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Abstract 

 Periodic Mesoporous Silicas (PMS) are one of the prime examples of templated 

porous materials – there is a clear connection between the porous network structure and 

the supramolecular assemblies formed by surfactant templates. This opens the door for a 

high degree of control over the material properties by tuning the synthesis conditions, and 

has led to their application in a wide range of fields, from gas separation and catalysis to 

drug delivery. However, such control has not yet come to full fruition, largely because a 

detailed understanding of the synthesis mechanism of these materials remains elusive. In 

this context, molecular modelling studies of the self-assembly of silica/surfactant 

mesophases have arisen at the turn of the century. In this paper, we present a 

comprehensive review of simulation studies devoted to the synthesis of PMS materials 

and their hybrid organic-inorganic counterparts. As those studies span a wide range of 

time and length scales, a holistic view of the field affords some interesting new insight 

into the synthesis mechanisms. We expect simulation studies of this complex but 

fascinating topic to increase significantly as computer architectures become increasingly 

powerful, and we present our view to the future of this field of research. 
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1. Introduction 

In its broadest sense, Periodic Mesoporous Silicas (PMS) are materials 

composed of an amorphous silicon dioxide (SiO2) scaffold that forms a porous structure 

with mesoscale ordering. The ordering of the pores is brought about by the use of 

supramolecular templates, usually molecular surfactants or block co-polymers, which 

self-assemble in an aqueous solution containing a silica source. Depending on the 

conditions of the synthesis and nature of the surfactant, different mesostructures will 

form in solution, leading to porous materials with potentially controllable structural 

features. PMS are therefore a flagship success case of the templated synthesis approach 

for porous material production [1]. Their discovery has been almost exclusively 

attributed to the work of Mobil scientists in 1992 [2, 3]. In fact, the archetypal PMS 

material, and arguably the most studied member of this family, is MCM-41 (MCM 

stands for Mobil Composition of Matter), which exhibits roughly cylindrical pores 

organised in a hexagonal array. However, Di Renzo et al. [4] have shown that a recipe 

published in a 1971 patent by Chiola et al. [5] leads to the synthesis of a PMS material 

that is very similar to MCM-41. Nevertheless, Beck et al. [2] were undoubtedly the first 

to recognise the importance of their discovery, and their work generated great interest in 

the material science community. Their papers sparked a great number of subsequent 

studies reporting new mesoporous materials obtained through similar template-based 

routes, in a phenomenon perhaps not very different from the much more recent hype 

surrounding Metal-Organic Frameworks [6]. Some of the most relevant advances in the 

early years following the paper by Beck et al. were the extension of PMS synthesis to a 

wide range of pH conditions [7], the discovery of block copolymer templated materials, 

of which the most well-known example is SBA-15 [8], the synthesis of bio-inspired 

mesoporous silica through the use of amine-based surfactants [9, 10], and the 



incorporation of organic groups on the pore walls of the material, leading to the 

discovery of Periodic Mesoporous Organosilicas (PMO) [11-13]. PMS materials and 

their derivatives are now applied in a variety of fields, including gas separation and 

storage, catalysis, drug delivery, sensors, energy storage, and imaging [14, 15]. 

This surge in the discovery of new mesoporous silica materials was closely 

followed by attempts to better understand their synthesis process, mainly through 

experimental means. Despite several notable advances, however, a complete 

understanding of the synthesis process of even the simplest of these materials, MCM-

41, has still not been achieved. The main challenges lie in the complex nature of the 

process, involving phenomena like self-assembly, chemical reactions, nucleation, and 

phase separation, all taking place simultaneously within the precursor solution, as well 

as in the wide range of time and length scales that are relevant to the material formation 

[16]. This makes it very difficult to probe the entire synthesis mechanism in situ using a 

single technique, or even a combination of experimental techniques under the same 

conditions. The nature of the synthesis process, described above, also poses formidable 

challenges to theoreticians, and it is perhaps not surprising that it was not until 2001 that 

the first attempts to describe the formation of PMS materials through computer 

simulation were published [17]. In fact, it is fair to say that our theoretical 

understanding of the PMS synthesis process has significantly lagged behind (arguably 

by about two decades) experimental studies into this process. However, in recent years, 

due partly to the availability of increasingly powerful computational resources and to 

the development of new models and simulation algorithms, there have been significant 

new developments that have placed us on the verge of a complete description of the 

synthesis mechanism of MCM-41, and have led to new insight into the synthesis of 

related materials. The goal of the present paper is to present a thorough review of 



simulation studies of mesoporous silica self-assembly from solution. Although it is not 

our aim to review experimental studies of the PMS synthesis process (several reviews 

already exist on this topic [14, 18, 19]), we will make reference to key experimental 

papers throughout the discussion. Our paper is complementary, but distinct, from a 

review published recently by Auerbach et al. [16] – the latter considered both all-silica 

zeolites and MCM-41, while we focus on all classes of mesoporous silica and 

organosilica (including, but not limited to, MCM-41). Furthermore, our paper 

emphasises modelling approaches based on a statistical-mechanical description of the 

self-assembly process, and thus only those quantum mechanical studies that directly 

support such modelling approaches are discussed.  

This paper is organised as follows. We begin by discussing the state-of-the-art 

regarding the synthesis of MCM-41, as this was by far the most widely studied member 

of the PMS family, as well as related materials also synthesised using quaternary 

ammonium surfactants as templates, such as MCM-48 (section 2). We then cover recent 

advances in modelling other silica-based materials, such as SBA-15 and bio-inspired 

silica (section 3), moving on to discuss simulation studies of hybrid PMO materials 

(section 4). We end the paper with some overall conclusions and an outlook to the 

future of this area of research. 

 

2. Synthesis of MCM-41 and related materials 

In the synthesis of PMS materials there are at least three key components – a 

solvent, a surfactant and a silica source – and the process is composed of at least three 

stages: mixing of the reagents, hydrothermal reaction with phase separation of the solid 

product, and removal of the template, usually through calcination. The solvent is usually 



water or a mixture of water and ethanol. In the original MCM papers [2, 3], the 

surfactants were quaternary alkylammonium salts (most prominently, 

cetyltrimethylammonium bromide, or CTAB), which are composed of a cationic head 

and a variable-length hydrophobic tail. Anionic surfactants were also used in later 

studies [7], but we are not aware of any attempts to date to model the synthesis of 

anionic mesoporous silica. The silica source is usually monosilicic acid (Si(OH)4), 

however, since it is unstable in water, it is usually stored as tetraethylorthosilicate 

(TEOS – Si(OCH2CH3)4). When mixed with water, TEOS undergoes hydrolysis 

according to: 

ܵ݅ሺܱܥଶܪହሻସ ൅ Ͷሺܪଶܱሻ ՜ ܵ݅ሺܱܪሻସ ൅ Ͷሺܥଶܪହܱܪሻ    (1) 

This reaction liberates ethanol, and therefore may change the properties of the solvent. 

Because the hydrolysis reaction can be acid- or base-catalysed, it is very fast at both 

high and low pH values [20]. Under more neutral pH, however, several TEOS “arms” 

may remain unhydrolysed long after the silica has started to polymerise [20]. Silica 

polymerises according to the following polycondensation reaction: 

ܴଷܵ݅ െ ܪܱ ൅ ܱܪ െ ܴܵ݅ଷ ՜ ܵ݅ଶܴ଺ܱ ൅  ଶܱ     (2)ܪ

Where R is any functional group. Reaction (2) is also catalysed by both acid and base, 

but the nature of the condensation product, even in a simple aqueous solution, depends 

strongly on the synthesis pH – acid media tend to favour formation of cross-linked gels, 

while high pH favours formation of small compact oligomers and nanoparticles [20]. 

 If the chemistry of silica on its own is already quite complex, with the final 

product relying on a delicate balance between the two reactions mentioned above, 

aggregation of silica particles and phase separation of the solid material, and depending 

strongly on solution pH, concentration and temperature, in the presence of template 



molecules the complexity is multiplied. In the case of MCM-41, Beck et al. [2] 

observed that the porous structure of the final material closely resembled mesostructures 

formed in aqueous solutions of the template surfactant (e.g., hexagonal MCM-41, cubic 

MCM-48, lamellar MCM-50), and were able to show that increasing the surfactant tail 

length led to a relatively predictable increase in the pore diameter of hexagonal MCM-

41 materials. This led them to propose a liquid-crystal templating (LCT) mechanism, 

whereby silica condenses around pre-formed surfactant mesostructures to produce a 

rigid mesoporous scaffold. However, they also observed that several of those 

mesostructures were formed at low surfactant concentrations, conditions under which an 

aqueous surfactant solution would only form dispersed micelles. They therefore 

suggested the possibility of a second mechanism, termed cooperative templating 

mechanism (CTM), whereby it is the synergistic interaction between silicates and 

surfactants that promotes the self-assembly of complex silica/surfactant mesostructures. 

The two mechanisms represent two fundamentally different views of the synthesis 

process – structure directing by the surfactant phase, with silica playing only a minor 

role, versus templating in which silica plays a major role in directing the final structure 

– but at the time, there was insufficient evidence to decouple the two mechanisms.  

