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Abstract

One-dimensional numerical models of the arterial vasculature are capable of sim-
ulating the physics of pulse wave transmission and reflection. These models are
computationally efficient and represents and ideal choice with great translational
opportunities in healthcare. However, the use of these models in a patient-specific
scenario is hampered by the difficulty inmeasuring themodel inputs (parameters,
boundaryconditions, andinitialconditions) intheclinical setting. Asaresult,most
of the model inputs are noisy or missing, and the inputs uncertainty is transmit-
ted to the model outputs. A fundamental step in the model development consists
in performing a sensitivity and uncertainty analysis aimed at understanding how
variations on the inputs affect the output variability, with the final aimof instruct
the measurement process. A typical sensitivity analysis conducted by means of
MonteCarlosamplingiscomputationallyexpensiveduetothelargenumberofruns
required. A novel approach aimed at reducing the computational time consists in
usinga statistical emulator capableofmimickingmeanandvariancebehavioursof
the 1D deterministic model. In this study, emulators built through Gaussian pro-
cessmethodareusedtopredictoutcomesofa1Dfinite-volumesolver fornetworks
ofelasticvessels. The1Dmodel isdiscussedandvalidated showinggoodagreement
with published results. The emulator approach for sensitivity analysis is validated
againstMonteCarlo samplinganda99.9% reduction in computational time is ob-
tained. This methodology is further applied in the context of cerebral vasospasm
where the sensitivity analysis results are used to identify new biomechanical met-
rics for this pathology. Thenovel biomarkers are effective at detecting the cerebral
vasospasm better than the currently used one. In particular, the progression of the
disease is characterised from an early onset even when the vasospasm is occurring
at some distance away from the measurement location.
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1 I Introduction

Thebloodispumpedthroughthecardiovascularsystem,acomplexnetworkofcom-
pliantarteriesandveins,bythecycliccontractionoftheheart. Thispulsatileregime
andthevesselselasticitycausebloodpressuretopropagatethrougharteriesaswaves.
The pressure waves move through the network and are deflected due to the pres-
ence ofmechanical discontinuities such as bifurcations and bends. Cardiovascular
pathologies, including vessel stenoses, aneurysms, and atherosclerosis could addi-
tionally modify these patterns. The pressure wave observed at a specific location is
the result of the sum of incident and reflected waves. The study of this superim-
position allows to infer the mechanical features of the vascular network upstream
and downstream of the measurement point.

Numerical vascular models are aimed at better understanding of the blood cir-
culation. Manyof thehæmodynamicsmodels arebasedontheNavier-Stokes equa-
tions (NSEs),whichdescribesthemacroscopicbehaviouroffluids. Onedimensional
(1D)models are based on a reduction of theNSEs alongwith a constitutive relation
describing the vessel-wall radial displacement. In a1Dmodel, eachvessel is an elas-
tic tube whose features can vary along the longitudinal direction.

Compared to three-dimensional (3D) simulations, 1D simulations are computa-
tionally cheaper andneeda less detaileddescriptionof thenetworkgeometries and
boundaries. This comes at the expenseof accuracy in theproximityof bifurcations
and valves, where flow recirculation may occur. Nevertheless, 1D models are de-
tailedenoughtosimulate themechanismof forwardandbackwardwaves superim-
position, and have been successfully used to simulate the hæmodynamics of large
vascular networks, i.e. the entire systemic and venous circulation, the pulmonary
circulation, the brain vasculature, and the blood flow within the coronary arteries.

Despitebeing computationally lessdemanding than3Dsimulations, 1Dmodels
still require a considerable number of parameters to represent a vascular network.
For instancea systemicnetwork including103 largearteries requiresabout500pa-
rameterstobespecified: inapatient-specific scenario, themeasurementofall these
parameters is infeasible. However, not all the model parameters have a significant
effect on the clinically relevant output (e.g. the systolic pressure in the ascending
aorta). Only the most influential parameters are those whose uncertainty must be
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reduced, i.e. they should be measured as accurately as possible. Conversely, the pa-
rameterswhosevariationhas little effecton theoutput canbe fixed tonominal val-
ues. In general, the inputs can be ranked according to their influence in the view of
informing the measurement process. The input ranking and fixing is the outcome
of performing a sensitivity analysis of the 1D model.

The state-of-the-art sensitivity techniqueconsists in thecalculationofvariance-
based global sensitivity indices which assess the output sensitivity to the variation
of individual inputsor combinationof inputs. The inputs contributingmore to the
output variation will score higher sensitivity indices than the inputs whose varia-
tion affects the output value less significantly. The sensitivity indices can be com-
putedbymeansof theMonteCarlo samplingmethodwhich tipically requires1000
runs for each input parameter. Each simulation is run on a different set of inputs
randomly drawn from a distribution over the input space. As the number of simu-
lationsgrows, themodel responseatdifferent input-space locations is investigated.
Ideally, it would be desirable to draw an infinite number of input points, but in
practice a sampling of orderO(d × 103) is enough, where d is the number of in-
put parameters.

Thecomputational timerequiredfor thed×103 simulations rises asd increases.
The sensitivity analysis can be made more efficient by introducing an approxima-
tion of the physically-based model, i.e. an emulator. The emulator is a statistical
tool that can be trained to infer the deterministic model global behaviour from a
set of simulation runs. The number of simulation runs needed to train the emu-
lator is usually smaller than d × 103. Once trained, the emulator can predict the
determinist model outcome for each of the d × 103 input points required for the
sensitivity analysis in few seconds. The Gaussian process (GP) method is a popular
emulation technique in Machine Learning and it has been employed in this thesis
to predict 1D blood flow model outcomes for sensitivity analysis purposes.
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1.1 Aim and objectives

The aim of this study is to develop a novel numerical approach that will allow the
identificationofwaveform-derivedbiomechanicalmetricsforaneffectivesubject-
specific diagnosis of cardiovascular pathologies.

The aim is achieved through the following objectives:

1. development of a 1Dnumericalmodel of blood pulsewave propagation and
reflection within networks of elastic arteries;

2. validation of the 1D model against state-of-the-art benchmarks;

3. trainingofGaussianprocessemulatortomimicthe1Dmodelbehaviourand
to reduce the computational running time;

4. validation of the Gaussian process approach against the Monte Carlo sam-
pling outcomes;

5. assessment of how Gaussian process method accuracy scales when trained
over models of increasing complexity;

6. use of Gaussian process technique to perform 1D model sensitivity analysis
and quantify the effect of uncertain, missing, and noisy data;

7. use of sensitivity analysis results to identify more effective biomarkers of
a specific cardiovascular condition and to quantify the effect of uncertain
data.

1.2 Thesis outline

The thesis is organised in twomainparts: methodology and clinical applications as
outlined incontents. Thestudyobjectivesareachievedanddescribed in thevarious
chapters as follows:

• In Chapter 2, the project background is reported. This consists of an intro-
ductionof the cardiovascular system, itsmain functions and itsmechanical
description. This is followed by a review of the modelling approaches used
to study the physics of wave propagation focusing on the numerical meth-
ods for1Dmodels. The chapter concludeswith adescriptionof the concepts
and use of sensitivity analysis and statistical model emulators.

• Chapter 3 gives a description of the mathematical model used in this study
(Objective 1).
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• In Chapter 4, the sensitivity analysis method is introduced and discussed.
This is reviewed as a genericmodelling tool andnot described in the context
of cardiovascular modelling.

• In Chapter 5, the Gaussian process method is discussed. The problems of
kernel selection and optimisation is described and a strategy for building
covariance functions is presented. Finally, a sampling method suitable for
sensitivity analysis purpose is presented.

• InChapter6, thedevelopednumerical schemeforthe1Dbloodflowmodel is
validated against a frequency-domain analytical solution and against other
numerical solutions published in the literature. Additionally, experimental
in-vivoand in-vitromeasurements, alsopublished in the literature, areused
to assess the numerical solver accuracy (Objective 2).

• InChapter 7, the applicationofGaussianprocess as a data generator for sen-
sitivity analysis of a cardiovascular model is presented (Objectives 3 and 4).

• InChapter8, themethodologyisappliedtofournetworksof increasingcom-
plexity. This study shows how the methodology performance in terms of
computational time scales with the network size (Objectives 5 and 6).

• InChapter 9, themethodology is employed to study anunmet clinical prob-
lem, the selection of more effective biomechanical metrics indicative of a
specific cardiovascular condition, the cerebral vasospasm (Objective 7).

• In Chapter 10, the study conclusions are reported along with its limitations
and future prospects.

6



2 I Literature review

Summary

In this chapter, the project background is reported. First, the cardiovascular system and
its mechanical properties are presented. This is followed by a literature review on vascular
modelling with a particolar focus on 1D models. Finally, the concepts of statistical emula-
tor and sensitivity analysis are introduced.

2.1 The cardiovascular system

The cardiovascular systemcomprises theheart, the two circulations - systemic and
pulmonary - and the blood. The heart is a four chamber pump which contracts due
to electrical stimulation anddrives the blood through the systemic and the pulmo-
nary circulations. The systemic, or greater, circulation distributes blood in all the
body tissues except for the lungswhich are served separately by the pulmonary cir-
culation. Thetwonetworksarecomprisedofarteriesandveins. Arteriesbringblood
from the heart to the capillaries; the veins link capillaries to the heart and close the
circulation loop.

In this thesis, only the main large arteries of the systemic circulation are taken
into consideration (Figure 2.1.1). The systemic circulation begins at the ascend-
ing aorta, which is directly connected to the heart left ventricle through the aortic
valve. The aorta branches in a tree-like configuration and thedaughter vessels pro-
gressively decrease in size1.

The arteries are made of muscular compliant tissue and can actively control the
bloodflowbyexpandingandcontractingtoaccomodateavaryingvolumeofblood.
The mechanical properties of the vascular wall change along the arterial tree: large
vessels are elastic and compliant whereas peripheral arteries are narrow and stiff.

1The change in arteries internal radius (the lumen,R0) at a bifurcation is described byMurray’s
power law: R3

0p = R3
0d1

+ R3
0d2

, where the subscripts p, d1, and d2 indicate the parent and the two
daughter vessels, respectively.
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Figure 2.1.1: Main arteries in the systemic circulation. Circulation diagram
based on (Reymond et al., 2009).
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Thetwoheartphases, systoleanddiastole,determinethepulsatilenatureofblood
flow 2, and the flowproperties (e.g., volumetric flow rate3 andpressure4) propagate
in the system as waves. The travelling wave is partially reflected backwards by me-
chanical discontinuities in the arterial network (e.g., bifurcations, sudden changes
in elasticity, or the capillary bed). Reflected waves superimpose with the forward
wave,generatingpressureandflowwaveforms(Figure2.1.3a). Dependingonwhere
waves are observed, the superimposition timing changes and as a result the pulse
waveforms present different shapes along the arterial tree (Figure 2.1.3b).

The cardiovascular systemduties consist in the transport ofnutrients andgases,
removal of waste products, and in maintaining an appropriate thermal environ-
ment all over the body. The exchange of nutrients between the blood an the tissues
occurs at the capillary level where the flow must be steady and slow. Indeed as the
blood flows through the circulation, the mean arterial pressure progressively falls
from 100 mmHG to∼ 2 mmHg in the capillary bed. This pressure drop is due to
the vascular resistance that the bloodhas to overcomewhile flowing along arteries.

The flow resistance5 has been experimentally studied in the case of steady lami-
nar flow in pipes by Hagen (1839) and Poiseuille (1844) who described the parabo-
lic radial velocityprofile. In thecaseofparabolicprofile,Hagenbach (1860) showed
that theflowresistance is inversallyproportional to thefourthpowerof thepipe in-
ternal radius6. In the arterial tree, vessel lengths change slowly and blood viscosity
can be considered constant, therefore the resistance ismainly controlled by the lu-
men radii. Therefore an abrupt change in radius can greatly decrease/increase the
meanarterial pressure and the volumetric flow rate to a specific area of the circula-
tion.

In the case of a pulsatile dynamic condition, the velocity profile assumes a con-
figuration other than parabolic (Figure 2.1.2). The exact shape of the velocity pro-
file depends onblood viscosity andvessel geometry. The flowwithin an elastic ves-
sel has been studied and described by Hale et al. (1955); Womersley (1955) who de-

2The first description of the pulsatile nature of the blood flow dates back to Aristoteles (384-
322 BC) (Parker, 2009a), but the discovery of the circulation as a closed loop occurred only later by
Harvey (1928) and Malpighi in the 17th century.

3Volume of blood that passes a given point of the circulation in the unit of time, and it is mea-
sured in ml·s−1 (1 ml·s−1 = 10−6 m3·s−1).

4Blood pressure is the force exerted by the blood against any unit area of the vessel wall, and
it is clinically measured in mmHg (Avolio et al., 2010), where 1 mmHg ≃ 133.332 Pa, e.g., P =
50 mmHgmeans that the force exerted is sufficient topusha columnofmercury against gravityup
to 50 mm high in a sphygmomanometer. The maximum pressure reached along the cardiac cycle,
the systolic pressure, is tipically 120 mmHg.

5The vascular resistance is defined as the ratio R = Q/ΔP, and it is measured in
ml·s−1·mmHg−1.

6This law, taking into account also the fluid dynamic viscosity and the pipe length (μ and ℓ, re-
spectively), is known as Poiseuille’s pipe law: ΔP = Q (8μℓ/πR4

0).
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Figure 2.1.2: (a) Waveform superimposition mechanism. (b) Pressure wave-
forms calculated at different locations in the arterial tree with the numerical
scheme described in Chapter 3. Based on (Avolio, 1980) with permission.



velopedthemathematical frameworkexplaining theexperimentalobservationsof
McDonald (1952, 1955) about back-flow, and phase lag between pressure and flow
waves measured in large arteries.

0

1

1801651501351201059075604530150

r/R0

Figure 2.1.3: Radial velocity profile against the fractional radius (r/R0) in the
case of a periodic pressure gradient (∝ cos(ωt), ω ∈ [0, 180]◦). Based on
experimental measurements by Helps and McDonald (1953).

The arterial wall

Arterial walls consist of three tissue layers or tunicæ: the inner tunica intima that
is in contactwith the blood flow, themiddle tunicamedia, and the outer tunica ad-
ventitia (Figure 2.1.4). The tunica intima is a single layer of endothelial cells sur-
rounded by a thin layer of elastin and collagen fibres. The tunicamedia - the thick-
est layer - is made of smooth muscle cells and elastin fibres which dictate the elas-
tic properties of the vessel. The tunica adventitia consists of collagen and elastin
merging onto the surrounding connective tissues. The tunica adventita mechani-
cal properties are not relevant for flow.

R0
A
M
I
E

Figure 2.1.4: Artery cross section
with lumen radius R0 and wall layers:
tunica adventitia (A), media (M), in-
tima (I), and endothelium (E).

Arterieshave strongmuscularwallswhichhelp tomaintaina tubular shapeeven
in absence of flow. From large arteries to capillaries, passing by small arteries and
arterioles, the artery lumendiameterdecreases. Alongwith the lumenradiusdrop,
there is a stiffening of the walls. Large arteries are close to the heart and contain a
higher percentage of elastin and collagen than smaller muscular vessels.
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Inresponsetothetissueneeds,wallsexpand/contractsothattherightamountof
flowisreleased. Thevessel compliance is theabilityofvesselwalls todeformandac-
comodate a variable volume of blood7; peripheral vessels which are stiffer and less
able to deform, constitute the major source of resistance in the circulation, while
larger arteries in which the resistance is small, have a high compliance.

The arterial elasticity is responsible for converting the pulsatile flow exiting the
heart in a constant and slowstreamwithin the capillaries. This is thewindkessel ef-
fect whose name originated from the analogy with a fire engine air chamber
(windkessel in German) made by Hales (1964) and Borelli (1989) in the 17th cen-
tury8. In a fire engine (Figure 2.1.5), the water is driven by a rotary pump and it
is constantly sprinkled throughout thehose due to the air expansion chamber. The
chamber accommodates a varying volume of water depending on the pumppiston
position. The outflow from the chamber is driven by the air inside the chamber
that is compressed and slowly expands when the inflow from the pump stops. The
mathematical description of the windkessel model is reported in Section 3.4.2.

water
air

water
air

Figure 2.1.5: Windkessel effect analogy. The water (blood) is cyclically suc-
tioned from a reservoir (left atrium) to the air chamber or windkessel (large
arteries), by the rotary pump (heart). The air in the windkessel is compressed
by the water (systole) and, as the pump action stops (diastole), the air ex-
pands (the arteries contract) and pushes the water out the windkessel towards
the fireman hose (capillaries). The air expansion is not instantaneous but de-
layed; this causes a constant outflow to the hose (stable and continuous blood
flow in capillaries).

The blood and its rheology

The blood is a suspension of red cells, white cells and platelets in plasma, a fluid
with water-like mechanical properties. The relative proportion of volume occu-
piedby redbloodcellswith respect tooverall bloodvolume is thehæmatocrit and it
variesdependingonage, altitude, bodily activity, andbloodpathologies. Theblood

7The vascular compliance (C) is defined as the volume of blood that can be accomodated in a
given portion of the circulation for each mmHg pressure rise,C = ΔV/ΔP.

8Thewindkesselmathematicaldescriptionwill beproposed twocenturies laterbyFrank (1899).
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red cells are flexible and their micro-structure dictates the whole blood mechani-
cal properties. They are capable of stretching and of binding between each other,
and, as a result, the blood viscosity changes depending on the flowproperties (non-
Newtonianbehaviour). Conversely, theblooddensity isconstantat1050±10 kg·m−3

(Kenner, 1989; Kenner et al., 1977).
For a non-Newtonian fluid, the dynamic viscosity depends on the shear-rate. In

the case of blood, the viscosity decreases in a hyperbolic fashion as the shear-rate
increases (Figure 2.1.6), and it becomes independent of the shear-rate for large γ
values. In large arteries, the average shear-rate at the walls is > 100 s−1 and for
practical modelling applications the blood is usually considered a Newtonian fluid
(Fung, 2010; Guyton and Hall, 2006; Nichols and O’Rourke, 2011; Pedley, 1980;
Zamir, 2000, 2005).
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Figure 2.1.6: Blood dynamic viscosity against shear-rate for different hæma-
tocrit values. The blood behaves as a non-Newtonian fluid for γ < 100 s−1

as the viscosity decreases for increasing shear-rate. The viscosity remains con-
stant for γ > 100 s−1 (Nichols and O’Rourke, 2011).

The effect of ageing on the cardiovascular system

Arterial treemechanicalpropertieshavebeenobservedtochangeduetoageing(Fer-
rari et al., 2003; Nichols and O’Rourke, 2011). Ageing effects in the heart are mi-
nor and can be attributed to the increasing load due to a change in arterial proper-
ties (Lakatta andLevy, 2003). Bloodviscosity,which is related to theblood red cells
count, also increases with age (Ajmani et al., 2000) (Figure 2.1.7c).

Structural changes due to ageing are spread uniformly over the entire arterial
tree and concern primarily vessel local properties rather than the global topology.
There is a general increase in vessel radius (Nichols et al., 1985) (Figure 2.1.7a), in
media and intima thickness (Virmani et al., 1991), and in overall Young’smodulus
(Gozna et al., 1974) (Figure 2.1.7b). As a result, pulse wave velocity increases with
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age (vandeVosse andStergiopulos, 2011)while arterial compliancedecreases (Red-
heuil et al., 2010).

Arteriosclerosis is a common cardiovascular condition, which consists of a ves-
sel hardening, and occurs naturally with age. External factors, such as fat deposi-
tion on arteries walls, contribute to the local stiffening of arteries and are referred
to as atherosclerosis (Mackenzie et al., 2002). The arteries stiffening has also been
associated with an increase of systolic pressure (Benetos et al., 2002).
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Figure 2.1.7: Changes in ascending aorta mean lumen radius (Nichols et al.,
1985) (a), wall elastic modulus (Gozna et al., 1974) (b), and blood viscosity
(Ajmani et al., 2000) (c) with age.

2.2 Vascular modelling

Thehistory of vascularmodels is closely related to the studies onpipe flow. The 1D
flow equations in an elastic tube were first derived by Euler (1844), while Young
(1800) recognised thewave nature of the pulsatile flow, and, bymaking an analogy
with the propagation of sound in compressible gas, derived a pulse wave velocity
formula. A thorough theoretical and experimental description of the wave speed
in elastic tubes was given later by Moens (1877), Korteweg (1878), and the Weber
brothers (Weber andWeber, 1825;Weber, 1892). These studies, alongwith the ex-
perimental observations ofHagen (1839) andPoiseuille (1844), set thebasis for the
mathematical work of Womersley et al. on the blood velocity profile as a function
of the vessel radius (Hale et al., 1955; Womersley, 1955).

As themeasurement techniquesbecameaccurateenoughtomeasurebloodpres-
surewaveforms, two differentmethods have been developed depending on the ap-
proach used to analyse the waveform. The analysis in the frequency-domain by
meansofFouriertransform(Fourier,1822) isusuallyreferredtoas impedenceanal-
ysis (IA) (Westerhof andNoordergraaf, 1970). Conversely, thewave intensity anal-
ysis (WIA), introducedbyParker and Jones (1990), stemsdirectly fromthe applica-
tion of themethod of characteristics in the time-domain (Riemann, 1876). A thor-
ough comparison of the two techniques is given in (Parker, 2009b).
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In IA, thevascularnetwork is representedas anelectric circuit inwhicheach fea-
ture of the circulation is represented by an electric component. The hydraulic re-
sistance is an electric resistance, thewall compliance is a capacitance, the flow iner-
tia is taken into account by inductances, and the flow rate and pressure are electric
current and potential, respectively. The models built upon the electric analogy are
referred to as 0D or lumped-parameter as spatial information is lost during the di-
mensionality reduction process (Shi et al., 2011).

In the time-domain, the conservative laws governing the blood flow are written
in terms of a system of non-linear hyperbolic partial differential equations (PDEs)
(Čanic et al., 2006; Čanic and Kim, 2003). The numerical solution of hyperbolic
PDEs has been a crucial research topic in the 20th century due to its application to
gasdynamics (LeVeque,2002). Thefundamental studiesonnumericalanalysiscar-
ried out by Courant, Friedrichs, and Lewy (Courant et al., 1928), Godunov (1959),
andvanLeer (1979)pavedthewaytoseveralnumericalhæmodynamicstudies (An-
liker et al., 1971; Hisland and Anliker, 1973; Lambert, 1958; Raines et al., 1971;
Skalak, 1972; Stergiopulos et al., 1992; Stettler et al., 1981a,b).

The undeniable difficulty in performing in-vivo pressure waveform measure-
ment led to the development of in-vitro models (Segers et al., 1998). The measure-
ments performed on in-vitro models are still used as ground-truth to validate new
numerical schemes and their implementations (Xiao et al., 2014). The electric cir-
cuit analogywas exploited to build analogmodels of the circulation (Noordergraaf
et al., 1963; Westerhof et al., 1969, 1971), and the frequency-domain analysis was
further developed to take into account vessels of several sizes, from large arteries
to the whole capillary bed (Jager et al., 1965; Toy et al., 1985; Westerhof and No-
ordergraaf, 1970). These lumped-parameter segments can be assembled in large
networks (i.e. mimicking the analog physical models) and solved by numerical
means (Avolio, 1980; Broomé et al., 2013; Snyder et al., 1968). Brown (1996) em-
ployed the transmission line theory to study the changes in impedancewithin frac-
tal like networks, while Milišic and Quarteroni (2004) proved that the 0D solution
tends to the 1D one as the number of segments increases.

In recent times, there has been a re-flourish of theoretical works on the blood
flow governing equations (Figure 2.2.1). In particular, the building of multi-scale
models triggered theproblemof coupling3D ,1D , and0Dmodels. Formaggia et al.
(1999) proposed a preliminary analysis of the coupling between 3D , 1D , and 0D
models and compared 3D /1D and 2D/1D coupling (Formaggia et al., 2001). Fer-
nández et al. (2005) proved the existence anduniqueness of the solution for0D/1D
coupling problem. Formaggia et al. (2006) coupled a lumped parameter model of
theheartwitha1Darterial tree. Reymondet al. (2011, 2009)developeda1Dmodel
of the coronary, systemic, and cerebral circulation with a varying elastance model
of the heart, Womersley velocity profile, and implicit numerical solver with 0D
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outlet boundary conditions; this model was validated in both patient-generic and
patient-specific cases. Alastrueyet al. studied theeffectof0Doutletboundarycon-
ditions (Alastruey et al., 2008) and model parameters (in a visco-elastic formula-
tion) (Alastrueyetal., 2012)onthewaveformscomputed inacompletearterial tree.
Blanco et al. (2010) studied the effect of heart rate on a 3D -1D -0Dmodel of the ar-
terial tree. Formaggia et al. (2003) proposed the introduction of dissipation func-
tions at bifurcation nodes to take into account the effect of branching angle; how-
ever due to the difficulty on selecting the dissipation parameter, bifurcations are
treated as ideal in most of the works in literature.

The multi-scale strategy allows to build complex networks of varying spatial ac-
curacy, and ithasbeensuccessfullyadoptedtostudytheentire systemiccirculation
(Azer and Peskin, 2007; Olufsen, 1999; Olufsen et al., 2000; Sherwin et al., 2003b),
the coronaries (Huo and Kassab, 2007), the cerebral vasculature (Alastruey et al.,
2007;Mulderetal.,2011;Viedmaetal.,1997), andthepulmonarycirculation(Clav-
ica et al., 2010; Lunguet al., 2014). Mulder et al. (2011) built a 1Dmodel of the cere-
bral circulation. Alastrueyet al. (2007) studiedbymeansof a1Dmodel theeffectof
circle of Willis variation on cerebral flow. Marchandise et al. (2009) proposed the
useofa1Dmodel toaid theplanningofperipheralvascularbypass surgery. Vennin
et al. (2015) proposed the first noninvasive estimation of pressure pulse waveform
from measurements of blood velocity.

1Dmodelsarefurtherclassifieddependingonthenumerical schemeusedtosolve
the PDEs system (Table 2.2.1). The hyperbolic conservation laws can be written in
three equivalent forms: integral, strong (or differential), and weak integral. The
finite volume (FV) scheme is based on the integral form, whereas the finite differ-
ence (FD) and the finite element (FE) schemes are applied to the differential and
weak forms, respectively. Recently, the benchmark study by Boileau et al. (2015)
proved that all the numerical schemes are capable of achieving the same accuracy
in terms of computed waveforms. The differences between schemes consist in the
execution time and the numerical stability.
FDandFVschemestabilitydependsonΔtbeingsmallenoughtocapturewaveprop-
agation (the stability is ensured by the CFL condition). Conversely, the FE stability
is not affected by the choice ofΔt.

AzerandPeskin (2007)usedtheWomersleypulsatile theory tocompute friction
and convection terms and solved the 1D systembyusing aFD scheme. Casulli et al.
(2012)proposedasemi-implicitFVsolverforcompliantarteriesandDumbseretal.
(2015) improvedthemethodbyincludinganexplicitcalculationoftheradialveloc-
ity profile.
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Type Method H B C P V VE Validation

Noordergraaf et al. (1963) 0D
Snyder et al. (1968) 0D CD
Westerhof et al. (1969) 0D CD
Westerhof et al. (1971) 0D in vivo
Avolio (1980) 0D IA
Balar et al. (1989) 1D FE
Stergiopulos et al. (1992) 1D FD
Sun et al. (1997) 0D IA CD
Olufsen (1999) 1D FD in vivo, CD
Cassot et al. (2000) 1D Analytical
Olufsen et al. (2000) 1D FD in vivo
Sherwin et al. (2003b) 1D DG
Formaggia et al. (2006) 1D FE
Azer and Peskin (2007) 1D FDi Analytical
Huo and Kassab (2007) 1D FDi in vivo, CD
Alastruey et al. (2007) 1D DG in vivo, CD
Reymond et al. (2009) 1D FDi in vivo, CD
Mulder et al. (2011) 1D /3D FV
Reymond et al. (2011) 1D FDi in vivo
Alastruey et al. (2011) 1D DG in vitro
Huberts et al. (2012) 1D DG in vivo
Low et al. (2012) 1D FE in vivo
Casulli et al. (2012) 1D FV
Gaddum et al. (2013) 1D DG in vivo
Müller and Toro (2013) 1D FV
Müller and Toro (2014) 1D FV in vivo
Blanco et al. (2015) 1D FV in vivo
Flores et al. (2016) 1D Analytical in silico

Table 2.2.1: Selection of blood flow models in literature and their main fea-
tures. Analog model ( ), impedence analysis (IA), finite element (FE),
finite-difference (FD), implicit FD (FDi), finite-volume (FV), discontinuous
Galerkin (DG), heart (H), brain circulation (B), coronary vessels (C), pulmo-
nary circulation (P), venous system (V), arterial wall visco-elasticity (VE),
clinical data (CD).

The FV method is also known as shock-capturing because it is capable of deal-
ingwith sharp gradients in the solution (known as shocks in gas-dynamics) (Harten
et al., 1987; Shu and Osher, 1988). The shock-capturing feature is a direct conse-
quence of the use of the integral form and makes FV schemes more stable than FD
when dealing with the sudden change in pressure typical of pressure waveforms
(Toro, 2001).

