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Abstract

One-dimensional numerical models of the arterial vasculature are capable of sim-
ulating the physics of pulse wave transmission and reflection. These models are
computationally efficient and represents and ideal choice with great translational
opportunities in healthcare. However, the use of these models in a patient-specific
scenario is hampered by the difficulty in measuring the model inputs (parameters,
boundary conditions, and initial conditions)in the clinical setting. Asaresult, most
of the model inputs are noisy or missing, and the inputs uncertainty is transmit-
ted to the model outputs. A fundamental step in the model development consists
in performing a sensitivity and uncertainty analysis aimed at understanding how
variations on the inputs affect the output variability, with the final aim of instruct
the measurement process. A typical sensitivity analysis conducted by means of
Monte Carlo sampling is computationally expensive due to the large number of runs
required. A novel approach aimed at reducing the computational time consists in
using a statistical emulator capable of mimicking mean and variance behaviours of
the 1D deterministic model. In this study, emulators built through Gaussian pro-
cess method are used to predict outcomes of a 1D finite-volume solver for networks
of elastic vessels. The 1D model is discussed and validated showing good agreement
with published results. The emulator approach for sensitivity analysis is validated
against Monte Carlo sampling and a 99.9 % reduction in computational time is ob-
tained. This methodology is further applied in the context of cerebral vasospasm
where the sensitivity analysis results are used to identify new biomechanical met-
rics for this pathology. The novel biomarkers are effective at detecting the cerebral
vasospasm better than the currently used one. In particular, the progression of the
disease is characterised from an early onset even when the vasospasm is occurring
at some distance away from the measurement location.
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1 Introduction

Theblood is pumped through the cardiovascular system, acomplex network of com-
pliantarteriesand veins, by the cyclic contraction of the heart. This pulsatileregime
and the vesselselasticity cause blood pressure to propagate through arteriesaswaves.
The pressure waves move through the network and are deflected due to the pres-
ence of mechanical discontinuities such as bifurcations and bends. Cardiovascular
pathologies, including vessel stenoses, aneurysms, and atherosclerosis could addi-
tionally modify these patterns. The pressure wave observed at a specific location is
the result of the sum of incident and reflected waves. The study of this superim-
position allows to infer the mechanical features of the vascular network upstream
and downstream of the measurement point.

Numerical vascular models are aimed at better understanding of the blood cir-
culation. Many of the heemodynamics models are based on the Navier-Stokes equa-
tions (NSEs), which describes the macroscopic behaviour of fluids. One dimensional
(1D) models are based on a reduction of the NSEs along with a constitutive relation
describing the vessel-wall radial displacement. In a 1D model, each vessel is an elas-
tic tube whose features can vary along the longitudinal direction.

Compared to three-dimensional (3D) simulations, 1D simulations are computa-
tionally cheaper and need aless detailed description of the network geometries and
boundaries. This comes at the expense of accuracy in the proximity of bifurcations
and valves, where flow recirculation may occur. Nevertheless, 1D models are de-
tailed enough to simulate the mechanism of forward and backward waves superim-
position, and have been successfully used to simulate the heemodynamics of large
vascular networks, i.e. the entire systemic and venous circulation, the pulmonary
circulation, the brain vasculature, and the blood flow within the coronary arteries.

Despite being computationally less demanding than 3D simulations, 1D models
still require a considerable number of parameters to represent a vascular network.
Forinstance a systemic network including 103 large arteries requires about 500 pa-
rameterstobespecified: inapatient-specificscenario, the measurement of all these
parameters is infeasible. However, not all the model parameters have a significant
effect on the clinically relevant output (e.g. the systolic pressure in the ascending
aorta). Only the most influential parameters are those whose uncertainty must be



reduced, i.e. they should be measured as accurately as possible. Conversely, the pa-
rameters whose variation haslittle effect on the output can be fixed to nominal val-
ues. In general, the inputs can be ranked according to their influence in the view of
informing the measurement process. The input ranking and fixing is the outcome
of performing a sensitivity analysis of the 1D model.

The state-of-the-art sensitivity technique consists in the calculation of variance-
based global sensitivity indices which assess the output sensitivity to the variation
of individual inputs or combination of inputs. The inputs contributing more to the
output variation will score higher sensitivity indices than the inputs whose varia-
tion affects the output value less significantly. The sensitivity indices can be com-
puted by means of the Monte Carlo sampling method which tipically requires 1000
runs for each input parameter. Each simulation is run on a different set of inputs
randomly drawn from a distribution over the input space. As the number of simu-
lations grows, the model response at different input-spacelocations is investigated.
Ideally, it would be desirable to draw an infinite number of input points, but in
practice a sampling of order O(d x 10?) is enough, where d is the number of in-
put parameters.

The computational time required for the d x 10° simulations rises as d increases.
The sensitivity analysis can be made more efficient by introducing an approxima-
tion of the physically-based model, i.e. an emulator. The emulator is a statistical
tool that can be trained to infer the deterministic model global behaviour from a
set of simulation runs. The number of simulation runs needed to train the emu-
lator is usually smaller than d x 10%. Once trained, the emulator can predict the
determinist model outcome for each of the d x 10% input points required for the
sensitivity analysis in few seconds. The Gaussian process (GP) method is a popular
emulation technique in Machine Learning and it has been employed in this thesis
to predict 1D blood flow model outcomes for sensitivity analysis purposes.



1.1 Aimand objectives

The aim of this study is to develop a novel numerical approach that will allow the
identification of waveform-derived biomechanical metrics for an effective subject-
specific diagnosis of cardiovascular pathologies.

The aim is achieved through the following objectives:

1. development of a 1D numerical model of blood pulse wave propagation and
reflection within networks of elastic arteries;

2. validation of the 1D model against state-of-the-art benchmarks;

3. trainingof Gaussian process emulator to mimic the 1D model behaviour and
to reduce the computational running time;

4. validation of the Gaussian process approach against the Monte Carlo sam-
pling outcomes;

5. assessment of how Gaussian process method accuracy scales when trained
over models of increasing complexity;

6. use of Gaussian process technique to perform 1D model sensitivity analysis
and quantify the effect of uncertain, missing, and noisy data;

7. use of sensitivity analysis results to identify more effective biomarkers of
a specific cardiovascular condition and to quantify the effect of uncertain
data.

1.2 Thesis outline

The thesis is organised in two main parts: methodology and clinical applications as
outlined in contents. The study objectives are achieved and described in the various
chapters as follows:

+ In Chapter 2, the project background is reported. This consists of an intro-
duction of the cardiovascular system, its main functions and its mechanical
description. This is followed by a review of the modelling approaches used
to study the physics of wave propagation focusing on the numerical meth-
ods for 1D models. The chapter concludes with a description of the concepts
and use of sensitivity analysis and statistical model emulators.

+ Chapter 3 gives a description of the mathematical model used in this study
(Objective 1).



- In Chapter 4, the sensitivity analysis method is introduced and discussed.
This is reviewed as a generic modelling tool and not described in the context
of cardiovascular modelling.

+ In Chapter 5, the Gaussian process method is discussed. The problems of
kernel selection and optimisation is described and a strategy for building
covariance functions is presented. Finally, a sampling method suitable for
sensitivity analysis purpose is presented.

- InChapter 6, the developed numerical scheme for the 1Dblood flow model is
validated against a frequency-domain analytical solution and against other
numerical solutions published in the literature. Additionally, experimental
in-vivo and in-vitro measurements, also published in the literature, are used
to assess the numerical solver accuracy (Objective 2).

- In Chapter 7, the application of Gaussian process as a data generator for sen-
sitivity analysis of a cardiovascular model is presented (Objectives 3 and 4).

In Chapter 8,the methodologyisapplied to four networks of increasing com-
plexity. This study shows how the methodology performance in terms of
computational time scales with the network size (Objectives 5 and 6).

- In Chapter 9, the methodology is employed to study an unmet clinical prob-
lem, the selection of more effective biomechanical metrics indicative of a
specific cardiovascular condition, the cerebral vasospasm (Objective 7).

- In Chapter 10, the study conclusions are reported along with its limitations
and future prospects.



2 Literature review

Summary

In this chapter, the project background is reported. First, the cardiovascular system and
its mechanical properties are presented. This is followed by a literature review on vascular
modelling with a particolar focus on 1D models. Finally, the concepts of statistical emula-
tor and sensitivity analysis are introduced.

2.1 Thecardiovascular system

The cardiovascular system comprises the heart, the two circulations - systemic and
pulmonary - and the blood. The heart is a four chamber pump which contracts due
to electrical stimulation and drives the blood through the systemic and the pulmo-
nary circulations. The systemic, or greater, circulation distributes blood in all the
body tissues except for the lungs which are served separately by the pulmonary cir-
culation. The twonetworks are comprised of arteries and veins. Arteries bring blood
from the heart to the capillaries; the veins link capillaries to the heart and close the
circulation loop.

In this thesis, only the main large arteries of the systemic circulation are taken
into consideration (Figure 2.1.1). The systemic circulation begins at the ascend-
ing aorta, which is directly connected to the heart left ventricle through the aortic
valve. The aorta branches in a tree-like configuration and the daughter vessels pro-
gressively decrease in size'.

The arteries are made of muscular compliant tissue and can actively control the
blood flow by expanding and contracting to accomodate a varying volume of blood.
The mechanical properties of the vascular wall change along the arterial tree: large
vessels are elastic and compliant whereas peripheral arteries are narrow and stiff.

!The change in arteries internal radius (the lumen, Ro) at a bifurcation is described by Murray’s
power law: Rgp =R} s R 4,» Where the subscripts p, d;, and d, indicate the parent and the two
daughter vessels, respectively.
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Figure 2.1.1: Main arteries in the systemic circulation. Circulation diagram
based on (Reymond et al., 2009).



The two heart phases, systole and diastole, determine the pulsatile nature of blood
flow 2, and the flow properties (e.g., volumetric flow rate® and pressure*) propagate
in the system as waves. The travelling wave is partially reflected backwards by me-
chanical discontinuities in the arterial network (e.g., bifurcations, sudden changes
in elasticity, or the capillary bed). Reflected waves superimpose with the forward
wave, generating pressure and flow waveforms (Figure 2.1.3a). Depending on where
waves are observed, the superimposition timing changes and as a result the pulse
waveforms present different shapes along the arterial tree (Figure 2.1.3b).

The cardiovascular system duties consist in the transport of nutrients and gases,
removal of waste products, and in maintaining an appropriate thermal environ-
ment all over the body. The exchange of nutrients between the blood an the tissues
occurs at the capillary level where the flow must be steady and slow. Indeed as the
blood flows through the circulation, the mean arterial pressure progressively falls
from 100 mmHG to ~ 2 mmHg in the capillary bed. This pressure drop is due to
the vascular resistance that the blood has to overcome while flowing along arteries.