 A series of experimental studies followed [21-34], using a multitude of 

characterisation techniques including X-ray diffraction, transmission electron 

microscopy, infrared and Raman spectroscopy, solid-state and solution NMR, 

temperature programmed desorption, gas adsorption, polarized optical microscopy, and 

fluorescence quenching. Although these studies undoubtedly shed new light on the PMS 

formation, several aspects of the synthesis mechanism remained controversial. For 

example, although mounting evidence in favour of the CTM has been amassed over the 

years [21-26], it is still unclear if the LCT is a viable mechanism under certain 



conditions [27]. Within the framework of the CTM, some researchers have argued that 

silicates promote a transition in the shape of surfactant micelles from small spheres to 

rods and even wormlike micelles at very early stages of the synthesis process [23-25], 

while others observed no evidence of such a transition [28, 29]. It is also still not 

completely clear if small silicates prefer to interact with surfactant micelles, adsorbing 

at their surface [23, 30, 31], or with loose surfactant monomers [7, 28, 29] in the early 

stages of the synthesis. At later stages, uncertainty remains about the way in which 

silica/surfactant micelles aggregate to form the liquid-crystalline mesophase, with some 

researchers inferring aggregation of cylindrical micelles [21, 32] and others proposing 

aggregation of spherical micelles followed by shape transformation within the micellar 

aggregate [30, 33, 34]. All these questions have profound implications on the synthesis 

mechanism, and on our ability to control the properties of the resulting material by 

tailored design.  

It was in this context of uncertainty that modelling efforts to describe the PMS 

synthesis process were proposed as a valuable complement to experimental studies. In 

the following subsections, we review the state-of-the-art regarding simulations of the 

synthesis mechanism of MCM-41 and related materials. It is important to note that a 

large number of modelling studies of PMS materials have focused on building more or 

less realistic molecular models of the pore structure, for example by applying stochastic 

methods [35-37] or by modifying existing silica structures [38], in order to study their 

performance in gas adsorption. Those studies were mainly concerned with relating the 

properties of the material (e.g., pore size, wall structure) with its performance in 

particular applications. Instead, we are concerned here with studies that attempt to 

elucidate the mechanism by which these materials self-assemble from an initially 

disordered solution – i.e., they try to provide relationships between synthesis conditions 



and material properties. We organise this section in three more or less parallel trends; i) 

attempts to describe the phase equilibrium diagrams of MCM-41 precursor solutions, 

mostly based on lattice models; ii) attempts to describe the self-assembly mechanism of 

silica-surfactant mesostructures, mostly based on off-lattice models; iii) attempts to 

describe the silica condensation reactions in precursor solutions, mostly based on 

reactive potentials and/or advanced Monte Carlo algorithms. 

 

2.1 Phase Diagrams – Lattice Models 

Possibly the first attempt to model at least part of the self-assembly pathway 

with specific reference to MCM-41-type materials was the work of Siperstein and 

Gubbins [17, 39]. Their focus was not on obtaining atomically detailed models of 

MCM-41 adsorbents, but rather on exploring the phase diagrams of the ternary 

surfactant-solvent-silica systems. They achieved this using lattice Monte Carlo (MC) 

simulations in the canonical (constant NVT) ensemble, based on an earlier model of 

Larson et al. for surfactant self-assembly [40]. Their surfactants were comprised of head 

and tail beads (HiTj); three variations thereof were investigated – H4T4, H4T6 and H2T6. 

Each H or T bead occupied one lattice site, as did each solvent (S) or silica (I) bead. The 

model allowed for reptation, chain regrowth and cluster MC moves on a simple cubic 

lattice. Silica beads interacted strongly with the surfactant heads, while tails interacted 

strongly with each other to describe hydrophobic association. Silica-solvent interactions 

were varied, in order to describe different regimes of association. 

Siperstein and Gubbins [17, 39] dealt initially with the binary phase diagrams; 

these were surfactant/solvent and surfactant/silica systems. They showed for the 

surfactant/solvent system that they were able to reproduce the results of Larson’s model 



[40], whereby the surfactant transitions from a hexagonal to a lamellar structure by 

increasing the surfactant volume fraction, with a small gyroid phase region existing 

between the two. For the surfactant/silica system, they observed a similar trend: 

micelles were present at the lowest surfactant volume fraction, progressing through a 

hexagonal phase to perforated lamellae at the highest surfactant volume fraction (Fig. 

1a). They also compared the size of the aggregates in both phases, whereby the 

structures in the surfactant/solvent system incorporated three times the surfactants as 

those in the surfactant/silica system. This is because silica-head (I-H) interactions were 

stronger than solvent-head (S-H) interactions in their model, leading to less phase 

separation. 

 

Figure 1. a) Ternary phase diagram of surfactant/water/silica obtained from lattice 

Monte Carlo simulations, showing the phase separation region. Circles highlight 

different mesostructures formed in the concentrated phase: H – hexagonal; L – 

lamellar; P – perforated lamellae. Simulation snapshots showing examples of the 

lamellar phase (b) and of the hexagonal phase (c). Only the silica beads are shown for 

clarity of visualisation. Adapted from Siperstein and Gubbins [39]. 

 

In the ternary systems (surfactant-solvent-silica) Siperstein and Gubbins 

considered two different cases: in the first, silica was completely soluble in the solvent 



(zero I-S interaction energy), and in the second, it was immiscible (positive I-S 

interaction). They linked these to two possible mechanisms for inducing phase 

separation, respectively associative and segregative separation. In the former, the 

separation is driven by strong attractions between two species, while in the latter it is 

driven by a strong repulsion. They showed that, independent of the type of mechanism, 

at high silica/surfactant ratios hexagonal phases (Fig. 1b) were formed, while lamellar 

phases (Fig. 1c) were formed at low ratios. This corresponds to what is observed 

experimentally during the synthesis of PMS materials [2, 27]. However, they were only 

able to capture qualitative trends, due to the inherent simplicity of the lattice model that 

restricts the number of surfactants that can interact with a silica species at any given 

time. 

Finally, they investigated the dependence of temperature and surfactant 

composition on the phase diagrams. They noted that increased temperature led to lower 

surfactant concentrations but higher silica concentrations in the surfactant-rich phase, 

which promoted the formation of hexagonal as opposed to lamellar phases. This 

behaviour can be seen experimentally in CTAB-silica-water systems [23]. Their analysis 

of surfactant composition showed that increased head/tail ratios (i.e. shorter 

hydrophobic tails) promoted hexagonal phases, whereas decreased H/T ratios favoured 

lamellar phases. 

The model of Siperstein and Gubbins has been subsequently extended to 

describe phase equilibrium of periodic mesoporous organosilica percursors [41-44], 

which is discussed in section 4, and of block copolymer-templated materials [45, 46], 

which is discussed in section 3, as well as to explicitly describe silica condensation 

reactions during the formation of MCM-41 by Jin et al. [47]. The model of Jin et al. 

introduced three main improvements over the Siperstein model in an effort to increase 



its realism: i) silicates were only allowed to occupy sites on a diamond sublattice of the 

overall system, thus describing their tendency to form tetrahedral network structures; ii) 

polymerisation of silica was accounted for by allowing two oxygens to occupy the same 

lattice site with a very favourable interaction energy (an order of magnitude larger than 

the silica-head interaction); iii) deprotonation equilibrium was explicitly modelled 

through a Reactive Monte Carlo (RMC) method, thus allowing for simulations at high 

pH (i.e., containing anionic silicates) to be performed. The energy scale was calibrated 

by attempting to replicate the high-temperature region of the experimental phase 

diagram of CTAB in water.  

Jin et al. considered two different scenarios to attempt to elucidate the synthesis 

process of MCM-41 [47]. The first scenario was a two-step process: in the first stage no 

silica polymerisation took place and the system was allowed to self-assemble and phase 

separate, while in the second stage silica was allowed to polymerise. In the first stage, 

the model predicted that a binary surfactant/solvent system formed spherical micelles, 

whereas adding a significant concentration of silica caused the system to form 

hexagonal arrays of pores, i.e. an MCM-41 template (Fig. 2a). This is in agreement with 

the theory that cooperative templating is the dominant mechanism during MCM-41 

synthesis. They also showed that the initial mesophase formation process is reversible, 

by cooling and heating the system to move back and forth between the lamellar and 

hexagonal mesophases. However, this reversibility was only possible before extensive 

silica polymerisation took place; after polymerisation (second stage), the structure 

became locked in.  



 

Figure 2. Snapshots of mesophases obtained from lattice Monte Carlo simulations 

accounting for both surfactant self-assembly and silica polymerisation: a) hexagonal 

phase obtained from a two-step process; b) disordered phase obtained from a one-step 

process. Colour code is: blue – surfactant tails; green – surfactant heads; red – neutral 

oxygens; purple – negatively charged oxygens; yellow – silicon. Adapted from Jin et al. 

[47]. 

 

The above results were compared to a second scenario in which both 

mesostructure self-assembly and silica condensation were allowed to take place 

simultaneously from the very start of the simulation. Interestingly, they observed that 

rapid polymerisation precluded development of long-range order of the template, 



instead producing a glassy material (Fig. 2b). This result suggests that the mesoscale 

structure of the final solid can be controlled only during the initial stages of the 

synthesis, before silica condensation becomes extensive. Even though the results of this 

study were very insightful, the inherent simplicity of the lattice model once again makes 

it difficult to establish quantitative comparisons with experiment. For example, the 

authors were not able to achieve the same degree of silica polymerisation in their 

simulations as observed in experiments, a discrepancy that was attributed by the authors 

to geometric restrictions of the lattice [47]. 

