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Abstract 27 

Assessing changing coastal flood risk becomes increasingly uncertain across multi-28 

decadal timeframes. This uncertainty is a fundamental complexity faced in vulnerability 29 

assessments and adaptation planning. Robust decision making (RDM) and dynamic 30 

adaptive policy pathways (DAPP) are two state-of-the-art decision support methods that 31 

are useful in such situations. In this study we use RDM to identify a small set of conditions 32 

that cause unacceptable impacts from coastal flooding, signifying that an adaptation 33 

tipping point is reached. Flexible adaptation pathways can then be designed using the 34 

DAPP framework. The methodology is illustrated using a case study in Australia and 35 

underpinned by a geographic information system model. The results suggest that 36 

conditions identified in scenario discovery direct the attention of decision-makers towards 37 

a small number of uncertainties most influential on the vulnerability of a community to 38 

changing flood patterns. This can facilitate targeted data collection and coastal monitoring 39 

activities when resources are scarce. Importantly, it can also be employed to illustrate 40 

more broadly how uncontrolled societal development, land use and historic building 41 

regulations might exacerbate flood impacts in low-lying urban areas. Notwithstanding the 42 

challenges that remain around simulation modelling and detection of environmental 43 

change, the results from our study suggest that RDM can be embedded within a DAPP 44 

framework to better plan for changing coastal flood risks.  45 
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Highlights  52 

▪ GIS software, open source data and programming languages can support coastal 53 

flood risk management activities 54 

▪ Scenario discovery helps simplify complex environmental changes for use in 55 

vulnerability assessment and adaptation planning  56 

▪ Scenario discovery can be used to describe conditions leading to adaptation 57 

tipping points 58 

▪ The timing of adaptation responses can be better informed by knowledge of key 59 

sensitivities in existing management controls 60 

▪ Insights from scenario discovery can facilitate targeted data collection and coastal 61 

monitoring activities 62 
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1 Introduction 74 

Increasing rates of sea-level rise have the potential to alter coastal flooding regimes 75 

around the world (Hunter 2010; McInnes et al. 2015; Nicholls and Cazenave 2010), 76 

placing increasing pressure on decision-makers to minimise physical, environmental and 77 

social impacts. However, understanding what changes could lead to unacceptable 78 

impacts within the community and when such changes might occur is challenged by 79 

ambiguity (Dewulf et al. 2005), different risk perceptions (Jones et al. 2014), multi-decadal 80 

climate variability (Hallegatte 2009) and long-term uncertainty associated with varying 81 

regional responses to climate change. 82 

Various decision support tools have been proposed to guide decision-makers through 83 

climate risk assessments and to evaluate adaptation responses under conditions of 84 

uncertainty (e.g. Dittrich et al. 2016; Watkiss and Hunt 2013). When deep uncertainty 85 

exists, dynamic adaptive policy pathways (DAPP) (Haasnoot et al. 2013) and robust 86 

decision making (RDM) (Lempert et al. 2003) have emerged as two state-of-the-art 87 

decision support tools (Kwakkel et al. 2016a). Deep uncertainty describes dynamic 88 

conditions where there is limited knowledge and agreement on the use of models, 89 

description of parameters in those models and what impacts are considered (Lempert et 90 

al. 2003; Kwakkel et al. 2016a). Decision-makers are likely to encounter deep uncertainty 91 

when assessing the vulnerability of a community to changing coastal inundation patterns 92 

that may be experienced decades from now, or through coastal development and land 93 

use planning whereby near-term investments will influence urbanisation patterns over the 94 

coming decades.  95 

RDM is a decision support method that evaluates the robustness of new policy options 96 

such as a flood alleviation scheme. DAPP is an adaptive management framework that 97 

begins by considering what future scenarios will cause existing management controls to 98 

fail, before evaluating the suitability and timing of new policy options. Both methods use 99 

hundreds to thousands of non-probabilistic ‘what-if’ scenarios to explore the impact of the 100 



5 

uncertain future on the performance of new (or existing) adaptation policies, allowing key 101 

sensitivities of the policy to be identified. When external changes cause the existing 102 

system or future adaptation plans to no longer meet decision-maker objectives, an 103 

adaptation tipping point is reached and new actions should be implemented (Kwadijk et al. 104 

2010). Adaptation tipping points provide a practical way to communicate risks to the 105 

community associated with a changing built and natural environment (Werners et al. 106 

2013). This focuses coastal flood risk management towards understanding the sensitivity 107 

of an urban area to change and assessing when management responses might be 108 

needed to keep impacts at a tolerable level (Kwadijk et al. 2010). 109 

RDM and DAPP aim to design robust policies, and they achieve this in different ways. 110 

RDM identifies adaptation policies that perform satisfactorily under many different future 111 

scenarios, whilst DAPP provides an adaptive management framework within which 112 

flexibility is created, allowing progressive review and update of policy options as more 113 

information becomes available (see Appendix A in the Online Resource for a comparison 114 

of RDM and DAPP). Importantly both approaches have the potential to provide 115 

complementary information to decision-makers under conditions of deep uncertainty 116 

(Kwakkel et al. 2016b). 117 

There are few examples from local government that use RDM or DAPP to assess the 118 

vulnerability of low-lying areas to coastal inundation and design adaptation pathways. This 119 

could be due to many factors including unclear adaptation responsibilities in government 120 

(Nalau et al. 2015), limited awareness of new decision support tools (Lawrence and 121 

Haasnoot 2017), limited availability of relevant data to undertake such an analysis (Bhave 122 

et al. 2016) and technological or financial constraints. Simplified applications of RDM (e.g. 123 

