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Abstract. The design and planning of space tra-

jectories is a challenging problem in mission anal-

ysis. In the last years global optimisation tech-

niques have proven to be a valuable tool for au-

tomating the design process that otherwise would

mostly rely on engineers’ expertise. The pa-

per presents the optimisation approach and prob-

lem formulation proposed by the team Strath-

clyde++ to address the problem of the 9
th edi-

tion of the Global Trajectory Optimisation Com-

petition. While the solution approach is introduced

for the design of a set of multiple debris removal

missions, the solution idea can be generalised to a

wider set of trajectory design problems that have a

similar structure.

1 Introduction

The Global Trajectory Optimisation Competition

(GTOC) [1] is a yearly worldwide challenge that was

initiated by the European Space Agency in 2005 with

the aim of advancing the field of research on global op-

timisation techniques for space mission design. During

the years the challenge has been the breeding ground for

*Corresponding author. E-mail: annalisa.riccardi@strath.ac.uk

the testing and development of new computational intel-

ligence techniques for the design of a variety of trajec-

tory design problems. This year challenge, The Kessler

run [2], has been to design a set of non-concurrent mis-

sions to deorbit 123 debris on Low Earth Orbit (LEO),

requiring multiple launches within an available mission

time frame. The only manoeuvres allowed to control

the spacecraft trajectory are instantaneous changes of

the spacecraft velocity. The problem objective function

J is the sum over all missions of a constant term, the

launch cost, and a quadratic term on the sum of propel-

lant mass and de-orbiting kits required for the mission.

Nevertheless, during the competition, the constant term

was increasing linearly with submission time. More-

over constraints on propellant mass, minimum pericen-

tre of all trajectory arcs, time between rendezvous and

time between active missions have to be considered in

the problem formulation.

The paper presents the optimisation techniques and

the solution approach adopted by the team Strath-

clyde++ that ranked 6th over the 69 teams that regis-

tered to the competition (see Table 1, where NL is the

number of launches and Nd the number of debris re-

moved). Section 2 is dedicated to present an overview
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Team NL Nd score

JPL 10 123 731.2756

NUDT Team 12 123 786.2145

XSCC-ADL 12 123 821.3796

Tsinghua-LAD 12 123 829.5798

NPU 13 123 878.9982

Strathclyde++ 14 123 918.9808

TABLE 1. Final rank GTOC9

on the overall problem solving methodology designed

for the problem, Section 3 presents the different fidelity

dynamical models used for the combinatorial search

strategies, presented in Section 4, as well as final solu-

tion optimisation/local refinement, presented in Section

6. Section 5 presents an evolutionary approach adopted

to recombine and improve solutions. Section 7 and 8

present results and conclusions.

2 Solution approach

The solution to the problem was found by using a three-

step process that included both low fidelity and high

fidelity models, as well as global and local optimisa-

tion solvers to converge to an optimal and feasible so-

lution. As a first step, a Beam Search algorithm and

a sequence patching method have been used to gen-

erate initial guesses (debris sequences and the initial

guesses for the departure time from each debris) for

multi-launch debris removal campaigns. The combina-

torial algorithms used a low fidelity model to calculate

the required ∆V for each transfer and estimate the final

mission cost. A set of these solutions have been used as

initial population for an evolutionary optimisation ap-

proach that, by optimising the times of transfers, was

able to modify the order of the debris in the sequences

themselves as well as to improve the distribution of ini-

tial mass among the launches. After the generation of

these first-guess campaigns, a second step was used to

obtain the solution in the required format, i.e. specify-

ing every ∆V impulse required. In this step, for each

debris-to-debris transfer returned by the combinatorial

search, the time of application of each impulse as well

as their magnitude and direction has been obtained by

means of global and local optimisation algorithms us-

ing different fidelity models. The bounds on departure

time from each debris and ∆V components have been

set based on the values returned by the combinatorial

search, and constraints applied in a strict sense regard-

ing mission time, position and mass. These sets of mis-

sion trajectories constituted final solutions to the prob-

lem. As a third step, the entire launch sequence has

FIGURE 1. Flowchart of the solution approach.

been optimised locally with the high fidelity dynami-

cal model to exploit the correlation between subsequent

transfers and reduce the propellant consumption further

while ensuring that the constraint tolerances were met.

A flowchart of the solution approach is shown in Fig-

ure 1. In the following sections, the various components

of this approach are described in detail.

3 Impulsive models

Low Fidelity estimation

In order to have a good but fast approximation of the

cost of a transfer between pairs of debris, a low fidelity

model, neglecting the J2 perturbation, was used. For

the sake of simplicity, the transfer was divided into two

parts: an in-plane part with associated cost ∆Vi, mod-

ifying only the shape of the orbit, and an out-of-plane

part, changing only the direction of the angular momen-

tum for a cost of ∆Vo. The phasing was not included as

it comes with no extra cost under Keplerian dynamics

assuming there is no time constraint on the rendezvous.