 

2.2 Self-Assembly – Off-Lattice Models 

In 2009, Jorge et al. published the first molecular dynamics (MD) investigation 

of MCM-41 synthesis using realistic atomistic models [48]. They started from a dilute 

aqueous solution of surfactant, to which anionic silicic acid monomers were added, in 

an attempt to mimic the initial stages of the synthesis of MCM-41 at high pH and low 

surfactant concentrations (the conditions of the original experimental work [2]). 

Decyltrimethylammonium bromide (DeTAB) was chosen as a surfactant instead of the 

more common CTAB for the sake of computational tractability, and was modelled using 

a modification of the OPLS potential [49]. Water was described by the SPC/E model 

[50]. To describe silicate molecules, Jorge et al. adapted an existing model from Pereira 

et al. [51], with modified geometric and electrostatic parameters obtained from quantum 

calculations on a wide range of neutral and anionic silicates [52].  

Their initial study [48] yielded two major insights into the early stages of the 

synthesis: i) silicates were observed to interact strongly with small surfactant micelles, 

rather than with free surfactant monomers; ii) adsorption of silica monomers on the 



micelle surface caused an increase in the size of the micelles. This was followed by a 

more detailed report, in which solutions of silicate oligomers were also considered [53]. 

More precisely, the authors ran simulations from several starting configurations, whose 

composition each corresponded to a different stage of the synthesis: reference solution 

(no silicates present, describing the initial surfactant solution), monomeric solution 

(with silica monomers instead of bromide counterions), and oligomeric solution (with 

small silica oligomers corresponding to a distribution inferred from solution NMR 

experiments at high pH [54]). From their results, they concluded that cooperative 

templating does indeed occur, since the size of surfactant micelles was greater in the 

monomeric solution (Fig. 3b) than in the reference solution (Fig. 3a), and the oligomeric 

solution produced even larger micelles. At the pH being modelled (11) almost all the 

silica species were deprotonated, and it was thus concluded that the increase in micelle 

size was due to silica species being more effective at screening the positive charge of 

the surfactants than bromide ions. This was quantified by the average number of 

surfactants bound to each counterion: 1.31 for bromide ions (reference solution) and 

1.64 for silica monomers (monomeric solution). The oligomers were even more 

effective at producing larger micelles since they can be multiply charged, increasing 

their screening ability. Interestingly, the multiply charged silica oligomers were also 

able to bind to multiple micelles simultaneously (1.36 on average, compared to a little 

more than 1.0 for both bromide and monomeric ions), which was suggested to promote 

aggregation of micelles.  

 



 

Figure 3. Snapshots showing the evolution of silica/surfactant aggregate structures 

during the early stages of MCM-41 synthesis, as observed from MD simulations using a 

multi-scale modelling approach: a) small spherical micelle in a dilute surfactant/water 

solution (atomistic model), adapted from Jorge et al. [53]; b) larger spherical micelle 

in a solution with silica monomers at short times (atomistic model), adapted from Jorge 

et al. [53]; c) rod-like micelle in a silica monomer solution after long equilibration 

times (coarse-grained model), adapted from Pérez-Sánchez et al. [55]; d) hexagonal 

phase in a solution with silica dimers (coarse-grained model), adapted from Pérez-

Sánchez et al. [60]. Surfactant tails are shown in green, heads in purple, silica in 

red/orange and bromide in grey. 

 

 Jorge et al. [53] also considered an exchange solution, which was produced by 

taking an equilibrated reference solution and adding silica monomers, while keeping the 

initial concentration of bromide counterions. This was meant to more realistically mimic 

the effects of addition of a silica source to a pre-equilibrated surfactant solution. Results 

of that simulation confirmed that silica preferentially binds to the micelles, and clearly 

showed ion exchange between silica and bromide at the micelle surface (the degree of 

silica binding was 76% by the end of the simulation). The silica monomers tend to be 

found inside the layer of the head groups, whereas the bromide ions tend to be located 

outside, allowing the two to work together to more efficiently screen the electrostatic 

repulsion between head groups, leading to larger micelles. Interestingly, when silica 

monomers were replaced by larger silica oligomers (keeping the total charge constant), 

the latter tended to migrate out of the head group layers, facilitating the binding to 

multiple micelles. 

 The approach of Jorge and co-workers suffered from several limitations imposed 

by the computationally intensive nature of the atomistic model. For example, formation 



of multiple micellar aggregates within a reasonable computational time was only 

possible for the shorter DeTAB surfactant, and not for the more commonly employed 

CTAB. More importantly, the authors were not able to observe significant shape 

changes of the micelles (e.g., sphere-to-rod transitions) in their simulations. In an 

attempt to circumvent those limitations, the same group developed a coarse-grained 

(CG) model for PMS precursor solutions [55]. The model of Pérez-Sánchez et al. was 

based on the popular MARTINI CG potential of Marrink and co-workers [56], but 

included new parameters for neutral and anionic silicic acid monomers. The CTAB 

surfactant was described by four hydrophobic tail beads and one positively charged 

head bead [57], while the models for water and bromide followed the conventional 

MARTINI prescription [56]. The surfactant model was validated by comparing micelle 

density profiles at the CG [55] and all-atom (AA) levels [58], and was shown to 

quantitatively reproduce the experimental average size and aggregation number of small 

CTAB micelles [55], as well as most features of the experimental CTAB/water phase 

diagram over a wide range of concentrations and temperatures [59]. The silica monomer 

parameters were calibrated by matching micelle density profiles against those obtained 

from AA simulations [48] under the same conditions. 

 Applying the CG mapping procedure allowed Pérez-Sánchez et al. to 

significantly extend the length and time scales available to MD models of the MCM-41 

synthesis (simulations reached the order of tens of microseconds), while maintaining a 

good degree of chemical realism [55]. Simulations with silica monomers equilibrated to 

form long wormlike micelles (Fig. 3c), while at the same conditions an aqueous solution 

of CTAB (i.e., without silica) yielded only a distribution of small spherical micelles. 

They indeed observed a sphere-to-rod transition in the silica/surfactant solution that 

proceeded through the successive fusion of several smaller micelles to form large rods. 



This transition was driven by a strong adsorption of anionic silicates on the micelle 

surface, screening the repulsive interaction between cationic surfactant heads and 

promoting the formation of structures with lower curvature. This is further evidence 

supporting the cooperative templating mechanism for the initial stages of MCM-41 

synthesis. 

 In a later paper, Pérez-Sánchez et al. extended the model to consider silicate 

oligomers, as well as monomers, with parameters once more calibrated to match 

atomistic micelle density profiles [60]. They focused their attention on low surfactant 

concentration solutions corresponding to the experimental studies of Firouzi et al. [23]. 

Initially, they tested several compositions in order to determine the effect of different 

silica species on the final mesostructure. These systems were: 1) a binary surfactant-

solvent reference solution; 2) a ternary surfactant-silica monomer-solvent solution; 3) a 

ternary surfactant-silica dimer-solvent solution. The silica/surfactant ratio was 1 in the 

last two systems, i.e. there were half as many dimers in solution 3 as monomers in 

solution 2; because monomers all had a charge of -1 and dimers of -2, the total silica 

charge was kept constant. Their results confirmed the previous assertion [55] that the 

reference system produced spherical micelles, whereas the introduction of silica altered 

the geometry of the micelles, making them much more elongated. Interestingly, 

however, the solutions containing monomers and dimers did not produce the same 

micellar geometry; solution 2 produced wormlike micelles, whereas in solution 3 a 

phase-separated hexagonal array, strongly reminiscent of MCM-41 structures, was 

obtained (Fig. 3d). In order to show that these configurations were equilibrium states, as 

opposed to kinetic artefacts, exchange simulations were carried out; monomers were 

replaced by dimers and vice versa, while maintaining the micellar geometry and 

allowing the system to relax. These simulations indeed showed that the changes were 



reversible, and the obtained structures thus corresponded to equilibrium states of the 

system. 

The hexagonal array reached equilibrium much quicker in the exchange solution 

than from a random initial configuration. This is interesting, since the exchange solution 

is likely to represent a more realistic scenario; silica monomers initially produce rod-

like micelles, then dimers resulting from silica condensation subsequently promote the 

formation of the hexagonal array. Further simulations with mixtures of monomers and 

dimers showed that formation of the hexagonal mesophase requires the presence of 

between 15-33% of silicates in the form of dimers. Their results thus not only 

demonstrate that silica is necessary to promote the formation of the hexagonal structure, 

but that it needs to be in the form of (at least) small oligomers. This is mainly due to the 

ability of multiply charged silica oligomers to bind to more than one micelle at the same 

time, thus promoting micelle aggregation and eventually phase separation of the 

mesophase. 

