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A fully nonlinear solution for bi-chromatic progressive waves in water of finite

depth in the framework of the homotopy analysis method (HAM) is derived. The

bi-chromatic wave field is assumed to be obtained by the nonlinear interaction of two

monochromatic wave trains that propagate independently in the same direction before

encountering. The equations for the mass, momentum, and energy fluxes based on the

accurate high-order homotopy series solutions are obtained using a discrete integra-

tion and a Fourier series-based fitting. The conservation equations for the mean rates

of the mass, momentum, and energy fluxes before and after the interaction of the

two nonlinear monochromatic wave trains are proposed to establish the relationship

between the steady-state bi-chromatic wave field and the two nonlinear monochro-

matic wave trains. The parametric analysis on ε1 and ε2, representing the nonlinearity

of the bi-chromatic wave field, is performed to obtain a sufficiently small standard

deviation Sd, which is applied to describe the deviation from the conservation state

(Sd = 0) in terms of the mean rates of the mass, momentum, and energy fluxes before

and after the interaction. It is demonstrated that very small standard deviation from

the conservation state can be achieved. After the interaction, the amplitude of the

primary wave with a lower circular frequency is found to decrease; while the one

with a higher circular frequency is found to increase. Moreover, the highest horizontal

velocity of the water particles underneath the largest wave crest, which is obtained

by the nonlinear interaction between the two monochromatic waves, is found to be

significantly higher than the linear superposition value of the corresponding velocity

of the two monochromatic waves. The present study is helpful to enrich and deepen

the understanding with insight to steady-state wave-wave interactions. Published by

AIP Publishing. [http://dx.doi.org/10.1063/1.4971252]

I. INTRODUCTION

Ocean surface waves are irregular and intuitively viewed as a superposition of many mono-

chromatic wave components of different frequencies and amplitudes. Nonlinear interactions among

these wave components are very important to resultant wave properties. During the past several

decades, a considerable number of studies have been carried out to analyze nonlinear wave interac-

tion theories. Phillips1 and Longuet-Higgins2 initially revealed the resonant phenomenon obtained

from nonlinear interactions between two or three wave trains. It was pointed out that, under specific

conditions, conspicuous energy transfer occurs from primary waves to a tertiary wave, produced via
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the third-order interaction. Pierson3 derived an oscillatory third-order perturbation solution for two

and three collinear interacting Stokes waves in deep water. However, Madsen and Fuhrman8 pointed

out that the dispersion relation obtained by Pierson3 was not based on consistent perturbation prin-

ciples and thus is incorrect, and they further presented a new third-order solution for bi-chromatic

bi-directional water waves in finite depth, extending the second-order in finite depth and third-order

in infinite depth theories of steady bi-chromatic waves. Their solution includes explicit expressions

for the surface elevation, the amplitude dispersion, and the velocity potential. Dalzell4 employed

symbolic computation to extend the second-order wave-wave interaction theory from deep water to

finite water depth. Ohyama et al.5 obtained a fourth-order solution for nonlinear interactions among

multiple directional wave trains by using a Stokes-type expansion method. It was indicated that

the third- and fourth-order components may produce isolated large crests in random wave fields.

Chen and Zhang6 studied the interaction between a unidirectional deep-water short-wave train

and an intermediate water-depth long wave using a conventional perturbation method and a phase

modulation method, respectively. It was revealed that the modulation of the short-wave intrinsic

frequency and potential amplitude along the long-wave surface becomes significant as water depth

decreases, together with the increasing modulation of the short-wave phase, amplitude, and wave

number. Zhang and Chen7 further derived a general third-order analytical solution for the strong

interactions among three collinear free-wave components using a perturbation method, and this

solution is regarded as the kernel of third-order collinear irregular wave theory.

Most of the aforementioned studies are based on the perturbation technique due to its solid

mathematical foundation on the basis of the asymptotic expansion with respect to some small

parameters. As the nonlinearity increases, in order to obtain accurate results, higher-order solu-

tions are required. However, the derivation of the higher-order perturbation solution for nonlinear

wave-wave interaction problems can be lengthy and very complex.

Jang and Kwon9 proposed a fixed point approach to calculate nonlinear monochromatic wave

profiles and later Jang et al.10 apply to evaluate the nonlinear wave profiles of wave-wave interac-

tions in a finite water depth. It is worth noting that the results by Jang et al.10 do not satisfy the exact

kinematic and dynamic free surface boundary conditions and thus fail to capture strongly nonlinear

features. To evaluate the strongly nonlinear characteristics of wave-wave interaction, Lin et al.11

investigated fully nonlinear bi-chromatic unidirectional waves propagating in deep water using the

so-called homotopy analysis method (HAM). The particular advantage of HAM is that it is inde-

pendent of small parameters and suitable to solve strongly nonlinear problems. Other advantages

associated with HAM include a greater flexibility in the selection of a proper set of base functions

for the solution and a simple way in the control of the convergence rate and region of solution

series.12

HAM was first applied to monochromatic, progressive waves in deep water by Liao and Che-

ung.13 Later, Tao et al.14 successfully extended Liao and Cheung13 to waters of finite depth. More

recently, Liao15 proposed a multiple-variable technique to investigate steady-state resonant progres-

sive waves in deep water in the framework of HAM. It is demonstrated that there exist multiple

resonant waves, and that the amplitudes of resonant wave may be much smaller than those of pri-

mary waves thus the resonant waves sometimes contain fairly small part of wave energy. Xu et al.16

further confirmed the existence of steady-state resonant progressive waves in finite water depth by

means of HAM and obtained qualitatively identical conclusion using the Zakharov equation. Liu and

Liao17 extended the existing results of Liao15 and Xu et al.16 on steady-state resonance from a single

special quartet to more general and coupled resonant quartets, as well as a resonant sextet. The afore-

mentioned studies on steady-state wave resonance are based on the assumption that all of the wave

amplitudes, wave numbers, and wave frequencies are independent of time in the wave system. To date,

however, whether or not HAM can be applied to address the unsteady-state wave resonance involv-

ing complicated issues, which can account for the wave instability phenomena18 (e.g., modulational

instability, also known as Benjamin-Feir instability), deserves further investigation.

Most of the aforementioned studies were focused on the resultant wave field produced by

the interaction between two or multiple progressive wave components. The relationship between

the resultant wave field and the monochromatic progressive waves before the interaction has not

yet been discussed. Neglecting viscous dissipation, Baddour and Song19,20 introduced conservation
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equations for the mean rates of the mass, momentum, and energy fluxes before and after the inter-

action between collinear current-free monochromatic waves and a wave-free current based on a

perturbation method. Zaman and Baddour21 further extended the work by Baddour and Song19,20

to a three-dimensional flow frame. However, the interaction of two nonlinear monochromatic

progressive wave components which propagate independently before encountering, in terms of the

conservation equations for the mass, momentum, and energy fluxes, has not been considered. In

this paper, by including constant water depth in the solution procedure, the present study extends

the work of Lin et al.11 from infinite water depth to finite water depth. Furthermore, based on

the assumption that the steady-state bi-chromatic wave system can be obtained by the interaction

of two nonlinear monochromatic progressive wave trains which propagate independently in the

same direction before encountering, the present study aims to establish the relationship between the

steady bi-chromatic wave field and the two nonlinear monochromatic progressive wave trains, in

terms of the conservation equations for the mean rates of the mass, momentum, and energy fluxes

before and after the interaction, respectively.

The present paper is organized as follows. The mathematical description of the bi-chromatic

wave field is given in Sec. II following the Introduction. The definitions of the equations for the

mass, momentum, and energy fluxes are introduced in Sec. III. The conservation equations for the

wave-wave interaction are presented in Sec. IV. The detailed results on the parametric analysis

for the standard deviation from the conservation state (Sd = 0), as well as the characteristics of

the bi-chromatic wave field with sufficiently small values for Sd, which is defined to describe the

deviation from the conservation state before and after interaction, are discussed in Sec. V. Finally,

conclusions are given, with the detailed solution procedure based on HAM in the Appendix.