In the case of the venous system,where vessels can collapse and the lumen cross-
sectional area can go to zero, FE schemes do not converge and become unstable. In

18



this scenario, ad-hocFVsolutionschemeshavebeendevelopedtodealwiththearis-
ing numerical instabilities (Müller et al., 2012, 2013; Müller and Toro, 2014; Toro
andSiviglia,2013),Blancoetal. (2015)developedadetailedarterialnetworkinclud-
ing over 2000 vessels. Sherwin et al. (2003a) analysed the wave propagation in ves-
sels with variable mechanical properties, and Müller and Toro (2013) developed a
higher-order FV scheme for the same application. This solver was later employed
to calculatewaveforms ina completemodelof the circulation including thevenous
system (Müller and Toro, 2014).

In the view of developing a flexible and robust solver, the FV formulation has
been used in this work. This scheme is stable under the CFL condition and con-
verges also in presence of discontinuities in the solution, making it suitable to be
extended for solving venous hæmodynamics in the future.

2.3 Sensitivity analysis

Arterial flowmodelsarebasedontheselectionofmanyparametersquantifyingthe
cardiovascularphysiology. Ideally, all theseparameterswouldbedirectlyandaccu-
rately measured, but in practice this is not always feasible. There are locations not
reachable via non-invasive techniques and the measurements are always affected
by noise. Consequently, the uncertainty in the inputs translates in an uncertainty
in the output. The assessment of how much uncertainty is transferred from the
inputs to the output is the aim of the uncertainty analysis (UA) (Xu and Gertner,
2008).

The Mathematical models are approximations of the physical processes under
investigationandtherefore there is also themodel intrinsicuncertainty tobe taken
in toaccount inaddition to theuncertaintybroughtby the inputvalues. Themodel
inputs have different influence on the final outcome, but the uncertainty embed-
ded in the mathematical formulation makes it difficult to attribute to each input
a portion of the output variation. The assignment of portions of the output uncer-
tainty to each input is the focus of the sensitivity analysis (SA) (Saltelli et al., 2000).
The SAconstitutes an important step in themodellingpractice and it has disparate
applications (Janssen et al., 1990) such as the analysis of a chemical reaction system
(Saltellietal.,2005;Turányi,1990), theengineeringrisk-assessmentmodelling (Cár-
denas et al., 2014; Helton, 1993) and the heart valves design (Becker et al., 2011).

The SA helps in expanding the knowledge on the underlying physical system by
ranking the input parameters with respect to their influence on the outcome. The
less influentialparameterscanbeeliminatedfromthemodellingprocess, resulting
in a reduction of the model complexity. The most influential parameters are those
whoseuncertaintymustbe reduced toobtain reliable results. Theuncertainty is re-
ducedby improving the inputvalueestimationandthemeasurementprocess takes
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advantage fromtheparameterprioritisationresulting fromtheSA.TheSAprocess
requiresameticulousevaluationof themodeloutputallover the inputspace. These
multiple evaluations can be exploited for optimisation and calibration purposes.
Eventually, the SAprovides an insight to input interactions that aredifficult to ob-
serve in non-linear models.

The SA methods are grouped in two main classes: local and global SA methods.
The local methods employ the one-at-a-time (OAT) approach in which one input is
varied in a small range around its nominal valuewhile keeping theothers constant.
This method effectively compares the effect of single inputs on the output, but it
is not capable of capturing the effect of input interactions (Cukier et al., 1973). The
OAT strategy has been adopted in a number of cardiovascular modelling studies
(Brooméet al., 2013;Mohiuddin et al., 2012;Reymondet al., 2009; Sunet al., 1997;
Westerhof et al., 2007). Conversely, the global methods also take into account the
interactions by observing the output distribution over the whole input space.

The global SA methods are typically conducted by means of Monte Carlo (MC)
method. The simulator is run several times by randomly changing the input pa-
rameters within fixed ranges. The number of simulations to be done (N) is linked
to the number of input features in the model (d), and generallyN = O(d × 10 3)
(Saltelli, 2002). Therefore, the global SA method can be used when the model eval-
uation computational cost is small.

This method has been applied in various fields (Iooss and Lemaître, 2015), such
ashydrologicalmodelling (Songetal.,2015), biological systemsmodelling (Kiparis-
sides et al., 2009; Wu et al., 2012), and waste-water plant optimisation (Sin et al.,
2011).

The global SA method has been used to study the arterial network (Chen et al.,
2013; Eck et al., 2015b; Sankaran and Marsden, 2011; Xiu and Sherwin, 2007), the
brain circulation (Grinberg et al., 2011), the arm arteries (Leguy et al., 2011), the
ventricular mechanics (Osnes and Sundnes, 2012). However, the number of stud-
ies employing global SA methods is a small portion of the total number of papers
aimedatusingmodelling as a clinical decision-making tool (Eck et al., 2015a) often
duetocomputational cost limitations. Arecentexampleconsists in thestudymade
to support the decisionmaking process for arterio-venous fistula surgery (Huberts
et al., 2013a,b). The struggle to include the global SA into the diagnosis processwas
mainly due to the computational cost which is high and can hardly be justified in a
patient-specific scenario.

2.4 Gaussian process

Outside the cardiovascular field it is common practice to replace the mechanistic
model with an approximation of it. This approximation - the emulator - is used
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to quickly estimate the output continuous distribution over the input space and to
perform the SA (Ratto et al., 2012; Sacks et al., 1989; Santner et al., 2013; Welch
et al., 1992).

The problem of inferring input-output relationships from a set of observations
is commonly referred to as a supervised learning problem (Bishop, 2006). A sub-
category of supervised learning is regression. In a regression problem, the output
to be predicted is a continuous variable and the input consists in a vector of val-
ues. The outputs of amechanisticmodel arenoise-free and the regression function
can be seen as an interpolating function. A first approach in selecting the inter-
polation function consists in restricting the search to a specific class of functions
such as linear interpolation, cubic splines, or Bézier curves. This approach works
wellwhen the interpolating function is of the same class of themechanisticmodel,
otherwise the fitting and the predictions may be poor (Williams and Rasmussen,
2006). An alternative approach (Bayesian) consists in taking into consideration all
the functions passing through the observations and giving them a probability dis-
tribution (O’Hagan and Forster, 2004). This probability distribution denotes our
prior knowledge about the data and it usually favours functions smoothly interpo-
lating the trainingdataset. This approach allows to avoid restrictions in choosing a
single interpolating function class and ismore flexible than classical interpolation
methods (Williams, 1998).

The Gaussian process (GP) method consists in giving a probability distribution
over the infinite set of interpolating functions (Williams and Rasmussen, 1996).
An example of the GP method is given in Figure 2.4.1. The goal is to mimic the be-
haviour of the deterministic model (simulator) in the intervalI = [−1, 1]. When
there isno informationon the simulatorbehaviour, onlygeneral properties for the
interpolating function are chosen, e.g. to be smooth in I (Figure 2.4.1(a)). As soon
as two observations are given (Figure 2.4.1(b)), only the functions passing by those
points are considered. At eachx ∈ I themeanand the standarddeviationofall the
f(x) are calculated. Note, the uncertainty in the prediction is small close to the ob-
servations and it increases far away. By further increasing the number of observa-
tions (Figure2.4.1(c, d)), thepredictionuncertaintydecreases as themean function
changes shape.

TheGP is one of the so-called kernelmethods. Historically, the concept of a ker-
nel was introduced by Aizerman et al. in 1964 (Aizerman et al., 1964) and since
then it has been adopted for different applications. The GP is know as kriging in
geostatistics (Cressie, 1993), it can be seen as the generalisation of the Kalman fil-
ter (Reece andRoberts, 2010) and of the radial basis networks (Powell, 1987). It has
also been proved that neural networks tend to a GP as the number of hidden lay-
ers goes to infinity (Neal, 2012). In the machine learning literature, GP reviews are
found in (MacKay, 1998, 2003; Rasmussen, 1996; Williams, 1998).
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Figure 2.4.1: One-input and one-output (x and y = f(x), respectively) Gaus-
sian process example. (a) Samples from the prior distribution. Samples from
the posterior distribution after two (b), five (c), and seven (d) data points
(white marker) have been observed. Simulator (dashed) and emulator mean
(thick line). Twice the standard deviation at each x is shown by the shaded
area.

Emulators are well-known tools in both applied maths and statistics, where the
most used techniques are polynomial chaos expansions (PCE) and GP, respectively
(O’Hagan, 2013). Both tools aim to infer the simulator global behaviour starting
from observed simulator runs. The main advantage of GP over the PCE technique
resides in the availability of uncertainty information. This directly descends from
the probabilistic nature of a GP, which allows embedding of uncertainty and ex-
plicit treatment of model parameters as uncertain quantities. This enables the im-
pact of missing, uncertain, or noisy measurements on model outputs to be quan-
tified. For a detailed analysis of the differences between the two techniques see
(Hussainetal.,2002;O’Hagan,2013). PCEhasbeensuccessfullyusedforsensitivity
analysis in the cardiovascular field, see for example (Donders et al., 2015; Ellwein
et al., 2008; Huberts et al., 2014; Olsen et al., 2015). Despite the use of GP for SA
beingwidely investigated outside of the cardiovascular field (Oakley andO’Hagan,
2004;O’Hagan, 2006), to the author’s knowledgeGPhasneverbeenused topredict
1D blood flow model outcomes for SA purposes.

22



Methodology

23





3 I Vascular modelling

Summary

In this chapter the blood flow solution methodology is presented (Figure 3.0.1). Initially,
the assumptions behind the derivation of the 1D mechanistic model for pulse and volu-
metric flow wave propagation in the cardiovascular system are presented (the derivation
is reported and commented in Appendix A). The 1D system can be linearised and written
in the 1D wave form (Section 3.1.2) for which an analytical solution exists (Appendix B).
The analytical solution is used as a first validation of the numerical implementation (Sec-
tion6.1). The1Dwave equation is further integrated to the lumped-parameter formwhere
the hydraulic/electric circuit analogy is introduced (Section 3.1.3). The lumped-parameter
form is used to set the peripheral boundary conditions for the numerical scheme (Section
3.4). The 1D system numerical solution is achieved by means of a finite-volume algorithm
(Section3.3),whichisbasedontheapplicationofthemethodofcharacteristics (Section3.2).
This method is applied to the 1D model and the characteristic solution is derived in terms
of Riemann invariants. The Riemann invariants are used to define compatibility condi-
tionstoclosethesetofnumericalboundaryconditionsat inletandoutlets (Section3.4). The
electric analogy is used to derive a simplifiedmodel of capillary perfusion, which is used as
outlet boundary condition for the vascular network.
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Figure 3.0.1: Methodology diagram. The 1D hyperbolic system of PDEs
obtained from the reduction of 3D Navier-Stokes equations (NSEs) is used as
a starting point. Further manipulations return the 1D wave equation and the
lumped-parameter 0D model. The method of characteristics (MoC) is used
to calculate the system Riemann invariants which, in turn, are used to set
the system boundary conditions (BCs). Eventually, a finite volume numerical
scheme (MUSCL) is used to compute the flow and pressure waveforms.
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3.1 Flow through elastic vessels equations

3.1.1 Blood flow model assumptions

The blood flow model derivation is based on the following assumptions:

1. the blood flows in narrow and long circular vessels;

2. the vessels are straight and have linearly elastic compliant walls;

3. small displacements in the radial direction are allowed whereas the longitu-
dinal displacement is neglected;

4. the blood is an incompressible Newtonian fluid.

Under these assumptions (Appendix A), the 1D equations read

∂A
∂t

+
∂Q
∂z

= 0,

∂Q
∂t

+
∂

∂z

(
α
Q2

A

)
+
A
ρ
∂P
∂z

= −2
μ
ρ
(
γν + 2

)Q
A
,

P(A) = Pext + β

(√
A
A0

− 1

)
, β =

√
π
A0

Eh0

1 − ν2
,

(3.1)

where t is time, z is the longitudinal coordinate,A(z, t) is the vessel cross-sectional
area,Q(z, t) is the volumetric flow rate, α is the Coriolis’ coefficient, ρ is the blood
density, P(z, t) is the blood pressure, μ is the blood dynamic viscosity, γν is a pa-
rameter defining the shape of the radial velocity profile, Pext is the vessel external
pressure, E(z) is the vessel wall Young’s modulus, ν is the Poisson’s ratio, A0(z) is
the reference cross-sectional area, andh0(z) is the reference wall thickness.

3.1.2 Linearised equations

The 1D system (3.1) is non-linear and it is solved by means of numerical methods
(see Section 3.3). However, the 1D linearised system has the form of the 1D wave
equation which has an analytical solution (reported in Appendix B). The analytical
solution can be used as a first benchmark for the numerical solution of the non-
linear system (see Section 6.1).
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The 1D system (3.1) can be written in terms of (P,Q ) variables and linearised
around the unloaded zero flow state (A, u) = (A0, 0). This leads to

∂P
∂t

+
β

2A0

∂Q
∂z

= 0,

∂Q
∂t

+
A0

ρ
∂P
∂z

= −KνQ ,

(3.2)

where

Kν = 2(γν + 2)
μ
ρA0

. (3.3)

By differentiating the continuity equation with respect to t and by multiplying it
by ρ/A0, and by differentiating the momentum equation with respect to z and by
subsituting in the continuity equation, we have

∂ 2P
∂t 2

− β
2ρ

∂ 2P
∂z 2

+
Kν
A0

∂P
∂t

= 0, (3.4)

which is a 1D wave equation, of speed c =
√

β/2ρ, modified by a viscous resistance
component KνA0

∂P
∂t . Note that (3.4) could be similarly expressed in terms ofQ.

3.1.3 RLC circuit analogy

Inorder to derive thewindkessel equations, the linearised system (3.2) canbe alter-
natively written as 

C ∂P
∂t

+
∂Q
∂z

= 0,

L∂Q
∂t

+
∂P
∂z

= −RQ ,

(3.5)

where

C =
2A0

β
√
π
, L =

ρ
A0

, R =
ρKν
A2

0

. (3.6)

The equations can be integrated along the vessel length and expressed by means
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of average quantities


C dP
dt

+ Q ℓ − Q 0 = 0,

LdQ
dt

+ Pℓ − P0 = −RQ ,

P =
1

ℓ

ℓˆ

0

Pdz, Q =
1

ℓ

ℓˆ

0

Qdz (3.7)

where the subscripts 0 and ℓ indicate the inlet and the outlet of the vessel, respec-
tively. By expressing the mean quantities P andQ in terms of the inlet and outlet
quantities, respectively the system (3.7) reads


C dPℓ
dt

+ Q ℓ − Q 0 = 0,

LdQ 0

dt
+ Pℓ − P0 = −RQ 0 ,

P = Pℓ, Q = Q 0 . (3.8)

Note, the spatial information has been eliminated by the integration step, there-
fore theequations (3.8)aresaidtobezero-dimensional (0D). Similarly, by imposing
P = P0 andQ = Q ℓ, the 0D equations read


C dP0

dt
+ Q ℓ − Q 0 = 0,

LdQ ℓ

dt
+ Pℓ − P0 = −RQ ℓ .

(3.9)

The system (3.9) is regardedas themathematical descriptionof anelectricRLCsys-
tem also known as L-circuit (Milišic and Quarteroni, 2004; Peiró and Veneziani,
2009) in which the volumetric flow rateQ corresponds to the electric current and
the pressureP corresponds to the electric potential, whereas the flow viscous resis-
tance corresponds to the electric resistanceR, the blood inertia to the inductance
L, and the wall compliance to the conductance C (Figure 3.1.1). Similarly, the sys-
tem (eq:zero-dimensional) is known as inverse L-circuit (or L−1-circuit) for which
flow and pressure are prescribed at inlet and outlet, respectively.
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Figure 3.1.1: (left) L−1-circuit and (right) L-circuit schemes

The RLC analogy can be exploited to model the behaviour of several parts of the
cardiovascularsystem. ByneglectingtheinductanceL, thetwo-elementwindkessel
is obtained. This is well-suited to represent the capillary bed where the inertial ef-
fects are negligible. The two-element windkessel model is usually modified to ac-
commodate an additional impedance Z in series with the resistance R. This is
needed when coupling the windkessel to another vascular model (i.e. a 1D model).
The coupling method (Section 3.4) may generate unrealistic wave reflections that
can be avoided by matching the two models interface impedances. The impedance
has the units of a resistance and it is defined as

Z = ρ
c
A0

, (3.10)

where c is the local pulse wave velocity, ρ is the blood density, and A0 is the vessel
reference cross-sectional area.

The circuit containing the inlet impedance Z is the three-element windkessel
model (Figure 3.1.2), whose equation reads

Q i

(
1 +

Z
R

)
+ CZ ∂Qi

∂t
=
Pi − Pv
R

+ C ∂Pi
∂t

. (3.11)

Z R

CPi PvPc

Q i Q v

Figure 3.1.2: Three-element windkessel circuit. Quantities with subscript i
refer to capillaries entrance; quantities with subscript v refer to the capillaries-
veins interface. Pc is the pressure across the compliance Cs. The relative pres-
sure at the end of the capillaries, Pv is set equal to zero. R and C are the
peripheral viscous resistance and peripheral compliance respectively. Inertial
forces within the capillaries are negligible.
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3.2 Method of Characteristics

The solution of hyperbolic conservation laws can be studied by means of invariant
quantities (Persico, 1952). These are quantities that do not change along preferen-
tial trajectories in the phase plane t − x known as characteristic curves. The value
of a quantityU is determined at anypoint (x, t)by following the characteristic tra-
jectories and keeping constant the invariant quantities.

Consider a general one-dimensional hyperbolic equation in quasi-linear form,
for a general variableU

∂U
∂t

+ λ
∂U
∂x

= S. (3.12)

We want to find the change inU observed when travelling at speed u. Consider a
small time step δt, so that δx = uδt, thus

δU =
∂U
∂t
δt+

∂U
∂x

δx =

(
∂U
∂t

+ u
∂U
∂x

)
δt. (3.13)

As the observer is in motion, his location is defined by u = dx/dt andU is function
of only time. Moreover,

lim
δt→0

∂U
∂t

=
dU
dt

for
dx
dt

= u, (3.14)

and if u = λ, it results that

dU
dt

= S for
dx
dt

= λ, (3.15)

which is the characteristic form of the hyperbolic conservation law. The equation
dx/dt = λ describes the characteristic curve and λ is the characteristic wave speed.
In the homogeneous caseS = 0,

dU
dt

= 0 for
dx
dt

= λ, (3.16)

andU is constant for dx
dt = λ. Hence,U is invariant to the observermoving at speed

λ and it is calledRieman invariant. The speedλ is thevelocity atwhich the informa-
tion aboutU propagates in space, which is different from the speed ofU itself.

The characteristic solution can be drawn in the x − t plane and it consists of a
family of parallel curves with slope λ (Figure 3.2.1). A specific curve is identified
by the initial condition (x0, 0) and, given the initial profileU(x, 0), the solution is
translated forward with velocity λ if λ > 0 and backwards if λ < 0.
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t

x0

x = x0 + λt

Figure 3.2.1: Family of parallel characteristic curves with slope λ > 0. The
initial condition identify the curve passing by (x0, t0 = 0).

The value ofU does not change along the characteristic curve, but it differs be-
tweendifferentcharacteristiccurves. Hence, thevalueofUchangesacrossthechar-
acteristic curve, and the characteristic curve canbe seen as a discontinuity inU val-
ues propagating at finite speed λ.

An initial value problemwithdiscontinuous initial condition (Figure 3.2.2a) is a
Riemann problem 

∂U
∂t

+ λ
∂U
∂x

= 0,

U(x, 0) =

UL, x < 0,

UR, x > 0.

(3.17)

The solutionof (3.17) consists inpropagating the initial configurationofadistance
λt after time t. The characteristic curvex = λt (obtained forx0 = 0) subdivides the
x− tplane in two sub-planes. The curves on the left side have solutionUL, whereas
the curves on the right side take valueUR (Figure 3.2.2b).

x

t

0

UL

UR

(a)

x0

t
x− λt = 0UL

x− λt < 0

UR
x− λt > 0

(b)

Figure 3.2.2: (a) Discontinuous initial condition. (b) Characteristic solution
of the initial value problem with discontinuous initial condition.

32



3.2.1 Hyperbolic system

In the case of a hyperbolic system, the quasi-linear form is written in terms of the
Jacobian matrixH

∂U

∂t
+H

U

∂x
= S. (3.18)

For a hyperbolic system,H ∈ IRm×m hasm distinct eigenvalues and eigenvectors,
λi and ri, i = 1, . . . ,m, respectively. The diagonal matrixΛΛΛ contains the eigenval-
ues and the right-eigenvector matrixR is defined such that

LHR = ΛΛΛ, L = R−1, (3.19)

whereL is the left-eigenvectors matrix. To calculate the Riemann invariants, we
first left-multiply the quasi-linear form byL

L
∂U

∂t
+ LH

U

∂x
= LS, (3.20)

and

L
∂U

∂t
+ LHRL

U

∂x
= LS, (3.21)

leads to

L
∂U

∂t
+ ΛΛΛL

U

∂x
= LS. (3.22)

We define

dW = L dU, Z = LS, (3.23)

so that

∂W

∂t
+ ΛΛΛ

∂W

∂x
= Z, (3.24)

which is the characteristic form and it is equivalent to a system of ODEs whose ith
component reads

∂Wi

∂t
+ λi

∂Wi

∂x
= Zi, ∀i = 1, . . . ,m. (3.25)

For each ith component

dWi

dt
= Zi, for

dx
dt

− λi, (3.26)
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and, forZ = 0,

Wi = const. for
dx
dt

− λi. (3.27)

When theRiemann invariantsW areknown,U canbedeterminedby integrat-
ing

dU = R dW. (3.28)

Conversely, ifU is known at (x, t), theW are obtained by integrating

dW = L dU. (3.29)

The Riemann problem for the hyperbolic system reads

∂U

∂t
+H

∂U

∂x
= 0,

U(x, 0) =

UL, x < 0,

UR, x > 0,

(3.30)

The general solution structure (Figure 3.2.3) consists of two waves originating in
x = 0. Each curve represents a discontinuity propagating at velocity λi. The solu-
tion of (3.30) consists in finding the value ofU in the star region,U∗.

xx = 0

t

λ2> 0

λ1< 0

U∗

UL UR

x02

P∗

x01

Figure 3.2.3: Riemann problem solution scheme

From the homogeneous form of (3.24) it results that the two linearly indepen-
dent right eigenvectorsR = [r1, r2]

T can be used to expand the left and right con-
stant states as

UL =
2∑
i=1

αi ri, UR =
2∑
i=1

βi ri, (3.31)
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where α and β are constant coefficients. Let us now trace the characteristic curves
throughP∗, a generic point inside the star region. These two curves pass by the ini-
tial pointsx01,2 in the right and left regions, respectively, andwe canuse theknown
valuesUL andUR to find αi and βi in (3.31). The solution inP∗ is

U∗ =
2∑
i=1

ηi ri, ηi = const. (3.32)

Let us now take a point in the left region, (xL, t∗), whose known solution is

UL = U(xL, t∗) = α1 r1 + α2 r2. (3.33)

As we shift forward, across the first wave dx/dt = λ1, the quantity x − λt becomes
positive, α1 changes to β1, and the solution in the star region results

U∗ = η1 r1 + η2 r2 = β1 r1 + α2 r2. (3.34)

The same result would be obtained starting from a point in the right region and
moving backwards across the second wave dx/dt = λ2.

3.2.2 1D flow system Riemann invariants

Take α = 1 (plug-flow) and express the system (3.1) in terms of (A,Au)
∂A
∂t

+
∂ (Au)
∂z

= 0,

∂ (Au)
∂t

+
∂ (Au2)

∂z
+
A
ρ
∂P
∂z

= −2
μ
ρ
(
γν + 2

)
u.

(3.35)

Note that for α = 1, γν → ∞ as shown in Figure A.1.2. Therefore, to compute the
viscous term in (3.35), γν = 9 is used as an approximation of the plug-flow profile.
The system (3.35) is the called conservative formof the 1D systembecause it stems
naturally fromtheapplicationof theconservation laws (Formaggia et al., 2010). By
definingU = [A,Au]T, the conservative form of the system can be written along
the single vessel with initial and boundary conditions as

∂U

∂t
+

∂ F(U)

∂z
= S(U), z ∈

[
0, ℓ
]
,

U(z, 0) = U(0)(z), t > 0,

U(0, t) = UL(t), U(ℓ, t) = UR(t),

(3.36)
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U =

{
A
Au

}
, (3.37)

F (U) =

{
Au

Au2 + GA3/2

}
, (3.38)

S (U) =

{
0
fs

}
, (3.39)

G =
β

3ρ
√
A0

, (3.40)

fs = −1

ρ

[
∂P
∂A0

∂A0

∂z
+

∂P
∂β

∂β
∂z

+ 2μ
(
γν + 2

)u
A

]
(3.41)

whereF is the flux term, andS is the source term. The flux Jacobian reads

∂ F

∂U
= H =

 0 1

3

2
G
√
A− u2 2u

 , (3.42)

which, under the assumptionA > 0, has two eigenvalues

λ1,2 = u∓ c, c =
√

3

2
G
√
A =

√
β
2ρ
A1/4, (3.43)

where c is the wave speed. In arteries, under physiological conditions, u << c al-
ways, λ1 < 0 and λ2 > 0. Thus, the system (3.35) is said to be strictly hyperbolic
asHhas twodistinct real eigenvalues and a corresponding set of two linearly inde-
pendent right eigenvectorsR = [r1, r2]

T (Sherwin et al., 2003b). The right eigen-
vectors are obtained by solving

HR = ΛΛΛR, ΛΛΛ = diag(λ1, λ2), (3.44)

R =

[ − A/c A/c

1 1

]
, (3.45)

and the left eigenvectors follow

L = R−1 =

[ − c/A 1

c/A 1

]
. (3.46)
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The hyperbolic system characteristic curves (W1,W2) are obtained by solving

∂W

∂U
= L, (3.47)

∂W1

∂A
= − c

A
, →

ˆ
dW1 =

ˆ
− c
A
dA, (3.48)

W1A = −

√
β
2ρ

ˆ
A1/4

A
dA = −4

√
β
2ρ
A1/4 + c0 = −4(c− c0), (3.49)

∂W1

∂u
= 1, → W1u = u− u0, (3.50)

hence

W1 = u− u0 − 4(c− c0), (3.51)

and, similarly

W2 = u− u0 + 4(c− c0). (3.52)

Onecanalsoexpress theprimitivevariables (A,u) intermsofthecharacteristicvari-
ables as

A =

(
W2 −W1

4

)4(2ρ
β

)2

, u = W1 +W2. (3.53)

The Riemann invariantsW1,2 will be employed to set the system boundary and
interfaceconditions (Section3.4). Thesolutionalongthevesselwasachievedbynu-
merical means. The application of the finite-volume method to the 1D system is
presented in the following section.

3.3 Finite volume method

Thegenericone-dimensionalhomogeneousconservative lawinintegral formreads
(LeVeque, 2002)

∂

∂t

ˆ x2

x1

q(x, t)dx = f (q(x1, t))− f (q(x2, t)) , (3.54)

whereq is agenericquantityandx1 andx2 are theboundariesof thecontrol volume
Ω. Thetreatmentof thesource termispresented inSection3.3.3. Theconservation
law states that the change of qwithinΩ is due to the amount of q that crosses the
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boundary, i.e. the flux fofq. Let usnowsubdivide the time-spacedomain inM cells
Ii (Figure3.3.1a). Thedomain length is equal toℓ, andcell length is givenbyΔx. The
total simulation time T defines domain height, hence cell height is given by Δt. In
each cell Ii three points are defined: centre point xi, left extreme xi−1/2, and right
extreme xi+1/2 (Figure 3.3.1b).

t

0 x

T

ℓ

Δt

Δx

I1

[
0, ℓ
]
×
[
0, T
]

1 Mi

(a)

xxi−1/2 xi+1/2xi

(b)

Figure 3.3.1: (a) Computational domain scheme; each cell has dimensions
Δx × Δt. (b) A single cell is centred on a node i and has boundaries at ∓ 1

2Δx
on the two sides, i− 1

2 and i+ 1
2 , respectively.

3.3.1 Godunov’s scheme

The finite-volume method (Guinot, 2012) computes the time evolution of the av-
erage values within each cell i at time n,U n

i , and assigns this value to each cell mid-
pointxi. The idea is that asΔx → 0, theaverage solution tends to the exact solution
(LeVeque, 1992). Hence

U n
i =
Δx→0

1

Δx

ˆ xi+ Δx
2

xi− Δx
2

q(x, tn)dx, (3.55)

and knowing the flux at the boundaries of the cell, the conservation law becomes

∂

∂t
U n
i +

1

Δx

(
F ni+1/2

− F ni−1/2

)
= 0. (3.56)

This can be solved at each time-step within a single cell with a time-stepping
method (Toro, 2001) along with a method to compute F ni±1/2

= F
(
U(xi±1/2, tn)

)
.