Next, Pérez-Sánchez et al. investigated larger oligomers, namely cyclic trimers, 

cyclic tetramers and cubic octamers. Their simulations showed reversible hexagonal to 

lamellar transitions by changing the silica charge density (either through increasing the 

degree of condensation while keeping the charge constant, or through increasing the 

degree of deprotonation for the same degree of condensation) or by adding a co-solvent 

(e.g. benzene) to the system. In the former case, a higher charge density reduced the 

effective area per head group leading to a decreased curvature and favouring lamellar 

phases. In the latter case, the co-solvent was incorporated into the hydrophobic region 

of the hexagonal mesophase, leading to an increase in the effective tail volume, and 

hence also promoting a transition to a lamellar structure. All of the above results were in 

qualitative agreement with experimental observations in the synthesis of MCM-41, but 



a key achievement was the ability to reproduce, for the first time, the formation of a 

hexagonal silica/surfactant mesophase under conditions that were quantitatively 

equivalent to the experiments of Firouzi et al. [23].  

A very recent paper by the same authors applied the CG model to precursor 

solutions spanning a wide range of surfactant concentrations, in order to probe the 

whole phase diagram of the system (Fig. 4) [59]. Once again, they compared the 

behaviour of a reference CTAB solution to that of solutions containing silica monomers 

and silica dimers. For the monomer-surfactant-solvent system, they found no surfactant 

concentration at which a hexagonal phase could be induced – in fact, the silica 

monomers appeared to hinder the formation of a hexagonal phase, instead reverting to 

either wormlike micelles or lamellar phases. Replacing the monomers with dimers 

produced very different results – a hexagonal phase was formed over a much larger 

surfactant concentration range than in the binary surfactant-solvent system (mainly at 

the expense of the micellar rods region). Interestingly, the results suggest that even 

when starting from a pre-equilibrated hexagonal CTAB structure formed in concentrated 

surfactant/water solutions, the original surfactant liquid-crystal is destroyed in the initial 

stages of the synthesis, upon addition of silica monomers, and later reformed after some 

degree of condensation produces oligomers. These results are further evidence against 

the LCT mechanism, since they show that the nature of the surfactant-water and of the 

silica-surfactant hexagonal phases is remarkably different – the former is driven by 

micelle repulsion (week screening limit) and fills the entire space, while the latter is 

driven by micelle attraction (strong screening limit) and constitutes a phase-separated 

system.  



 

Figure 4. Map of the mesophases observed in coarse-grained simulations of different 

solutions at a range of initial surfactant concentrations, representative of incremental 

stages of PMS synthesis, from bottom to top: surfactant/water solution; silica monomer 

solution; silica dimer solution. S stands for spherical micelles, R for micellar rods, B for 

bicontinuous phase, and L for lamellar phase. The grey arrows represent possible 

synthesis paths leading to different PMS materials: a) MCM-41; b) MCM-48; c) MCM-

50. Adapted from Chien et al. [59]. 

 

The phase diagrams for the three systems also allowed the authors to 

hypothesise on which of the MCM-like materials might be synthesised through a LCT 

mechanism. At high surfactant concentrations in the presence of silica, they observed 

the formation of a bicontinuous phase reminiscent of MCM-48 and of a lamellar phase 

resembling MCM-50. Although bicontinuous phases were observed in all three tested 

solutions, their ranges of stability did not overlap at any surfactant concentration, hence 



MCM-48 would not seem to be a candidate for the LCT mechanism. The exception, 

however, is MCM-50; in all three systems, there is a region of overlap of lamellar 

phases at high surfactant concentrations. Taking all these observations together, it seems 

likely that the CTM is the main mechanism by which the synthesis of MCM-41 is 

achieved. 

 

2.3 Modelling Silica Condensation 

The studies mentioned until this point have all focussed on the self-assembly 

and phase equilibrium aspects of the PMS synthesis. To investigate those phenomena 

thoroughly and efficiently, most studies have foregone investigation of the silica 

polymerisation component of the synthesis – in fact, of all the studies discussed in 

sections 2.1 and 2.2, only the paper of Jin et al. [47] explicitly described silica 

condensation reactions, albeit with a rather simplified approach. However, in parallel 

with that stream of investigation, researchers have been developing increasingly 

accurate and efficient models and algorithms to describe chemical reactions involving 

silicates, with several different approaches being proposed. These different approaches, 

including their advantages and limitations, have been covered in recent reviews [16, 61] 

so we will mention them only briefly here and focus in more detail on the few existing 

studies that attempted to explicitly include silica condensation reactions in simulations 

of PMS formation. 

Most attempts to describe silica condensation have made use of MD simulations 

with reactive potentials [62-64]. Such studies were able to provide atomic-level detail 

on the formation of small amorphous silicate clusters in solution, but required 

simulations to be run at very high temperatures in order to sample the reaction events. 



The work of Wu and Deem [65] also used a reactive potential, but the configurational 

space of the system was explored through a rather complicated Monte Carlo (MC) 

algorithm. Although their work yielded important insight into silica nucleation, it was 

limited to small clusters due to the computationally intensive nature of the method. A 

very distinct approach is kinetic Monte Carlo (KMC) [66-68], which describes chemical 

reactions as independent Poisson processes and thus significantly speeds up the 

sampling of reactive events. However, the method requires all reactions and rate 

constants to be explicitly enumerated, which itself imposes a limitation on the size of 

oligomers that can be formed (the number of possible reactions increases factorially 

with cluster size). Models that describe the system energy as a function only of bond 

topology, such as the Continuous Random Network (CRN) [69, 70], have also been 

proposed. Finally, recent work by Malani et al. [71, 72] has put forth a reactive Monte 

Carlo (RMC) model of silica polymerisation, which showed good agreement with 

experimental NMR measurements of the evolution of silicate distributions under neutral 

conditions. The RMC approach seems promising, as it is able to sample long time scales 

while maintaining a reasonable level of atomic detail.  

To our knowledge, none of the methods described above has yet been applied in 

the context of simulating the synthesis of PMS materials, with one notable exception 

being the work of Seaton and colleagues [73, 74]. The first model that introduced 

explicit silica polymerisation during simulations of MCM-41 formation was presented 

by Schumacher et al. [73]. They implemented a KMC reaction scheme, based on the 

CRN model of the silica network [70] where all silicon atoms are always connected to 

four oxygens, and tried to describe the entire process of MCM-41 formation. They split 

their simulations into several stages: i) initial adsorption and condensation of a thin 

silica layer around the surfactant micelle; ii) aggregation of silica-covered micelles to 



form a hexagonal mesostructure; iii) further condensation of silica to form a highly 

cross-linked network; iv) high-temperature calcination, causing further silica 

condensation in the absence of template micelles. To make the scheme computationally 

tractable many major assumptions were made, such as describing the surfactant micelles 

as soft cylinders with no atomistic detail. Furthermore, several non-physical moves 

were applied to force the reaction along the chosen path (e.g. adding an artificial 

potential gradient to force the silica to the micelle in the opening stages, which is then 

removed, instead of correctly describing silica diffusion to the micelle surface). Due to 

all these special moves and assumptions, one cannot be completely confident that this 

model produced an accurate description of the real synthesis process. However, it 

achieved the authors’ main objective, which was to generate realistic models of MCM-

41 materials (Fig. 5a) for adsorption predictions (they reproduced gas adsorption fairly 

accurately for nitrogen, ethane and carbon dioxide). More importantly from the point of 

view of this review, the work of Schumacher et al. demonstrated that by applying clever 

approaches, the computational modelling of the entire PMS synthesis process is not an 

impossible task. 



 

Figure 5. Examples of atomically detailed models of MCM-41 (a) and SBA-2 (b) 

materials obtained from kinetic Monte Carlo simulations of silica condensation. Only 

the silica framework is shown for clarity. In panel b), the red arrows highlight 

connecting windows between the spherical-like pores. Adapted from Schumacher et al. 

[73] (a) and Ferreiro-Rangel et al. [74] (b). 

 

 A later study by Ferreiro-Rangel et al. [74] proposed some improvements to the 

method of Schumacher and applied it to the synthesis of two less-studied materials, 

SBA-2 [75] and STAC-1 [76]. Both are synthesized with gemini quaternary ammonium 

surfactants and contain connected spherical pores templated by spherical micelles, but 

they differ in the way that the micelles pack together – SBA-2 shows a hexagonal close 

packing of spheres, while STAC-1 micelles pack in a face-centred cubic lattice. In order 

to produce realistic models of these materials, Ferreiro-Rangel et al. [74] had to 

explicitly include water molecules during the reaction stages (which had been ignored 

by Schumacher et al. [73]) and make the micelle-micelle interactions more repulsive so 

as to generate the correct packing. The simulation results were successfully compared 

against experimental data, including structural characteristics and nitrogen adsorption 

isotherms. The authors concluded that the strong adsorption sites observed in 



experimental isotherms were actually due to surface roughness of the pores, and also 

suggested a plausible hypothesis for the origin of the connecting windows between 

large spherical pores (Fig. 5b) during the synthesis [74]. Another interesting observation 

pertains to the evolution of the degree of silica condensation during different stages of 

the synthesis. The results of Ferreiro-Rangel et al. show that the transition between the 

formation of a silica layer at the micelle surface (step 1 of their process) and the initial 

aggregation of micelles to form an ordered mesostructure (step 2) involved a significant 

presence of dimers and higher silica oligomers, with the concentration of silica 

monomers staying below 10%. This is in qualitative agreement with the interpretation 

of Pérez-Sánchez et al. [60] in their MD study of the self-assembly of silica/surfactant 

mesostructures. 

