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Abstract

This paper proposes a model suitable for exploiting fully the information contained in mixed
frequency and mixed sample data in the estimation of cointegrating vectors. The asymptotic
properties of easy-to-compute spectral regression estimators of the cointegrating vectors are
derived and these estimators are shown to belong to the class of optimal cointegration esti-
mators. Furthermore, Wald statistics based on these estimators have asymptotic chi-square
distributions which enable inferences to be made straightforwardly. Simulation experiments
suggest that the finite sample performance of a spectral regression estimator in an aug-
mented mixed frequency model is particularly encouraging as it is capable of dramatically
reducing the root mean squared error obtained in an entirely low frequency model to the
levels comparable to an infeasible high frequency model. The finite sample size and power
properties of the Wald statistic are also found to be good. An empirical example, to stock
price and dividend data, is provided to demonstrate the methods in practice.
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1. Introduction

The concept of cointegration plays a prominent role in the analysis of multivariate time

series with unit roots, and a large variety of methods is available to the applied researcher

for handling such data. Prominent among these methods is the vector error correction model

(VECM) which is a convenient reparameterisation of a vector autoregressive (VAR) system

that accounts for the cointegration between the variables. The popularity of the fully para-

metric VECM approach – often termed the ‘Johansen’ approach following its development

by Johansen (1991) – lies in its (relative) ease of estimation and its suitability for testing

for the number of cointegrating vectors that exist. The VECM method is also implemented

in many econometric software packages, is amenable to use as a forecasting tool and can be

subjected to the usual battery of time series specification tests.

In some circumstances, however, a researcher may be unwilling to model the system

dynamics in the form of a VAR, which is often heavily parameterised, but may still be

interested in the cointegrating vectors themselves. In such cases alternative methods are

available, including, but certainly not restricted to, dynamic ordinary least squares (Stock

and Watson, 1993), fully modified least squares (Phillips and Hansen, 1990), and spectral

regression (Phillips, 1991a). These approaches focus on the cointegrating vectors of interest

and account for the system dynamics without needing to specify a VAR. The dynamic

ordinary least squares approach, for example, adds leads and lags of first-differences to the

cointegrating regression; the fully modified least squares method employs nonparametric

estimates of certain covariance matrices; and the spectral regression estimator is a type of

feasible generalised least squares estimator in the frequency domain.

The vast majority of the contributions to the cointegration literature, both theoretical

and applied, have focused on situations in which all the variables of interest are sampled at

the same frequency. In cases where the variables are sampled at different frequencies this

typically amounts to converting the higher frequency series into the lowest frequency. As

an example, consider a macroeconomic model that contains an interest rate in addition to

macroeconomic aggregates (such as output). The macroeconomic aggregates are typically

available quarterly whereas the interest rate can be sampled at much higher frequencies. This

means that, say, daily interest data have to be transformed into a representative quarterly

figure, and different methods of doing this (such as using the end-of-quarter value, the mid-

quarter value, or a quarterly average) may yield different parameter estimates and inferences.

In recent years, however, there has been a growing interest in developing methods that

are capable of exploiting all the mixed frequency data that may be available, without the

need for converting the higher frequency data to the lowest frequency. Mixed frequency

approaches applicable to testing for cointegration have been developed by Ghysels and Miller

(2014, 2015) and Miller and Wang (2016), while estimation of the cointegrating vectors in

regression models using mixed frequency data has been investigated by Miller (2010, 2014,

2016). It is also possible to extend the VECM approach for use with mixed frequency data;

see Seong, Ahn and Zadrozny (2013).

It might be tempting to argue that, because cointegration describes a set of long-

run/equilibrium relationships between variables, the use of additional high frequency data

alongside the low frequency data is unlikely to yield many benefits. Indeed, the use of very

high frequency data, of the type available in finance, might introduce additional complica-
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tions, such as microstructure noise. This suggests that there are limitations as to how far

the high frequencies should be extended. But, used appropriately, it is possible that the ad-

ditional information contained in the higher frequency data can be used advantageously to

improve the properties of estimators of cointegration vectors in finite samples, even though

the asymptotic properties are likely to be the same as those obtained using just the low

frequency data. This is something that can be explored in appropriately-designed sampling

experiments.

In this paper we adapt the spectral regression approach of Phillips (1991a) to the estima-

tion of cointegrating vectors using mixed frequency data. We treat the mixed frequency issue

in the context of a discrete time temporal aggregation problem where the highest observed

frequency (smallest sampling interval) is taken as the fundamental frequency; an alternative

continuous time approach can be found in Chambers (2017). An advantage of the spectral

regression estimators is that all that is required of the model’s disturbances is that they

are stationary, meaning that there is no need to assume any particular form of parametric

dynamic model. By addressing the temporal aggregation directly we are able to show that

the disturbances in the mixed and low frequency models are, indeed, stationary.

This paper makes four main contributions. The first, indicated above, is the derivation

of a model that can be used with mixed frequency and mixed sample data for the estimation

of cointegrating vectors. In this sense its motivation is very similar to that of Miller (2016),

some of whose results are used in the proofs. Although we assume, mainly for notational

purposes, that the high frequency variables are stocks (which are skip-sampled) and the low

frequency variables are flows (in the form of averages), the methods are easily extended to

cases where there are also high frequency flows and low frequency stocks. The proposed

method of dealing with the mixed frequency data turns out to be very straightforward –

simply average the high frequency stock variables over the low frequency sampling interval.

This, in fact, was proposed by Chambers (2003) in his study of the asymptotic efficiency of

cointegration estimators under temporal aggregation. Although it is not possible to use the

high frequency observations separately, as in Foroni, Ghysels and Marcellino (2013), Foroni

and Marcellino (2016) and Chambers (2016), for example, due to singularity reasons, the

averaging nevertheless does use the information contained in all such observations.

The second main contribution is the derivation of the asymptotic properties of the

spectral regression estimators of the cointegrating vectors. The estimators we consider are

band limited around the zero frequency in view of cointegration being associated with this

frequency. A large literature exists on the estimation of spectral density matrices but we

focus on smoothed periodogram estimators in view of their relative ease of computation and

analysis. It is shown that the resulting spectral regression estimators fall into the class of

optimal cointegration estimators as defined by Phillips (1991c) and have the familiar mixed

normal limiting distribution. We also consider a spectral estimator based on a regression

that is augmented by an additional variable in first-difference form. This avoids the need

for the estimation of a spectral matrix based on the residuals from an initial (consistent)

estimation of the cointegrating vectors. This augmented spectral estimator possesses the

same form of optimal limiting distribution. A useful feature of these limiting distributions is

that Wald statistics, formed using the spectral regression estimators, have limiting chi-square

distributions, thereby making inference a straightforward procedure.
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The third contribution concerns some simulation evidence for the proposed methods of

estimation and inference in finite samples. The simulation model involves a single cointegrat-

ing relationship between a high frequency stock variable and a low frequency flow variable.

We consider the performance of the spectral regression estimator and its augmented version,

based on smoothed periodogram estimators of the spectral density matrices, as well as the

regression estimator based on an autoregressive spectral density estimator. We compare es-

timates obtained from an infeasible high frequency model (where both variables are sampled

at the high frequency), a feasible low frequency model, and the mixed frequency representa-

tion. Spectral estimators based on the augmented regression are found to have good finite

sample properties and the root mean squared errors obtained in the mixed frequency model

are typically much smaller than those from the low frequency representation and, in some

case, on a par with those obtained using the infeasible high frequency model. The perfor-

mance of Wald statistics is also examined, with those obtained using the augmented spectral

regression estimator in the mixed frequency model having good size and power properties.

The fourth contribution provides an empirical example to show how the methods work

in practice. We follow Ghysels and Miller (2014, 2015) and use the stock price and dividend

data provided in Shiller (2000), updated to 2016. Estimates of the parameter in a regression

of the logarithm of the stock price (a stock variable) on the logarithm of dividends (a flow)

are provided based on different detrending methods, including one based on a structural

break in the trend function. In all cases the estimates are significantly different from the

theoretical parameter value of unity and this null hypothesis is strongly rejected in all cases.

Graphs of the detrended data, as well as the residuals from the cointegrating regression, are

also provided.

The paper is organised as follows. Section 2 defines the triangular model of cointegra-

tion at the high frequency and provides feasible low and mixed frequency representations,

based on the observations. Stationarity of the disturbances in these representations is also

demonstrated. Issues concerning frequency domain estimation are addressed in section 3,

in which the the estimators and test statistics are defined and their asymptotic properties

derived. Section 4 defines the simulation experiments and reports the results obtained, while

the empirical example is discussed in section 5. Concluding comments appear in section 6,

and all proofs and supplementary results are presented in the Appendix.

The following notation is used throughout the paper. The lag operator, L, is such that,

for a variable xt, L
hxt = xt−h for some real number h (not necessarily whole). Following

Phillips (1991b), who proposed spectral estimators in cointegrated continuous time systems,

a variable, xt, is I(0) if it belongs to the class of covariance stationary processes that have

a spectral density function, f(λ), that is bounded and continuous and for which f(0) is

positive. A variable is I(1) if its first difference is I(0), and a vector of variables will be said

to be I(0) or I(1) if all its elements are of the same order of integration. In the vector case it

is possible that each element of the first difference is I(0) by this definition but the spectral

density matrix is singular at the origin; in this case the vector of variables is said to be

cointegrated. Finally, [x] denotes the smallest integer less than or equal to the scalar x, In
denotes an n×n identity matrix, 0n×m is an n×m matrix of zeros, ⊗ denotes the Kronecker

product operator, tr (A) denotes the trace of a square matrix A, ‖A‖ =
√

tr (AA′) denotes

the Euclidean norm of A, B∗ denotes the transpose of the conjugate of a complex-valued
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matrix B and, for an n×m matrix C, vec (C) denotes the nm× 1 column vector obtained

by stacking the columns of C vertically on top of each other.

2. The model and a mixed frequency representation

The model concerns the cointegration properties of the elements of an I(1) vector of

variables, y, of dimension n × 1. It is convenient to partition y as y = (y′1, y
′
2)′ where y1 is

n1×1, y2 is n2×1 and n1+n2 = n. The 1 ≤ n1 ≤ n−1 cointegrating equations are normalised

on the sub-vector y1 and are expressed as linear combinations of y2 so that y1 − Cy2 is

stationary, the n1×n2 matrix C containing the unknown cointegrating parameters of interest

(the rows denoting the cointegration vectors). In the most general setting the elements of y1

and y2 are allowed to comprise both stock and flow variables and it is convenient to partition

them (without loss of generality) as

y1 =

(
yS1

yF1

)
, y2 =

(
yS2

yF2

)
,

where ySj is nSj × 1, yFj is nFj × 1 and nSj + nFj = nj (j = 1, 2).

We assume that the stock variables are sampled at a common high frequency corre-

sponding to a sampling interval of length 0 < hH = h < 1 while flows are sampled at a

common low frequency normalised to hL = 1. We also assume that k = h−1 is an integer so

that there is a whole number of high frequency observations per low frequency observation.

The observed sequences of observations on stock variables are therefore{
yS1,τh

}N
τ=1

and
{
yS2,τh

}N
τ=1

,

where N denotes the number of high frequency observations, while the observations on the

flow variables are of the form {
Y F

1t

}T
t=1

and
{
Y F

2t

}T
t=1

,

where T denotes the number of low frequency observations (and is also the time span that

the data cover); in fact, T = Nh. The flow variables are assumed to be of the form

Y F
jt =

1

k

k−1∑
l=0

yFj,t−lh, j = 1, 2, t = 1, . . . , T,

i.e. the flows are averages of the (unobservable) high frequency flows yFj,τ over the low fre-

quency observation interval t− (k − 1)h ≤ τ ≤ t.

At the high frequency the triangular cointegrated system is defined by

y1,τh = Cy2,τh + u1,τh, τ = 1, . . . , N, (1)

∆hy2,τh = u2,τh, τ = 1, . . . , N, (2)

where ∆h = 1 − Lh denotes the high frequency first-difference operator. The cointegration
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in the system is depicted by (1), while (2) denotes the n2 unit roots/stochastic trends. With

regard to the disturbance vectors, u1,τh and u2,τh, we make the following assumption.