Daron 2015) and adaptation pathways (e.g. Barnett et al. 2014) have been demonstrated 124 

for resource-constrained decision-makers. However, the growing global repository of 125 

spatial data and open source programming code (e.g. the exploratory modelling 126 

workbench; Kwakkel, 2017) means that local governments, business and individuals have 127 
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an opportunity to use more sophisticated techniques to analyse climate risks, quantify 128 

thresholds and evaluate adaptation responses (Ramm et al. 2017a).  129 

Many of the adaptation pathway examples to date in coastal flood risk management 130 

describe conditions that lead to an adaptation tipping point with a single parameter like 131 

sea-level rise (Reeder and Ranger 2011) or storm surge height (Kwadijk et al. 2010). This 132 

conceptualisation of risk suggests that flood impacts could be treated by controlling the 133 

single hazard with a sea wall or levee (Klijn et al. 2015). However, important factors that 134 

relate to land use or property design are often omitted, which can overlook broader risks 135 

in urbanised areas that may exacerbate coastal inundation impacts. 136 

We contribute to adaptation pathways planning research by exploring whether RDM and 137 

DAPP methods can be integrated to support coastal adaptation planning under conditions 138 

of uncertainty. We propose that RDM is well suited to describe a set of conditions where 139 

existing or future plans would no longer satisfy adaptation objectives in low-lying urban 140 

areas, signifying that an adaptation tipping point is reached. Knowledge of conditions that 141 

lead to adaptation tipping points can be used to further develop adaptation pathways 142 

using the DAPP framework, whereby each pathway represents a different set of 143 

adaptation options sequenced over time. A more comprehensive understanding of an 144 

area’s sensitivity to coastal inundation allows questions such as ‘what change in the built 145 

and natural environmental is important?’ and ‘when might such change occur?’ to be 146 

explored. A similar philosophy was used by Kalra et al. (2015) to manage water resources 147 

in Lima. However, we are not aware of any literature that proposes the integration of RDM 148 

and DAPP for use in coastal flood risk management and adaptation planning. The 149 

methodology presented herein uses open source spatial datasets and programming 150 

languages for the benefit of resource constrained decision-makers. However, it relies on 151 

commonly used commercial software (ArcGIS) and flood modelling capability. We 152 

illustrate the potential for the approach on a case study site in Kingston Beach, Australia, 153 

to identify what future change might lead to unacceptable coastal flood impacts to people, 154 

property and lifestyle objectives.  155 
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With over $200 billion of infrastructure in Australia exposed to a 1.1 m sea-level rise 156 

(Commonwealth of Australia 2011), strategic investment in coastal adaptation responses 157 

is important to avoid an increasing burden on the nation’s resources. A greater upfront 158 

investment in risk identification and adaptation planning using state-of-the-art decision 159 

support methods could generate sizable budget savings to all levels of government and 160 

the community. Section 2 of this paper presents an overview of the methodology. The 161 

approach is demonstrated with a case study in Section 3. The implications and prospects 162 

of the method are discussed in Section 4, with conclusions drawn in Section 5. 163 

2 Methods 164 

We present a methodology that draws on the strengths of RDM to describe conditions 165 

leading to adaptation tipping points that can be used in a DAPP framework to map 166 

adaptation pathways. The basis of the presented methodology overlaps with the XLRM 167 

framework used in RDM to organise exogenous uncertainties (X), policy levers (L), 168 

relationships and models (R) and metrics (M) (for more details see Lempert et al. 2013). 169 

The key steps in the methodology are summarised in Fig. 1. Details about each step are 170 

provided in Sections 2.1 to 2.7. 171 
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 172 

Fig. 1 Summary of methodological steps to describe conditions leading to adaptation 173 

tipping points for use in adaptation pathways planning. These steps are expanded on in 174 

Sections 2.1 to 2.7. 175 

 176 

2.1 Define adaptation objectives 177 

Adaptation objectives describe what coastal decision-makers are trying to achieve by 178 

managing coastal inundation impacts. The objectives can be guided by organisational 179 

requirements or through stakeholder engagement. An example of an adaptation objective 180 

that accounts for physical impacts might be minimising the length of critical access roads 181 

inundated during a flood, whilst an environmental adaptation objective might be 182 

minimising the loss of beach and dune area (e.g. Ward et al. 1998). Both of these 183 

objectives could also relate to intangible social values held by local residents, such as 184 

ensuring recreational opportunities, aesthetic value and an ongoing feeling of safety.   185 
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2.2 Define uncertain factors 186 

Uncertain factors are those that cannot be influenced by decision-makers, are relevant to 187 

the adaptation objectives, and whose future state is unknown. They can be exogenous (X) 188 

to the system and outside the decision-makers control, or influence relationships inside 189 

the system (R) itself. An example of an uncertainty in the context of coastal adaptation is 190 

relative sea-level rise. The range of values that uncertain factors might take in the future is 191 

specified a priori and can be based upon stakeholder participation or guided by scientific 192 

evidence.  193 

2.3 Generate cases 194 

A case is a future realisation that represents a combination of randomly sampled 195 

uncertain factors (analogous to a single ‘what if’ scenario). Each case captures a single 196 

set of assumptions about the future state of uncertain factors. The generation of 197 

numerous cases allows future realisations to be explored in a process of exploratory 198 

modelling (Bankes 1993). Cases are generated by selecting values for uncertain factors 199 

using latin hypercube sampling (LHS) (‘lhs’ package1), which then become inputs to the 200 

computational experiments.  201 

2.4 Develop rules of thumb 202 

Rules of thumb are simple principles that relate the value of an uncertain external factor 203 

(X) to a change in the model (R) (Section 2.5). For example, sea-level rise may affect the 204 

depth and extent of coastal flooding, which is used to assess impacts to the adaptation 205 

objectives for the case being explored. Rules of thumb can be derived from expert 206 

judgement, prior knowledge, or from a set of detailed scientific models. 207 

2.5 Impact modelling (simulation) 208 

The ability to simulate many cases to assess coastal inundation impacts in a reasonable 209 

timeframe requires a trade-off with the precision of the model (Bhave et al. 2016; Walker 210 

                                                

1 LHS is a sampling technique and the package is implemented in the free open-source R 
environment. See Carnell (2016) for details. 
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et al. 2013). Proxy models are often useful in such instances (also referred to as 211 

metamodels or surrogate models) (Haasnoot et al. 2012; Teng et al. 2017).  212 

A simulation model was developed in Python 2.7 using geoprocessing tools from the 213 