The flow resistance® has been experimentally studied in the case of steady lami-
nar flow in pipes by Hagen (1839) and Poiseuille (1844) who described the parabo-
lic radial velocity profile. In the case of parabolic profile, Hagenbach (1860) showed
thatthe flow resistance is inversally proportional to the fourth power of the pipe in-
ternal radius®. In the arterial tree, vessel lengths change slowly and blood viscosity
can be considered constant, therefore the resistance is mainly controlled by the lu-
men radii. Therefore an abrupt change in radius can greatly decrease/increase the
mean arterial pressure and the volumetric flow rate to a specific area of the circula-
tion.

In the case of a pulsatile dynamic condition, the velocity profile assumes a con-
figuration other than parabolic (Figure 2.1.2). The exact shape of the velocity pro-
file depends on blood viscosity and vessel geometry. The flow within an elastic ves-
sel has been studied and described by Hale et al. (1955); Womersley (1955) who de-

2The first description of the pulsatile nature of the blood flow dates back to Aristoteles (384-
322 BC) (Parker, 2009a), but the discovery of the circulation as a closed loop occurred only later by
Harvey (1928) and Malpighi in the 17 century.

3Volume of blood that passes a given point of the circulation in the unit of time, and it is mea-
suredinml-s™ ! (1 ml-s™! = 10" ®m3.s71).

“Blood pressure is the force exerted by the blood against any unit area of the vessel wall, and
it is clinically measured in mmHg (Avolio et al., 2010), where 1 mmHg ~ 133.332Pa,e.g,P =
50 mmHg means that the force exerted is sufficient to push a column of mercury against gravity up
to 50 mm high in a sphygmomanometer. The maximum pressure reached along the cardiac cycle,
the systolic pressure, is tipically 120 mmHg.

5The vascular resistance is defined as the ratio R =  Q/ap, and it is measured in
ml-s~!-mmHg 1.

®This law, taking into account also the fluid dynamic viscosity and the pipe length (wand 4, re-
spectively), is known as Poiseuille’s pipe law: AP = Q (8%¢/xr?).
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Figure 2.1.2: (a) Waveform superimposition mechanism. (b) Pressure wave-
forms calculated at different locations in the arterial tree with the numerical
scheme described in Chapter 3. Based on (Avolio, 1980) with permission.



veloped the mathematical framework explaining the experimental observations of
McDonald (1952, 1955) about back-flow, and phase lag between pressure and flow
waves measured in large arteries.

q l§ 39 4§ 69 7§ 9910§12913§ 159 16§ 189

"/Ro O] D
1

Figure 2.1.3: Radial velocity profile against the fractional radius (7/&,) in the

case of a periodic pressure gradient (o< cos(wt), w € [0,180]°). Based on
experimental measurements by Helps and McDonald (1953).

The arterial wall

Arterial walls consist of three tissue layers or tunicea: the inner tunica intima that
is in contact with the blood flow, the middle tunica media, and the outer tunica ad-
ventitia (Figure 2.1.4). The tunica intima is a single layer of endothelial cells sur-
rounded by a thin layer of elastin and collagen fibres. The tunica media - the thick-
est layer - is made of smooth muscle cells and elastin fibres which dictate the elas-
tic properties of the vessel. The tunica adventitia consists of collagen and elastin
merging onto the surrounding connective tissues. The tunica adventita mechani-
cal properties are not relevant for flow.

Figure 2.1.4: Artery cross section
with lumen radius Ry and wall layers:
tunica adventitia (A), media (M), in-
tima (I), and endothelium (E).

0N
=2

Arteries have strong muscular walls which help to maintain a tubular shape even
in absence of flow. From large arteries to capillaries, passing by small arteries and
arterioles, the artery lumen diameter decreases. Along with the lumen radius drop,
there is a stiffening of the walls. Large arteries are close to the heart and contain a
higher percentage of elastin and collagen than smaller muscular vessels.
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Inresponse tothe tissue needs, wallsexpand/contract so that the right amount of
flowisreleased. The vessel compliance is the ability of vessel walls to deform and ac-
comodate a variable volume of blood’; peripheral vessels which are stiffer and less
able to deform, constitute the major source of resistance in the circulation, while
larger arteries in which the resistance is small, have a high compliance.

The arterial elasticity is responsible for converting the pulsatile flow exiting the
heartin a constant and slow stream within the capillaries. This is the windkessel ef-
fect whose name originated from the analogy with a fire engine air chamber
(windkessel in German) made by Hales (1964) and Borelli (1989) in the 17th cen-
tury®. In a fire engine (Figure 2.1.5), the water is driven by a rotary pump and it
is constantly sprinkled throughout the hose due to the air expansion chamber. The
chamber accommodates a varying volume of water depending on the pump piston
position. The outflow from the chamber is driven by the air inside the chamber
that is compressed and slowly expands when the inflow from the pump stops. The
mathematical description of the windkessel model is reported in Section 3.4.2.

water

Figure 2.1.5: Windkessel effect analogy. The water (blood) is cyclically suc-
tioned from a reservoir (left atrium) to the air chamber or windkessel (large
arteries), by the rotary pump (heart). The air in the windkessel is compressed
by the water (systole) and, as the pump action stops (diastole), the air ex-
pands (the arteries contract) and pushes the water out the windkessel towards
the fireman hose (capillaries). The air expansion is not instantaneous but de-
layed; this causes a constant outflow to the hose (stable and continuous blood
flow in capillaries).

The blood and its rheology

The blood is a suspension of red cells, white cells and platelets in plasma, a fluid
with water-like mechanical properties. The relative proportion of volume occu-
pied by red blood cells with respect to overall blood volume is the heematocrit and it
varies depending on age, altitude, bodily activity, and blood pathologies. The blood

"The vascular compliance (C) is defined as the volume of blood that can be accomodated in a
given portion of the circulation for each mmHg pressure rise, C = 4/ap.
8The windkessel mathematical description will be proposed two centuries later by Frank (1899).
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red cells are flexible and their micro-structure dictates the whole blood mechani-
cal properties. They are capable of stretching and of binding between each other,
and, as a result, the blood viscosity changes depending on the flow properties (non-
Newtonian behaviour). Conversely, theblood densityisconstantat1050+10kg-m™
(Kenner, 1989; Kenner et al., 1977).

For anon-Newtonian fluid, the dynamic viscosity depends on the shear-rate. In
the case of blood, the viscosity decreases in a hyperbolic fashion as the shear-rate
increases (Figure 2.1.6), and it becomes independent of the shear-rate for large y
values. In large arteries, the average shear-rate at the walls is > 100s™ ' and for
practical modelling applications the blood is usually considered a Newtonian fluid
(Fung, 2010; Guyton and Hall, 2006; Nichols and O’Rourke, 2011; Pedley, 1980;
Zamir, 2000, 2005).

61.3
50.0

Figure 2.1.6: Blood dynamic viscosity against shear-rate for different haema-
tocrit values. The blood behaves as a non-Newtonian fluid for y < 100s™!
as the viscosity decreases for increasing shear-rate. The viscosity remains con-
stant for y > 100s~* (Nichols and O'Rourke, 2011).

The effect of ageing on the cardiovascular system

Arterial tree mechanical properties have been observed to change due toageing (Fer-
rari et al., 2003; Nichols and O’Rourke, 2011). Ageing effects in the heart are mi-
nor and can be attributed to the increasing load due to a change in arterial proper-
ties (Lakatta and Levy, 2003). Blood viscosity, which is related to the blood red cells
count, also increases with age (Ajmani et al., 2000) (Figure 2.1.7¢).

Structural changes due to ageing are spread uniformly over the entire arterial
tree and concern primarily vessel local properties rather than the global topology.
There is a general increase in vessel radius (Nichols et al., 1985) (Figure 2.1.7a), in
media and intima thickness (Virmani et al., 1991), and in overall Young’s modulus
(Gozna et al., 1974) (Figure 2.1.7b). As a result, pulse wave velocity increases with
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age(vande Vosse and Stergiopulos, 2011) while arterial compliance decreases (Red-
heuil etal., 2010).

Arteriosclerosis is a common cardiovascular condition, which consists of a ves-
sel hardening, and occurs naturally with age. External factors, such as fat deposi-
tion on arteries walls, contribute to the local stiffening of arteries and are referred
to as atherosclerosis (Mackenzie et al., 2002). The arteries stiffening has also been
associated with an increase of systolic pressure (Benetos et al., 2002).

20 40 60 80 0 20 40 60 80 100
age (years) age (years) age (years)

Figure 2.1.7: Changes in ascending aorta mean lumen radius (Nichols et al.,
1985) (a), wall elastic modulus (Gozna et al., 1974) (b), and blood viscosity
(Ajmani et al., 2000) (c) with age.

2.2 Vascular modelling

The history of vascular models is closely related to the studies on pipe flow. The 1D
flow equations in an elastic tube were first derived by Euler (1844), while Young
(1800) recognised the wave nature of the pulsatile flow, and, by making an analogy
with the propagation of sound in compressible gas, derived a pulse wave velocity
formula. A thorough theoretical and experimental description of the wave speed
in elastic tubes was given later by Moens (1877), Korteweg (1878), and the Weber
brothers (Weber and Weber, 1825; Weber, 1892). These studies, along with the ex-
perimental observations of Hagen (1839) and Poiseuille (1844), set the basis for the
mathematical work of Womersley et al. on the blood velocity profile as a function
of the vessel radius (Hale et al., 1955; Womersley, 1955).

Asthe measurement techniques became accurate enough to measure blood pres-
sure waveforms, two different methods have been developed depending on the ap-
proach used to analyse the waveform. The analysis in the frequency-domain by
meansof Fourier transform (Fourier, 1822)isusually referred toasimpedence anal-
ysis (IA) (Westerhof and Noordergraaf, 1970). Conversely, the wave intensity anal-
ysis (WIA), introduced by Parker and Jones (1990), stems directly from the applica-
tion of the method of characteristics in the time-domain (Riemann, 1876). A thor-
ough comparison of the two techniques is given in (Parker, 2009b).
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InIA, the vascular network is represented as an electric circuit in which each fea-
ture of the circulation is represented by an electric component. The hydraulic re-
sistanceis an electric resistance, the wall compliance is a capacitance, the flow iner-
tia is taken into account by inductances, and the flow rate and pressure are electric
current and potential, respectively. The models built upon the electric analogy are
referred to as 0D or lumped-parameter as spatial information is lost during the di-
mensionality reduction process (Shietal., 2011).