At each boundary, there are two local constant solutions: the left solution UL
and the right solutionUR. A problem in whichwehave constant initial conditions,
except for a discontinuity, is known as Riemann problem (Toro, 2009). The Rie-
mann problem can be solved exactly in particular cases, or it can be approximated.
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A widely used numerical flux is the Lax-Friedrichs flux

F ni+1/2
=

1

2

(
F nL + F nR

)
− Δx

Δt
(
U n
i+1 − U n

i
)
. (3.57)

The use of a piecewise constant distribution (Figure 3.3.2(a)) for the solution of
conservative lawswas first proposedbyGodunov (Godunov,1959). TheGodunov’s
method is first-order accurate and it presents ahighdegreeofnumerical diffusion,
i.e. sharpgradients tend tobe smoothedby thenumerical process. This is due to the
piecewise constant reconstruction of the solution (Toro, 1989).

Un
j

xi − 1 i i + 1
i − 1

2 i + 1
2

Un
i−1

Un
i

Un
i+1

(a)

Un
j

xi − 1 i i + 1
i − 1

2 i + 1
2

(b)

Figure 3.3.2: Piecewise distributions: constant (a) and linear (b)

3.3.2 MUSCL scheme

The MUSCL (monotonic upstream-centred scheme for conservation laws) scheme
(vanLeer, 1979) substitutes the solutionwithin each cellwith a linear piecewise ap-
proximation (Figure 3.3.2(b))

U(x, tn) = U n
i + σ ni (x− xi), (3.58)

whereU n
i is the Godunov’s average and σ ni is the cell slope (σ ni = 0 returns the Go-

dunov’s scheme) at the time tn. The switch to the linear piecewise reconstruction
may introduceoscillations in the solution (Gibbsphenomenon) for too steep slopes
whichmay lead tounrealistic valuesof the solutionvariables (LeVeque,2002). This
is avoided by introducing a slope limiter such as the superbee limiter

σi = maxmod
[
minmod(ΔU−, 2ΔU+),minmod(2ΔU−, ΔU+)

]
, (3.59)

where

ΔU− =
Ui − Ui−1

Δx
, ΔU+ =

Ui+1 − Ui

Δx
, (3.60)
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maxmod(a, b) =
1

2

[
sgn(a) + sgn(b)

]
max

{
|a|, |b|

}
, (3.61)

and

minmod(a, b) =
1

2

[
sgn(a) + sgn(b)

]
min

{
|a|, |b|

}
. (3.62)

We then compute the values at the two sides of the cell as

U L
i+1/2

= Ui + σi
Δx
2
, U R

i−1/2
= Ui − σi

Δx
2
, (3.63)

where the time superscript has been dropped to ease the notation.
The evolution from time n to the successive time-step n+ 1 is performed as

U ∗
i = U n

i +
Δt
Δx

(
F ni−1/2

− F ni+1/2

)
,

U n+1
i =

1

2
U n
i +

1

2

[
U ∗
i +

Δt
Δx

(
F ∗
i−1/2

− F ∗
i+1/2

)]
.

(3.64)

The MUSCL method can be generalised to higher dimensions by applying the
scheme given in (3.64) to each dimension (Shu and Osher, 1988).

3.3.3 Source term

The hyperbolic conservation system with source term reads

∂U

∂t
+

∂ F(U)

∂x
= S(U), x ∈

[
0, ℓ
]
,

U(x, 0) = U(0)(x), t > 0,

U(0, t) = UL(t), U(ℓ, t) = UR(t),

(3.65)

whichcanbe split in thehomogeneousproblem(3.30) and theODEsourceproblem

dU
dt

= S(U). (3.66)

The split problem solution is achieved in two steps
∂U

∂t
+

∂ F(U)

∂x
= 0

U(x, t n) = U n,

→ U
n+1

, (3.67)
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
dU
dt

= S(U),

U
n+1

,

→ U n+1, (3.68)

In the case of (3.35), the source term is

S (U) =

{
0
fs

}
, (3.69)

where

fs = −1

ρ

[
∂P
∂A0

∂A0

∂x
+

∂P
∂τ

∂β
∂x

+ 2μ
(
γν + 2

)u
A

]
, (3.70)

τ = β
√
A0, P = Pext + τ

(√
A−

√
A0

)
, (3.71)

and

∂P
∂A0

= −β
2
,

∂P
∂τ

=
√
A−

√
A0. (3.72)

By assuming a linear tapering of the lumen radius form a proximal radiusRp to
a distal radiusRd for x = 0 and x = ℓ, respectively,

A0 = πR0(x)2, R0(x) =
Rd − Rp

ℓ
x+ Rp, (3.73)

∂A0

∂x
= 2πR0

∂R0

∂x
= 2πR0

Rd − Rp
ℓ

, (3.74)

and

∂τ
∂x

=
4

3

√
πE
[
h0

R0
+ R0

(
abebR0 + cdedR0

)] Rd − Rp
ℓ

, (3.75)

where we used an estimate for the vessel wall thickness (Avolio, 1980)

h0

R0
=
(
aebR0 + cedR0

)
. (3.76)

The Crank-Nicholson scheme was employed to evolve the source problem from
t n to t n+1 as

U n+1 = U n +
1

2
(C+N) , (3.77)
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where

C = ΔtS (t n,U n)

N = ΔtS (t n + Δt,U n + C) .
(3.78)

3.3.4 CFL condition

The finite-volume scheme is stable and converges as the spatial grid is refined if it
respects theCourant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928, 1967).
This introduces the concept of numerical speed Δx/Δt alongside the characteristic
physical speed λ. In order to have a stable numerical scheme, the numerical speed
must be strictly greater than the physical speed. In particular, each computational
cell must verify

Δx
Δt

> Smax, Smax = max
i=1,...,M

{
|λi1,2 |

}
. (3.79)

The Δx is usually left to be user-defined to control the scheme spatial accuracy.
Hence, the CFL condition is written as a condition on theΔt

Δt ≤ CCFL
Δx
Smax

, CCFL ∈ (0, 1), (3.80)

where CCFL is the Courant’s number. This can be freely chosen in the range (0, 1)
by bearing in mind that as CCFL → 1 the scheme becomes unstable. In this work
the value was set to CCFL = 0.9 which represent a good compromise between nu-
merical stability and computational time.

In the MUSCL scheme, the CFL condition is easily linked to the Riemann prob-
lem solution. The computational cells should be defined such that the inner values
depend only on neighbouring cells (Figure 3.3.3a). Failing that, in a Δt, the infor-
mation travelling along a characteristic curvewould end further than oneΔx away
(Figure 3.3.3b). The numerical solution would fail in tracking the waves propaga-
tion resulting in an accumulation of numerical errors.
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t n

t n+1

Δx

i− 1 i i+ 1

(a)

t n

t n+1

Δx

(b)

Figure 3.3.3: Illustration of the CFL condition. (a) The Δt should be small
enough to capture the wave travelling one cell further. (b) The Δt is too large
and the wave is not captured.

3.4 Boundary and interface conditions

Inlet and outlet boundary conditions (BCs) are applied at the beginning and at the
ending of each time step, respectively. The BCs are usually specified in terms ofQ
and/orP, andthe1DsystemprimitivevariablesareuandA. Thus, ateachtimestep,
we need to convert the assigned (Q, P) to (A, u) values.

3.4.1 Inlet

0.0 0.2 0.4 0.6 0.8 1.0

t/Tc

−100

0

100

200

300

400

Q
(m

l·s
−

1
)

Figure 3.4.1: Ascending aorta volumetric flow rate as function of time nor-
malised on the cardiac cycle period Tc. This is a typical example of time-
function used as boundary condition at the inlet of a vascular network.

Consider the system inlet where the BC is applied to the first node of the network
root vessel, and it is usually assigned through a volumetric flow rate time-function
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(Figure3.4.1). By simplyassigningQ = Au, there is ambiguityonthevalues (A, u),
and to uniquivocally set these values, we need another relation.

Compatibility relations are used to compute the quantity not directly assigned
byboundary conditions. These relations arederivedbyusinga technique called ex-
trapolation of characteristics (EoC) (Peiró and Veneziani, 2009) which is depicted
in Figure 3.4.2.

W1

x

W n
10

1−λ1Δt

W n+1
10

W n
11

0

Δx

λ2 λ1

W2 W1

inlet outlet

W2

x

W n
2L

LL− λ2Δt

W n+1
2L

W n
2L−1

L− 1

Δx

Figure 3.4.2: Extrapolation of characteristics diagram at inlet and outlet
nodes (left and right schemes, respectively). The unknown Reimann invariants
are calculated by extrapolating back in time the characteristic curves associ-
ated to λ1,2.

The EoC exploits the hyperbolic nature of the 1D system and the Riemann in-
variantsW calculated in Section 3.2 (Quarteroni and Veneziani, 2003). Recall that
Wareconstantquantitiesalongthecharacteristiccurves, foranobserver travelling
at characteristic speed λ1,2. At eachpointxi there are two characteristic curves: one
travelling forward at speed λ1 and one travelling backwards at speed λ2.

At the inlet, Riemann invariants

W1,2 = u∓ 4c, c =
√

3

2
γ
√
A. (3.81)

are computed at the first node (W10 ) and at the second node (W20 ) for the current
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time step n. The new invariants are extrapolated with a linear law
W10 (t) = Q in(t),

W n+1
20

= W n
20

(
L− λ2(L)Δt

)
,

(3.82)

whereQ in(t) indicates that at the inlet, the flow value at each time step is assigned
by a user-defined time function.

Thesameprocedurecanbeapplied inthecaseonewants toapplyapressure time-
function to the system inlet.

3.4.2 Outlet

At the outlet the same EoC procedure yieldsW
n+1
2L = W n

2L +
W n

2L−1
−W n

2L

Δx
(u nL + c nL ) Δt,

W n+1
1L = W 0

1L − Rt
(
W n+1

1L −W 0
2L

)
,

(3.83)

whereRt is a reflection coefficient∈ [−1, 1], whenRt = 0 there are no reflections
and incident waves are free to leave the vessel without being reflected.

AmorephysiologicallyrepresentativeBCisgivenbythecouplingofathree-element
windkessel 0D model. Three element windkessel simulates the perfusion of down-
stream vessels coupled with system outlets (Figure 3.4.3). The 0D model is coupled
to 1D model terminal branches via the solution of a Riemann problem at the 0D
/1D interface (Fernández et al., 2005; Formaggia et al., 2006).

R1 R2

CcPcPe(A∗) Pout

A∗u∗

Figure 3.4.3: Three-element windkessel model. R1 is the proximal resistance,
R2 is the peripeheral reisistance, Cc is the peripheral compliance, Pc is the pres-
sure across the peripheral compliance, Pout is the pressure at the artery-vein
interface, Pe is the pressure at the 0D /1D interface.

Atcapillary level, thepressure isassumedtobezero, i.e. Pout = 0andthecoupling is
performedby assuming that an intermediate state (A∗, u∗) generates from (Al, ul)
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(1D outlet) and (Ar, ur) (0D inlet) (Alastruey et al., 2008). This intermediate state
must satisfy the windkessel equation

A∗u∗
(

1 +
R1

R2

)
+ CcR1

∂ (A∗u∗)
∂t

=
Pe − Pout

R2
+ Cc

∂Pe
∂t

, (3.84)

wherePc is initialised to zero and, at each time step, computed as

Cc
∂Pc
∂t

= A∗u∗ − Pc − Pout
R2

. (3.85)

We consider β andA0 to be the same on both sides of the 0D /1D interface. This
yields the non-linear equation

f(A∗) = A∗R1 (ul + 4cl)− 4A∗R1c∗ −
β
A0

(√
A∗ −

√
A0

)
+ Pc, (3.86)

where cl and c∗ are the wave speeds calculated withAl andA∗ respectively. A∗ is ini-
tialised to Al and f(A∗) = 0 is solved iteratively by means of Newton’s method.
OnceA∗ is found, u∗ reads

u∗ =
P∗e − Pout
A∗R1

, (3.87)

whereP∗e = Pe(A∗).

3.4.3 Junctions

Interface conditions are needed for junctions, i.e. when connecting two (conjunc-
tion) or three vessels (bifurcation or anastomosis).

Conjunction

A conjunction is defined as two vessels connected in series (Figure 3.4.4) and it is
solved by imposing the conservations of mass and total pressure (Bernoulli’s prin-
ciple) at the interface node j.

j

p d

Figure 3.4.4: Conjunction schematics. The parent vessel (p) outlet is linked
to the daughter vessel (d) inlet by node j.
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Twoadditionalrelationsareobtainedbyextrapolatingtheoutgoingcharacteristics
from the two vessels. From the parent vessel outlet we have

W1 = u1 + 4c1, (3.88)

and for the daughter vessel inlet we have

W2 = u2 − 4c2. (3.89)

The the principle of conservation of mass in mathematical terms can be expressed
as A1u1 − A2u2 = 0, and the total pressure conservation requires Pt1 = Pt2 . By
defining the unknown vectorq c as

qc = {qci} =
[
u1, u2, A1/4

1 , A1/4

2

]T
,

i = 1, ..., 4,

(3.90)

the four relations read

fc = {fci} =



qc1 + 4k1qc3 −W∗
1 = 0,

qc2 − 4k2qc4 −W∗
2 = 0,

qc1q4
c3 − qc2q4

c4 = 0,

β1

(
q2
c3

A1/2

01

− 1

)
+

1

2
ρq2

c1 − β2

(
q2
c4

A1/2

02

− 1

)
− 1

2
ρq2

c2 = 0,

(3.91)

where ci = ki A
1/4

i , ki =

√
3

2
γi. Relation fc(qc) = 0 is solved iteratively with

Newton’s method

Jc · δqc = −fc(qc),

qn+1
c = qc + δqc,

(3.92)
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whereJc is the Jacobian

Jc =



1 0 4k1 0

0 1 0 −4k2

q4
c3 −q4

c4 4qc1q3
c3 −4qc2q3

c4

ρqc1 −ρqc2 2β1

qc3
A1/2

01

−2β2

q4

A1/2

02


. (3.93)

Bifurcation

Abifurcation (Figure3.4.5) cannotbesolvedbyBernoulli’sprincipleas theassump-
tionofa single streamlinebifurcatingatnodebwouldyield to thegenerationofen-
ergy rather than a redistribution of it. Thus, the bifurcation is solved by imposing
conservation of mass and of static pressure only at the bifurcation node b.

b
p

d1

d2

Figure 3.4.5: Bifurcation schematics. A parent vessel (p) is linked to two
daughter vessels (d1,2) by node b.

Three additional relations are obtained by extrapolating the three outgoing char-
acteristics. The solution process is the same described for the conjunction case. qb
and fb vectors read

qb = {qbi} =
[
u1, u2, u3, A1/4

1 , A1/4

2 , A1/4

3

]T
,

i = 1, ..., 6,

(3.94)
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fb = {fbi} =



qb1 + 4k1qb4 −W∗
1 = 0,

qb2 − 4k2qb5 −W∗
2 = 0,

qb3 − 4k3qb6 −W∗
3 = 0,

qb1q4
b4
− qb2q4

b5
− qb3q4

b6
= 0,

β1

(
q2
b4

A1/2

01

− 1

)
− β2

(
q2
b5

A1/2

02

− 1

)
= 0,

β1

(
q2
b4

A1/2

01

− 1

)
− β3

(
q2
b6

A1/2

03

− 1

)
= 0,

(3.95)

and the Jacobian reads

Jb =



1 0 0 4k1 0 0

0 1 0 0 −4k2 0

0 0 1 0 0 −4k3

q4
b4

−q4
b5

−q4
b6

4qb1q3
b4

−4qb2q3
b5

−4qb3q3
b6

0 0 0 2β1

qb4

A1/2

01

−2β2

qb5

A1/2

02

0

0 0 0 2β1

qb4

A1/2

01

−2β2

qb5

A1/2

02

0



. (3.96)

This approach does not take into accounts the bifurcation geometry, i.e. the bi-
furcationangle. Thiscanbeintroducedbymeansofanempirical lossfactor inequa-
tions (3.95) (Formaggia et al., 2003). However, due to the difficulty of assigning
suitable loss coefficients, the bifurcation has been treated as a perfect conjunction
of three vessels.
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Anastomosis

Theanastomosis isareversedbifurcation, i.e. therearetwoinletparentvessels (p1,2)
and one outlet daughter vessel (d) (Figure 3.4.6).

a dp1

p2

Figure 3.4.6: Anastomosis schematics. A daughter vessel is linked to two
parent vessels by node a.

The anastomosis is solved as a bifurcation bymeans of few iteration of theNew-
ton’s methods. The vectorsqa and fa are

qa = {qai} =
[
u1, u2, u3, A1/4

1 , A1/4

2 , A1/4

3

]T
,

i = 1, ..., 6,

(3.97)

fa = {fai} =



qa1 + 4k1qa4 −W∗
1 = 0,

qa2 + 4k2qa5 −W∗
2 = 0,

qa3 − 4k3qa6 −W∗
3 = 0,

qa1q4
a4
+ qa2q4

a5
− qa3q4

a6
= 0,

β1

(
q2
a4

A1/2

01

− 1

)
− β3

(
q2
a6

A1/2

03

− 1

)
= 0,

β2

(
q2
a5

A1/2

02

− 1

)
− β3

(
q2
a6

A1/2

03

− 1

)
= 0,

(3.98)
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and the Jacobian reads

Ja =



1 0 0 4k1 0 0

0 1 0 0 4k2 0

0 0 1 0 0 −4k3

q4
a4

q4
a5

−q4
a6

4qa1q3
a4

4qa2q3
a5

−4qa3q3
a6

0 0 0 2β1

qa4

A1/2

01

0 −2β3

qa6

A1/2

03

0 0 0 0 2β2

qa5

A1/2

02

−2β3

qa6

A1/2

03



. (3.99)

3.5 Concluding remarks

In this chapter, the mathematical and numerical methods employed for the solu-
tion of blood flow were reported. The 1D model was derived from the 3D Navier-
Stokesequationbymeansofasymptoticanalysis, andthethree-elementwindkessel
modelwasobtainedthroughlinearisationofthe1Dequations. Themethodofchar-
acteristics was employed to develop the MUSCL scheme and to obtain the numeri-
cal solution in terms of Riemann invariants. Compatibility relations for vessel in-
let and outlets were defined to express the model boundary conditions in terms
of invariant quantities. Interface conditions were defined at bifurcations, junc-
tions, and anastomosis, where flow quantities are computed by means of Newton-
Raphsonmethod. Atnetworkoutlets, the lumped-parameterformulationwasused
to model capillary perfusion.

In Chapter 6, the proposed numerical model is validated against state-of-the-
art solvers from literature. In the following chapter, the fundamental concepts of
uncertainty and sensitivity analysis are reported. Sensitivity analysis techniques
based on graphical and variance methods are shown by means of a numerical ex-
ample.
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4 I Sensitivity analysis

Summary

Theconstructionofpatient specific1Dmodels isdifficultbecause themodel inputsaredif-
ficultorexpensive tomeasure intheclinical setting. It is therefore important toensurethat
model predictions and biomarkers are robust under a range of model inputs. Moreover, in
order to take into consideration the uncertainty in measurements, the sensitivity of each
output of interest to the variability of eachmodel parameter shouldbe assessed. This chap-
ter presents the sensitivity analysis techniques employed. First, the graphical methods
based on scatterplots are applied to a toy example (Section 4.1). Then the ANOVA decom-
position is discussed (Section 4.2). This is applied to generate the main-effect plots and to
derive the sensitivity indices (sections 4.2.1 and 4.2.2, respectively).

4.1 Scatterplots and correlations

A popular graphical SA method consists in plotting each input against the output
of interest. Inputs causing a large variation of the output are directly determined
by a visual inspection of the plots.

Let us take into consideration the model y = f(x1, x2, x3), relating the output
y to the three inputs xj, j = 1, 2, 3. The scatterplots (Figure 4.1.1) show three dif-
ferent behaviours of ywith respect to xj. The first scatterplot suggests that y is not
sensitive tox1 as thepoints are scatteredalong theentire solution spaceand theydo
not show a definite trend. Conversely, a linear and a non-linear trend are noticed
in the second and third plot, respectively.

A simple correlation coefficient between inputs and output is given by Pearson
product moment formula (Pearson, 1895)

r =

N∑
i=1

(xij − x j)(yi − y)√
N∑
i=1

(xij − x j)2

√
N∑
i=1

(yi − y)2

, (4.1)
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where xij is the i-th point of the j-th input, and

x j =
1

N

N∑
i=1

xij, y =
1

N

N∑
i=1

yi, (4.2)

are themeanvalues for the inputxj andtheoutputy, respectively. The rvaluevaries
in [−1, 1]with0 indicatingno correlation. For r = ±1, an exact linear correlation
is implied.

In the example, the correlation coefficients are r = (0.04, 0.98,−0.84) for the
threecases, respectively. Thecorrelationcoefficient indicatesonlywhethery is lin-
early associated to xj, but it does not capture non-linear relationships. The scatter-
plots are more informative than correlation values but they do not provide any in-
sight on the possible interactions between inputs.

x1

y

x2 x3

Figure 4.1.1: Example of inputs-output scatterplots. (left) The
points scattered across the model domain indicate a weak rela-
tionship between y and x1. (center) The data shows an increasing
trend and the points are closely scattered along a line. This is a
sign of a strong linear correlation as remarked by the correlation
coefficient r = 0.98. (right) The points show a non-linear
trend but this is not captured by r = −0.84 which implies only a negative
linear correlation.

4.2 Variance-based sensitivity analysis

The analysis of variances (ANOVA) type decomposition consists in representing
y = f(x)asasumofcomponentsofdifferentdimensions. Definethed-dimensional
unit hypercube Id as the hyperspace containing the d-dimensional input vectors,
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x ∈ Id = [0, 1]d. Then, y can be rewritten as the sum

y = y0 +
d∑
i=1

fi(xi) +
∑

1≤i<j≤d

fij(xi, xj) + · · ·+ f1,2,...,d(x), y0 = const., (4.3)

if

ˆ

Id

fi1,...,iz(xi1 , . . . , xiz)dxip = 0, ∀ 1 ≤ p ≤ z. (4.4)

A decomposition satisfying (4.4) has orthogonal components, i.e. for any two
fi1,...,z and fj1,...,w ,

ˆ

Id

fi1,...,z(xi1,...,z)fj1,...,w(xj1,...,w)dx = 0, (i1,...,z) ̸= (j1,...,w), (4.5)

where y0 is the mean of y(x)

y0 =

ˆ

Id

f(x)dx. (4.6)

The first-order terms fi(xi) are obtained by integrating (4.3) over all the inputs
except the ith, i.e.

fi(xi) =
ˆ

Id

f(x)dxz − y0, z ∈ [1, . . . , d] : z ̸= i. (4.7)

The second-order terms fij(xi, xj), i ̸= j, read

fij(xi, xj) =
ˆ

Id

f(x)dxzw − y0 − fi(xi)− fj(xj),

z,w ∈ [1, . . . , d] : z ̸= i,w ̸= j,

(4.8)

and the higher-order terms follow

fij...k(xi, xj, . . . , xk) =
ˆ

Id

f(x)dxzw...b − y0 − fi(xi)− · · · − fk(xk),

z,w, . . . , b ∈ [1, . . . , d] : z ̸= i, . . . , b ̸= k.

(4.9)
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The hyper-integrals in (4.7-4.9) can be approximated as hyper-series when the
number of data points is large enough, and it was estimated that the integrals eval-
uation requires a number of points of orderO(d× 103) (Saltelli, 2002).

4.2.1 Main effect plots

This is a visualisation technique exploiting ANOVA decomposition, and it can as-
sess the non-linearity of the output sensitivity to an individual input or a couple of
inputs variation.

The ithmain-effect plot draws (xi, fi(xi)) points that are calculated by means of
(4.7). These integrals canbenumerically computedbyapproximatingacontinuous
distribution of points with a uniform discrete sampling (sampling techniques are
discussed in Section 5.3). In the case of three input variables xi, each fi(xi) is calcu-
lated as the average over 1000 points.

Thethree inputsarenormaliseddimension-wiseto [0, 1]bysubtractingthemean
xi and by dividing by the standard deviation std(xi),

x̂ki =
xki − xi
std(xi)

. (4.10)

The use of normalised points places all the xi on a common scale.
The main-effect plot presents a curve for each normalised input x̂i. The output

sensitivity isdirectlyassessedbyobservingtheplot: thegreaterthe fi(xi)curvevari-
ability, the higher the output sensitivity to the input xi change.

Themodel output is not sensitive to the first input as themain-effect plot shows
a constant f1 value along the whole x1 range (Figure 4.2.1). Conversely, f2 and f3 ex-
hibitawiderdistributionover x̂range. Theformerhasa linearreponse,whereasthe
latter doesnot. These observations are in agreementwith the SAresult obtainedby
graphical means in Section 4.1.

In order for the interactions between the inputs to be taken into account, (4.8) is
used to plot the points (x̂, fij(xi, xj)). These are obtained by fixing two inputs and
averagingtheoutcomescomputedbyvaryingtheremaininginputvaluesovertheir
ranges (Figure 4.2.2).

Theinteractionplotforthepairs(x1, x2)and(x1, x3)showsazeroconstantvalue
meaning that the parameter x1 does not influence the outcome y when it is com-
bined with the others. This is not observed for the pair (x2, x3) as the interaction
plot varies greatly over the x̂ range. The f23(x2, x3) curve steeply increases for x̂ <
0.5 and slowly decreases for x̂ > 0.5.

Similarly, higher-order interactions between more than two inputs can be com-
putedvia (4.9), butthevisualisationbecomescumbersomeduetotheincreasednum-
ber of dimensions. Thus, higher-order interactions are better studied by means of
the sensitivity indices.
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x̂

−0.05

0.00

0.05

0.10

f i(
x i
)

i = 1

i = 2

i = 3

Figure 4.2.1: Main-effect plots (xi, fi(xi)), i = 1, 2, 3. The higher the plot
variability the greater the output sensitivity to the input variation.

0.0 0.5 1.0

x̂

−0.10

−0.05

0.00

f ij(
x i
,x

j)

i = 1, j = 2

i = 1, j = 3

i = 2, j = 3

Figure 4.2.2: Interaction plots for all the pairs (i, j), i, j = 1, 2, 3, i ̸= j. The
curves for pairs (x1, x2) and (x1, x3) are superimposed and constant around
zero, meaning that the interaction between these inputs is negligible. A high
degree of interaction is shown by the pair (x2, x3) as the corresponding curve
varies in the x̂ range in non-linear fashion.
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4.2.2 Sensitivity indices

Define the variance of y = f(x) as

Vf =
ˆ

Id

f(x)2dx− y2
0, (4.11)

and, by means of the ANOVA decomposition (4.3), the partial variances read

Vi1,...,iz =
ˆ

Id

fi1,...,iz(x)2dx,

z = 1, . . . , d, 1 ≤ i1 < · · · < iz ≤ d.

(4.12)

Integrating (4.12) overId, it results

Vf =
d∑
i=1

Vi +
∑

1≤i<j≤d

Vij + · · ·+ V1,...,d, (4.13)

where the output total variance Vf is expressed in terms of the partial variances
Vi,Vij, . . . ,V1...d. The quantities

Si1,...,iz =
Vi1,...,iz
Vf

,

z = 1, . . . , d, 1 ≤ i1 < · · · < iz ≤ d,
(4.14)

are the sensitivity indices or Sobol’s indices.
Thesensitivity indicesare theratiobetweenthe total andpartial variances. They

express thecontributionofeach input (or combinationof inputs) to theglobal vari-
ance. The index Si is a first-order index and it takes into account the effect of a
single input on the output variance. Similarly, Sij is a second-order index and it
expresses the interaction degree between a pair of inputs. The quantitative knowl-
edgeprovidedbyfirst- andsecond-order indices is similar to thequalitative insight
given by main-effect and interaction plots, respectively.

Introduce the total-effect sensitivity indices

Ti = Si +
∑
j>i

Sij +
∑
j<i

Sji + · · ·+ S1,...,d, (4.15)

which are the sum of all the sensitivity indices related to the ith input. Hence, the
higher-order effects can be directly measured as Ti − Si. The sensitivity indices
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can be converted to percent values indicating the fraction of the total variance due
to single or combination of inputs.

First-order indices can be used to rank inputs and to decide which has the
strongest individual influence on the model outputs. Eventually, by highlighting
input collaborations, total-effect sensitivity indices assess the inputs that can be
fixed to nominal values.

The first- and second-order indices calculated for the toy-example are reported
as percent luminance values in the heat-map of Figure 4.2.3. The heat-map main
diagonal contains Si indices ant the Sij indices are in the lower triangular matrix.
The first-order and the total-effect indices are reported in Table 4.2.1.

x1 x2 x3

input

x 3
x 2

x 1
inp

ut

0.0 12.3 36.7

0.0 51.3

0.0

Figure 4.2.3: Sensitivity indices heat-map for the example from Figure 4.1.1.
Si indices are reported on the main diagonal and Sij indices on the lower trian-
gular matrix.

