (7a) 

Modulated <Carrier n( )®DSPWM = 0                                              (7b) 

The diagram of Figure 1 shows the generation of the DSPWM signals; these are required to 

control the twelve switches (IGBTs) of the DC/AC multilevel converter formed by the three-

cascaded H-bridges.  

Figure 1 Generation of DSPWM multilevel signal 



The twelve switching signals are implemented in the FPGA (these signals come from the 

comparison of the modulated signal and the 26 carrier signals, as shown in Figure 1), due to the 

required combinational logic complexity for the correct turn on/off of the IGBTs corresponding 

to the AC/DC multilevel converter. 

 

III. DSPWM MULTILEVEL SIGNAL SIMULATION OF 27-LEVELS 

The Figure 2 shows the simulation of DSPWM multilevel signal of 27-levels. The control 

technique at the FPGA output has a maximum peak-to-peak voltage of 3.3V. The waveform 

simulation of Figure 2 is obtained with the Xilinx platform. 

Figure 2 Simulation of DSPWM signal of 27-levels 

Figure 3 shows the flow diagram that describes the DSPWM multilevel signal. It contains the 

described codes in Tables 1, 2, 3, 4, 5 and 6.   

Figure 3 Flow diagram of the DSPWM multilevel signal  

 

IV. IMPLEMENTING THE DSPWM SIGNAL OF 27-LEVELS 

The main advantages linked to the construction of multilevel topologies are the generation of 

high-quality output voltages, the power increase, the THD mitigation and the reduction of voltage 

stress in power switching devices [31-33].  

In this contribution, the DSPWM multilevel modulation technique is applied in the cascaded 

H-bridge topology of Figure 4; its operating principle is explained through an H-bridge [34]. The 

H-bridge of Figure 4(a) consists of four switches ST1, ST2, ST3 and ST4. Switches ST1 and ST3 

operate complementary to ST2 and ST4, producing three different output voltages through the 

switching control; the output voltages are +VDC, 0 and –VDC. In Figure 4(b) the switches ST1 and 

ST3 are turned on to generate +VDC. In Figure 4(c) switches ST2 and ST4 are turned on to produce 

–VDC, and to generate 0V. Two options can be followed, i.e., switches ST1 and ST4 (Figure 4(d)) or 

ST2 and ST3 are turned on (Figure 4(e)). It is possible to choose any of these configurations 

without modifying the final waveforms. For this research work the configuration of Figure 4(e) is 

selected.  

In order to obtain 27-levels in the DC/AC multilevel converter output using three-cascaded H-

bridges units, three different DC voltage sources are used, i.e. in the H-bridge 1 the DC voltage 

source 1 is nine times higher than the DC Voltage source 3 of the H-bridge 3; and in the H-bridge 

2 the DC voltage source 2 is three times higher than the DC voltage source 3 of the H-bridge 3. 

The DSPWM implementation applied to the DC/AC multilevel converter is performed using a 

XC3S500E FPGA and VHDL. 

Figure 4 Topological states of an H-bridge converter. a) H-bridge model; b) +VDC state; c) –

VDC state; d) 0 state; e) 0 state 



Figure 5 Circuits corresponding to the used combinational logic of Table 8. a) Combinational 

logic of H-bridge 1; b) Combinational logic of H-bridge 2; c) Combinational logic of H-bridge 3 

In Table 7 the turn on/off of each IGBT of the three-cascaded H-bridges are specified. The 

used combinational logic for the correct IGBTs switching is shown in Table 8. Figure 5 shows 

the circuits corresponding to the used combinational logic for the correct IGBT switching. Figure 

5(a) shows the combinational logic to generate the train of pulses applied to the IGBTs of the H-

bridge 1, Figure 5(b) illustrates the combinational logic applied to the IGBTs of the H-bridge 2 

and Figure 5(c) shows the combinational logic for the IGBTs of the H-bridge 3. 

Figure 6 Three-cascaded H-bridges configuration and equivalent circuit corresponding 

Figure 6 shows the three-cascaded H-bridges configurations and the equivalent circuit 

corresponding to generate a multilevel output signal of 27-levels. 

The general output of the DC/AC multilevel converter of Figure 6 is given by, 

V
OUT

= S
T1
+3S

T 2
+9S

T 3( )VDC
                                                     (8a) 

V
OUT

= 3n( )
n=0

2

å S
T

*V
DC( )                                                         (8b)                                                      

where ST =e -1,0,1{ } , VDC is the DC voltage and VOUT the DC/AC converter output voltage.  