ArcPy module (ArcMap 10.4) and incorporating the ‘spatial’ and ‘3D analysis’ ArcMap 214 

extensions. Risk was conceptualised as the product of a hazard, an exposed element and 215 

the associated vulnerability (de Moel et al. 2015; Klijn et al. 2015; IPCC 2012), which was 216 

a useful way to organise various components of the simulation model. For example, a 217 

floodwater elevation map reflects a hazard, property reflects an exposed element, and the 218 

vulnerability of that element is described by monetary damage based upon flood depth.  219 

2.6 Describe conditions that lead to adaptation tipping points 220 

Scenario discovery searches through results in the case database and aims to identify a 221 

small number of ‘candidate scenarios’ (Fig. 2) that best identify ‘cases of interest’ 222 

(Lempert 2013). Cases of interest are those cases that result in acceptable impacts to 223 

adaptation objectives. A candidate scenario describes a cluster of cases and resembles a 224 

subspace of the uncertainty space that is explored in the computational experiments. It is 225 

defined by a small set of factors and intervals (i.e. conditions) that capture a high 226 

concentration of cases of interest. Should the small set of identified conditions occur 227 

simultaneously in the future, an adaptation tipping point is likely to be reached and an 228 

adaptation response would be needed to maintain impacts to the adaptation objectives at 229 

or below the desired tolerance. Identifying a small number of candidate scenarios through 230 

scenario discovery helps to keep the result interpretable for decision-makers. 231 

The ‘sdtoolkit’ R package2 was used to undertake scenario discovery, applying the Patient 232 

Rule Induction Method (PRIM) algorithm (Friedman and Fisher 1999) to identify clusters of 233 

the cases of interest. Whilst Classification And Regression Trees (CART) offer an 234 

alternate data mining algorithm to PRIM (Breiman et al. 1993), neither algorithm currently 235 

                                                

2 See Bryant (2016) for package details. 
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has a strong advantage over the other (Lempert et al. 2008; Kwakkel and Jaxa-Rozen 236 

2016).  237 

 238 

Fig. 2 Key concepts used in scenario discovery. Filled circles represent cases of interest. 239 

The candidate scenario is defined as a box (dashed line) that constrains key input factors. 240 

Coverage and density describe the quality of the candidate scenario. 241 

 242 

The quality of the candidate scenario is measured by its ‘coverage’ and ‘density’ (Fig. 2). 243 

Coverage describes the cases of interest captured by the candidate scenario as a 244 

proportion of all cases of interest in the entire results database. Density describes the 245 

percentage of the cases of interest captured by the candidate scenario out of all cases 246 

captured by the candidate scenario (Bryant and Lempert 2010; Lempert et al. 2013). 247 

Other diagnostic measures, such as the quasi p-value and reproducibility statistics, are 248 

useful for understanding the significance of the constrained factors in the candidate 249 

scenarios (for more details see Bryant and Lempert 2010). 250 

2.7 Develop the adaptation pathway 251 

Once conditions under which adaptation objectives are no longer achieved have been 252 

identified through scenario discovery, scientific trends and projections can be considered 253 

to understand 1) the potential for such conditions to occur in the future based upon 254 

available evidence, and 2) over what timeframe such changes are projected to occur. This 255 
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information can then be used to develop adaptation pathways using the DAPP framework 256 

(for more details see Haasnoot et al. 2013).  257 

3 Case study: Kingston Beach, Tasmania 258 

The method presented in Section 2 is illustrated for the case of the coastal suburb of 259 

Kingston Beach, Tasmania (Australia). The study area is located approximately 13 km 260 

south of the capital city of Hobart (Fig. 3). A unique aspect of the study area is that 261 

approximately 86% of the housing stock located in low-lying areas were built before 1980  262 

(Dunford et al. 2014). Thus, they were built prior to the introduction of higher building 263 

standards. The suburb is predominantly residential, with approximately 20-40 small 264 

businesses in low-lying areas and many natural landscapes including beaches, grassland, 265 

saltmarshes and forests. Whilst new dwellings will be subject to more stringent building 266 

regulations and land use planning controls, the characteristics (e.g. floor level, building 267 

materials) of many existing houses in the study area could remain unchanged for decades. 268 

Therefore these houses may have increasing exposure and vulnerability to changing flood 269 

hazards in the future. Extreme sea-levels from storm tides are considered to be a lower 270 

threat to people and property in the study area compared to the inundation threat of 271 

riverine flooding from Browns River. However, sea-level rise will threaten low-lying coastal 272 

landscapes of significant social and cultural value, such as the Kingston Main Beach 273 

(Ramm et al. 2017b). 274 
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 275 

Fig. 3 Study location in the suburb of Kingston Beach, Tasmania. The topographical 276 

terrain is shown with 10 m contours relative to Australian Height Datum (AHD), to highlight 277 

low-lying areas. The existing sea-wall is identified (white dashed line) from which beach 278 

width is estimated. 279 

 280 

3.1 Define adaptation objectives 281 

Three adaptation objectives were chosen to manage impacts to people, property and 282 

lifestyle, and these were grouped into key results areas (KRA) as might be done in a 283 

strategic coastal management plan (Table 1). This number of objectives is consistent with 284 

other RDM applications (e.g. three objectives were studied by Lempert et al. 2013; two 285 

were used in Bonzanigo and Kalra 2014). The average beach width objective was 286 

selected on the basis that: 1) the beach is a highly valued coastal landscape by residents, 287 
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and 2) there are many social values associated with the beach, including recreational use, 288 

being free of access restrictions, and providing residents with a sense of identity (Ramm 289 

et al. 2017b). The tolerable impacts signify whether an adaptation tipping point is reached. 290 

 291 

Table 1. Adaptation objectives selected for illustrating the methodology, grouped into key 292 

result areas (KRA). Acceptable (tolerable) impacts to people (AAPE) and property (AAD) 293 

reflect an increase of 10% from the current-day baseline risk. Arriving at the tolerable 294 

impact threshold signifies that an adaptation tipping point is reached. Baseline risk is 295 

determined by modelling impacts with current-day best estimates for the uncertain factors 296 

(see Table 2). 297 

ID KRA  Adaptation 

objective 

Metric Tolerable impact 

1 People: 

Minimise 

exposure 

Maintain people 

exposed to within 

10% of current 

baseline 

AAPE AAPE < 23.5 people / year 

2 Property: 

Minimise 

damage  

Maintain dwelling 

damage to within 

10% of current 

baseline 

AAD AAD < $650,000 / year 

3 Lifestyle: 

Preserve social 

values 

Maintain a minimum 

average beach width 

of 5 m from sea wall 

to MHWS level a. 