Si% Ti%
x1 1.70×10−5 1.53×10−3

x2 51.3 62.7
x3 36.7 49.4

Table 4.2.1: First-order and total-effect sensitivity indices for the three in-
puts.

TheS1 value is aboutzero, i.e., theoutput isnot sensitive tox1 variations, andS12

andS13 zero values confirm the absence of interaction between x1 and both x2 and
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x3. The large values ofS2 andS3 indices indicate the dominant influence of x2 and
x3 onyvariation. The interactionbetweenthese twomodelparameters ismoderate
asS23 ≃ 12%.

4.3 Concluding remarks

In this chapter, the sensitivity analysis method was introduced and discussed as a
generic modelling tool rather than in the context of vascular modelling. The bene-
fitofperformingaglobalsensitivityanalysiswereshownbyanalysingatestdataset.
First, scatter-plots used for a visual inspection and to assess the poor level of in-
formation provided by simple correlation methods. Then, the analysis of variance
methodwas introduced to generatemain effect plots. These plots take into consid-
erations the interactionsbetween inputs andprovide abetter insighton the system
non-linearities. Eventually, sensitivity indiceswere derived fromANOVAdecom-
position. The Sobol indiceswere used to quantify the sensitivity of outputs to indi-
vidual and combined inputs.

The global sensitivity analysis techniques explained in this chapter will be used
in the applications to study non-linearities in vascular network of different com-
plexity. The next chapter deals with Gaussian process theory and sampling tech-
niques for the generation of datasets for sensitivity analysis purposes.
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5 I Gaussian process

Summary

Sensitivity analysis techniques are subject to the availability of large datasets reporting the
variation of outputs and inputs. A comprehensive exploration of the model input space is
computationally intensive, but is more tractable if a fast-running statistical emulator re-
places the model. A Gaussian process emulator can be trained on a relatively small num-
ber of model runs. In this chapter, the mathematical framework underlying the Gaussian
process method is presented. The various kernel function used to build the emulators are
revised, and the techniques used to generate new ones are discussed (Section 5.1). Then,
theGP training andoptimisationphases are analysed (Section5.2). Finally, the input space
samplingproblemisaddressed, andtheLatinhypercubealgorithmisreported (Section5.3).

ConsiderasetofNd-dimensional inputsX = {x1, . . . ,xN}andNcorrespond-
ing observations (outputs) y = { y1, . . . , yN}. The set ofN inputs and outputs is
the training datasetD = {X,y}. The task of learning the input-output mapping
f (Figure 5.0.1), from observed data is a regression problem (MacKay, 1998) and,
once the mapping is found, it can be employed to predict outputs ŷ for new, un-
seen, inputs X̂.

·
·

·

·
·
·

f(x)X y

D

Figure 5.0.1: Inputs-outputs mapping within a generic training dataset D

TheGPisdefinedasasetofrandomvariablesrepresentingthevalues f(X)whose
subsetshavea jointnormalprobabilitydistribution (O’HaganandKingman,1978).
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This jointprobabilitydistribution is fullydescribedbyameanfunctionmandaco-
variance function (kernel) k. The standard notation for a GP reads

f(x) ∼ GP
(
m(x), k(x, x̃)

)
, (5.1)

m(x) = E
[
f(x)

]
, (5.2)

k(x,x′) = E
{[

f(x)− m(x)
][
f(x̃)− m(x̃)

]}
, (5.3)

where x̃ ∈ D andE
[
f(x)

]
denotes the expectedvalueof f atx. It is alwayspossible

to pre-processD to have zero mean, i.e.,m(x) = 0,∀x ∈ D.
The kernel function is used to build the covariance matrixK,

Ki,j = k(xi,xj), i, j = 1, . . . ,N, (5.4)

and it is to be chosen such that, for similar xi and xj, the corresponding f(xi) and
f(xj) are strongly correlated (MacKay, 1998). A widely used kernel is the squared
exponential function (Abrahamsen, 1997)

kSE(x, x̃) = θ 2
σ exp

(
−||x− x̃||2

2θ 2
ℓ

)
, (5.5)

where the hyper-parameters θσ and θℓ are the signal variance and length-scale, re-
spectively. Several kernel functions can be used for GP training, and their hyper-
parameters can be optimised to increase the prediction accuracy (see Section 5.2).

By definition, the prior probability has zero mean, it is normally distributed,
and it is described by the covarianceK,

p( f ) = N (0,K) , (5.6)

where 0 is the zero vector. The (5.6) is a probability distribution over functions and
it can be sampled to obtain random Gaussian vectors. Samples s ∼ N (m,C)
from a multivariate normal distribution of meanm and covarianceC are gener-
ated in three steps (Williams and Rasmussen, 2006):

1. decompose the covariancematrixbymeansof theCholeskydecomposition:
C = LLT, whereL is a lower triangular matrix called Cholesky factor;

2. generateu ∼ N
(
0, I
)

bymultiple calls of a scalar randomGaussian gener-
ator;

3. compute s = m+ Lu.
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InFigure5.0.2(a) fewsamplesfromthepriorbuilt through(5.5)wereplottedagainst
the input x.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−2

−1

0

1

2

3

f(x
)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−10

−5

0

5

10

Figure 5.0.2: Functions drawn from the prior and conditional distributions
on left and right, respectively. The white markers represent the training data
upon which the conditional distributions are sampled; 94% confidence inter-
avals are shown by the shadowed areas.

Take into consideration the training dataD along with a new and unseen set of
test inputsXt forwhichwewant to predict the outputsyt. By definition ofGP, the
joint distribution of p (y,yt) is normally distributed,

p (y,yt) = N (0,KN+t) , (5.7)

KN+t =

[
KN KNt

KT
Nt Kt

]
,

KNt = k(xi,xj), i = 1, . . . ,N,
Kt = k(xj,xℓ), j, ℓ = N+ 1, . . . ,N+ t.

(5.8)

ThepredictionsonXt aredonebyevaluatingtheconditionaldistribution(Seeger,
2004)

p(yt|y) = N (yt|0,KN+t) , (5.9)
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where

yt|0 = m
(
XN+t

)
= KT

NtK
−1
N yN, (5.10)

and

KN+t = Kt −KT
NtK

−1
N KNt. (5.11)

Theconditionaldistribution(5.9) is theresultsofconditioningthepriorwiththe
observed values and it is called posterior distribution (Figure 5.0.2(b)).

5.1 Kernels

The prediction accuracy of a GP regressor depends on the kernel selection and its
optimisation (Abrahamsen, 1997). This sectiondealswith the formerproblem, the
latter task is presented in Section 5.2.

A two-arguments function calculating the similarity between its arguments is
called covariance function or kernel, k(x, x̃) (Yaglom, 2004). The kernel is used
to build the covariance matrixK, a symmetric positive semi-definite matrix. The
symmetry requirement implies:

k(x, x̃) = k(x̃,x). (5.12)

The matrixK is positive semi-definite ifvTKv ≥ 0,∀v ∈ RN, and the kernel is
positive semi-definite (von Mises, 2014) if and only if

k(x, x̃) ≥ 0, ∀(x, x̃) ∈ RN. (5.13)

Kernels are said stationary (Genton, 2001) if they are function of the difference
between the arguments, k(x, x̃) = k(x − x̃). Stationary kernels are invariant to
translation within the input space. If the kernel depends on the distance between
inputs,k(x, x̃) = k

(
||x−x̃||

)
, thekernel is alsohomogeneous (or isotropic). Non-

stationarykernels, on theotherhand, let theGPmodel adapt tochanges in smooth-
ness within the input space (Paciorek and Schervish, 2004).

Amongthestationaryhomogeneouskernels (Matheron,1973), standardcovari-
ance functions include the squared exponential (SE) kernel (5.5), for which the hy-
perparameterθℓ determines the function length-scale, i.e. asθℓ decreases the func-
tion frequency increases (Figure 5.1.1).
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Figure 5.1.1: Squared exponential kernel for different values of the length-
scale hyperparameter θℓ (a) and variance θσ (c). All kernels are multiplied by
θσ, the variance, which scales the kernel and regulates the functions distance
from their mean values. (b,d) Prior distribution samples drawn for the differ-
ent values of θℓ and θσ, respectively.
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Figure 5.1.2: (a) Rational quadratic kernel for different values of the hyper-
parameter θα. (b) Prior distribution samples drawn for the different values of
θα.

The rational quadratic kernel (Figure 5.1.2)

kRQ(x, x̃) = θ 2
σ

(
1 +

||x− x̃||2

2θαθ 2
ℓ

)−θα
, (5.14)
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results froman infinite sumofSEkernels andθα isweighting factor setting the rel-
ative importance of large length-scales over small length-scales. Note that

lim
θα→∞

kRQ = kSE. (5.15)

The periodic kernel

kP(x, x̃) = θ 2
σ exp

[
− 2

θ 2
ℓ

sin
(
π
||x− x̃||

θp

)]
, (5.16)

can be employed in the case of functions repeating exactly with a fixed period, and
the hyperparameter θP sets the repetition distance (Figure 5.1.3).
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Figure 5.1.3: (a) Periodic kernel for different values of the hyperparameter
θP. (b) Prior distribution samples drawn for the different values of θP.

The Matérn class of kernels (Figure 5.1.4) (Matérn, 2013)

kMν(x, x̃) = θ 2
σ

21−ν

Γ(ν)

(√
2ν
θℓ

||x− x̃||
)ν

Iν
(√

2ν
θℓ

||x− x̃||
)
, (5.17)

whereΓ(·) is theGammafunction, Iν(·) is amodifiedBessel function, andν is apos-
itive parameterwhich controls the smoothness of thekernel functionStein (2012).
Note that lim

ν→∞
kMν = kSE.
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Figure 5.1.4: (a) Matérn class kernel for different values of the hyperparame-
ter θν. (b) Prior distribution samples drawn for the different values of θν.

The linear kernel (Figure 5.1.5)

kL(x, x̃) = θ 2
b + θ 2

σ (x− θc) (x̃− θc) , (5.18)

is non-stationary and defines a family of straight lines with an offset from the ori-
gin which is specified by the two hyperparameters (θc, θb).
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Figure 5.1.5: (a) Linear kernel. (b) Three samples drawn from the prior dis-
tribution informed by the linear kernel with θb = 0 and θc = −1.

5.1.1 Kernels combination

The most used kernels for GP regression are reported in Table 5.1.1. These func-
tions fulfil requirements (5.12, 5.13) andcanbeused tobuild thecovariancematrix
(5.4). New kernels can be built by using functions in Table 5.1.1 as building blocks.
The rules for building a new kernel k(x, x̃) starting from two valid kernels k1, k2

read (Bishop, 2006)
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k = ck1, c = const. > 0,

k = k1 + k2,

k = k1 · k2,

k = exp(k1),

k = xTAx̃,

k = f(x) · k1 · f(x̃),

(5.19)

whereA isasymmetricpositivesemi-definitematrixand f(x) isanyfunction. These
rules can be applied to mix together kernels with different length-scales, and thus
to obtain interpolating functions capable of mimicking complex non-linear func-
tions.

kernel k(x, x̃)
Linear, kL θ 2

b + θ 2
σ (x− θc) (x̃− θc)

Polynomial, kPl
(
x · x̃+ θ 2

σ
)p

SE, kSE exp (− r 2/2θ 2
ℓ )

γ-exponential, kγE exp (− r/θℓ)
γ

Rational quadratic, kRQ (1 + r 2/2θαθ 2
ℓ )

−θα

Periodic, kP exp
[
− 2/θ 2

ℓ sin
(
r π/θp

)]
Mν, kMν 21−ν/Γ(ν) (r

√
2ν/θℓ)

ν Iν (r
√

2ν/θℓ)

Table 5.1.1: Typically used covariance functions for GP regression. All the
stationary kernels, expressed in terms of r = ||x − x̃||, must be multiplied by
the variance hyperparameter θσ.

The kernel kMSE = kMν + kSE (Figure 5.1.6) uses the Mν length-scale (twice than
the SE one) to adjust the low frequency response of the prior distribution, whereas
the high frequency wiggling is regulated by the SE kernel.

In the case of periodic function slightly changing over time, as most of physio-
logical signals, the multiplication of the periodic kernel kP by the kSE returns the
locally periodic kernel, kLP = kP · kSE (Figure 5.1.7). The prior distribution is peri-
odic and controlled by θp, but the shape changes slowly over time because of the SE
and its characteristic length.
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Figure 5.1.6: Matérn plus squared exponential, θσ,ℓ = (0.1, 0.3) and θσ,ℓ =
(0.03, 0.15).
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Figure 5.1.7: (a) Locally periodic kernel calculated as the product of the
periodic kernel and the squared exponential kernel with hyperparameters
θp,ℓ = (0.5, 1.0) and θℓ = 1.2, respectively. (b) The sample from the prior
distribution has an overall period of 0.5 and slowly changes over x because of
the effect of the squared exponential length-scale.

5.2 Model selection

TheGPmethod is very flexible but, as remarked in (Duvenaud et al., 2013), the ker-
nel selection and its hyperparameters adjustmentmay at first appear as a black art.
In the one-dimensional case, the general characteristic of the kernel (e.g. station-
aryornon-stationary) canbedirectly inferred fromtheobservationof the training
data, but for higher dimensional data the model selection must rely on an optimi-
sation process.

Theoptimisationprocessfollowsacross-validationstrategy: thetrainingdataset
is partitioned in s subsets, (s− 1) of them are used for training and the remaining
set, the validation set, is used to assess the model performance (Bishop, 2006).
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We can use Bayes’ rule to make inference about the hyperparameters setΘΘΘ =
{θ·} in the training phase (Seeger, 2000). The assumptions aboutΘΘΘ are embedded
in the prior p(ΘΘΘ) and the effect of the training dataset is captured by the condi-
tional probability p(y|ΘΘΘ). Bayes’ rule reads

p(ΘΘΘ|y) = p(y|ΘΘΘ)p(ΘΘΘ)
p(y)

, (5.20)

the likelihoodp(y|ΘΘΘ) indicates how likely it is to observey givendifferent config-
urations ofΘΘΘ. The denominator p(y) is a normalisation constant which ensures
that the posterior p(ΘΘΘ|y) is a probability density i.e.,

´
p(ΘΘΘ|y)dy = 1.

The Bayes’ rule can be re-stated as

p(ΘΘΘ|y) ∝ p(y|ΘΘΘ)p(ΘΘΘ), (5.21)

in the viewofmaximising the posterior probability for a fixed prior (i.e. the kernel
function), the optimisationproblemreduces to themaximisationof the likelihood
function, which translates in finding theΘΘΘmaximising p(y|ΘΘΘ) (Mardia and Mar-
shall, 1984). This is done by choosing an error (or loss) function to be minimised.
Therearenotrestrictionstothechoiceoftheerrorfunction, andit iscommonprac-
tice to use the negative logarithm of the likelihood function (Williams and Ras-
mussen, 1996). This is because thenegative log is amonotonically decreasing func-
tion, and theminimisation of thenegative log is equivalent to theminimisation of
the function itself.

Assume that our dataset is independent and identically distributed, the Gaus-
sian likelihood reads

p(y|ΘΘΘ) =
N∏
n=1

N ( yn|ΘΘΘ), (5.22)

and, by taking the log, the product of probabilities turns into the sumof log proba-
bilities, and the log likelihoodL reads

L = ln p(y|ΘΘΘ) = −1

2
ln |KN| −

1

2
yK−1

N y − N
2
ln(2π). (5.23)

Theminimisation ofL can be efficiently done bymeans of the conjugate-gradient
method (Nocedal and Wright, 2006); the gradient ofL reads

∂L
∂θi

= −1

2
Tr

[ (
aaT −K−1

N
) ∂K
∂θi

]
, a = K−1y, (5.24)

where Tr(A) =
N∑
i=1

aii ,A ∈ RN×N, is the matrix trace.
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The hyperparameter search is done by running a parameter sweep over suitable
ranges. To avoid local optima, the process is restarted several times by randomly
picking the initial vector (Press, 2007). Eventually, the set of trained hyperparam-
eters is the one for which the negativeL is the lowest.

5.3 Sampling

In order to compute the output either to inform a SA or to train a GP emulator, we
need to select a set of input points. The selection process - the experimental design
- should not affect the final analysis. We are only interested in how the model re-
sponse changes as we move within the domain, but not in changes due to the sam-
pling method, i.e. the final outcome must be independent of the experimental de-
sign. Let us define the generic designD as the set ofNd-dimensional input points
xi, i = 1, . . . ,N, where xi = {xi1, . . . , xid}, and xij, j = 1, . . . , d are the input
point features.

The experimental design selection for the sensitivity analysis of computermod-
els is based on two principles: randomisation and orthogonality. The former con-
sists in selectingdatapoints at randomin theviewof eliminating systematic errors
due to the user-biasedmanual action. The experimentermaybe biased in conduct-
ing simulations in a particular order or in focusing more on a certain domain area
withoutnoticing. Awell-defined randomisationprocess effectively eliminates the
experimenter bias. The orthogonality requirement derives from the necessity of
studying the effect of input interactions. An orthogonal design is built such that
input features are not correlated, so that we can independently observe the effect
of a single feature. A design based on orthogonality and randomisation principles
is optimal if it alsodoesnot replicateobservations, i.e. all the inputpointsdiffer for
at least one feature value.

TheGPprediction error at anydomain location is conditioned by the data point
density in that area, the larger the number of data points the higher the prediction
accuracy. This is a direct consequence of the probabilistic approach adopted. The
prediction confidence increases as we train the GP on a more detailed dataset. The
training datasets containing evenly spread points - space-filling datasets - are used
to limit thepredictionerrorall-over thedomain. Thespace-fillingdesignsarechar-
acterised by an even points density and can be both randomised and orthogonal.

5.3.1 Latin hypercube

TheLatinhypercubesampling (LHS) is amethodtogeneratehomogeneousorthog-
onal datasets. Consider the two-dimensional unit squareI [0,1]×[0,1]. The LHS algo-
rithm to generateN samples for the pair (x1, x2) ∈ I develops in three steps:
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1. Subdivide the [0, 1] ranges inN equal intervals, resulting inN2 cells.

1 2 N. . .

1

2

N

.
.
.

x1

x2 I

2. Each cell is unequivocally determined by a pair (i, j), i, j ∈ {1, 2, . . . ,N}.
Thepairs(i, j)aregeneratedasrandomdistinctpermutationsoftheordered
sequence 1, 2, . . . ,N. The matrix containing one permutation in each col-
umn is the LHS2,N sampling matrix.

i j
2 5
3 1
6 3
1 2
5 4
4 6

Figure 5.3.1: (left) Permutations matrix LHS2,6 for N = 6. (right) Cells
selected by the permutation matrix are indicated by the black crosses.

3. For each cell, draw samples (x1, x2) as

x1 = F−1
x1

(
i− 1 + ηx1

N

)
, x2 = F−1

x2

(
j− 1 + ηx2

N

)
, (5.25)

where ηx1
, ηx2

∈ [0, 1] are randomly generated numbers, and F−1
x1,x2

are the
inverse cumulative probability distribution functions of x1 and x2, respec-
tively (Figure 5.3.2). This is equivalent to pick a random point within each
cell in the permutation matrix.
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Figure 5.3.2: (left) Cumulative probability distribution function. (right) Six
points sampled by means of the LHS method in I2.

Note, the LHS algorithm can be easily generalised for a d-dimensional hyperspace
D d by computing the sampling matrix LHSd,N.

TheLHS ensures an even coverage of the input hyperspace even for a small sam-
plesize. Conversely, a simplerandomsampledoesnotcoverthefulldomain (Figure
5.3.3). As the sample size increases, theLHSandtherandomsampling tendtocover
the domain in the same way (Figure 5.3.4).

0 1
x1

0

1

x
2

LHS

0 1
x1

randn

Figure 5.3.3: Comparison for N = 10 of (left) the Latin hypercube sampling
and (right) the random sampling from a normal distribution. The random
sampling fails to cover the entire domain while the LHS spreads evenly the
sample points.
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Figure 5.3.4: Comparison for N = 1024 of (left) the Latin hypercube sam-
pling and (right) the random sampling from a normal distribution. The two
point distributions are similar as samples are evenly drawn.

5.4 Concluding remarks

In this chapter, the mathematical basis for the Gaussian process method were re-
ported. The construction of the Gaussian process emulator, which is based on the
selectionofthecovariancefunction,wasshownwithexamplesofdistributionssam-
pled from different kernels. The covariance function optimisation was achieved
with aBayesian approach. This approach can be generalised to find optimal hyper-
parameters for different combinations of kernels. Eventually, the problem of in-
put space samplingwas introducedandthepopularmethodofLatinhypercubewas
described. The Latin hypercube sampling method minimises the number of sam-
ple points for an homogeneous coverage of the input space.

The introduction of the Gaussian process emulator can reduce significantly the
computational time required by a robust sensitivity analysis. Such a thorough de-
scription of the model and the effects of its parameters would not be possible by
running the source model alone. This has particular relevance in a potential sce-
nariowhere use of thesemodelling approaches could be used in a clinical setting to
support patient-specific diagnosis andpredictions of certain cardiovascular condi-
tions.

In the following chapters, the application of the reported methodology will be
shown in different scenarios. First, the numerical model is validated against pub-
lisheddata. Then, the scalabilityof theGaussianprocess approachwill be shownon
networks of increasing complexity. Finally, the sensitivity analysis through Gaus-
sian process emulation will be applied to the problem of cerebral vasospasm.
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6 I Numerical model
validation

Summary

In this chapter, the validation of the numerical model is presented. First, the numerical
solver is compared to the analytical solution for an elastic straight tube (reported in Ap-
pendix B). In addition to the analytical solution, the numerical model validation is
performed by comparing the 1D results with different 1D and 3D simulations published
in the literature, and experimental measurements (in-vivo and in-vitro). Finally, the limi-
tations of the models are analysed and further improvements are discussed.

TheMUSCLnumerical schemedescribed inSection3.3.2was implemented into
the computational library openBF, an open-source blood flow solver developed
as part of this PhD study (Melis, A, 2017). openBF was written in Julia, a high-
level programming language designed for high-performance scientific computing
(Bezanson et al., 2014), and it was released under Apache-2.0 free software license.

Inthissection, thevalidationofopenBF codeispresented. Thevalidationstrat-
egyreliedondatapublished inthe literature. Thenumerical implementationofthe
MUSCL scheme (oBF-1D ) was tested on: the analytical solution for a straight elas-
tic tube (Brown et al., 2012; Wang et al., 2015); the 1D finite volume (FV-1D) and
3D fluid structure interaction numerical solution of the upper thoracic aorta, the
common carotid artery, and the iliac bifurcation reported in (Boileau et al., 2015;
Xiao et al., 2014); the in-vitro measurements on a 37-vessel network proposed by
(Matthys et al., 2007); the FV-1D numerical solution of a 56-vessel network pre-
sented in (Blanco et al., 2014, 2015); and the 1D numerical solution of the circle of
Willis compared with in-vivo measurements from (Alastruey et al., 2007).

6.1 Analytical solution

Thenumerical schemewasvalidated against the analytical solution (3.4) in the case
of a straight elastic vessel, modelled using mechanical properties of a generic as-
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cending aorta, coupled with a three-element windkessel model at the outlet (Table
6.1.1).

ℓ R0 E · h0 R1 R2 Cp
(cm) (cm) (kPa·m) (Pa·s·m−3) (Pa·s·m−3) (m3·Pa−1)

4 1.47 660.724 1.31×107 2.22×107 1.61×10−8

Table 6.1.1: Ascending aorta and windkessel model parameters from
(Wang et al., 2015) and (Brown et al., 2012), respectively. The blood was
modelled as an incompressible, Newtonian fluid with ρ =1056 kg·m−3 and
μ =3.5×10−3Pa·s. The vessels were discretised using 40 elements with
Δx = 1 mm and the variable Δt was calculated with CCFL = 0.9.

The flow inlet boundary condition was manually extracted from (Brown et al.,
2012), and reported in Figure 6.1.1(a). The pressure (P) and volumetric flow rate
(Q ) waveforms resulting from both the analytical solution and the numerical sim-
ulationare reportedfromtwo locations, the inlet andtheoutlet (Figures6.1.1(b-d)).
The results are in agreement as thewaveforms computed by thenumerical scheme
match those obtained analytically.
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Figure 6.1.1: Analytical validation results. (a) The volumetric flow rate inlet
boundary condition (Q in). (b) Analytical (grey) and numerical (dashed) flow
waveforms at the system outlet, i.e. at the 1D/0D coupling location. (c,d)
Pressure waveforms at the inlet and outlet locations, respectively. Time was
normalised with respect to the cardiac cycle period Tc.
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6.2 Numerical benchmarks

In (Boileau et al., 2015), several numerical methods for 1D blood flow equations
were testedondifferentvascularnetworks. These implementationswerealso com-
paredwitha3Dfluid-structure interactionsimulation(Xiaoetal.,2014). Thefinite-
volume 1D scheme (FV-1D) used in (Boileau et al., 2015) was based on (Müller and
Toro,2013;ToroandSiviglia, 2013) and it is similar to theone implemented in this
work. The1Dmodels are comparedwith3Dresults andpercentage errors are com-
puted as in (Boileau et al., 2015)

ERMS
P =

√√√√ 1

N

N∑
i=1

(
pi − Pi
Pi

)2

, EMAX
P = max

i

∣∣∣∣pi − Pi
Pi

∣∣∣∣ ,
E SYS
P =

max p−max P
max P

, EDIAS
P =

min p−min P
min P

,

(6.1)

wherep andP are thewaveforms computedby the1Dand3Dmodels, respectively.
Additionally,

ERMS
W =

√√√√√ 1

N

N∑
i=1

wi −Wi

max
i
Wi

2

, EMAX
W = max

i

∣∣∣∣∣∣wi −Wi

max
i
Wi

∣∣∣∣∣∣ ,
E SYS
W =

maxw−maxW
maxW

, EDIAS
W =

minw−minW
maxW

,

(6.2)

wherew andW can be eitherQ, ΔP, orΔr quantities for the 1D and 3D models, re-
spectively.

6.2.1 Single artery models

The first two benchmarks were evaluated on single straight vessels: the upper tho-
racic aorta (UTA) and the commoncarotid artery (CCA).These twovessels havedif-
ferentdiameters, thusdifferentradialvelocityprofileshape. Bothvesselswerecou-
pled to a three-element windkessel model (Table 6.2.1).

For each numerical method (3D, FV-1D, and oBF-1D ), the pressureP, volumet-
ric flow-rateQ, and radius changeΔrwaveforms at themidpoint of the vessel were
reported along with the pressure differenceΔP between outlet and inlet (UTA and
CCA in Figures 6.2.1a and 6.2.1b, respectively).
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ℓ R0 h0 E R1 R2 Cp Rd γν
(cm) (mm) (mm) (kPa) (Pa·s·m−3) (Pa·s·m−3) (m3·Pa−1) (mm)

UTA 24.14 9.87 0.82 400 1.17×107 1.12×108 1.0163×10−8 1.19 9
CCA 12.60 2.65 0.24 700 2.48×108 1.87×109 1.75×10−10 2.98 2

Table 6.2.1: Upper thoracic aorta (UTA) and common carotid artery (CCA)
model parameters (Boileau et al., 2015). The diastolic lumen radius Rd was
used as reference to compute Δr within the cardiac cycle. The radial ve-
locity profile shape is set as either plug-flow like or parabolic for γν =9 or
γν =2, respectively. Blood properties were taken as ρ =1060 kg·m−3 and
μ =4×10−3Pa·s.

TheFV-1DandoBF-1Dresults are in agreement as thedifference in errorsw.r.t.
the 3D solution is within 6% (Table 6.2.2).

UTA CCA
FV-1D oBF-1D FV-1D oBF-1D

ERMS

P 1.14 1.83 0.28 0.37
ΔP 7.14 7.94 4.21 5.01
Q 2.17 2.96 0.29 0.60
Δr 2.44 3.05 1.07 1.44

EMAX

P 3.18 6.01 0.66 0.80
ΔP 29.13 35.55 15.6 19.62
Q 7.07 11.25 1.07 1.49
Δr 7.20 11.26 2.28 2.48

E SYS

P -0.71 -0.38 -0.29 -0.26
ΔP -8.53 -10.77 -14.83 -16.97
Q -5.29 -5.03 -0.58 -0.53
Δr -2.86 -4.11 -1.68 -2.32

EDIAS

P 0.99 1.17 0.28 0.05
ΔP 6.37 10.53 4.45 5.05
Q 3.48 3.31 0.24 0.27
Δr 2.05 1.18 0.12 1.49

Table 6.2.2: Single vessel simulation percentage relative errors w.r.t 3D solu-
tion. FV-1D values are reported from (Boileau et al., 2015).