II. MATHEMATICAL DESCRIPTION OF THE BI-CHROMATIC WAVE FIELD

A. Basic equations

Fig. 1 shows the definition sketch for a steady-state bi-chromatic wave field which is assumed

to be produced by the interaction of two nonlinear, monochromatic, progressive wave components

that propagate independently in the same direction before interacting. A Cartesian coordinate sys-

tem (x, z) is adopted where the x-axis is positive in the direction of wave propagation, and the

z-axis is positive vertically upwards from the still water level as shown in Fig. 1. It is assumed that

the nonlinear monochromatic wave train with a higher phase velocity will catch up to and interact

thoroughly with the one with a lower phase velocity, yielding the steady-state bi-chromatic wave

FIG. 1. Definition sketch for a steady-state bi-chromatic wave field.
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field. For the bi-chromatic wave field, the fluid considered is inviscid and incompressible, and the

flow is assumed to be irrotational. The quantities ϕ (x, z, t) and ζ (x, t) are defined as the velocity

potential and the wave elevation, respectively. The fluid motion described by the velocity potential ϕ

is governed by the Laplace equation,

∇
2ϕ (x, z, t) = 0, −∞ < x < +∞, −d < z < ζ (x, t) , (1)

and subject to two nonlinear free surface conditions,

∂ζ

∂t
+
∂ϕ

∂x

∂ζ

∂x
−
∂ϕ

∂z
= 0, z = ζ (x, t) , (2)

gζ +
1

2
(∇ϕ) · (∇ϕ) +

∂ϕ

∂t
= 0, z = ζ (x, t) , (3)

and the following condition at the bottom:

∂ϕ

∂z
= 0, z = −d, (4)

where ∇ = (∂/∂x, ∂/∂z), t denotes time, g is the gravitational acceleration, and d is the water

depth. Since gravity capillary waves caused by surface tension are quite small compared to their

wavelengths, the effect of surface tension is neglected.

Combining Eqs. (2) and (3), the free surface boundary condition becomes

∂2ϕ

∂t2
+ g

∂ϕ

∂z
+
∂ [(∇ϕ) · (∇ϕ)]

∂t
+

1

2
(∇ϕ) · ∇ [(∇ϕ) · (∇ϕ)] = 0, z = ζ (x, t) . (5)

B. Multiple-variable transformation

The frequencies and wave numbers of the primary waves of the bi-chromatic wave field are

defined by ωi and ki (i = 1, 2), respectively. It is convenient to define the phase functions,

θ1 = k1x − ω1t +Φ1, (6)

θ2 = k2x − ω2t +Φ2, (7)

whereΦi (i = 1, 2) denotes an arbitrary, constant phase for zero time at the origin of the x − z coor-

dinate system. Whilst k1ω2 , k2ω1, the above two variables can be applied to replace the variables

x and t, and then the time t will not appear explicitly for a steady-state wave system. Thus, the

potential function and wave elevation for the steady-state bi-chromatic wave field can be expressed

as ϕ(x, z, t) = φ(θ1, θ2, z) and ζ (x, t) = η(θ1, θ2), respectively. With these definitions, the governing

equation becomes

∇̂
2φ = k2

1

∂2φ

∂θ2
1

+ 2k1k2

∂2φ

∂θ1∂θ2

+ k2
2

∂2φ

∂θ2
2

+
∂2φ

∂z2
= 0, −d < z < η(θ1, θ2), (8)

which is subject to the bottom boundary condition,

∂φ

∂z
= 0, z = −d, (9)

and the nonlinear free surface conditions,

η =
1

g
(ω1

∂φ

∂θ1

+ ω2

∂φ

∂θ2

− f ), z = η(θ1, θ2), (10)

ω2
1

∂2φ

∂θ2
1

+ 2ω1ω2

∂2φ

∂θ1∂θ2

+ ω2
2

∂2φ

∂θ2
2

+ g
∂φ

∂z

− 2(ω1

∂ f

∂θ1

+ ω2

∂ f

∂θ2

) + ∇̂φ · ∇̂ f = 0, z = η(θ1, θ2),

(11)
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where

f =
1

2


k2

1(
∂φ

∂θ1

)2 + 2k1k2

∂φ

∂θ1

∂φ

∂θ2

+ k2
2(
∂φ

∂θ2

)2 + (
∂φ

∂z
)2


(12)

and ∇̂ = (k1∂/∂θ1 + k2∂/∂θ2, ∂/∂z) . (13)

Due to the nonlinear interaction, the wave elevation should be in the form

η(θ1, θ2) =

+∞


m=0

+∞


n=−∞

am,n cos(mθ1 + nθ2), (14)

and the corresponding potential function should be in the form

φ(θ1, θ2, z) =

+∞


m=0

+∞


n=−∞

bm,nΨm,n(θ1, θ2, z), (15)

where

Ψm,n(θ1, θ2, z) = sin(mθ1 + nθ2)
cosh [|mk1 + nk2| (z + d)]

cosh [|mk1 + nk2| d]
, (16)

and am,n, bm,n are constants to be determined. It should be noted that (15) automatically satisfies the

governing Eq. (8) and the bottom boundary condition (9).

C. Solution procedures

As a first step to consider the nonlinear effects on the steady-state bi-chromatic waves in finite

water depth, it is assumed that the nonlinear dispersion relation in the wave system can be described

as ωi = εi


gki tanh(kid) (i = 1,2), where εi is a parameter slightly larger than 1, representing the

nonlinearity of the wave system. As long as εi, ωi, and d are given, ki can be easily obtained by the

nonlinear dispersion relation. Once ωi, ki, and d are known, it is not difficult to obtain am,n and bm,n

by HAM.

Lin et al.11 successfully applied HAM to obtain a high-order series solution for deep-water

bi-chromatic progressive waves. The effectiveness of HAM for wave-wave interaction was validated

by Lin et al.11 by comparing the HAM solutions for the wave profile and water particle velocity with

those obtained based on the perturbation technique. For the sake of simplicity, a brief description

of the solution procedure in the framework of HAM is provided in the Appendix. It is worth noting

that the HAM solution procedure for each nonlinear monochromatic wave train is similar to that for

the bi-chromatic waves, and the detailed HAM solution procedure for monochromatic, progressive

waves can also be found in the works of Liao and Cheung13 and Tao et al.14

D. Validation of the analytical model

The present series solution for bi-chromatic progressive waves in finite water depth is validated

by comparison to experimental data of Ma et al.22 Table I shows the parameters of the bi-chromatic

wave cases in the experiments of Ma et al.22 and corresponding results obtained by HAM. As shown

in Table I, for the identical frequencies ( f1 and f2) of primary waves of each case (cases 1-4) in the

TABLE I. Parameters of bi-chromatic waves (d = 0.5 m).

Experimental (Ma

et al.22) and HAM

Experimental (Ma

et al.22) HAM

Case f1 (Hz) f2 (Hz) a1 (m) a2 (m) a1,0 (m) a0,1 (m) ET
m (m = 10)

1 0.9 1.1 0.0185 0.0205 0.018 541 0.020 487 1.15 × 10−8

2 0.875 1.125 0.0185 0.0205 0.018 526 0.021 357 1.31 × 10−7

3 0.85 1.15 0.0185 0.0205 0.018 452 0.021 344 3.64 × 10−6

4 0.825 1.175 0.0185 0.0205 0.018 555 0.026 647 1.30 × 10−4
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experiments and HAM solutions, the amplitudes of primary waves (a1,0 and a0,1) obtained by HAM

have slight differences with those (a1 and a2) in the experiments, respectively. This is attributed

to the nonlinear characteristics of the HAM solution. Moreover, the total averaged residual square

error (ET
m) of cases 1-4 returns a fairly small value, which reaches at least the order of magnitude

of 10−4. This indicates that the HAM solution for cases 1-4 possesses higher accuracy. Fig. 2 shows

FIG. 2. Comparisons of time series of wave elevation between the HAM solutions, the experimental data, and corresponding

linear superposition results.
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TABLE II. Parameters for the study of nonlinear amplitude dispersion (k1d = 2, k2d = 2.86).