Average width 

of Kingston 

Main Beach 

Average beach width > 5m 

a. Mean high spring water level (MHWS) is 0.623 m above the Australian Height 298 

Datum (Kingborough Council 2017, p.47) and reflects the average of spring tide 299 

high water observations over a 19 year period (Woodroffe 2003). 300 

 301 

3.2 Define uncertain factors 302 

A total of seven exogenous uncertainties (X) were identified in our case study illustration 303 

(Table 2). Three of the uncertainties related to the hazard component of risk and four 304 

characterised the vulnerability. The Bruun factor in Table 2 represents a simplified 305 

relationship between coastal recession and increasing sea-levels. 306 
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Table 2. Uncertain factors used for the study site, showing their range and the adaptation objective(s) to which they apply. 307 

  Adaptation objective  Range a. 

Risk 

dimension 

Uncertain factor (1) 

AAPE 

(2) 

AAD 

(3) 

Beach 

width 

 Min Baseline 

(current-

day best 

estimate) 

Max Basis for selected range 

Hazard Sea-level rise (increase from 

2010 levels) 

✓ ✓ ✓  0m 0m +1 m User defined, guided by 

McInnes et al. (2016) 

 Changing 9-hour rainfall 

intensity (relative to present) b. 

✓ ✓   -10% 0% +30% White et al. (2010; 2013) 

 Bruun Factor   ✓  10 N/A 100 Carley et al. (2008); Mariani et 

al. (2012) 

Vulnerability Maximum structural damage 

(per 4 m2) c. 

 ✓   $4,000/4 m2 $5757/4 m2 $10,000/4 m2 Dunford et al. (2014) c. 

 Maximum contents damage 

(per 4 m2) 

 ✓   $500/4 m2 $1058/4 m2 $2,500/4 m2 Dunford et al. (2014) c. 

 Damage index at 10 cm 

inundation 

 ✓   -0.1 N/A +0.1 Approximate deviation from the 

vulnerability curve 

(Geosciences Australia 2012) 

 Average people per house 
✓    2 2.2 3 Value is 2.15 for low-lying 

statistical area, 2.3 for 

Kingston Beach and 2.6 for 

Australia (ABS 2013) 
a. The range is not limited to scientific consensus (e.g. IPCC) and can be inclusive of resident perceptions. 308 
b. 9-hour rainfall intensity is the critical duration for the study area (Kingborough Council 2017, p.22) 309 
c. The raster cell size is 4 m2 in the impact model. The damage in real dollars for 2016 was obtained from the NEXIS building exposure 310 

database (Dunford et al. 2014) by dividing the ‘resident structural value’ by the ‘residential building footprint’ for low-lying houses. House 311 
reconstruction cost estimates could alternatively be obtained from insurance providers using representative dwelling details (e.g. 3-bedroom; 312 
pre-1980’s; slab on ground; weatherboard) or industry publications such as Rawlinsons (2017). 313 
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3.3 Generate cases 314 

A total of 1,000 cases were generated using Latin Hypercube Sampling (LHS). The results 315 

were stored in a simple flat file database (ASCII csv).  316 

3.4 Develop rules of thumb 317 

Three ‘rules of thumb’ were determined for this study to incorporate the effect of uncertain 318 

factors on the simulation model: 1) the change in floodwater elevation for each meter of 319 

sea-level rise, 2) the change in the floodwater elevation for each percentage increase in 320 

the 9-hour critical rainfall intensity, and 3) the horizontal beach recession for each meter of 321 

sea-level rise. 322 

Peak floodwater elevation maps were developed by Kingborough Council using SWMM 323 

2D hydrodynamic modelling software for 11 different scenarios (see Appendix B in the 324 

Online Resource for details). This allowed the current-day baseline risk to people and 325 

property in Table 1 to be established. The 11 scenarios also allowed the relationship 326 

between sea-level rise and peak floodwater elevation to be investigated, revealing that a 1 327 

m rise in sea-level only increases the peak floodwater elevation by 1 cm. The relationship 328 

between rainfall intensity and floodwater elevation was based upon prior flood study work 329 

by Kingborough Council, which suggested that the peak floodwater elevation of Browns 330 

River changed by about 0.1 m per 10% increase in the 9-hour rainfall intensity 331 

(Kingborough Council 2017, p.40). The baseline scenarios from the hydrodynamic 332 

modelling were converted into peak floodwater elevation raster grids. These grids could 333 

then be adjusted using the rule of thumb relationships in the simulation model, depending 334 

on the change to sea-level and 9-hour rainfall intensity. 335 

The relationship between horizontal beach recession and sea-level rise was underpinned 336 

by the Bruun rule (Bruun 1962). Notwithstanding the dynamic nature of sandy beaches 337 

and the difficulty in modelling coastal processes, Kingston Main Beach is understood to be 338 

threatened by inundation from long-term sea-level rise (Sharples 2016), regardless of its 339 

historic ability to recover from erosion events (CoastAdapt 2016). Although there are 340 

many simplifications of the Bruun rule (e.g. Cooper and Pilkey 2004), there are currently 341 
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few scientifically recognised alternatives for policy design (Mariani et al. 2012). Prior 342 

studies of nearby beaches in the Derwent Estuary suggest that the Bruun factor could be 343 

in the range of 15-37 (Carley et al. 2008), whilst Mariani et al. (2012) suggest that a Bruun 344 

factor of 50 be used for Tasmania (and a factor of 100 for a conservative estimate). The 345 

presence of a sea wall in the study area makes application of the Bruun rule further 346 

problematic. We therefore only apply it to generate indicative beach loss seaward of the 347 

existing sea-wall at Kingston Main Beach. 348 

3.5 Impact modelling (simulation) 349 

A schematic diagram of the model used to simulate impacts against the three adaptation 350 

objectives is shown in Fig. 4. Spatial datasets were sourced online from the Tasmanian 351 