In the time-domain, the conservative laws governing the blood flow are written
in terms of a system of non-linear hyperbolic partial differential equations (PDEs)
(Canic et al., 2006; Canic and Kim, 2003). The numerical solution of hyperbolic
PDE:s has been a crucial research topic in the 20 century due to its application to
gasdynamics(LeVeque, 2002). The fundamental studies on numerical analysis car-
ried out by Courant, Friedrichs, and Lewy (Courant et al., 1928), Godunov (1959),
and van Leer (1979) paved the way to several numerical hemodynamic studies (An-
liker et al., 1971; Hisland and Anliker, 1973; Lambert, 1958; Raines et al., 1971,
Skalak, 1972; Stergiopulos et al., 1992; Stettler et al., 1981a,b).

The undeniable difficulty in performing in-vivo pressure waveform measure-
ment led to the development of in-vitro models (Segers et al., 1998). The measure-
ments performed on in-vitro models are still used as ground-truth to validate new
numerical schemes and their implementations (Xiao et al., 2014). The electric cir-
cuit analogy was exploited to build analog models of the circulation (Noordergraaf
etal.,1963; Westerhof et al., 1969,1971), and the frequency-domain analysis was
further developed to take into account vessels of several sizes, from large arteries
to the whole capillary bed (Jager et al., 1965; Toy et al., 1985; Westerhof and No-
ordergraaf, 1970). These lumped-parameter segments can be assembled in large
networks (i.e. mimicking the analog physical models) and solved by numerical
means (Avolio, 1980; Broomé et al., 2013; Snyder et al., 1968). Brown (1996) em-
ployed the transmission line theory to study the changes in impedance within frac-
tal like networks, while MiliSic and Quarteroni (2004) proved that the 0D solution
tends to the 1D one as the number of segments increases.

In recent times, there has been a re-flourish of theoretical works on the blood
flow governing equations (Figure 2.2.1). In particular, the building of multi-scale
models triggered the problem of coupling 3D, 1D, and 0D models. Formaggiaetal.
(1999) proposed a preliminary analysis of the coupling between 3D, 1D, and 0D
models and compared 3D /1D and 2D/1D coupling (Formaggia et al., 2001). Fer-
nandez et al. (2005) proved the existence and uniqueness of the solution for 0D /1D
coupling problem. Formaggia et al. (2006) coupled a lumped parameter model of
the heart witha 1D arterial tree. Reymond etal. (2011, 2009) developed a 1D model
of the coronary, systemic, and cerebral circulation with a varying elastance model
of the heart, Womersley velocity profile, and implicit numerical solver with 0D
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outlet boundary conditions; this model was validated in both patient-generic and
patient-specific cases. Alastruey et al. studied the effect of 0D outlet boundary con-
ditions (Alastruey et al., 2008) and model parameters (in a visco-elastic formula-
tion) (Alastruey et al., 2012) on the waveforms computed in a complete arterial tree.
Blanco et al. (2010) studied the effect of heart rate on a 3D -1D -0D model of the ar-
terial tree. Formaggia et al. (2003) proposed the introduction of dissipation func-
tions at bifurcation nodes to take into account the effect of branching angle; how-
ever due to the difficulty on selecting the dissipation parameter, bifurcations are
treated as ideal in most of the works in literature.

The multi-scale strategy allows to build complex networks of varying spatial ac-
curacy, and it has been successfully adopted to study the entire systemic circulation
(Azer and Peskin, 2007; Olufsen, 1999; Olufsen et al., 2000; Sherwin et al., 2003b),
the coronaries (Huo and Kassab, 2007), the cerebral vasculature (Alastruey et al.,
2007; Mulderetal.,2011; Viedmaetal.,1997),and the pulmonary circulation (Clav-
icaetal., 2010; Lunguetal., 2014). Mulder et al. (2011) built a 1D model of the cere-
bral circulation. Alastruey et al. (2007) studied by means of a 1D model the effect of
circle of Willis variation on cerebral flow. Marchandise et al. (2009) proposed the
use of a1Dmodel toaid the planning of peripheral vascular bypass surgery. Vennin
et al. (2015) proposed the first noninvasive estimation of pressure pulse waveform
from measurements of blood velocity.

1D modelsare further classified depending on the numerical scheme used to solve
the PDEs system (Table 2.2.1). The hyperbolic conservation laws can be written in
three equivalent forms: integral, strong (or differential), and weak integral. The
finite volume (FV) scheme is based on the integral form, whereas the finite differ-
ence (FD) and the finite element (FE) schemes are applied to the differential and
weak forms, respectively. Recently, the benchmark study by Boileau et al. (2015)
proved that all the numerical schemes are capable of achieving the same accuracy
in terms of computed waveforms. The differences between schemes consist in the
execution time and the numerical stability.

FDand FV scheme stability depends on Atbeing small enough to capture wave prop-
agation (the stability is ensured by the CFL condition). Conversely, the FE stability
is not affected by the choice of At.

Azer and Peskin (2007) used the Womersley pulsatile theory to compute friction
and convection terms and solved the 1D system by using a FD scheme. Casulli et al.
(2012)proposed a semi-implicit FV solver for compliant arteriesand Dumbser et al.
(2015)improved the method by including an explicit calculation of the radial veloc-
ity profile.
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Type Method B P V VE Validation
Noordergraafetal. (1963) 0D A\
Snyder et al. (1968) (1)) A~ CD
Westerhof et al. (1969) 0D AN CD
Westerhof et al. (1971) 0D AN invivo
Avolio (1980) 0D 1A (o) 6)
Balaretal. (1989) 1D FE
Stergiopulos et al. (1992) 1D FD
Sunetal.(1997) 0D 1A (0] CD
Olufsen (1999) 1D FD © invivo,CD
Cassot et al. (2000) 1D Analytical (@)
Olufsen et al. (2000) 1D FD invivo
Sherwin et al. (2003b) 1D DG
Formaggia et al. (2006) 1D FE
Azer and Peskin (2007) 1D FD; Analytical
Huo and Kassab (2007) 1D FD; invivo, CD
Alastruey et al. (2007) 1D DG o in vivo, CD
Reymond et al. (2009) 1D FD; o O invivo,CD
Mulder et al. (2011) 1D /3D Fv (o)
Reymondetal.(2011) 1D FD; o (0] invivo
Alastrueyetal.(2011) 1D DG o in vitro
Huberts etal. (2012) 1D DG o invivo
Lowetal.(2012) 1D FE o invivo
Casullietal. (2012) 1D FV
Gaddumetal. (2013) 1D DG invivo
Miiller and Toro (2013) 1D Fv
Miiller and Toro (2014) 1D Fv o invivo
Blancoetal.(2015) 1D Fv o in vivo
Floresetal.(2016) 1D Analytical insilico

Table 2.2.1: Selection of blood flow models in literature and their main fea-
tures. Analog model (—VW\~), impedence analysis (IA), finite element (FE),
finite-difference (FD), implicit FD (FD;), finite-volume (FV), discontinuous
Galerkin (DG), heart (H), brain circulation (B), coronary vessels (C), pulmo-
nary circulation (P), venous system (V), arterial wall visco-elasticity (VE),

clinical data (CD).

The FV method is also known as shock-capturing because it is capable of deal-
ing with sharp gradients in the solution (known as shocks in gas-dynamics) (Harten
et al.,, 1987; Shu and Osher, 1988). The shock-capturing feature is a direct conse-
quence of the use of the integral form and makes FV schemes more stable than FD
when dealing with the sudden change in pressure typical of pressure waveforms

(Toro, 2001).

In the case of the venous system, where vessels can collapse and the lumen cross-
sectional area can go to zero, FE schemes do not converge and become unstable. In
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thisscenario,ad-hoc FV solution schemes have been developed to deal with the aris-
ing numerical instabilities (Mtiller et al., 2012, 2013; Miiller and Toro, 2014; Toro
and Siviglia, 2013), Blanco et al.(2015) developed a detailed arterial network includ-
ing over 2000 vessels. Sherwin et al. (2003a) analysed the wave propagation in ves-
sels with variable mechanical properties, and Miiller and Toro (2013) developed a
higher-order FV scheme for the same application. This solver was later employed
to calculate waveforms in a complete model of the circulation including the venous
system (Miiller and Toro, 2014).

In the view of developing a flexible and robust solver, the FV formulation has
been used in this work. This scheme is stable under the CFL condition and con-
verges also in presence of discontinuities in the solution, making it suitable to be
extended for solving venous heemodynamics in the future.

2.3 Sensitivity analysis

Arterial flow models are based on the selection of many parameters quantifying the
cardiovascular physiology. Ideally, all these parameters would be directly and accu-
rately measured, but in practice this is not always feasible. There are locations not
reachable via non-invasive techniques and the measurements are always affected
by noise. Consequently, the uncertainty in the inputs translates in an uncertainty
in the output. The assessment of how much uncertainty is transferred from the
inputs to the output is the aim of the uncertainty analysis (UA) (Xu and Gertner,
2008).

The Mathematical models are approximations of the physical processes under
investigation and therefore there is also the model intrinsic uncertainty to be taken
intoaccountin addition to the uncertainty brought by the input values. The model
inputs have different influence on the final outcome, but the uncertainty embed-
ded in the mathematical formulation makes it difficult to attribute to each input
aportion of the output variation. The assignment of portions of the output uncer-
tainty to each input is the focus of the sensitivity analysis (SA) (Saltelli et al., 2000).
The SA constitutes an important step in the modelling practice and it has disparate
applications (Janssen et al., 1990) such as the analysis of a chemical reaction system
(Saltellietal.,2005; Turanyi, 1990), the engineering risk-assessment modelling (Car-
denas et al., 2014; Helton, 1993) and the heart valves design (Becker et al., 2011).

The SA helps in expanding the knowledge on the underlying physical system by
ranking the input parameters with respect to their influence on the outcome. The
lessinfluential parameters can be eliminated from the modelling process, resulting
in areduction of the model complexity. The most influential parameters are those
whose uncertainty must be reduced to obtain reliable results. The uncertainty is re-
duced by improving the input value estimation and the measurement process takes
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advantage from the parameter prioritisation resulting from the SA. The SA process
requires a meticulous evaluation of the model output all over the input space. These
multiple evaluations can be exploited for optimisation and calibration purposes.
Eventually, the SA provides an insight to input interactions that are difficult to ob-
serve in non-linear models.

The SA methods are grouped in two main classes: local and global SA methods.
The local methods employ the one-at-a-time (OAT) approach in which one input is
varied in a small range around its nominal value while keeping the others constant.
This method effectively compares the effect of single inputs on the output, but it
isnot capable of capturing the effect of input interactions (Cukier et al., 1973). The
OAT strategy has been adopted in a number of cardiovascular modelling studies
(Broomé et al.,2013; Mohiuddin et al.,2012; Reymond et al.,2009; Sun etal., 1997,
Westerhof et al., 2007). Conversely, the global methods also take into account the
interactions by observing the output distribution over the whole input space.