The oBF-1D model also shows the main features of the 3D simulation but un-
derestimates of 35% the maximum ΔP needed to drive the blood flow within the
vessel. This is also evident at peak systole and diastole, when the inertial forces are
predominant in the systemand theabsolute error is 10%. Here iswhere the system
non-linearity comes into play and the oBF-1Dassumptions result in theΔPunder-
estimation. The≤ 11%discrepancy in theΔrplot is due to the small-displacement
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assumption made in the derivation of the oBF-1D constitutive equation. In fact,
these discrepancies are more evident (11% for maximum pressure) for the large
aorta (Figure 6.2.1a.d) but not for the carotid (Figure 6.2.1b.d) which is less com-
pliant (≤ 2.5% for maximum pressure).
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Figure 6.2.1: Single vessel simulation results. (a, c, d) Pressure, flow, and
radius change at the midpoint of the vessel. (b) Pressure difference between
the vessel ends. FV-1D (Boileau et al., 2015), 3D (Xiao et al., 2014)
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6.2.2 Iliac bifurcation

ℓ R0 h0 E R1 R2 Cp Rd γν
(cm) (mm) (mm) (kPa) (Pa·s·m−3) (Pa·s·m−3) (m3·Pa−1) (mm)

Aorta 8.60 7.58 0.90 500 - - - 8.44 9
Iliac 8.50 5.49 0.68 700 6.81×107 3.10×109 3.67×10−10 5.91 9

Table 6.2.3: Iliac bifurcation model parameters (Boileau et al., 2015). Blood
properties were taken as ρ =1060 kg·m−3 and μ =4×10−3Pa·s.

The bifurcation is a reflection location and it is a fundamental building block for
complex networks; its validation was performed on a three-vessel symmetric (i.e.
the two daughter vessels are equal) model of the iliac bifurcation (Table 6.2.3 and
Figure 6.2.2). Both outlet vessels were coupled with a windkessel model and a flow
waveform was imposed at the inlet.
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E, h0

ℓa
ℓi

ℓi

Figure 6.2.2: Iliac bifurcation scheme

Flow, pressure, and radius change at the aorta midpoint/outlet, and at the iliac
artery midpoint were reported in Figure 6.2.3, numerical errors w.r.t. 3D simula-
tions in Table 6.2.4. The 1D numerical models are capable of simulating the wave
reflectionscausedbythebifurcationas theflowandpressurewaveformsmatchthe
3Dones. The errordifferencebetweenFV-1DandoBF-1Dsolutions arewithin1%
for pressure and flowwaveforms. In the case ofΔr, the oBF-1Derrorw.r.t. 3D solu-
tion is≤ 10%whereas that is≤ 5% for the FV-1D solution. This is due the use of
a visco-elastic constitutive equation in the latter against the linear-elastic formula-
tion used in this study.
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Figure 6.2.3: Iliac bifurcation simulation results FV-1D (Boileau et al.,
2015), 3D (Xiao et al., 2014).

Aorta Bifurcation Iliac
FV-1D oBF-1D FV-1D oBF-1D FV-1D oBF-1D

ERMS
P 0.40 0.31 0.44 0.31 0.47 0.31
Q 0.81 0.45 1.08 0.45 0.68 0.44
Δr 2.49 4.30 4.08 4.20 4.31 4.40

EMAX
P 0.68 0.91 0.80 0.91 0.92 0.92
Q 2.44 1.71 3.28 1.13 1.80 1.10
Δr 4.01 10.20 6.95 10.30 7.48 11.0

E SYS
P -0.55 0.04 -0.72 0.04 -0.85 0.04
Q -2.44 -0.11 -3.26 -0.11 -1.58 -0.09
Δr -4.00 -4.60 -6.88 -7.33 -7.31 -18.0

EDIAS
P 0.53 -0.9 0.57 -0.15 0.57 -0.83
Q 1.16 -0.91 1.74 0.25 1.18 -0.80
Δr -1.35 -9.20 -1.89 -10.00 -2.35 -8.00

Table 6.2.4: Iliac bifurcation simulation percentage relative errors w.r.t 3D
solution. FV-1D values are reported from (Boileau et al., 2015).
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6.2.3 Systemic circulation

The blood flow in the large systemic arteries was simulated on a detailed anatomical
(ADAN) model (Blanco et al., 2014, 2015). This is a 61-segment network of the 56
majorarteries (Figure6.2.4)whosemechanicalpropertiesandboundaryconditions
are based on physiological human data (Table 6.2.5 and 6.2.6).

A typical adult individual flow waveform was imposed at the aorta inlet and a
three-elementwindkesselmodelwas coupled toeachof the31outlets. TheYoung’s
modulus was set as E = 225 kPa for each vessel (Boileau et al., 2015), and the wall
thickness as

h0(x) = R0(x)
(
ae−bR0(x) + ce−dR0(x)

)
, (6.3)

where a = 0.2802, b = 5.053 cm−1, c = 0.1324, and d = 0.1114 cm−1 (Avo-
lio, 1980). The lumen radius tapering was assumed to be linear between the proxi-
mal and the distal radiiR0p andR0d, respectively. Blood properties were set as ρ =
1060 kg·m−3 andμ = 4 × 10−3 Pa·s.

In the caseofADAN56model, Boileauet al. (2015) reports also thenumerical so-
lution obtainedwith finite-elements (FE-1D ), finite-difference (FD-1D ), and sim-
plified trapezium (STM-1D ) methods. The simplified trapezium method is based
on a full linearisation of the flow equations solved by means of the trapezium rule;
the resulting scheme is second-order accurate in space. All the solutionwaveforms
were reported for comparison with oBF-1D solution (Figures 6.2.5 and 6.2.6); er-
rors were computed w.r.t. FV-1D solution (Table 6.2.7).

Qualitatively, all thenumericalmodels solvecorrectly thewavepropagationand
reflection problem. Waveforms overlap along the cardiac cycle and there is no dif-
ference between FV-1D , FE-1D , and FD-1D as these were high-order non-linear
solvers with a visco-elastic constitutive equation. The flow waveforms generated
bytheoBF-1Dmodelunderestimated theFV-1Donesatpeaksystoleof10%,when
the inertial forcesbecomepredominantandthenon-linear termssolutiongain im-
portance. Thepressurewaveformscomputedby theoBF-1Dare inclose agreement
withthehigher-ordermodelswitherrors≤ 6%overall. TheFV-1Dschemeisbased
on the Arbitrary DERivative (ADER) approach which includes higher-order terms
resulting ingreater accuracy thanMUSCL in space and time. Thewaveforms shape
issimilarmeaningthatthereflectionatbifurcationandoutletsiteswasrepresented
adequately. Note thatFV-1Dschemedirectly imposes the conservationof the total
pressure at bifurcations, whereas the dynamic pressure was not considered in the
oBF-1D implementation.
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Name ℓ R0p R0d R1 R2 C
(cm) (mm) (mm) (109Pa·s·m−3) (Pa·s·m−3) (10−11m3·Pa−1)

1 AA I 7.44 15.95 12.95 - - -
2 BrA trunk 4.74 6.73 6.16 - - -
3 AA II 0.96 12.95 12.57 - - -
4 SA R I 1.57 4.90 4.18 - - -
5 Comm. CA R 8.12 4.48 3.33 - - -
6 Vertebral R 20.45 1.34 1.34 1.81 7.24 3.13
7a SA R II 4.11 4.18 2.30 - - -
7b Axillary R 12.00 2.30 2.08 - - -
7c Brachial R 22.31 2.08 1.83 - - -
8 Radial R 30.09 1.38 1.38 1.15 4.62 4.91
9 Ulnar R I 2.98 1.41 1.41 - - -

10a Comm. interosseous R 1.63 0.96 0.96 - - -
10b Ulnar R II 23.93 1.41 1.41 1.17 4.70 4.82
11 Post. interosseous R 23.06 0.68 0.68 4.78 19.13 1.18
12 Ext. CA R 6.09 2.27 2.27 0.94 3.76 6.03
13 Int. CA R 13.21 2.77 2.77 0.58 2.30 9.83
14 Comm. CA L 12.13 4.48 3.33 - - -
15 AA III 0.70 12.57 12.28 - - -
16 Ext. CA L 6.09 2.27 2.27 0.94 3.77 6.01
17 Int. CA L 13.21 2.77 2.77 0.58 2.31 9.80
18 SA L I 4.94 4.90 3.48 - - -
19a AA IV 4.31 12.28 10.55 - - -
19b Vertebral L 20.42 1.34 1.34 1.92 7.70 2.94
20 SA L II 4.11 3.48 2.30 - - -
21a Axillary L 12.00 2.30 2.08 - - -
21b Brachial L 22.31 2.08 1.83 - - -
21c Radial L 31.09 1.38 1.38 1.13 4.53 5.00
22 Ulnar L I 2.98 1.41 1.41 - - -
23 Comm. interosseous L 1.63 0.96 0.96 - - -
24a Ulnar L II 23.93 1.41 1.41 1.20 4.79 4.73
24b Post. interosseous L 23.06 0.68 0.68 4.80 19.19 1.18
25 Tor. aorta I 0.99 10.55 10.36 - - -
26 Post. intercostal R 19.69 1.40 1.40 24.91 99.65 0.23
27 Tor. aorta II 0.79 10.36 10.22 - - -
28 Post. intercostal L 17.80 1.40 1.40 25.56 102.23 0.22
29 Tor. aorta III 1.56 10.22 9.92 - - -
30 Post. intercostal R 20.16 1.55 1.55 23.24 92.97 0.24
31 Toracic aorta IV 0.53 9.92 9.82 - - -

Table 6.2.5: ADAN56 model parameters (part 1) (Boileau et al., 2015).
Aortic arch (AA), brachiocephalic artery (BrA), subclavian artery (SA), carotid
artery (CA).
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Name ℓ R0p R0d R1 R2 C
(cm) (mm) (mm) (109Pa·s·m−3) (Pa·s·m−3) (10−11m3·Pa−1)

32 Post. intercostal L 18.52 1.55 1.55 23.44 93.77 0.24
33a Toracic aorta V 12.16 9.82 7.54 - - -
33b Toracic aorta VI 0.32 7.54 7.49 - - -
34 Celiac trunk 1.68 3.35 3.21 - - -
35 Abd. aorta I 1.40 7.49 7.32 - - -
36 Comm. hepatic 6.66 2.69 2.69 0.33 1.34 16.92
37 Splenic I 0.39 2.17 2.17 - - -
38 Gastric L 9.29 1.51 1.51 34.34 137.36 0.16
39 Splenic II 6.44 2.17 2.17 0.47 1.89 11.97
40 Sup. mesenteric 21.64 3.93 3.93 0.22 0.87 0.26
41 Abd. aorta II 0.43 7.32 7.26 - - -
42 Renal L 2.18 2.71 2.71 0.23 0.91 25.03
43 Abd. aorta III 1.20 7.26 7.11 - - -
44 Renal R 3.77 3.10 3.10 0.23 0.91 24.95
45 Abd. aorta IV 5.41 7.11 6.43 - - -
46 Inf. mesenteric 9.02 2.08 2.08 2.39 9.57 2.37
47 Abd. aorta V 4.22 6.43 5.90 - - -
48 Comm. iliac R 7.64 4.50 4.09 - - -
49 Comm. iliac L 7.40 4.50 4.09 - - -
50a Ext. iliac R 10.22 3.38 3.19 - - -
50b Int. iliac R 7.25 2.82 2.82 0.41 1.66 13.66
51 Femoral R I 3.16 3.19 3.14 - - -
52 PFA R 23.84 2.14 2.14 0.34 1.37 16.53
53a Femoral R II 31.93 3.14 2.69 - - -
53b Popliteal R I 13.20 2.69 2.37 - - -
54 Ant. tibial R 38.62 1.17 1.17 2.45 9.81 2.31
55a Popliteal R II 0.88 2.37 2.35 - - -
55b Tibiofibular trunk R 3.62 2.35 2.35 - - -
55c Post. tibial R 38.29 1.23 1.23 2.12 8.46 2.68
56a Ext. iliac L 10.22 3.38 3.19 - - -
56b Int. iliac L 7.25 2.82 2.82 0.42 1.66 13.62
57 Femoral L I 3.16 3.19 3.14 - - -
58 PFA L 23.84 2.14 2.14 0.34 1.37 16.52
59a Femoral L II 31.93 3.14 2.69 - - -
59b Popliteal L I 13.20 2.69 2.37 - - -
60 Aant. tibial L 38.62 1.17 1.17 2.45 9.81 2.31
61a Popliteal L II 0.88 2.37 2.35 - - -
61b Tibiofibular trunk L 3.62 2.35 2.35 - - -
61c Post. tibial L 38.29 1.23 1.23 2.12 8.47 2.68

Table 6.2.6: ADAN56 model parameters (part 2) (Boileau et al., 2015).
Posterior femoral artery (PFA).
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Figure 6.2.5: Aortic arch I (1), Abdominal aorta V (33a), Right common
carotid (5). FV-1D, FE-1D, FD-1D, and STM-1D waveforms reported from
(Boileau et al., 2015).
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from (Boileau et al., 2015).
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P Q
ERMS EMAX E SYS EDIAS ERMS EMAX E SYS EDIAS

Aortic arch I 1.57 3.53 -0.66 3.53 2.25 11.31 0.03 -1.97
Abd. aorta V 2.22 5.65 -3.32 4.65 3.91 11.28 -8.82 8.05
Comm. carotid R 1.96 4.58 -2.01 3.70 7.60 23.04 2.54 -1.34
Comm. iliac R 2.30 5.88 -3.40 4.66 3.66 11.97 -10.25 7.08
Radial R 2.54 6.06 0.49 5.73 2.85 8.59 -4.75 0.85
Post. interosseous R 2.28 5.63 0.11 5.44 2.84 9.61 -5.62 3.26

Table 6.2.7: ADAN56 simulation percentage errors w.r.t. FV-1D solution
from (Boileau et al., 2015)

6.3 Experimental measurements

6.3.1 In-vitro model

Flow and pressure measurements in an in-vitro model (Matthys et al., 2007) have
been used for comparison with FV-1D and oBF-1D numerical results.

Themodel consists of 37 tapered vessels (Figure 6.3.1) representing themain ar-
teries in the systemic circulation. For each vessel, the pulse wave velocity (c) mea-
surementsaregivenin(Matthysetal.,2007); thesewereusedtocalculatetheYoung’s
modulus of each vessel as

E =
3

2

ρR0√
πh0

c2. (6.4)

Theoutlets inFV-1Dwerecoupledtoasingle-resistance lumped-parametermodel;
instead, in the caseofoBF-1Dmodel, theoutletswere coupledwitha three-element
windkessel. The peripheral resistances were set asR1 +R2 = R, whereR is the
peripheral resistance from (Matthys et al., 2007). The peripheral complianceswere
assumedtobethesameforall thewindkesselsandequal toC = 1×10−13 m3·Pa−1.
Vessels parameters are reported in Table 6.3.1.

The calculated numerical waveforms (P andQ) and the in-vitro measurements
at four locations in the network, are reported in Figure 6.3.2; the errors of oBF-1D
and FV-1D w.r.t. the experimental measurements are reported in Table 6.3.2.

Thepressurewaveformsareclose inshapeandamplitudeatall thefour locations
and all the errors are ≤ 15%. The largest errors are found in distal arteries (i.e.
ulnar and splenic) for the maximum pressure value, that is 14.72% and 15.66%,
respectively. The oBF-1D pressure absolute errors are similar to FV-1D ones as the
maximumdifferencebetweenthetwosolvers is10% inthesplenicartery. Theflow
waveforms computed by both FV-1D and oBF-1D models return errors as high as
60% for the maximum flow value. A visual inspection of the waveforms reveals
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that even though the mean behaviour is the similar (RMS values ≤ 26%), the re-
flection pattern is different and large oscillations occur. In the in-vitro and FV-1D
models, the distal vessels are coupled with a single resistance which causes unreal-
istic and non-physiological waveforms. The three-element windkessel used in the
oBF-1D model effectively dampens these spurious oscillations.
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(dashed circles), and vessel IDs, based on (Matthys et al., 2007).
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Artery ℓ R0p R0d E R1 +R2

(cm) (cm) (cm) (kPa) (109 Pa·s·m−3)
1 Ascending aorta 3.60 1.440 1.300 683.224 -
2 Brachiocephalic 2.80 1.100 0.729 689.627 -
3 Carotid R 14.5 0.537 0.386 701.344 2.67
4 Subclavian R I 21.8 0.436 0.334 685.437 -
5 Subclavian R II 16.5 0.334 0.278 672.370 -
6 Radial R 23.5 0.207 0.207 676.958 3.92
7 Ulnar R 17.7 0.210 0.210 689.695 3.24
8 Aortic arch I 2.10 1.300 1.250 676.746 -
9 Carotid L 17.8 0.558 0.373 706.203 3.11
10 Aortic arch II 2.90 1.250 1.180 671.553 -
11 Subclavian L I 22.7 0.442 0.339 698.554 -
12 Subclavian L II 17.5 0.339 0.284 698.549 -
13 Radial L 24.5 0.207 0.207 684.480 3.74
14 Ulnar L 19.1 0.207 0.207 694.061 3.77
15 Thoracic aorta I 5.60 1.108 1.100 683.145 -
16 Intercostals 19.5 0.412 0.322 684.853 2.59
17 Thoracic aorta II 7.20 1.100 0.926 675.178 -
18 Celiac I 3.80 0.397 0.397 678.030 -
19 Celiac II 1.30 0.431 0.431 680.213 -
20 Splenic 19.1 0.183 0.183 655.677 3.54
21 Gastric 19.8 0.192 0.192 702.496 4.24
22 Hepatic 18.6 0.331 0.289 679.062 3.75
23 Abdominal aorta I 6.20 0.926 0.801 675.509 -
24 Renal L 12.0 0.259 0.259 661.516 3.46
25 Abdominal aorta II 7.00 0.790 0.790 681.713 -
26 Renal R 11.8 0.255 0.255 684.061 3.45
27 Abdominal aorta III 10.4 0.780 0.588 687.436 -
28 Iliac R I 20.5 0.390 0.338 692.444 -
29 Iliac R II 21.6 0.338 0.231 714.263 -
30 Iliac R III 20.6 0.231 0.210 665.179 -
31 Iliac L I 20.1 0.402 0.334 688.672 -
32 Iliac L II 19.5 0.334 0.226 713.776 -
33 Iliac L III 20.7 0.226 0.212 688.122 -
34 Ant. tibial R 16.3 0.155 0.155 658.738 5.16
35 Post. tibial R 15.1 0.153 0.153 676.978 5.65
36 Post. tibial L 14.9 0.158 0.158 667.185 4.59
37 Ant. tibial L 12.6 0.155 0.155 676.820 3.16

Table 6.3.1: Vessel parameters for the 37-artery network. Based on (Boileau
et al., 2015; Matthys et al., 2007)
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P Q
Scheme ERMS EMAX E SYS EDIAS ERMS EMAX E SYS EDIAS

A. arch II
oBF-1D 2.97 9.53 0.65 -6.33 10.08 26.77 3.72 -4.03
FV-1D 1.87 3.72 -1.46 -0.30 12.11 29.13 8.75 -17.93

Thoracic a. II
oBF-1D 3.06 7.87 0.61 -4.48 17.82 61.80 35.49 -10.84
FV-1D 2.44 5.57 -1.03 1.81 25.43 65.69 61.59 -39.26

R. Ulnar
oBF-1D 5.14 14.72 -0.31 -8.99 10.18 19.97 15.57 -3.65
FV-1D 2.49 6.32 -2.20 3.92 11.62 30.93 16.50 -4.60

Splenic
oBF-1D 5.51 15.66 -3.38 -8.93 10.59 31.30 -14.77 -4.14
FV-1D 2.33 5.57 -0.97 -0.19 9.04 23.30 -1.47 -5.21

Table 6.3.2: In-vitro model simulation percentage relative errors w.r.t. mea-
sured waveforms for FV-1D and oBF-1D numerical schemes

6.3.2 Circle of Willis

In (Alastrueyet al., 2007), results of aone-dimensionalnumericalmodelwere com-
pared to in-vivo measurements of the blood flow velocity in the subclavian, bra-
chiocephalic, and carotid arteries. The arterial network consisted of 37 straight
vessels including a full representation of the circle ofWillis. This brain circulation
network has been used to validate the oBF-1D model in the case of small arteries.

The solution of the circle of Willis required the introduction of anastomosis in
thenetwork. Inorder toease thenumericalprocedure, a conventionalpositive flow
direction was set for each vessel. This is the direction towards which the blood is
mainly supposed to flow during the simulation. Each junction in the network was
appointed as either a bifurcation or an anastomosis. A bifurcation has one vessel
positively flowing inwards, whereas an anastomosis has two inward vessels (Fig-
ure6.3.3). Bydeclaring the typeof conjunction, thenumerical schemedirectly em-
ploys the correct set of equations (either (3.95) or (3.98)) andnumerical instabilities
are avoided.

Vessel parameters and inflow function were taken from (Alastruey et al., 2007)
and theyare reported inTable6.3.3. Bloodpropertieswere set asρ = 1050 kg·m−3

and μ = 4.5 × 10−3 Pa·s. Outlets were coupled with three-element windkessel
models whose peripheral resistance was reported asR = R1 + R2 in (Alastruey
et al., 2007). The winkdkessel inlet impedance R was adaptively set at each time
step tomatch the outlet vessel impedance, thus reducing spurious numerical oscil-
lations due to the coupling.
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Artery ℓ R0 E R1 +R2 Cp
(cm) (cm) (kPa) (109 Pa·s·m−3) (10−10 m3·Pa−1)

1 Ascending aorta 4.00 1.200 400 — —
2 Aortic arch I 2.00 1.120 400 — —
3 Brachiocephalic 3.40 0.620 400 — —
4 Aortic arch II 3.90 1.070 400 — —
5 Common carotid L 20.8 0.250 400 — —
6 Common carotid R 17.7 0.250 400 — —
7 Subclavian R 3.40 0.423 400 — —
8 Thoracic aorta 15.6 0.999 400 0.180 38.7
9 Subclavian L 3.40 0.423 400 — —
10 Ext. carotid L 17.7 0.150 800 5.430 1.27
11 Int. carotid L I 17.7 0.200 800 — —
12 Int. carotid R I 17.7 0.200 800 — —
13 Ext. carotid R 17.7 0.150 800 5.430 1.27
14 Vertebral R 14.8 0.136 800 — —
15 Brachial R 42.2 0.403 400 2.680 2.58
16 Brachial L 42.2 0.403 400 2.680 2.58
17 Vertebral L 14.8 0.136 800 — —
18 Int. carotid L II 0.50 0.200 1600 — —
19 PCoA L 1.50 0.073 1600 — —
20 PCoA R 1.50 0.073 1600 — —
21 Int. carotid R II 0.50 0.200 1600 — —
22 Basilar 2.90 0.162 1600 — —
23 MCA L 11.9 0.143 1600 5.970 1.16
24 MCA R 11.9 0.143 1600 5.970 1.16
25 ACA L I 1.20 0.117 1600 — —
26 ACA R I 1.20 0.117 1600 — —
27 PCA L I 0.50 0.107 1600 — —
28 PCA R I 0.50 0.107 1600 — —
29 ACA L II 10.3 0.120 1600 8.480 0.82
30 ACA R II 10.3 0.120 1600 8.480 0.82
31 ACoA 0.30 0.074 1600 — —
32 PCA L II 8.60 0.105 1600 11.08 0.62
33 PCA R II 8.60 0.105 1600 11.08 0.62

Table 6.3.3: Posterior communicating artery (PCoA), middle cerebral artery
(MCA), anterior cerebral artery (ACA), posterior cerebral artery (PCA), ante-
rior communicating artery (ACoA) (Alastruey et al., 2007).

Thevelocitywaveformscomputedby the1Dmodels (oBF-1DandFV-1D ) at the
three measurement locations are reported in Figure 6.3.4. The results are in good
agreementas thevelocitywaveformsoverlapateachofthethree locations. In (Alas-
truey et al., 2007), the comparison with Doppler measurements was only a quali-
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tative one. This was due to the lack of patient-specific information (network me-
chanical properties andboundary conditions) to informthe1Dmodel. In ahealthy
subject, the flow in the CCA is always positive during the cardiac cycle, so that the
brain is regularly supplied with blood. Instead, in the BrA and SCA there is a pe-
riod of back-flow at the beginning of the diastolic phase. These two observations,
assisted by measurements published in (Oates, 2008), were made also on the wave-
form computed by the FV-1D model.
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Figure 6.3.4: Velocity waveforms comparison with data from (Alastruey
et al., 2007) with permission.

6.4 Discussion and conclusions

The 1Dblood flowmodelwas presented highlighting its hyperbolic nature and the
need for specific numerical solution schemes. This led to the introduction of the
methodofcharacteristicsanditsapplicationinthefinitevolumenumericalmethod.
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The 1D equations were further linearised and integrated, resulting in the three-
element windkessel model used as an outlet boundary condition for the vascular
network.

The proposed numerical solution was validated against an analytical solution
and against studies published in literature providing numerical and experimental
data. The 1D models is capable of representing the physics of pulse wave transmis-
sion and reflection within complex arterial networks. Its accuracy, measured on
state-of-the-art benchmarks, was close to other finite volume solvers with errors
≤ 10% is the case of the complete ADAN56 model.

6.4.1 Limitations and Future Improvements

The solver was designed to be complex enough to represent the main characteris-
tics of the blood pulse wave propagation. In this view, some features, present in
other implementations, were not included. These are herein summarised and will
be added to a future versionof the solver aimedat simulating also thevenous circu-
lation.

• The vascular network inlet boundary condition was set by means of a user
provided time-function (volumetric flow rate or pressure). In the case of the
complete systemic circulation, the flow time-function resembles the wave-
form that can be measured at the left ventricle outlet. The boundary value
is assigned at each time step and it is not influenced by the presence of the
vascular network. As in the case of the outlets, the network impedance can
differ from the impedance of the coupled boundary condition, resulting in
non-physiological reflections. A deterministic model of the heart mechan-
ics would prevent these oscillations by adapting the cardiac output with re-
spect to the network impedance. A well-known left ventricle model is based
on the time varying elastance function (Suga and Sagawa, 1974), but there
are also lumped-parameter models taking into account the four chambers
and the presence of valves (Sun et al., 1997).

• The radial velocity profile was assumed either parabolic or flat for narrow
and large arteries, respectively. The velocity profile assumption was used
in the dimensionality reduction process and it simplified the description of
viscous losses. However, a better and more realistic representation of the
hæmodynamics can be achieved by including a direct calculation of the ve-
locityprofilefromWomersley’s theory (Čanicetal.,2006;Womersley,1955).
The velocity profile calculation depends on the knowledge of the pressure
gradient along the vessel, and this can be included by iterating until conver-
gence within a single time-step.
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• The mechanical behaviour of the arterial walls was assumed to be linearly
elastic, resulting in the adoption of the transmural pressure

P(x, t)− Pext =
√

π
A0(x)

E(x)h0(x)
1 − ν2

(√
A(x, t)
A0(x)

− 1

)
. (6.5)

However, wave propagation is strongly influenced by arterial wall
visco-elasticity and its mechanical representation. Therefore, this purely-
elasticwallmechanics canbe enhancedby amore realistic visco-elastic non-
linear constitutive representation. Conversely, veins collapse under physio-
logical conditionsandrequireadifferentconstitutive law(Figure6.4.1). The
venous transmural pressure is commonly described by

P(x, t)− Pext =
E(x)

12(1 − ν2)

(
h0(x)
R0(x)

)3
[(

A(x, t)
A0(x)

)m

−
(
A(x, t)
A0(x)

)n
]
,

(6.6)

wherem = 10 and n = −1.5 are typical values for vein-like collapsible
tubes (Müller and Toro, 2014; Shapiro, 1977).
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Figure 6.4.1: Pressure vs
normalised cross-sectional area
for the two tube laws (6.5,
6.6). The veins collapse (i.e.
A/A0 < 1) occur within their
physiological range (blue area).
The arteries behave linearly in
physiological condition (red
area). Adapted from (Müller
and Toro, 2014) with permis-
sion.

• In theviewof implementingthevenouscirculation, thetube law(6.6) should
be adopted. This will in turn change the momentum equation requiring the
derivationofnewflux (3.38)andsource (3.39) terms. Eventually, thecharac-
teristic solutionwill changewith the addition of three characteristic curves.
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• The body forces (such as the gravity) are neglected in the momentum equa-
tion. This is not a limiting assumption in the case of a vascular network in
the supine position. However, for a standing subject, the gravitational ef-
fect increases and cannot be ignored. This is accentuated in the venous sys-
tem where the pulse pressure does not drive the blood flow as in the arterial
part.

• The vessels were represented as straight and narrow circular elastic tubes.
However, actual arteries are often convoluted and asymmetric; for exam-
ple, the ascending aorta presents a tight bend right after the left atrium. The
effectof thebend is tocauseapressure loss in the system. Awaytomodel the
pressure loss is to subdivide the bend in small straight vessels and to intro-
duce a loss functionmimicking the conjunction of vessels at an angle β ̸= 0
(Figure 6.4.2a).