State mapping authority (DPIPWE 2015). Low-lying houses were digitised into polygon 352 

shapefiles using georectified aerial imagery, and a 2 m x 2 m raster grid was specified for 353 

all geoprocessing analysis. This provided adequate model resolution whilst improving the 354 

processing speed, which was important when raster grids were converted into NumPy 355 

arrays to evaluate coastal flood impacts. Looping through each row in the case database 356 

and applying the rules of thumb allowed different proxy flood depth rasters to be 357 

generated (peak floodwater levels). These rasters could then be overlayed above the land 358 

use raster to identify exposed dwellings and to determine the vulnerability of those 359 

dwelling in terms of damage costs (see Appendix C in the Online Resource for details on 360 

the data and geoprocessing tools used in the simulation model). 361 
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 362 

Fig. 4 Schematic diagram of the main activities undertaken to assess impacts to AAPE, 363 

AAD and average beach width. The case database was generated using the R 364 

programming language, before being imported into Python. Impacts on the adaptation 365 

objectives for each case were assessed in Python using geoprocessing tools (ArcPy 366 

module). 367 

 368 

3.5.1 Calculating AAPE 369 

The number of people exposed to hazards was estimated for 1%, 2%, 5% and 20% AEP 370 

events by multiplying the average number of people per dwelling by the number of houses 371 

inundated. AAPE was then determined by applying the trapezoidal rule to calculate the 372 

area under a plot of AEP against the number of people exposed. A similar measure to 373 

AAPE was used by Lempert et al. (2013). 374 
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3.5.2 Calculating AAD 375 

Calculation of the AAD to dwellings was based upon established practice used to assess 376 

monetary flood impacts (de Moel et al. 2015; Egorova et al. 2008). The proxy peak 377 

floodwater surface was used to determine an inundation depth at each 2 m x 2 m raster 378 

cell, from which vulnerability curves were applied to exposed dwellings to determine a 379 

damage index. The damage index reflects the percentage of damage relative to the full 380 

replacement cost. A separate vulnerability curve was used to assess damages to the 381 

house structure (i.e. fixed elements) and contents (i.e. movable assets), and vulnerability 382 

curves were guided by empirical data from Geosciences Australia (2012) (see Appendix D 383 

in the Online Resource for details). The monetary impact to all dwellings in each case was 384 

calculated by summing the damage across all raster cells for the 1%, 2%, 5% and 20% 385 

AEP events, allowing the AAD to be determined using the trapezoidal rule (Ramm et al. 386 

2015).  387 

3.5.3 Calculating average beach width 388 

The average beach width was determined by creating a transect line at five 389 

distinguishable locations along Kingston Main Beach, corresponding to beach access 390 

points. A buffer distance based on the Bruun factor was created around the sea-level rise 391 

polygon (at MHSW) based upon the amount of sea-level rise in the case being considered. 392 

The transect length was then calculated as the horizontal distance from the fixed sea wall 393 

to the adjusted sea-level polygon. The average width across the five locations was then 394 

calculated. 395 

3.5.4 Simulation results 396 

The impact model took 85 hours to analyse 1,000 cases on a standard 16GB RAM 397 

machine with a 3.4 GHz Intel processor. Plotting the cases against the adaptation 398 

objectives (Fig. 5) suggests that although the majority of case realisations resulted in 399 

unacceptable impacts to the adaptation objectives (i.e. Q3 in Fig. 5a and Q2 in Fig. 5b), 400 

there are cases that lead to reduced impacts on adaptation objectives (i.e. Q1 in Fig. 5a 401 
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and Q4 in Fig. 5b). Scatter plots were used as an initial diagnostic tool to visualise the 402 

sensitivity of the individual input factors on the adaptation objectives (Pianosi et al. 2016).  403 

 404 

Fig. 5 Plot of impacts to (a) AAPE and AAD objectives and (b) average beach width and 405 

AAD objectives, for the 1,000 cases. The upper bound of tolerable impacts to the 406 

objectives (see Table 1) are defined by red dashed lines. The percentage of cases in each 407 

quadrant of the plot is also shown (denoted Q1-Q4). 408 

 409 

 410 

 411 
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3.6 Describe conditions that lead to adaptation tipping points 412 

Scenario discovery validated observations made from the scatter plots that rainfall 413 

intensity and maximum structural damage costs were the most important uncertainties in 414 

defining the candidate scenario for the AAD adaptation objective. The significance of 415 

these variables was confirmed by the reproducibility statistics and p-values at the 0.05 416 

level. Coverage and density trade-offs were further investigated for a range of candidate 417 

scenarios (see Appendix E in the Online Resource for further details). The strongest 418 

candidate scenarios for the three adaptation objectives are summarised in Table 3. These 419 

candidate scenarios describe the conditions beyond which coastal inundation impacts 420 

related to the adaptation objectives are unacceptable (i.e. signify adaptation tipping points 421 

are reached). 422 

 423 

Table 3: Scenario discovery results showing candidate scenarios beyond which impacts 424 

related to the adaptation objectives become unacceptable. 425 

 Candidate scenario 

Adaptation 

objective  

Conditions (factor and values) Cases of 

interest 

Coverage / 

Density 

1: AAPE 9-hour rainfall intensity < 4.8%, 

AND 

Average people per house < 2.4 

194 / 1000 73% / 88% 

2: AAD 9-hour rainfall intensity < 6.3% 

AND 

Maximum structural damage < $1,536/m2 

167 / 1000 75% / 76% 

3: Beach 

width 

Sea-level rise < 0.3m 

AND 

Bruun factor < 83 

320 / 1000 70% / 97% 

 426 

Key factors in the selected candidate scenarios are shown in Table 4, along with projected 427 

trends and associated timeframes. The timing is not intended to be exact. Rather it 428 

focuses on identifying an indicative time period at which conditions describing adaptation 429 

tipping points could be reached, thereby indicating a use-by year (Haasnoot et al. 2013). 430 
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For the environmental factors, projections for lower (RCP4.5) and higher (RCP8.5) 431 

emissions scenarios are useful to understand timeframes for a range of potential changes 432 