 

3. Synthesis of other mesoporous silica materials 

The synthesis process of the MCM family of mesoporous materials has been the 

most widely studied so far, particularly from the modelling point of view. However, as 

research into periodic mesoporous silica progressed, new materials were synthesised by 

varying the type of template beyond the “traditional” quaternary ammonium surfactants. 

The latter have small heads with permanent net positive charge and alkyl chains of 

varying length (normally between 10-18 carbon atoms). By substituting these cationic 

surfactants for anionic or non-ionic surfactants and much larger block copolymers, 

researchers were able to synthesise PMS materials with densities, pore geometries, and 

structures differing from MCM types [7-10, 77-80]. Despite conceptual similarities, 

there are important specificities in the synthesis mechanism of such materials. For 

example, block copolymer templates are usually neutral, and this has implications on 

the dominant interactions in the system [7]. Amine surfactants, on the other hand, are 



ionisable, and so respond to changes in pH of the solution during the synthesis process 

[9]. In this section, we review recent attempts to shed light on the synthesis process of 

these fascinating materials through computational modelling. 

 

3.1. Block copolymer templated materials 

 Although several early studies managed to synthesise mesoporous silica 

materials using non-ionic surfactants [77, 78], it was the synthesis of hexagonally 

ordered SBA-15 (SBA stands for Santa Barbara Amorphous) that represented a major 

breakthrough in the field [8]. This material was synthesised using non-ionic triblock 

copolymers as supramolecular templates, and achieved much larger pore sizes (up to 30 

nm) than had hitherto been realized. The block copolymer templates, often referred to as 

Pluronics, consist of portions of poly(ethylene oxide), PEO, and poly(propylene oxide), 

PPO, arranged as PEOn-PPOm-PEOn. The extra methyl group in PPO makes these 

moieties more hydrophobic than the linear PEO, and promotes self-assembly of the 

polymer into large micelles and, at higher concentrations, liquid-crystal mesophases 

[81]. SBA-15 in particular is synthesised by the sol-gel method in acidic medium by 

mixing Pluronic P123 (PEO20-PPO70-PEO20) with a source of silica, most often TEOS 

[8]. Similarly to MCM-41, this solution is heated to allow the silica to condense around 

the template mesostructure, followed by template removal by calcination. Despite 

similarities in the manufacturing procedure, SBA materials have several important 

distinctions from MCM-type materials. Apart from possessing larger pores than their 

MCM counterparts, SBA-15 materials also exhibit thicker walls and, more interestingly, 

small micropores that interconnect the larger, spherical, mesopores [82]. Furthermore, 

contrary to the case of ammonium surfactants, where ionic interactions dominate, the 

self-assembly of Pluronics (and arguably of other non-ionic surfactants) hinges on much 



more delicately balanced hydrophobic interactions and/or hydrogen bonds [81]. This 

poses additional challenges to both experimental and theoretical approaches aiming to 

describe the synthesis mechanism of block copolymer-templated materials. 

 Although experimentally the synthesis mechanism of SBA-15 has received 

perhaps as much attention as that of MCM-41 [83], simulation studies have been much 

fewer. This is not least because of the much larger size of the surfactant molecules 

(Pluronic P123 has about 17 times more atoms than CTAB) and micelles, and 

concomitantly slower dynamics. This puts it firmly outside the scope of detailed 

atomistic models, except for analyzing local phenomena such as single-chain dynamics 

[84]. As a consequence, the few existing studies on modelling the synthesis of SBA-

type materials have been carried out using highly coarse-grained models and have 

almost exclusively focused on SBA-15 [45, 46, 85-88]. 

 In 2005, Bhattacharya and Gubbins [45] modified the lattice model of Siperstein 

and Gubbins [17, 39] to describe the self-assembly of triblock copolymers in the 

presence of an inorganic component meant to describe silica. They considered 

surfactants made up of 5 central hydrophobic (T) beads with 3 hydrophilic (H) beads on 

each end, i.e. H3T5H3 instead of the original H4T4 arrangement. The size and shape of 

the surfactant was selected to produce a water/surfactant phase diagram that 

qualitatively agreed with experimental data for Pluronic P123. By adding silica to the 

system, they once again observed phase separation between a dilute and a surfactant-

rich phase. Depending on the concentrations, the latter formed bicontinuous, hexagonal 

or lamellar mesostructures. Interestingly, the hexagonal mesophases that are relevant for 

the synthesis of SBA-15 were only formed at quite low silica concentrations, which was 

contrary to the observations of Siperstein and Gubbins in their simulations of MCM-41 

phase equilibrium [39]. Subsequently, Bhattacharya et al. used the results of the lattice 



model simulations that formed hexagonal phases to produce realistic models of SBA-15 

materials, taking into account the molecular scale roughness of the large cylindrical 

pores and the presence of interconnecting micropores templated by the hydrophilic 

corona of P123 [46]. The predicted adsorption isotherms were in qualitative, if not 

necessarily quantitative, agreement with experimental data, leading the authors to 

suggest that their model was perhaps too rough at the molecular scale. 

 Bhattacharya and Gubbins also extended their lattice model to include a fourth 

component, denoted as “oil” and meant to represent the addition of a co-solvent like 

trimethylbenzene (TMB) to the synthesis mixture [45]. By exploring the quaternary 

phase diagram, they were able to show a gradual transition between hexagonal (i.e., 

SBA-15) mesophases and large-scale structures of disordered aggregates reminiscent of 

the mesocellular foams observed experimentally by gradually adding TMB to the 

solution [89]. As in the case of MCM-41, the lattice simulations of Gubbins and co-

workers were able to qualitatively explore the physics of the phase equilibrium 

pertaining to block copolymer-templated materials, but it was not possible to carry out 

quantitative comparisons with the experimental synthesis mechanism due to the 

inherent simplifications of the model. 

 An alternative avenue that has been pursued to study the synthesis of SBA-15 is 

based on the Mesoscopic Dynamics (MesoDyn) simulation method, which has been 

widely employed to model self-assembly of polymer systems [90]. The MesoDyn 

method is based on dynamic mean-field density functional theory and the time 

evolution of the system is propagated through the integration of a set of functional 

Langevin equations [85-87, 90]. It uses a coarse-grained implicit solvent description of 

polymers that are represented by a Gaussian chain of beads, which interact with each 

other through pairwise interactions based on the Flory-Huggins model. Chen et al. [85] 



applied this approach in the context of SBA-15 synthesis to analyse the effect of 

temperature on the material pore size. They made use of a previously determined 

mapping scheme for Pluronic surfactants [90] to describe the P123 triblock copolymer, 

and used values of the interaction parameters that depended on temperature. Their 

simulations were able to show the formation of a distribution of spherical polymer 

micelles at relatively low concentration (Fig. 6a), and posited that the micelle self-

assembly process could be divided into three stages [85]. They also observed that the 

size of the micelle core, formed of hydrophobic PPO beads, increased with temperature, 

and they linked this to the observed experimental increase in the pore size of SBA-15 

with temperature. However, the comparison was merely qualitative, since Chen et al. 

simulated a simple aqueous solution of P123 (i.e., without the presence of silica) and 

were not able to observe the formation of a hexagonal phase or even cylindrical micelles 

[85]. 

 

Figure 6. Examples of structures obtained from MesoDyn simulations of Pluronic 123 

surfactants: a) spherical micelles obtained in quiescent copolymer/water solutions, 

adapted from Chen et al. [85]; b) hexagonal mesophase obtained in copolymer/water 

solutions with constant imposed shear and charged PEO beads, adapted from Yuan et 

al. [86]; c) hexagonal mesophase obtained in silica/copolymer/water solutions in the 

presence of shear and with charged PEO beads, adapted from Chen et al. [87]. 

 

 In the same year, Yuan et al. [86] used a very similar model to study in more 

detail the self-assembly of P123 at close to room temperature over a wide concentration 



range, and examined the effect of PEO charge and shear on the resulting 

mesostructures. They observed the formation of several distinct mesophases, including 

spherical micelles (similar to those described by Chen et al. [85]), bicontinuous and 

lamellar phases. Interestingly, when a small positive charge was added to the PEO 

beads (aiming to describe adsorption of H+ ions by the micellar corona under highly 

acidic pH) and a constant shear rate was imposed (meant to describe agitation of the 

solution in experimental SBA-15 synthesis), the authors observed a progressive 

elongation of the micelles leading to formation of a hexagonal mesophase (Fig. 6b). 

Interestingly, hexagonal phases seemed to require the presence of both those factors, 

and were not formed when either shear or PEO charge were separately added to the 

model [86]. Once again, comparisons with experimental SBA-15 materials were only 

qualitative, as the authors did not consider the presence of silica in the system. 

 In 2012, Chen et al. extended their earlier study to include the effect of silica on 

P123 self-assembly [87]. They reported having obtained the interaction parameters 

between silica and the other components of the system from “estimating the cohesive 

energy density of different molecules and the miscibility behavior of binary mixtures” 

[87], but no additional details were provided. They considered neutral and positively 

charged (at a fixed value of +1, meant to reflect protonation under highly acidic 

conditions [20]) silica beads, as well as varying the charge of the PEO beads. 