β1

β2
β3

β4

β5

β6

(a)

p
d1

d2

α1

α2

(b)

Figure 6.4.2: Pressure loss functions can be used to mimic realistic bends (a)
and bifurcations (b)

• Similarly, the proposed bifurcations are ideal as the bifurcation angle is not
takenintoconsideration (Figure6.4.2b). Moreaccurate interfaceconditions
for bifurcating vessels are obtained by the introduction of a loss function
taking into account the bifurcation angle. The issue arising by introducing
the loss functions consists in the selection of the loss coefficient that should
be linked to experimental measurements or to 3D fluid structure interac-
tion simulations.
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Part of this chapter has been included in:
Melis A, Clayton RH, Marzo A. A more efficient approach to perform sensitivity analyses in 0D
/1D cardiovascular models. Computational & Mathematical Biomedical Engineering Proceedings.
2015 Jul:806-9.

7 I Wave propagation through
a vascular bifurcation

Summary

In this chapter, the proposed sensitivity analysis technique is applied to a cerebral bifur-
cation model. Few runs of the vascular model were used to train a GP emulator that, once
trained, mimicked the vascular model behaviour across its parameter space. The GP ex-
plored the input spacewithsignificantly shorter running times. Predictedvalueswereused
tocomputeSobol sensitivity indices. The introductionof theGaussianprocessemulatoral-
lowed toperformthe sensitivity analysis in approximately 0.4%of the total time required
for the Monte Carlo analysis. The emulator error on predicting Monte Carlo simulations
outcomeswas less than1%. The sensitivity indices computedwith the twotechniqueswere
similar and differed by less than 3%.

7.1 Introduction

TheMonteCarlo (MC)method is a simple approach to compute sensitivity indices,
as it consists in running the mechanistic model several thousand times. For each
simulator run a different set of inputs are randomly drawn from a distribution of
points. This distribution covers the entire input space. Ideally, the distribution
contains infinitepoints,hencebyobtainingaresult foreachpoint, themodelglobal
behaviourwouldbeknown. Inpractice, aninfinitedistributioncannotbeachieved,
and MC sampling requires a number of runs of the order ofO(d × 106), where d
is the number of input parameters. Saltelli et al. (Saltelli, 2002; Saltelli et al., 2010)
introduced a MC-based technique to calculate sensitivity indices which requires a
number of runs of orderO(d× 103), but this can still be an impractical number of
runs for most applications.

Whenconsideringalargenumberofparameters, thecomputational timeneeded
for the d× 103 simulations becomes prohibitively high. This analysis can bemade
more efficient by introducing an approximation of the mechanistic model, i.e. an
emulator.
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The aim of this chapter is to show that the sensitivity analysis based on GP em-
ulator is more efficient in terms of computational time than that based on Monte
Carlo sampling. A patient-generic cerebral arterial bifurcation model was chosen
to show the benefits of using of GP emulators for cardiovascular applications. Re-
sults were validated on the outcomes of the MC analysis.

7.2 Methodology

The vascular model was based on the reduced 1D form of the general continuity
andNavier-Stokes equations for incompressible flowswithinnarrow straight elas-
tic tubes (Chapter 3). The vascular network taken into consideration consisted of a
simplified bifurcation model (Figure 7.2.1). An inlet boundary condition was ap-
plied to the inlet of the root vessel in terms of a flow time-function. Outlet bound-
aries of peripheral bifurcating vessels were coupled to three-element windkessel
models (Fernández et al., 2005); at capillary level, the last boundary condition was
assigned by assuming the arterial-venous interface pressure equal to zero.

R0d1

R0d2

bQin(t)

Z1

C1 R1

Z2

C2 R2

R0p

p

E, h0

ℓp
ℓd2

ℓd1

Figure 7.2.1: Bifurcation model scheme. The parent vessel p was connected
to two daughter vessels, d1 and d2, at the bifurcation node b. Each vessel
had its own mechanical properties: length ℓ, unstressed lumen radius R0, un-
stressed thickness h0, and wall Young’s modulus E. The two windkessel mod-
els had independent values for each component: inlet impedance Z, peripheral
resistance R, and peripheral compliance C. Inlet flow boundary condition was
applied at the root node as Qin(t).

Geometricalvalues,materialproperties, and inlet flowtimefunctionwerebased
ondata available for themiddle cerebral arterybifurcation and eachmodel param-
eter was varied within the reported physiological ranges (Reymond et al., 2009).
The bifurcation mechanics was defined by 17 inputs (Table 7.2.1). Daughter vessel
radii were set to satisfy Murray’s law (R3

0p = R3
0d1

+ R3
0d2

) and defined by the pa-
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rameterφ = R0d1/R0p . In order to avoid wave reflections induced by discontinuities
caused by time-dependent changes in diameters at the bifurcation outlets, wind-
kessel inlet impedancesZ were calculated at each time step tomatchdaughter ves-
sel outlet impedance.

Analysis of the resultswas conductedby extracting15outputs (Table 7.2.1). The
pressurewaveformswere computed at eachnodeof the system, andminimumand
maximum values at the middle point of each vessel and at bifurcation node bwere
recorded, i.e. min andmaxPp,d1,d2,b, respectively. Volumetric flow rate valueswere
calculated and reported as normalised values with respect to flow through the par-
ent vessel, i.e. Q̄di/Q̄p. Power losses between system inlet and each outlet, PLp−1,2,
werecomputedas thedifferenceof totalpressuretimesthe local flowrateat thetwo
locations. The pulse wave velocity within the three vessels was recorded as cp,d1,d2 .
Outputs from 9 to 15 were time-averaged across the cardiac cycle.

IDi Name Unit Range
1 R0p 10−3 m [1.75, 3.25]
2 φ – [0.4, 0.796]
3 Ep 103 Pa [184.701, 343.032]
4 Ed1 103 Pa [124.367, 230.967]
5 Ed2 103 Pa [124.367, 230.967]
6 R1 109 Pa·s·m−3 [7.35, 13.65]
7 R2 109 Pa·s·m−3 [7.35, 13.65]
8 C1 10−14 m3·Pa−1 [0.78, 1.38]
9 C2 10−14 m3·Pa−1 [0.78, 1.38]
10 ρ kg·m−3 [1000.0, 1100.0]
11 μ 10−3 Pa·s [2.0, 7.0]
12 ℓp 10−3 m [5.6, 10.4]
13 ℓd1 10−3 m [49.7, 92.3]
14 ℓd2 10−3 m [49.0, 91.0]
15 hp 10−3 m [0.7, 1.3]
16 hd1 10−3 m [0.7, 1.3]
17 hd2 10−3 m [0.7, 1.3]

IDo Name Unit
1 min(Pp) Pa
2 min(Pb) Pa
3 min(Pd1) Pa
4 min(Pd2) Pa
5 max(Pp) Pa
6 max(Pb) Pa
7 max(Pd1) Pa
8 max(Pd2) Pa
9 Q̄d1/Q̄p –
10 Q̄d2/Q̄p –
11 PLp−1 W
12 PLp−2 W
13 cp m·s−1

14 cd1 m·s−1

15 cd2 m·s−1

Table 7.2.1: Input names and IDs, units, and ranges (left). Output names
and IDs and units (right).

TheGPmodelwas implementedbyusingtheGPylibrary (GPy,2012). Inorderto
avoidnumerical problemsdue tobad conditioningof the covariancematrix, train-
ing inputs and training outputs were normalised dimension-wise, i.e. each dimen-
sion in the input spacewas separately normalised. The kernel function to compute
the covariancematrixwas obtained as the sumof a squared exponential kernel and
aMatérn 5/2 kernel. Hyperparameters optimisationwas conducted byminimising
the log-likelihood through the conjugate gradient descent method.

The sensitivity analysis was performed following a three steps strategy:

1. The mechanistic model was run with a small set of input values spanning
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evenly the entire parameter space. Simulation inputs and outputs consti-
tutedthedatasetT onwhichtheGPemulatorsweretrained. T wasdesigned
through orthogonal Latin hypercube sampling method to ensure an even
coverage of the input space. In order to avoid an ill-conditioned covariance
matrix, inputs and outputs were normalised.

2. The trained GP was then used to predict outcomes for a bigger set of inputs
with size of orderO(d× 103).

3. Sobol’s sensitivity indices were computed by means of ANOVA decomposi-
tion. Inputswererankedaccordingly to first-order indices. The largest first-
order indices indicated those inputs which mainly affect the outcome. Any
differences between first-order and total sensitivity indices indicated that
the outcome variance could be ascribed to covariance of more than one in-
put.

7.3 Gaussian process emulator verification

In order to assess the GP prediction error, a MC analysis was performed on the vas-
cular model. This consisted in running 17000 simulations on a fine grid covering
the entire 17-dimension input space. The 17000 inputs and the 17000 × 15 out-
puts constituted the GP dataset. A portion of the dataset was randomly sampled
andsaved fordiagnosticpurpose. TheGPmodelwas trainedonthe remainingpart.

The training sample was varied in size to assess the relation between the predic-
tion error and the sample size. Three diagnosticswere used to verifyGPmodel pre-
dictions Bastos and O’Hagan (2009):

1. NormalisedGPmodel predictionswere comparedwithnormalisedvascular
model outputs (Figure 7.3.1a). Points lying on thedashed line of equality in-
dicate a good agreement between emulator and simulator.

2. The differences between simulator outputs and emulator mean predictions
were quantified by means of the standardised prediction error. The emula-
tor is claimed to be able to represent properly the simulator when its error
distribution is normally distributed (Figure 7.3.1b). The normal distribu-
tionhavingmeanandstandarddeviationcomputedfromtheerrordistribu-
tion is plotted over the actual error distribution. A visual inspection of the
error distribution confirms the similarity between the two distributions.

3. The mean average prediction error (MAPE) was computed between emula-
tor predictions and simulator outputs for each output of interest
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(Figure7.3.1c) foradifferent input sample size. This indexscoredvalues less
than 1% for all outputs for a sample size greater than 70 points.
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Figure 7.3.1: Gaussian process validation diagnostics. (a) Graphical compar-
ison between emulator and simulator. (b) Prediction error distribution. (c) A
MAPE lower than 1% was achieved for a sample size of about 70 points.

7.4 Results and discussion

The trained GP emulator was used to predict results for all the 17000 input points
needed for the sensitivity analysis. These inputpointswere chosen to explore thor-
oughlythe inputhyperspace. Thecomputationalrunningtimesofboththenumer-
ical vascular model and the GP emulator are reported in Table 7.4.1. The predic-
tions made by the numerical model on theN = 70 training set took about 1.42
hours of computational time on a standard Linux workstation. Whereas it took
about 15.3 days of computational time to run all the 17000 simulations in the MC
analysis. The GP computational time for both training and prediction phases took
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in total 15.73 seconds. Thus, by coupling the numerical model with the GP regres-
sion model, the bulk of the computational time was taken by numerical simula-
tions on theN = 70 dataset used for training. Predictions forN = 17000 dataset
were made in a relatively short time by the GP emulator. By using the GP emula-
tor, the production of the sensitivity analysis dataset took about 0.4% of the MC
computational time.

N = 70 N = 17000
MC 1.42 hours 15 days 3 hours
GP 1.42 hours

Table 7.4.1: Elapsed computational time comparison between numerical
vascular model and GP emulator for training (N = 70) and MC analysis
(N = 17000) set of input points. The GP running time includes both train-
ing and prediction phases.

Theensembleof inputpoints andpredictedoutputswasused tocomputeSobol’s
sensitivity indices. The first order and total effect indices were converted to lumi-
nance values and plotted in heat maps (see figures 7.4.1a and 7.4.1b, respectively).
The second order indices were plotted in lower triangular matrices whose x- and y-
axes range all model inputs (Figure 7.4.2).
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input R0p φ Ep Ed1 Ed2 R1 R2 C1 C2 ρ μ ℓp ℓd1 ℓd2 hp hd1 hd2

output min(Pp, Pb, Pd1 , Pd2 ) max(Pp, Pb, Pd1 , Pd2 ) Q̄d1/Q̄p Q̄d2/Q̄p PLp−1 PLp−2 cp cd1 cd2

Figure 7.4.1: First-order (a) and total effect (b) sensitivity indices. The
higher the sensitivity index the darker the square. Inputs and outputs num-
bers and labels are reported in the bottom table.

The inputs whose first-order indices (Figure 7.4.1a) were larger than 40% are
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thosewhichmainlyaffectoutputvariances. Theparentvessel radiusR0p (input1) is
themaingeometricalparameterand itsvariationhadan importanteffect (∼ 50%)
on themaximumpressure values (outputs 5 – 8). Pressure values and flowdistribu-
tion (outputs 1 – 10) were affected by changes in peripheral resistance (input 6 and
7) to an extent of 70 – 90%. According to the physics of waves propagation, pulse
wave velocities (outputs 13 – 15)were affected by vessels’ Young’smodulus (inputs
3 – 5) and their wall thickness (inputs 15 – 17) by about 40%.
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Figure 7.4.2: Second-order indices Sij are plotted for each output in lower di-
agonal matrices. Principal diagonal elements are first-order indices Si. Outputs
are indicated above each matrix.

Peripheral compliance, blood density, and vessel length (inputs 8 – 10 and 11 –
14) scored low first-order sensitivity indices (less than 15%). The analysis of to-
tal effect indices (Figure 7.4.1b) confirmedR0p ,Ep, hp,R1, andR2 as the input pa-
rameterswhose variationmost affected output variation. Thesewere the input pa-
rameters worth to be prioritisied in a patient-specific scenario. The remaining in-
puts can be fixed to literature reference values. Themagnitude of second-order in-
dices were small in comparison to the magnitude of first-order and total effect in-
dices, indicating the covariance of inputs had little effect on output variance (Fig-
ure 7.4.2).

Finally, thesensitivityanalysiswasperformedonthe17000simulatorrunsfrom
theMonteCarloapproach,andthesensitivity indicesobtainedwerecomparedwith
those computed from GP predictions (Figure 7.4.3). Figure 7.4.3b shows that the
computed percentage error was always smaller than 3%.
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Figure 7.4.3: (a) Total effect sensitivity indices computed from MC analysis
results. (b) The error in computing sensitivity indices starting from GP predic-
tions rather than from actual simulations ranged between −3 and 3%.

7.5 Conclusions

A reduced number of model simulations were used to train a Gaussian process re-
gression model. This emulator was able to mimic the vascular numerical model
with a mean average percentage error lower than 1%when compared to the actual
model runs. The emulator running time was also much shorter than the simulator
one. More specifically, the adoption of a Gaussian process emulator in the sensi-
tivity analysis frameworkallowed for a reductionof computational timeby99.6%
comparedtoMonteCarloanalysis. Sensitivity indicescomputedwithGaussianpro-
cess predictions differed by3% from those computedwith results from theMonte
Carlo analysis.

This framework was tested on a simple vascular model of the middle cerebral
artery bifurcation, whose physics can be easily interpreted. As expected, parent
vesselradiuswasthemaininfluentialparameter,whereasvessel lengthdidnothave
aneffectonmonitoredoutputs. Vesselmechanicalproperties influencedpulsewave
velocity but not the waveforms minimum and maximum values. The peripheral
resistance had a major effect on the flow distribution and on the systolic pressure.
Blood viscosity had a small effect onpressurewaveform shape,whereas bloodden-
sity showed no effect. The interactions between inputs were described in terms of
second-order sensitivity indices. These indicesgavean insightof thenon-linearbe-
haviourof themechanisticmodel, e.g. the amountof flowentering the firstdaugh-
tervesselwasnotdirectlyaffectedbyR0p , butbythe interactionofR0p withallother
inputs.

The conclusionsdrawnfromsensitivity analysis arenotnovel, but theyconfirm
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that the developed framework is sound, and it is capable of capturing the intrinsic
non linear behaviour of flows through an elastic bifurcation. Total running times
were drastically reduced when using the emulator approach, which allowed a thor-
oughsensitivityanalysiswithcomparableaccuracytoaMonteCarloapproach. The
studyofmodel sensitivity indicesgaveaninsightof input interactionsandcouldbe
used to study how input uncertainty propagated to the outputs.
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Part of this chapter has been included with permission from:
Melis A, Clayton RH,Marzo A. Bayesian sensitivity analysis of a 1Dvascular model with Gaussian
process emulators. International Journal for Numerical Methods in Biomedical Engineering. 2017.

8 I Scalability study

Summary

In order to analyse the scalability of themethodology adopted inChapter 7, thiswas tested
on four vascular networks of increasing complexity. The scalability study showed that the
numberofmechanistic simulationsneeded to train aGaussianprocess for sensitivity anal-
ysiswasof theorderO(d), rather thanO(d×103)neededforMonteCarloanalysis (where
d is the number of parameters in the model). In the case of a complete network of 61 ves-
sels, the computational time needed to perform the sensitivity analysis with an emulator
was reducedby the99.96% compared to aMonteCarlo approach. A substantial part of this
chapter has been included in (Melis et al., 2017).

8.1 Introduction

The aim of this chapter is to compare sensitivity analysis of a 1D cardiovascular
model based on GP emulators with the traditional approach based on Monte Carlo
sampling. We have also shown how the GP properties scale with the vascular net-
work complexity. Four patient-generic arterial networks of increasing size were
employedtodemonstrate thebenefitsofusingGPemulators forcardiovascularap-
plications. Results were validated on the outcomes of a Monte Carlo analysis.

8.2 Methodology

In order to show how the computational time, the accuracy, and the convergence
of the proposed methodology scales with the mechanistic model complexity, four
vascular networks were analysed (Figure 8.2.1). These represent the iliac bifurca-
tion (8arteries), the ascendingand theupper thoracic aorta (7 arteries), the thoracic
aorta and the right arm (15 arteries), and a more complete cardiovascular system
(61 arteries). Geometrical values (lumen radius R0 and vessel length ℓ), material
properties (wall Young’s modulusE), inlet flow time function, and Windkessel pa-
rameters (peripheral resistanceRandperipheral complianceC)werebasedondata
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published in (Boileau et al., 2015;Brownet al., 2012;Xiao et al., 2014). Uncertainty
domains for all the parameters were set as in (Huberts et al., 2013c) (Table 8.2.1).

I II III IV

x x x

x

Figure 8.2.1: Diagrams of the four vascular networks used in the scalabil-
ity study: (I) iliac bifurcation (Xiao et al., 2014), (II) ascending and tho-
racic aorta (Brown et al., 2012), (III) thoracic aorta and right arm (Boileau
et al., 2015; Brown et al., 2012), (IV) complete model of the main 61 arteries
adapted from (Boileau et al., 2015). The deterministic model outputs were
extracted at the middle point of the root vessel of each network (white ×
marker).

ℓ (%) R0 (%) E (%) R (%) C (%)
−10, 10 −10, 10 −20, 20 −25, 25 −50, 50

Table 8.2.1: Simulation parameters uncertainty domain (Huberts et al.,
2013c): ℓ vessel length, R0 lumen radius, E wall Young’s modulus, R periph-
eral resistance, and C peripheral resistance.

Analysis of the results was conducted by extracting two outputs: the pressure
waveforms were computed at each node of the system, and minimum and maxi-
mum values at the middle point of the root vessel (i.e. the vessel to which the inlet
boundary condition is applied) were recorded (Figure 8.2.2(b)).
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Figure 8.2.2: (a) Typical inlet flow time functions used as inlet boundary
condition for the four networks, taken from (Boileau et al., 2015). (b) Exam-
ple of computed pressure waveform at the middle point of the root vessel of
network IV. The waveforms are reported as a function of the time normalised
with respect to the cardiac cycle period Tc. The minimum (circle) and the
maximum (square) pressure values are the waveform features taken as outputs
of the deterministic model.
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Figure 8.2.3: (a) Computational time required by the mechanistic solver to
compute the flow solution for each of the four networks (I − IV). The compu-
tational time increases as more vessels are added to the network. (b) Number
of input parameters in the vascular model to be studied with the sensitivity
analysis as the number of vessels increases. (c) Total computational time re-
quired to compute all the d×103 simulation for the sensitivity analysis by both
the Monte Carlo (MC, filled markers) and the Gaussian process (GP, empty
markers) methods.

TheGPpredictionerrorwasassessedbyperformingaMonteCarlo (MC)analysis
on thevascularmodels. This consistedof runningd×103 simulationsby sampling
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thed-dimensional input space. Thed×103 inputs and thed×103×2outputs con-
stituted the GP design dataD. A portion of the dataset was randomly sampled and
saved for diagnostic purposes. The GP model was trained on the remaining part.
TheMCanalysiswas performed for thenetworks I, II, and III, but not for the com-
plete model IV, as the computational time required would have been prohibitive
and estimated around 9 years and 4 months (Figure 8.2.3).

The training sample was varied in size to assess the relation between the predic-
tion error and the sample size. Three diagnostics (Bastos and O’Hagan, 2009) were
used to verifyGPmodel predictions: graphical analysis (Figure 8.2.4a-c), standard-
ised prediction error (Figure 8.2.4d-f), and mean average prediction error (MAPE)
(Figure 8.2.5). In case IV, for which the MC method was not applicable, the MAPE
was computed on a reduced dataset of 1000 simulator runs.

Figure 8.2.5: Mean average prediction error (MAPE) between emulator pre-
dictions and simulator outputs for each input of interest on the first three
networks (a) and for the complete model (b). The MAPE decreases as the
number of points in the training sample increases.

The sensitivity analysis for parameter fixing and prioritisation was performed
in the three step strategy of section 7.2.
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Figure 8.2.4: Gaussian process validation diagnostics for the first three vascu-
lar networks (I−III). (a-c) Graphical comparison between emulator predictions
and simulator outputs; points lying on the dashed line of equality indicate a
good agreement between the two techniques. (d-f) A properly trained emula-
tor is expected to have standardised prediction errors normally distributed.
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8.3 Results and discussion

The time spent to run a single simulation with the mechanistic solver, ts, for each
network is reported in Figure 8.2.3a. The trained GP emulators were used to pre-
dict results for all the d× 103 input points needed for the sensitivity analysis (Fig-
ure 8.2.3b). These input pointswere chosen to explore thoroughly the input hyper-
space. The sensitivity analysis computational running times, tSA, of both the nu-
mericalvascularmodelandtheGPemulatorarereportedinFigure8.2.3c. Thecom-
putational time in the MC analysis added up to 2.5 days for the single bifurcation,
and it was estimated to scale up to about 9 years in the case of the complete vascu-
lar model. The GP computational time for both training and prediction phases in-
creased as the number of vessels in the network increased. The tSA was always four
orders of magnitude smaller with respect to the MC approach. By coupling the nu-
merical model with the GP regression model, the bulk of the computational time
was taken by numerical simulations on the dataset used for training (Table 8.3.1),
e.g. 14 hours for the 61 arteries model. Predictions for the d × 103 datasets were
made in0.42secondsbytheGPemulator. Therefore, the sensitivityanalysisonthe
complete model was performed in 14 hours.

d NGP NMC tSAMC (%)
I 8 17 8000 0.216
II 29 34 29000 0.120
III 61 47 61000 0.075
IV 245 500 245000 0.040

Table 8.3.1: Gaussian process and Monte Carlo training sample size (NGP,
NMC) for the four vascular network. The time needed by the GP method
to perform the sensitivity analysis predictions is reported as percent of the
time taken by the MC, tSAMC%. For each network, its complexity is reported in
terms of the number of input parameters d.

TheGPpredictionerrordecreasedasthenumberofpoints inthetrainingsample
increased (Figure 8.2.5). The number of training points needed to score a MAPE
lower than 1%was always lower than the number of points needed to perform the
MCanalysis (Table8.3.1). These results indicated that thenumberofpointsneeded
to train the GP is of the orderO(d).
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Figure 8.3.1: (a-e, g) First-order sensitivity indices (Si) relating the variation
of minimum and maximum pressure (the outputs of the deterministic model,
Pmin and Pmax, respectively) at the ascending aorta location (∗ marker in (f))
with the variation of the lumen radius, vessel length, Young’s modulus, periph-
eral resistance and compliance for the five groups of arteries in (f).

117



In the case of the complete model, the ensemble of input points and predicted
outputs was used to compute first-order Sobol’ sensitivity indices (Figure 8.3.1a-
e). To ease the analysis, the indices were subdivided in five sets depending on the
vessel location as in (Eck et al., 2015b) (areas are indicated in Figure 8.3.1f). The
vessel length and theperipheral compliance (ℓ andC, respectively) scored low first-
order sensitivity indices (less than 0.02, Figure 8.3.1b,e). Upper limbs vessel radii
and Young’s moduli slightly affected (SR0,E ∼ 0.05) the maximum pressure in
the ascending aorta whereas they had no effect on the minimum pressure (Figure
8.3.1a,c). Aorta vessel radii andYoung’smoduliwere the topological parameters to
have the most effect on the maximum pressure (SR0,E ∼ 0.1). The peripheral re-
sistance (R) variation at organ vessels affected the variation of the maximum and
minimum pressure (SR ∼ 0.25), whereas the upper part of the network (upper
limbs and neck vessels) has a slightly lower effect (0.05 < SR < 0.15) on both
minimum and maximum pressure at the ascending aorta (Figure 8.3.1d). In order
to show the sensitivity indices in a qualitative way, these were converted to lumi-
nance values and plotted in a heat map (Figure 8.3.1g).

The choice of different inlet boundary conditions for thenetworks investigated
did not seem to affect the main outcome of the study, as computational time re-
duced linearly with the number of vessels for all networks regardless of the con-
ditions set at their inlets (Figure 8.2.3(c)). In addition, the same prediction accu-
racy, as measured by the MAPE (Figure 8.2.5), was achieved for a sample size pro-
portional to the number of vessels rather than to the type of flow time-function
used. Nonetheless, the inlet boundary condition is a source of uncertainty due to
its large variability between individuals. In future studies aimed at finding clinical
bio-mechanical markers, the inlet flow function will be included as a GP input.

8.4 Conclusions

One-dimensionalmodelsof thecardiovascular systemprovideanaccuratedescrip-
tion of the physics ofwave transmission in blood and can be used to provide realis-
tic or patient-specific pulse and flow rate waveforms. Their mathematical descrip-
tionreliesonthespecificationofa largenumberofparameters,whichareoftennot
readily available as typical orpatient-specific values. Manyof these cannotbe spec-
ified as a constant value either, as they will vary within the physiological envelope
of an individual. In this context, ranking and fixing of parameters through sensi-
tivity analysis has been previously proposed as a way to focus on the most influen-
tial model inputs or simply to quantify input uncertainty on variables of interest.
However, these operations may require many simulations, resulting in large or in-
feasible computational time.

A time efficient approach to sensitivity analysis is proposed in this chapter. A
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reduced number of model simulations were used to train a GP regression model.
This emulator was able to mimic the vascular numerical model with a percentage
error lower than 1%when compared to the actual model runs. The emulator run-
ning time was also much shorter than the simulator: the GP prediction phase for
network IVtook0.19 sasopposed toanaverageof197 s required for a single runof
thedeterministicmodel. More ingeneral, theadoptionofaGPemulator in the sen-
sitivity analysis framework allowed for a minimum reduction of computational
time by 99.96% compared to Monte Carlo analysis.

This framework scalability was tested by developing four vascular models of in-
creasing complexity, i.e. starting from a single bifurcation, the number of vessels
was increasedup to61 in the caseof a completevascularmodel. In all the four cases,
by introducing the GP, the simulator runs needed for the sensitivity analysis is re-
duced from d× 103 toO(d).

The analysis of sensitivity indices allowed us to identify the location in the net-
work of model parameters affecting maximum and minimum pressures in the as-
cending aorta. In particular, theminimumpressurewas affected by changes in the
peripheral resistance of organ arteries. The maximum pressure was sensitive to
changes in the aorta Young’s modulus as well as in the upper limbs arteries.

The introduction of a GP regression model as an output generator for a mech-
anistic model is a novel approach in the cardiovascular research community. The
conclusions drawn from sensitivity analysis are not novel, but they confirm that
the developed framework is sound, and it is capable of capturing the intrinsic non
linear behaviour of flows through a vascular network. Running times were drasti-
cally reduced when using the emulator approach, which allowed a thorough sensi-
tivityanalysiswithcomparableaccuracytoamuchmoretimeconsumingapproach.
The study of model sensitivity indices gave an insight into how the inputs interact
and could be used to study how input uncertainty propagates through to the out-
puts. The same approach has the potential to improve efficiency in the analysis of
more complex and complete models of the cardiovascular systems.
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Part of this chapter will be included in:
Melis A,Moura F, Larrabide I, Clayton RH,Narata AP,Marzo A. Improved biomechanical met-
rics of cerebral vasospasm identified via sensitivity analysis of a cerebral circulation model. In prepa-
ration.