The global SA methods are typically conducted by means of Monte Carlo (MC)
method. The simulator is run several times by randomly changing the input pa-
rameters within fixed ranges. The number of simulations to be done (N) is linked
to the number of input features in the model (d), and generally N = O(d x 103)
(Saltelli, 2002). Therefore, the global SA method can be used when the model eval-
uation computational cost is small.

This method has been applied in various fields (Iooss and Lemaitre, 2015), such
ashydrological modelling (Songet al., 2015), biological systems modelling (Kiparis-
sides et al., 2009; Wu et al., 2012), and waste-water plant optimisation (Sin et al.,
2011).

The global SA method has been used to study the arterial network (Chen et al.,
2013; Eck et al., 2015b; Sankaran and Marsden, 2011; Xiu and Sherwin, 2007), the
brain circulation (Grinberg et al., 2011), the arm arteries (Leguy et al., 2011), the
ventricular mechanics (Osnes and Sundnes, 2012). However, the number of stud-
ies employing global SA methods is a small portion of the total number of papers
aimed at using modelling as a clinical decision-making tool (Eck et al., 201 5a) often
due to computational costlimitations. A recent example consists in the study made
to support the decision making process for arterio-venous fistula surgery (Huberts
etal., 2013a,b). The struggle to include the global SA into the diagnosis process was
mainly due to the computational cost which is high and can hardly be justified in a
patient-specific scenario.

2.4 Gaussian process

Outside the cardiovascular field it is common practice to replace the mechanistic
model with an approximation of it. This approximation - the emulator - is used
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to quickly estimate the output continuous distribution over the input space and to
perform the SA (Ratto et al., 2012; Sacks et al., 1989; Santner et al., 2013; Welch
etal,1992).

The problem of inferring input-output relationships from a set of observations
is commonly referred to as a supervised learning problem (Bishop, 2006). A sub-
category of supervised learning is regression. In a regression problem, the output
to be predicted is a continuous variable and the input consists in a vector of val-
ues. The outputs of a mechanistic model are noise-free and the regression function
can be seen as an interpolating function. A first approach in selecting the inter-
polation function consists in restricting the search to a specific class of functions
such as linear interpolation, cubic splines, or Bézier curves. This approach works
well when the interpolating function is of the same class of the mechanistic model,
otherwise the fitting and the predictions may be poor (Williams and Rasmussen,
2006). An alternative approach (Bayesian) consists in taking into consideration all
the functions passing through the observations and giving them a probability dis-
tribution (O’Hagan and Forster, 2004). This probability distribution denotes our
prior knowledge about the data and it usually favours functions smoothly interpo-
lating the training dataset. This approach allows to avoid restrictions in choosing a
single interpolating function class and is more flexible than classical interpolation
methods (Williams, 1998).

The Gaussian process (GP) method consists in giving a probability distribution
over the infinite set of interpolating functions (Williams and Rasmussen, 1996).
An example of the GP method is given in Figure 2.4.1. The goal is to mimic the be-
haviour of the deterministic model (simulator) in the interval Z = [—1, 1]. When
there is no information on the simulator behaviour, only general properties for the
interpolating function are chosen, e.g. to be smooth in 7 (Figure 2.4.1(a)). As soon
as two observations are given (Figure 2.4.1(b)), only the functions passing by those
pointsare considered. Ateachx € 7 the mean and the standard deviation of all the
flx) are calculated. Note, the uncertainty in the prediction is small close to the ob-
servations and it increases far away. By further increasing the number of observa-
tions (Figure 2.4.1(c, d)), the prediction uncertainty decreases as the mean function
changes shape.

The GPis one of the so-called kernel methods. Historically, the concept of a ker-
nel was introduced by Aizerman et al. in 1964 (Aizerman et al., 1964) and since
then it has been adopted for different applications. The GP is know as kriging in
geostatistics (Cressie, 1993), it can be seen as the generalisation of the Kalman fil-
ter (Reece and Roberts, 2010) and of the radial basis networks (Powell, 1987). It has
also been proved that neural networks tend to a GP as the number of hidden lay-
ers goes to infinity (Neal, 2012). In the machine learning literature, GP reviews are
found in (MacKay, 1998, 2003; Rasmussen, 1996; Williams, 1998).
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Figure 2.4.1: One-input and one-output (x and y = f(x), respectively) Gaus-
sian process example. (a) Samples from the prior distribution. Samples from
the posterior distribution after two (b), five (c), and seven (d) data points
(white marker) have been observed. Simulator (dashed) and emulator mean
(thick line). Twice the standard deviation at each x is shown by the shaded
area.

Emulators are well-known tools in both applied maths and statistics, where the
most used techniques are polynomial chaos expansions (PCE) and GP, respectively
(O’Hagan, 2013). Both tools aim to infer the simulator global behaviour starting
from observed simulator runs. The main advantage of GP over the PCE technique
resides in the availability of uncertainty information. This directly descends from
the probabilistic nature of a GP, which allows embedding of uncertainty and ex-
plicit treatment of model parameters as uncertain quantities. This enables the im-
pact of missing, uncertain, or noisy measurements on model outputs to be quan-
tified. For a detailed analysis of the differences between the two techniques see
(Hussainetal.,2002; O’Hagan, 2013). PCEhasbeen successfully used for sensitivity
analysis in the cardiovascular field, see for example (Donders et al., 2015; Ellwein
et al., 2008; Huberts et al., 2014; Olsen et al., 2015). Despite the use of GP for SA
being widely investigated outside of the cardiovascular field (Oakley and O’Hagan,
2004; O’'Hagan, 2006), to the author’s knowledge GPhas never been used to predict
1D blood flow model outcomes for SA purposes.
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3 Vascular modelling

Summary

In this chapter the blood flow solution methodology is presented (Figure 3.0.1). Initially,
the assumptions behind the derivation of the 1D mechanistic model for pulse and volu-
metric flow wave propagation in the cardiovascular system are presented (the derivation
is reported and commented in Appendix A). The 1D system can be linearised and written
in the 1D wave form (Section 3.1.2) for which an analytical solution exists (Appendix B).
The analytical solution is used as a first validation of the numerical implementation (Sec-
tion 6.1). The 1D wave equation is further integrated to the lumped-parameter form where
the hydraulic/electric circuit analogy is introduced (Section 3.1.3). The lumped-parameter
form is used to set the peripheral boundary conditions for the numerical scheme (Section
3.4). The 1D system numerical solution is achieved by means of a finite-volume algorithm
(Section 3.3), which isbased on the application of the method of characteristics (Section 3.2).
This method is applied to the 1D model and the characteristic solution is derived in terms
of Riemann invariants. The Riemann invariants are used to define compatibility condi-
tionsto close the set of numerical boundary conditions atinlet and outlets (Section 3.4). The
electric analogy is used to derive a simplified model of capillary perfusion, which is used as
outlet boundary condition for the vascular network.
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Figure 3.0.1: Methodology diagram. The 1D hyperbolic system of PDEs
obtained from the reduction of 3D Navier-Stokes equations (NSEs) is used as
a starting point. Further manipulations return the 1D wave equation and the
lumped-parameter 0D model. The method of characteristics (MoC) is used
to calculate the system Riemann invariants which, in turn, are used to set
the system boundary conditions (BCs). Eventually, a finite volume numerical
scheme (MUSCL) is used to compute the flow and pressure waveforms.
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3.1 Flow through elastic vessels equations

3.1.1 Blood flow model assumptions

The blood flow model derivation is based on the following assumptions:
1. theblood flows in narrow and long circular vessels;
2. thevessels are straight and have linearly elastic compliant walls;

3. small displacements in the radial direction are allowed whereas the longitu-
dinal displacement is neglected;

4. theblood is an incompressible Newtonian fluid.

Under these assumptions (Appendix A), the 1D equations read

(0A  0Q

o o Y

oQ o0 @ AOP  _u Q

8t+az<aA>+p8z__2p(yv+2)A’ (3.1)
[A 7 Eh,

\P(A)—Pext+ﬁ< A_0_1>7 p= A_oﬁ7

where ¢ is time, z is the longitudinal coordinate, A(z, t) is the vessel cross-sectional
area, Q(z, t) is the volumetric flow rate,  is the Coriolis’ coefficient, p is the blood
density, P(z, t) is the blood pressure, j is the blood dynamic viscosity, ¥, is a pa-
rameter defining the shape of the radial velocity profile, P,,; is the vessel external
pressure, E(z) is the vessel wall Young’s modulus, v is the Poisson’s ratio, A, (z) is
the reference cross-sectional area, and h(z) is the reference wall thickness.

3.1.2 Linearised equations

The 1D system (3.1) is non-linear and it is solved by means of numerical methods
(see Section 3.3). However, the 1D linearised system has the form of the 1D wave
equation which has an analytical solution (reported in Appendix B). The analytical
solution can be used as a first benchmark for the numerical solution of the non-
linear system (see Section 6.1).
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The 1D system (3.1) can be written in terms of (P, Q ) variables and linearised
around the unloaded zero flow state (A, u) = (A, 0). Thisleads to

o, B ORQ_,
ot 24,0z
(3.2)
0Q A,0P
e
ot * p Oz “Q
where
K, = 2(y, +2) . (3.3)
PAo

By differentiating the continuity equation with respect to t and by multiplying it
by #/a., and by differentiating the momentum equation with respect to z and by
subsituting in the continuity equation, we have

9P BOI°P K0P

2~
o 2027 T ag ot

(3.4)

which is a 1D wave equation, of speed ¢ = /#/2, modified by a viscous resistance

component f—g %7. Note that (3.4) could be similarly expressed in terms of Q.

3.1.3 RLCcircuit analogy

In order to derive the windkessel equations, the linearised system (3.2) can be alter-
natively written as

opP 8Q_
CE_FE =0,
(3.5)
oQ 8P_
where
_ 24 _r _PK
C_Bﬁ’ /J—AO, R_A(Z,' (3.6)

The equations can be integrated along the vessel length and expressed by means
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of average quantities

dp
CﬁﬂLQe—Qo:O, ¢ ¢
ﬁ:l/mu Qzl/Q& (3.7)
iQ 14 14
L%+Prd%:—RQ, 0 0

where the subscripts 0 and / indicate the inlet and the outlet of the vessel, respec-
tively. By expressing the mean quantities P and Q in terms of the inlet and outlet
quantities, respectively the system (3.7) reads

dp
Cor + Q= Qi =0,

P=P, Q=Qo. (3.8)
dQ,

ACW‘FPE—PO:—RQ(),

Note, the spatial information has been eliminated by the integration step, there-
fore theequations(3.8) are said to be zero-dimensional (0D). Similarly, by imposing
P = Pyand Q = Q, the 0D equations read

dP,
Cﬁ +Qr—Qo=0,
(3.9)
d
£é¥+m—%:—nw.