Given the low eccentricity of all the debris, the depar-

ture and target orbits were approximated to be circular.

Thus the cost of the in-plane part can be obtained from

a classic Hohmann transfer:

∆Vi =
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where µ is the Earth gravitational constant, while r1 and

r2 denote the radius of respectively the initial and final

orbits. As for the change of plane, it was computed as

a single manoeuvre modifying both the inclination and
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the right ascension of the ascending node at the same

time [3]:

∆Vo = 2

√

µ

r∗
sin

(

Θ

2

)

,

with

cos(Θ) = cos2(i∗) + sin2(i∗) cos(Ω2 − Ω1),

where the starred variables are determined between 1

and 2 according to the minimal cost.

High fidelity computation

A high fidelity estimation of the cost of the trans-

fer between pairs of debris was obtained by solving a

constrained global optimisation problem using Multi-

Population Adaptive Inflationary Differential Evolution

Algorithm (MP-AIDEA) [4]. In order to reduce the

number of variables and, therefore, facilitate conver-

gence to the global optimum, the maximum number of

allowed manoeuvres was set to n∆V = 5 (despite the

rules of the competition allowed a maximum number

of impulses for transfers between debris was 7). It was

proved empirically, on a subset of significative trans-

fers, that such assumption was not deteriorating, but

rather improving, the quality of the optimal solution

found for same number of functions evaluations.

The vector y of optimisation variables for the global

optimisation problem includes the time of applications

of each impulsive manoeuvre and the three components

of the ∆V vector, for a total of n = 4 · n∆V = 20 vari-

ables for each debris to debris transfer. The constrained

optimisation problem was formulated as:

min
L≤y≤U

F (y) =

n∆V
∑

i=1

∆Vi(y)

s.t. ẋ = f (x)

ai(1− ei) ≥ 6600 km i = 1, . . . , n∆V

x(tf ) = xD(tf )

(1)

where y is the vector encoding the 20 optimisation vari-

ables, x is the state vector of the spacecraft, xD is the

state vector of the targeted debris and tf is the time at

the end of the transfer. The second constraint imposes

the perigee of the orbit of the spacecraft after each im-

pulse to be higher than 6600 km. MP-AIDEA is run

for a total of nFEv = 106 function evaluations for

each transfer. One function evaluation consists in the

propagation from the initial time to the time of the first

impulsive manuever, the application of the maneuver,

a propagation until the time of the second manuever,

and so on, until the final time tf . For the first 7e5

function evaluations a non-expensive dynamical model

was used, in which it was assumed that the spacecraft’s

mean orbital elements a, e and i remain constant be-

tween two impulses, Ω and ω change according to their

secular variations due to J2 [3], while M changes ac-

cording to M = M0 + n (t− t0) where n is the mean

motion perturbed by J2 [5]:

n = n

[

1 + 3

2
J2

(

R⊕

p

)2 √
1− e2

(

1− 3

2
sin2 i

)

]

R⊕ is the Earth’s radius and p = a(1 − e2). The best

solutions obtained at the end of this stage were then

used to initialise the population for the next phase of

the optimisation process, where the complete high fi-

delity dynamics, including osculating J2 effects, was

considered. In this phase, the dynamic equations were

integrated with an 8-th order Adam-Bashforth-Moulton

algorithm with a fixed step-size. At the end of the global

optimisation, a local search was run from the best solu-

tion obtained; the Matlab solver fmincon with active-set

algorithm was applied to problem 1.

Figure 2 shows a comparison between outputs of the

low and high fidelity models for a large number of dif-

ferent sets of inputs. On average, the former tends to

overestimate the total ∆V for a transfer. However, there

is still a number of outliers whose cost is significantly

more expensive than predicted, motivating for a safety

margin to be used in the broad combinatorial searches.

4 Combinatorial search

Full campaign

This section presents the algorithms used in the first step

of the solution process to focus on the combinatorial

component of the problem. At this stage, a solution

is considered to be a list of couples {(Dj , tj)} defin-

ing the itinerary in terms of debris to visit and time of

transfer, and with a predicted cost J . If it contains all

the target debris, this is referred to as a first-guess cam-

paign. By considering a new launch as a particular case

of transfer, a complete first-guess campaign can be built

incrementally in a tree-like fashion.

The approach presented in this section was used to

generate first-guess campaigns that eventually consti-
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FIGURE 2. Cost comparison (in meters per second) on 44683 cases between guess from Keplerian model and value from J2

dynamics.

tuted individuals in the population of the method pre-

sented in section 5, in some cases before and in some

cases after refinement with the high fidelity models in

Section 3 and the procedure in Section 6. This popula-

tion contained the best first-guess campaigns found, but

it contained as well sub-optimal and mass-infeasible so-

lutions that presented remarkable features with respect

to the best. Namely reduced number of launches, better

homogeneity mass per launch, or overall longer mis-

sions. These were obtained with modifications on the

baseline approach, that will be mentioned along the sec-

tion.

