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1. Introduction

Stochastic differential equation (SDE), as a power tool to model uncertainties, has been broadly applied to many areas
[1–3]. However, apart from linear SDEs, explicit solutions tomost non-linear SDEs can hardly be found. Therefore, numerical
approximations to SDEs become essential in the applications of SDE models.

When the drift and diffusion coefficients of SDEs satisfy the global Lipschitz condition, different kinds of numerical
approximates have been broadly studied. We refer the readers to the monographs [4–6] for the detailed introductions and
discussions.

Due to the simple structure and easy to programme, explicit methods, such as the Euler–Maruyama method, have been
widely used [7]. Butwhen the global Lipschitz condition is disturbed, the classical Euler–Maruyamamethod has been proved
divergent [8,9].

One of the natural candidates to tackle the divergence caused by the non-linearities in coefficients is implicit method.
Many works have been devoted to implicit methods [10–21]. Despite the good performance of the strong convergence,
implicit methods have their own disadvantage that some non-linear systems need to be solved in each iteration, which may
be computationally expensive and introduce some more errors.

Another way to tackle SDEs with non-global Lipschitz coefficients is to modify the drift and diffusion coefficients in the
numerical methods. Following this approach, one can construct explicit methods that are able to converge to SDEs with
coefficients allowed to grow super-linearly. The tamed Euler method [22,23] is one of the most popular explicit methods
that were developed particularly for the super-linear SDEs. In addition, we refer the readers to [24–26] for the simplified
proofs of the strong convergence for the tamed Euler method, the tamed Milstein method and the semi-tamed method,
respectively.
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More recently, Mao in [27] proposed a new explicit method called the truncated Euler–Maruyama method. The new
method focuses on those SDEs with both the drift and diffusion coefficients allowed to grow super-linearly. In [28], Mao
further proved that the strong convergence rate of the method could be arbitrarily close to a half. Mao and his collaborators
also studied the asymptotic behaviour of the method in [29].

Apart from the stand-alone research interests of the strong convergence of numerical methods, the property of the strong
convergence could also be used to improve the convergence rate of estimating the expectation of some random variable by
using the Multi-level Monte Carlo (MLMC) method [30]. Furthermore, Giles in [31] pointed out that a numerical method
with the strong convergence rate of one could better cooperate with the MLMC method.

Therefore, in this paper we propose the truncated Milstein method, which is an explicit method and has the strong
convergence rate of arbitrarily closing to one. In this work, both of the drift and diffusion coefficients of the SDEs under
investigation could grow super-linearly.

In this paper, we only consider the case of the commutative diffusion coefficient. Many papers have been devoted
to SDEs with the commutative diffusion coefficient and we just mention some of them here [25,32,33]. Meanwhile, the
case of the non-commutative diffusion coefficient is definitely interesting and important [34–36]. The truncated Milstein
method developed in this paper may still be applicable to the case of the non-commutative diffusion coefficient, but more
complicated notations and different techniques will be involved. The ideas in those works [34–36] may provide hints for
the proofs. Due to the length of the paper, we will focus on the case of the commutative diffusion coefficient and report the
more general case in the future work.

This paper is organized as follows. Notations, assumptions and the truncated Milstein method will be introduced in
Section 2. The proofs of the main results will be presented in Section 3. An example together with some ideas on further
research will be presented in Section 4.

2. Mathematical preliminaries

Throughout this paper, unless otherwise specified, let (Ω,F,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (that is, it is right continuous and increasingwhileF0 contains allP-null sets). LetE denote the
expectation corresponding to P. If A is a vector or matrix, its transpose is denoted by AT . Let B(t) = (B1(t), B2(t), . . . , Bm(t))T

be an m-dimensional Brownian motion defined on the space. If A is a matrix, let |A| =
√

trace(ATA) be its trace norm. If
x ∈ R

d, then |x| is the Euclidean norm. For two real numbers a and b, set a ∨ b = max(a, b) and a ∧ b = min(a, b). If G is a
set, its indicator function is denoted by IG, namely IG(x) = 1 if x ∈ G and 0 otherwise.

Consider a d-dimensional SDE

dx(t) = f (x(t))dt +

m
∑

j=1

gj(x(t))dB
j(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ R
d, where

f : Rd → R
d, gj : Rd → R

d, j = 1, 2, . . . ,m,

and x(t) = (x1(t), x2(t), . . . , xd(t))T .
In some of the proofs in this paper, we need the more specified notation that f = (f1, f2, . . . , fd)

T , fi : R
d → R for

i = 1, 2, . . . , d, and gj = (g1,j, g2,j, . . . , gd,j)
T , gi,j : Rd → R for j = 1, 2, . . . ,m.

For j1, j2 = 1, . . . ,m, define

Lj1gj2 (x) =

d
∑

l=1

gl,j1 (x)
∂gj2 (x)

∂xl
. (2.2)

For the truncated Milstein method, we need that both f and g have continuous second-order derivatives. In addition, the
following assumptions are imposed.

Assumption 2.1. There exist constants K2 > 0 and r > 0 such that

|f (x) − f (y)| ∨ |gj(x) − gj(y)| ∨
⏐

⏐Lj1gj2 (x) − Lj1gj2 (y)
⏐

⏐ ≤ K2(1 + |x|r + |y|r )|x − y|

for all x, y ∈ R
d and j, j1, j2 = 1, 2, . . . ,m.