The DC/AC multilevel converters can generate a close to sinusoidal output voltage, depending 

on the number of signal voltage levels [35-36]. Figure 7(a) shows output voltage of the DC/AC 

multilevel converter of 27-levels (formed by three-cascade H-bridges). This is close to the 

sinusoidal waveform generated by a 312V peak-to-peak voltage with a DC input voltage of 156V. 

Figure 7(b) shows a voltage zoom. 

It is important to mention that, since the power electronic converter internally generates series 

parasite resistances, its output voltage varies with the connection of different types of loads, even 

if the voltage supply remains constant. In the proposed DC/AC multilevel converter, the series 

resistances depend on the filtered elements, the series impedance of the DC voltage supply and 

the conduction and switching losses of the semiconductor devices. For this case, an error of 3% in 

the I2R losses is considered, due to the no load and full load variations, with efficiencies between 

94% and 97% being generated. 

Figure 7 The DSPWM output of 27-levels to single-phase unfiltered H-bridge DC/AC converter. 

a) Total output voltage; b) Voltage zooms 

The multilevel modulation technique functionality generated in the FPGA is verified and 

analyzed for the connection of different load types, i.e. R, RL, RC and RLC.  

Figure 8 Types of loads tested in the DSPWM of 27-levels experimental prototype. a) R load; b) 

RL load; c) RC load; d) RLC or Second order load 



 The Different types of load (ZLOAD) considered as impedances in the experimental prototype 

are shown in Figure 8. Table 9 gives the prototype and hardware data used in the experimental 

implementation. 

In order to analyze the waveforms of the involved electric variables in the DC/AC conversion 

by the multilevel converter, different connection nodes are selected between the 27-levels 

modulation process and the load.  

Figure 9 Electric variables involved in the DC/AC energy conversion process. a) DSPWM pulse 

trains generated by FPGA; b) Voltages formed by the three-cascaded H-bridges; c) Voltage and 

current with R load; d) Voltage and current with RL load; e) Voltage and current with RC load; f) 

Voltage and current with RLC load 

Figure 9 shows the experimental results of the selected connection nodes. In particular, in 

Figure 9(a) the three DSPWM pulse trains: i.e. ST11 (yellow), ST21 (cyan), and ST31 (pink), 

generated by FPGA (corresponding to the first IGBT of each of the three-cascaded H-Bridge) are 

shown. Figure 9(b) illustrates the behavior of VT1 (yellow), VT2 (cyan) and VT3 (pink) voltages 

formed by the H-bridge converters. Please notice the generation of three voltage levels. Besides, 

the changes in topological states are inversely proportional to DC voltage of each H-Bridge 

converter. The response of the total output voltage and the load current (yellow and cyan, 

respectively) for different loads are given in Figures 9(c), 9(d) and 9(e), generated by the R, RL 

and RC loads, respectively.  In these Figures, the converter capacity to work with currents 

between quadrants of resistive, inductive and capacitive loads for different values of magnitude 

and phase, and without altering the operation and process of the output voltage (VOUT) is verified. 

Finally, Figure 9(f) shows the waveforms of a RLC load. It can be observed that the resistive 

element is supplied with a purely sinusoidal voltage waveform (pink), due to the recovery of the 

generated fundamental voltage. The THD of the output voltage is 3.06%. The THD of the output 

current for each load is listed in Table 10. It is important to remark that in practice the resistors 

(Lab-Volt modules) are built of copper wire, and these have a parasite inductance, which slightly 

attenuates the measured THD; hence, it is not possible to obtain a completely resistive effect. 

The Figure 10 shows the experimental prototype developed to apply the DSPWM multilevel 

technique of 27-levels with the FPGA. The main stages of implementation are highlighted in 

rectangles. It shows a RLC load (Figure 10(a)); the pulse trains generated by the FPGA (Figure 

10(b)); a supply 156V DC voltage consisting on three different DC voltage sources, i.e. a DC 

voltage 3 of 12V (Figure 10(c)), a DC voltage 2 of 36V (Figure 10(d)) and a DC voltage 1 of 

108V (Figure 10(e)); a FPGA device (Figure 10(f)); and a DC/AC converter made with three-

cascaded H-bridges (Figure (10g)); generating the AC multilevel output voltage of 27-levels, 

which produces the filtered waveform of Figure 9(f). 