The system (3.9) is regarded as the mathematical description of an electric RLC sys-
tem also known as L-circuit (Milisic and Quarteroni, 2004; Peird and Veneziani,
2009) in which the volumetric flow rate Q corresponds to the electric current and
the pressure P corresponds to the electric potential, whereas the flow viscous resis-
tance corresponds to the electric resistance /R, the blood inertia to the inductance
L, and the wall compliance to the conductance C (Figure 3.1.1). Similarly, the sys-
tem (eq:zero-dimensional) is known as inverse L-circuit (or L™!-circuit) for which
flow and pressure are prescribed at inlet and outlet, respectively.
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Figure 3.1.1: (left) L~ -circuit and (right) L-circuit schemes

The RLC analogy can be exploited to model the behaviour of several parts of the
cardiovascular system. By neglecting the inductance £, the two-element windkessel
is obtained. This is well-suited to represent the capillary bed where the inertial ef-
fects are negligible. The two-element windkessel model is usually modified to ac-
commodate an additional impedance Z in series with the resistance R. This is
needed when coupling the windkessel to another vascular model (i.e. a 1D model).
The coupling method (Section 3.4) may generate unrealistic wave reflections that
can be avoided by matching the two models interface impedances. The impedance
has the units of a resistance and it is defined as

(3.10)

where ¢ is the local pulse wave velocity, p is the blood density, and A, is the vessel
reference cross-sectional area.

The circuit containing the inlet impedance Z is the three-element windkessel
model (Figure 3.1.2), whose equation reads

Z 0Q P—P, OP;
Qi (1+§> +CZW =— +C§. (3.11)
. Z R
RN AN
P; ( P. <:: C ) P,
O O

Figure 3.1.2: Three-element windkessel circuit. Quantities with subscript i
refer to capillaries entrance; quantities with subscript v refer to the capillaries-
veins interface. P, is the pressure across the compliance C;. The relative pres-
sure at the end of the capillaries, P, is set equal to zero. R and C are the
peripheral viscous resistance and peripheral compliance respectively. Inertial
forces within the capillaries are negligible.
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3.2 Method of Characteristics

The solution of hyperbolic conservation laws can be studied by means of invariant
quantities (Persico, 1952). These are quantities that do not change along preferen-
tial trajectories in the phase plane { — x known as characteristic curves. The value
of aquantity Uis determined at any point (x, t) by following the characteristic tra-
jectories and keeping constant the invariant quantities.

Consider a general one-dimensional hyperbolic equation in quasi-linear form,
for a general variable U

a—U+A8_U_S 3.12
ot Mok T (812)

We want to find the change in U observed when travelling at speed u. Consider a
small time step 6t, so that dx = udt, thus

ou ou ou  ou
oU = E& + aax = <E + ua> ot. (3.13)

As the observer is in motion, his location is defined by u = %/arand U is function
of only time. Moreover,

oUu dUu dx

lim — = — i 3.14
ihe O dt ik © (3-14)
and if 4 = A, it results that
WU _s for @1 (3.15)
— = or — = A, .
dt dt

which is the characteristic form of the hyperbolic conservation law. The equation
dx/gr = ) describes the characteristic curve and A is the characteristic wave speed.
In the homogeneouscase S = 0,

au dx 3

T =0 for I =A, (3.16)
and Uis constant for ‘2—’; = A. Hence, Uis invariant to the observer moving at speed
Aand itis called Rieman invariant. The speed A is the velocity at which the informa-
tion about U propagates in space, which is different from the speed of U itself.

The characteristic solution can be drawn in the x — t plane and it consists of a
family of parallel curves with slope A (Figure 3.2.1). A specific curve is identified
by the initial condition (x,, 0) and, given the initial profile U(x, 0), the solution is
translated forward with velocity A if A > 0 and backwardsifA < 0.

31



X=Xy + At

Figure 3.2.1: Family of parallel characteristic curves with slope A > 0. The
initial condition identify the curve passing by (xo,t = 0).

The value of U does not change along the characteristic curve, but it differs be-
tweendifferent characteristic curves. Hence, the value of U changes across the char-
acteristic curve, and the characteristic curve can be seen as a discontinuity in U val-
ues propagating at finite speed A.

An initial value problem with discontinuous initial condition (Figure 3.2.2a)isa
Riemann problem

(OU N ou 0
ot ox
U, x<o, (3.17)
U(x,0) =
Ur, x>0.

The solution of (3.17) consists in propagating the initial configuration of a distance
Atafter time . The characteristic curve x = Af(obtained forx, = 0)subdivides the
x — tplane in two sub-planes. The curves on the left side have solution U}, whereas
the curves on the right side take value Uy (Figure 3.2.2b).

t t
UL UL X7At:0
| x—AM<0
: UR UR
! x—At>0
0 X 0 X
(a) (b)

Figure 3.2.2: (a) Discontinuous initial condition. (b) Characteristic solution
of the initial value problem with discontinuous initial condition.
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3.2.1 Hyperbolic system

In the case of a hyperbolic system, the quasi-linear form is written in terms of the
Jacobian matrix H

ou U
— +H—=S. 3.18
ot Ox (3.18)
For a hyperbolic system, H € R”*™ has m distinct eigenvalues and eigenvectors,
Aiandr;,i = 1, ..., m,respectively. The diagonal matrix A contains the eigenval-

ues and the right-eigenvector matrix R is defined such that

LHR=A, L=R, (3.19)

where L is the left-eigenvectors matrix. To calculate the Riemann invariants, we
first left-multiply the quasi-linear form by L

ou U
L—+LH—=1LS 3.20
or TP T (3.20)
and
ou U
L— +LHRL— =1LS 3.21
o ox (3.21)
leads to
ou U
L— +AL— =1L1S. 3.22
ot * ox (8:22)
We define
dW =LdU, Z=LS, (3.23)
so that
O0W O0W
AR S A S 3.24
ot * Ox ’ (3:24)

which is the characteristic form and it is equivalent to a system of ODEs whose ith
component reads

ow; oW,
— A —=——=12Z, Vi=1,...,m. 3.25
ot + ox ' " (3.25)
For each ith component
dWi dx
“ 1 =7, for— —A, 3.26
it °r It (5.26)
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and,forZ = 0,

dx
W; = const. for i A (3.27)

When the Riemann invariants W are known, U can be determined by integrat-
ing

dU=Rd4W. (3.28)

Conversely, if U isknown at (x, t), the W are obtained by integrating

dW =LdU. (3.29)
The Riemann problem for the hyperbolic system reads
(0U ou
—+H—=0
ot * ox ’
U, x<0, (3.30)
U(x,0) =
Uz, x>0,

\

The general solution structure (Figure 3.2.3) consists of two waves originating in
x = 0. Each curve represents a discontinuity propagating at velocity A;. The solu-
tion of (3.30) consists in finding the value of U in the star region, U*.

t

A< O
U- L>0

U, .7 v Uy
Xo, x=20 Xo, X

Figure 3.2.3: Riemann problem solution scheme

From the homogeneous form of (3.24) it results that the two linearly indepen-
dent right eigenvectors R = [r;, r,] T can be used to expand the left and right con-
stant states as

2 2
UL = Z o; Ty, UR = Z nBi ri, (3.31)
i=1 =1
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where ot and f8 are constant coefficients. Let us now trace the characteristic curves
through P*, a generic point inside the star region. These two curves pass by the ini-
tial points X, , in the right and left regions, respectively, and we can use the known
values U} and Uy to find &; and f; in (3.31). The solution in P* is

2
U" = Z 7;Ti, ;= const. (3.32)
i=1
Let us now take a point in the left region, (x;, t* ), whose known solution is

U, =U(x, t") =y + 2y 1. (3.33)

As we shift forward, across the first wave 4 /s = A,, the quantity x — At becomes
positive, 2; changes to 5, , and the solution in the star region results

U'=yri+nr,=51+ar, (3.34)

The same result would be obtained starting from a point in the right region and
moving backwards across the second wave 4 /i = A,.

3.2.2 1D flow system Riemann invariants

Take o = 1 (plug-flow) and express the system (3.1) in terms of (A, Au)

0A N 0 (Au)

ot 0z =9

(3.35)

0(Au) O(Au*) AOP n
8t + 82 +EE——2E(yv+2)u.

Note thatfora = 1,y, — oo asshown in Figure A.1.2. Therefore, to compute the
viscous termin (3.35),y, = 9isused as an approximation of the plug-flow profile.
The system (3.35) is the called conservative form of the 1D system because it stems
naturally from the application of the conservation laws (Formaggia et al., 2010). By
defining U = [A, Aul”, the conservative form of the system can be written along
the single vessel with initial and boundary conditions as

(0U  0F(U)

Tl =S(U), ze€ o],
U(z,0) = UO(z), t>o, (3.36)
U(0,t) = UL(t), UL, t) = Ug(t),

\
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A
U= { o } : (3.37)

Au
F(U) = { A+ yATh } , (3.38)
S(U)—{O} (3.39)
5 )7 '
y = L, (3.40)
3pV/A,
1| 0P 0A, OPOP u
== | ——— 4+ = +2 2)— 3.41
f p[aAo oz Topar T T2y (3.41)
where F is the flux term, and S is the source term. The flux Jacobian reads
9F 0 1
~ __ —H-= 3 , (3.42)

which, under the assumption A > 0, has two eigenvalues

_ N Yy
Mo=uTec, c= 2y\/21_ sz, (3.43)

where c is the wave speed. In arteries, under physiological conditions, u << cal-
ways,A; < 0andA, > 0. Thus, the system (3.35) is said to be strictly hyperbolic
as H has two distinct real eigenvalues and a corresponding set of two linearly inde-
pendent right eigenvectors R = [r;, 1] T (Sherwin et al., 2003b). The right eigen-
vectors are obtained by solving

HR = AR, A = diag(A,, 1), (3.44)
—4fe A
R = , (3.45)
1 1
and the left eigenvectors follow
a1
L=R'= . (3.46)
/a1
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The hyperbolic system characteristic curves (W;, W,) are obtained by solving

GE =L (3.47)
ou '
oW, c c
- = Aaw, = | —=dA 3.48
oA~ A / ' / AT G40
/ A B .
WIA = - ;ip/ A dA = —4 ZL;A /s + Co = _4<C - CO)v (349)
W
oW, =1, = Wi, =u— u, (3.50)
ou
hence
Wy =u—uy—4(c— ¢), (3.51)
and, similarly
Wy =u — ug + 4(c — ¢p). (3.52)

One can also express the primitive variables (A,u) in terms of the characteristic vari-
ables as

Wy — Wi\ */20\°

The Riemann invariants W, , will be employed to set the system boundary and
interface conditions (Section 3.4). The solution along the vessel was achieved by nu-
merical means. The application of the finite-volume method to the 1D system is
presented in the following section.