Assumption 2.2. For every p ≥ 1, there exists a positive constant K1, dependent on p, such that

⟨x − y, f (x) − f (y)⟩ + (2p − 1)

m
∑

j=1

⏐

⏐gj(x) − gj(y)
⏐

⏐

2
≤ K1|x − y|2

for all x, y ∈ R
d.

Assumptions 2.1 and 2.2 guarantee that the SDE (2.1) has a unique global solution.
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It is not hard to derive from Assumption 2.2 that for all x ∈ R
d

⟨x, f (x)⟩ + (2p − 1)

m
∑

j=1

⏐

⏐gj(x)
⏐

⏐

2
≤ α1(1 + |x|2) (2.3)

holds for all p ≥ 1, where α1 is a positive constant dependent on p.
Moreover, Assumption 2.2 guarantees the boundedness of the moments of the underlying solution [3], namely, there

exists a positive constant K , dependent on t and p, such that

E|x(t)|2p ≤ K
(

1 + |x(0)|2p
)

. (2.4)

From Assumption 2.1 we can obtain that for all x ∈ R
d

|f (x)| ∨ |gj(x)| ≤ α2(1 + |x|r+1), j = 1, 2, . . . ,m, (2.5)

where α2 is a positive constant.
For l = 1, 2, . . . , d, set

f ′
l (x) =

(

∂ fl(x)

∂x1
,
∂ fl(x)

∂x2
, . . . ,

∂ fl(x)

∂xd

)

and f ′′
l (x) =

(

∂2fl(x)

∂xj∂xi

)

i,j

, i, j = 1, 2, . . . , d.

And for n = 1, 2, . . . ,m, l = 1, 2, . . . , d, set

g ′
l,n(x) =

(

∂gl,n(x)

∂x1
,
∂gl,n(x)

∂x2
, . . . ,

∂gl,n(x)

∂xd

)

and g ′′
l,n(x) =

(

∂2gl,n(x)

∂xj∂xi

)

i,j

, i, j = 1, 2, . . . , d.

We further assume that for n = 1, 2, . . . ,m and l = 1, 2, . . . , d, there exists a positive constant α3 such that

|f ′
l (x)| ∨ |f ′′

l (x)| ∨ |g ′
l,n(x)| ∨ |g ′′

l,n(x)| ≤ α3(1 + |x|r+1). (2.6)

2.1. The classical Milstein method

Define a uniform mesh T
N : 0 = t0 < t1 < · · · < tN = T with tk = k∆, where ∆ = T/N for N ∈ N, the classical Milstein

method [37] is

yk+1 = yk + f (yk)∆ +

m
∑

j=1

gj(yk)∆B
j

k +

m
∑

j1=1

m
∑

j2=1

Lj1gj2 (yk)I
tk,tk+1

j1,j2
,

where

Lj1 =

d
∑

l=1

gl,j1
∂

∂xl
and I

tk,tk+1

j1,j2
=

∫ tk+1

tk

∫ s2

tk

dBj1 (s1)dB
j2 (s2).

When the diffusion coefficient g satisfies the commutativity condition that

Lj1gl,j2 = Lj2gl,j1 , for j1, j2 = 1, . . . ,m and l = 1, . . . , d,

the classical Milstein method is simplified into

yk+1 = yk + f (yk)∆ +

m
∑

j=1

gj(yk)∆B
j

k +
1

2

m
∑

j1=1

m
∑

j2=1

Lj1gj2 (yk)∆B
j1
k ∆B

j2
k −

1

2

m
∑

j=1

Ljgj(yk)∆,

where the property, I
tk,tk+1

j1,j2
+ I

tk,tk+1

j2,j1
= ∆B

j1
k ∆B

j2
k for j1 ̸= j2, is used.

2.2. The truncated Milstein method

For j = 1, . . . ,m and l = 1, . . . , d, define the derivative of the vector gj(x) with respect to xl by

Gl
j(x) :=

∂

∂xl
gj(x) =

(

∂g1,j(x)

∂xl
,
∂g2,j(x)

∂xl
, . . . ,

∂gd,j(x)

∂xl

)T

.

To define the truncated Milstein method, we first choose a strictly increasing continuous function µ : R+ → R+ such
that µ(u) → ∞ as u → ∞ and

sup
|x|≤u

(|f (x)| ∨ |gj(x)| ∨ |Gl
j(x)|) ≤ µ(u) (2.7)

for any u ≥ 2, j = 1, . . . ,m and l = 1, . . . , d.
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Denote the inverse function of µ by µ−1. We see that µ−1 is a strictly increasing continuous function from [µ(0), +∞)
to R+. We also choose a number ∆∗ ∈ (0, 1] and a strictly decreasing function h : (0, ∆∗] → (0, +∞) such that

h(∆∗) ≥ µ(1), lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0, ∆∗]. (2.8)

For a given step size ∆ ∈ (0, 1) and any x ∈ R
d, define the truncated functions by

f̃ (x) = f

(

(|x| ∧ µ−1(h(∆)))
x

|x|

)

, (2.9)

g̃j(x) = gj

(

(|x| ∧ µ−1(h(∆)))
x

|x|

)