Figure 10 Prototype used to apply the DSPWM multilevel control technique of 27-levels. a) RLC 

load; b) DSPWM pulse trains generated by the FPGA; c) DC source voltage 3 (VDC); d) DC 

source voltage 2 (3VDC); e) DC source voltage 1 (9VDC); f) XC3S500E FPGA device; g) H-bridge 

converters  



V. CONCLUSIONS 

 In this contribution has been proposed a DSPWM multilevel technique of 27-levels using an 

FPGA model XC3S500E to control a DC/AC multilevel converter formed by three-cascaded H-

bridges for the THD reduction in different load types. Its dynamic response with the implemented 

prototype in laboratory has been successfully verified. 

 It has been shown that with the characteristics of an FPGA (parallel data processing, re-

programmability and concurrency) in conjunction with the VHDL language, it is possible the 

generation of n-levels signals in multilevel applications, in merit to its flexibility, versatility and 

simplicity properties without excess of unnecessary software. 

The multilevel modulation technique functionality generated in the FPGA has been verified 

and analyzed with the connection of different actual loads types, such as R, RL, RC y RLC, 

respectively. This allowed attesting the converter capacity to work with currents within quadrants 

of resistive, inductive and capacitive loads for different values of magnitude and phase, without 

altering the operation and process of the output voltage (VOUT).  

 It has been shown that a DSPWM multilevel signal with a high number of levels generates a 

higher quality quasi-sinusoidal output signal, with significantly less switching losses in the power 

converters. This has been tested and verified; i.e. the registered THD with the application of the 

proposed prototype was 3.06%. 
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VII. TABLES 

 

Table 1 Modulation signal storage in ROM 

Type ROM_Array is array (0 to 499)  of std_logic_vector (15 

down to 0); 

Constant Content: ROM_Array := 

(0    => x"1388", 

1    => x"13C0", 

.              . 

.              . 

498      => x"1316", 

499     => x"134F", 

Others     => x"ffff”); 
 

Table 2 Modulation signal at 60Hz. 

Modulation: process(clk, clr)  

 begin 

  if clr = '1' then 

   Modulation_Signal <= (others => '0'); 

  elsif clk'event and clk = '1' then  



   if Modulation_Signal = 1666 

    Modulation_Signal <= (others => '0'); 

   else 

    Modulation_Signal<= Modulation_Signal + 1; 

   end if; 

  end if; 

 end process Modulation;   

 

Table 3 Location selection process in ROM. 

Frequency: process (clr, clk, Modulation_Signal) 

 begin 

  if clr = '1' then 

   period <= (others => '0'); 

  elsif clk'event and clk = '1'  and Modulation_Signal 

= 0 then  

      if Modulation_Signal = 0 then  

           if period = 499 

        period <= (others => '0'); 

        else 

        period <= period + 1; 

        end if; 

      end if; 

     end if; 

end process Frequency; 

 

Table 4 Location value assignment in ROM 

 Assignation: process (Read, period) 

  begin 

  if (reset = ‘1’) then 

      Data_out <= "ZZZZZZZ"; 

  elsif (reset = ‘0’) then 

    if (Read = ‘1’) then 

     Data_out <= Content (conv_integer 

(period)); 

               else 

                       Data_out <= "ZZZZZZ"; 

               end if; 

  end if; 

 end process Assignation; 

 



Table 5 Carrier signal frequency process 

Carrier1: process (clk, clr)  

begin 

  if clr = '1' then 

   Carrier_signal_frequency<= (others => '0'); 

  elsif clk'event and clk = '1' then  

   if Carrier_signal_frecuency = 2999 then   

                     Carrier_signal_frecuency <= (others => '0'); 

   else 

    Carrier_signal_frecuency <= 

Carrier_signal_frecuency  + 1; 

   end if; 

  end if; 

end process Carrier1; 

 

 

Table 6 Carrier signal creation process 

Triangular: process (clr, clk, Carrier_signal_frequency) 

begin 

 if clr = '1' then 

  Carrier<= (others => '0'); 

 elsif clk'event and clk = ‘1’ then  

    if Carrier_signal_frequency < 1500 then 

   Carrier <= Carrier + 1; 

  else 

   Carrier <= Carrier - 1; 

  end if; 

 end if; 

end process Triangular; 

 

 

 

 

 

 

 

 

 

 

 



Table 7 Combination of witches in the DC/AC converter using three-cascaded H-bridges 