Confirming the observations of Yuan et al. [86], the authors only observed formation of 

cylindrical micelles when shear was applied to the system. Furthermore, the ordered 

hexagonal arrangement of the cylindrical micelles (Fig. 6c) was seen to be highly 

sensitive to the charge values on silica and on the PEO beads – ordered hexagonal 

mesophases required a charge of +1 on silica (lower or higher values led to disordered 

micelle packing) and a charge either around -0.3 or around +0.5 on the PEO beads [87]. 



The authors also observed that neutral silica tended to form aggregates, while a 

relatively uniform distribution of silica around P123 micelles was observed when silica 

was charged. They attributed this effect to the need for charge matching interactions 

between silica and surfactant in SBA-15 synthesis [87]. 

 Finally, it is worth mentioning the work of Magee and Siperstein [88], who 

carried out Dissipative Particle Dynamics (DPD) of ternary systems composed of a 

diblock copolymer, water, and an inorganic component meant to represent aggregating 

nanoparticles. DPD is also a mesoscale modelling approach, in which particles interact 

with each other through soft interactions and with an implicit solvent by way of random 

(representing Brownian motion) and dissipative (representing friction) forces. Once 

again, emphasis was placed on mapping the phase diagram of the system. Although the 

authors were able to observe some interesting physical phenomena, such as the onset of 

demixing driven by increasing interaction between nanoparticles, it is difficult to draw a 

direct parallel with realistic experimental systems. 

 

3.2. Bio-inspired silica materials 

As well as being used at industrial level to produce the classes of porous solids 

described in the previous sections, templating is also the key mechanism through which 

many biological organisms produce their complex siliceous structures. This process, 

referred as biosilicification, is mediated by polypeptides and long-chain polyamines 

[91], which are believed to catalyse silica deposition while directing structure formation 

[92], and has attracted particular attention because of its unique characteristics, i.e. it 

takes place at mild conditions and in an aqueous environment. In fact, just a few years 

after the discovery of MCM-41, one of the first examples of synthesis of bio-inspired 



silica materials was reported in the literature by Tanev and Pinnavaia [10]. The material, 

named MSU-V, was obtained using diamines of variable length as templates for silica 

deposition at ambient temperature and showed a hierarchical lamellar structure [10]. 

Following this strategy, the same group also employed monoamines to direct structure 

formation, resulting in the synthesis of a new class of hexagonal mesoporous molecular 

sieves referred as HMS materials [9, 93]. When compared to their non-bioinspired 

counterpart (i.e. MCM-41), HMS materials showed as significantly lower degree of 

order and regularity, which the authors have postulated to be a consequence of the 

neutral mechanisms behind their synthesis and of the formation of relatively weak 

hydrogen bonds between template molecules and silicates (as opposed to strong ionic 

interactions in the case of MCM-41). A similar mechanism of formation primarily based 

on hydrogen bond interactions between organic and inorganic species was also 

proposed to describe the formation of MSU-V materials [10]. However, in the case of 

these diamine-templated silicas the final structure is predicted to arise from silica 

condensation around multilamellar vesicles, rather than around hexagonally packed 

surfactant rods. Silica penetration and condensation in the inter-vesicular space gives 

rise to the formation of pillars that afford structural stability to the material. The relative 

simplicity of template removal, obtained in the case of bio-inspired materials by means 

solvent extraction rather than calcination, was also argued to be due to a lack of strong 

ionic interactions [9, 93]. 

Contrary to cationic ammonium surfactants, amines can be present in aqueous 

solution in either neutral or protonated forms. This means that these surfactants are pH-

responsive, which adds a layer of complexity to the already challenging problem of 

unravelling the synthesis mechanism of mesoporous silica materials. Recently, multi-

scale MD simulations have been employed for the first time to shed light on the 



molecular processes taking place during the synthesis of bio-inspired HMS and MSU-V 

silica materials at varying pH [94, 95]. For each bio-inspired material and pH value 

considered, two main types of simulation were performed. In a first step, a reference 

system, containing only surfactant molecules (dodecylamine, DDA, for HMS and 1,12-

diaminododecane, DADD, for MSU-V) in water was simulated. Subsequently, silicates 

at different polymerisation degrees were added to represent the early stages of synthesis 

of these materials. Simulations were carried out at both atomistic (AA) and coarse-

grained (CG) level, with results of the former being used to calibrate parameters of the 

latter. Furthermore, MSU-V synthesis was investigated at ambient temperature, whereas 

HMS synthesis was studied at a slightly higher temperature (50 °C) to allow comparison 

with experimental values of micelle aggregation number for the latter system [96]. 

The multi-scale methodology adopted by Centi and Jorge has two major 

advantages: it enables to explore longer time and length scales, beyond the current limit 

of atomistic simulations, while allowing to maintain realism at the lower resolution 

levels. This involved the development of CG models, based on the MARTINI 

framework [95] by adjusting the CG parameters until satisfactory agreement between 

AA and CG density profiles of micellar aggregates was obtained. At the AA level, 

amine surfactants were described by the OPLS model [97], water by the SPC/E 

potential [50], and silicates by the model of Jorge et al. [53]. Following the procedure 

adopted by Pérez-Sánchez et al. to study PMS synthesis [60], the final set of parameters 

for the systems was obtained in a progressive manner: first, the parameters for the 

reference system were obtained; subsequently, more species were incrementally added 

(monomers, followed by dimers) in such a way that interactions already parameterised 

could be used in more complex systems. Therefore, at each stage only a limited number 

of unknown interactions had to be determined. Another advantage of this procedure is 



that each step of the model development allows to validate the previously obtained 

interactions. 

CG simulations [95] of the reference systems of HMS materials at experimental 

concentrations revealed that neutral amine surfactants (i.e. pH > 12) undergo rapid 

precipitation, due to their limited solubility in water, which makes it unlikely that they 

will be involved in the formation of the HMS material. Conversely, charged surfactants 

(pH < 8) form micellar aggregates with average size in excellent agreement with 

experimental data [96]. Interestingly, micelles are converted into large branched rods 

when silica monomers are added to the solution. This result indicates that, contrary to 

the hypothesised mechanism based on interactions between neutral species [9], charged 

species are necessary to promote rod formation. Hence, the synthesis of HMS materials 

was further studied including the effect of more highly condensed silica species, 

showing that dimers produce a disordered packing of rods in agreement with the 

“worm-like” or “worm-hole” structures reported experimentally [98], therefore 

reinforcing the conclusion that charge matching interactions control the formation of 

HMS materials. 

The second type of bio-inspired material considered, MSU-V, was initially 

studied using AA simulations [94]. Simulations at high (> 11) and intermediate (8-11) 

pH, where the majority of the diamine surfactants is either neutral or singly charged, 

showed formation of dry layers of surfactants for both systems. However, when silicates 

were added, strong adsorption of silica monomers at the layer surface only occurred in 

the system with singly charged surfactants (Fig. 7b), while the monomers remained 

homogeneously dispersed in the solution with neutral surfactants (Fig. 7a). Conversely, 

when doubly charged surfactants dominate (pH < 8), formation of small disordered 

clusters was observed (Fig. 7b), with or without silica. This indicates that formation of 



MSU-V materials is only feasible within the narrow pH range of 8-11, which agrees 

with acid-base calculations based on the composition of the experimental solution. 

Simulations of a more realistic speciation of amines and silicates (based on 

experimental conditions), in which all three types of surfactants coexist, produced 

curved layers that suggest a transition to a vesicular-like structure as observed in 

experiments. Furthermore, the authors observed the spontaneous formation of a hole 

defect in one of the layers, inside which a few silica monomers, together with water 

molecules, migrated. It was hypothesised that, due to local excess of positive charges in 

the surfactant layer, similar holes or defects could be created across template layers 

allowing more silicates to penetrate and eventually condense inside. This result, 

therefore, represents strong evidence for the pillaring mechanism postulated 

experimentally [10]. However, similar to HMS materials, the originally hypothesised 

neutral templating route does not seem to be feasible; instead, the self-assembly 

mechanism seems to rely on charge-matching interactions between silicates and amine 

surfactants. Preliminary CG simulations of MSU-V materials confirm this conclusion 

[95]. 

 

Figure 7. Snapshot of configurations obtained from atomistic MD simulations of MSU-

V precursor solutions containing silica, water and DADD surfactant: a) high pH; b) 

intermediate pH; c) low pH. Colour code is: blue – charged nitrogen; purple – neutral 

nitrogen; gray – hydrogen; cyan – carbon; red – oxygen; yellow – silicon. Adapted 

from Centi and Jorge [94]. 



 

4. Synthesis of hybrid organosilica materials 

 As mentioned above, one of the major breakthroughs in the manufacture of 

functional mesoporous materials was the direct inclusion of organic groups on the pore 

walls during the synthesis process (sometimes called “in-situ” functionalisation, in 

contrast with “post-synthesis” functionalisation, which is not covered in this review), 

giving rise to periodic mesoporous organosilicas (PMOs) [11-13]. The preparation of 

these hybrid organic/inorganic silicas from bissilylated organic precursors (i.e., organo-

bridged alkoxysilanes) is also based on surfactant-templated synthesis as in the case of 

pure silica PMS materials [2], and thus the pore size/shape and wall thickness of the 

PMO framework can be also controlled by tuning the synthesis conditions [99, 100]. 