3.3 Finite volume method

The generic one-dimensional homogeneous conservativelawinintegral formreads
(LeVeque, 2002)

gt/& q(x, t)dx = f(q(x1,1)) — f(q(x2, 1)) , (3.54)

X1
where qisa generic quantity and x; and x, are the boundaries of the control volume
Q.. Thetreatment of the source termis presented in Section 3.3.3. The conservation
law states that the change of ¢ within Q is due to the amount of ¢ that crosses the
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boundary, i.e. the flux fof ¢. Let us now subdivide the time-space domain in M cells
I; (Figure 3.3.1a). The domainlength is equal to /, and cell length is given by Ax. The
total simulation time T defines domain height, hence cell height is given by Af. In
each cell I; three points are defined: centre point x;, left extreme x; .5, and right
extreme X; ./, (Figure 3.3.1D).

A fp—rt - - - Xiz/a

(a) (b)

Figure 3.3.1: (a) Computational domain scheme; each cell has dimensions
Ax x At. (b) A single cell is centred on a node i and has boundaries at F2Ax

on the two sides, i — £ and i+ 1, respectively.

2 27

3.3.1 Godunov’s scheme

The finite-volume method (Guinot, 2012) computes the time evolution of the av-
erage values within each cell i at time », U, and assigns this value to each cell mid-
pointx;. Theideaisthatas Ax — 0,theaverage solution tends to the exact solution
(LeVeque, 1992). Hence

1 Xi+ ij
u' = — x, t,)dx 3.55
- @.55)
to2
and knowing the flux at the boundaries of the cell, the conservation law becomes

a n 1 n n
&Ui + E( i+1/2 - Fifl/z) = 0. (356)

This can be solved at each time-step within a single cell with a time-stepping
method (Toro, 2001) along with a method to compute F', h= F (U(xiil J2s tn)) .

At each boundary, there are two local constant solutions: the left solution U},
and the right solution Ug. A problem in which we have constant initial conditions,
except for a discontinuity, is known as Riemann problem (Toro, 2009). The Rie-
mann problem can be solved exactly in particular cases, or it can be approximated.
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A widely used numerical flux is the Lax-Friedrichs flux

1 Ax

=g (B HE) — g

The use of a piecewise constant distribution (Figure 3.3.2(a)) for the solution of

conservative laws was first proposed by Godunov (Godunov, 1959). The Godunov’s

method is first-order accurate and it presents a high degree of numerical diffusion,

i.e. sharp gradients tend to be smoothed by the numerical process. This is due to the
piecewise constant reconstruction of the solution (Toro, 1989).

(U, —Ul). (3.57)

Figure 3.3.2: Piecewise distributions: constant (a) and linear (b)

3.3.2 MUSCLscheme

The MUSCL (monotonic upstream-centred scheme for conservation laws) scheme
(van Leer, 1979) substitutes the solution within each cell with alinear piecewise ap-
proximation (Figure 3.3.2(b))

Ux,t,) = U + 0/ (x — x;), (3.58)
where U" is the Godunov’s average and ¢;" is the cell slope (6" = 0 returns the Go-
dunov’s scheme) at the time £,. The switch to the linear piecewise reconstruction
may introduce oscillations in the solution (Gibbs phenomenon) for too steep slopes
which may lead to unrealistic values of the solution variables (LeVeque, 2002). This
isavoided by introducing a slope limiter such as the superbee limiter

0; = maxmod [minmod(AU‘, 2AU ™), minmod(2AU ~, AU+)} . (3.59)

where

(3.60)
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maxmod(a, b) — %[sgn(a) +sgn()| max {jal, o}, @e)

and

1
minmod(a, b) = 2 [sgn(a) + sgn(b)} min { |al, |b| } : (3.62)
We then compute the values at the two sides of the cell as

L Ax R Ax

Ui+1/2 = Ui—i-O'i?, Ui—l/z = Ui—O'i?,

where the time superscript has been dropped to ease the notation.
The evolution from time » to the successive time-step » + 1 is performed as

(3.63)

. At
Ur=0"+ BC (Fi,il/z - Fiy«lkl/z)a
(3.64)
1 1 At
n+1 __ — - * - * _ *
Uptt = SUr + [Ui + 5 (F Fl.+l/2>].

The MUSCL method can be generalised to higher dimensions by applying the
scheme given in (3.64) to each dimension (Shu and Osher, 1988).

3.3.3 Source term

The hyperbolic conservation system with source term reads

(0U  OF(U)

o T "o =S(U), x€ o/,

U(x,0) = UO(x), t>o, (3.65)
LU(0,t) =U(t), UL 1) = Ug(),

which can be splitin the homogeneous problem (3.30) and the ODE source problem

dU
— =S(U). 3.66
& = S(U) (3.66)
The split problem solution is achieved in two steps
oU O0F(U)
a " ox 0 s
* - U, (3.67)
Ulx,t") = U",
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du

dt S Vet (3.68)
UVH—I
In the case of (3.35), the source term is
0
S(U) = { f } (3.69)
where
1| 0P OA, , OPOP U
fi= p[é)Ao o +arax+2“<yV+2)A : (3.70)
t=pBVA,  P=Putt(VA-VA). (3.71)
and
OP B OP
EYat E_\/Z_\/A_"‘ (3.72)

By assuming a linear tapering of the lumen radius form a proximal radius R, to
adistal radius R; forx = 0and x = ¢, respectively,

_Ri—Ry

AO - 7TRO (x>2, RO (x) E X + Rp, (373)
%o _ prr, 2R _ ppp, i R (3.74)
ox “ox VA '
and
8‘[ 4 ho Rd - R
— = —\/TE | = + Ry (abe®™ + cde®o) | == 3.75
ox 3\/_ R, + X ( + ) 14 (3.75)
where we used an estimate for the vessel wall thickness (Avolio, 1980)
L (ae?® + ce™) . (3.76)
Ro

The Crank-Nicholson scheme was employed to evolve the source problem from
t,tot" ! as

1
U"+1:U”+§(C+N), (3.77)
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where

C = AtS (", U")
(3.78)
N = AtS (t" + A, U" 4 C).

3.3.4 CFL condition

The finite-volume scheme is stable and converges as the spatial grid is refined if it
respects the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928,1967).
This introduces the concept of numerical speed 2%/ar alongside the characteristic
physical speed A. In order to have a stable numerical scheme, the numerical speed
must be strictly greater than the physical speed. In particular, each computational
cell must verify

Ax
i Smaxs  Smax = Mmax {|)L1-1}2|}. (3.79)

i=1,....M

The Ax is usually left to be user-defined to control the scheme spatial accuracy.
Hence, the CFL condition is written as a condition on the At

Ax
At < Cery, . Ccr € (0,1), (3.80)

max

where Ccyy is the Courant’s number. This can be freely chosen in the range (0, 1)
by bearing in mind that as Ccrp; — 1 the scheme becomes unstable. In this work
the value was set to Ccr, = 0.9 which represent a good compromise between nu-
merical stability and computational time.

In the MUSCL scheme, the CFL condition is easily linked to the Riemann prob-
lem solution. The computational cells should be defined such that the inner values
depend only on neighbouring cells (Figure 3.3.3a). Failing that, in a Af, the infor-
mation travelling along a characteristic curve would end further than one Ax away
(Figure 3.3.3b). The numerical solution would fail in tracking the waves propaga-
tion resulting in an accumulation of numerical errors.
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Figure 3.3.3: lllustration of the CFL condition. (a) The At should be small
enough to capture the wave travelling one cell further. (b) The At is too large
and the wave is not captured.

3.4 Boundaryand interface conditions

Inlet and outlet boundary conditions (BCs) are applied at the beginning and at the
ending of each time step, respectively. The BCs are usually specified in terms of Q
and/or P,and the 1D system primitive variablesare # and A. Thus, at each time step,
we need to convert the assigned (Q, P) to (A, u) values.

3.4.1 Inlet

400
300

200

Q (mls™)

100

—100
0.0 0.2 0.4 0.6 0.8 1.0

t/T.

Figure 3.4.1: Ascending aorta volumetric flow rate as function of time nor-
malised on the cardiac cycle period T.. This is a typical example of time-
function used as boundary condition at the inlet of a vascular network.

Consider the system inlet where the BC is applied to the first node of the network
root vessel, and it is usually assigned through a volumetric flow rate time-function
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(Figure 3.4.1). By simply assigning Q = Au, there isambiguity on the values (4, u),
and to uniquivocally set these values, we need another relation.

Compatibility relations are used to compute the quantity not directly assigned
by boundary conditions. These relations are derived by using a technique called ex-
trapolation of characteristics (EoC) (Peir6 and Veneziani, 2009) which is depicted
in Figure 3.4.2.

W, W,
VVl"0 ] Wan ]
WIVH—I |
0 Wan—H |
Wlnl 1 W2nL71 1
Y x - x
0 —hat 1 pogb TRt
Ax Ax
Wy Wi
inlet i B : %)Ll ' outlet

Figure 3.4.2: Extrapolation of characteristics diagram at inlet and outlet
nodes (left and right schemes, respectively). The unknown Reimann invariants
are calculated by extrapolating back in time the characteristic curves associ-
ated to Ay .

The EoC exploits the hyperbolic nature of the 1D system and the Riemann in-
variants W calculated in Section 3.2 (Quarteroni and Veneziani, 2003). Recall that
W are constant quantities along the characteristic curves, for an observer travelling
at characteristic speed AL ». At each point x; there are two characteristic curves: one
travelling forward at speed A, and one travelling backwards at speed A,.

At theinlet, Riemann invariants

3
Wia=u¥F4c, c¢= ENZ (3.81)
are computed at the first node (W;,) and at the second node (W,,) for the current
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time step n. The new invariants are extrapolated with a linear law

Wi, (£) = Qu(1),
(3.82)
Wyt = wy (L - Az(L)At),

where Q;,(t) indicates that at the inlet, the flow value at each time step is assigned
by a user-defined time function.

The same procedure can be applied in the case one wants to apply a pressure time-
function to the system inlet.

3.4.2 Outlet

At the outlet the same EoC procedure yields

n n

wr W
Wit = W+ —2L—1A ” 2wl 4 ) At .
3.83

Wit =wp — R (Wi — W),

where R; isareflection coefficient € [—1, 1], when R; = 0 there are no reflections
and incident waves are free to leave the vessel without being reflected.

A morephysiologically representative BCis given by the coupling of athree-element
windkessel 0D model. Three element windkessel simulates the perfusion of down-
stream vessels coupled with system outlets (Figure 3.4.3). The 0D model is coupled
to 1D model terminal branches via the solution of a Riemann problem at the 0D
/1D interface (Fernandez et al., 2005; Formaggia et al., 2006).