Assumption 1. The n × 1 vector uτh = (u′1,τh, u
′
2,τh)′ is covariance stationary and has a

spectral density matrix, fuu(λ) (π/h < λ ≤ π/h), that is bounded and continuous and for

which fuu(0) is positive definite.1 In addition, as N →∞,

1√
N

[Nr]∑
τ=1

uτh
d→ Bu(r), 0 < r ≤ 1, (3)

where Bu(r) is a Brownian motion process with covariance matrix Ωu = 2πfuu(0).

The covariance stationarity aspect of this assumption is sufficient for the validity of the

mixed frequency data representation which requires that the disturbances in the estimating

equations are stationary. The functional central limit theorem (FCLT) is used in the deriva-

tion of the asymptotic properties of the estimators. We shall refer to (1) and (2) as being

the high frequency representation.

The triangular system, (1) and (2), also has the error correction model (ECM) repre-

sentation

∆hyτh = −JAyτh−h + eτh, τ = 1, . . . , N, (4)

where A = (In1 ,−C),

J =

(
In1

0n2×n1

)
and eτh =

(
e1,τh

e2,τh

)
=

(
u1,τh + Cu2,τh

u2,τh

)
.

The problem with this system for the estimation of C is that the flow variables are not

observed at the high frequency. However, cointegration is a property that persists at any

sampling frequency, and so observations at the low frequency are also cointegrated. Re-

writing (1) at the low frequency (essentially setting t = τh and picking out the integer

values for this index) yields

y1t = Cy2t + u1t, t = 1, . . . , T. (5)

The corresponding stochastic trends in (2) can be transformed to the low frequency by the

application of the filter s(Lh) where

s(z) = 1 + z + . . .+ zk−1; (6)

noting that s(Lh)∆hy2,τh = y2,τh − y2,τh−kh = y2t − y2,t−1 we obtain

∆y2t = w2t, t = 1, . . . , T, (7)

where ∆ = 1 − L and w2t = s(Lh)u2,τh =
∑k−1

l=0 u2,t−lh. Combining (5) and (7) results in

the low frequency ECM

∆yt = −JAyt−1 + vt, t = 1, . . . , T, (8)

1Note that the frequency range is (−π/h, π/h] because uτh is defined at the high frequency and the
frequency range for low frequency data is normalised to be (−π, π].
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where

vt =

(
v1t

v2t

)
=

(
u1t + Cw2t

w2t

)
.

However, the low frequency ECM in (8) is also not directly amenable to the estimation of C

because neither yF1t nor yF2t is observable, and hence it can be regarded as an infeasible low

frequency representation. The challenge is to utilise the low and high frequency represen-

tations so that all of the information contained in the observed sample – at both the high

and low frequencies – can be used in the estimation of C. It is convenient to partition the

n1 × n2 matrix C in the form

C =

(
CSS CSF

CFS CFF

)
,

where CSS is nS1 × nS2 , CSF is nS1 × nF2 , CFS is nF1 × nS2 and CFF is nF1 × nF2 . The mixed

frequency representation is presented in Lemma 1; it also contains a feasible low frequency

representation in which the observable Y F
1t and Y F

2t replace the unobservable yF1t and yF2t in

the infeasible low frequency representation of (5) and (7).

Lemma 1. Let y1 and y2 satisfy the high frequency cointegrated system in (1) and (2).

Then:

(a) Mixed Frequency Representation. Define the observable aggregated stock variables

Y S
1t =

1

k

k−1∑
l=0

yS1,t−lh, Y S
2t =

1

k

k−1∑
l=0

yS2,t−lh, t = 1, . . . , T.

Then the mixed frequency observations satisfy, for t = 2, . . . , T ,

Y S
1t = CSSY

S
2,t−1 + CSFY

F
2,t−1 + ξS1t, (9)

Y F
1t = CFSY

S
2,t−1 + CFFY

F
2,t−1 + ξF1t, (10)

∆Y S
2t = ξS2t, (11)

∆Y F
2t = ξF2t, (12)

where the disturbance vector ξt =
(
ξS′1,t, ξ

F ′
1t , ξ

S′
2t , ξ

F ′
2t

)′
is I(0) under Assumption 1.

(b) Feasible Low Frequency Representation. The observed low frequency observations satisfy,

for t = 2, . . . , T ,

yS1t = CSSy
S
2,t−1 + CSFY

F
2,t−1 + ζS1t, (13)

Y F
1t = CFSy

S
2,t−1 + CFFY

F
2,t−1 + ζF1t, (14)

∆yS2t = ζS2t, (15)

∆Y F
2t = ζF2t, (16)

where the disturbance vector ζt =
(
ζS′1,t, ζ

F ′
1t , ζ

S′
2t , ζ

F ′
2t

)′
is I(0) under Assumption 1.

Both representations in Lemma 1 provide a basis for the estimation of the matrix of

cointegration vectors, C. The mixed frequency representation is based on the entire sample
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of mixed frequency observable variables even though the high frequency stocks are not in-

cluded separately at each high frequency time point but are aggregated to, in effect, mimic

the observed flow variables. In fact, it is precisely this form of aggregation of stock vari-

ables that is proposed by Chambers (2003) to improve the efficiency of the estimation of

cointegration vectors when the stocks are available at a higher frequency than the flows; it

is also nested within the aggregation schemes considered in Miller (2016). The feasible low

frequency representation, on the other hand, skip-samples the high frequency stocks at the

low frequency, thereby discarding entirely all the information contained in the observations

at the intermediate points.

It might be tempting to argue that the mixed frequency representation is discarding data

by aggregating the high frequency stocks rather than including them separately. However,

an important feature of the mixed frequency representation in Lemma 1 to note is that it

retains the n1 cointegration equations and the n2 stochastic trends of the underlying high

frequency model. Approaches that use the high frequency observations separately have been

shown to be possible in some circumstances. For example, Ghysels (2016) deals with a

vector autoregressive (VAR) representation for the mixed frequency vector of the form (in

our notation)

zt =
(
yS′1t , y

S′
1,t−h, . . . , y

S′
1,t−(k−1)h, Y

F ′
1t , y

S′
2t , y

S′
2,t−h, . . . , y

S′
2,t−(k−1)h, Y

F ′
2t

)′
,

thereby including the intermediate high frequency observations on the stocks. A similar

approach is followed for a continuous time system by Chambers (2016) but is more parsimo-

nious because the restrictions on the discrete time representation arising from the temporal

aggregation are explicitly taken into account. It would also be possible to derive a rep-

resentation for this vector in the cointegrated system considered here but would result in

knS1 + n1F cointegration equations and knS2 + nF2 stochastic trends. The resulting vector of

disturbances – an expanded version of ξt defined in Lemma 1 – then has a singular spec-

tral density matrix. The reason for this is that the expanded ξt, say ξ̃t (which contains

nk = knS1 + n1F + knS2 + nF2 elements), is a function of only n underlying random variables

contained in the vector ut. In other words, we can write ξ̃t = H(L)ut where H(z) is an nk×n
matrix whose elements are polynomials that depict the way ut and its high frequency lags

feed into ξ̃t. If fuu(λ) denotes the spectral density matrix of ut then H(eiλ)fuu(λ)H(e−iλ)′

is the spectral density matrix of ξ̃t, which is singular. In particular, the inverse of this ma-

trix at the origin (λ = 0) characterises the limiting distribution of the spectral regression

estimator, and therefore causes a degeneracy in this expanded system.

The feasible low frequency representation in Lemma 1 can be regarded as the typical

approach in time series in which data are reduced to the lowest frequency. The representation

does not arise simply by choosing integer values of τh in the high frequency model because, as

has been shown in the infeasible low frequency representation, this results in the unobservable

flows yF1t and yF2t. The feasible representation replaces unobservables by observables and

assigns the differences, such as Y S
2,t−1− yS2,t−1 and yF2,t−1−Y F

2,t−1, to the disturbances. These

terms are stationary under Assumption 1; see Lemma A1 in the Appendix.

The two representations in Lemma 1 also have equivalent ECM forms. In order to
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demonstrate this it is convenient to define, for t = 1, . . . , T , the vectors

Y1t =

(
Y S

1t

Y F
1t

)
, Y2t =

(
Y S

2t

Y F
2t

)
, ξ1t =

(
ξS1t

ξF1t

)
, ξ2t =

(
ξS2t

ξF2t

)
,

z1t =

(
yS1t

Y F
1t

)
, z2t =

(
yS2t

Y F
2t

)
, ζ1t =

(
ζS1t

ζF1t

)
, ζ2t =

(
ζS2t

ζF2t

)
,

as well as the stacked vectors Yt = (Y ′1t, Y
′

2t)
′, ξt = (ξ′1t, ξ

′
2t)
′, zt = (z′1t, z

′
2t)
′ and ζt = (ζ ′1t, ζ

′
2t)
′.

The mixed frequency ECM representation can then be written

∆Yt = −JAYt−1 + ξt, t = 1, . . . , T, (17)

while the feasible low frequency ECM representation is given by

∆zt = −JAzt−1 + ζt, t = 1, . . . , T. (18)

Both the triangular representations in Lemma 1 as well as the ECM representations in (17)

and (18) provide a suitable basis for the estimation of the parameters of the matrix C. We

now turn to the analysis of a frequency domain-based estimator that rests only on weak

assumptions concerning the disturbances in the high frequency model.

3. Estimation in the frequency domain

We shall focus initially on the mixed frequency representation and subsequently demon-

strate how the results can be applied to the feasible low frequency representation.

3.1. The mixed frequency model

In view of the level of generality associated with the model of cointegration developed

in the previous section, in which the disturbance vector, ξt, is merely stationary under

Assumption 1 rather than having any specific (parametric) dynamic structure, a natural

approach to estimating the matrix C of cointegrating vectors is to use spectral/frequency

domain regression. Based, then, on the mixed frequency representation in Lemma 1 we can

write the system of interest as

Y0t = JCY2,t−1 + ξt, t = 1, . . . , T, (19)

where Y0t = (Y ′1t,∆Y
′

2,t)
′.2 The spectral regression approach is based on taking discrete

Fourier transforms (dFts) in (19), yielding

w0(λs) = JCw2(λs) + wξ(λs), s = −T/2 + 1, . . . , T/2, (20)

where {λs = 2πs/T ; s = −T/2 + 1, . . . , T/2} denotes the set of Fourier frequencies, T is

2This representation can also be obtained from the mixed frequency ECM in (17) by adding Y1,t−1 to
both sides of the equation. We also assume, for convenience, that observations for t = 1, . . . , T are available,
rather than just t = 2, . . . , T .

8



assumed to be an even number for convenience,3 and

w0(λs) =
1√
2πT

T∑
t=1

Y0te
itλs , w2(λs) =

1√
2πT

T∑
t=1

Y2,t−1e
itλs , wξ(λs) =

1√
2πT

T∑
t=1

ξte
itλs ,

denote the dfTs of Y0t, Y2,t−1 and ξt, respectively, at the Fourier frequencies.

In cases where C is unrestricted – as is the case here – a simple least squares-type of

spectral regression estimator can be obtained by choosing C so as to minimise an objective

function of the form

S1(C) =
1

#(Λ)

∑
λs∈Λ

tr {wξ(λs)wξ(λs)∗} ,

where wξ(λs) = w0(λs)−JCw2(λs), Λ denotes the set of frequencies over which the estimator

is to be determined, and #(Λ) denotes the number of frequencies in Λ. In the most general

case the set Λ consists of all the Fourier frequencies in the interval (−π, π]; however, if the

model is believed to hold only over a subset of (−π, π] then Λ can be restricted accordingly,

resulting in a band-limited estimator. In all situations we require the property that both λs
and −λs belong to Λ.