However, PMOs are even more interesting materials because they combine the strength 

of the inorganic silica structure with the appealing functionality of organic groups, 

significantly expanding their range of potential applications [99-102]. As a 

consequence, the development of these materials has continued to grow, with a 

promising avenue being the incorporation of ever more complex functional 

organoalkoxysilane precursors [102-104].  

 This high degree of variability together with the typically more flexible nature of 

organic groups brings with it additional challenges from the experimental point of view; 

for instance, PMO materials tend to be less ordered at the mesoscale level than their all-

silica counterparts [102]. It also makes it even more important to obtain a fundamental 

understanding of the synthesis process, so as to better control the material properties. In 

this context, the effect of the presence of organic precursors on the synthesis mechanism 

remains largely unexplored. For example, a particularly interesting discovery was that 

some aromatic bridging groups tend to form pore walls that possess molecular-scale 



order, i.e. they are semi-crystalline, in contrast with standard PMS materials and other 

PMOs [105]. It remains unclear what the driving force for the formation of such ordered 

domains is, or how it can be harnessed in a systematic way. In this context, molecular 

modelling studies can be very useful to shed light on the dominant variables that control 

the final structure of the material. As in the synthesis of MCM-41 and related materials 

(see section 2), computational studies on PMO synthesis have followed two distinct 

routes: highly coarse-grained lattice models, aiming to probe the phase diagrams of the 

precursor solutions; atomistic models, aiming to elucidate the intermolecular 

interactions governing the self-assembly process. These are discussed in the next two 

subsections. 

 

4.1 Phase Diagrams – Lattice Models 

Patti et al. [41] first extended the original lattice model of Siperstein and 

Gubbins [17, 39] to include hybrid organic-inorganic precursors in the synthesis 

solution. As in the original work, Patti et al. considered linear surfactants, namely H4T4. 

Inorganic silica was mapped as two connected segments on the lattice, with parameters 

representing complete miscibility (I2) or complete immiscibility (I’2) with the solvent 

(S). The organic groups were considered as either hydrophobic, i.e. equivalent to 

surfactant tails, or hydrophilic, i.e. equivalent to heads, leading to four distinct 

possibilities: IT, I’T, IH and I’H. Patti et al. performed MC simulations in the NVT 

ensemble at different surfactant concentrations and found that the system phase 

separated into a concentrated surfactant phase and a solvent-rich phase. Interestingly, 

they found that the nature of the organic group had a profound influence on the 

formation of ordered mesophases, with hydrophobic groups acting as co-surfactants and 

hydrophilic groups playing the role of co-solvent. In fact, considering a hydrophobic 



terminal group, H4T4-IT-S, no ordered phases were found, even at high surfactant 

concentrations; however, a hexagonal phase was found at high surfactant concentrations 

in the H4T4-IH-S system [41]. The authors proposed this as a possible explanation for 

the difficulty in obtaining ordered materials with terminal organic-inorganic precursors 

[102]. In all ordered mesophases, Patti et al. observed that the terminal organic group 

was mainly located on the solvent side of the micellar aggregates, thus suggesting that 

at least some of the organic groups would not be available on the pore surface after the 

synthesis [41]. 

A similar approach was later used [42] to study the phase diagrams of systems 

containing bridging organic precursors (i.e., IHI, I’HI’, ITI, and I’TI’), and comparing 

them to the purely inorganic and terminal hybrid precursors. Once more, they observed 

phase separation in their systems, driven by the presence of the inorganic components, 

yielding in some cases ordered mesophases. The main conclusion of their second paper 

was that bridging precursors are more effective at promoting phase separation and 

emergence of order in the concentrated phase, presumably because the potentially 

disrupting organic moieties are “protected” by inorganic groups on both sides.  

 In a later study [43], the same group extended their approach to consider more 

complex hybrid precursors, aiming to represent organosilicates functionalised with 

amine groups, namely: aminopropyl-trimethoxysilane (AP, represented as I2TH), 

methyl-3-aminopropyl-trimethoxysilane (MAP, described as I2THT) and phenyl-3-

aminopropyl-trimethoxysilane (PAP, described as I2THT3). They then examined four-

component systems comprised of a pure silica source, solvent, surfactant and one of the 

aforementioned hybrid amino-silicate species. Importantly, their surfactant was no 

longer linear, as in previous studies, but composed of a branched head (i.e., T5HH3). 

Patti et al. showed that at high concentrations of AP (15 vol. %) and MAP (25 vol. %) 



the hexagonal geometry of the surfactant mesophase broke down, in qualitative 

agreement with experimental observations. They posited that this was due to the amine 

groups being relatively solvophilic, leading to the increased solubility of the surfactant 

in the solvent and promoting formation of disordered phases. Conversely, high 

concentrations of PAP (above 17 vol. %) resulted in a transition from a hexagonal to a 

lamellar phase. In this case, the hydrophobic nature of the large tail group of PAP 

caused a swelling of the hydrophobic core of the surfactant micelles, which promoted a 

lower curvature and hence a lamellar phase. In the case of the longer precursors (MAP 

and PAP), the authors observed that the organic groups penetrated the micelle core, 

suggesting that they would become available for surface interactions [43]. However, for 

AP it was shown that the functional amine group was encompassed almost entirely in 

the inorganic walls, which means that it would be inaccessible as a functional group. 

The authors point out that this contradicts experimental results, and ascribe the 

discrepancy to the inherent simplifications of their lattice model. 

 The last study of this series by Patti et al. [44] considered longer hybrid 

precursors in the terminal and bridged forms, namely I2THT3 and I2THTI2. Similarly to 

the case with smaller precursors [42], they observed that the bridged arrangement was 

more favourable for the formation of ordered hexagonal phases. More interestingly, they 

considered mixtures of the two precursors, leading to a five component system, in an 

attempt to describe the formation of so-called bifunctional mesoporous organosilicas. 

Their results showed that the bridging precursor (BP) acted as a co-solvent due to both 

ends being hydrophilic, whereas the terminal precursor (TP) acted as a co-surfactant. In 

this way, the surfactant solubility could be controlled by adjusting the concentrations of 

these two precursor species, and this induced transitions from hexagonal to either cubic 

or lamellar phases. Where the BP and TP concentrations were similar, they tended to 



cancel each other out and a hexagonal phase was formed. However, an excess of the TP 

relative to the BP produced lamellar phases, and the reverse case produced cubic phases 

(Fig. 8).  

 

Figure 8. Two-dimensional phase diagram (a) obtained from lattice Monte Carlo 

simulations of solutions with 40% surfactant, 10% silica dimers and variable 

concentrations of terminal and bridging hybrid organosilicate precursors. The labelled 

regions indicate stable cubic (I), hexagonal (II) and lamellar (III) mesophases. 

Snapshots showing examples of hexagonal (b), lamellar (c) and cubic (d) mesophases. 

Colour code is: red – surfactant heads; yellow – surfactant tails; gray – silica; 

blue/green – organic groups of terminal precursor; magenta/cyan – organic groups of 

bridging precursor. Adapted from Patti et al. [44]. 

 

4.2 Self-Assembly – Off-Lattice Models 

Similarly to lattice models, atomistically detailed approaches to study the 

synthesis of PMO materials have built up from previous work on MCM-41, based on 

using information obtained at the quantum mechanical level [52, 106] to develop all-

atom models of the synthesis solution [48, 53, 107] that are able to probe the molecular-

level interactions between precursors and surfactants in systems with several thousands 

of molecules. Futamura et al. [106, 107] developed an all-atom model for hybrid 

inorganic-organic precursors (HO)3Si-R-Si(OH)3 with different organic linkers (R), 



namely, planar organic ring (benzenesilica, BENZ-Sil), double C=C bond 

(ethylenesilica, ETHY-Sil) and single C-C bond (ethanesilica, ETHA-Sil). The aim was 

to study the role of the organic linker in the PMO formation, elucidating experimental 

observations where different organosilica precursors yielded structural differences in the 

final material [99]. The model was based on a combination of OPLS parameters for the 

organic groups [97] with silicate parameters from the group’s previous work [53] and 

new geometric and electrostatic parameters, specific to organosilicates, obtained from 

DFT calculations in the gas phase [106]. 

Futamura et al. [107] carried out MD simulations of three different aqueous 

solutions with DeTAB as a surfactant and each of the different organosilicate precursors 

under high pH conditions, where the majority of silicate groups were anionic. Their 

simulations of up to 35 ns were able to capture the early synthesis stages, showing the 

initial formation of small surfactant aggregates, followed by micelle growth and micelle 

fusion processes. The systems with BENZ-Sil and ETHY-Sil showed a measurable 

increase in the average micelle size with respect to the ETHA-Sil system. This was 

associated with a higher concentration of precursors adsorbed at the micelle interface 

for the former two cases, which supports the cooperative templating mechanism, as 

previously observed in the case of all-silica systems [48].  