3rd-order perturbation

(Madsen and Fuhrman8) HAM

Case a1,0 (m) a0,1 (m) ω1/ω̄1 ω2/ω̄2 ω1/ω̄1 ω2/ω̄2 ET
m (m = 10)

A1 0.052 989 0.146 54 1.001 1.001 01 1.001 1.001 1.42 × 10−7

A2 0.077 38 0.205 276 1.001 98 1.002 01 1.002 1.002 2.08 × 10−7

A3 0.115 589 0.284 759 1.003 84 1.003 94 1.004 1.004 2.14 × 10−7

A4 0.147 87 0.341 88 1.005 59 1.005 79 1.006 1.006 1.86 × 10−7

A5 0.176 573 0.386 578 1.007 22 1.007 55 1.008 1.008 8.32 × 10−7

A6 0.202 365 0.422 56 1.008 71 1.009 18 1.01 1.01 8.36 × 10−7

A7 0.224 841 0.451 334 1.010 02 1.010 64 1.012 1.012 6.09 × 10−7

A8 0.244 576 0.473 958 1.011 14 1.011 91 1.014 1.014 8.22 × 10−7

A9 0.261 417 0.490 857 1.012 04 1.012 96 1.016 1.016 9.12 × 10−6

A10 0.275 165 0.502 195 1.012 69 1.013 75 1.018 1.018 7.25 × 10−5

the time series of wave elevation for cases 1-4 by the HAM solution, together with the experimental

data by Ma et al.22 and corresponding linear superposition results. It can be clearly seen in Fig. 2

that, in comparison to the linear superposition results, the HAM solution demonstrates a much

better agreement with the experimental data. This further verifies the effectiveness of the present

series solution.

Lin et al.11 compared the nonlinear amplitude dispersion for bi-chromatic unidirectional waves

in deep water obtained by HAM to the 3rd-order perturbation results by Madsen and Fuhrman.8 It is

demonstrated that, for the bi-chromatic waves with identical amplitude (a1,0 = a0,1) of the two primary

wave components and different wave numbers (k1, k2) = (0.3,0.4), the HAM solutions agree well

with the perturbation results when k1a1,0 < 0.045 (or k2a0,1 < 0.06) and exhibit a relatively evident

misalignment with the perturbation results when k1a1,0 > 0.045. In this paper, to further validate

the effectiveness of the present series solution, the nonlinear amplitude dispersions for interacting

bi-chromatic unidirectional waves in finite water depth by HAM are compared to those by Mad-

sen and Fuhrman.8 Table II shows the parameters for the study of nonlinear amplitude dispersion.

FIG. 3. Comparison of nonlinear amplitude dispersion between HAM solutions and perturbation results by Madsen and

Fuhrman.8
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FIG. 4. The total averaged residual square error ET
m versus m with c0=−1 in case A10.

The wave numbers of each case of Table II in the HAM solution and the perturbation solution are

(k1, k2) = (0.2,0.285 714). The amplitudes of primary waves (a1,0 and a0,1) of each case in the HAM

solution and the perturbation solution are increasing gradually from cases A1 to A10, respectively,

indicating the increasing nonlinearity of the bi-chromatic wave system. It is noted that the relative

FIG. 5. The comparison of the discrete integral value points and fitted function curved surfaces for: (a) mass flux; (b)

momentum flux; (c) energy flux (Filled circle: the discrete integrations; curved surface: the fitted functions) of the case BW

with ε1= ε2= 1.008.
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water depths of the two primary wave components are k1d = 2 and k2d = 2.86, respectively, corre-

sponding to intermediate water depth conditions. As shown in Table II, the values for the relative

nonlinear frequenciesω1/ω̄1 andω2/ω̄2 obtained by HAM agree well with the 3rd-order perturbation

results from cases A1 to A5 and have relatively large discrepancies from cases A6 to A10.

To clearly see the tendency of the nonlinear amplitude dispersion, ω1/ω̄1 and ω2/ω̄2 are plotted

against a1,0 and a0,1 in Fig. 3, respectively. It can be evidently seen that the present HAM solution

appears to be different with the perturbation results starting from case A6 (a1,0 = 0.202 365, a0,1 =

0.422 56). The total averaged residual square error for cases A6-A10 reaches at least the order

of magnitude of 10−5, indicating that the present HAM solutions are highly accurate. To further

demonstrate the convergence of the HAM solution, Fig. 4 shows the total averaged residual square

error ET
m versus m with c0 = −1 in case A10. It can be seen that even for this rather strongly

nonlinear case (A10), ET
m decreases gradually to the order of magnitude of 10−6 as m increases from

1 to 20, a clear indication of convergence of the HAM solution for this case.

III. DEFINITION OF MASS, MOMENTUM, AND ENERGY FLUX EQUATIONS

Similar to the flux equations in Whitham,23 the mean rates of the mass, momentum, and energy

fluxes across a vertical section fixed in the bi-chromatic wave field, denoted by QBW, MBW, and EBW

respectively, can be written as

QBW =
1

4π2

 2π

0

 2π

0

 η

−d

ρφx dz dθ1 dθ2, (17)

MBW =
1

4π2

 2π

0

 2π

0

 η

−d

(P + ρφ2
x)dz dθ1 dθ2, (18)

EBW =
1

4π2

 2π

0

 2π

0

 η

−d


P +

ρ

2
(φ2

x + φ2
z) + ρgz


φx dz dθ1 dθ2, (19)

where ρ denotes density of water, and P is the total pressure which can be determined by the

Bernoulli equation for the wave field as

P

ρ
= −

∂φ

∂t
−

1

2
(∇φ)2 − gz. (20)

Different from the method for computing the integral quantities of the mass, momentum, and energy

fluxes by means of low-order perturbation approximations by Whitham,23 Baddour and Song,19,20

and Zaman and Baddour,21 the accurate high-order homotopy series solutions for the pressure,

water particle velocity, and free surface elevation are employed to calculate the corresponding

integrations for the present bi-chromatic wave cases, i.e., QBW, MBW, and EBW. Due to the complex

integrands and integral upper limit incorporating the variables x and t, it is difficult to obtain these

integral quantities by direct integrating. Thus, the phase function θi = kix − ωit (i = 1,2) is applied

TABLE III. The coefficients for the fitted function FQ(θ1, θ2) for the mass flux of the case BW with ε1= ε2= 1.008.

h

fh,l 0 1 2 3 4

l

−4 0.000 397 0.003 814 22 0.013 113 0.023 070 7 −0.001 254 84

−3 0.002 415 0.026 093 6 0.067 459 9 −0.001 094 71 −0.000 143 365

−2 0.021 295 0.231 307 −0.001 603 49 0.007 634 81 0.001 003 12

−1 0.349 504 −0.003 206 19 0.085 125 9 0.003 938 92 0.000 593 725

0 0.043 827 6 0.568 39 0.018 224 8 0.001 275 07 0.000 381 219

1 0.349 504 0.040 096 8 0.002 884 94 0.000 442 871 0.000 326 527

2 0.021 295 0.004 546 9 0.000 559 225 0.000 288 311 0.000 386 793

3 0.002 415 0.000 731 839 0.000 245 947 0.000 423 822 0.000 788 489

4 0.000 397 0.000 257 311 0.000 498 968 0.001 370 73 0.002 498 53
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TABLE IV. The coefficients for the fitted function FM(θ1, θ2) for the momentum flux of the case BW with ε1= ε2= 1.008.