In the case of cointegration there are compelling reasons to limit Λ to a set of frequencies

around the origin based on the theoretical arguments in Phillips (1991a, 1991b) as well as the

simulation results reported in Corbae, Ouliaris and Phillips (1994). We therefore consider

the symmetric set of frequencies Λ0 = {λs = 2πs/T ; s = −m, . . . ,m} which contains the

2m + 1 Fourier frequencies around the origin for some integer m. We also generalise the

objective function by incorporating a positive definite Hermitian weighting matrix, Φ(λ),

resulting in a generalised least squares-type of objective function of the form

S2(C) =
1

2m+ 1

∑
λs∈Λ0

tr {Φ(λs)wξ(λs)wξ(λs)
∗} .

However, as argued by Phillips (1991a), the choice of the weighting matrix Φ(λ) is critical

when spectral regression is applied using I(1) time series. For reasons of efficiency we require

Φ(λ) to be proportional to fξξ(λ)−1, the inverse of the spectral density matrix of the unob-

servable disturbance vector ξt. Although ξt is unobserved a consistent estimator of fξξ(λ)

can nevertheless be obtained by using the residuals from a least squares regression of (19).

These residuals – denoted ξ̂t – can then be used in a variety of ways to estimate the spectral

density matrix of interest.

The method we shall employ here to estimate fξξ(0) is the smoothed periodogram esti-

mator, defined by

f̂ξ̂ξ̂(0) =
1

2m+ 1

m∑
j=−m

Iξ̂ξ̂(λj), (21)

where Iξ̂ξ̂(λ) = wξ̂(λ)wξ̂(λ)∗ and wξ̂(λ) is the dFt of ξ̂t. The smoothed periodogram estimator

is a straightforward symmetric average of 2m+1 periodogram matrices around the frequency

of interest (the frequency of interest here being zero). More sophisticated estimates could be

used but the smoothed periodogram has performed well in the simulations that are reported

3If T is odd then we can take −[T/2] + 1 ≤ s ≤ [T/2].
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in the next section. With this choice of weighting matrix the objective function becomes

S(C) =
1

2m+ 1

m∑
s=−m

tr
{
f̂ξ̂ξ̂(0)−1 (w0(λs)− JCw2(λs)) (w0(λs)− JCw2(λs))

∗
}
. (22)

Minimisation of (22) with respect to C results in the estimator

Ĉ0 =
(
J ′f̂ξ̂ξ̂(0)−1J

)−1
J ′f̂ξ̂ξ̂(0)−1f̂02(0)f̂22(0)−1 (23)

where the spectral density estimators f̂02(0) and f̂22(0) are defined by

f̂22(0) =
1

2m+ 1

m∑
j=−m

I22(λj), I22(λj) = w2(λj)w2(λj)
∗,

f̂02(0) =
1

2m+ 1

m∑
j=−m

I02(λj), I02(λj) = w0(λj)w2(λj)
∗,

respectively. By noting that w0(λ) = JCw2(λ) + wξ(λ) it follows that f̂02(0) = JCf̂22(0) +

f̂ξ2(0), and making this substitution in (23) it is possible to express Ĉ0 directly in terms of

C itself:

Ĉ0 = C +
(
J ′f̂ξ̂ξ̂(0)−1J

)−1
J ′f̂ξ̂ξ̂(0)−1f̂ξ2(0)f̂22(0)−1. (24)

Although this expression is not used for computation it is used for analytical purposes to

derive the limiting distribution of the estimator. Also of use in some cases are the (column)

vectorised versions of (23) and (24), given by

γ̂0 =

(
f̂22(0)−1 ⊗

(
J ′f̂ξ̂ξ̂(0)−1J

)−1
J ′f̂ξ̂ξ̂(0)−1

)
vec
(
f̂02(0)

)
(25)

and

γ̂0 = γ +

(
f̂22(0)−1 ⊗

(
J ′f̂ξ̂ξ̂(0)−1J

)−1
J ′f̂ξ̂ξ̂(0)−1

)
vec
(
f̂ξ2(0)

)
, (26)

respectively, where γ = vec(C) and γ̂0 = vec(Ĉ0). Similar expressions for spectral estimators

can be found in Robinson (1972) and Phillips (1991b), any differences arising from the

ordering of matrices under the trace operator and the use of row, rather than column,

vectorisation.

The derivation of the asymptotic properties of the spectral density matrix estimators

and, hence, of γ̂0, relies on an FCLT for the normalised partial sums of ξt. Based on (3) in

Assumption 1 it is possible to derive an appropriate FCLT for the partial sums of ξt, which

is a function of uτh. This is presented below.

Lemma 2. Under Assumption 1, as T →∞,

1√
T

[Tr]∑
t=1

ξt
d→ B(r), 0 < r ≤ 1, (27)

10



where B(r) is a Brownian motion process with covariance matrix Ω = h−1GΩuG
′ and

G =

(
hIn1 C

0n2×n1 In2

)
.

The key to establishing Lemma 2 lies in utilising the precise relationship between ξt and

uτh (that arises in the proof of Lemma 1) and then relating the partial sum of interest in

Lemma 2 to the one in Assumption 1. The matrix G arises through use of a Beveridge-

Nelson-type of decomposition of the matrix filter linking ξt and uτh; details of this filter can

be found in Lemma A2 in the Appendix.

The derivation of the asymptotic properties of Ĉ0 also requires an assumption concerning

the number, m, of frequencies employed in the estimation of the relevant spectral density

matrices. To this end we make the following assumption.

Assumption 2.
m

T
+

1

m
→ 0 as T →∞.

Hence m is required to grow with T but at a slower rate, which is a common assumption

in the literature on spectral density estimation; see, for example, Brockwell and Davis (1991,

p.351). A further assumption concerning the rate of growth of sums of autocovariances of

uτh is employed.

Assumption 3. Let Γu,lh = E(uτhu
′
τh−lh). Then

N∑
l=−N

|l|‖Γu,lh‖ = O(N1/2).

This assumption is satisfied if, for example, uτh is the linear process

uτh =
∞∑
j=0

Ajeτh−jh,

where eτh ∼ iid(0,Σ) and
∑∞

j=0 j
1/2‖Aj‖ < ∞; see, for example, Fuller (1996, p.367) for a

demonstration of this result. Assumption 3 enables a similar condition on the rate of growth

of sums of autocovariances of the disturbances in the mixed frequency representation (ξt) to

be established.

Lemma 3. Let Γξ,l = E(ξtξ
′
t−l). Then, under Assumption 3,

T∑
l=−T

|l|‖Γξ,l‖ = O(T 1/2).

Lemma 3 is required to establish a consistency result concerning f̂ξ̂ξ̂(0) which is provided

in Theorem 1(c) below. The use of Assumptions 1–3 enables the following result concerning

the asymptotics of the smoothed periodogram estimators of spectral density matrices to be

established.
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Theorem 1. Let B(r) = (B1(r)′, B2(r)′)′. Then, under Assumptions 1 and 2, as T →∞:

(a)
2m+ 1

T 2
f̂22(0)

d→ 1

π

∫ 1

0
B2B

′
2;

(b)
2m+ 1

T
f̂ξ2(0)

d→ 1

π

∫ 1

0
dBB′2 +

1

2π
Ω2, where Ω2 =

∞∑
j=−∞

E(ξt+jξ
′
2t).

If, in addition, Assumption 3 is satisfied, then

(c) f̂ξ̂ξ̂(0) = fξξ(0) + op(1).

It is convenient to partition the covariance matrix Ω conformably with B1(r) and B2(r)

in the form

Ω = (Ω1 Ω2) =

(
Ω11 Ω12

Ω21 Ω21

)

and to define Ω11.2 = Ω11 −Ω12Ω−1
22 Ω21. Note that the n× n2 matrix Ω2 is the same matrix

that appears in Theorem 1(b). The asymptotic distribution of Ĉ0 can now be stated.

Theorem 2. Under Assumptions 1–3, as T →∞,

T (Ĉ0 − C)
d→
∫ 1

0
dB1.2B

′
2

(∫ 1

0
B2B

′
2

)−1

where B1.2(r) is a Brownian motion process with covariance matrix Ω11.2.

The estimator Ĉ0 therefore belongs to the class of optimal estimators as defined by

Phillips (1991c). These are estimators having the form of limit distribution as given in

Theorem 2 i.e. mixed normal. Although the optimality has been achieved using a system-

wide estimator, Phillips (1991a, 1991b, 1991c) showed that equivalent asymptotic efficiency

can be achieved using an augmented (frequency domain) regression estimator based on only

the first n1 equations of the system (19) or (20). The augmented equation includes ∆Y2t (or

its dFt) as an additional regressor vector, resulting in the time domain regression equation

Y1t = CY2,t−1 + F∆Y2t + ξ1.2t, t = 1, . . . , T, (28)

where F = Ω12Ω−1
22 and ξ1.2t = ξ1t − Fξ2t. In the frequency domain the relevant equation is

w1(λs) = Cw2(λs) + Fw∆2(λs) + w1.2(λs), s = −T/2 + 1, . . . , T/2, (29)

where w1(λs), w∆2(λs) and w1.2(λs) are the dFts of Y1t, ∆Y2t and ξ1.2t, respectively. One

advantage of this approach is that it is not necessary to construct an estimator of the

disturbance spectral density matrix using an initial consistent estimator. The band-limited

estimator of C based on the augmented equation is obtained by minimising the least-squares

objective function

SA(C) =
1

2m+ 1

m∑
s=−m

tr {w1.2(λs)w1.2(λs)
∗} , (30)
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where w1.2(λs) = w1(λs)−Cw2(λs)− Fw∆2(λs). The resulting estimator can be written in

the form

ĈA0 =
(
f̂12(0)− f̂1∆2(0)f̂∆2∆2(0)−1f̂∆21(0)

)(
f̂22(0)− f̂2∆2(0)f̂∆2∆2(0)−1f̂∆22(0)

)−1
, (31)

where the f̂(0) are the smoothed periodogram estimators using the relevant variables. Using

the results in Theorem 14 we find that

2m+ 1

T

(
f̂1.2,2(0)− f̂1.2,∆2(0)f̂∆2∆2(0)−1f̂∆21(0)

)
d→ 1

π

∫ 1

0
dB1.2B

′
2,

2m+ 1

T 2

(
f̂22(0)− f̂2∆2(0)f̂∆2∆2(0)−1f̂∆22(0)

)
d→ 1

π

∫ 1

0
B2B

′
2,

results which imply that

T (ĈA0 − C)
d→
∫ 1

0
dB1.2B

′
2

(∫ 1

0
B2B

′
2

)−1

.

Hence ĈA0 shares the optimality properties of Ĉ0 but has potential computational advantages.

An advantage of optimal estimators is that their mixed normal limiting distributions

enable traditional asymptotic chi-square hypothesis testing in appropriate circumstances.

Suppose that interest centres on a set of q < n1n2 possibly non-linear restrictions on the

elements of C, represented by the null hypothesis

H0 :r(γ) = 0,

where r(·) is a q× 1 vector whose elements are twice continuously differentiable functions of

γ. Let R(γ) = ∂r(γ)/∂γ′ be the q × n1n2 matrix of first derivatives, assumed to be of rank

q. Then a Wald statistic for testing H0 based on Ĉ0 against the alternative H1 :r(γ) 6= 0 is

given by

W0 =
2m+ 1

2
r(γ̂0)′

(
R(γ̂0)V̂ −1

0 R(γ̂0)′
)−1

r(γ̂0), (32)

where

V̂0 = f̂22(0)⊗ J ′f̂ξ̂ξ̂(0)−1J.

A Wald statistic can also be defined using ĈA0 ; it is given by

WA
0 =

2m+ 1

2
r(γ̂A0 )′

(
R(γ̂A0 )(V̂ A

0 )−1R(γ̂A0 )′
)−1

r(γ̂A0 ), (33)

where γ̂A0 = vec(ĈA0 ) and

V̂ A
0 =

(
f̂22(0)− f̂2∆2(0)f̂∆2∆2(0)−1f̂∆22(0)

)
⊗ f̂11.2(0)−1.