, j = 1, 2, . . . ,m, (2.10)

and

G̃l
j(x) = Gl

j

(

(|x| ∧ µ−1(h(∆)))
x

|x|

)

, j = 1, . . . ,m, l = 1, . . . , d, (2.11)

where we set x/|x| = 0 if x = 0. It is not hard to see that for any x ∈ R
d

|f̃ (x)| ∨ |g̃j(x)| ∨ |G̃l
j(x)| ≤ µ(µ−1(h(∆))) = h(∆). (2.12)

That is to say, all the truncated functions f̃ , g̃ and G̃l
j are bounded although f , g and Gl

j may not. The next lemma illustrates
that those truncated functions preserve (2.3) for all ∆ ∈ (0, ∆∗].

Lemma 2.3. Assume that (2.3) holds. Then, for all ∆ ∈ (0, ∆∗] and any x ∈ R
d,

⟨

x, f̃ (x)
⟩

+ (2p − 1)

m
∑

j=1

⏐

⏐g̃j(x)
⏐

⏐

2
≤ 2α1(1 + |x|2). (2.13)

The proof of this lemma is the same as that of Lemma 2.4 in [27], so we omit it here. We should of course point out that it
was required that h(∆∗) ≥ µ(2) in [27], but we observe that the proof of Lemma 2.4 in [27] still works if h(∆∗) ≥ µ(1) and
that is why in this paper we only impose h(∆∗) ≥ µ(1) as stated in (2.8).
The truncated Milstein method is defined by

Yk+1 = Yk + f̃ (Yk)∆ +

m
∑

j=1

g̃j(Yk)∆B
j

k

+
1

2

m
∑

j1=1

m
∑

j2=1

d
∑

l=1

g̃l,j1 (Yk)G̃
l
j2
(Yk)∆B

j2
k ∆B

j1
k −

1

2

m
∑

j=1

d
∑

l=1

g̃l,j(Yk)G̃
l
j(Yk)∆. (2.14)

To simplify the notation, we set

Lj1 g̃j2 (x) :=

d
∑

l=1

g̃l,j1 (x)G̃
l
j2
(x).

The continuous version of the truncated Milstein method is defined by

Y (t) = Ȳ (t) +

∫ t

tk

f̃ (Ȳ (s))ds +

m
∑

j=1

∫ t

tk

g̃j(Ȳ (s))dB
j(s) +

m
∑

j1=1

∫ t

tk

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)dBj1 (s), (2.15)

where Ȳ (t) = Yk for tk ≤ t < tk+1 and ∆Bj2 (s) =
∑∞

k=0I{tk≤s<tk+1}(B
j2 (s) − Bj2 (tk)).

2.3. Boundedness of the moments

It is obvious from (2.12) that for any T > 0

sup
0≤t≤T

E|Y (t)|2p < ∞.

However, it is not so clear that for any T > 0

sup
0<∆≤∆∗

sup
0≤t≤T

E|Y (t)|2p < ∞.

This is what we are going to prove in this subsection. Firstly, we show that Y (t) and Ȳ (t) are close to each other.
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Lemma 2.4. For any ∆ ∈ (0, ∆∗], any t ≥ 0 and any p ≥ 1,

E|Y (t) − Ȳ (t)|
2p

≤ c∆p(h(∆))2p,

where c is a positive constant independent of ∆. Consequently, for any t ≥ 0

lim
∆→0

E|Y (t) − Ȳ (t)|
2p

= 0.

Proof. Fix the step size ∆ ∈ (0, ∆∗] arbitrarily. For any t ≥ 0, there exists a unique integer k ≥ 0 such that tk ≤ t < tk+1.

By the elementary inequality |
∑m

i=1ai|
2p

≤ m2p−1
∑m

i=1|ai|
2p, we derive from (2.15) that

E|Y (t) − Ȳ (t)|
2p

≤ cE

(⏐

⏐

⏐

⏐

∫ t

tk

f̃ (Ȳ (s))ds

⏐

⏐

⏐

⏐

2p

+

⏐

⏐

⏐

⏐

⏐

⏐

m
∑

j=1

∫ t

tk

g̃j(Ȳ (s))dB
j(s)

⏐

⏐

⏐

⏐

⏐

⏐

2p

+

⏐

⏐

⏐

⏐

⏐

⏐

m
∑

j1=1

∫ t

tk

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)dBj1 (s)

⏐

⏐

⏐

⏐

⏐

⏐

2p
)

,

where c is a positive constant independent of ∆ that may change from line to line. Then by the elementary inequality, the

Hölder inequality and Theorem 7.1 in [3] (Page 39), we have

E|Y (t) − Ȳ (t)|
2p

≤ c

(

∆2p−1
E

∫ t

tk

⏐

⏐

⏐
f̃ (Ȳ (s))

⏐

⏐

⏐

2p

ds + ∆(2p−2)/2

m
∑

j=1

E

∫ t

tk

⏐

⏐g̃j(Ȳ (s))
⏐

⏐

2p
ds

+ ∆(2p−2)/2
E

m
∑

j1=1

m
∑

j2=1

∫ t

tk

⏐

⏐Lj1 g̃j2 (Ȳ (s))
⏐

⏐

2p
|∆Bj2 (s)|

2p
ds

)

.