Construction of the tree

A node S encodes a partial itinerary {(Dj , tj) , j ≤ n},

the estimated ∆V cost of each transfer that is not a

launch, a set of non-visited target debris NV and a set

of available time instants for a new launch TL, where

with n is noted the number of debris already visited in

the partial itinerary. Branching of a node consists in ap-

pending to the itinerary the couple (Dn+1, tn+1), with

either

• a transfer to a debris Dn+1 ∈ NV , satisfying the

time and mass constraints associated to a transfer

from (Dn , tn),

• or a new launch to a debris Dn+1 ∈ NV , with

tn+1 ∈ TL,

and consequent update of NV and TL. Note this

methodology advances chronologically in building the

sequence of each single launch mission, but can de-

cide to place a launch at tn+1 < tn if TL allows it.

This is for example the case in which the sequences are

wrapped in time as will be discussed in the next subsec-

tions

Beam Search

The base tree exploration heuristic of choice was the

Beam Search (BS). Methodologies based on BS have

been successfully applied in other GTOCs [6] [7]. This

baseline was selected primarily due to the fact that up-

per bounds on its time and space complexity are easily

controlled.

The Beam Search is a non-exhaustive search that is

derived from the textbook implementation of Breadth-

First Search (BFS) [8] by considering a fixed maximum

number of nodes for branching at each level of depth.

This number corresponds to the beaming factor Be, a

hyperparameter of the process. Figure 3 illustrates a

comparison of BS with BFS and Depth-First Search

(DFS).

In addition to pruning at each level of depth, a pre-

pruning at the parent level is also conducted, i.e. the

number of branches of each node is limited by the

branching factor Br. Br can be used to bound further

the complexities of the search. Besides, this practice

60 DOI: 10.5281/zenodo.1139246
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FIGURE 3. Different tree search strategies in comparison. Dotted nodes are yet to be explored. Crossed out nodes are pruned

and will not be branched [7].

enforces that the offspring of at least Be/Br distinct

nodes is represented in the next depth level.

Node fitness

Pruning requires definition of a sorting criterion for the

nodes as a mean of prioritisation, i.e. a fitness function.

This might or might not be the same for beaming and for

branching, and might or might not involve a stochastic

process. The definition of these criteria will condition

deeply the performance of the search.

The baseline approach used a single fitness function,

the quantity Jh, that represents the estimated cost of

a hypothetical launch campaign that complies with the

itinerary and needs an extra launch for each target de-

bris of NV . This quantity was derived from the ∆V of

each transfer as predicted by the Low Fidelity model in

section 3.

Nevertheless, first-guess campaigns obtained with

modified cost functions proved to be of special inter-

est for the seeding of the approach presented in Section

5. Some examples of modified cost functions that found

representation in the population that evolved into the fi-

nal submission are listed below:

• Adding a penalisation on the standard deviation of

the mass budget per launch, or of the ∆V budget

per transfer.

• Sorting the nodes alphanumerically: first by the

number of targets visited in the partial itinerary

(decreasingly), then by the minimum number of

targets visited in a single launch (decreasingly),

and only then by Jh (increasingly).

• Considering several definitions of a per-debris

rarity bonus: according to its appearance in a

database of long single launch missions that ex-

ploit only close-to-optimal transfers, or according

to its appearance in large clusters in a time-series

clustering of the target debris RAAN.

• Computing Jh with an increased cost per launch

(tripled).

Additional heuristics

In the Kessler run problem, a solution needs to visit all

the target debris. This fact poses an issue for incremen-

tal approaches such as the ones described hereby; dif-

ferent launch missions will be in competition for a frac-

tion of the reachable targets, hence greedy approaches

risk to exhaust the search space in early iterations, lead-

ing to unexpensive single launch missions that cannot

be aggregated to form complete campaigns. This effect

was mitigated using heuristics that enforce some kind

of diversity amongst the itineraries represented by the

nodes branched at a given depth level, namely:

• Pruning of twin transfers: a limited number of

transfers nt to the same target debris is appended

to node S during its branching. Also a minimum

time separation ∆tt is enforced between each of

them. This avoids an overpopulation of slight time

variations of the same debris sequence. All results

were obtained with 1 ≤ nt ≤ 4.

• Pruning of twin campaigns: a maximum number

of nodes ns > nt visiting the same subset of de-

bris is branched at each depth level. ns is au-

tomatically increased in case this criterion leaves

less than Be candidates in the level, to avoid over-

pruning in single-root searches. This controls the
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population of permutations of the same debris se-

quence. ns has to be set in relation to Be, a typical

value is ns = 20.