For V̂ A
0 we require f̂11.2(0) to be a consistent estimator of f11.2(0); this can be achieved using

4Note that Theorem 1(c) also applies to f̂∆2∆2(0) in this case.

13



the smoothed periodogram estimator

f̂11.2(0) =
1

2m+ 1

m∑
j=−m

ŵ1.2(λj)ŵ1.2(λj)
∗

where ŵ1.2(λj) = w1(λj)− ĈA0 w2(λj)− F̂A0 w∆2(λj), which is consistent under Assumptions

1–3.5 The limiting distributions of these Wald statistics are given below.

Theorem 3. Under Assumptions 1–3, as T →∞, W0
d→ χ2

q and WA
0

d→ χ2
q under H0.

Asymptotic chi-square inference can therefore be conducted based on both band-limited

spectral regression estimators. A simulation analysis of the finite sample properties of the

estimators and Wald tests is provided in section 4.

3.2. The feasible low frequency model

The results obtained for the mixed frequency model have parallels in the feasible low

frequency framework, albeit with appropriate modifications. In place of (19) we now have

z0t = JCz2,t−1 + ζt, t = 1, . . . , T,

where z0t = (z′1t,∆z
′
2t)
′. Smoothed periodogram estimators can be formed using the dFts of

the appropriate elements of z0t and z2,t−1; we shall denote these as f̃22(λ) etc., resulting in

the estimator

C̃0 =
(
J ′f̃ζ̃ζ̃(0)−1J

)−1
J ′f̃ζ̃ζ̃(0)−1f̃02(0)f̃22(0)−1

where ζ̃ denotes the residuals obtained from an initial consistent estimator of C. It is also

possible to consider an augmented regression of the form

z1t = Cz2,t−1 + F∆z2t + ζ1.2t, t = 1, . . . , T,

resulting in the estimator

C̃A0 =
(
f̃12(0)− f̃1∆2(0)f̃∆2∆2(0)−1f̃∆21(0)

)(
f̃22(0)− f̃2∆2(0)f̃∆2∆2(0)−1f̃∆22(0)

)−1
.

Wald statistics, having the same form as in (32) and (33), can be constructed based on C̃0

and C̃A0 and will be denoted W̃0 and W̃A
0 , respectively. Results analogous to Lemmas 2 and

3 and Theorems 1–3 are contained in the following proposition.

Proposition 1. (a) Under Assumptions 1, as T →∞,

1√
T

[Tr]∑
t=1

ζt
d→ b(r), 0 < r ≤ 1, (34)

where b(r) is a Brownian motion process with covariance matrix P = h−1GζΩuG
′
ζ ,

Gζ =

(
hIn1 Ck

0n2×n1 In2

)
, Ck =

(
CSS c1CSF

c2CFS CFF

)
,

5Here, F̂A0 is the band-limited estimator of F in the augmented regression.
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c1 = (k + 1)/2 = (h+ 1)/2h and c2 = (3− k)/2 = (3h− 1)/2h.

(b) Let Γζ,l = E(ζtζ
′
t−l). Then, under Assumption 3,

T∑
l=−T

|l|‖Γζ,l‖ = O(T 1/2).

(c) Let b(r) = (b1(r)′, b2(r)′)′. Then, under Assumptions 1 and 2, as T →∞:

(i)
2m+ 1

T 2
f̃22(0)

d→ 1

2π

∫ 1

0
b2b
′
2;

(ii)
2m+ 1

T
f̃ζ2(0)

d→ 1

2π

∫ 1

0
dbb′2 +

1

2π
P2, where P2 =

∞∑
j=1

E(ζt+jζ
′
2t).

If, in addition, Assumption 3 is satisfied, then

(iii) f̃ζ̃ζ̃(0) = fζζ(0) + op(1).

(d) Under Assumptions 1–3, as T →∞,

T (C̃0 − C)
d→
∫ 1

0
db1.2b

′
2

(∫ 1

0
b2b
′
2

)−1

where b1.2(r) is a Brownian motion process with covariance matrix P11.2 = P11−P12P
−1
22 P21.

T (C̃A0 − C) also converges to the same limiting distribution.

(e) Under Assumptions 1–3, as T →∞, W̃0
d→ χ2

q and W̃A
0

d→ χ2
q under H0.

Proposition 1 demonstrates the validity of the spectral regression methods for the feasi-

ble low frequency model. The finite sample performance of these methods in this aggregated

model are explored in the next section and compared with those based on the mixed fre-

quency representation.

4. Simulation results

In this section we explore the finite sample properties of the spectral regression esti-

mators and the Wald statistics. Our focus is on the case where there is a high frequency

stock variable, y1, and a low frequency flow variable, y2, that are related with cointegrating

parameter C = 1 so that y1 − y2 is stationary. One advantage of a simulation exercise is

that data can be generated at any chosen frequency and aggregated as required. We can

therefore investigate the infeasible case, where both variables are observed at the highest

frequency, as well as the feasible low frequency and mixed frequency cases of interest.

The simulation model is motivated by the empirical relationship between stock prices

and dividends that has been the focus of much research. Ghysels and Miller (2015) have

tested for cointegration between these variables using mixed frequency techniques based on

an extended version of the data in Shiller (2000). The updated data are now available (at

the time of writing) from January 1871 to August 2017, a span of 147 years. The stock

price data are monthly while dividends are observed annually although an interpolated
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monthly dividend series is also available. In accordance with this type of data availability

the simulations take the data span to be T = 100 and the high frequency sampling interval

to be h = 1/12, which leads to N = 1200 high frequency observations. Data are generated at

the highest frequency and then aggregated as required. We therefore generate y1,τh and y2,τh

(τ = 1, . . . , N) but only the former is assumed to be observed by the econometrician. The

latter (flow) variable is ‘observed’ at the low frequency in the form Y2t = (1/k)
∑k−1

l=0 y2,t−lh
(t = 1, . . . , T ) and for the mixed frequency representation we can aggregate the ‘observed’

y1 to produce Y1t = (1/k)
∑k−1

l=0 y1,t−lh. The high frequency bivariate innovations satisfy a

first-order vector autoregression of the form

uτh = Φuτh−h + ετh, τ = 1, . . . , N,

where ετh is an uncorrelated N(0, I2) process and the following autoregressive matrices were

used: Φ = 02×2 (so that uτh is Gaussian white noise) and Φ = Φj (j = 1, . . . , 6) where

Φ1 =

(
0.8 0

0 0.8

)
, Φ2 =

(
0.8 0

0.5 0.8

)
, Φ3 =

(
0.8 0

−0.5 0.8

)
,

Φ4 =

(
0.8 0.5

−0.5 0.8

)
, Φ5 =

(
0.8 −0.5

0.5 0.8

)
, Φ6 =

(
0.95 0

0 0.95

)
.

These specifications allow for the presence of positive and negative feedback to/from u1 and

u2 while Φ6 has roots closer to the boundary of the stationary region. The matrices Φ1 to

Φ3 have repeated roots equal to 1.25; Φ4 and Φ5 have roots of 0.8989± 0.56i with modulus

1.06; and Φ6 has repeated roots of 1.0526. In all cases u0 = (0, 0)′.

In the simulations we consider three different estimation models, as follows:

Model 1 (“High”). This is the infeasible model where high frequency observations on

both variables are used. The model estimated for τ = 1, . . . , N is therefore, from (4),

y1,τh = Cy2,τh−h + e1,τh,

y2,τh = y2,τh−h + e2,τh.

Model 2 (“Low”). This is the feasible low frequency model which has the form

y1t = CY2,t−1 + ζ1t,

Y2t = Y2,t−1 + ζ2t,

where t = 1, . . . , T ; see Lemma 1(b).

Model 3 (“Mixed”). The mixed frequency representation based on Lemma 1(a) is of the

form (for t = 1, . . . , T )

Y1t = CY2,t−1 + ξ1t,

Y2t = Y2,t−1 + ξ2t.
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A total of 10,000 replications for each VAR model for uτh were carried out and estimates

of each of the three models were computed. In addition to the ordinary least squares (OLS)

estimator of C we also consider three different spectral regression estimators, each using

three different values of the bandwidth parameter m, resulting in ten different estimates

of C in each replication. The first spectral regression estimator is Ĉ0, defined in (23), in

which the smoothed periodogram estimator f̂ξ̂ξ̂(0) is based on a set of OLS residuals, ξ̂t; this

estimator is denoted FD in what follows. The second is the augmented estimator ĈA0 , defined

in (31), and is denoted FDA The third estimator is Ĉ0 but is based on an autoregressive

spectral density estimator (ASDE) of fξξ(0) rather than a smoothed periodogram estimator;

this is denoted ASD.6 The ASDE of fξξ(0) first fits a first-order VAR to the OLS residuals

of the form

ξ̂t = K̂ξ̂t−1 + v̂t,

and then computes the estimator of the spectral density matrix at the origin using

f̂ASDE
ξ̂ξ̂

(0) = (I2 − K̂)−1Σ̂v(I2 − K̂ ′)−1,

where Σ̂v is the estimated covariance matrix of the residuals from the VAR. The choice

of m is required to satisfy Assumption 2 and so we take m = [T δ] in the low and mixed

frequency cases with δ ∈ {0.3, 0.5, 0.7}; for T = 180 this results in m ∈ {3, 10, 25}. In the

infeasible high frequency case we scale the low and mixed frequency values by k leading to

m ∈ {36, 120, 300}. The estimators based on each choice of δ are distinguished by appending

1, 2 or 3 to their abbreviated name, corresponding to the three values of δ in increasing order.

Hence FD1 refers to Ĉ0 using δ = 0.3, FD2 refers to Ĉ0 based on δ = 0.5, and so on.

The simulation results concerning the performance of the estimators of C are presented

in Table 1. In view of the well-known trade-off between bias and variance in spectral density

estimation the Table reports the root mean squared error (RMSE) of the estimators, multi-

plied by 104 (hence the entry in the Table of 19.75 for the estimator FDA1 in Model 1 under

white noise, for example, is to be interpreted as an actual RMSE of 0.001975). Beginning

with the case of white noise disturbances in the high frequency model it is apparent that all

the spectral estimators produce uniformly smaller RMSEs than OLS across all three models.

Estimation of the low frequency model, which does not utilise the full mixed frequency sam-

ple data, leads to an approximate six-fold increase in the RMSE values (and even larger for

OLS). The mixed model, on the other hand, results in a large reduction in the RMSEs, with

those of the FDA estimators almost achieving the values of the infeasible high frequency

model.

The remaining entries in Table 1 are based on data in which the high frequency innova-

tions, uτh, are generated by a first-order VAR process. Broadly speaking a similar qualitative

pattern emerges in the VAR cases as in the white noise case, although the magnitudes of

the RMSEs are somewhat different. In four of the cases (Φ2, Φ3, Φ4 and Φ5) the RMSE

of the FDA1 estimator in the mixed frequency model is actually smaller than in the high

frequency model; these are the cases in which feedback is allowed between u1 and u2. When

the feedback is purely from u1 to u2 (i.e. Φ2 and Φ3) the RMSEs are typically smaller than

in the white noise case but when additional feedback from u2 to u1 is allowed the RMSEs

6Smoothed periodogram estimators are used to estimate the remaining spectral density matrices.
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are generally higher. A comparison of the results for Φ1 with those for Φ6 suggests that

allowing the roots to move closer to unity has little impact on the FD and FDA estimators

but there is a large increase in the RMSEs for the ASD estimator in the mixed frequency

model, which is presumably due to difficulties in accurately estimating the spectral density

matrix when the roots are close to unity.

The general picture to emerge from Table 1 is that utilising all the high frequency data in

the mixed frequency model provides substantial improvements over discarding such data and

using only the low frequency observations. Moreover spectral regression estimators appear to

provide a useful method for the estimation of the cointegration parameter in such settings.7

It is also of interest to investigate the finite sample properties of the Wald statistics based

on such estimators. To do this we examine the size properties of the tests under the null

hypothesis H0 : C = 1 and the power properties under the alternative H1 : C 6= 1 using

the four fixed alternatives C = {0.95, 0.99, 1.01, 1.05}. The results are presented in Table 2

for the white noise case for uτh as well as the three VAR processes using Φ2, Φ4 and Φ6.