h

fh,l 0 1 2 3 4

l

−4 0.001 678 0.016 103 2 0.053 556 8 0.084 996 3 −0.002 859 66

−3 0.010 824 0.112 297 0.261 621 −0.002 239 16 −0.005 240 12

−2 0.096 077 0.956 645 −0.003 222 21 0.057 724 7 0.004 517 14

−1 1.569 255 −0.006 635 98 0.502 256 0.021 940 7 0.002 130 71

0 1960.1 2.853 07 0.092 251 1 0.006 373 14 0.000 879 331

1 1.569 255 0.189 722 0.013 907 4 0.002 046 07 0.000 588 102

2 0.096 077 0.021 245 8 0.002 610 23 0.001 319 89 0.000 979 566

3 0.010 824 0.032 785 7 0.001 158 36 0.002 060 73 0.002 933 29

4 0.001 678 0.001 154 17 0.002 310 43 0.006 152 09 0.010 023 1

to instead of x and t in the integrands and integral upper limit to carry out the discrete integration as

illustrated below. Then, the obtained discrete integral data points are fitted using the double Fourier

series. The functions obtained by fitting can be deemed as the corresponding integral expressions

for the mass, momentum, and energy fluxes, respectively. The discrete integration can be described

as

QDBW
i, j =

 ηi, j

−d

ρφx(θ1, θ2, z)|θ1=i∆θ1,θ2= j∆θ2
dz, (21)

MDBW
i, j =

 ηi, j

−d

[P(θ1, θ2, z) + ρφ2
x(θ1, θ2, z)]

�
θ1=i∆θ1,θ2= j∆θ2

dz, (22)

EDBW
i, j =

 ηi, j

−d



P(θ1, θ2, z) +
ρ

2
[φx

2(θ1, θ2, z) + φz
2(θ1, θ2, z)] + ρgz



φx

× (θ1, θ2, z)
����θ1=i∆θ1,θ2= j∆θ2

dz, (23)

where ηi, j = η(θ1, θ2)
�
θ1=i∆θ1,θ2= j∆θ2

, i = 0,1, . . . , I, j = 0,1, . . . , J, I and J are the numbers of the

discrete points, ∆θ1 = 4π/I and ∆θ2 = 4π/J. In the present work, the discrete integrations are calcu-

lated with I = J = 20 to obtain sufficient integral data points for the subsequent fitting. It is worth

noting that all the integral quantity expressions for each nonlinear monochromatic wave field based

on the HAM solution are similar to those for the bi-chromatic wave field.

To illustrate the calculation and fitting procedure for the discrete integration, consider the

bi-chromatic wave case with ε1 = ε2 = 1.008. As shown in Figs. 5(a)–5(c), the filled circles repre-

senting the integral values are obtained by using the above discrete integration. The double Fourier

series F(θ1, θ2) =
N


h=0

N


l=−N

fh,l cos(hθ1 + lθ2) is employed to fit the discrete integral data points to

TABLE V. The coefficients for the fitted function FE(θ1, θ2) for the energy flux of the case BW with ε1= ε2= 1.008.

h

fh,l 0 1 2 3 4

l

−4 0.005 637 0.047 375 9 0.115 674 0.031 751 2 0.031 869

−3 0.032 586 0.247 497 0.067 681 6 0.094 859 1 0.009 476 49

−2 0.218 464 0.125 411 0.276 86 0.029 396 3 0.010 873 3

−1 0.087 544 0.682 447 0.077 110 8 0.056 714 9 0.006 188 63

0 0.477 811 0.150 311 0.230 699 0.019 821 4 0.002 410 05

1 0.087 544 0.450 797 0.044 313 7 0.006 068 73 0.001 389 97

2 0.218 464 0.065 846 4 0.008 976 34 0.003 447 2 0.002 519 18

3 0.032 586 0.011 207 6 0.003 794 49 0.005 575 12 0.007 649 64

4 0.005 637 0.003 972 14 0.007 319 52 0.016 681 0.019 547 6
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TABLE VI. The monochromatic wave parameters (d = 20 m).

Case ε

Circular frequency

(rad/s)

Wave number

(rad/m)

Wavelength

(m)

Phase velocity

(m/s)

Amplitude of primary

waves (m)

W1 1.002 1.983 86 0.4 15.708 4.96 0.157 823

W2 1.002 2.218 02 0.5 12.5664 4.44 0.126 214

obtain the continuous functions for the mass, momentum, and energy fluxes, which are represented

by FQ(θ1, θ2), FM(θ1, θ2), and FE(θ1, θ2), respectively. Taking N = 4, the Fourier coefficients fh,l
for the fitted functions for the mass, momentum, and energy fluxes of the bi-chromatic wave case

with ε1 = ε2 = 1.008 were obtained, and shown in Tables III–V, respectively. As clearly shown in

Figs. 5(a)–5(c), the curves for the fitted functions agree well with the discrete integral value points,

indicating that the corresponding integral quantities can be represented by the fitted functions based

on the double Fourier series. Thus, the mean rates of the mass, momentum, and energy fluxes across

a vertical section fixed in the bi-chromatic wave field can be obtained as

QBW
F =

1

4π2

 2π

0

 2π

0

FQ(θ1, θ2)dθ1dθ2, (24)

MBW
F =

1

4π2

 2π

0

 2π

0

FM(θ1, θ2)dθ1dθ2, (25)

EBW
F =

1

4π2

 2π

0

 2π

0

FE(θ1, θ2)dθ1dθ2. (26)

IV. CONSERVATION EQUATIONS

Baddour and Song19,20 proposed the conservation equations based on linear and the second-

order perturbation solutions in terms of the mean rates of the mass, momentum, and energy fluxes

of a 2D current-free wave field, a wave-free uniform current field, and a coexisting wave-current

field. In their work, the wavelength, wave height, current velocity, and water depth in the combined

wave-current field were obtained based on the conservation equations for the mean rates of the

mass, momentum, and energy fluxes. Zaman and Baddour21 further extended the work of Baddour

and Song19,20 to a 3D wave-current field in the framework of linear wave theory.

Without loss of generality, consider two 2D, weakly nonlinear, monochromatic wave trains

propagating independently in the same direction before encountering. Table VI presents the param-

eters of the two nonlinear monochromatic wave trains, i.e., cases W1 and W2, respectively, where

ε = ωi/



g k̄i tanh(k̄id); ωi and k̄i (i = 1,2) are the circular frequency and wave number of the cor-

responding monochromatic waves, respectively, as shown in Fig. 1. It is worth noting that the two

FIG. 6. Wave profile comparison for cases W1 and W2.
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FIG. 7. The comparison of the discrete integral value points and fitted function curves for (a) and (d): mass flux; (b) and (e):

momentum flux; (c) and (f): energy flux of cases W1 and W2.

monochromatic wave cases in the paper are indeed weakly nonlinear. This is due to the assumption

that the bi-chromatic wave system is obtained by the nonlinear interaction of the two monochro-

matic wave trains with wave frequencies and water depth unchanged. However, the interaction

of these two weakly nonlinear monochromatic wave cases leads to a sufficiently strong nonlinear

bi-chromatic wave system at a higher conservation level of mass, momentum, and energy fluxes,

as discussed in the following. In fact, Liao and Cheung13 and Tao et al.14 presented accurate HAM

solutions for strongly nonlinear, monochromatic progressive waves in deep and finite water depth,

respectively, in which the maximum wave steepness (H/L) is close to the limiting wave steepness
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TABLE VII. The mean rates of the mass, momentum, and energy fluxes of

cases W1 and W2.