Variations

Upon this baseline, a family of problem-specific tech-

niques was conceived. These can be classified in two

conceptual variations:

– Cyclic Beam Search: this variation considers, for

the itinerary {(Dj , tj) , j ≤ n)}, that TL only contains

the first launch date available as imposed by tn and the

problem constraints. When this is unfeasible, TL is re-

stored to contain the first available launch date in the

mission timeline. In other words, if the Cyclic Beam

Search is fed as root the itinerary {(D0, t0)}, the leaves

will be first-guess campaigns that start at t0 and wrap

around time in a ring permutation of their chronologi-

cal order.

– Concurrent Beam Search: a meta-algorithm on the

method above, consists in a scheduler that manages the

branching of N Cyclic Beam Searches. Each N -tuple

of nodes shares NV in a competitive fashion, and each

of them is assigned a segment of the mission timeline

where it can search for transfers or launches. At each

level of depth of the meta-algorithm, one of them is al-

lowed to append a couple (D, t) to its itinerary.

Note these methods can be applied to either the com-

putation of single launch sequences or complete cam-

paigns, as well as to the expansion of partial itineraries

if these are fed as roots. Few runs of the Concurrent

Beam Search found solutions of better overall quality

than few runs of the Cyclic Beam Search. However the

increased computational cost of a single run and sensi-

bility to inisialisation of the former translated into the

team producing a larger variety of high-quality solu-

tions with the latter. Over 90% of the first-guess solu-

tions eventually used to seed the approach presented in

section 5 were generated with the Cyclic Beam Search.

Attempts at improving the launch heuristics were con-

ducted, by selecting for TL values inferred from a

database of very unexpensive transfers, and resulted in

a drop of performance.

Initialisation

For the Cyclic Beam Search, the properties of the search

space and algorithm allowed for a brute-force initiali-

sation approach; a search was initialised with roots in

the form {(D0, t0)}, with as many D0 as target debris

but a single t0 for them all. This was repeated with

t0 in a monthly discretisation of the available mission

timespan. This practice was found to give better results

than initialising each search with various values of t0.

Furthermore, as data was gathered, heavier searches in

terms of computational resources were conducted by in-

creasing Be and Br, and priority of execution given to

the searches with promising values of t0. Some individ-

uals were obtained by means of a set of light single-root

searches.

For the concurrent beam search, even for moder-

ate values of N , naı̈ve initialisation of all sub-searches

from all debris results impractical, since the possibili-

ties grow combinatorially. To overcome this limitation,

a multi-variate time-series clustering was conducted

in the features xj = cos(Ωj(t)) , yj = sin(Ωj(t)) ,

where Ωj(t) is the RAAN of debris j at time t, and

pre-pruning conducted in terms of size of the clus-

ter. The clustering algorithm of choice was Partition

Around Medioids, using segments of 75 days, Eu-

clidean and Penrose distances and number of clusters

selected by means of Silhouette Width in each segment.

Searches were initialised randomly from N = 3 clus-

ters. Yet other options considered for the Concurrent

Beam Search but not explored in depth during the com-

petition timeframe are its initialisation by means of N
non-intersecting itineraries corresponding to indepen-

dent launches, and solution of a single-objective opti-

misation problem for the designation of N launch sites

in terms of RAAN and time of launch, maximising the

total number of reachable debris.

Precomputations

All searches operated on a memory-loaded time-

discretised precomputation of the ∆V cost of all debris-

to-debris transfers, as predicted by the Low-Fidelity

Model in Section 3. The resolution of the snapshots was

of 0.6 days. With this modelling that does not take phas-

ing into account, analysis pointed towards the under-

estimation of the time of flight as an important source

of error, primarily in relation to the J2 drift. Hence, a

zero-order approximation of the time of flight was used

as correction in the computation of the ephemerides of

arrival. This time offset was set to 1.0 days. Further-

more, margins on the ∆V prediction and transfer win-

dows were considered for seamless interaction with the

subsequent of the solution pipeline; these safety param-

eters were tuned until the proportion of valid solutions

after refinement was satisfactory.
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FIGURE 4. Velocity required to reach a destination debris

from a reference debris at a point in time.

FIGURE 5. Velocity required to transfer between debris at a

reference time point.

Sequence patching

The goal of a sequence patching is to assemble a launch

campaign out of feasible sequences built from cheap

debris to debris transfers. Such transfers occur peri-

odically within certain windows over the course of a

mission time schedule. For example, the figure 4 plots

∆V required to transfer from debris 1 to another de-

bris considered in the competition. For readiness of the

plot, every 10th target debris is reported in the figure.