Applying (2.12) and the fact that E|∆Bj2 (s)|
2p

≤ c∆p for s ∈ [tk, tk+1), we obtain

E|Y (t) − Ȳ (t)|
2p

≤ c
(

∆2p(h(∆))2p + ∆p(h(∆))2p + ∆2p(h(∆))4p
)

.

By (2.8), we see ∆p(h(∆))2p ≤ ∆p/2. Therefore, the assertion holds. ■

Now we are ready to establish the boundedness of moments of the truncated Milstein approximate solution.

Lemma 2.5. Let (2.3) hold. Then for any ∆ ∈ (0, ∆∗] and any T > 0

sup
0<∆≤∆∗

sup
0≤t≤T

E|Y (t)|2p ≤ K
(

1 + E|Y (0)|2p
)

,

where K is a positive constant dependent on T but independent of ∆.

Proof. It follows from (2.15) that

Y (t) = Y (0) +

∫ t

0

f̃ (Ȳ (s))ds +

m
∑

j=1

∫ t

0

g̃j(Ȳ (s))dB
j(s) +

m
∑

j1=1

∫ t

0

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)dBj1 (s). (2.16)

By the Itô formula, we have

E|Y (t)|2p ≤ E|Y (0)|2p + 2pE

∫ t

0

|Y (s)|2p−2
⟨

Y (s), f̃ (Ȳ (s))
⟩

ds

+ 2pE

∫ t

0

2p − 1

2
|Y (s)|2p−2

⏐

⏐

⏐

⏐

⏐

⏐

m
∑

j1=1

g̃j1 (Ȳ (s)) +

m
∑

j1=1

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)

⏐

⏐

⏐

⏐

⏐

⏐

2

ds,

where the facts that 2p|Y (s)|2p−2
∑m

j1=1

⟨

Y (s), g̃j1 (Ȳ (s)) +
∑m

j2=1L
j1 g̃j2 (Ȳ (s))∆Bj2 (s)

⟩

is Fs-measurable and

E

⎛

⎝

m
∑

j1=1

∫ t

0

2p|Y (s)|2p−2

⟨

Y (s), g̃j1 (Ȳ (s)) +

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)

⟩

dBj1 (s)

⎞

⎠ = 0
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are used. We rewrite the inequality as

E|Y (t)|2p ≤ E|Y (0)|2p + 2pE

∫ t

0

|Y (s)|2p−2

⎛

⎜

⎝

⟨

Ȳ (s), f̃ (Ȳ (s))
⟩

+
2p − 1

2

⏐

⏐

⏐

⏐

⏐

⏐

m
∑

j1=1

g̃j1 (Ȳ (s))

⏐

⏐

⏐

⏐

⏐

⏐

2
⎞

⎟

⎠
ds

+ p(2p − 1)E

∫ t

0

|Y (s)|2p−2

⏐

⏐

⏐

⏐

⏐

⏐

m
∑

j1=1

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)

⏐

⏐

⏐

⏐

⏐

⏐

2

ds

+ 2pE

∫ t

0

|Y (s)|2p−2
⟨

Y (s) − Ȳ (s), f̃ (Ȳ (s))
⟩

ds.

By (2.12) and (2.13), we see

E|Y (t)|2p ≤ E|Y (0)|2p + KE

∫ t

0

|Y (s)|2p−2
(

1 + |Ȳ (s)|
2
)

ds

+ KE

∫ t

0

|Y (s)|2p−2|h(∆)|4∆ds + 2pE

∫ t

0

|Y (s)|2p−2
⟨

Y (s) − Ȳ (s), f̃ (Ȳ (s))
⟩

ds,

where K is a positive constant independent of ∆ and it may change from line to line but its exact value has no use to our
analysis.

Applying the Young inequality that

a2p−2b ≤
2p − 2

2p
a2p +

1

p
bp,

we obtain

E|Y (t)|2p ≤ E|Y (0)|2p + K

∫ t

0

E|Y (s)|2pds + K

∫ t

0

E|Ȳ (s)|
2p

+ Kt

+ K

∫ t

0

(

|h(∆)|4∆
)p
ds + KE

∫ t

0

⏐

⏐Y (s) − Ȳ (s)
⏐

⏐

p
⏐

⏐

⏐
f̃ (Ȳ (s))

⏐

⏐

⏐

p

ds. (2.17)

By Lemma 2.4, (2.8) and (2.12), we have

E

∫ t

0

⏐

⏐Y (s) − Ȳ (s)
⏐

⏐

p
|f̃ (Ȳ (s))|

p
ds ≤ c

∫ t

0

∆p/2(h(∆))2pds ≤ ct. (2.18)

Substituting (2.18) into (2.17), by using (2.8) we then get

E|Y (t)|2p ≤ E|Y (0)|2p + Kt + Kct + K

∫ t

0

(

sup
0≤u≤s

E|Y (u)|p
)

ds.

As the sum of the right-hand-side terms in the above inequality is an increasing function of t , we have

sup
0≤s≤t

E|Y (s)|2p ≤ E|Y (0)|2p + Kt + Kct + K

∫ t

0

(

sup
0≤u≤s

E|Y (u)|p
)

ds.