A*u* Rnln A ann
Pe(A*) Pc :: CC Pout

Figure 3.4.3: Three-element windkessel model. R; is the proximal resistance,
R, is the peripeheral reisistance, C, is the peripheral compliance, P, is the pres-
sure across the peripheral compliance, P, is the pressure at the artery-vein
interface, P, is the pressure at the 0D /1D interface.

Atcapillarylevel, the pressure isassumed tobe zero, i.e. P,,; = 0andthe couplingis
performed by assuming that an intermediate state (A*, u*) generates from (4;, u;)
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(1D outlet) and (4,, u,) (0D inlet) (Alastruey et al., 2008). This intermediate state
must satisfy the windkessel equation

R, O0(A*u*) P, — Py 0P,
Au* 1+ — ) +CR = +C—, 3.84
< Rz) ot R, ‘ot (3.84)
where P, isinitialised to zero and, at each time step, computed as
OP p.—P
C—S =Au — = - (3.85)
ot R,

We consider ff and A, to be the same on both sides of the 0D /1D interface. This
yields the non-linear equation

fA*) = A*Ry (w; + 4¢)) — 4A*R;c* — Aﬁ (\/E - \/IO) +P.,  (3.86)
0

where ¢;and ¢* are the wave speeds calculated with A; and A* respectively. A* is ini-
tialised to A; and f{A*) = 0 is solved iteratively by means of Newton’s method.
Once A* is found, u* reads

P: — Py,
ur = Lo~ Pou (3.87)
AR,

where P = P,(A*).

3.4.3 Junctions

Interface conditions are needed for junctions, i.e. when connecting two (conjunc-
tion) or three vessels (bifurcation or anastomosis).

Conjunction

A conjunction is defined as two vessels connected in series (Figure 3.4.4) and it is
solved by imposing the conservations of mass and total pressure (Bernoulli’s prin-
ciple) at the interface nodej.

Figure 3.4.4: Conjunction schematics. The parent vessel (p) outlet is linked
to the daughter vessel (d) inlet by node j.
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Twoadditional relations are obtained by extrapolating the outgoing characteristics
from the two vessels. From the parent vessel outlet we have

Wl = U -+ 4'(:17 (3.88)

and for the daughter vessel inlet we have

WZ = Uy — 4C2. (389)

The the principle of conservation of mass in mathematical terms can be expressed
asA;u; — Ayu, = 0, and the total pressure conservation requires P, = P,,. By
defining the unknown vector q . as

— — Al
qc {qci} U, Uy, 1 2 )
(3.90)
i=1,.. 4,

the four relations read

(qu + 4k1q63 - WI =0,
Geo — 4k2q64 - W; = 07

fc - {ﬁ:l} - qC1 q?g - quqZ = 07
q?g 1 2 q?‘t 1 2
\ﬁl (A;/lz + P, — By ( 5P, =0,

A
where¢; = kiA:/“, ki =

N—

(3.91)

v;- Relation f;(q.) = 0 is solved iteratively with

1

Newton’s method

Jc ' aqc - _fc(qc)u
(3.92)

—

qtt =q.+dqc,
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where J. is the Jacobian

1 0 4k, 0
0 1 0 —4k2
JC - 4 4 . (393)

@~ 49,90, —4.9.,

des q4
pqcl _pqcz 2ﬁ1 1/ _ZBZ 1/o
! AR AL

Bifurcation

Abifurcation (Figure 3.4.5) cannot be solved by Bernoulli’s principle as the assump-
tion of a single streamline bifurcating at node b would yield to the generation of en-
ergy rather than a redistribution of it. Thus, the bifurcation is solved by imposing
conservation of mass and of static pressure only at the bifurcation node b.

b h

p d,

Figure 3.4.5: Bifurcation schematics. A parent vessel (p) is linked to two
daughter vessels (d; ) by node b.

Three additional relations are obtained by extrapolating the three outgoing char-
acteristics. The solution process is the same described for the conjunction case. q;
and f}, vectors read

qQy = {qhi} = | U1, Ua, Us, A11/47 A;/47 Aili/4 ;



(qbl + 4k1qb4 - W{ 07

T, — 4k2qbs - W; = 07
b, — 4k3qb6 - W; = 07
f,={f}= qbl‘ﬁ — qbzq‘gs — qbsq‘gé =0, (3.95)

%, 05,
Bl (Al/z _1> _132 (A1/2 —1] =0,

01 02

1, a5,
131(1/2_1>_ﬁ3(1/2_1 =0,
\ AOl AOS

and the Jacobian reads
(1 0 0 4k, 0 0 i
0 1 0 0 —4k, 0
0 0 1 0 0 — 4k
J, = 3.96
’ 4@, —G, G, g, —490, 49T, (3.96)
o o o 28T 5T
AOI AOZ
0 0 0 2/‘7’1 qu;z _2132qu/52 0
L AOI AOZ .

This approach does not take into accounts the bifurcation geometry, i.e. the bi-
furcationangle. Thiscanbe introduced by means of an empiricalloss factor in equa-
tions (3.95) (Formaggia et al., 2003). However, due to the difficulty of assigning
suitable loss coefficients, the bifurcation has been treated as a perfect conjunction
of three vessels.
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Anastomosis

Theanastomosisisareversed bifurcation, i.e. thereare twoinlet parent vessels (p »)
and one outlet daughter vessel (d) (Figure 3.4.6).

)2

P @ d

Figure 3.4.6: Anastomosis schematics. A daughter vessel is linked to two
parent vessels by node a.

The anastomosis is solved as a bifurcation by means of few iteration of the New-
ton’s methods. The vectors q, and f;, are

= {q.} = Al af ]
Uda {%i} U, Uz, Us, 1 2 3 )
(3.97)
i=1,..,6,
qal + 4k1qﬂ4 - W>1k = 0’
Qay + 4k2qﬂs - W; =0,
qas - 4k3qa5 - W; = 07
o=} =\ 4ud, + dudt, — 01, =0, (3.98)
2 2
A, (qf;; —1) ~ 5, (%—1) o,
AOI AOS
=0,

i i
B < 152 - 1> _ﬁ < 162 - 1>
|\ A *\ A
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and the Jacobian reads

1 0 0 4k1 0 0
0 1 0 0 4k, 0
0 0 1 0 0 —4k3
J, = . 3.99
‘ G G G, HMal, HMal, —4.9, (3.99)
0 0 0 2181(1_(11‘t 0 _253(1_(116
A A
01 03
0 0 0 0 2ﬁ2%/52 _253%
L A02 AOS .

3.5 Concluding remarks

In this chapter, the mathematical and numerical methods employed for the solu-
tion of blood flow were reported. The 1D model was derived from the 3D Navier-
Stokes equation by means of asymptotic analysis, and the three-element windkessel
model was obtained throughlinearisation of the 1D equations. The method of char-
acteristics was employed to develop the MUSCL scheme and to obtain the numeri-
cal solution in terms of Riemann invariants. Compatibility relations for vessel in-
let and outlets were defined to express the model boundary conditions in terms
of invariant quantities. Interface conditions were defined at bifurcations, junc-
tions, and anastomosis, where flow quantities are computed by means of Newton-
Raphson method. At network outlets, the lumped-parameter formulation was used
to model capillary perfusion.

In Chapter 6, the proposed numerical model is validated against state-of-the-
art solvers from literature. In the following chapter, the fundamental concepts of
uncertainty and sensitivity analysis are reported. Sensitivity analysis techniques
based on graphical and variance methods are shown by means of a numerical ex-
ample.
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4 Sensitivity analysis

Summary

The construction of patient specific 1D modelsis difficult because the model inputs are dif-
ficult or expensive to measure in the clinical setting. It is therefore important to ensure that
model predictions and biomarkers are robust under a range of model inputs. Moreover, in
order to take into consideration the uncertainty in measurements, the sensitivity of each
output of interest to the variability of each model parameter should be assessed. This chap-
ter presents the sensitivity analysis techniques employed. First, the graphical methods
based on scatterplots are applied to a toy example (Section 4.1). Then the ANOVA decom-
position is discussed (Section 4.2). This is applied to generate the main-effect plots and to
derive the sensitivity indices (sections 4.2.1 and 4.2.2, respectively).

4.1 Scatterplots and correlations

A popular graphical SA method consists in plotting each input against the output
of interest. Inputs causing a large variation of the output are directly determined
by a visual inspection of the plots.

Let us take into consideration the modely = f(x;, x, x3), relating the output
yto the three inputs x;, j = 1, 2, 3. The scatterplots (Figure 4.1.1) show three dif-
ferent behaviours of y with respect to x;. The first scatterplot suggests that y is not
sensitive tox; asthe points are scattered along the entire solution space and they do
not show a definite trend. Conversely, a linear and a non-linear trend are noticed
in the second and third plot, respectively.

A simple correlation coefficient between inputs and output is given by Pearson
product moment formula (Pearson, 1895)

N
> (%5 = X;) (i = ¥)
r=——= , (4.1)

S — X,)? z<y _yp

i=1
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where x;; is the i-th point of the j-th input, and

1 o 1 o
Xj= N ;xija y= N ;J’i, (4.2)

are the mean values for the input x; and the outputy, respectively. The rvalue varies
in[—1, 1] with 0 indicating no correlation. For = =+1, an exactlinear correlation
isimplied.

In the example, the correlation coefficients are ¥ = (0.04,0.98, —0.84) for the
three cases, respectively. The correlation coefficient indicates only whether yislin-
early associated to x;, but it does not capture non-linear relationships. The scatter-
plots are more informative than correlation values but they do not provide any in-
sight on the possible interactions between inputs.

[5) [6) )
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e 0 o %
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® o % 00 55
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Figure 4.1.1: Example of inputs-output scatterplots. (left) The

points scattered across the model domain indicate a weak rela-

tionship between y and x;. (center) The data shows an increasing

trend and the points are closely scattered along a line. This is a

sign of a strong linear correlation as remarked by the correlation
coefficient r = 0.98. (right) The points show a non-linear

trend but this is not captured by r = —0.84 which implies only a negative
linear correlation.