Moreover, as the figure 5 suggests, cheap transfers can

be dispatched from other debris too. Therefore, all pos-

sible transfers below a predefined ∆V threshold were

precomputed and aggregated into sequences. The oc-

currence of each debris in the database is sensitive to

the choice of the threshold. Small treshold values can

prevent certain debris to debris transfer to appear in the

database, given the campaign time limits.

A sequence is described by time windows within its

transfers occur and debris intended for removal. The

order in which debris are visited is not relevant for the

patching algorithm and can be established later using a

cost optimiser.

Building a launch campaign can be modelled as find-

ing a clique in an unidirectional graph G(V,E) where

V is the set of sequences and E the set of edges. Two

sequences are connected by an edge if they target dis-

tinct subsets of debris and do not overlap in time. Find-

ing a maximum clique is a well known NP-hard prob-

lem [9] with efficient solvers available open source [10].

With this approach we found that no full campaign can

be patched using the data set of 85e4 sequences. Larger

datasets can be obtained by increasing the ∆V param-

eter. It has to be noted that, the clique construction ap-

proach can become impractical for datasets containing

more sequences due to memory considerations. Such

datasets were processed using a depth-first search.

To accelerate the patching algorithm sequences were

sorted according to an index function that took into ac-

count a relative cost of a debris removal and its fre-

quency among all sequences. Furthermore, the depth-

first search was started from sequences that remove the

rarest debris first to significantly reduce the number of

sequences that later can be added to a partial campaign.

The results obtained from the sequence patching al-

gorithm heavily depend on the quality of the initial data

set. Final campaigns obtained from patching a data

set containing 2.2e6 elements covered up to 116 debris

without launches dedicated for a single debris removal.

5 Evolution of solutions

Limitations of Beam Search and Sequence Patch-

ing. In the last few days of the competition generating

a more competitive campaign became extremely chal-

lenging. In the last few days of the competition gener-

ating a more competitive campaign became extremely

challenging. The best submission so far, Solution 4 (2),

was using too many launches, thus penalising the final

score. Using different heuristics and heavier searches

with the Beam Search allowed to generate heteroge-

neous campaigns of similar cost, but none of them was

better than Solution 4, even though a number of them

presented lower number of launches. Attempts at reduc-
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ing the overconstrained combinatorial search resulted

in first-guess solutions that did not respected the maxi-

mum mass constraints and the detailed trajectory opti-

misers weren’t able to restore mass feasibility without

a heavy increase in cost. Manually fixing those trajec-

tories was time consuming and sometimes simply not

possible, while using larger datasets for the Sequence

Patching algorithm was becoming computationally in-

tractable, even employing pruning strategies. At that

point, as a last resort, an entirely different campaign

generation approach was conceived taking into consid-

eration the limitations of the other two and the difficul-

ties encountered when further refining those solutions.

Since all the debris had to be visited, a strategy able

to generate full campaigns was sought. This is because

such approach had no embedded mechanism that was

greedily promoting sequences of easy to reach debris at

the expense of leaving out a few scattered and expensive

ones. While a grid of 0.6 days, for the Beam Search, at

start, was considered sufficiently fine yet not too much

to be a problem, later the need to operate on a pre spec-

ified time grid seemed too restrictive. Hence an algo-

rithm able to continuously optimise the times and deal

with also a set of discrete optimisation variables (debris

ID) was considered highly desirable, if at all possible.

Reformulation of the problem. To accommodate all

these requirements, the low fidelity campaign building

problem was reformulated as a constrained multi objec-

tive optimisation problem operating only on real vari-

ables:

min
Lt≤t≤Ut

J∗(ts(t)), t = (t1, ..., tj , ..., t123)

s.t.

ts = sort(t)

ts1 ∈ M1

Mi = {tsj+1
|tsj+1

− tsj ≤ 30, tsj ∈ Mi}
5 ≤ tsj+1 − tsj ≤ 30 ∀sj ∈ Mi, ∀Mi

tsk − tsl ≥ 43 ∀l ∈ Mi, ∀k ∈ Mi+1

(2)

where ti is the departure time from debris i, J∗ is the

bi-objective function that has as first objective the origi-

nal objective function and as second objective the max-

imum mass constraint violation; Mi is the i−th mission

and tsj is the jth sorted time of transfer, coming from

the transformation ts = sort(t).

Advantages of this formulation With this encoding,

internally called Time Shuffler, each debris could be
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FIGURE 6. Scheme of the Time Shuffler encoding and a pos-

sible time feasible solution

freely associated to a time between the minimum and

maximum epoch allowed for the mission (Lt and Ut).

Sorting of the vector t allowed to automatically and

implicitly define the overall sequence of debris visited

(by storing the sort index vector), while the constraints

allowed to automatically distinguish between different

missions. In facts, once the times were sorted, mis-

sions Mi automatically emerged from the differences

between consecutive times: sequences of debris sepa-

rated each by less than 30 days defined a mission, while

the union of missions defined a full campaign. As a re-

sult, all possible campaigns could be uniquely defined

by the vector of times t, without needing to explicitly

track the debris IDs and thus no discrete variable at all.