From computed micelle density profiles, the authors showed that not only the 

inorganic silica but also the organic part of the precursors could be found between the 

surfactant heads in the micelle surface [107]. More interestingly, they observed that 

whereas BENZ-Sil and ETHY-Sil were arranged parallel to the micelle surface, the 

ETHA-Sil species were placed perpendicularly. This is an important fact because 

BENZ-Sil and ETHY-Sil are arranged more efficiently in the space between the 

surfactant heads, making it easier to form ordered structures. Furthermore, a visual 



inspection of the BENZ-Sil system showed evidence of ordered arrangements of 

organosilicate precursors at the micelle surface (Fig. 9), possibly caused by ʌ- ʌ 

stacking between BENZ-Sil species [107]. It was suggested by the authors that this 

could represent the initial stages of formation of the molecular-scale periodicity 

experimentally observed in the pore walls of benzene-silica materials [105]. 

Unfortunately, the high computational expense of the all-atom simulations prevented 

Futamura et al, from probing later stages of the PMO synthesis, including the formation 

of mesoscale organosililca/surfactant structures. 

 

Figure 9. Snapshot of a spherical micelle formed in atomistic MD simulations of a 

precursor solution of benzene-silica PMO. Colour code is: light blue – surfactant 

carbon atoms; dark blue – surfactant nitrogens; orange – benzene groups; yellow – 

silicate groups. The red boxes highlight hybrid precursors that appear to stack in an 

ordered fashion at the micelle surface. Adapted from Futamura et al. [107]. 

 

5. Summary and outlook 

Immense progress has been made in our ability to model the synthesis process of 

mesoporous silica and organosilica materials, particularly over the last decade. This has 

followed two distinct lines of attack, which we may call “top-down” and “bottom-up”. 



The former is based on describing the underlying physics of the system using highly 

coarse-grained models, following the principle of Occam’s razor, and then probing a 

relatively wide range of synthesis parameters (concentration, temperature, etc.). 

Examples of this approach are the lattice model studies of PMS and PMO synthesis [17, 

39, 41-47], as well as the MesoDyn simulations of SBA-15 [85-87]. The bottom-up 

approach, on the other hand, starts at a high level of theory (atomistic or even quantum 

mechanical), and builds simpler models through a progressive coarse-graining 

procedure. This strategy has been applied to study the formation of MCM-41 [48, 52, 

53, 55, 59, 60], PMOs [106, 107] and bio-inspired silica materials [94, 95]. 

The synthesis of MCM-41 has predominantly been modelled at high pH 

conditions, where the silica precursors are almost all in the anionic form. Modelling 

studies have revealed that under those conditions, anionic silica monomers replace 

bromide counterions at the surface of cationic ammonium surfactant micelles, causing 

an increase in the micelle size through more effective screening of the head group 

repulsions [53]. This eventually leads to a pronounced shape transition in the micelles, 

from a predominantly spherical to a rod-like morphology [55]. However, formation of 

hexagonal structures seems to require the presence of more condensed silicate species, 

such as dimers and/or small oligomers [60, 74], which due to their multiply charged 

nature can act as “bridges” between adjacent micelles. This changes the balance of 

interactions, promoting inter-micelle attractions [60] and leading to phase separation 

into a dilute solution and a concentrated silica/surfactant-rich mesophase through a 

segregative mechanism [39]. The structure of the mesophase remains labile until 

extensive silica condensation takes place, thus “locking-in” the structure [47]. 

Importantly, before such high levels of silica polymerisation are reached, it remains 

possible to control the properties of the mesophase by changing the synthesis conditions 



(for example, lowering the temperature or adding a co-surfactant to promote a 

hexagonal-to-lamellar transition) [47, 60]. The calcination process to remove the 

template further increases the degree of condensation of the silica network, but does not 

largely change the nature of the porous structure [73]. 

Taking theoretical and experimental evidence together, it is clear that MCM-41 

synthesis starting from low concentration surfactant solutions takes place through a co-

operative templating mechanism via silica/surfactant charge matching, where silicates 

promote changes in the morphology of surfactant aggregates, while the presence of 

surfactant micelles creates local concentration gradients that promote silica 

condensation. However, it appears that even when starting from high surfactant 

concentration solutions, which are already able to form mesostructures, a true liquid-

crystal templating mechanism is unlikely to take place [59]. This is because the addition 

of anionic silica to the solution causes a profound change in the nature of the molecular-

level interactions, promoting phase separation of an otherwise homogeneous solution. 

We thus speculate that the LCT mechanism may only be viable in systems that are not 

dominated by strong electrostatic interactions, such as in materials templated by neutral 

surfactants [108]. Further simulation and experimental studies are required to verify this 

assertion. 

Comparatively to MCM-41 synthesis at high pH, following the S+I- mechanism 

[7], the synthesis of mesoporous materials using anionic or neutral surfactants, or at 

lower pH conditions, remains unexplored by modelling. Adaptation of existing lattice 

models and multi-scale models to consider other mechanisms, including anionic 

templating and counterion-mediated mechanisms, is thus a natural avenue of research 

that should be explored in the near future. Systems that involve block copolymer 

templates are particularly challenging, however, as the much larger template sizes and 



slower dynamics practically preclude atomistically detailed simulations. Despite some 

attempts at modelling SBA-15 synthesis using highly coarse-grained models [45, 85-

87], mechanistic insight has so far been limited, and key questions like the role of silica 

in the self-assembly process remain unanswered. Additional simulation studies of these 

systems that are able to establish clearer links between the behaviour of coarse-grained 

models and realistic experimental systems are urgently needed. This clearly requires a 

multi-scale modelling approach, perhaps making use of recent developments in block 

copolymer models [109] and extending them to include silicate species. 

Interesting progress has recently been made in the synthesis of mesoporous 

silica materials templated by amine surfactants. The latter are akin to naturally 

occurring templates for biosilicification processes, and thus such materials represent the 

earliest examples of bio-inspired silica. Until recently, the proposed mechanism for 

synthesis of materials like MSU-V or HMS had been based on indirect experimental 

evidence and a high degree of speculation. Multi-scale modelling studies have clarified 

many aspects of the synthesis of these materials [94, 95], showing the self-assembly of 

structures that strongly resemble those observed experimentally. The main outcome of 

that work, however, is the demonstration that, contrary to what had been previously 

hypothesised [9, 10], strong electrostatic interactions between charged species, rather 

than hydrogen bond interactions, guide the process of formation of these porous solids. 

Additional simulation and experimental studies are required to confirm or dismiss the 

viability of the originally proposed neutral templating mechanism. Furthermore, 

extension of this modelling approach to consider more industrially relevant materials is 

also desirable. For example, atomistic modelling of interactions between polyamine 

templates and silica surfaces has recently contributed to the development of more 



environmentally friendly template removal processes in the manufacture of bio-inspired 

silica [110]. 

Finally, modelling studies of periodic mesoporous organosilica materials have 

closely followed those of their “parent” MCM-type counterparts by adding an extra 

degree of complexity to existing models. Namely, lattice models were extended to a 

wide range of hybrid precursors [41-44], while atomistic models of such hybrid 

molecules were also developed [106, 107]. The lattice models have shown that the 

organic groups may have a significant effect on the resulting silica/surfactant 

mesostructures, depending on their hydrophobic or hydrophilic nature [41]. They also 

showed that bridging precursors are more effective at inducing ordered materials than 

terminal precursors, thus clarifying experimental observations [44]. Atomistic studies, 

on the other hand, were able to elucidate the underlying molecular level interactions, 

concluding that the onset of micro-scale ordering on the pore walls of some PMO 

materials may take place very early in the synthesis process [107]. Despite these 

important advances, the picture of the mechanism of PMO synthesis is not as clear as 

that of MCM-41, partly because of the lack of intermediate-level studies of these 

systems (i.e., using coarse-grained models that are still able to retain a high degree of 

chemical realism [59, 60]). Efforts to develop such a model are already underway at our 

research group, and we hope to report them in the near future [111]. 

In methodological terms, the two fundamentally different approaches described 

above have so far advanced in a largely independent way. Bottom-up approaches have 

the ability to describe realistic systems at a high level of detail, but are limited to 

relatively small systems and short time scales. Conversely, top-down approaches can 

cope with such scales, thus allowing one to potentially probe the synthesis mechanism 

in its entirety, but the inherent simplifications make it hard to draw direct links to 



experimental materials. Bridging the gap between these two approaches is likely to lead 

to a paradigm shift in our ability to model PMS synthesis. Recent advances in the 

synthesis of MCM-41 at high pH suggest that this in not far from being achieved for the 

“base case” of PMS synthesis. 

A major conceptual advance has been, in our opinion, the ability to 

simultaneously account for surfactant self-assembly and silica polymerisation within a 

single simulation [47]. However, this has only been achieved so far for lattice models, 

which, as we have discussed, suffer from limitations in terms of chemical specificity. 

Achieving this goal for off-lattice models (atomistic or coarse-grained) is another 

required methodological leap. The RMC approach of Monson and co-workers [71, 72] 

appears particularly promising for this purpose, as it strikes a good balance between 

efficiency and realism. We strongly believe that such improvements in multi-scale, 

multi-physics modelling will lead to the development of predictive tools that can design 

materials with optimal properties for specific applications. Although we are still far 

from this ultimate goal, the future appears bright for this field of research. 
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