Case Mass flux (kg/s)

Momentum

flux (kg m/s2)

Energy

flux (kg m2/s3)

W1 0.024 682 9 × 103 1960.06 × 103 0.304 792 × 103

W2 0.017 649 1 × 103 1960.04 × 103 0.174 348 × 103

(0.142 tanh kd). All the HAM solutions for cases W1 and W2 are obtained with a total averaged

residual error at least 10−6, which is defined in the Appendix and used to describe the accuracy of

the homotopy series solution. Fig. 6 shows the wave profiles for cases W1 and W2 at t = 0. Fig. 7

shows the comparison of the discrete integral value points and the fitted function curves for the

mass, momentum, and energy fluxes for cases W1 and W2, respectively. It is clearly seen that the

curves for the fitted functions agree well with the corresponding discrete integral value points. By

means of the obtained fitted functions, the mean rates of the mass, momentum, and energy fluxes

across a fixed section, which are denoted by QW1
F

, MW1
F

, and EW1
F

for case W1 and by QW2
F

, MW2
F

,

and EW2
F

for case W2, respectively, are calculated and presented in Table VII. The conservation

equations for wave-wave interaction can be summarized as

QW1
F +QW2

F = QBW
F , (27)

MW1
F + MW2

F = MBW
F , (28)

EW1
F + EW2

F = EBW
F . (29)

It is noted that the approximate solutions for the conservation equations of the mass, mo-

mentum, and energy fluxes were obtained by Baddour and Song19,20 based on the low-order

perturbation solutions for the current-free wave field and combined wave-current field. Due to

the nonlinear feature of the interaction process, it is difficult to obtain the exact solutions for the

bi-chromatic wave field, which is obtained via the interaction of the two nonlinear monochro-

matic wave trains, by solving the conservation Eqs. (27)–(29). Thus, in this study, the standard

deviation

Sd =



(rQ − 1)2 + (rM − 1)2 + (rE − 1)2

3
(30)

is defined to illustrate the deviation from the conservation state (Sd = 0) of the mean rates of the

mass, momentum, and energy fluxes before and after the interaction of the two nonlinear monochro-

matic wave trains, where

rQ =
QBW

F

QW1
F
+QW2

F

, rM =
MBW

F

MW1
F
+ MW2

F

, rE =
EBW
F

EW1
F
+ EW2

F

. (31)

Using the standard deviation Sd, it is not difficult to obtain a state evaluating the deviation from the

conservation state after the interaction of the two monochromatic wave trains.

V. RESULTS AND DISCUSSION

A. Analyses based on ε1 = ε2

It is assumed that the nonlinear monochromatic wave case W1 with a higher phase velocity

(4.96 m/s) will catch up to the case W2 with a lower phase velocity (4.44 m/s) and interact thor-

oughly, which results in the formation of a steady-state bi-chromatic wave field. The frequencies of

the primary waves and water depth are assumed to be invariant before and after the interaction. As

abovementioned, it is quite difficult to obtain the exact solutions for the conservation equations due

to the nonlinear feature. The practice of this paper is to search the solutions for the conservation

equations, which are applied to assess the deviation Sd from the conservation state (Sd = 0). First,
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TABLE VIII. The bi-chromatic wave parameters in the case of ε1= ε2 (d = 20 m).

ε1 ε2 ω1 (rad/s) ω2 (rad/s) Sd L1 (m) L2 (m) a1,0 (m) a0,1 (m)

1.001 1.001 1.983 86 2.218 02 0.682 15.6766 12.5413 0.048 790 1 0.066 015 9

1.002 1.002 1.983 86 2.218 02 0.555 15.7079 12.5664 0.067 862 3 0.091 826 2

1.003 1.003 1.983 86 2.218 02 0.436 15.7393 12.5915 0.081 416 2 0.110 22

1.004 1.004 1.983 86 2.218 02 0.327 15.7707 12.6166 0.091 717 5 0.124 255

1.005 1.005 1.983 86 2.218 02 0.229 15.8021 12.6417 0.099 640 3 0.135 117

1.006 1.006 1.983 86 2.218 02 0.140 15.8336 12.6669 0.105 687 0.143 485

1.007 1.007 1.983 86 2.218 02 0.061 15.8651 12.6921 0.110 286 0.149 906

1.008 1.008 1.983 86 2.218 02 0.013 15.8966 12.7173 0.113 925 0.154 952

1.009 1.009 1.983 86 2.218 02 0.082 15.9282 12.7426 0.117 177 0.159 348

1.01 1.01 1.983 86 2.218 02 0.157 15.9598 12.7679 0.120 801 0.164 024

a set of ε1(=ε2) for the bi-chromatic wave field is utilized to investigate the deviation from the

conservation state by means of the standard deviation Sd. Table VIII shows the bi-chromatic wave

parameters for the conservation study. For the bi-chromatic wave field, for simplicity, it is easy

to assume that ε1 = ε2 with the same value (1.002) as that of the nonlinear monochromatic wave

fields. As shown in Table VIII, for ε1 = ε2 = 1.002, Sd = 0.555 can be obtained based on the HAM

solutions. However, for ε1 = ε2 = 1.001, Sd tends to approach a much higher value (0.682). This

indicates that a smaller value for ε1(=ε2) leads to a larger discrepancy between the mean rates of the

mass, momentum, and energy fluxes before and after the interaction. For ε1(=ε2) from 1.003 to 1.01

with an increment of 0.001, Sd approaches a relatively smaller value (0.013) at ε1 = ε2 = 1.008,

indicating that the case (ε1 = ε2 = 1.008) is much closer to the conservation state of the mass,

momentum, and energy fluxes than other cases in Table VIII.

Fig. 8 shows the wave profile comparison for the cases BW with ε1 = ε2 = 1.006, 1.008, and

1.01 at t = 0. It can be clearly seen that the largest wave crest at x = 0 becomes higher and higher

as ε1(=ε2) increases, whilst the largest wave trough next to x = 0 becomes lower and lower. This

means that the largest wave height in the wave profile tends to increase notably as ε1 increases,

although the increment in ε1 is very small. However, the profiles of the wave crest and trough

around x = 30 m appear to be invariant.

To investigate the frequency content of the bi-chromatic wave system, the time series of the

wave elevation obtained from the HAM solutions are analyzed by FFT. Figs. 9(a)–9(c) show

the amplitude spectra of the bi-chromatic wave system with ε1 = ε2 = 1.006, 1.008, and 1.01.

As shown in Figs. 9(a)–9(c), two dominant large amplitudes (at f1 ≈ 0.314 367 Hz and f2 ≈

0.352 342 Hz) can be clearly seen and high-order nonlinear components of each bi-chromatic wave

case are rather prominent. As ε1(=ε2) increases from 1.006 to 1.01, the nonlinearity becomes

stronger and stronger and some higher-order wave components, e.g., the third order (3 f1, 3 f2, etc.),

become increasingly significant. Table IX presents the amplitudes of the wave components from the

FIG. 8. Wave profile comparison between the cases BW with ε1= ε2= 1.006, 1.008, and 1.01.
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FIG. 9. Amplitude spectra for the cases BW with ε1= ε2= 1.006, 1.008, and 1.01.

first order to the third order of the cases BW with ε1 = ε2 = 1.006, 1.008, and 1.01, respectively.

It can be clearly observed that the amplitudes of the wave components from the first order to the

third order between these cases have remarkable difference. For example, the value for a( f1) in the

case of ε1 = ε2 = 1.008 (Sd = 0.013) is 0.113 925 m which is 7.5% greater than 0.105 687 m in

the case of ε1 = ε2 = 1.006 (Sd = 0.140), and 6.1% less than 0.120 801 m in the case of ε1 = ε2 =

1.01 (Sd = 0.157). In fact, these different amplitudes indeed lead to the difference of the mean rates

of the mass, momentum, and energy fluxes between these three cases, which can be assessed by the

standard deviation (Sd) values from the conservation state.