This also halved the number of optimisation variables,

with a drastic reduction of the size of the search space.

Once the structure of the campaign was decoded, all

time values could be simultaneously changed to satisfy

the debris to debris and mission time constraints, pro-

vided no change in debris order was allowed. The 43

days of margin between missions included 5 days for

the removal of the first debris of a mission (ti represents

the departure time, so the spacecraft has to arrive there

5 days before to apply the deorbiting kit) and 8 days

of safety margin, as the transfers were considered in-

stantaneous at this level but not with the full dynamics

employed in the refinement stage. A graphical repre-

sentation of the Time Shuffler encoding, together with

a time feasible solution, is given in Figure 6.

Once the structure of a campaign was given and the

time constraints were satisfied, it was possible to com-

pute the resulting ∆V of each debris to debris transfer

with the low fidelity estimation. Mass constraints were

not directly imposed. Instead, the maximum mass vi-
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Solution ID Submission N. Launches Ĵ Relevant improvements in solution process

1 10 April 26 1713.07 Beam Search in the first 100 mission days.

No thorough trajectory refinement.

2 20 April 18 1133.94 Cyclic Beam Search.

Improved high fidelity model.

Added single and multiple-shooting refinement.

3 24 April 16 1059.54 Improved Cyclic Beam Search heuristics.

Improved low fidelity model.

Improved global optimisation on high fidelity model.

4 26 April 16 1028.72 Further relaxation of search overconstraints.

5 30 April 14 967.49 Added evolution algorithm to solution process,

Small population of best submitted solutions.

6 30 April 14 945.15 Multi-objective formulation of evolution

7 1 May 14 918.98 Larger population including diverse features.

TABLE 2. Evolution of the solution process and quality of some of the submissions. Column Ĵ computed with C0 = 54.945

as if submitted at the time of submission of solution 7 (best submitted).

FIGURE 7. Launches and debris removal epochs of the solutions in Table 2. Colour relates to initial mass of each of the

launches.

FIGURE 8. Difference in time at debris between individuals in the initial population and final solution obtained after evolution.

Most similar individuals on top.
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olation was considered as a second objective. The rea-

son for this multi-objective approach was that this way

a single run of the optimiser could return both the best

mass feasible campaign, and a number of mass unfeasi-

ble campaigns with even better score, thus allowing us

to choose which campaign to refine (i.e. improving an

already mass and time feasible solution or attempting to

make mass feasible a promising time feasible solution).

Moreover, this was thought to have beneficial effects in

the overall search, because promising search areas with

temporarily mass unfeasible solutions were not getting

outright discarded. Note that the multi-objective formu-

lation was introduced only after a previous single objec-

tive approach managed to provide improved campaigns.

Implementation details Problem 2 was tackled with

the MACS algorithm [11] with a bi-level approach: on

the upper level, the evolutionary heuristics of MACS

generated possible solutions t, which were sorted, de-

coded and made feasible by a lower level simply en-

forcing the constraints and returning to the outer level

feasible solutions with the original ordering, similarly

to what was done in [12, 13, 14]. Initial trials were per-

formed with totally random initial guesses for t, and re-

sulted in mass and time feasible campaigns with values

of Ĵ ≈ 1900, rivalling submitted Solution 1 of Table

2 in just a couple of hours of runtime and no thorough

trajectory refinement. MACS was then seeded with the

best 14 solutions coming from the combinatorial search,

including previously submitted solutions and promising

mass unfeasible solutions, and was run for 107 function

evaluations and standard parameters (for a runtime of

approximately 6 hours). To get even better results, ev-

ery 100 iterations of the outer level, the inner level did

not just enforce time constraints but also performed a

gradient based optimisation of the campaign cost func-

tion. Note that this gradient based refinement, with the

low fidelity model but on the whole campaign simul-

taneously was only made possible by the Time Shuf-

fler encoding. The fact that this reformulation of the

original problem allowed us to evolve better solutions

from those found by the Beam Search and that the de-

tailed trajectory optimisers were then able to further re-

fine those solution, confirmed that the whole approach

was effective and solid. Unfortunately, this whole ap-

proach arrived too late in the competition, and since the

trajectory refinement pipeline took approximately 6 to

8 hours of computational time, it wasn’t possible to run

it more extensively. Moreover, the generic metaheuris-

tics employed in MACS were probably not particularly

suited for this specific problem, so better performance

could be expected with problem specific metaheuristics.