Level 

Number 

VDC H-bridge 1 

+VDC = ST11ST13 

H-bridge 2 

0 = ST22ST23 

H-bridge 3 

-VDC = ST32ST34 

 9 3 1 ST11 ST12 ST13 ST14 ST21 ST22 ST23 ST24 ST31 ST32 ST33 ST34 

13 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 

12 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 

11 1 1 -1 1 0 1 0 1 0 1 0 0 1 0 1 

10 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 

9 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 

8 1 0 -1 1 0 1 0 0 1 1 0 0 1 0 1 

7 1 -1 1 1 0 1 0 0 1 0 1 1 0 1 0 

6 1 -1 0 1 0 1 0 0 1 0 1 0 1 1 0 

5 1 -1 -1 1 0 1 0 0 1 0 1 0 1 0 1 

4 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 

3 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 

2 0 1 -1 0 1 1 0 1 0 1 0 0 1 0 1 

1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 

0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 

-1 0 0 -1 0 1 1 0 0 1 1 0 0 1 0 1 

-2 0 -1 1 0 1 1 0 0 1 0 1 1 0 1 0 

-3 0 -1 0 0 1 1 0 0 1 0 1 0 1 1 0 

-4 0 -1 -1 0 1 1 0 0 1 0 1 0 1 0 1 

-5 -1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 

-6 -1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 

-7 -1 1 -1 0 1 0 1 1 0 1 0 0 1 0 1 

-8 -1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 

-9 -1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 

-10 -1 0 -1 0 1 0 1 0 1 1 0 0 1 0 1 

-11 -1 -1 1 0 1 0 1 0 1 0 1 1 0 1 0 

-12 -1 -1 0 0 1 0 1 0 1 0 1 0 1 1 0 

-13 -1 -1 -1 0 1 0 1 0 1 0 1 0 1 0 1 



Table 8. Combinational logic corresponding to each IGBT of cascaded H-bridges. 

Switch 

number 

Corresponding Combinational Logic 

 

ST11 (DSPWM18) 

ST12 NOT (ST11) 

ST13 NOT (DSPWM9) 

ST14 NOT (ST13) 

  

ST21 [(DSPWM24)] OR [(NOT(DSPWM18)) AND (DSPWM15)] OR  

[(DSPWM9) AND (NOT(DSPWM6))] 

ST22 NOT(ST21) 

ST23 [(DSPWM21)] OR [(NOT(DSPWM18)) AND (NOT(DSPWM12))] OR  

[(DSPWM9) AND (NOT(DSPWM3))] 

ST24 NOT(ST23) 

  

ST31 

 

 

[(DSPWM26)] OR [(NOT(DSPWM24)) AND (DSPWM23)] OR  

[(NOT(DSPWM21)) AND (DSPWM20)] OR [(NOT(DSPWM18)) AND (DSPWM17)] 

OR [(NOT(DSPWM15)) AND (DSPWM14)] OR  

[(DSPWM12) AND (NOT(DSPWM11))] OR [(DSPWM9) AND (NOT(DSPWM8))] 

OR [(DSPWM6) AND (NOT(DSPWM5))]  OR [(DSPWM3) AND (NOT(DSPWM2))] 

ST32 NOT(ST31) 

 

ST33 

 

 

[(DSPWM25)] OR [(NOT(DSPWM24)) AND (DSPWM22)] OR  

[(NOT(DSPWM21)) AND (DSPWM19)] OR [(NOT(DSPWM18)) AND (DSPWM16)] 

OR [(NOT(DSPWM15)) AND (NOT(DSPWM13))] OR  

[(DSPWM12) AND (NOT(DSPWM10))] OR [(DSPWM9) AND (NOT(DSPWM7))] 

OR [(DSPWM6) AND (NOT(DSPWM4))] OR [(DSPWM3) AND (NOT(DSPWM1))] 

ST34 NOT(ST33) 

 

Table 9 Prototype and hardware values. 

Converter power 400W 

VOUT 110VRMS 

THD (VOUT) 3.06% 

DC 

Voltage 

Sources 

VDC1 12v 

VDC2 36v 

VDC3 108v 

 

Types of 

Load 

R 20 

RL R=20ȍ XL=20ȍ 

RC R=20ȍ XC=20ȍ 

RLC R=30ȍ XL=12.3ȍ 
XC=240ȍ 

IGBT G4PC40UD-E 

FPGA XC3S500E model 



Table 10 THD of current in different loads 

Load Types Current THD (%) 

R 3.06 

RL 0.59 

RC 4.27 

Second order or RLC 0.63 
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