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Abstract 
Motivation: Water molecules in protein binding sites play essential roles in biological processes. The 

popular 3D-RISM prediction method can calculate the solvent density distribution within minutes, but 

is difficult to convert it into explicit water molecules.  

Results: We present GAsol, a tool that is capable of finding the network of water molecules that best 

fits a particular 3D-RISM density distribution in a fast and accurate manner and that outperforms other 

available tools by finding the globally optimal solution thanks to its genetic algorithm.  

Availability: https://github.com/accsc/GAsol. BSD 3-clauses license 

Contact: alvaro.x.cortes@gsk.com 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

The function of the water molecules in the binding sites of the proteins 

has become of considerable interest recently. It is well known that water 

plays a key role in ligand recognition and in stabilizing protein structures. 

In order to complement experimental techniques and to improve our un-

derstanding of active-site hydration, several computational approaches 

have been developed during the years (Bodnarchuk, 2016). Some of the 

most popular methods to locate water molecules in protein binding sites 

include WaterMap (Abel, et al., 2008), GIST (Nguyen, et al., 2012) and 

the Three-Dimensional Reference Interaction Site Model (3D-RISM) 

(Beglov and Roux, 1997), to name a few. During this time, it has become 

clear that the water predicting tools can have a significant impact on me-

dicinal chemistry programs. One recent example includes the develop-

ment of inhibitors of platelet-derived growth factor receptor ȕ (Horbert, et 

al., 2014) Of particular relevance here, 3D-RISM (Kovalenko and Hirata, 

1999) is a computational approach that calculates the distribution of sol-

vent molecules around a solute and which has its roots in statistical me-

chanical integral equation theories (IET) of liquids. Most popular 3D-

RISM implementations can calculate the solvent distribution around a 

rigid solute within minutes, using only the solute structure and the solvent 

composition as input. To address the difficulty to convert the continuous 

distribution function of 3D-RISM into explicit water molecules some al-

gorithms have been developed, e.g. Placevent (Sindhikara, et al., 2012), 

but either they present some deficiencies regarding finding a truly global 

solution or they cannot be applied easily to a wide range of targets. Here 

we present GAsol, a tool that is capable of finding the network of water 

molecules that best fits a particular 3D-RISM density distribution in a fast 

and accurate manner. 

2 Methods and application 

GAsol addresses the search for the optimal network of water molecules 

from a global point of view, by using a genetic algorithm and a desirability 

function based on the 3D-RISM density (Fig. 1A) that try to avoid the 

local minima problem (Fig. 1B, Supp. Table S1-S3). The analysis can be 

carried out typically in a couple of minutes on modern workstations due 

to the built-in multiprocessor capabilities, and only requires a grid file in 

DX format. The resulting network is written to a PDB file that can be vis-

ualized with any standard molecular viewer.  

 

2.1 Detecting potential water sites 

The number of water sites to consider in the optimization process is a crit-

ical parameter of the algorithm. We have implemented a double filter pro-

cedure that, first, uses a minimum threshold value for the density distribu-

tion to consider a grid point as a potential water site (by default g(r) ≥ 5) 
and second, a spatial constraint in the form of a sphere with user supplied 
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centre and radius, to consider only grid points inside the defined region 

(e.g. binding site). To facilitate this process, the program allows users to 

specify a ligand of interest in PDB format to automatically set the centre 

of the region to the geometrical centre of the molecule.  

 

2.2 Genetic algorithm 

After selecting the potential water sites, the algorithm initializes a popu-

lation of individuals of potential solutions to the problem (chromosomes). 

Each chromosome is made of multiple genes, as many as water sites are 

available. Each gene is set to a value of 1, meaning the site is occupied by 

a water molecule or to 0, meaning that the site is empty. The initial popu-

lation is then evolved during a total of 10,000 generations. In each gener-

ation, the population is subjected to selection, crossover and mutation. The 

selection procedure chooses individuals in the current generation with a 

tournament scheme. In this tournament, three individuals are selected ran-

domly, allowing repetition, and only the best solution is allowed to repro-

duce. In the crossover phase, these individuals are mated by combining 

their chromosomes defining two random crossover points. Finally, in the 

mutation step, random gene flips are introduced in the offspring with a 

low probability to add variability. 

 

2.3 Desirability function 

Before the algorithm starts to generate solutions, the density distribution 

from the 3D-RISM calculation is transformed to a population function by 

using the equation ܲሺݎԦሻ ൌ ௕௨௟௞ߩ  ௩ܸ௢௫௘௟݃ሺݎԦሻ where ȡbulk is the density of 

the bulk solvent, Vvoxel is the volume of one voxel in the grid and g(r) is 

the density function. Following, for each water site detected in the first 

phase of the program, we calculate the minimum number of voxels re-

quired to account for one unit of the population. Each water site is then 

scored by dividing the final population value (which should be around 1.0) 

by the radius of the sphere calculated. This scoring method guarantees that 

water sites with more compact populations, and therefore more likely, are 

selected preferentially. To score individual solutions, we have introduced 

a desirability function with two subcomponents and one penalty term 

(Supp. Inf.). The first subcomponent accounts for the amount of popula-

tion considered for a particular solution by summing all the individual val-

ues for each occupied water site and normalizing by the sum of the values 

for all water sites in the solution space (occupied or not). The second sub-

component tries to avoid double-counting the same part of the population 

multiple times in the case of proximal water sites. The function has a value 

of 1 by default except when two or more occupied water sites are at a 

distance of less than a threshold, which sets the value to 0. A penalty term 

has been introduced to improve the efficiency of the algorithm regarding 

the second subcomponent. As the desirability of the non-feasible solutions 

is always 0, the algorithm tends to waste several initial iterations since the 

random solutions usually contain several incompatible occupied water 

sites. The penalty term is defined then as the weighted ratio of the number 

of incompatible water sites and the total number of sites in the chromo-

some.  

 

2.4 Evaluation datasets and results 

To validate the tool we have selected a dataset of X-ray crystal ligand-

proteins complexes with confirmed water networks that includes the HIV-

1 protease (PDB 2ZYE), neuraminidase (PDB 1NNC), bovine pancreatic 

trypsin (PDB 5PTI) and a series of 184 BRD4 bromodomain 1 (BRD4-

BD1) complexes to evaluate the robustness of the algorithm to small 

changes in the binding site (Supp.Inf. Table 1) in a highly conserved  

 

 

 

water network (Fig. 1C). As a metric, we have used the number of water 

molecules predicted within a distance of 2.0 A from the crystallographic 

position (Supp. Fig. S1). The tool can detect all the water molecules 

around the ligands in the HIV-1 protease, neuraminidase and in the bovine 

pancreatic trypsin systems. For the 184 BRD4-BD1 complexes, GAsol 

identifies correctly 94.3% (Supp. Fig. S1) of the key water molecules of 

the complexes with an improvement of the results of 90% if compared to 

a standard tool (Fig. 1D). Moreover, the number of false positive defined 

as the number of predicted water molecule not matching a crystallographic 

one is comparable between GAsol and placevent (Supp. Fig. S2).  
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Figure 1 A) General overview of the GAsol algorithm. B) Example of mispre-

diction of two water molecules (in pink) due to a local minima problem (PDB 

ID 5I80). The water predicted by GAsol are reported in green. C) Overlay of 

the highly-conserved water network in the 184 bromodomains BRD4-BD1. D) 

Results of the validation procedure on BRD4 crystals vs. placevent (standard 

algorithm).  