6 Solution refinement

As last step, the solutions of the single transfers be-

tween debris computed by the high fidelity model pre-

sented in Section 3 are refined by a local optimiser

handling an entire mission of multiple transfers in or-

der to meet the constraint tolerances and further reduce

the propellant consumption. Two steps are employed

for this process. In the first one the mission is opti-

mised using a single-shooting method. For each trans-

fer, the optimisation variables are the same ones defined

in Section 3, but the total number of variables is now

n = 4 N n∆V where N is the number of transfers in

the mission. The problem is solved using Matlab fmin-

con with the active-set algorithm.

In the second step, the solution obtained by the

single-shooting is used as first-guess for a direct

multiple-shooting algorithm, using WORHP as sparse

nonlinear programming (NLP) solver [15], employed to

reduce the numerical integration error and improve the

convergence performance.

Each transfer between two debris objects is modelled

as a multi-phase problem with discontinuous linking

conditions, i.e. the instantaneous velocity change ∆V .

In a single phase, there is no continuous control to op-

timise and also a single discretisation interval could be

used. Nonetheless, m sub-intervals are introduced to

reduce the integration errors and to enhance the numer-

ical solution of the boundary value problem, restoring

the original purpose of shooting techniques. In par-

ticular, this precaution was necessary because of long

time-scale trajectories subject to a sensitive dynamics.

Indeed, a single transfer could last up to 25 days, which

translates in hundreds of revolutions in the fast LEO

dynamics under the effect of the full J2 disturbance.

Hence, the number of free parameters per transfer sums

up to n = 4n∆V +6(n∆V − 1)(m− 1)+ 3(n∆V − 2),
where the first term describes the time and three vector

components of the impulsive manoeuvres, the second

one concerns the initial condition of each sub-interval

within a single phase, while the latter deals with the

position variables after each ∆V , i.e. the linking con-

ditions on position. Successively, each transfer is con-

nected to the next one by means of a coasting phase,

i.e. the de-orbit phase at the debris, with continuous
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FIGURE 9. Individual sequence similarity. Each row represents an individual’s debris rendez-vous sequence, dots represent

new mission launch. Colour details how many positions the rendez-vous with that debris ID is shifted in the sequence of the

final submission. Individual 15 is the final submission.

full linking conditions. In order to enhance the com-

putational efficiency, the sparsity patterns of the asso-

ciated Jacobian and Hessian matrices, resulting from

the multiple-shooting transcription scheme, have been

derived and exploited in the NLP step. The employed

settings result in about 400 free variables per transfer,

about 5% as percentage of non-zero elements for the

objective’s gradient, and lower than 0.1% for the con-

straint’s Jacobian and Hessian matrices. Furthermore,

the full-J2 dynamical model has been augmented with

the associated variational dynamics, and the system of

equations numerically propagated using a Runge-Kutta

4 integrator, to compute the gradient information. This

approach resulted in a decreased computational load

and a more accurate derivative computation with re-

spect to the finite-difference approach [16].

7 Results

Table 2 details the number of launches and cost of sev-

eral of the solutions submitted ordered by submission

date, together with the associated relevant improve-

ments on the solution process. For fairness in the com-

parison, the cost is computed as if they had all been

submitted at the time of the last submission.

Figure 7 details the mission timeline for the solutions

in Table 2 as well as the initial mass of the spacecraft

in each of the launches. It can be observed how an in-

crease in the quality of the solution is associated to an

increase in homogeneity in the mass of each of the inde-

pendent launches and to better coverage of the mission

time frame – note the gaps in the timelines of solutions 1

to 4. These two features derive from using incremental

combinatorial approaches too greedy in terms of ∆V of

each transfer, that lead to inexpensive missions that can-

not be aggregated into competent campaigns. The gaps

are caused by the search exhausting the available debris

before exhausting the available mission time, thus fail-

ing to explore a region of the search space. Whereas so-

lutions were generated using some of the heuristics de-

tailed in Section 4 that mitigated this effect, this was al-

ways at the expense of the final objective function value.

A similar phenomenon was encountered regarding the

number of launches – solutions of as few as 13 launches

yet suboptimal to Solution 4 were generated before So-

lution 5. This tendency ends with the introduction of

the evolution of solutions in the pipeline, in Solutions

5 to 7. Besides a reduced number of launches and the

lack of the aforementioned gaps in the mission timeline,
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Mission Start date End date Number of debris Debris IDs