By the Gronwall inequality, we obtain

sup
0≤s≤T

E|Y (s)|2p ≤ K
(

1 + E|Y (0)|2p
)

,

where K is a positive constant independent of ∆. Therefore, the proof is complete. ■

3. Main results

If a function φ : Rd → R
d is twice differentiable, then the following Taylor formula

φ(x) − φ(x∗) = φ′(x∗)(x − x∗) + R1(φ) (3.1)

holds, where R1(φ) is the remainder term

R1(φ) =

∫ 1

0

(1 − ς )φ′′(x∗ + ς (x − x∗))(x − x∗, x − x∗)dς. (3.2)

For any x, h1, h2 ∈ R
d, the derivatives have the following expressions

φ′(x)(h1) =

d
∑

i=1

∂φ

∂xi
hi
1, φ′′(x)(h1, h2) =

d
∑

i,j=1

∂2φ

∂xi∂xj
hi
1h

j

2. (3.3)
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Here,

∂φ

∂xi
=

(

∂φ1

∂xi
,
∂φ2

∂xi
, . . . ,

∂φd

∂xi

)

, φ = (φ1, φ2, . . . , φd).

Replacing x and x∗ in (3.1) by Y (t) and Ȳ (t), respectively, from (2.15) we have

φ(Y (t)) − φ(Ȳ (t)) = φ′(Ȳ (t))
(

m
∑

j=1

∫ t

tk

g̃j(Ȳ (s))dB
j(s)

)

+ R̃1(φ), (3.4)

where

R̃1(φ) = φ′(Ȳ (t))
(

∫ t

tk

f̃ (Ȳ (s))ds +

m
∑

j1=1

∫ t

tk

m
∑

j2=1

Lj1 g̃j2 (Ȳ (s))∆Bj2 (s)dBj1 (s)
)

+ R1(φ). (3.5)

By (2.2) and (3.3), we find

g̃ ′
i (x)

(

g̃j(x)
)

= Ljg̃i(x). (3.6)

Therefore, by (3.6), replacing φ in (3.4) by gi gives

R̃1(gi) = gi(Y (t)) − gi(Ȳ (t)) −

m
∑

j=1

Ljgi(Ȳ (t))∆Bj(t) (3.7)

for tk ≤ t < tk+1.
We need the following lemmas to prove our main result.

Lemma 3.1. If Assumptions 2.1, 2.2 and (2.6) hold, then for all p ≥ 1 and j1, j2 = 1, . . . ,m,

sup
0<∆≤∆∗

sup
0≤t≤T

[

E|f (Y (t))|p ∨ E|f ′(Y (t))|
p
∨ E|g(Y (t))|p ∨ E|Lj1gj2 (Y (t))|

p
]

< ∞. (3.8)

From Lemma 2.5, the results hold immediately.

Lemma 3.2. If Assumptions 2.1 and 2.2 hold, then for all p ≥ 1 and j = 1, . . . ,m,

sup
0≤t≤T

[

E|(x(t))|p ∨ E|f (x(t))|p ∨ E|gj(x(t))|
p
]

< ∞. (3.9)

The proof is similar to that of (2.4).

Lemma 3.3. If Assumptions 2.1, 2.2 and (2.6) hold, then for i = 1, 2, . . . ,m and all p ≥ 1

E|R̃1(f )|
p
∨ E|R̃1(gi)|

p
≤ C∆p(h(∆))2p, (3.10)

where C is a positive constant independent of ∆.

Proof. We first give an estimate on E|R̃1(f )|
p
. Applying Lemmas 2.4 and 2.5, we can find a constant C such that

E|R1(f )|
p ≤

∫ 1

0

(1 − ς )p E

⏐

⏐

⏐
f ′′(Ȳ (t) + ς (Y (t) − Ȳ (t)))

(

Y (t) − Ȳ (t), Y (t) − Ȳ (t)
)

⏐

⏐

⏐

p

dς

≤

∫ 1

0

[

E

⏐

⏐

⏐
f ′′(Ȳ (t) + ς (Y (t) − Ȳ (t)))

⏐

⏐

⏐

2p

E

⏐

⏐

⏐
Y (t) − Ȳ (t)

⏐

⏐

⏐

4p
]1/2

dς

≤ C

(

1 + E|Y (t)|2p(r+1) + E|Ȳ (t)|
2p(r+1)

)1/2

·
(

E|Y (t) − Ȳ (t)|
4p

)1/2

≤ C∆p(h(∆))2p,

(3.11)

where the polynomial growth condition (2.6) on f ′′(x), the Hölder inequality and the Jensen inequality have been used. To

estimate E|R̃1(f )|
p
, we derive from (3.5) that

E|R̃1(f )|
p

≤ C

[

∆p
E

⏐

⏐

⏐
f ′(Ȳ (t))f̃ (Ȳ (t))

⏐

⏐

⏐

p

+
1

2

m
∑

j1,j2=1

E

⏐

⏐

⏐
f ′(Ȳ (t))

(

Lj1 g̃j2 (Ȳ (t))(∆Bj1 (t)∆Bj2 (t) − δj1,j2∆)
)⏐

⏐

⏐

p

+ E|R1(f )|
p
]

(3.12)
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for t ∈ [tk, tk+1), where the Kronecker delta δj1,j2 is a piecewise function of variables j1 and j2. Note that t − tk ≤ ∆, by using

the Hölder inequality and the Burkholder–Davis–Gundy inequality we have

E|∆Bj1 (t)∆Bj2 (t) − δj1,j2∆|
p

≤ 2p−1
[

E|∆Bj1 (t)∆Bj2 (t)|
p
+ ∆p

]

≤ 2p−1
[

E|∆Bj1 (t)|
2p
E|∆Bj2 (t)|

2p]1/2
+ 2p−1∆p

≤ 2p∆p.