B. Analyses based on ε1 , ε2

As shown in Table VIII, it can be seen that Sd approaches a relatively smaller value (0.013) in

the case of ε1 = ε2 = 1.008, which represents that the case (ε1 = ε2 = 1.008) is much closer to the
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TABLE IX. Amplitudes of the wave components from the first order to the third order of the cases BW with ε1= ε2= 1.006,

1.008, 1.01; ε1= 1.007, ε2= 1.008 and ε1= 1.0065, ε2= 1.008.

ε1(=ε2)

Amplitude (m) 1.006 1.008 1.01 ε1= 1.007, ε2= 1.008 ε1= 1.0065, ε2= 1.008

a( f1) 0.105 687 0.113 925 0.120 801 0.129 123 0.138 147

a( f2) 0.143 485 0.154 952 0.164 024 0.144 214 0.137 890

a(2 f1) 0.002 907 0.003 627 0.003 950 0.004 442 0.004 922

a(2 f2) 0.007 326 0.009 165 0.009 710 0.008 641 0.008 029

a( f1+ f2) 0.007 133 0.008 508 0.009 574 0.008 875 0.009 034

a( f1− f2) 0.001 206 0.001 675 0.002 460 0.001 493 0.001 472

a(3 f1) 0.000 139 0.000 212 0.000 263 0.000 284 0.000 319

a(3 f2) 0.000 738 0.001 256 0.001 849 0.000 974 0.000 876

a(2 f1+ f2) 0.000 432 0.000 604 0.000 753 0.000 668 0.000 710

a( f1+2 f2) 0.000 718 0.000 992 0.001 171 0.000 985 0.000 965

a(2 f1− f2) 0.009 398 0.013 054 0.012 437 0.015 433 0.016 353

a( f1−2 f2) 0.038 920 0.054 585 0.060 127 0.048 538 0.043 462

conservation state (Sd = 0) of the mean rates of the mass, momentum, and energy fluxes before and

after the interaction than other cases in Table VIII. Obviously, the above analysis is based on the

assumption that ε1 is equal to ε2 for the steady-state bi-chromatic wave field after the interaction.

However, it is essential to consider ε1 , ε2 for the bi-chromatic wave field. Table X presents the

values for Sd for the matrix of ε1 and ε2 ranging from 1.005 to 1.01 with an increment of 0.001. As

shown in Table X, the minimum values for Sd in each row (0.02, 0.010, 0.009, 0.013,0.027, 0.034)

arises in the same column in which ε2 = 1.008. For the column with ε2 = 1.008, it is noted that the

minimum value for Sd is 0.009 which is calculated in the case of ε1 = 1.007 and ε2 = 1.008. This

indicates that ε1 , ε2 can yield a lower value for Sd compared to the cases in Table VIII which are

based on the assumption that ε1 = ε2, e.g., there is a slight difference (0.004) for Sd in the case of

ε1 = ε2 = 1.008 and ε1 = 1.007, ε2 = 1.008. It is worth noting that all the values for Sd presented in

Table X are calculated based on the HAM solutions with a total averaged residual error at least 10−6

for each steady wave field.

Table XI further presents the values for Sd for the matrix of ε1 and ε2 around ε1 = 1.007 and

ε2 = 1.008 with a smaller increment of 0.0005. As shown in Table XI, similar to the tendency in

Table X, the minimum values for Sd in each row arise in the column with ε2 = 1.008. It is clear that

compared to the case of ε1 = 1.007 and ε2 = 1.008, a smaller value (0.007) for Sd can be obtained

when ε1 = 1.0065 and ε2 = 1.008. This indicates that it is possible to obtain much smaller values

for Sd by subdividing around ε1 = 1.007 and ε2 = 1.008 with a smaller increment. However, in this

paper, the case BW with ε1 = 1.0065, ε2 = 1.008, and Sd = 0.007 is supposed to be highly close to

the conservation state, thus it is not essential to seek smaller values for Sd.

TABLE X. The standard deviation Sd for the matrix of ε1 and ε2 with an

increment of 0.001.

ε2

Sd 1.005 1.006 1.007 1.008 1.009 1.01

ε1

1.005 0.229 0.150 0.070 0.020 0.098 . . .

1.006 0.209 0.140 0.069 0.010 0.094 0.172

1.007 0.193 0.132 0.061 0.009 0.087 0.167

1.008 0.185 0.125 0.066 0.013 0.073 0.151

1.009 0.105 0.121 0.067 0.027 0.082 0.130

1.01 . . . 0.138 0.082 0.034 0.067 0.157
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TABLE XI. The standard deviation Sd for the matrix of ε1 and ε2 with an

increment of 0.0005.

ε2

Sd 1.007 1.0075 1.008 1.0085 1.009

ε1

1.006 0.069 0.031 0.010 0.049 0.094

1.0065 0.068 0.031 0.007 0.046 0.086

1.007 0.061 0.032 0.009 0.044 0.087

1.0075 0.066 0.034 0.012 0.041 0.078

1.008 0.066 0.037 0.013 0.038 0.073

Fig. 10 shows the wave profiles at t = 0 for the cases BW with ε1 = 1.0065, ε2 = 1.008,

ε1 = 1.007, ε2 = 1.008, and ε1 = ε2 = 1.008. In contrast to the characteristics in Fig. 8, it can be

seen in Fig. 10 that for the three bi-chromatic wave cases, no significant difference exists for the

profile of the largest wave crest at x = 0 and wave trough next to x = 0, whilst slight difference

arises between the wave crest and wave trough around x = 30. This indicates that the slight differ-

ence for Sd between the three bi-chromatic wave cases does not lead to remarkable influence on

the wave profile. Fig. 11 shows the amplitude spectra of the bi-chromatic wave cases BW with

ε1 = 1.0065, ε2 = 1.008 and ε1 = 1.007, ε2 = 1.008. It is seen again that high-order nonlinear wave

components are quite evident. It is also noted that for the case BW with ε1 = 1.007, ε2 = 1.008,

the amplitude of the primary wave f2 appears to be slightly greater than that of the primary wave

f1; whilst for the case BW with ε1 = 1.0065, ε2 = 1.008, the amplitude of the primary wave f2

appears to be identical to that of the primary wave f1. To further see the amplitudes of various

order wave components, the amplitudes of the wave components from the first order to the third

order of the cases BW with ε1 = 1.007, ε2 = 1.008 and ε1 = 1.0065, ε2 = 1.008 are also presented

in Table IX. It is observed in Table IX that the amplitudes of various order wave components of

the cases BW with ε1 = ε2 = 1.008, ε1 = 1.007, ε2 = 1.008 and ε1 = 1.0065, ε2 = 1.008 appear

to be evidently different. It is these differences that produce the discrepancy of the mean rates of

the mass, momentum, and energy fluxes between these three cases. On the other hand, for the

case BW with ε1 = 1.0065 and ε2 = 1.008, which leads to a smaller value (0.007) for Sd, the ratio

of the primary wave amplitudes (a( f1)/a( f2) ≈ 1.002) tends to approach 1 compared to the cases

BW with ε1 = 1.007, ε2 = 1.008 (a( f1)/a( f2) ≈ 0.895), and ε1 = ε2 = 1.008 (a( f1)/a( f2) ≈ 0.735).

This means that the energy of the primary waves tends to balance each other for the case BW which

is much closer to the conservation state after the interaction.