1 08/04/2064 18/04/2064 2 97, 44

2 20/05/2064 06/09/2064 8 109, 66, 28, 42, 102, 5, 72, 110

3 21/10/2064 14/04/2065 9 115, 7, 63, 67, 70, 48, 37, 104, 31

4 02/07/2065 02/08/2065 5 76, 52, 64, 53, 74

5 03/09/2065 02/11/2065 4 50, 118, 35, 113

6 09/12/2065 05/03/2066 5 114, 80, 116, 49, 117

7 11/04/2066 04/07/2066 7 34, 106, 26, 33, 2, 108, 6

8 16/11/2066 07/12/2067 17 4, 8, 43, 73, 55, 10, 9, 95, 65, 14

93, 19, 90, 21, 100, 69, 30

9 03/03/2068 26/11/2068 15 81, 75, 87, 3, 45, 86, 105, 96, 46

82, 41, 119, 57, 24, 32

10 01/01/2069 15/09/2069 16 1, 54, 62, 40, 89, 0, 99, 112, 15

121, 59, 98, 27, 107, 20, 61

11 04/01/2070 17/07/2070 10 58, 23, 39, 122, 17, 12, 71, 16

60, 68

12 24/08/2070 10/02/2071 9 13, 111, 120, 103, 94, 78, 85, 56, 83

13 28/04/2071 30/09/2071 9 25, 38, 77, 47, 11, 29, 101, 22, 91

14 21/11/2071 31/03/2072 7 18, 88, 36, 92, 51, 79, 84

TABLE 3. Details of the final submitted campaign: start and end date, number of debris removed and debris’ IDs.

these campaigns also show an increased homogeneity

in terms of initial mass of each of the launches. This

proves the synergy obtained between the first and sec-

ond stages of the solution process described in Section

2.

Figure 8 shows the difference in time of arrival at de-

bris between the 14 individuals used by MACS as initial

population for the evolution process, and the final solu-

tion submitted, Solution 7. Figure 10 presents the same

information in terms of shifted positions by consider-

ing the debris rendez-vous sequence of each individual

in chronological order. Bands of a similar colour indi-

cate sections of the sequence that have been translated

and/or permuted. Figure 9 details the zeroes of Figure

10, i.e. when the i-th rendez-vous in chronological or-

der of a seed campaign matches with the final one. Note

that many individuals are not mass-feasible initially, but

present large similarity with the final submission, that

was mass-feasible after applying the high fidelity mod-

els.

The time shifts in Figure 8 will alone define the

itinerary of a campaign, hence these differences can be

taken as a first indicator of the similarity of the chromo-

somes of different campaigns. It can be observed that

there is mainly one individual that serves as backbone

for Solution 7, although some other individuals present

high similarity. Further analysis, as in Figure 10, con-

firms that a large part of the final submission itinerary

can be traced back to a single individual by means of

small shifts and permutations. This backbone individ-

ual is number 1 in Figure 8, number 8 in Figures 10 and

9.

The algorithm manages nevertheless to enhance the

quality of the backbone individual, presumably by ex-

tracting information from other individuals in the pop-

ulation. For instance, the algorithm extracts several de-

bris rendez-vous from the beginning of missions (new

launches), and places them elsewhere in Solution 7. It

also manages to insert a debris visit that required a ded-

icated launch within a short sequence. In a number of

cases, the largest changes with respect to the backbone

individual, can be traced back to smaller shifts and/or

permutations with respect to other individuals. In other

cases, the information flow is not apparent, as Solution

7 exploits some debris-to-debris transfers that are not

represented in any individual of the initial population.

Figure 11 is a representation of the evolution in time

of the RAAN of the final submitted campaign. It can be

observed that the solution generally follows the natural

J2 drift as expected. Table 3 reports details of the 14

missions of the final submitted campaign. The final re-
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FIGURE 10. Debris order affinity between seed solutions and final solution. A dot represents when the ID of the debris i-th

rendezvous in chronological order of a seed campaign matches with the final one.
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FIGURE 11. Evolution in time of the RAAN of the final sub-

mitted solution.

sults1 and the complete seeding population debris IDs2

can be downloaded from the provided links.

8 Conclusions

The paper presents the approach developed by team

Strathclyde++ for the solution of the 9th GTOC prob-

lem. The proposed methodology separates the com-

binatorial component of finding the optimal sequence

of debris removals within the mission timeline, from

the continuous problem of finding the best set of ma-

noeuvres for each transfer and assuring feasibility. In

1http://icelab.uk/wp-content/uploads/2017/05/

FinalSubmission.zip
2http://icelab.uk/wp-content/uploads/2017/10/

debris_order_evolutionary.xlsx

particular, it introduces a continuous formulation of the

combinatorial problem that allowed a population-based

global algorithm to evolve a set of first-guess solutions

and generate new ones, thus overcoming the manifest

limitations of incremental combinatorial approaches.

The fundamentals of the proposed methodology can be

generalised to a family of multiple rendezvous prob-

lems, and are of special interest for the design of mis-

sions in which the set of available targets needs to be

exhausted.

9 Acknowledgment

The team would like to thank Archie-WEST, the su-

percomputing centre of West of Scotland for the sup-

port and computing resources, and the colleagues at

the University of Strathclyde, namely Gianluca Filippi,

Francesco Torre and Victor Rodriguez, for the always

insightful discussions about the problem.

References

[1] GTOC portal. https://sophia.estec.

esa.int/gtoc_portal/. Accessed: May

2017.
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