(3.13)

Using Lemma 3.1, (2.12) and the Hölder inequality, we can show that for 0 ≤ t ≤ T , 1 ≤ j1, j2 ≤ m

E|f ′(Ȳ (t))f̃ (Ȳ (t))|
p

≤
[

E|f ′(Ȳ (t))|
2p

· E|f̃ (Ȳ (t))|
2p]1/2

≤ C(h(∆))p,

E

⏐

⏐f ′(Ȳ (t))Lj1 g̃j2 (Ȳ (t))
⏐

⏐

p
≤

[

E|f ′(Ȳ (t))|
2p

· E|Lj1 g̃j2 (Ȳ (t))|
2p]1/2

≤ C(h(∆))2p.

(3.14)

Now, substituting (3.11), (3.13) and (3.14) into (3.12) and making use of the independence of Ȳ (t) and ∆Bj1 (t), ∆Bj2 (t), we

obtain

E|R̃1(f )|
p

≤ C∆p(h(∆))2p

as required. Similarly, we can show

E|R̃1(gi)|
p

≤ C∆p(h(∆))2p.

The proof is complete. ■

For any real number R > |x(0)|, we define two stopping times

τR := inf{t ≥ 0, |x(t)| ≥ R} and ρR := inf{t ≥ 0, |Y (t)| ≥ R}.

Theorem 3.4. Let Assumptions 2.1, 2.2 and condition (2.6) hold. Given any real number R > |x0|, if ∆ ∈ (0, ∆∗] is chosen to be

sufficiently small such that µ−1(h(∆)) ≥ R, then

E

(

|e(t ∧ θ )|2p
)

≤ C∆2p(h(∆))4p,

where θ := τR ∧ ρR and e(t) := x(t) − Y (t).

Proof. By the Itô formula, we can show that for 0 ≤ t ≤ T ,

E

(

|e(t ∧ θ )|2p
)

= 2pE

∫ t∧θ

0

|e(s)|2p−2
⟨

x(s) − Y (s), f (x(s)) − f̃ (Ȳ (s))
⟩

ds

+ 2p

m
∑

i=1

E

∫ t∧θ

0

|e(s)|2p−2 2p − 1

2

⏐

⏐

⏐
gi(x(s)) − g̃i(Ȳ (s)) −

m
∑

j=1

Ljg̃i(Ȳ (s))∆Bj(s)

⏐

⏐

⏐

2ds.

(3.15)

When 0 ≤ s ≤ t ∧ θ , we have |Ȳ (s)| < R and µ−1(h(∆)) ≥ R, which yields |Ȳ (s)| < µ−1(h(∆)). According to (2.9) and (2.10),

we have that

f̃ (Ȳ (s)) = f (Ȳ (s)) and g̃i(Ȳ (s)) = gi(Ȳ (s)) for 0 ≤ s ≤ t ∧ θ.

Therefore, it follows from (3.15) and (3.7) that

E

(

|e(t ∧ θ )|2p
)

= 2pE

∫ t∧θ

0

|e(s)|2p−2
(

⟨

x(s) − Y (s), f (x(s)) − f (Y (s))
⟩

+
⟨

x(s) − Y (s), f (Y (s)) − f (Ȳ (s))
⟩

)

ds

+ 2p

m
∑

i=1

E

∫ t∧θ

0

|e(s)|2p−2 2p − 1

2

⏐

⏐

⏐
gi(x(s)) − gi(Y (s)) + R̃1(gi)

⏐

⏐

⏐

2

ds

≤ 2p
(

J1 + J2 + J3
)

,

(3.16)
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where

J1 = E

∫ t∧θ

0

|e(s)|2p−2
(

⟨

x(s) − Y (s), f (x(s)) − f (Y (s))
⟩

+ (2p − 1)

m
∑

i=1

⏐

⏐

⏐
gi(x(s)) − gi(Y (s))

⏐

⏐

⏐

2)

ds,

(3.17)

J2 = E

∫ t∧θ

0

|e(s)|2p−2
⟨

x(s) − Y (s), f (Y (s)) − f (Ȳ (s))
⟩

ds, (3.18)

and

J3 = (2p − 1)

m
∑

i=1

E

∫ t∧θ

0

|e(s)|2p−2
⏐

⏐

⏐
R̃1(gi)

⏐

⏐

⏐

2

ds. (3.19)

Applying Assumption 2.2 to J1, we obtain

J1 ≤ K1E

∫ t∧θ

0

|e(s)|2pds. (3.20)

Inserting the expression (3.4) into (3.18) gives

J2 ≤ E

∫ t∧θ

0

|e(s)|2p−2
⟨

x(s) − Y (s), f ′(Ȳ (t))
(

m
∑

j=1

∫ s

tk

gj(Ȳ (s1))dB
j(s1)