(Bates et al. 2016). Time-series were available for projected mean sea-level rise in coastal 433 

council areas (McInnes et al. 2016), providing an indication of when the conditions 434 

associated with this uncertain factor might be exceeded. Additionally, guidance was 435 

sought from the Australian Rainfall and Runoff guide for projecting changes to rainfall 436 

intensity. This relates future rainfall intensity changes to temperature change using a 437 

scaling estimate of 5 % per °C of warming, based on the Clausius-Clapeyron vapour 438 

pressure relationship (Bates et al. 2016). However, uncertainty remains with this approach, 439 

with research suggesting that extreme rainfall intensities could increase by more than 15 % 440 

per °C in Tasmania by the end of the century (Mantegna et al. 2017). Projected 441 

temperature change was obtained from the Climate Change in Australia web portal 442 

(CSIRO and Bureau of Meteorology 2015), which guided the indicative timeframes for 443 

changes to rainfall intensity based on the relationship used by Bates et al. (2016). 444 

The projections suggest that changing rainfall intensity is likely to cause unacceptable 445 

impacts to AAPE between the years 2040-2060, if the average people per house exceeds 446 

2.4. The impacts to AAD are projected to remain acceptable for a longer timeframe, until 447 

years 2050-2070, if the maximum replacement cost of dwellings exceeds $1,536/m2 in 448 

real dollars. The impacts to average beach width may become unacceptable between the 449 

years 2060-2070, which is conditional on the Bruun factor exceeding 83 (a conservative 450 

value for the study area). Ongoing monitoring of each key factor at local, regional and 451 

national scales is necessary to confirm the adequacy of the presently projected trends and 452 

to update the projected time periods at which adaptation tipping points may be reached. 453 
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Table 4. Projected timeframe for changing factors. The selected factors are those identified in the candidate scenarios. 454 

Condition  Projected change  Adaptation objective 

Factor Value  Indicative timeframe Scientific basis  (1) 

AAPE 

(2) 

AAD 

(3) 

Beach 

width 

Sea-level rise increase 

(relative to 2010 levels) 

0.3m  2060 (RCP4.5) – 2070 (RCP8.5) McInnes et al. (2016)    ✓ 

Changing 9-hour rainfall 

intensity (relative to present) 

4.8%  2040 (RCP4.5) – 2060 (RCP8.5) Bates et al. (2016); 

CSIRO and Bureau of 

Meteorology (2015) 

 ✓   

6.3%  2050 (RCP4.5) – 2070 (RCP8.5)   ✓  

Bruun factor 83  - Nil a.    ✓ 

Max. structural damage per m2 

(real dollars in 2016) 

$1,536/m2  - Dunford et al. (2014) b.   ✓  

Average people per house 2.4  Minimal change c.  ABS (2010)  ✓   
a. No data is available on the Bruun factor for Kingston Beach. Estimates from nearby areas are lower than the value shown. 455 
b. No projections available. Periodic updates to the structural value are necessary (e.g. NEXIS building exposure database; Dunford et al. 456 

2014), which are then adjusted from nominal to real dollars using the ‘average weekly earnings’ figures (Department of Environment and 457 
Climate Change 2007) that are tracked by the Australian Bureau of Statistics (e.g. ABS 2017). 458 

c. The average household size is estimated to fall to between 2.2-2.3 by 2031 in Tasmania (ABS 2010). 459 

 460 

 461 
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3.7 Develop the adaptation pathway 462 

The key conditions that lead to adaptation tipping points and time projections identified in 463 

Section 3.6 can be brought together within a DAPP framework to begin developing an 464 

adaptation pathway. The steps in the DAPP framework require identifying possible 465 

adaptation responses, evaluating the responses, assembling the pathways, identifying 466 

preferred pathways, contingency planning, and creating a dynamic adaptive plan 467 

(Haasnoot et al. 2013). The key factors identified through scenario discovery can also 468 

support the definition of technical signposts in the DAPP process. The first part of the 469 

adaptation pathways mapping process for the study area is shown in Fig. 6, which 470 

indicates when an adaptation response would be needed to manage the different 471 

adaptation objectives in the case where no adaptation measures are taken. Planning and 472 

implementation timeframes for each adaptation response needs to consider the lead time 473 

as the option progresses through project/policy governance systems. Each subsequent 474 

adaptation option identified in the pathway can be assessed for robustness by repeating 475 

the steps in Section 2.2 through to Section 2.6, or evaluated using other decision support 476 

tools (e.g. Dittrich et al. 2016). Furthermore, some options may impact on multiple 477 

adaptation objectives (e.g. a levee could provide benefits to both the AAD and AAPE 478 

objectives). Therefore the evaluation of the costs and benefits of each adaptation option 479 

would need to consider the implications to multiple objectives. 480 

 481 

 482 
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 483 

 484 

Fig. 6 Development of the adaptation pathway using adaptation tipping points and the 485 

projected timeframe of change. Adaptation objectives and future options to be explored 486 

are organised into key result areas (KRAs) to guide long-term planning. Options shown 487 

are mutually exclusive and black arrows indicate options that can improve outcomes for 488 

correlated objectives. Timeframes are indicative and require ongoing monitoring and 489 

reassessment as part of iterative risk management. 490 

 491 

4 Discussion 492 

4.1 Greater insights for coastal flood risk management 493 

The ability to simulate coastal flood impacts across many future scenarios better equips 494 

decision-makers to address questions such as ‘what change leads to unacceptable 495 

impacts?’ and ‘when are adaptation responses needed?’. The case study illustrates that 496 

open source spatial data and programming, combined with commercial GIS software, can 497 

be used to address these questions by uncovering key risk management considerations in 498 

communities that face uncertain long-term change. There is an opportunity for local 499 
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government and other coastal authorities to replicate the illustrated method whilst 500 

customising it for their local needs. 501 

The use of scenario discovery to identify conditions whereby existing plans no longer 502 

meet the adaptation objectives can simplify complex changes to the built and natural 503 

environment in a meaningful format for stakeholders to understand. As demonstrated in 504 