9 I Cerebral vasospasm

Summary

In this chapter, the time efficient method to perform the sensitivity analysis of numerical
vascular models was applied to identify clinical biomechanical metrics (referred to from
here onwards as a biomarker) for a specific vascular condition, cerebral vasospasm. Cere-
bral vasospasm is the progressive narrowing of intracranial arteries following cerebral hæ-
morrhage. Incurrentclinicalpractice, theprimarynon-invasivediagnosticmethodis tran-
scranial echo-doppler that detects increases in blood velocity from baseline values follow-
ing the vessels narrowing. This is effective when the vasospasm affects large vessels at ac-
cessible locations, but it has low sensitivity when the narrowing occurs in the peripheral
vasculature. The study presented in this chapter had the aim of identifying novel cere-
bral vasospasm biomarkers through sensitivity analysis. The biomarkers were selected by
analysing pulse waveforms simulated by means of a 1D model of the cerebral circulation.
Sobol’s indiceswereused to identify thewaveformdescriptorsmost sensitive to vessel nar-
rowing. The identified biomarker, the maximum rate of pressure change over time, re-
sulted to be sensitive to both local and peripheral vasospasm. The sensitivity analysis was
performed in 5% of the computational time required by the Monte Carlo method.

9.1 Introduction

Cerebral vasospasm (CVS) is the progressive narrowing of intracranial arteries and
aseverecomplicationofsub-arachnoidhaemorrhage (SAH) (Fehneletal.,2014;Mac-
donald, 2016). Amongst the complications of SAH, CVS has been regarded as the
major cause of delayed cerebral ischemia (Kolias et al., 2009). Arterial narrowing
begins days after SAH and reaches its peak after typically one week when symp-
toms of cerebral ischemia become evident. Worldwide around 10 out of 100,000
patients have SAH each year and, of the 70% who survive the initial rupture, ap-
proximately 70% go on to suffer CVS, which often results in additional disability
or death (Pluta et al., 2009).

The economic costs of CVS-related morbidity are also disproportionately high,
as it tends toaffect youngerpeoplewhooften require long-termhealth care andare
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unable to return to work. Unfortunately, the mechanisms of SAH-induced CVS
remain incompletely understood from both pathogenic and therapeutic perspec-
tives. Many pathological processes have been proposed to explain the contraction,
the inflammatory and/or immunological responses of the vascular wall (Lin et al.,
2014). In current clinical practice, the primary diagnostic method is Transcranial
Doppler (TCD) due to thenon-invasive nature of this technique compared toX-ray
irradiation imaging methods (Kumar et al., 2015). TCD assessment detects an in-
crease in blood velocity from baseline values following the narrowing of affected
vessels (Aaslid et al., 1984; Fontana et al., 2015; Harders and Gilsbach, 1987). This
biomarkers canbe effectivewhendetectingCVSat accessible locations in larger ar-
teries, but velocity measurements have low sensitivity when the condition affects
themore peripheral intracranial vasculature, or vessels ‘hidden’ behind thick bone
tissue. For these reasons, and for the scarce confidence in current biomarkers, CVS
is often diagnosed by excluding other possible concomitant causes, thus limiting
the effectiveness of its direct management.

Pressurewaves inthecardiovascularsystemoriginatefromtheperiodiccontrac-
tionof theheart andpropagate throughtheelasticvesselsof thecardiovascular sys-
tem reflecting at points of mechanical discontinuity, such as branches, bends or
suddennarrowings, including those causedbyCVS.As they travel along the cardio-
vascular system, pressure waves collect a rich set of information about blood ves-
sel geometry, making them potentially useful as diagnostic indicators. Computer
models, inparticular1Dand0D-distributedmodels, havebeenused todescribe the
physics of these waves (Alastruey et al., 2007; Reymond et al., 2009).

Tobetterunderstandthecause-effectmechanismsgoverningCVS,computational
modelshavebeenproposed(Baeketal.,2007;Humphreyetal.,2007;LodiandUrsino,
1999; Robinson et al., 2010), where the CVS was assumed to occur in the middle
cerebral artery (MCA). However, these studies mainly focus on the biomarker cur-
rently used to identify CVS, blood flow maximum velocity, and show its increase
in the vessel affected by the condition. To the authors’ knowledge, there is no ev-
idence in the literature of studies attempting to correlate different types of CVS
(including those affecting the smaller peripheral vessels) to waveform features, at
proximal and accessible locations that could signal the presence of the condition.

Theeffectonwaveformsmaybehamperedbyother influencingfactorsnotnec-
essarily related to pathology. For example, changes in vessel compliance with age,
patient-specific variations in cardiovascular anatomy, andother physiological fac-
tors such as heart rate, peripheral vasodilation secondary to higher metabolic de-
mand or activity levels. The influence of these concomitant factors on waveforms
is not fully understood and has hampered the full exploitation of these models in
the clinic.

Theaimofthestudyreportedinthischapterwastodevelopa1Dnumericalmech-

122



anistic model of CVS to show the limitations of currently used biomarkers. More-
over, itwasproposedtheuseofGPemulators to identifyeffectivebiomarkers capa-
ble of characterising and stratifying different types (location and severity) of CVS
in presence of uncertain, noisy, or missing data.

9.2 Methodology

The study was organised into the following tasks:

• Deterministic model: implementation of a model of a typical cerebral cardio-
vascular network affected by CVS.

• Biomarker pool identification: identification of a comprehensive number of
pressure and flow rate waveform descriptors (biomarkers pool).

• Sensitivity analysis (SA) for CVS biomarker selection: identification of a GP
emulatorusingareducednumberofmodelrunsusingLatinhypercubesam-
pling to ensure an optimal coverage of the parameter space. The identified
GPwas thenused to runacomplete sensitivity analysis of themodel outputs
of interest (waveform biomarkers pool) to the input parameters of interest,
i.e. vessel radii reduction. This allowed the identificationof thosewaveform
features (CVS biomarkers) thatweremost sensitive to a change in lumen ra-
dius.

• Vasospasm characterisation: once these biomarkers (i.e. the waveform fea-
tures)were identified, the1Dmodelwasemployedtosimulatedifferenttypes
of CVS (location and severity). The results of this second set of simulations
werethenanalysedtoestablisharelationbetweenbiomarkersandCVSprop-
erties, and their sensitivity when compared with traditional biomarkers.

These tasks are further explained below.

9.2.1 Deterministic model

The idealised brain circulation network model chosen for this study consists of 17
vessels connected ina tree-likeconfiguration (Figure9.2.1). It starts fromthe inter-
nal carotid artery (ICA) and bifurcates into the anterior cerebral artery (ACA), and
theMCAand its distal vessels. TheACA was included to consider the effect of flow
redistribution caused by the CVS.
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Figure 9.2.1: Diagram of the vascular network model (right); the vascular
model location is indicated in the systemic circulation diagram (left). The
network starts from the internal carotid artery (ICA) and branches into the
middle cerebral artery (MCA) and in the anterior cerebral artery (ACA). Three
generations (I, II, and III) of arteries branch out the MCA. They are identified
by a numeric code following the branching pattern as the upper branches are
indicated by 1 and the lower branches are indicated by 2. The point at which
waveforms were monitored in the MCA is indicated by the cross marker.

Themechanicalpropertiesofthearteriesweretakenfrom(Reymondetal.,2009)
and are representative of a typical young, healthy individual. Additionally, the ef-
fect of ageingwas consideredby changingvessels elasticity to resemble individuals
of 10, 40, and 80 years old, as reported in (Gozna et al., 1974; Hayashi et al., 1980).
Thenetworkdevelops throughthreegenerationsofarteries (I-II-III inFigure9.2.1),
with radii following theMurray’s law,R3

p = R3
d1
+R3

d2
, where for eachbifurcation,

Rp is theparent vessel radius andRd1,2 are thedaughter vessels radii. Thebranching
was assumed to be symmetrical, i.e. Rd1 = Rd2 .

The inletboundaryconditionat ICArootwassetasa typicalvolumetric flowrate
waveform taken from (Reymond et al., 2009), and the outlet boundary conditions
were setbycoupling the1Dmodelwith three-elementwindkesselmodelsof thepe-
ripheralvasculaturewithtypicalperipheralresistanceandcompliancevaluestaken
from (Reymond et al., 2009).
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9.2.2 Biomarker pool identification

The biomarkers pool included minimum (min), maximum (max), and time aver-
age (mean) flow rate (Q), pressure (P) and velocity (u) values, aswell as their first (∂t)
and second derivatives (∂tt) with respect to time (t). These features are easy to ex-
tract from the waveforms and commonly used in the literature to calculate more
complex metrics (e.g. pulsatility index and augmentation index).

9.2.3 Sensitivity analysis for CVS biomarker selection

The CVS biomarkers were found by performing a SA of the 1D numerical model
outputs (Santner et al., 2013), where the SA identified the set of outputs most sen-
sitive to a changeof each single input of thenumericalmodel. TheCVSbiomarkers
were assumed to be those outputs sensitive to changes in lumen radius. Since the
vascular system is highly non-linear, its outputsmaybe sensitive tomore than one
input. Hence, to ensure that only those waveform features sensitive to changes in
vessel radius were selected, inputs other than R0 were also included in the SA. In
particular, the inputs considered in the SAstudywere the lumenradiusR0, thewall
Young’s modulusE, the vessel length ℓ, as well as the peripheral resistancesRp and
the peripheral complianceCp of the three-element windkessel models.

All values were initially set to a reference value (Table 9.2.1). The SA was per-
formed by changing the inputs within±50% of their reference value as such vari-
ation is to be expected in the CVS scenario (Findlay et al., 2015). A homogeneous
coverageof the input spacewas ensuredby theuseof theLatinhypercube sampling
method as explained in (Melis et al., 2017; Santner et al., 2013).

TheSAwasdonebymeansoftheanalysisofvariancedecompositionfromwhich
theSobol’s sensitivity indiceswerecomputed (Saltelli etal.,2010;Sobol,2001). Two
types of sensitivity indices were computed: the total-order sensitivity index (Ti)
measures the contribution to the output variance of the input i, and of the inter-
actions with other inputs; the higher-order indices (Hij) measure only the output
variance due to inputs i and j interaction. The SA indices were computed by means
ofaGPregressionmodel (Bishop,2006;OakleyandO’Hagan,2004;O’Hagan,2006;
Williams andRasmussen, 2006) and amore detailed description ofGP application
to SA is reported in chapters 7 and 8.
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Vessel R0 E ℓ Rp Cc
(mm) (kPa) (mm) (GPa·s·m−3) (×10−3m3·GPa−1)

ICA 2.50 509.998 132.0
ACA 1.97 525.033 14.0 4.60 60.316
MCA 2.00 523.892 4.0
1 1.58 544.749 4.0
2 1.58 544.749 4.0
1.1 1.26 573.941 4.0
1.2 1.26 573.941 4.0
2.1 1.26 573.941 4.0
2.2 1.26 573.941 4.0
1.1.1 1.00 612.726 4.0 35.51 4.769
1.1.2 1.00 612.726 4.0 35.51 4.769
1.2.1 1.00 612.726 4.0 35.51 4.769
1.2.2 1.00 612.726 4.0 35.51 4.769
2.1.1 1.00 612.726 4.0 35.51 4.769
2.1.2 1.00 612.726 4.0 35.51 4.769
2.2.1 1.00 612.726 4.0 35.51 4.769
2.2.2 1.00 612.726 4.0 35.51 4.769

Table 9.2.1: Reference values for vessel lumen radius (R0) and length (ℓ),
wall Young’s modulus (E), and peripheral windkessel resistance (Rp) and com-
pliance (Cp). Based on (Reymond et al., 2009). Vessel names refer to the
network diagram in Figure 9.2.1.
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The SA for CVS biomarkers selection was performed in four steps:

1. The1Dnumericalmodelwas runona set of 50 input points evenly covering
the parameter space defined by ±50% of the reference values. In order to
avoid ill-defined calculations, the simulation inputs and outputs were nor-
malised before being used to train the GP emulator.

2. TheGPemulator,basedonthesquaredexponentialkernel,was implemented
and trained by using GPy library (GPy, 2012). The GP training and optimi-
sation was achieved by means of the gradient descent method.

3. The predictions on theO(d× 103) input set were generated by the trained
GP.

4. Sobol’s sensitivity indices were computed by means of ANOVA decompo-
sition and converted to percent values. The members of the biomarker pool
wererankedaccordingly to their indiceswithrespect to theradius. Athresh-
old at 90%was set, i.e. the outputs scoring less than90%were filtered out. In
addition, thehigher-order indiceswerecomputedandoutputs scoringmore
than 5% were filtered out. This was to ensure that only outputs sensitive to
radius changes alone were selected.

9.2.4 Cerebral vasospasm simulations

Thepropagationandnarrowing levels ofCVSwasdecided in consultationwith two
fully trained Interventional Neuroradiologists from Hôpitaux de Tours, France.
Different CVS types were considered, describing increasing areas of progression
of the condition, either propagating from the MCA towards the peripheral vessels
(forward CVS) or from the peripheral vessels towards the MCA (backward CVS) in
a symmetric or asymmetric fashion as depicted in Figure 9.2.2. For each type, the
narrowing was gradually set in six steps from 0% (baseline condition without CVS)
to 60% (severe CVS) of vessel narrowing calculated as a percentage in diameter re-
duction with respect to the baseline value.
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Figure 9.2.2: Diagrams of CVS types in the network starting from the MCA.
The vessels affected by the CVS are coloured in black. The vessels not af-
fected by the CVS are coloured in gray. The CVS is subdivided in symmetric
(left) and asymmetric (right) types. In the symmetric cases, the CVS prop-
agates along upper and lower branches of the tree. In the asymmetric cases,
the CVS affects only the upper main branch of the system. Within these two
types (symmetric and asymmetric), we simulate the CVS propagating either
from left to right (forward) or from right to left (backward). The global con-
figurations are those in which the CVS affects the entire network (last line).

9.2.5 TCD measurements comparison

ThemethodologyadoptedtosimulateCVSonsetandpropagationwastestedagainst
experimental TCDmeasurements. These were available from the literature (Hard-
ers and Gilsbach, 1987) and constisted in repeated measurements of blood veloc-
ity at MCA location in subjects affected by SAH. The initial measurement (i.e. at
the rupture of SAA)was takenas reference value; all the subsequentmeasurements
werenormalisedw.r.t. the firstmeasurement tohighlight thepercentagedeviation
from initial conditions. In the literature study, imaging data was used to link the
percentage lumen reduction w.r.t. velocity measurements.

9.3 Results

9.3.1 Numerical model and emulator validations

The 1D numerical model was first validated (Figure 9.3.1a) by comparing its pre-
dictedvelocityvalues time-averagedover the cardiac cycle in theMCA, and inpres-
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(a) (b)

Figure 9.3.1: (a) Computed mean velocity change in the MCA (in percent-
age with respect to the pre-vasospasm value) versus percentage changes in
lumen radius. The gray shaded area indicates the confidence interval of the
numerical results of the present work; dashed lines: published measurements
(Harders and Gilsbach, 1987); dash-dotted line: numerical results from an-
other published study (Lodi and Ursino, 1999). (b) Comparison between the
numerical simulator outputs and the GP emulator outputs. Points lying close
to the dashed line (line of equality) indicate good agreement between the two
methods. The computed predictions mean average error is 3.53%.

ence ofCVS,withpublishedmeasurements fromSAHsubjects andwith the results
from another numerical study on CVS, published in (Harders and Gilsbach, 1987)
and (Lodi and Ursino, 1999), respectively. The reported curve (continuous line)
was obtainedby time averaging the results fromCVS simulations at different ages.
The grey area indicates the result variability due to age, i.e., the change in Young’s
modulus. The proposed numerical model is in good agreement with both results
from the literature. The difference between the curves are within 2% for radius
narrowing≤50%. Further narrowing makes both numerical models diverge from
the experimental measurements, reaching 20% difference at 60% radius narrow-
ing. Despite the divergence of the model results from the experimental, these are
still within the elastance-induced variance of the 1D numerical model data for all
degrees of CVS simulated.

TheGPemulatorwas trainedupon50simulator runs,where thenumberof sam-
ple points was taken proportional to the number of SA parameters (d =5) (Melis
et al., 2017). For validation purposes, an additional test set of 200 simulation was
run. Numerical outputs and GP predictions on the test set are plotted against each
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other in Figure 9.3.1b. The two methods are in good agreement as the points are
scattered close to the diagonal line of equality. The MAPE obtained for the test
set was 3.53%, which is small with respect to the 300% whole biomarker variation
within the CVS range.

The simulations on the 50 sample points dataset were performed on a standard
Linuxworkstation and took31hours to complete. TheGPmodel (implementedby
meansof theGPy library (GPy,2012)) trainingandthepredictionsonthe largerd×
103 datasetneeded for the sensitivity analysiswere completed in10.4 seconds. The
estimated computational time to perform a complete Monte Carlo (MC) analysis
using the deterministic model is of 612 hours. Thus, the generation of the dataset
for the SA by means of GP took the 5% of the MC computational time.

9.3.2 Sensitivity analysis and CVS biomarkers selection

The total effect (T) andhigher-order (H) sensitivity indiceswere converted to per-
centage luminance values and reported in heat maps (Figure 9.3.2). For instance,
the SA indicates that the mean flow rate (Q) waveform is more sensitive to interac-
tion between inputs (largeH indices) than to a single input. The velocity and pres-
sure waveforms have features sensitive to the change in radius only. The CVS bio-
markers were selected by filtering out all the outputs whoseT is smaller than 90%
andwhoseH relative to the lumenradius (R0) is larger than5%. These featureswere
identified as CVS biomarkers. The list of the eight CVS biomarkers is ranked with
respect to the total effect index and reported in Figure 9.3.2. In the following, the
results for average velocity (mean(u)) and maximum pressure gradient (max(∂tP))
are analysed. These were chosen because related to two different quantities (veloc-
ity and pressure), highly sensitive to changes in radius (highT index), and less af-
fected by parameter interactions (lowH index).

9.3.3 CVS simulations

Results areherepresentedas thepercent changeof the selectedeightCVSbiomark-
ers with respect to the pre-CVS value (C%). As the lumen narrows, theC% was com-
puted as

C(x) = 100
xCVS − xREF

xREF
,

where xCVS is the value of the CVS biomarker as the CVS is occurring (i.e. the nar-
rowing is>0%) and xREF is the value of the CVS biomarker in the pre-CVS configu-
ration.

The results in terms of time average velocity biomarker for the symmetric CVS
for a typical individual are reported in Figure 9.3.3. In the forward CVS case, the
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Figure 9.3.2: (left) Total effect (Ti) and higher-orders (Hi) sensitivity heat
maps. The darker the cell the higher the sensitivity of the output (row) to
the variation of the related input (column). The rounded percentage values
of the sensitivity indices are reported inside each cell. (right) Selected CVS
biomarkers sensitivity indices are ranked in descending order with respect to
the total effect index TR0 and reported in the table.
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Figure 9.3.3: Percent change of CVS biomarkers as the lumen radius de-
creases in the case of symmetric CVS occurring in an adult generic subject.
The CVS biomarker is reported above each plot and the lumen radius reduc-
tion location is indicated by the markers shape and colour.

mean velocity (mean(u)) monotonically increases as the lumen radius narrows. In
thebackwardCVS case, the values remain close to zeroC%, even for large lumen re-
ductions (R =60%). This suggests that time average velocity is an effective
biomarker only when measured at locations affected by vessel narrowing. When
the narrowing occurs far from the measurement point (backward CVS), the same
biomarker shows less sensitivity to vessel narrowing.

For all the symmetric CVS cases, the pressure biomarker increases as the vessels
narrow. In the global case, severe CVS (60% lumen reduction) causes the pressure
biomarker to rise by 150%. The pressure biomarker increase is linear with the ves-
sel narrowing in all the CVS cases. In the case of severe backward CVS, the pres-
surebiomarkerchange is100%whenonlytheoutermostvesselsare involved (white
marker), and it decreases as the CVS propagates toward the MCA (black marker).

In the case of asymmetric CVS (Figure 9.3.4), the velocity biomarker behaviour
is quantitatively similar to the symmetric case one. Themean(u) increases by475%
whena severe lumen reductionoccurs in theMCA, and it remains close to the base-
line value for thedistal CVS case. Conversely, the pressure biomarker increases lin-
early in both proximal and distal CVS cases. The max(∂tP) increases up to the 60%
for the global asymmetric CVS configuration, whereas the CVS occurring only in
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Figure 9.3.4: Percent change of CVS biomarkers as the lumen radius de-
creases in the case of asymmetric CVS occurring in an adult generic subject.
The CVS biomarker is reported above each plot and the lumen radius reduc-
tion location is indicated by the markers shape and colour.

generations I, II, and III causes a small (20%) increase.
In Figure 9.3.5, the velocity and pressure biomarkers are reported for the three

age groups studied, in the case of symmetric and asymmetric global CVS. The nu-
merical solution failed to converge in the case of 60% radius reduction for the el-
der subject due to numerical instabilities caused by the presence of thin and stiff
peripheral vessels. In all the cases, the velocity biomarker increases quadratically
as the vessel radii decrease. Symmetric and asymmetric curves have the same be-
haviour for lumen reduction between 0 and 50%,when the increase inmean veloc-
ity is of the 275%. The maximum change in mean(u), 475%, is obtained for the se-
vere symmetric CVS (60% reduction) case, whereas in the severe asymmetric case
the maximum mean(u) change is of the 400%. The distinction between symmetric
and asymmetric cases is clear for the pressure biomarker. The biomarker increase
is linear with the lumen radius reduction for all the ages, but the rate of change de-
pends on the CVS case. Symmetric CVS causes the pressure biomarker to increase
faster than the asymmetric one, e.g., 20% radius reduction causes 50% and 20%
change of the pressure biomarker in the symmetric and asymmetric cases, respec-
tively. In the case of severe CVS, the difference between the two cases is more evi-
dent, as the CVS causes an increase of 120% and 50% for the symmetric and asym-
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Figure 9.3.5: Percent change of three CVS biomarkers against the percent
change of lumen radius. Each curve is related to a different age group: young
(white), adult (gray), and old (black). The symmetric CVS results are indi-
cated by round markers and the asymmetric CVS ones are indicated by the
squared markers.

metric cases, respectively. However, the increase rate does not depend on the age
group as the age effect is small in comparison to the variation due to the change of
CVS configuration. This, as also reported in (Inagawa, 2016), indicates that the age
does not play an important role in the case of SAH.

9.4 Discussion and Conclusions

CVSis theprogressivenarrowingof intracranialarteries followingSAH.Currently,
the mechanism of CVS is not fully understood and the diagnosis process relies on
TCDmeasurementsofmeanbloodvelocityrepeatedintime. Thevelocitybiomarker
is capableofdetectingCVSinthecaseofTCDmeasurementsdirectlyperformedon
the narrowing vessel. In the case of peripheral narrowing, the velocity biomarker
prediction ability is lost and the CVS is not detected until the condition becomes
severe. The aim of this study was to identify more efficient biomarkers capable of
detecting and characterising different CVS typologies.

Amechanistic1Dmodelofthecerebralcirculationwasdevelopedtocharacterise
bloodpressurewaveforms. ApoolofCVSbiomarkerswas identified throughSAon
waveform features. The sought biomarkers are all those waveform features whose
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Figure 9.4.1: Comparison between the time-average velocity biomarker and
the pressure maximum-gradient biomarker in the case of peripheral cerebral
vasospasm for the adult-generic subject. The pressure biomarker is respon-
sive to small changes in radius (>10%) whereas the velocity biomarker starts
changing only in the case of severe vasospasm (>40%).

variation is caused by changes in mechanical properties due to CVS. A computa-
tionally efficient exploration of the parameter space in a 1D model of the cerebral
circulationwasperformedbymeansofGPemulation, thatreducedofthe95%com-
putational cost of the analysis with respect to a Monte Carlo analysis.

A CVS occurring at the measurement location caused an increase (more than
450%) of the velocity biomarker. However, when theCVSoccurredmore peripher-
ally (Figure9.4.1), thevelocitybiomarkerwasonlymarginallyaffectedbythevessel
lumenreduction (mean(u)decreasedbyapproximately20%whenvesselnarrowing
was60%). Thedecreasewasdue to the increase inperipheral resistance and, in turn,
to theflowdiversiontowards the ICA.Therefore, biomarkers relatedto thevelocity
waveform are not good predictors for CVS in distal arteries. Conversely, the maxi-
mumgradientof thepressurewaveformwas sensitive toCVS inbothproximal and
distal arteries. Increase (up to150%)of this biomarkeroccurred for all theCVScon-
figurations tested. Furthermore, the newly identified CVS biomarker, max(∂tP),
was only marginally influenced by changes in Young’s modulus within a physio-
logical range representative of an ageing healthy individual.

Velocitybiomarkerresultswere inagreementwithpreviouslypublishednumer-
ical and experimental works, where an increase in mean(u) was associated with de-
crease in MCA lumen radius (Harders and Gilsbach, 1987; Lodi and Ursino, 1999).
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However,while thenumericalmodel accuratelypredicted thevelocitybiomarkers,
the analysis was limited to the MCA and the surrounding cerebral network. In ad-
dition, the numerical model lacks a representation of the auto-regulation system,
therefore a further improvement of the numerical model would consist in the de-
velopment of a larger vascular network, including the whole circle of Willis, both
sides of the cerebral circulation, and a representation of the auto-regulationmech-
anism. This network could be used to identify better measurement locations for
monitoring early CVS onset. Alongside, the numerical results can be used as hy-
pothesis to inform novel clinical diagnostic approaches and technology develop-
ment, and to validate the newly found biomarker prediction accuracy.
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10 I Conclusions

The aim of this project was to develop an efficient framework for performing the
sensitivityanalysisof1Dnumericalvascularmodels. Thecomputationalbenefitof
usingGaussian process emulators to generate the dataset required for the sensitiv-
ityanalysiswasshown. Themaincontributionofthis thesis is thenovelapplication
of GP approach and the identification of the GP training dataset size required to
performa sensitivity analysiswith 1% error from theMonteCarlo simulation. An
application was presented where this technique was applied to the case of cerebral
vasospasm and enabled the early onset detection and classification of the pathol-
ogy.

The 1D vascular model presented in Chapter 3 was solved by means of a finite-
volume algorithm. Thenumerical solverwas validated against other numerical so-
lution and experimentalmeasurements published in the literature. The developed
solver matched the literature results in the case of simple arterial networks (single
vessel and single bifurcation). In the case of the complete model (ADAN56) the re-
sultsare inagreementandthedifferencesbetweenthewaveformsareduetotheuse
of different constitutive equations: linear-elastic in the case of the present study
and visco-elastic for the results from the literature. The comparison with the in-
vitromodelshowedagoodagreementbetweenthewaveformsmeanbehaviour. The
in-vitro model employed simply resistive outlet that caused wide oscillations; in
the proposed numerical model these oscillations were avoided by using a three el-
ement windkessel model as outlet boundary condition. The comparison with the
Circle of Willis model showed a good agreement in terms of the waveforms com-
puted by the two studies. The numerical solutions were qualitatively identical to
the waveforms measured in-vivo.

InChapters 4 and5 the sensitivity analysis andGaussianprocessmethodologies
were reported. In particular, the sensitivity analysis methods based on graphical
andvarianceanalysiswere shownbymeansofa simple example. TheGaussianpro-
cess methodology was reported with particular regards on the concepts of kernel
and its optimisation. Eventually, the problem of sampling was presented and the
Latin hypercube method was introduced.

A first application of the Gaussian process for sensitivity analysis of the 1D vas-
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cular model was reported in Chapter 7. The sensitivity of waveform features to in-
puts variation was studied in the case of a single cerebral bifurcation. The process
ofemulator trainingandverificationwas shownandtheresults in termsofcompu-
tational efficiency were reported. The sensitivity analysis results were consistent
with those obtained from the Monte Carlo analysis.

In Chapter 8, the scalability of the proposed methodology was analysed. In par-
ticular four vascular networks of increasing complexity were modelled. The Gaus-
sianprocessoutcomeswerecomparedwiththeMonteCarloanalysisresults to iden-
tify the sample size required to achieve a prediction error lower than 1%. As a re-
sult, the sample size is of the same order of the number of parameters in the net-
work. This reduced the computational time needed by the sensitivity analysis of
the 99.96%. The scalability study was published in (Melis et al., 2017).

InChapter9, theproposedmechanisticmodelwasusedtodescribepressurewave-
forms in cerebral circulation affected by cerebral vasospasm. This model was used
toidentifyamoresensitivecerebralvasospasmbiomarkerthanthosecurrentlyused
in clinical practice. In particular, the mean velocity measured by trans-cranial
Doppler does not detect distal cerebral vasospasm whereas the maximum gradient
of the pressure waveform is capable of differentiating between location and sever-
ity of cerebral vasospasm. The newly identified biomarker can be used as an addi-
tional diagnostic metric. The results suggest that cerebral vasospasm could be de-
tected earlier even in the case of peripheral onset. The biomarkers were selected by
meansof thesensitivityanalysis efficientlyperformedwithGaussianprocessemu-
lators. Asa futurework, thenumericalmodelwill beexpandedto include thewhole
cerebral circulationandanecessary stepwill consists inexperimental testingof the
new biomarker on patient specific measurements.