In addition to the OLS-based test we report results for the spectral regression estimators

using the fewest periodogram ordinates i.e. FD1, FDA1 and ASD1. The entries in Table 2

are percentages and those for power are not size-adjusted; the nominal size of the tests is 5

percent.

The OLS-based Wald tests show the greatest size distortions in the VAR cases while all

tests have size distortions in the infeasible high frequency model; the sizes of the FDA1-based

tests are closest to the nominal size in the low and mixed frequency models. In terms of

power the FDA1-based tests also dominate and achieve high power even for the relatively

close values of C under H1 to its value under H0. This feature, combined with the good

performance of the FDA estimators in terms of RMSE, suggest that spectral regression of

the augmented regression model using the mixed frequency model provides a good platform

for estimation and inference in cointegrated models.

5. An empirical example

In this section we investigate the relationship between US stock prices and dividends

using the extended data set based on Shiller (2000).8 The stock price data are available

monthly (being the average daily closing price during the month) while the dividend data

are yearly. We treat the monthly price data as a stock variable (despite the averaging within

the month) and the dividend data are clearly in the form of a flow. The sample begins in

January 1871 and we use data through to December 2016, yielding T = 146 observations

on dividends and N = 1752 observations on stock prices (with h = 1/12). As in Ghysels

and Miller (2015) we can consider beginning-of-period (BOP) sampling for prices, taking

the January value each year, end-of-period (EOP) sampling, in which the December value is

chosen, or yearly averaging of the twelve months each year. The first two sampling methods

enable the feasible low frequency model to be estimated while the latter enables the mixed

frequency model to be estimated.

7These results are robust to replacing ετh in the VAR specification for uτh by an ARCH process and by
a Gamma distributed process although we do not report the results here in order to economise on space.

8The data can be downloaded from http://aida.econ.yale.edu/˜ shiller/data.htm.
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Logarithms of the yearly dividend data and the three types of sampled stock price data

are presented in Figure 1.9 The different types of sampling of the stock prices appear to make

very little difference to the properties of the resulting series, while both variables display

upward trends over the sample period. Ghysels and Miller (2015) use demeaned data in their

cointegration analysis, arguing that any trends in the series should be the same and the drifts

will cancel out. This does not seem to be supported by inspection of Figure 1 in which the

slopes appear to be significantly different. They also argue that cointegration is not to be

expected owing to the increasing proportion of tech companies, many of which do not pay

dividends, since the 1990’s leading to a structural break or a breakdown in the relationship

between these variables. In the analysis below we use both demeaned and detrended data

and proceed on the basis of cointegration. We also examine the residual plots from the

cointegrating regressions for any obvious evidence of nonstationarity.

We begin with the demeaned data, which are depicted in Figure 2. The upward trends

clearly remain in the demeaned series, as would be expected. The dividend data lie below

the price data in the first half of the sample and then rise and remain above the prices in

the second half of the sample, the cross-over point being around 1950. We compute OLS

as well as the spectral and augmented spectral regression estimators using m = [T δ] for

δ = {0.3, 0.5, 07} (the values that were used in the simulations), yielding m = {4, 12, 32} for

T = 146. The underlying regression of interest is of the form

logPτh = C logDτh + uτh, τ = 1, . . . , N,

where P denotes stock price and D dividends. In view of unit roots in logP and logD,

stationarity of the log price-dividend ratio, log(P/D), suggests that the cointegrating pa-

rameter should be equal to unity. We therefore test H0 : C = 1 against H1 : C 6= 1 using

the Wald statistics proposed in section 3. Results using the demeaned data are presented

in Table 3. As can be seen from Table 3, the estimates of C are stable at around 0.52 with

small standard errors, suggesting that the data are sufficiently informative to reject the hy-

pothesis that C = 1. Indeed, the Wald statistics are highly significant. The residuals from

the cointegrating regression using the augmented spectral regression estimator with m = 4

and averaged price data (in which the estimated coefficient is 0.5251) are graphed in Figure

3. The residuals are reasonably stable although there is evidence of trending towards the

end of the sample period.

A plot of the detrended data is given in Figure 4. Unlike the demeaned data there is

much more variation in the series with multiple crossing points. The results obtained with

the detrended data are given in Table 4. The OLS estimates of C are very similar to those

obtained with the demeaned data but the spectral estimators are uniformly larger at roughly

0.57; the standard errors are also larger than those computed with the demeaned data. The

Wald statistics are also lower than those with the demeaned data although all remain highly

significant (the largest significance is obtained with the spectral estimator using m = 4 with

the end-of-period price data, although the value is only 0.001). Figure 5 plots the residuals

from the cointegrating regression using the augmented spectral regression estimator with

m = 4 and averaged price data (in which the estimated coefficient is 0.5727). The residuals

9To be consistent with the theory in section 2, the averaged stock price data are the yearly averages of
the logarithms of the monthly prices, not the logarithm of the average monthly price.
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display the same pattern as those obtained with the detrended data.

The detrended data in Figure 4 are suggestive of a possible trend break around the

middle of the sample. Detrending the two sub-periods, 1871–1942 and 1943–2016, separately,

yields the detrended data in Figure 6, in which there is no evidence of any remaining trends.

Using the break-detrended data for estimation has a significant impact on the results, which

are reported in Table 5. Estimates of C are much lower than those reported in Tables 3

and 4 and the standard errors are larger. The choice of m also has a greater impact on

the spectral regression estimates than previously, ranging from roughly 0.10 with m = 4 to

0.22 with m = 12 and between 0.11 and 0.18 with m = 32. In all cases the null hypothesis

C = 1 is convincingly rejected. The residuals from the cointegrating regression using the

augmented spectral regression estimator with m = 4 and averaged price data (in which the

estimated coefficient is 0.0965) are displayed in Figure 7. These residuals show slightly less

dispersion than those reported earlier although there are a couple of noticeable spikes.

6. Concluding comments

This paper has proposed a model suitable for exploiting fully the information contained

in mixed frequency and mixed sample data in the estimation of cointegrating vectors. The

properties of easy-to-compute spectral regression estimators of the cointegrating parameters

have been derived, these being in the form of theoretical asymptotic properties as well as

simulated finite sample properties. The proposed estimators belong to the class of optimal

cointegration estimators defined by Phillips (1991c) and Wald statistics based on these esti-

mators have asymptotic chi-square distributions. The finite sample performance of a spectral

regression estimator in an augmented mixed frequency model is particularly encouraging as

it is capable of dramatically reducing the RMSE obtained in an entirely low frequency model

to the levels comparable to an infeasible high frequency model. The size and power prop-

erties of the associated Wald statistic are also good. An empirical example, to stock price

and dividend data, was also provided to demonstrate the methods in practice.

The model analysed contains no deterministic components but it is a straightforward

matter to deal with an intercept and time trend, for example. Demeaning and detrending

the data by regression methods prior to the application of the frequency domain regression

to estimate the cointegration parameters – such as is carried out in the empirical example –

is a valid approach in which the limiting distributions are defined in terms of demeaned and

detrended Brownian motion processes. Such an approach is valid because the cointegration

parameters are assumed to be fixed, thereby avoiding the problems highlighted by Corbae,

Ouliaris and Phillips (2002) in band limited spectral regression in models in which the pa-

rameters are frequency-dependent. Alternatively the intercept and trend could be estimated

as part of the spectral regression procedure. An assessment of the finite sample effects of

these alternative approaches would constitute an interesting research exercise.
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Appendix

Proofs of Lemmas and Theorems

Proof of Lemma 1. (a) We begin the derivation of the mixed frequency representation by

selecting the first n1 equations from (8) relating to y1t, which are given by

y1t = Cy2,t−1 + v1t, t = 1, . . . , T. (35)

The first nS1 equations relating to yS1t are

yS1t = CSSy
S
2,t−1 + CSF y

F
2,t−1 + vS1t, t = 1, . . . , T, (36)

where v1t has been partitioned as v1t =
(
vS′1t , v

F ′
1t

)′
. In view of Y F

2t being observed as an

average of the unobservable yF2t between t−1 and t it makes sense to aggregate this equation

in the same way. As Y F
2t = k−1s(Lh)yF2t we apply the operator k−1s(Lh) to (36) to obtain

(9) with ξS1t = k−1
∑k−1

l=0 v
S
1,t−lh. The representation for Y F

1t is obtained in the same way by

applying the same filter to the last nF1 equations of (35), which are

yF1t = CFSy
S
2,t−1 + CFF y

F
2,t−1 + vF1t, t = 1, . . . , T. (37)

The result is (10) with ξF1t = k−1
∑k−1

l=0 v
F
1,t−lh. Finally, the stochastic trends for Y S

2t and Y F
2t

are obtained by applying the same filter again, this time to (7), resulting in (11) and (12)

with ξS2t = k−1
∑k−1

l=0 w
S
2,t−lh and ξF2t = k−1

∑k−1
l=0 w

F
2,t−lh.

(b) The objective in the feasible low frequency representation is to skip-sample the high fre-

quency stock variables at integer values of τh and relate them to the observed low frequency

flows. The equation for yS1t is obtained from (36) as follows:

yS1t = CSSy
S
2,t−1 + CSF y

F
2,t−1 + vS1t

= CSSy
S
2,t−1 + CSFY

F
2,t−1 + vS1t + CSF

(
yF2,t−1 − Y F

2,t−1

)
= CSSy

S
2,t−1 + CSFY

F
2,t−1 + ζS1t,

where ζS1t = vS1t +CSF δ
F
2,t−1 and δF2,t−1 = yF2,t−1 − Y F

2,t−1 is I(0) using Lemma A1 with j = 0.

For Y F
1t a similar procedure can be carried out using (10):

Y F
1t = CFSY

S
2,t−1 + CFFY

F
2,t−1 + ξF1t

= CFSy
S
2,t−1 + CFFY

F
2,t−1 + ξF1t + CFS

(
Y S

2,t−1 − yS2,t−1

)
= CFSy

S
2,t−1 + CFFY

F
2,t−1 + ζF1t,

where ζF1t = ξF1t − CFSδS2,t−1 is I(0) using Lemma A1. Finally, the stochastic trends for yS2t
come directly from the first nS2 equations of (7), so that ζS2t = wS2t, while those for Y F

2t are

simply (12), so that ζF2t = ξF2t. 2

Proof of Lemma 2. From Lemma A2 we can relate the partial sum of interest to that of
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ut as follows:

1√
T

[Tr]∑
t=1

ξt = G(Lh)s(Lh)
1√
T

[Tr]∑
t=1

ut.

The task is then to relate the partial sums involving fractions of T to the FCLT in Assumption

1 which deals with the high frequency process and partial sums involving a fraction of N .

Following the proof of Lemma 1 of Miller (2016) we can write

[Nr]∑
τ=1

uτh =

[Tr]∑
t=1

k−1∑
l=0

ut−lh +

[Nr]∑
l=[Tr]/h+1

ulh

= s(Lh)

[Tr]∑
t=1

ut +

[Nr]∑
l=[Tr]/h+1

ulh.

from which we obtain

s(Lh)
1√
T

[Tr]∑
t=1

ut =
1√
T

[Nr]∑
τ=1

uτh −
1√
T

[Nr]∑
l=[Tr]/h+1

ulh

=
1√
T

[Nr]∑
τ=1

uτh + op(1),

the last quantity being asymptotically negligible owing to the summation being over a finite

interval and hence will converge to zero, as shown in Miller (2016). Now, the elements of

G(z) are polynomials of order no greater than k − 1 so we can use Lemma 2.1 of Phillips

and Solo (1992) to write

G(z) = G(1)− (1− z)G̃(z)

where the elements of G̃(z) are polynomials of order no greater than k − 2. We can then

write, using T = hN ,

1√
T

[Tr]∑
t=1

ξt =
1√
h
G(1)

1√
N

[Nr]∑
τ=1

uτh −
1√
h
G̃(Lh)

1√
N

[Nr]∑
τ=1

∆huτh + op(1)

=
1√
h
G(1)

1√
N

[Nr]∑
τ=1

uτh + op(1)

because

1√
N

[Nr]∑
τ=1

∆huτh =
1√
N

(
u[Nr]h − u0

)
= op(1).