)

+ R̃1(f )
⟩

ds. (3.21)

By the Young inequality and the Hölder inequality, we get

J2 ≤ CE

∫ t∧θ

0

|e(s)|2p +
⏐

⏐

⟨

x(s) − Y (s), f ′(Ȳ (t))
(

m
∑

j=1

∫ s

tk

gj(Ȳ (s1))dB
j(s1)

)⟩⏐

⏐

p

+
⏐

⏐

⟨

x(s) − Y (s), R̃1(f )
⟩⏐

⏐

p
ds

≤ CE

∫ t∧θ

0

(

|e(s)|2p +
⏐

⏐R̃1(f )
⏐

⏐

2p)

ds + CJ4,

(3.22)

where

J4 = E

∫ t∧θ

0

⏐

⏐

⟨

x(s) − Y (s), f ′(Ȳ (t))
(

m
∑

j=1

∫ s

tk

gj(Ȳ (s1))dB
j(s1)

)⟩⏐

⏐

p
ds.

Following a very similar approach used for (3.35) in [25], we can show

J4 ≤ C∆2p.

Then, we have

J2 ≤ CE

∫ t∧θ

0

(

|e(s)|2p +
⏐

⏐R̃1(f )
⏐

⏐

2p)

ds + C∆2p. (3.23)

Applying the Young inequality to (3.19) gives

J3 ≤ C

m
∑

i=1

E

∫ t∧θ

0

(

|e(s)|2p +
⏐

⏐R̃1(gi)
⏐

⏐

2p
)

ds. (3.24)

Substituting (3.20), (3.23) and (3.24) into (3.16), and then applying the Gronwall inequality and Lemma 3.3, we obtain the

desired result. ■

Lemma 3.5. Let Assumptions 2.1 and 2.2 hold. For any real number R > |x(0)|, the estimate

P (τR ≤ T ) ≤
K

R2p

holds for some positive constant K independent of R.

The proof of this lemma is similar to that of (2.4). Briefly speaking, replacing t by τR ∧ T in (2.4) we see

E|x(τR ∧ T )|2p ≤ K .
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Then

K ≥ E|x(τR ∧ T )|2p ≥ E

(

|x(τR)|
2pI{τR≤T }

)

= R2p
P (τR ≤ T ) ,

which implies the assertion.

Lemma 3.6. Let (2.3) hold. For any real number R > |x(0)| and any sufficiently small ∆ ∈ (0, ∆∗], the estimate

P (ρR ≤ T ) ≤
K

R2p

holds for some positive constant K independent of R and ∆.

The proof is similar to that of Lemma 3.5.

We now present our main theorem.

Theorem 3.7. Let Assumptions 2.1, 2.2 and (2.6) hold. Furthermore, assume that for any given p ≥ 1, there exists a q ∈ (p, +∞)

and a ∆∗ satisfying (2.8). In addition, if

h(∆) ≥ µ

(

(

∆p(h(∆))2p
)−1/(q−p)

)

(3.25)

holds for all sufficiently small ∆ ∈ (0, ∆∗], then for any fixed T = N∆ > 0 and sufficiently small ∆ ∈ (0, ∆∗],

E|x(T ) − YN |2p ≤ K∆2p(h(∆))4p (3.26)

holds, where K is a positive constant independent of ∆.

Proof. We separate the left hand side of (3.26) into two parts

E|x(T ) − YN |2p = E

(

|x(T ) − YN |2pI{θ>T }

)

+ E

(

|x(T ) − YN |2pI{θ≤T }

)

. (3.27)

Let us first consider the second term on the right hand side. Fix any p ∈ [1, +∞). Using the Young inequality that

a2pb =
(

δa2q
)p/q

(

bq/(q−p)

δp/(q−p)

)(q−p)/q

≤
pδ

q
a2q +

q − p

qδp/(q−p)
bq/(q−p)

for any δ > 0, we can have

E

(

|x(T ) − YN |2pI{θ≤T }

)

≤
pδ

q
E

(

|x(T ) − YN |2q
)

+
q − p

qδp/(q−p)
P (θ ≤ T ) . (3.28)

Applying (2.4) and Lemma 2.5, we see

E

(

|x(T ) − YN |2q
)

≤ 22q−1
E

(

|x(T )|2q + |YN |2q
)

≤ C, (3.29)

where C is a positive constant independent of R and ∆. By Lemmas 3.5 and 3.6, we also have

P (θ ≤ T ) ≤ P (τR ≤ T ) + P (ρR ≤ T ) ≤
2K

R2q
. (3.30)

Substituting (3.29) and (3.30) into (3.28) yields

E

(

|x(T ) − YN |2pI{θ≤T }

)

≤
Cpδ

q
+

2K (q − p)

qR2qδp/(q−p)
.

Choosing

δ = ∆2p(h(∆))4p and R =
(

∆p(h(∆))2p
)−1/(q−p)

,

we have

E

(

|x(T ) − YN |2pI{θ≤T }

)

≤ ∆2p(h(∆))4p
(

Cp

q
∨

2K (q − p)

q

)

. (3.31)

Due to (3.25), we observe

µ−1 (h(∆)) ≥
(

∆p(h(∆))2p
)−1/(q−p)

= R

for any ∆ ∈ (0, ∆∗). Applying Theorem 3.4 to the first term on the right hand side of (3.27) completes the proof. ■
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Let us close this section by the following remark.