Fig. 12 shows the amplitudes of the primary waves of the monochromatic wave cases W1, W2,

as well as the bi-chromatic wave case BW with ε1 = 1.0065 and ε2 = 1.008. As shown in Fig. 12,

the amplitudes of the primary waves of each nonlinear monochromatic wave train before the inter-

action are 0.157 823 m and 0.126 214 m, respectively, while the corresponding amplitudes of the

FIG. 10. Wave profile comparison for the cases BW with ε1= 1.0065, ε2= 1.008; ε1= 1.007, ε2= 1.008, and ε1= ε2=

1.008.
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FIG. 11. Amplitude spectra for the cases BW with ε1= 1.007, ε2= 1.008 and ε1= 1.0065, ε2= 1.008.

primary waves of the bi-chromatic wave field with ε1 = 1.0065 and ε2 = 1.008 are 0.138 147 m

and 0.137 89 m, respectively. The amplitude of the primary wave with a lower frequency (ω1 =

1.983 86 rad/s) drops from 0.157 823 m to 0.138 147 m with a decrement approximately 18.4%,

while the one with a higher frequency (ω2 = 2.218 02 rad/s) increases from 0.126 214 m to

0.137 89 m with an increment approximately 14.3%. It is clear that the amplitude of the primary

FIG. 12. Amplitudes of the primary waves of cases W1, W2, and the case BW with ε1= 1.0065, ε2= 1.008.
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FIG. 13. Water particle horizontal velocity profiles at t = 0: (i) under the wave crest at x = 0; (ii) under the wave trough next

to x = 0.

wave with a lower frequency tends to decrease; while the one with a higher frequency tends to

increase in terms of Sd = 0.007 of the mean rates of the mass, momentum, and energy fluxes before

and after the interaction. This demonstrates the energy transfer from the primary wave with a lower

frequency to that with a higher frequency during the interaction.

Fig. 13 shows the horizontal velocity profiles underneath the wave crest and wave trough for

the monochromatic wave cases W1, W2, and the bi-chromatic wave case with ε1 = 1.0065 and

ε2 = 1.008 which is much closer to the conservation state. The profiles of the linear superposition

of the velocity profiles for cases W1 and W2 are also presented in Fig. 13. As shown in Fig. 13,

for the bi-chromatic wave case, the largest horizontal velocity of the water particle on the largest

wave trough (next to x = 0) is approximately 0.55 m/s which is almost identical to the linear

superposition value (0.552 m/s) of the largest horizontal velocities on the wave trough of the two

monochromatic wave cases W1 and W2; whilst the largest horizontal velocity of the water particle

on the largest wave crest (at x = 0) of the bi-chromatic wave case is approximately 0.898 m/s which

is 1.43 times the linear superposition value (0.627 m/s) of the largest horizontal velocities on the

wave crest of the two monochromatic wave cases W1 and W2. It is also noted that for the case

BW with ε1 = 1.0065, ε2 = 1.008, and the linear superposition of cases W1 and W2, the differences

between the velocity profiles under the wave crests (∆u) gradually diminish as water depth deepens

and tend to coincide with each other when the depth is deeper than −d/5 (i.e., −4 m); while the ve-

locity profiles under the wave trough appear to coincide along the whole water depth. This evidently

indicates that the nonlinear interaction between the two monochromatic waves leads to significant

increases in the horizontal velocity of the water particles under the largest wave crest compared to

the corresponding linear superposition values, especially close to the free surface.

VI. CONCLUSIONS

Nonlinear progressive bi-chromatic waves in water of finite depth are studied by using the

homotopy analysis method. The equations for the mass, momentum, and energy fluxes based

on accurate high-order homotopy series solutions are derived using the discrete integrations and

Fourier series-based fittings. The relationship between the steady-state bi-chromatic wave field and

the two nonlinear monochromatic wave trains is established in terms of the conservation equations

for the mean rates of the mass, momentum, and energy fluxes before and after the interaction. The

parametric analysis on ε1 and ε2 of the bi-chromatic wave field is performed to obtain sufficiently

small values for the standard deviation Sd, which is applied to describe the deviation from the
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conservation state (Sd = 0) before and after the interaction of the two nonlinear monochromatic

wave trains. The following conclusions are drawn from this study.

1. The discrete integration and the fitting based on the Fourier series can provide accurate expres-

sions for the mass, momentum, and energy fluxes of a monochromatic wave field as well as a

steady-state bi-chromatic wave field.

2. Under the assumption either ε1 = ε2 or ε1 , ε2, some cases (Sd ≤ 0.013) are found to be very

close to the conservation state (Sd = 0) of the mean rates of the mass, momentum, and energy

fluxes before and after the interaction.

3. The amplitude of the primary wave with a lower frequency tends to decrease, and the one with

a higher frequency tends to increase based on the conservation analysis on the mean rates of the

mass, momentum, and energy fluxes before and after the interaction.

4. The energy of the primary waves of the bi-chromatic wave case BW which is much closer to

the conservation state (Sd = 0) after the interaction, tends to balance each other.

5. The nonlinear interaction between the two monochromatic waves is found to lead to signif-

icant increases in the horizontal velocity of the water particles under the largest wave crest,

especially close to the free surface.
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APPENDIX: SOLUTION PROCEDURE BY HAM

1. Zeroth-order deformation equation

In the framework of HAM, there is great freedom to choose the linear auxiliary operator.

According to the linear part of the nonlinear boundary conditions (10) and (11), two linear auxiliary

operators are chosen as

L1 [(·)] = (·) , (A1)

L2 [φ] = ω̄ 2
1

∂2φ

∂θ1
2
+ 2ω̄1ω̄2

∂2φ

∂θ1∂θ2

+ ω̄ 2
2

∂2φ

∂θ2
2
+ g

∂φ

∂z
, (A2)

where

ω̄i =


gki tanh (kid) (i = 1,2). (A3)

Based on the nonlinear boundary conditions, two nonlinear operators can be defined as

N1 [η,φ] = η −
1

g
(ω1

∂φ

∂θ1

+ ω2

∂φ

∂θ2

− f ), (A4)

N2 [φ] = ω1
2 ∂

2φ

∂θ1
2
+ 2ω1ω2

∂2φ

∂θ1∂θ2

+ ω2
2 ∂

2φ

∂θ2
2
+ g

∂φ

∂z

− 2(ω1

∂ f

∂θ1

+ ω2

∂ f

∂θ2

) + ∇̂φ · ∇̂ f . (A5)

Then the zeroth-order deformation equation can be constructed as

∇̂
2φ̆ (θ1, θ2, z; q) = 0, −d < z ≤ η̆(θ1, θ2; q), (A6)

which is subject to the bottom boundary condition

∂φ̆ (θ1, θ2, z; q)

∂z
= 0, z = −d, (A7)
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and two nonlinear boundary conditions on z = η̆(θ1, θ2; q) are as follows:

(1 − q)L1 [η̆(θ1, θ2; q)] = qc0N1

�
η̆(θ1, θ2; q), φ̆ (θ1, θ2, z; q)

�
, (A8)

(1 − q)L2

�
φ̆(θ1, θ2, z; q) − φ0(θ1, θ2, z)

�
= qc0N2

�
φ̆(θ1, θ2, z; q)

�
, (A9)

where q ∈ [0,1] is an embedding parameter; c0 is the so-called nonzero convergence-control param-

eter; φ0(θ1, θ2, z) is the initial estimate of the potential function; and φ̆(θ1, θ2, z; q) and η̆(θ1, θ2; q) are

the mapping functions, respectively.