It follows that, as T →∞,

1√
T

[Tr]∑
t=1

ξt
d→ B(r)

where B(r) = (1/
√
h)G(1)Bu(r) is a Brownian motion process with covariance matrix Ω as

defined in the Lemma. 2
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Proof of Lemma 3. Let Mu(z) =
∑∞

l=−∞ Γu,lhz
lh denote the autocovariance generating

function (AGF) of uτh. Then, from Hamilton (1994, p.268) the AGF of ξt, measured in high

frequency time units, is given by

MH(z) = G(zh)s(zh)Mu(z)s(z−h)G(z−h)′ =
∞∑

l=−∞
Γξ,lhz

lh,

where Γξ,lh = E(ξtξ
′
t−lh) is the high frequency autocovariance matrix at lag lh for ξt at

the high frequency. To convert this to the low frequency time units we take integer values

(setting m = lh) to give

M(z) =
∞∑

m=−∞
Γξ,mz

m.

In case where the limits in MH(z) are finite, such as for a finite-order moving average, an ap-

propriate adjustment needs to be made to the limits in M(z) i.e. if MH(z) =
∑K

l=−K Γξ,lhz
lh

then M(z) =
∑[Kh]

m=−[Kh] Γξ,mz
m. The aim is to first relate Γξ,lh to Γu,lh. The product

s(z)s(z−1) is a two-sided scalar polynomial of order k − 1:

s(z)s(z−1) =
k−1∑
l=0

zl
k−1∑
m=0

z−m =
k−1∑

l=−(k−1)

s1lz
l

where the s1l coefficients are implicitly defined. Next, let

Γu,lh =

(
Γ11
u,lh Γ12

u,lh

Γ21
u,lh Γ22

u,lh

)
.

Then, from the form of G(z) in Lemma A2, we find that

G(z)Mu(z)G(z−1)′ = h2
∞∑

l=−∞

(
C11
lh C12

lh

C21
lh C22

lh

)
,

where

C11
lh = Γ11

u,lh + s(z)CΓ21
u,lh + s(z−1)Γ12

u,lhC
′ + s(z)s(z−1)CΓ22

u,lhC
′,

C12
lh = s(z−1)Γ12

u,lh + s(z)s(z−1)CΓ22
u,lh,

C21
lh = s(z)Γ21

u,lh + s(z)s(z−1)Γ22
u,lhC

′,

C22
lh = s(z)s(z−1)Γ22

u,lh.

When multiplied by s(z)s(z−1) these matrices will have terms involving, in addition to
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s(z)s(z−1) itself,

s(z)2s(z−1) =

k−1∑
m=0

zm
k−1∑

l=−(k−1)

s1lz
−l =

2k−2∑
l=−(k−1)

s2lz
l,

s(z)s(z−1)2 =
k−1∑

l=−(k−1)

s1lz
l
k−1∑
m=0

z−m =
k−1∑

l=−(2k−2)

s3lz
l,

s(z)2s(z−1)2 =
k−1∑

l=−(k−1)

s1lz
l

k−1∑
m=−(k−1)

s1lz
−m =

2k−2∑
l=−(2k−2)

s4lz
l,

where the coefficients are again implicitly defined. Hence each summand of interest, Γu,lh,

is multiplied by a finite-order scalar polynomial in zh of order 2k− 2 at most. We therefore

need to consider quantities of the form (with p = 2k − 2)

p∑
m=−p

amz
mh

∞∑
l=−∞

Γu,lhz
lh =

∞∑
l=−∞

(
p∑

m=−p
amΓu,lh−mh

)
zlh,

which implies that Γξ,lh =
∑p

m=−p amΓu,lh−mh. Taking integer values of lh we obtain

T∑
l=−T

|l|‖Γξ,l‖ =

T∑
l=−T

|l|

∥∥∥∥∥
p∑

m=−p
amΓu,lh−mh

∥∥∥∥∥
≤

p∑
m=−p

|am|
T∑

l=−T
|l|‖Γu,lh−mh‖ = O(T 1/2)

which implies the required result as p is finite and independent of T . 2

Proof of Theorem 1. (a) We begin by noting that we can write

f̂22(0) =
1

2m+ 1

m∑
j=−m

I22(λj)

=
1

2m+ 1

m∑
j=−m

(
1

2π

T−1∑
k=−T+1

Γ̂22,ke
−ikλj

)

=
1

2π(2m+ 1)

T−1∑
k=−T+1

Γ̂22,kwk

where wk =
∑m

j=−m e
−ikλj and

Γ̂22,k =



1

T

T∑
t=k+2

Y2,t−1Y
′

2,t−1−k, k ≥ 0,

1

T

T+k∑
t=2

Y2,t−1Y
′

2,t−1−k, k < 0.
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We are then led to consider

2m+ 1

T 2
f̂22(0) =

1

2πT

T−1∑
k=−T+1

(
1

T
Γ̂22,k

)
wk

d→ 1

2π

∫ 1

0
B2B

′
2 × lim

T→∞

1

T

T−1∑
k=−T+1

wk

=
1

π

∫ 1

0
B2B

′
2

using Lemma A3(a) and as the limit involving the sum of wk is equal to 2; see Lemma A4(a).

(b) Proceeding in a similar way as in part (a) we find that

f̂ξ2(0) =
1

2m+ 1

m∑
j=−m

Iξ2(λj)

=
1

2π(2m+ 1)

T−1∑
k=−T+1

Γ̂ξ2,kwk

where wk is as previously defined and

Γ̂ξ2,k =



1

T

T∑
t=k+2

ξtY
′

2,t−1−k, k ≥ 0,

1

T

T+k∑
t=2

ξtY
′

2,t−1−k, k < 0.

We are then led to consider

2m+ 1

T
f̂ξ2(0) =

1

2πT

T−1∑
k=−T+1

(
1

T
Γ̂ξ2,k

)
wk

d→ 1

2π

∫ 1

0
dBB′2 × lim

T→∞

1

T

T−1∑
k=−T+1

wk + lim
T→∞

1

2πT

T−1∑
k=−T+1

S2,k+1wk

=
1

π

∫ 1

0
dBB′2 + lim

T→∞

1

2πT

T−1∑
k=−T+1

S2,k+1wk

using Lemma A3(b) and Lemma A4(a) and where S2,k =
∑∞

l=k Γξ2,l. Using summation-by-

parts the second term can be written

1

T

T−1∑
k=−T+1

S2,k+1wk = S2,T

(
1

T

T−1∑
k=−T+1

wk

)
+

T−2∑
k=−T+1

(
1

T

k∑
l=−T+1

wl

)
(S2,k+1 − S2,k+2)

= S2,T

(
1

T

T−1∑
k=−T+1

wk

)
+

T−2∑
k=−T+1

(
1

T

k∑
l=−T+1

wl

)
Γξ2,k+1
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because S2,k+1 − S2,k+2 = Γξ2,k+1. Now S2,T → 0 as T →∞ while, from Lemma A4(a),

1

T

T−1∑
k=−T+1

wk → 2,

hence the first term converges to zero. As for the second term we have, from Lemma A4(b),

1

T

k∑
l=−T+1

wl = 1 +O
(m
T

)
for all k, and so we deduce that, under Assumption 2,

lim
T→∞

1

2πT

T−1∑
k=−T+1

S2,k+1wk =
1

2π

∞∑
k=−∞

Γξ2,k

as required.

(c) We begin by using the decomposition

f̂ξ̂ξ̂(0)− fξξ(0) =
(
f̂ξ̂ξ̂(0)− f̂ξξ(0)

)
+
(
f̂ξξ(0)− fξξ(0)

)
and then proceed to show that each of the two terms in parentheses is op(1). Note that

f̂ξ̂ξ̂(0) =
1

2m+ 1

m∑
j=−m

wξ̂(λj)wξ̂(λj)
∗

and that ξ̂t = Y0t−JĈY2,t−1 where Ĉ is an initial estimator of C such that T (Ĉ−C) = Op(1).

Substituting for Y0t we obtain ξ̂t = ξt − J(Ĉ − C)Y2,t−1 which implies that

wξ̂(λj) = wξ(λj)− J(Ĉ − C)w2(λj).

It then follows that

Iξ̂ξ̂(λj) = wξ̂(λj)wξ̂(λj)
∗

=
(
wξ(λj)− J(Ĉ − C)w2(λj)

)(
wξ(λj)− J(Ĉ − C)w2(λj)

)∗
= Iξξ(λj) + J(Ĉ − C)I22(λj)(Ĉ − C)′J ′ − J(Ĉ − C)I2ξ(λj)− Iξ2(λj)(Ĉ − C)′J ′

and so the quantity of interest is

f̂ξ̂ξ̂(0)− f̂ξξ(0) =
1

2m+ 1

m∑
j=−m

(
Iξ̂ξ̂(λj)− Iξξ(λj)

)
= J(Ĉ − C)f̂22(0)(Ĉ − C)′J ′ − J(Ĉ − C)f̂2ξ(0)− f̂ξ2(0)(Ĉ − C)′J ′.
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Using the stochastic orders of magnitude already established we obtain

(2m+ 1)
(
f̂ξ̂ξ̂(0)− f̂ξξ(0)

)
= JT (Ĉ − C)

2m+ 1

T 2
f̂22(0)T (Ĉ − C)′J ′

−JT (Ĉ − C)
2m+ 1

T
f̂2ξ(0)− 2m+ 1

T
f̂ξ2(0)T (Ĉ − C)′J ′

= Op(1)

and so f̂ξ̂ξ̂(0)− f̂ξξ(0) = Op(1/m) = op(1) under Assumption 2. The second term of interest

can be shown to be op(1) if Assumption 3 holds in addition to Assumptions 1 and 2 as

Lemma 3 can be used to control the rate of growth of the autocovariances of ξt. This second

term is a consistency result for the infeasible smoothed periodogram estimator based on the

unobservable ξt and follows, for example, from results in Hannan (1970) and Fuller (1996).

2

Proof of Theorem 2. From Theorem 1(c) we can replace f̂ξ̂ξ̂(0) with fξξ(0) and so, from

(24), we are led to consider

T (Ĉ0 − C) =
(
J ′fξξ(0)−1J

)−1
J ′fξξ(0)−1

(
2m+ 1

T
f̂ξ2(0)

)(
2m+ 1

T 2
f̂22(0)

)−1

+ op(1)

d→
(
J ′fξξ(0)−1J

)−1
J ′fξξ(0)−1

(
1

π

∫ 1

0
dBB′2 +

1

2π
Ω2

)(
1

π

∫ 1

0
B2B

′
2

)−1

=
(
J ′fξξ(0)−1J

)−1
J ′fξξ(0)−1

∫ 1

0
dBB′2

(∫ 1

0
B2B

′
2

)−1

+
1

2

(
J ′fξξ(0)−1J

)−1
J ′fξξ(0)−1Ω2

(∫ 1

0
B2B

′
2

)−1

.

Using the definitions 2πfξξ(0) = Ω and Ω11.2 = Ω11 − Ω12Ω−1
22 Ω21 it can be shown that

J ′fξξ(0)−1J = 2πΩ−1
11.2 and J ′fξξ(0)−1 = 2π

(
Ω−1

11.2 : −Ω−1
11.2Ω12Ω−1

22

)
,

results which imply that(
J ′fξξ(0)−1J

)−1
J ′fξξ(0)−1 =

(
In1 : −Ω12Ω−1

22

)
.

Hence the first term in the limiting distribution can be written∫ 1

0
dB1.2B

′
2

(∫ 1

0
B2B

′
2

)−1

where B1.2 =
(
In1 : −Ω12Ω−1

22

)
B = B1−Ω12Ω−1

22 B2. For the second term we begin by noting

that

Ω2 = Ω

(
0n1×n2

In2

)
= 0
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and, hence, it follows that

J ′Ω−1Ω2 = (In1 : 0n1×n2)Ω−1Ω

(
0n1×n2

In2

)
= 0.