the case study, RDM offers the potential to explore the interaction between a broad set of 505 

uncertain hazard, exposure, and vulnerability factors and how they influence coastal 506 

inundation impacts. This recognises that societal development, building codes, and other 507 

land use policies can exacerbate flood impacts in low-lying communities, especially when 508 

coupled with changing flood patterns. This approach is an improvement on seminal 509 

adaptation pathway methods that focus on changes to a single hazard parameter (Kwadijk 510 

et al. 2010; Reeder and Ranger 2011). However, using multiple uncertain factors to 511 

describe conditions leading to adaptation tipping points adds further complexity to the risk 512 

monitoring process. Each variable may change in different directions and with varying 513 

rates. Therefore a vulnerability assessment to coastal inundation, including periodic 514 

monitoring, needs to be done routinely as part of the managing authorities’ iterative risk 515 

management process. 516 

The key factors uncovered with scenario discovery can support the selection of signposts 517 

that are identified in the later stages of the DAPP process. They can also allow causal 518 

factors to be further explored to better understand leading indicators that signify changing 519 

risk (Bonzanigo and Kalra 2014). For example, population growth and housing density is 520 

driven by land use and development decisions, which influences the average number of 521 

people per dwelling exposed and therefore achievement of the AAPE objective. 522 

Techniques like root cause analysis, systems thinking, or hazard chains (Downing 2012) 523 

can be undertaken at this stage of the assessment to identify (and treat) causal risk 524 

factors that are interconnected but less apparent. These insights can build a case for 525 

targeted data collection and monitoring activities in urbanised coastal areas, which is 526 

important when financial resources are limited. In further developing adaptation pathways, 527 
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technical signposts such as those noted above would need to be considered alongside 528 

political signposts to be inclusive of different stakeholder needs (Hermans et al. 2017). 529 

The methodology illustrated in the case study takes a different approach to traditional risk 530 

management methods, such as the ISO31000 process that is recognised worldwide. Our 531 

methodology requires tolerable risks to be defined at the outset and baseline impacts to 532 

be assessed, before the sensitivities of the site to coastal inundation are uncovered. 533 

Conversely, the ISO31000 process begins with a risk assessment, then prioritises risks 534 

based on likelihood and consequence matrices before evaluating whether risks are 535 

acceptable, tolerable, or intolerable. Identification of a baseline risk acknowledges that 536 

there is already a certain coastal inundation threat that the community has accepted, 537 

knowingly or not. This allows analysts to focus their efforts on searching for what changes 538 

to the current built and natural environment will cause unacceptable inundation impacts. 539 

This makes the process of communicating risks more straightforward and salient to 540 

concerned parties, since they can consider how environmental change might affect them 541 

relative to what they are experiencing today. An important strength of the ISO31000 542 

process over our method is that it considers a much broader set of impacts. For example 543 

the National Emergency Risk Assessment Guidelines used in Australian emergency 544 

management considers consequences to people, environment, economy, public 545 

administration, social setting and infrastructure (National Emergency Management 546 

Committee 2010). Our approach was limited to a quantitative assessment of impacts to 547 

people, property, and lifestyle objectives. Therefore there is scope for the presented 548 

method to increase the number of adaptation objectives and include a qualitative 549 

assessment of intangible consequences. 550 

4.2 Making change salient in the community 551 

A characteristic of the key factors identified by scenario discovery in the case study was 552 

that they change slowly over time. However, detecting such environmental changes can 553 

be problematic due to natural variability, sparse data records, and non-stationarity (Milly et 554 

al. 2008). Detecting a modest 4-7% increase to 9-hour rainfall intensity – as identified in 555 
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our case study – is difficult in practice, and a coastal authority asserting that such change 556 

has occurred is likely to be challenged by residents with different views. 557 

Translating changes to key variables into observable impacts can provide an evidence-558 

based approach to substantiate claims within the community that they may be 559 

approaching a threshold or adaptation tipping point. For example, a 4.8% increase in 560 

rainfall intensity in the study area suggests that inundation of the Windsor Street / 561 

Balmoral Road intersection may occur once every 7 years, instead of 9 years (Fig. 7). 562 

Consequently, flooding of this intersection twice in a 7-year timeframe could signal that 563 

the rainfall intensity is approaching its adaptation tipping point limit. Although this does not 564 

account for changing catchment characteristics (e.g. upstream development) and 565 

changing extreme rainfall frequencies that can affect the recurrence interval of peak 566 

floodwaters, it does serve to convert an otherwise meaningless number into demonstrable 567 

evidence that change may be occurring.  568 

A similar philosophy was used by Barnett et al. (2014) in their case study at Lakes 569 

Entrance, whereby an adaptation response was planned in the event that the esplanade 570 

flooded for 5 or more days in a year. Importantly, observed changes to rainfall intensity 571 

and/or flood frequency at a local scale requires robust assessment against expected 572 

variability. In this regard, local agencies require input from national agencies (e.g. CSIRO, 573 

Bureau of Meteorology and Geosciences Australia) who are concerned with the scientific 574 

assessment of changes across various spatial and temporal scales. This ensures decision 575 

are based on robust scientific understanding of changes that are occurring, reducing the 576 

chance of reactive decisions being made by coastal authorities in the face of chance 577 

events or natural variability.  578 



29 

 579 

Fig. 7 Selected location at the intersection of Windsor Street and Balmoral Road (circled – 580 

left panel) that could be used to observe changing coastal flood risk. The average change 581 

to peak flood water elevations (above AHD) for a 20% AEP flood event with increased 582 

rainfall intensity of 4.8% is shown in the right panel.  583 

 584 

The case study presented here made an important assumption that measurable 585 

adaptation objectives and tolerable impacts could be defined and agreed upon in the 586 

community. The study was also limited to a small subset of the possible values that may 587 

exist in the community. In practice, public collective decision-making processes are likely 588 

to face contested adaptation goals and conflicting knowledge among stakeholders 589 