Remark 3.8. In this paper, our conditions are imposed for every p ≥ 1 as we wish to show the strong L2p-convergence rate
for every p ≥ 1. However, our theory can also be applied to the case of some p ≥ 1. For example, assume that the conditions
in Theorem 3.7 hold for some p̄ ≥ 1 and (3.25) is replaced by that for the given p̄, there exists a q̄ ∈ (p̄, +∞) such that

h(∆) ≥ µ

(

(

∆p̄(h(∆))2p̄
)−1/(q̄−p̄)

)

holds for all sufficiently small ∆ ∈ (0, ∆∗], then our proof above shows clearly that for all sufficiently small ∆ ∈ (0, ∆∗] and
for any fixed T = N∆ > 0,

E|x(T ) − YN |2p̄ ≤ K∆2p̄(h(∆))4p̄.

4. An example and further discussion

After the theoretical discussion on the truncated Milstein method, it is time to explain how to apply the method. One
may note from Section 2 that the choices of functions µ(u) and h(∆) are essential in order to use the method. The forms of
these two functions are highly related to the structures of the drift and diffusion coefficients f and g of the SDE (2.1). We
shall illustrate the theory as well as how to choose µ(u) and h(∆) by the following example.

Example 4.1. Consider the scalar SDE

dx(t) = (x(t) − x5(t))dt + x2(t)dB(t), t ≥ 0,

with the initial value x(0) = 1. The drift and diffusion coefficients are f (x) = x− x5 and g(x) = x2, respectively. Clearly, both
of them have continuous second-order derivatives and it is not hard to verify that Assumption 2.1 and (2.6) are satisfiedwith
r = 4. Moreover, for any x, y ∈ R and any p ≥ 1, we have

(x − y)(f (x) − f (y)) + (2p − 1)|g(x) − g(y)|2

= (x − y)
[

(x − y) − (x − y)(x4 + x3y + x2y2 + xy3 + y4)
]

+ (2p − 1)(x + y)2(x − y)2

=
[

1 − (x4 + x3y + x2y2 + xy3 + y4) + (2p − 1)(x + y)2
]

|x − y|2.

But

− (x3y + xy3) = −xy(x2 + y2) ≤ 0.5(x2 + y2)2 = 0.5(x4 + x4) + x2y2.

Hence

(x − y)(f (x) − f (y)) + (2p − 1)|g(x) − g(y)|2

≤
[

1 − 0.5(x4 + y4) + 2(2p − 1)(x2 + y2)
]

|x − y|2

≤
[

1 + 4(2p − 1)2
]

|x − y|2.

That is to say, Assumption 2.2 is fulfilled.
It is clear to see

sup
|x|≤u

(

|f (x)| ∨ |g(x)| ∨ |g ′(x)|
)

≤ u5, ∀u ≥ 2.

So we choose µ(u) = u5. Then its inverse function is µ−1(u) = u1/5. For ϵ ∈ (0, 1/4], we define h(∆) = ∆−ϵ for ∆ > 0. Due
to the requirement h(∆∗) ≥ µ(1), we can choose ∆∗ = 1. Hence, (2.8) is satisfied. To make (3.25) to hold, we need

∆−ϵ ≥
(

(

∆p−2pϵ
)−1/(q−p)

)5

to hold for each p ≥ 1. That is to say, we require
(

10p

q − p
+ 1

)

ϵ ≥
5p

q − p
.

In fact, for any given p ≥ 1 and any small ϵ > 0, we can always choose sufficiently large q to make the inequality above to
hold. Therefore, by Theorem 3.7 we can conclude

E|x(T ) − Y (T )|2p ≤ K∆2p(1−ϵ), ∀∆ ∈ (0, 1]. (4.1)

That is, the strong L2p-convergence rate is close to 2p (or L1-convergence rate is close to 1).
In the computer simulations, we choose ε = 0.1 and regard the numerical solution with the step size of 2−16 as the true

solution. In Fig. 1, we plot the strong errors (i.e., in L1) of the truncated Milstein method with step sizes 2−13, 2−12, 2−11 and
2−10, respectively.
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Fig. 1. The strong convergence order at the terminal time T = 2. The red dashed line is the reference line with the slope of 1.

It is interesting to observe from Fig. 1 that the strong convergence rate is quite close to one, although we choose ε = 0.1

and the theoretical result (4.1) only shows the rate of 0.9. This observation indicates that our theoretical result is somehow

conservative.

We also observe from Theorem 3.7 that the strong convergence rate is highly dependent on the choices of the functions,

µ(·) and h(·). Although we have demonstrated in the example above how to choose them, the example itself has already

indicated that those choices may not be optimal.

Moreover, the functions µ(·) and h(·) are used to set up the truncating barrier µ−1(h(∆)). Once the step size is decided,

the barrier is set for all states and the whole time interval. To be more efficient, it may be worth to design a current-state-

dependent truncating barrier, which then may end up with a numerical method with variable step size. We have been

working on this new method and will report it later on.
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