4.2 Variance-based sensitivity analysis

The analysis of variances (ANOVA) type decomposition consists in representing
y = f(x) asasum of components of different dimensions. Define the d-dimensional
unit hypercube Z' 4 as the hyperspace containing the d-dimensional input vectors,

54



x € Z% = [0, 1]%. Then, y can be rewritten as the sum

d

Y=Y+ Zﬁ(x,) + Z fii(oi, ) + -+ -+ fia..a(X), Yo = const., (4.3)
i=1 1<i<j<d

if

/ﬁ-hm’iz(xil, cooX)de, =0, V1<p<z (4.4)
74

A decomposition satisfying (4.4) has orthogonal components, i.e. for any two

[ o A =0 o) £ o), 69)
where y, is the mean of y(x)
Yo = /f(x)dx. (4.6)
74

The first-order terms f;(x;) are obtained by integrating (4.3) over all the inputs
except the ith, i.e.

filx) = /f(x)dxZ — Yo, z€E€[L,....d]:z#1 4.7)

The second-order terms f; (x;, x;),1 # j,read

fitwn %) = [ foxhxas = 3o — ) — i)

(4.8)
zwe[1,...,d]: z#£i,w#],
and the higher-order terms follow
Sy, %5, X)) = /f(X)dszu.b = Yo — filoi) =+ — fulxi),
2 4.9)

zw,....,bel,....d:z#1i....,b#k
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The hyper-integrals in (4.7-4.9) can be approximated as hyper-series when the
number of data points is large enough, and it was estimated that the integrals eval-
uation requires a number of points of order O(d x 10%) (Saltelli, 2002).

4.2.1 Main effect plots

This is a visualisation technique exploiting ANOVA decomposition, and it can as-
sess the non-linearity of the output sensitivity to an individual input or a couple of
inputs variation.

The ith main-effect plot draws (x;, f;(x;) ) points that are calculated by means of
(4.7). These integrals can be numerically computed by approximating a continuous
distribution of points with a uniform discrete sampling (sampling techniques are
discussed in Section 5.3). In the case of three input variables x;, each f; (x;) is calcu-
lated as the average over 1000 points.

The three inputsare normalised dimension-wise to [0, 1] by subtracting the mean
X; and by dividing by the standard deviation std(x;),

P X
T std(x)

The use of normalised points places all the x; on a common scale.

The main-effect plot presents a curve for each normalised input X;. The output
sensitivity is directly assessed by observing the plot: the greater the f;(x; ) curve vari-
ability, the higher the output sensitivity to the input x; change.

The model output is not sensitive to the first input as the main-effect plot shows
aconstant f; value along the whole x, range (Figure 4.2.1). Conversely, f, and f; ex-
hibitawider distribution over X range. The former hasalinear reponse, whereas the
latter does not. These observations are in agreement with the SA result obtained by
graphical means in Section 4.1.

In order for the interactions between the inputs to be taken into account, (4.8) is
used to plot the points (X, f;j(x;, ;) ). These are obtained by fixing two inputs and
averaging the outcomes computed by varying the remaining input values over their
ranges (Figure 4.2.2).

The interaction plot for the pairs (x;, x,) and (x;, X3 ) shows azero constant value
meaning that the parameter x; does not influence the outcome y when it is com-
bined with the others. This is not observed for the pair (x,, x3) as the interaction
plot varies greatly over the X range. The f3 (%, X3) curve steeply increases for X <
0.5 and slowly decreases forx > 0.5.

Similarly, higher-order interactions between more than two inputs can be com-
putedvia(4.9), but the visualisation becomes cumbersome due to the increased num-
ber of dimensions. Thus, higher-order interactions are better studied by means of
the sensitivity indices.

(4.10)
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Figure 4.2.1: Main-effect plots (x;j, fi(x;)), i = 1,2,3. The higher the plot
variability the greater the output sensitivity to the input variation.
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Figure 4.2.2: Interaction plots for all the pairs (i,j), i,j = 1,2,3, i # j. The
curves for pairs (x1,x) and (x;,x3) are superimposed and constant around
zero, meaning that the interaction between these inputs is negligible. A high
degree of interaction is shown by the pair (x3,x3) as the corresponding curve
varies in the X range in non-linear fashion.
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4.2.2  Sensitivity indices

Define the variance of y = f(x) as
Vi= / flx)?dx — y;, (4.11)
74

and, by means of the ANOV A decomposition (4.3), the partial variances read

Vi = / Foin (),
Id

4.12)
z=1,....d, 1<i,<---<1i,<d.
Integrating (4.12) over Z¢, it results
d
V=Y Vit Y Vit 4+ Vi (4.13)
i=1 1<i<j<d

where the output total variance Vyis expressed in terms of the partial variances
Vi, Vi, . . ., Vi..4. The quantities

o Vilzmyiz

iy =
' 7 (4.14)
z=1,...,d, 1<i<---<1i,<d,

S

are the sensitivity indices or Sobol’s indices.

Thesensitivity indices are the ratio between the total and partial variances. They
express the contribution of each input (or combination of inputs) to the global vari-
ance. The index S; is a first-order index and it takes into account the effect of a
single input on the output variance. Similarly, S; is a second-order index and it
expresses the interaction degree between a pair of inputs. The quantitative knowl-
edge provided by first- and second-order indices is similar to the qualitative insight
given by main-effect and interaction plots, respectively.

Introduce the total-effect sensitivity indices

Ti=Si+» Si+ > Si+--+Si.a (4.15)
j>i j<i

which are the sum of all the sensitivity indices related to the ith input. Hence, the
higher-order effects can be directly measured as T; — S;. The sensitivity indices
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can be converted to percent values indicating the fraction of the total variance due
to single or combination of inputs.

First-order indices can be used to rank inputs and to decide which has the
strongest individual influence on the model outputs. Eventually, by highlighting
input collaborations, total-effect sensitivity indices assess the inputs that can be
fixed to nominal values.

The first- and second-order indices calculated for the toy-example are reported
as percent luminance values in the heat-map of Figure 4.2.3. The heat-map main
diagonal contains S; indices ant the S;; indices are in the lower triangular matrix.
The first-order and the total-effect indices are reported in Table 4.2.1.

< 0.0
28 00
£ 00

X1 X X3

input

Figure 4.2.3: Sensitivity indices heat-map for the example from Figure 4.1.1.
S; indices are reported on the main diagonal and S;; indices on the lower trian-
gular matrix.

Si % Ti %
% 170x107° 1.53x10°3
Xy 51.3 62.7
X3 36.7 49.4

Table 4.2.1: First-order and total-effect sensitivity indices for the three in-
puts.

The S, valueisabout zero, i.e., the outputis not sensitive tox; variations,and S,
and S, ; zero values confirm the absence of interaction between x; and both x, and
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X3. The large values of S, and S; indices indicate the dominant influence of x, and
X3 onyvariation. The interaction between these two model parameters is moderate
as S,s ~ 12%.

4.3 Concluding remarks

In this chapter, the sensitivity analysis method was introduced and discussed as a
generic modelling tool rather than in the context of vascular modelling. The bene-
fit of performing a global sensitivity analysis were shown by analysing a test dataset.
First, scatter-plots used for a visual inspection and to assess the poor level of in-
formation provided by simple correlation methods. Then, the analysis of variance
method was introduced to generate main effect plots. These plots take into consid-
erations the interactions between inputs and provide a better insight on the system
non-linearities. Eventually, sensitivity indices were derived from ANOVA decom-
position. The Sobol indices were used to quantify the sensitivity of outputs to indi-
vidual and combined inputs.

The global sensitivity analysis techniques explained in this chapter will be used
in the applications to study non-linearities in vascular network of different com-
plexity. The next chapter deals with Gaussian process theory and sampling tech-
niques for the generation of datasets for sensitivity analysis purposes.
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5 Gaussian process

Summary

Sensitivity analysis techniques are subject to the availability of large datasets reporting the
variation of outputs and inputs. A comprehensive exploration of the model input space is
computationally intensive, but is more tractable if a fast-running statistical emulator re-
places the model. A Gaussian process emulator can be trained on a relatively small num-
ber of model runs. In this chapter, the mathematical framework underlying the Gaussian
process method is presented. The various kernel function used to build the emulators are
revised, and the techniques used to generate new ones are discussed (Section 5.1). Then,
the GPtraining and optimisation phases are analysed (Section 5.2). Finally, the input space
sampling problemisaddressed, and the Latin hypercube algorithm isreported (Section 5.3).

Considerasetof Nd-dimensionalinputs X = {x;, ..., Xy}and N correspond-
ing observations (outputs)y = {1, ..., Yn}. The set of N inputs and outputs is
the training dataset D = {X, y }. The task of learning the input-output mapping
f(Figure 5.0.1), from observed data is a regression problem (MacKay, 1998) and,
once the mapping is found, it can be employed to predict outputs y for new, un-
seen, inputs X.

X flx) y

)

Figure 5.0.1: Inputs-outputs mapping within a generic training dataset D

The GPis defined asaset of random variables representing the values f{ X ) whose
subsetshave ajoint normal probability distribution (O’Hagan and Kingman, 1978).
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Thisjoint probability distribution is fully described by a mean function m and a co-
variance function (kernel) k. The standard notation for a GPreads

fix) ~ GP (m(x). k(x,%)). 5.1

m(x) = E[f(x)], (5.2)

k(x,x) = E{ [£0) =m0 [ %) = m(0)] } 653

wherex € Dand E [ f{x)] denotes the expected value of fat x. It isalways possible
to pre-process D to have zero mean, ie,m(x) = 0,V x € D.
The kernel function is used to build the covariance matrix K,

Ki,j = k(Xi7X}'), l,]: 17...,N, (5.4)

and it is to be chosen such that, for similar x; and x;, the corresponding f(x;) and
f(x;) are strongly correlated (MacKay, 1998). A widely used kernel is the squared
exponential function (Abrahamsen, 1997)

<112
kse(x, %) = 92 exp (——HX_ZXH > , (5.5)
29,
where the hyper-parameters 4, and ¥, are the signal variance and length-scale, re-
spectively. Several kernel functions can be used for GP training, and their hyper-
parameters can be optimised to increase the prediction accuracy (see Section 5.2).
By definition, the prior probability has zero mean, it is normally distributed,
and it is described by the covariance K,

p(f) =N (0,K), (5.6)

where 0 is the zero vector. The (5.6) is a probability distribution over functions and
it can be sampled to obtain random Gaussian vectors. Sampless ~ A (m, C)
from a multivariate normal distribution of mean m and covariance C are gener-
ated in three steps (Williams and Rasmussen, 2006):

1. decompose the covariance matrix by means of the Cholesky decomposition:
C = LL’, where L is alower triangular matrix called Cholesky factor;

2. generateu ~ N (0, I) by multiple calls of a scalar random Gaussian gener-
ator;

3. computes = m + Lu.
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In Figure 5.0.2(a) few samples from the prior built through (5.5) were plotted against
the input x.

2
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 —-10 -0.5 0.0 0.5 1.0 1.5

Figure 5.0.2: Functions drawn from the prior and conditional distributions

on left and right, respectively. The white markers represent the training data
upon which the conditional distributions are sampled; 94% confidence inter-
avals are shown by the shadowed areas.

Take into consideration the training data D along with 