(Bosomworth et al. 2017), whilst social power inequalities and varying short-term interests 590 

can hamper long-term planning efforts (Few et al. 2007). Although there are increasing 591 

calls for social impacts to be better accounted for in climate change impact assessments 592 

and to evaluate adaptation responses (Adger et al. 2009; Downing 2012), such 593 

considerations are not straightforward due to complex and subjective interactions among 594 

values, ethics, priorities, culture, knowledge, and power structures, all of which change 595 

with time (Adger et al. 2009). Engagement with community stakeholders may be a useful 596 

starting point to identify contested values in the scoping phase of adaptation planning and 597 

to define key issues (e.g. Barnett et al. 2014). This can then form a basis for identifying 598 

the adaptation objectives, metrics and tolerable impacts upon which subsequent analysis 599 
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is based. The use of decision relevant information produced by activities such as scenario 600 

discovery can better inform participants at various stages of the planning process and can 601 

also strengthen the credibility of the resultant strategy. Although deliberation with analysis 602 

is increasingly being recognised in complex environmental policy problems (National 603 

Research Council 2009), further research is needed to explore how this can be most 604 

effectively utilised in a combined RDM and DAPP approach. 605 

4.3 The prospects and limitations: Towards better informed planning 606 

The case study highlights that there is a need to improve the accuracy of simulation 607 

modelling, in particular the generation of rules of thumb and proxy floodwater rasters. 608 

Simplifications in the model meant parameters such as flood duration, contamination, 609 

debris, rate of rise, and flood velocity were omitted, which can cause overall damage 610 

estimates to be underestimated (Merz et al. 2010; Middelmann-Fernandes 2010). 611 

Similarly, the use of the Bruun rule is likely to be overly simplistic given (among other 612 

things) it does not consider coastal storms that can exacerbate beach erosion nor other 613 

coastal processes that may affect the shoreline response. Notwithstanding these 614 

limitations, changing beach widths can be easily monitored by coastal authorities, 615 

community groups, or residents to confirm trends in the face of uncertainty (e.g. ACECRC 616 

n.d.; UNESCO 2005), and the beach management authority could develop contingency 617 

plans to address unexpected near-term beach loss.  618 

The timing at which adaptation tipping points were projected in this study was relatively 619 

simple by focussing on a small set of projected changes to key variables. The use of 620 

transient scenarios to identify a range of use-by years (e.g. Haasnoot et al., 2015) is a 621 

potential improvement to the methodology presented in Section 3.6, as it would allow 622 

different rates of change (positive and negative) for the key conditions describing 623 

adaptation tipping points to be combined across many cases. This could better inform the 624 

timing of adaptation tipping points to support the development of long-term master plans 625 

and future resource requirements. 626 
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Implementation of the presented methodology requires data availability, technical 627 

capability, and financial resources to perform the analysis, collect data, and monitor 628 

change over time. Given that technical knowledge and financial constraints are likely to 629 

remain a barrier for local government in the near-term, such resources could be 630 

centralised in a nationally coordinated authority. This authority could work with local 631 

government to apply a nationally consistent approach to describe conditions leading to 632 

adaptation tipping points and develop adaptation pathways. The presented method could 633 

also be applied at a municipal, state or national scale to identify coastal settlements that 634 

are most vulnerable to changing coastal flood hazards, using the timing at which their 635 

adaptation tipping points would be exceeded as an indicator. For resource-constrained 636 

authorities, the ability to prioritise adaptation investment towards those communities that 637 

yield the greatest risk mitigation benefits would improve the allocation of scarce financial 638 

resources. 639 

It is too early to fully understand the effectiveness of the illustrated methodology in this 640 

study given that it reflects ex ante planning, yet such conditions are faced in all risk 641 

identification activities. What the methodology offers is a new way of integrating two state-642 

of-the-art decision support tools so that decision-makers can explore and identify future 643 

vulnerabilities to coastal inundation and design adaptation pathways. 644 

5 Conclusions 645 

This research has examined whether RDM can be embedded within a DAPP framework 646 

to improve planning for changing coastal flooding risks. Our method was underpinned by  647 

GIS software, open source data, and programming languages, making it pragmatic and 648 

possible to replicate in other coastal communities.  649 

The use of RDM to uncover sensitivities in the existing system to changing coastal flood 650 

patterns focuses the attention of decision-makers towards those uncertainties that are 651 

most relevant for achieving their adaptation objectives. This is useful not only for 652 

understanding what change leads to intolerable risk and when such change might occur, 653 
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but considers more broadly how societal development, land use, and existing building 654 

regulations might exacerbate impacts from changing coastal flood patterns. 655 

A better understanding of the key conditions that lead to adaptation tipping points in flood 656 

risk management can support targeted data collection, monitoring activities, and 657 

adaptation responses. It can also help identify signposts in the adaptation pathway. 658 

However, detecting changes in multiple factors can be difficult given natural variability, 659 

and challenges are enhanced by sparse long-term data records and little financial 660 

resources allocated to coastal monitoring activities. Furthermore, reaching agreement on 661 

the adaptation objectives, a clear definition of what the community deems as tolerable 662 

impacts and exploring how deliberation with analysis is most effectively used in a 663 

combined RDM and DAPP approach remains a question for further research. 664 

The use of scenario discovery to describe conditions leading to adaptation tipping points 665 

offers an alternative conceptualisation of the DAPP approach, which uses transient 666 

scenarios to focus on the timeframe at which an adaptation tipping point is reached. In a 667 

combined RDM and DAPP approach, transient scenarios could be used after scenario 668 

discovery to project the timing of adaptation tipping points based upon changes to a 669 

reduced set of key factors. This sequence of steps would improve the description of 670 

adaptation tipping points and the basis for projecting the use-by year of existing and future 671 

adaptation policies.    672 

Our study illustrates that RDM can be a powerful method to uncover a small set of 673 

conditions that together can characterise adaptation tipping points in the face of uncertain 674 

environmental change and the simulation results are well suited for use within a DAPP 675 

framework. Notwithstanding the challenges that remain around simulation modelling and 676 

detection of environmental change, the ability to make sense of complex environmental 677 

dynamics for use in vulnerability assessments and adaptation planning can provide much 678 

needed support to coastal authorities who are facing increasing pressure to minimise 679 

costly impacts and ensure the sustainability of their communities. 680 
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