This demonstrates that the second term is zero and the limiting distribution is defined as in

the Theorem. 2

Proof of Theorem 3. We begin with W0 and note that the limiting distribution of γ̂0 has

the representation

T (γ̂0 − γ)
d→

[(∫ 1

0
B2B

′
2

)−1

⊗ In1

]∫ 1

0
(B2 ⊗ dB1.2) .

Let M22 =
∫ 1

0 B2B
′
2. Then, from the proof of Lemma 5.1 in Park and Phillips (1988),∫ 1

0
(B2 ⊗ dB1.2)

∣∣∣∣
B2

∼ N(0,M22 ⊗ Ω11.2)

in view of B2 and B1.2 being independent. It then follows that the limiting distribution of

T (γ̂0 − γ), conditional on B2, is N(0,M−1
22 ⊗ Ω11.2). Now consider

r(γ̂0) = r(γ) +R(γ̄)(γ̂0 − γ),

where the elements of γ̄ lie on the line segment between γ̂0 and γ. Under H0, r(γ) = 0 while

the consistency of γ̂0 ensures that R(γ̄)
p→ R(γ) = R0. Then it follows that

Tr(γ̂0) = R(γ̄)T (γ̂0 − γ)
d→ R0

[(∫ 1

0
B2B

′
2

)−1

⊗ In1

]∫ 1

0
(B2 ⊗ dB1.2)R′0.

This limiting distribution, conditional on B2, is N(0, R0QR
′
0) where Q = M−1

22 ⊗ Ω11.2.

Theorem 1 implies that
2m+ 1

2T 2
V̂0

d→ Q−1

and hence we are led to consider

W0 = Tr(γ̂0)′

[
R(γ̂0)

(
2m+ 1

2T 2
V̂0

)−1

R(γ̂0)′

]−1

Tr(γ̂0).

The limiting distribution of this quantity, conditional on B2, involves a quadratic form

in N(0, R0QR
′
0) random variables weighted by the matrix (R0QR

′
0)−1, and hence is χ2

q .

But because this does not depend on B2 it is also the unconditional distribution. Similar

arguments apply to WA
0 . 2

Proof of Proposition 1. (a) The proof follows that of Lemma 2 based on

1√
T

[Tr]∑
t=1

ζt = Gζ(L
h)s(Lh)

1√
T

[Tr]∑
t=1

ut.
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Following the same steps we find that the limit Brownian motion is b(r) = (1/
√
h)Gζ(1)Bu(r)

which has the stated covariance matrix.

(b) The proof follows Lemma 3 with appropriate modifications.

(c) The proof follows from Theorem 1.

(d) The proof is based on Theorem 2.

(e) The proof uses the same steps as the proof of Theorem 3. 2

Supplementary Lemmas

The following Lemma is used in the proof of Lemma 1. It is more general than is actually

required in the proof of Lemma 1 (which uses the result for j = 0) but the additional cost

of showing that it holds for j = 1, . . . , k − 1 i.e. at any point in the interval over which the

aggregation takes place, is minimal.

Lemma A1. Let ∆hyτh (τ = 1, . . . , N) be an I(0) process, where 0 < h < 1 denotes the

sampling interval, and let k = h−1 be an integer. Then, for 0 ≤ j ≤ k − 1 and t = 1, . . . , T ,

δt−jh = yt−jh −
1

k

k−1∑
l=0

yt−lh

is an I(0) process.

Proof of Lemma A1. We first write δt−jh = sδ,j(L
h)yt where sδ,j(z) = zj − k−1s(z) and

s(z) is defined following (5). The spectral density matrix of δt−jh is then given by

fδ,j(λ) =
∣∣∣sδ,j(eihλ)

∣∣∣2 fy(λ), −π
h
< λ ≤ π

h
.

where fy(λ) is the pseudo-spectrum of yt satisfying fy(λ) = O(λ−2) as λ→ 0. Now

∣∣∣sδ,j(eihλ)
∣∣∣2 =

∣∣∣∣∣eijhλ − 1

k

k−1∑
l=0

eilhλ

∣∣∣∣∣
2

=

∣∣∣∣∣ijhλ− 1

k

k−1∑
l=0

ilhλ+O(λ2)

∣∣∣∣∣
2

,

the leading term of which is

ijhλ− 1

k

k−1∑
l=0

ilhλ = ihλ

(
j − 1

k

k−1∑
l=0

l

)
= ihλ

(
j − (k − 1)

2

)
.

It follows that ∣∣∣sδ,j(eihλ)
∣∣∣2 = h2λ2

(
j − (k − 1)

2

)2

+O(λ4)

and so fδ,j(λ) is positive and bounded for λ 6= 0 while fδ,j(0) = Ch2(j − (k − 1)/2)2 > 0

(where we have taken fy(λ) ∼ Cλ−2 as λ→ 0). 2

Lemma A2. The disturbances in the mixed frequency and feasible low frequency represen-

tations, ξt and ζt, respectively, are related to those in the high frequency representation, uτh,
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as follows:

ξt = G(Lh)s(Lh)ut, t = 1, . . . , T, (38)

ζt = Gζ(L
h)s(Lh)ut, t = 1, . . . , T, (39)

where s(z) is defined in (6),

G(z) = h

(
In1 Cs(z)

0n2×n1 s(z)In2

)
,

Gζ(z) =


s(z)−1InS1

0nS1×nF1
CSS (1 + zks2(z))CSF

0nF1 ×nS1
hInF1

(hs(z)− zks2(z))CFS hs(z)CFF

0nS2×nS1
0nS2×nF1

InS2
0nS2×nF2

0nF2 ×nS1
0nF2 ×nF1

0nF2 ×nS2
hs(z)InF2

 ,

and s2(z) = s(z)− h
∑k−1

l=0 (l + 1)zl.

Proof of Lemma A2. From the proof of Lemma 1 we find that ξ1t = k−1s(Lh)v1t and

ξ2t = k−1s(Lh)w2t. Furthermore, from the equation following (8), v1t = u1t+Cw2t and from

(7), w2t = s(Lh)u2t. Combining this information yields ξ1t = k−1s(Lh)u1t + k−1Cs(Lh)2u2t

and ξ2t = k−1s(Lh)2u2t which results in (38).

Turning to ζt we again use the definitions from the proof of Lemma 1 which give ζS1t =

vS1t + CSF δ
F
2,t−1, ζF1t = ξF1t − CFSδS2,t−1, ζS2t = wS2t and ζF2t = ξF2t. It is therefore necessary to

find a term relating δ2,t−1 to ut. We begin with the definition of δ2t which, from Lemma A1,

is

δ2t =

(
δS2t

δF2t

)′
= y2t −

1

k

k−1∑
l=0

y2,t−lh.

Now, because ∆y2t = w2t we have

y2t = y2,t−1 +
k−1∑
p=0

w2,t−ph and y2,t−lh = y2,t−1 +
k−1∑
p=l

w2,t−ph, l = 1, . . . , k − 1,

from which it follows that

δ2t =
k−1∑
p=0

w2,t−ph −
1

k

k−1∑
l=0

k−1∑
p=l

w2,t−ph = s2(Lh)w2t

where s2(z) is defined in the statement of the Lemma and noting that k−1 = h and

k−1∑
l=0

k−1∑
p=l

zp =
k−1∑
l=0

(l + 1)zl.
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Making these substitutions we obtain

ζS1t = uS1t + CSSs(L
h)uS2t +

(
1 + Ls2(Lh)

)
CSF s(L

h)uF2t,

ζF1t = hs(Lh)s(Lh)uF1t +
(
hs(Lh)− Ls2(Lh)

)
CFSs(L

h)uS2t + hCFF s(L
h)2uF2t,

while ζS2t = s(Lh)uS2t and ζF2t = hs(Lh)2uF2t. The representation stated in the Lemma then

follows immediately. 2

Lemma A3. Under Assumption 1, as T →∞:

(a)
1

T 2

T∑
t=1

Y2,t−1Y
′

2,t−1−k
d→
∫ 1

0
B2B

′
2;

(b)
1

T

T∑
t=1

ξtY
′

2,t−1−k
d→
∫ 1

0
dBB′2 + S2,k+1, where S2,k =

∞∑
j=k

E(ξt+jξ
′
2t);

(c)
1

T 2

T∑
t=1

z2,t−1z
′
2,t−1−k

d→
∫ 1

0
b2b
′
2;

(d)
1

T

T∑
t=1

ζtz
′
2,t−1−k

d→
∫ 1

0
dbb′2 + Sζ2,k+1, where Sζ2,k =

∞∑
j=k

E(ζt+jζ
′
2t).

Proof of Lemma A3. The proofs are standard and follow from the FCLTs for ξt and ζt
in Lemma 2 and Proposition 1; see, for example, Phillips and Durlauf (1986) for details. 2

Lemma A4. Let

wk =
m∑

j=−m
e−ikλj ,

where λj = 2πj/T (j = −m, . . . ,m). Then, under Assumption 2:

(a) lim
T→∞

1

T

T−1∑
k=−T+1

wk = 2;

(b)
1

T

k∑
l=−T+1

wl = 1 +O
(m
T

)
.

Proof of Lemma A4. (a) We first note that
∑m

j=−m e
−ijx = 1 + 2

∑m
j=1 cos jx and so

1

T

T−1∑
k=−T+1

wk =
1

T

T−1∑
k=−T+1

1 + 2
m∑
j=1

cos
2πkj

T


=

2T − 1

T
+

2

T

m∑
j=1

T−1∑
k=−T+1

cos
2πkj

T
.
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The sum over the index k can be decomposed as

T−1∑
k=−T+1

cos
2πkj

T
=

T∑
k=1

cos
2πkj

T
− cos 2πj + cos 0 +

−1∑
k=−T

cos
2πkj

T
− cos(−2πj)

= 2
T∑
k=1

cos
2πkj

T
− 2 cos 2πj + 1 (as cos(−x) = cosx and cos 0 = 1)

= −1

because
∑T

k=1 cos 2πkj/T = 0 and cos 2πj = 1 for all integer j. Hence

1

T

T−1∑
k=−T+1

wk = 2− 1

T
− 2m

T
→ 2

as T →∞ under Assumption 2.

(b) Note that

1

T

k∑
l=−T+1

wl =



1

T

k∑
l=0

wl +
1

T

−1∑
l=−T+1

wl, k > 0,

1

T
w0 +

1

T

−1∑
l=−T+1

wl, k = 0,

1

T

−1∑
l=−T+1

wl −
1

T

−1∑
l=k+1

wl, k < 0.

All cases involve the common component

1

T

−1∑
l=−T+1

wl =
1

T

−1∑
l=−T+1

1 + 2
m∑
j=1

cos
2πlj

T


=

T − 1

T
+

2

T

T−1∑
l=1

m∑
j=1

cos
2πlj

T

using cos(−x) = cosx. But

T−1∑
l=1

cos
2πlj

T
=

T∑
l=1

cos
2πlj

T
− cos 2πj = −1

for the reasons used in part (a), and so

1

T

−1∑
l=−T+1

wl = 1− 1

T
− 2m

T
= 1− (2m+ 1)

T
.