When q = 0, the zeroth-order deformation Eqs. (A6)-(A9) have the solution,

φ̆(θ1, θ2, z; 0) = φ0(θ1, θ2, z), (A10)

η̆(θ1, θ2; 0) = 0. (A11)

When q = 1, the zeroth-order deformation Eqs. (A6)-(A9) are equivalent to the original Partial

Differential Equations (PDEs) (8)–(11), respectively, provided that

φ̆(θ1, θ2, z; 1) = φ(θ1, θ2, z), (A12)

η̆(θ1, θ2; 1) = η(θ1, θ2). (A13)

Thus, as the embedding parameter q increases from 0 to 1, φ̆(θ1, θ2, z; q) and η̆(θ1, θ2; q) deform

continuously from initial estimates φ0(θ1, θ2, z) and 0 to become the exact solutions of the original

problem, respectively.

The Maclaurin series of φ̆(θ1, θ2, z; q) and η̆(θ1, θ2; q), with respect to the embedding parameter

q, can be expressed as

φ̆(θ1, θ2, z; q) =

+∞


m=0

φm(θ1, θ2, z)q
m, (A14)

η̆(θ1, θ2; q) =

+∞


m=0

ηm(θ1, θ2)q
m, (A15)

where

φm(θ1, θ2, z) =
1

m!

∂mφ̆(θ1, θ2, z; q)

∂qm

�����q=0

, (A16)

ηm(θ1, θ2) =
1

m!

∂mη̆(θ1, θ2; q)

∂qm

�����q=0

. (A17)

Assuming that c0 is properly chosen so that the Maclaurin series (A14) and (A15) converge at q = 1,

then the so-called homotopy-series solutions are obtained as

φ(θ1, θ2, z) = φ0(θ1, θ2, z) +

+∞


m=1

φm(θ1, θ2, z), (A18)

η(θ1, θ2) =

+∞


m=1

ηm(θ1, θ2). (A19)

2. High-order deformation equation

Substituting the series in Eqs. (A14) and (A15) into the zeroth-order deformation equations and

equating the like-power of q, the so-called mth-order deformation equations are

∇̂
2φm(θ1, θ2, z) = 0, (A20)

∂φm(θ1, θ2, z; q)

∂z
= 0, z = −d, (A21)

L̄2 [φm (θ1, θ2, z)] = R
φ
m(θ1, θ2; c0), (A22)
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ηm (θ1, θ2) = R
η
m(θ1, θ2; c0), (A23)

where

R
φ
m(θ1, θ2; c0) = c0∆

φ

m−1
+ χmSm−1 − S̄m, (A24)

R
η
m(θ1, θ2; c0) = c0∆

η

m−1
+ χmηm−1, (A25)

∆
φ
m = ω2

1φ̄
2,0
m + 2ω1ω2φ̄

1,1
m + ω

2
2φ̄

0,2
m + gφ̄

0,0
z,m − 2(ω1Γm,1 + ω2Γm,2) + Λm, (A26)

∆
η
m = ηm −

1

g
(ω1φ̄

1,0
m + ω2φ̄

0,1
m − Γm,0), (A27)

L̄2 [φ] = L2 [φ]|z=0 and m ≥ 1. The definitions of Sm, S̄m, χm, Λm, φ̄
0,0
z,m, Γm, i, φ̄

i, j
m (i, j = 0,1,2)

and their detailed derivations can be found in the work of Liao.15

3. The initial estimate

Liao12 has demonstrated that there is great freedom to choose the initial estimate in HAM. The

auxiliary linear operator in Eq. (A2) has the property,

L̄2[Ψm,n] = λm,n · sin (mθ1 + nθ2) , (A28)

whereΨm,n is defined by Eq. (16) and

λm,n = g |mk1 + nk2| tanh(|mk1 + nk2| d) − (mω̄1 + nω̄2)
2. (A29)

Therefore, the inverse operator L̄−1
2

is defined as

L̄−1
2 [sin (mθ1 + nθ2)] =

Ψm,n

λm,n

, λm,n , 0. (A30)

Note that the inverse operator L̄−1
2

has definition only for non-zero values of λm,n. When λm,n = 0,

g |mk1 + nk2| tanh (|mk1 + nk2| d) = (mω̄1 + nω̄2)
2. (A31)

In this paper, there are only λ1,0 = 0 and λ0,1 = 0. Thus, an initial estimate for φ0(θ1, θ2, z) can be

chosen as

φ0 (θ1, θ2, z) = b1,0 ·Ψ1,0 (θ1, θ2, z) + b0,1 ·Ψ0,1 (θ1, θ2, z) , (A32)

where b1,0 and b0,1 are unknown constants to be determined later.

4. Solution procedure

Considering the rule for solution expressions (14) and (15) and the property of the auxiliary

linear operator L2 in Eq. (A28), the right-hand side of Eq. (A22) can be expressed as

R
φ
m = b̃m,1,0 sin θ1 + b̃m,0,1 sin θ2 +

Im


i=0

Jm


j=−Jm
i+ j,1

b̃m, i, j sin (iθ1 + jθ2) , (A33)

where b̃m, i, j are coefficients and (Im, Jm) is related to the right-hand side of Eq. (A22). According to

the property of the auxiliary linear operator L2,



b̃m,1,0 = 0,

b̃m,0,1 = 0
(A34)

have to be enforced to avoid the so-called secular terms. Therefore, using Eq. (A31), it is convenient

to obtain the solution of Eq. (A22)

φm(θ1, θ2, z) =

Im


i=0

Jm


j=−Jm
i+ j,1

b̄m, i, jΨm,n(θ1, θ2, z) + b̄m,1,0Ψ1,0(θ1, θ2, z) + b̄m,0,1Ψ0,1(θ1, θ2, z), (A35)
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where b̄m,1,0 and b̄m,0,1 are unknown coefficients to be determined in the (m + 1)th-order deforma-

tion equation.

When m = 1 using Eq. (A34), the unknown coefficients b1,0 and b0,1 in Eq. (A32) can be

obtained for the initial estimate φ0(θ1, θ2, z). Substituting φ0(θ1, θ2, z) into Eq. (A23), η1(θ1, θ2) can

be directly obtained.

When m ≥ 2, the unknown coefficients b̄m−1,1,0 and b̄m−1,0,1 in Eq. (A35) can also be obtained

by using Eq. (A34). As long as b̄m−1,1,0 and b̄m−1,0,1 are known, ηm(θ1, θ2) and φm(θ1, θ2, z) can

be obtained in a similar way. All of this can be done successively and efficiently by means of the

symbolic computation software—Mathematica 7. At the mth − order approximations, there are



φ(θ1, θ2, z) ≈ φ0(θ1, θ2, z) +

M


m=1

φm(θ1, θ2, z),

η(θ1, θ2) ≈

M


m=1

ηm(θ1, θ2).

(A36)

5. Optimal convergence-control parameters

For the mth-order approximations φ (θ1, θ2, z) and η(θ1, θ2), there is still one unknown param-

eter c0, which is used to guarantee the convergence of the approximation series. In order to choose

an optimal c0, two averaged residual square errors of the boundary conditions are defined as

E
φ
m =

1

(1 + Ik)

1

(1 + Jk)

Ik


i=0

Jk


j=0

(

N1 [φ(θ1, θ2, z)]|θ1=i∆θ1, θ2= j∆θ2

)2
, (A37)

E
η
m =

1

(1 + Ik)

1

(1 + Jk)

Ik


i=0

Jk


j=0

(

N2 [φ(θ1, θ2, z), η(θ1, θ2)]|θ1=i∆θ1, θ2= j∆θ2

)2
, (A38)

where Ik and Jk are the numbers of discrete points, ∆θ1 = π/Ik and ∆θ2 = π/Jk. In the present work,

Ik = Jk = 20 is chosen based on the sensitivity test without loss of generality. Defining the total

averaged residual square error as ET
m = E

φ
m + E

η
m, then by solving dET

m/dc0 = 0, the optimal value of

c0 can be obtained, which corresponds to the minimum value of ET
m.
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