We now need to consider the additional terms that depend on the sign of k. For k > 0 we
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have, by similar steps as above,

1

T

k∑
l=0

wl =
1

T

k∑
l=0

1 + 2
m∑
j=1

cos
2πlj

T

 =
k + 1

T
+

2

T

k∑
l=0

m∑
j=1

cos
2πlj

T

and so it follows that ∣∣∣∣∣ 1

T

k∑
l=0

wl

∣∣∣∣∣ ≤ k + 1

T
+

2

T

k∑
l=0

m∑
j=1

∣∣∣∣cos
2πlj

T

∣∣∣∣
=

k + 1

T
+

2(k + 1)m

T
→ 0

as T →∞ under Assumption 2. For k = 0 we need to consider the additional term

1

T
w0 =

2m+ 1

T
→ 0

as T →∞ under Assumption 2 while for k < 0 the additional term is

1

T

−1∑
l=k+1

wl =
1

T

−1∑
l=k+1

1 + 2

m∑
j=1

cos
2πlj

T

 =
|k| − 1

T
+

2

T

|k|−1∑
l=1

m∑
j=1

cos
2πlj

T

from which it follows, as in the k > 0 case, that∣∣∣∣∣ 1

T

−1∑
l=k+1

wl

∣∣∣∣∣ ≤ (|k| − 1)(2m+ 1)

T
→ 0

as T →∞ under Assumption 2. Hence, for all fixed k,

1

T

k∑
l=−T+1

wl = 1 +O
(m
T

)
under Assumption 2. 2
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Table 1

RMSE (×104) of frequency domain estimators in VAR(1) model for uτh, T = 100, h = 1/12

Model OLS FD1 FD2 FD3 FDA1 FDA2 FDA3 ASD1 ASD2 ASD3

Φ = 02×2 (white noise)

High 35.41 19.74 19.62 19.57 19.75 19.62 19.57 19.70 19.62 19.56

Low 402.64 119.56 111.21 139.45 113.71 109.73 135.83 109.31 109.75 131.81

Mixed 233.97 39.13 24.00 21.54 23.19 20.80 20.30 34.58 32.02 30.94

Φ = Φ1

High 22.28 19.82 19.73 19.71 19.82 19.73 19.71 19.83 19.75 19.74

Low 335.78 62.64 60.60 97.30 42.69 57.52 93.70 42.25 58.34 90.25

Mixed 190.83 40.87 24.51 21.45 23.22 20.78 20.29 47.45 43.72 41.24

Φ = Φ2

High 13.81 5.54 6.69 6.70 5.57 6.71 6.71 5.60 6.84 6.88

Low 308.54 52.53 54.82 94.28 21.21 51.50 91.37 24.01 52.55 87.31

Mixed 176.59 35.42 14.43 11.41 3.49 4.70 7.23 119.22 110.37 104.36

Φ = Φ3

High 11.25 5.71 6.82 6.82 5.65 6.79 6.80 5.76 7.00 7.05

Low 292.98 51.64 46.97 77.74 22.92 43.05 74.79 25.99 44.68 73.24

Mixed 161.39 34.40 14.43 8.77 3.57 4.81 7.30 55.63 52.28 53.79

Φ = Φ4

High 201.00 25.50 239.83 275.49 25.24 240.09 276.08 25.19 239.70 275.32

Low 638.15 552.00 494.56 487.55 568.99 494.85 486.33 545.23 494.37 482.29

Mixed 292.44 37.78 24.33 22.32 23.77 21.77 23.03 31.94 31.03 39.40

Φ = Φ5

High 344.76 25.04 238.03 274.06 24.62 237.40 273.51 24.59 237.75 273.66

Low 464.90 195.84 179.93 201.18 196.84 179.19 198.34 187.60 178.87 190.28

Mixed 286.98 38.40 24.01 25.39 23.61 21.22 22.56 28.97 26.84 28.17

Φ = Φ6

High 23.27 20.32 20.27 20.26 20.30 20.25 20.24 20.53 20.50 20.49

Low 204.75 63.33 48.63 57.45 29.06 42.90 54.91 42.10 51.13 60.07

Mixed 129.93 47.36 27.79 24.12 23.36 20.96 20.60 163.07 148.37 142.74
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Table 2

Size and power of Wald tests in VAR(1) model for uτh, T = 100, h = 1/12

Model OLS FD1 FDA1 ASD1 Model OLS FD1 FDA1 ASD1

Φ = 0 (white noise) Φ = Φ2

C = 0.95 C = 0.95

High 100.00 100.00 100.00 100.00 High 100.00 100.00 100.00 100.00

Low 87.92 82.30 94.01 90.20 Low 91.03 92.20 100.00 99.28

Mixed 97.64 94.97 100.00 97.17 Mixed 97.23 97.91 100.00 91.45

C = 0.99 C = 0.99

High 99.34 92.31 92.73 92.50 High 99.98 100.00 100.00 100.00

Low 9.60 12.86 28.51 15.84 Low 7.16 37.18 99.37 76.82

Mixed 3.81 45.01 92.00 60.33 Mixed 2.27 52.09 100.00 57.47

C = 1.00 (size) C = 1.00 (size)

High 5.30 0.75 0.81 0.58 High 38.88 1.08 1.32 7.06

Low 9.14 3.59 6.67 0.76 Low 10.66 1.60 7.21 0.13

Mixed 5.20 2.19 6.67 0.36 Mixed 8.48 1.49 7.07 3.57

C = 1.01 C = 1.01

High 81.25 92.71 93.07 92.92 High 99.99 100.00 100.00 100.00

Low 15.68 18.44 24.65 15.02 Low 20.65 43.92 92.69 71.53

Mixed 18.02 58.15 92.00 67.25 Mixed 25.48 66.20 100.00 62.25

C = 1.05 C = 1.05

High 99.99 100.00 100.00 100.00 High 100.00 100.00 100.00 100.00

Low 50.68 78.55 90.72 86.16 Low 59.77 89.56 100.00 98.58

Mixed 67.10 93.24 100.00 96.22 Mixed 76.59 97.21 100.00 93.53

Φ = Φ4 Φ = Φ6

C = 0.95 C = 0.95

High 92.84 99.98 100.00 100.00 High 100.00 100.00 100.00 100.00

Low 53.31 28.12 29.09 21.62 Low 91.22 97.30 100.00 99.51

Mixed 97.22 91.29 100.00 95.85 Mixed 97.51 99.39 100.00 92.63

C = 0.99 C = 0.99

High 51.76 73.16 84.10 84.74 High 99.53 97.79 97.81 91.85

Low 17.61 6.57 7.93 2.46 Low 7.29 39.35 93.00 76.37

Mixed 4.82 41.29 90.58 55.07 Mixed 4.77 51.18 92.03 43.62

C = 1.00 (size) C = 1.00 (size)

High 80.18 0.16 1.06 1.11 High 72.75 11.15 11.04 1.50

Low 16.39 6.01 7.13 1.78 Low 19.26 2.25 7.46 4.14

Mixed 3.99 1.92 6.71 0.29 Mixed 20.41 2.50 7.13 1.26

C = 1.01 C = 1.01

High 100.00 86.32 96.66 96.91 High 99.89 98.00 97.99 92.22

Low 18.90 7.46 7.98 1.97 Low 35.48 45.00 83.21 75.90

Mixed 12.58 52.20 91.52 63.12 Mixed 43.98 69.05 92.21 50.60

C = 1.05 C = 1.05

High 100.00 99.99 100.00 100.00 High 100.00 100.00 100.00 100.00

Low 40.08 27.34 26.11 17.38 Low 78.93 97.40 99.97 99.73

Mixed 57.77 89.32 100.00 94.90 Mixed 91.94 99.77 99.99 98.97
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Table 3

Empirical results using demeaned data, 1871–2016

Spectral estimators Augmented spectral estimators

OLS m = 4 m = 12 m = 32 m = 4 m = 12 m = 32

Beginning-of-period stock price data

Ĉ 0.5179 0.5219 0.5187 0.5169 0.5224 0.5188 0.5169

(0.0070) (0.0056) (0.0059) (0.0066) (0.0059) (0.0062) (0.0067)

Wald 4785.2169 228.4292 566.3292 1182.5369 201.9959 513.0848 1158.6059

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

End-of-period stock price data

Ĉ 0.5236 0.5269 0.5232 0.5228 0.5273 0.5232 0.5228

(0.0076) (0.0055) (0.0059) (0.0073) (0.0058) (0.0062) (0.0073)

Wald 3935.4756 232.2694 565.3833 960.1324 205.2335 512.4292 940.6256

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Averaged stock price data

Ĉ 0.5212 0.5247 0.5217 0.5200 0.5251 0.5217 0.5200

(0.0070) (0.0054) (0.0058) (0.0067) (0.0058) (0.0061) (0.0068)

Wald 4623.3407 236.8964 585.3597 1125.7540 209.3646 530.3569 1103.0700

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

NB: standard errors in parentheses; marginal p-values in square brackets.

Table 4

Empirical results using detrended data, 1871–2016

Spectral estimators Augmented spectral estimators

OLS m = 4 m = 12 m = 32 m = 4 m = 12 m = 32

Beginning-of-period stock price data

Ĉ 0.5314 0.5720 0.5655 0.5375 0.5726 0.5659 0.5377

(0.0254) (0.0201) (0.0216) (0.0240) (0.0199) (0.0216) (0.0242)

Wald 340.6945 14.0226 34.6383 82.6871 14.1974 34.7241 81.0518

[0.0000] [0.0009] [0.0000] [0.0000] [0.0008] [0.0000] [0.0000]

End-of-period stock price data

Ĉ 0.5166 0.5752 0.5668 0.5229 0.5760 0.5674 0.5230

(0.0277) (0.0201) (0.0218) (0.0264) (0.0196) (0.0215) (0.0266)

Wald 304.0481 13.7937 33.8112 72.8259 14.4043 34.5473 71.3816

[0.0000] [0.0010] [0.0000] [0.0000] [0.0007] [0.0000] [0.0000]

Averaged stock price data

Ĉ 0.5254 0.5720 0.5653 0.5314 0.5727 0.5658 0.5316

(0.0257) (0.0197) (0.0213) (0.0245) (0.0194) (0.0211) (0.0247)

Wald 341.4540 14.5462 35.7437 81.4669 14.8820 36.0851 79.8545

[0.0000] [0.0007] [0.0000] [0.0000] [0.0006] [0.0000] [0.0000]

NB: standard errors in parentheses; marginal p-values in square brackets.
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Table 5

Empirical results using detrended data, 1871–2016, with break in 1942

Spectral estimators Augmented spectral estimators

OLS m = 4 m = 12 m = 32 m = 4 m = 12 m = 32

Beginning-of-period stock price data

Ĉ 0.1961 0.0810 0.2189 0.1853 0.0795 0.2194 0.1846

(0.0437) (0.0418) (0.0443) (0.0405) (0.0409) (0.0448) (0.0419)

Wald 338.2393 14.9317 26.5672 89.8763 15.6142 25.9452 84.4451

[0.0000] [0.0006] [0.0000] [0.0000] [0.0004] [0.0000] [0.0000]

End-of-period stock price data

Ĉ 0.1239 0.1046 0.2171 0.1136 0.1044 0.2194 0.1129

(0.0458) (0.0417) (0.0452) (0.0430) (0.0420) (0.0451) (0.0444)

Wald 365.1547 14.1929 25.6917 94.5647 14.0428 25.7014 88.8211

[0.0000] [0.0008] [0.0000] [0.0000] [0.0009] [0.0000] [0.0000]

Averaged stock price data

Ĉ 0.1725 0.0975 0.2247 0.1622 0.0965 0.2259 0.1615

(0.0433) (0.0407) (0.0438) (0.0408) (0.0405) (0.0441) (0.0421)

Wald 365.2956 15.1418 26.8000 94.0066 15.3443 26.3375 88.3082

[0.0000] [0.0005] [0.0000] [0.0000] [0.0005] [0.0000] [0.0000]

NB: standard errors in parentheses; marginal p-values in square brackets.
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Figure 1. Logarithms of dividends and sampled stock prices, 1871–2016.
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Figure 2. Demeaned logarithms of dividends and sampled stock prices, 1871–2016.
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Figure 3. Residuals from cointegrating regression using demeaned data, 1871–2016.
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Figure 4. Detrended logarithms of dividends and sampled stock prices, 1871–2016.
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Figure 5. Residuals from cointegrating regression using detrended data, 1871–2016.
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Figure 6. Detrended logarithms of dividends and sampled stock prices, 1871–2016, break in 1942.
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Figure 7. Residuals from cointegrating regression using detrended data, 1871–2016, break in 1942.
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