10.1 Key Findings

The thesis aimandobjectives as stated inSection1.1were satisfiedby the results re-
ported in theMethodology andApplications part, and summarised in the previous
paragraphs. The main contributions of this work to the research field of vascular
modelling are outlined here:

The validated 1D numerical solver openBF has been released under Apache 2.01

open-source license and it is free for use, reproduction, and distribution. This was
done in the view of foster collaborationwithin the vascularmodelling community
and to provide a starting point for future development of the solver. To the author
knowledge this is the first open-source finite-volume solver to be released in the
vascular modelling community.

1https://www.apache.org/licenses/LICENSE-2.0
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TheuseofGaussianprocessandstatisticalemulators inthevascularmodellingfield
is novel. The computational time required to perform the sensitivity analysis of a
full sizemodelwasreducedby99.6%whilemaintainingthepredictionerrorbelow
the 1%with respect to the Monte Carlo analysis results.

ThescalabilitystudyinChapter8andpublishedin(Melisetal.,2017)providesnovel
results also for the Machine Learning research community. The main result indi-
cates that the training data sample size w.r.t. d the number of inputs in the deter-
ministic model isO(d). While not fundamental in the machine learning scenario,
where trainingpoints are usually cheap to obtain, this result is relevant for compu-
tationally demanding deterministic simulations.

The fast trainingandreducedcomputationalpowerrequiredbythenovel SAwork-
flowproved to be usefulwhen analysing pulsewaveforms. The cerebral vasospasm
study in Chapter 9 showed how waveform features can be extracted via a SA and
these can be rich in information about peripheral areas of the vascular network.

10.2 Limitations

ThemathematicalmodelreportedinChapter3currently lacksseveral features. The
most important are herein listed in order of significance:

1. Amodel of theheart providing the inlet boundary condition to thenetwork
root. The heart model would avoid spurious reflections due to the one-way
couplingof thenetworkwitha fixed time-varying flowfunction. Moreover,
a parameterised model heart would provide the possibility of adapting the
cardiac output to cover the variability among subjects.

2. A constitutive equation describing visco-elastic and collapsible behaviour.
The former would allow a better matching of the numerical solution with
published results (Section 6.2.3). The latter is needed to describe the flow
in veins and it would be the first step toward the implementation of a full
closed loop of the systemic circulation.

3. The treatment of pressure losses due to bends and bifurcation angles. Al-
though empirical laws can be applied, these require loss coefficients to be
specified and possibly measured experimentally in-vitro.

4. The representation of gravitational effects on the blood flow. These are of
crucial importance in the view of studying the effect of human movement
on blood flow distribution.
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10.3 Future works

Thesimulationofpulsewavepropagationandreflectioninvesselnetworks isawell-
known tool in the biomechanical community. These methods have been proved
useful to predict and describe the complex behaviour of blood waveforms in the
clinical set-up. A limitation of these models consists in the large number of pa-
rameters to be measured on the subject to inform the computational analysis. The
methodology described in this thesis allows to effectively perform the sensitivity
analysis of the necessary parameters. The numerical model dimensionality can be
reduced and the parameters measurement process can be efficiently guided. The
proposed methodology based on Gaussian process emulators was aimed at the de-
scription of pulse waveform features. The computed emulators were not used to
generate the full time-series. A furtherdevelopmentof themethodologywouldex-
plicitly take into account the timevariable to represent thewholewaveformrather
thanonly its features. The reduced computational timeallows to include in thenu-
merical model additional physiological aspects. A multi-scale approach could be
explored with the 1D model taking into account the wave propagation, 0D mod-
els describing the auto-regulation feedback loop, and 3D models solving the flow-
structure-interaction incomplexgeometries. Thismulti-scalemodel couldbeused
forathoroughparameter-sweepstudyconsideringthephysiologicalrangesforeach
input. The outcomes of this study would be used to train a series of Gaussian pro-
cess emulators able to predict waveforms for any physiological condition in a very
short time. In a translational scenario, these emulators can provide a quick first
assessment of the subject state without long computational wait time. In addition,
the trainedemulatorscanbeusedasexplorationtool to testhypothesisandtoguide
the subsequent experimental and numerical studies.
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A I Blood flow equations

A.1 Mathematical model

The blood vessel was modelled as a straight, narrow and long tube with compliant
walls (Figure A.1.1) (Čanic and Kim, 2003; Nardinocchi et al., 2005). The flow was
assumed axisymmetric and a cylindrical coordinates system, (z, r, φ), was defined
having the z -axis along the vessel centreline.

r

zφ

R(z, t)h(z)A(z, t)

ℓ

Figure A.1.1: One-dimensional axisymmetric vessel geometry. The vessel has
a constant length ℓ, a time and space varying cross-sectional area A = πR2,
and the wall thickness h that can vary along the longitudinal direction

The flowmodelwasdevelopedby applying two fundamental conservationprin-
ciples: the conservationofmass and the conservationofmomentum. For a generic
fluid, these two principles can be mathematically expressed in compact vectorial
form (Anderson Jr, 2010) as

∂ρ
∂t

+∇ · (ρv) = 0, (A.1)

∂ v

∂t
+ (v · ∇)v = −1

ρ
∇P+ μ

ρ
Δv + F, (A.2)

where t is the time variable, ρ is the fluid density, v = [vz, vr, vφ]T is the velocity
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vector field,P is the pressure, μ is the fluid dynamic viscosity, andF represents all
the body forces (e.g. gravitational force) acting on the fluid system.

The gravity affects the hydrostatic pressure acting on the blood flowing along
each single vessel. In a network, this effect is important when studying the distri-
butionof blood volume. This is relevant for veinswhich aremore deformable than
arteries and, depending on the subject posture, they contain up to 70% of whole
blood volume. Here we will consider only arteries in supine subjects and the gravi-
tational effect will be ignored.

The energy equation, which expresses the principle of conservation of energy,
was not included. This is because the blood is assumed to be a homogeneous and
incompressible fluidat constant temperature. Therefore, therearenotemperature
gradients inside the fluid, and there is no heat flux by conduction. We also assume
that the heat generated by frictionhas a negligible effect and that there are noheat
sources in the system. Eventually, we assume that thewall displacement is small so
that the work done on the fluid is negligible.

Due to the assumption of incompressibility (i.e. ρ =const.) the continuity and
momentum equations in cylindrical coordinates (Landau and Lifshitz, 1959) read

∂vz
∂z

+
1

r
∂(rvr)
∂r

+
1

r
∂vφ
∂φ

= 0, (A.3)

∂vz
∂t

+ vz
∂vz
∂z

+ vr
∂vz
∂r

+
vφ
r
∂vz
∂φ

=

− 1

ρ
∂P
∂z

+
μ
ρ

[
∂ 2vz
∂z2

+
∂ 2vz
∂r 2

+
1

r
∂vz
∂r

+
1

r 2

∂ 2vz
∂φ2

]
, (A.4)

∂vr
∂t

+ vz
∂vr
∂z

+ vr
∂vr
∂r

+
vφ
r
∂vr
∂φ

−
v 2
φ

r
=

− 1

ρ
∂P
∂r

+
μ
ρ

[
∂ 2vr
∂z2

+
∂ 2vr
∂r 2

+
1

r
∂vr
∂r

+
1

r 2

∂ 2vr
∂φ2

− 2

r 2

∂vφ
∂φ

− vr
r 2

]
, (A.5)

∂vφ
∂t

+ vz
∂vφ
∂z

+ vr
∂vφ
∂r

+
vφ
r
∂vφ
∂φ

−
vrvφ
r

=

− 1

ρ
∂P
∂φ

+
μ
ρ

[
∂ 2vφ
∂z2

+
∂ 2vφ
∂r 2

+
1

r
∂vφ
∂r

+
1

r 2

∂ 2vφ
∂φ2

− 2

r 2

∂vr
∂φ

−
vφ
r 2

]
. (A.6)

By assuming axisymmetric flow, theφ -wise velocity componentwas neglected,
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vφ = 0. Theφ -momentum equation (A.6) was discarded, and the continuity (A.3),
the z - (A.4) and r -momentum (A.5) equations read

∂vz
∂z

+
1

r
∂(rvr)
∂r

= 0, (A.7)

∂vz
∂t

+ vz
∂vz
∂z

+ vr
∂vz
∂r

= −1

ρ
∂P
∂z

+
μ
ρ

[
∂2vz
∂z2

+
∂2vz
∂r2

+
1

r
∂vz
∂r

]
, (A.8)

∂vr
∂t

+ vz
∂vr
∂z

+ vr
∂vr
∂r

= −1

ρ
∂P
∂r

+
μ
ρ

[
∂2vr
∂z2

+
∂2vr
∂r2

+
1

r
∂vr
∂r

− vr
r2

]
, (A.9)

respectively.

Inordertosimplifythemathematicalprocedure, it isconvenienttoexpress (A.7-
A.9) innon-dimensional form(Barnardetal.,1966). Letus introducethecharacter-
istic radial and axial velocities, the characteristic vessel length, and the character-
istic lumen radiusVr,Vz, ℓ0, andR0, respectively. Non-dimensional quantities are
defined as follows:

r̃ =
r
R0

, z̃ =
z
ℓ0
, t̃ = t

Vz
ℓ0
, ṽz =

vz
Vz
, ṽr =

vr
Vr
, P̃ =

P
ρV2

z
. (A.10)

Thenon-dimensional term εwasdefined as the ratio of thewidth and the lengthof
the vessel,

ε =
R0

ℓ0
=
Vr
Vz

⇒ VzR0

Vrℓ0
= 1, (A.11)

Take as reference the case of the abdominal aorta (ℓ0 = 10 cm,R0 = 8.2 mm,V =
0.1 m·s−1, and μ/ρ3.2×10−6 m2 ·s−1) forwhichε = 0.082. Henceε ≪ 1meaning
that the radial velocity is small with respect to the axial velocity. Therefore, all the
terms of order ε2 and higher can be neglected.

The continuity equation (A.7) and the z -momentum equation (A.8) in non-
dimensional variables read

∂(̃rṽr)
∂ r̃

+
∂(̃rṽz)
∂z̃

= 0, (A.12)
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Vz
ℓ0

∂(Vzṽz)
∂ t̃

+
Vzṽz
ℓ0

∂(Vzṽz)
∂z̃

+
Vrṽr
R0

∂(Vzṽz)
∂ r̃

+
V2
zρ
ρℓ0

∂P̃
∂z̃

=

μ
ρ

[
Vz
ℓ2

0

∂2ṽz
∂z̃2

+
Vz
R2

0

∂2ṽz
∂ r̃2

+
Vz
r̃R2

0

∂ṽz
∂ r̃

]
, (A.13)

respectively. By re-arranging the terms, dividing byV2
z and multiplying by ℓ0r̃we

obtain

r̃
∂ṽz
∂ t̃

+ r̃ṽz
∂ṽz
∂z̃

+ r̃ṽr
∂ṽz
∂ r̃

+ r̃
∂P̃
∂z̃

=
μ
ρ

ℓ0

VzR2
0

∂

∂ r̃

(
r̃
∂ṽz
∂ r̃

)
. (A.14)

Note that

∂(̃rṽ2
z)

∂z̃
= ṽz

∂(̃rṽz)
∂z̃

+ r̃ṽz
∂ṽz
∂z̃

(A.15)

and

∂

∂ r̃
(̃rṽzṽr) = ṽz

∂(̃rṽr)
∂ r̃

+ r̃ṽr
∂ṽz
∂ r̃

. (A.16)

Hence, by substituting in (A.14), we obtain

r̃
∂ṽz
∂ t̃

+
∂(̃rṽ2

z)

∂z̃
+

∂

∂ r̃
(̃rṽzṽr) + r̃

∂P̃
∂z̃

=
μ
ρ

ℓ0

VzR2
0

∂

∂ r̃

(
r̃
∂ṽz
∂ r̃

)
, (A.17)

The z -momentum equation reads

r̃
∂ṽz
∂ t̃

+
∂(̃rṽ2

z)

∂z̃
+

∂

∂ r̃
(̃rṽzṽr) + r̃

∂P̃
∂z̃

=
μ
ρ

ℓ0

VzR2
0

∂

∂ r̃

(
r̃
∂ṽz
∂ r̃

)
. (A.18)

The r -wise momentum equation (A.9) in non-dimensional variables reads

Vz
ℓ0

[
∂(Vrṽr)

∂ t̃
+ ṽz

∂(Vrṽr)
∂z̃

]
+
Vrṽr
R0

∂ (Vrṽr)
∂ r̃

+
1

ρR0

∂

∂ r̃
(
ρV2

r P̃
)
=

μ
ρ

{
1

ℓ2
0

∂2(Vrṽr)
∂z̃2

+
1

R2
0

[
∂2(Vrṽr)
∂ r̃2

+
1

r̃
∂(Vrṽr)
∂ r̃

− Vrṽr
r̃2

]}
. (A.19)
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Bymultiplying (A.19) by R0/V2
z andbyneglecting the termsof order≤ ε2, we obtain

∂P̃
∂ r̃

= 0, (A.20)

hence the pressure is constant along the radial direction.

Introduce the average axial velocity

Ũ =
1

R̃2

ˆ R̃

0

2ṽzr̃d̃r, (A.21)

and the Coriolis coefficient

α =
1

R̃2Ũ2

ˆ R̃

0

2ṽ2
z r̃d̃r. (A.22)

We then expressed equations (A.12) and (A.18) in terms of the averaged quan-
tities across the cross-sectional area by integrating from r̃ = 0 to r̃ = R̃, with R̃
non-dimensional vessel inner radius. The continuity equation (A.12) reads

ˆ R̃

0

∂ r̃ṽz
∂z̃

d̃r+
ˆ R̃

0

∂ r̃ṽr
∂ r̃

d̃r =
∂

∂z̃

ˆ R̃

0

r̃ṽzd̃r

Ũ
R̃2

0
2

+r̃ṽr
∣∣
R̃, (A.23)

∂

∂z̃

(
Ũ
R̃2

0

2

)
+ R̃ṽr

∣∣
R̃ = 0, (A.24)

The no-slip boundary condition was expressed by the streamline condition

ṽr
∣∣̃
r=R̃ =

∂R̃
∂ t̃

+ ṽz
∣∣̃
r=R̃

∂R̃
∂z̃

, (A.25)

which, by assuming negligible longitudinal displacement of the wall (i.e. vz
∣∣̃
r=R̃ =

0), reads

ṽr
∣∣̃
r=R̃ =

∂R̃
∂ t̃

. (A.26)

By substituting (A.26) in equation (A.24), the continuity equation results

R̃
∂R̃
∂ t̃

+
∂

∂z̃

(
Ũ
R̃2

0

2

)
= 0. (A.27)
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The z -momentum equation (A.18) was integrated as

∂

∂ t̃

ˆ R̃

0

r̃ṽzd̃r+
∂

∂z̃

ˆ R̃

0

r̃ṽ2
z d̃r+

R̃2

2

∂P̃
∂z̃

=
μ
ρ

ℓ0

VzR2
0

R̃
∂ṽz
∂z̃

∣∣∣∣
R̃
, (A.28)

By using (A.21) and (A.22), equation (A.28) reads

∂(R̃2Ũ)
∂ t̃

+
∂(αR̃2Ũ2)

∂z̃
+ R̃2∂P̃

∂z̃
=
μ
ρ

ℓ0

VzR2
0

2R̃
∂ṽz
∂z̃

∣∣∣∣
R̃
. (A.29)

The dimensional form of the reduced equations was obtained by applying the
non-dimensional parameters definitions (A.10). The average axial velocity (A.21)
reads

Ũ =
1

R̃2

ˆ R̃

0

2ṽzr̃d̃r =
R2

0

R2

ˆ R

0

2
vzr
VzR2

0

dr =
2

VzR2

ˆ R

0

rvzdr, (A.30)

whereR is the inner vessel radius in dimensional variables. The dimensional aver-
age axial velocity was defined as

u = VzŨ =
1

R2

ˆ R

0

2rvzdr. (A.31)

Similarly, for the Coriolis coefficient α (A.22) we obtain

α =
1

R̃2Ũ2

ˆ R̃

0

2ṽ2
z r̃d̃r =

1

R2u2

ˆ R

0

2rv2
zdr. (A.32)

The continuity equation (A.27) became

∂R2

∂t
+

∂(R2u)
∂z

= 0. (A.33)

The z-wise momentum equation (A.29)

∂(R2u)
∂t

+
∂

∂z
(αR2u2) +

R2

ρ
∂P
∂z

= 2
μ
ρ
R
∂vz
∂r

∣∣∣∣
R
. (A.34)

In order to work out the viscous term on the right hand side of (A.34), the axial
velocity profile vz must be specified. By assuming that vz is independent of the lon-
gitudinal coordinate z, a typical approximation is given by

vz =
γν + 2

γν
u
[
1 −

( r
R

)γν ]
, (A.35)

where γν is a non-dimensional parameter whose value defines the shape of the ve-
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locity profile (Figure A.1.2). By substituting the velocity profile into the dimen-
sional form of α (A.32), it leads to

α =
γν + 2

γν + 1
⇒ γν =

α− 2

1 − α
. (A.36)

0.0 0.5 1.0 1.5 2.0

vz/u

0.0

0.2

0.4

0.6

0.8

1.0

r/
R

γν = 2γν = 9

Figure A.1.2: Radial velocity profile for different values of γν. The parabolic
profile is obtained for γν = 2, and the near plug-flow profile is obtained for
γν = 9.

The viscous term in (A.34) reads

2μR
ρ

∂vz
∂r

∣∣∣∣
R
= −2

μ
ρ
(γν + 2)u. (A.37)

We can eventually express (A.33) and (A.34) in dimensional quantities as
∂A
∂t

+
∂Q
∂z

= 0,

∂Q
∂t

+
∂

∂z

(
α
Q 2

A

)
+
A
ρ
∂P
∂z

= −2
μ
ρ
(γν + 2)

Q
A
.

(A.38)

where A = πR is the vessel cross-sectional area A andQ = uA is the volumetric
flow rate.
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A.2 Constitutive equation for arterial wall mechanics

The system (A.38) consisted of two equations and three unknowns, i.e. (A, P,Q).
To close the system of equations (A.38), a constitutive equation relating pressure
andareaneeds tobespecified (Formaggiaetal., 2010). For thisweusedthe indepen-
dentringmodelwhich isbasedontheassumptionthat theonlyforceexertedbythe
fluid on the walls is in the radial direction, thus shear stress was ignored. The tube
was treated as a series of thin rings and the circumferential stress was described by
means of Laplace’s law

σφ = P
R
h0
, (A.39)

where h0 is the vessel walls thickness. The strain could be written as

εφ =
2πR− 2πR0

2πR0
=

R
R0

− 1 =

√
A
A0

− 1. (A.40)

By assuming that the longitudinal displacement of the tube is negligible, vz
∣∣
r=R =

0, the wall is in a condition of plane strain, and by considering tube wall behaviour
as linearly elastic, stress and strain were related as

σφ =
E

1 − ν2
εφ, (A.41)

whereE is the Young’s modulus and ν is the Poisson’s ratio. Thus,

P
R
h0

= P
√
A√
πh0

=
E

1 − ν2

(√
A
A0

− 1

)
, (A.42)

P =
√
π
Eh0

1 − ν2

(
1√
A0

− 1√
A

)
. (A.43)

Thelinearelastic theoryemployedworksundertheassumptionofsmalldisplace-
ments, and we can linearise (A.43) by applying the change of coordinates

ψ =
√
A, ψ0 =

√
A0, (A.44)

P(ψ) =
√
π
Eh0

1 − ν2

(
1

ψ0

− 1

ψ

)
. (A.45)

The Taylor expansion of (A.45) read

P(ψ) = ξ0 + ξ1(ψ− ψ0) + . . . , (A.46)
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where

ξ0 = P(ψ0) = 0, (A.47)

and

ξ1 = P ′(ψ0) =
√
π
Eh0

1 − ν2

1

ψ2

∣∣∣∣
ψ0

=
√
π
Eh0

1 − ν2

1

ψ2
0

. (A.48)

Higher-orderstermswereneglectedand,bysubstitutingbackψandψ0, thepressure-
area relation became

P(A) =
√

π
A0

Eh0

1 − ν2

(√
A
A0

− 1

)
. (A.49)

Eventually, the 1D reduced system read

∂A
∂t

+
∂Q
∂z

= 0,

∂Q
∂t

+
∂

∂z

(
α
Q2

A

)
+
A
ρ
∂P
∂z

= −2
μ
ρ
(
γν + 2

)Q
A
,

P(A) = Pext + β

(√
A
A0

− 1

)
, β =

√
π
A0

Eh0

1 − ν2
.

(A.50)

171



172



B I Analytical solution

The1Dbloodflowequationscanbelinearisedaroundanequilibriumstateandsolved
in the frequency domain. The wave equation in terms ofP is

∂2P
∂t2

+
8μ
ρR2

∂P
∂t

− c2
∂2P
∂z2

= 0, (B.1)

which has the general solution

P = e−Bz
[
P1 cos(kz− ωt) + P2 sin(kz− ωt)

]
+

eBz
[
P3 cos(kz+ ωt) + P4 sin(kz+ ωt)

]
,

(B.2)

for a straight circular vessel.

Calculate derivatives

∂P
∂t

= e−Bz
[
ωP1 sin(kz− ωt)− ωP2 cos(kz− ωt)

]
+

eBz
[
− ωP3 sin(kz+ ωt) + ωP4 cos(kz+ ωt)

]
,

(B.3)

∂2P
∂t2

= e−Bz
[
− ω2P1 cos(kz− ωt)− ω2P2 sin(kz− ωt)

]
+

eBz
[
− ω2P3 cos(kz+ ωt)− ω2P4 sin(kz+ ωt)

]
,

(B.4)
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∂P
∂z

= −Be−Bz
[
P1 cos(kz− ωt) + P2 sin(kz− ωt)

]
+

e−Bz
[
− kP1 sin(kz− ωt) + kP2 cos(kz− ωt)

]
+

BeBz
[
P3 cos(kz+ ωt) + P4 sin(kz+ ωt)

]
+

eBz
[
− kP3 sin(kz+ ωt) + kP4 cos(kz+ ωt)

]
,

(B.5)

∂2P
∂z2

= e−Bz
{(

B2 − k2
) [
P1 cos(kz− ωt) + P2 sin(kz− ωt)

]
−

2Bk
[
− P1 sin(kz− ωt) + P2 sin(kz− ωt)

]}
eBz
{(

B2 − k2
) [
P3 cos(kz+ ωt) + P4 sin(kz+ ωt)

]
+

2Bk
[
− P3 sin(kz+ ωt) + P4 sin(kz+ ωt)

]}
.

(B.6)

Substitute in the general solution

eBz
{
−
[
ω2 + c2

(
B2 − k2

) ][
P3 cos(kz+ ωt) + P4 sin(kz+ ωt)

]
+(

8μ
ρR2

ω− 2c2Bk
)[

− P3 sin(kz+ ωt) + P4 cos(kz+ ωt)
]}

+

e−Bz
{
−
[
ω2 + c2

(
B2 − k2

) ][
P1 cos(kz− ωt) + P2 sin(kz− ωt)

]
+(

8μ
ρR2

ω− 2c2Bk
)[

P1 sin(kz+ ωt)− P2 cos(kz− ωt)
]}

= 0,

(B.7)

and solve as


ω2 + c2 (B2 − k2) = 0,

8μ
ρR2

ω− 2c2Bk = 0,
(B.8)
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B = ω
4μ

c2kρR2
, k =

√
2ω
2c

1 ±

√
1 +

(
8μ
ωρR2

)2
1/2

. (B.9)

Boundary conditions at the two vessel ends

P0 = a0 cos(ωt) + b0 sin(ωt), Pℓ = aℓ cos(ωt) + bℓ sin(ωt), (B.10)

P0 = P(z = 0) = (P1 + P3) cos(ωt) + (P4 − P2) sin(ωt), (B.11)

Pℓ = P(z = ℓ) =

{
e−Bℓ

[
P1 cos(kℓ) + P2 sin(kℓ)

]
+

eBℓ
[
P3 cos(kℓ) + P4 sin(kℓ)

]}
cos(ωt)+{

e−Bℓ
[
P1 sin(kℓ)− P2 cos(kℓ)

]
+

eBℓ
[
− P3 sin(kℓ) + P4 cos(kℓ)

]}
sin(ωt),

(B.12)



P1 + P3 = a0,

−P2 + P4 = b0,

e−BℓP1 cos(kℓ) + e−BℓP2 sin(kℓ)+
eBℓP3 cos(kℓ) + eBℓP4 sin(kℓ) = aℓ,

e−BℓP1 sin(kℓ)− e−BℓP2 cos(kℓ)−
eBℓP3 sin(kℓ) + eBℓP4 cos(kℓ) = bℓ,

(B.13)

MP =


1 0 1 0
0 −1 0 1

e−Bℓ cos(kℓ) e−Bℓ sin(kℓ) eBℓ cos(kℓ) eBℓ sin(kℓ)
e−Bℓ sin(kℓ) −e−Bℓ cos(kℓ) −eBℓ sin(kℓ) eBℓ cos(kℓ)

 , (B.14)
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P =


P1

P2

P3

P4

 , A =


a0

b0

aℓ
bℓ

 , (B.15)

MPPz = A, (B.16)

for each harmonic n,

MPP
(n)
z = A(n). (B.17)

The wave equation can be expressed also in terms of volumetric flow rate

Q = e−Bz
[
Q1 cos(kz− ωt) + Q2 sin(kz− ωt)

]
+

eBz
[
Q3 cos(kz+ ωt) + Q4 sin(kz+ ωt)

]
.

(B.18)

Eventually, one can couple a 0D model to the outlet. This is expressed by

C ∂P
∂t

+
∂Q
∂z

= 0, C =
2(1 − σ2)A3/2

0√
πEh0

, (B.19)

where

∂Q
∂z

= −Be−Bz
[
Q1 cos(kz− ωt) + Q2 sin(kz− ωt)

]
+

e−Bz
[
− kQ1 sin(kz− ωt) + kQ2 cos(kz− ωt)

]
+

BeBz
[
Q3 cos(kz+ ωt) + Q4 sin(kz+ ωt)

]
+

eBz
[
− kQ3 sin(kz+ ωt) + kQ4 cos(kz+ ωt)

]
.

(B.20)
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Substitute derivatives into (B.19)

e−Bz
{
Cω
[
P1 sin(kz− ωt)− P2 cos(kz− ωt)

]
−

B
[
Q1 cos(kz− ωt) + Q2 sin(kz− ωt)

]
+

k
[
− Q1 sin(kz− ωt) + Q2 cos(kz− ωt)

]}
+

eBz
{
Cω
[
− P3 sin(kz+ ωt) + P4 cos(kz+ ωt)

]
+

B
[
Q3 cos(kz+ ωt) + Q4 sin(kz+ ωt)

]
−

k
[
Q3 sin(kz+ ωt) + Q4 cos(kz+ ωt)

]}
= 0,

(B.21)

and solve as 

CωP1 − BQ2 − kQ1 = 0,

−CωP2 − BQ1 + kQ2 = 0,

−CωP3 + BQ4 − kQ3 = 0,

CωP4 + BQ3 − kQ4 = 0,

(B.22)

MQ =


−k −B 0 0
−B k 0 0
0 0 −k B
0 0 B −k

 , (B.23)

Q =


Q1

Q2

Q3

Q4

 , B =


−P1

P2

P3

−P4

 , (B.24)

MQQ z = CωB. (B.25)
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C I Continuity equation

C.1 Derivation in cylindrical coordinates

z

r

êz

êr

êφ

dr

dz

dφ

ro b

c

f

a

e

g

h

d

Figure C.1.1: Fluid control volume in cylindrical coordinates at distance ro
from the z axis.

Theinfinitesimalfluidelementderivationmethoddescribedin(AndersonJr.,2001)
and (Anderson Jr., 1995) has been used to obtain the continuity equation in cylin-
drical coordinates. In particular, the case of an infinitesimal fluid element fixed in
spacewiththefluidmovingthroughit is taken intoaccount. Thegeneralgeometric
configuration is shown in Figure C.1.1. Let us introduce:

• the cylindrical coordinates (z, r, φ) and the unit vectors (̂ez, êr, êφ);

• the infinitesimal volume dV = dzdrdφ;

• the velocity V⃗ = vz êz + vr êr + vφ êφ;

• the local fluid density ρ = ρ(z, r, φ);

Theprinciple ofmass conservationmaybe expressed as: thenetmass flowout of
the element must equal the time rate of decrease of mass inside the element.

179



z direction faces

Let us assume that the flow comes in through face abfe and exits via dcgh. The en-
tering mass flow is

Q z,in = ρvz Aabfe, (C.1)

whereAabfe = 1
2 [rodφ+ (ro + dr)dφ] dr. The mass flow out is

Q z,out =

(
ρvz +

∂(ρvz)
∂z

dz
)
Adcgh, (C.2)

whereAdcgh = Aabfe. Hence, the net mass flow in the zwise direction is given by

Q z = Q z,out − Q z,in =(
ρvz +

∂(ρvz)
∂z

dz
)
Adcgh − ρvzAabfe =

1

2

∂(ρvz)
∂z

[
rodφ+ (ro + dr)dφ

]
drdz =(

1

2
rdzdrdφ+

1

2
rdzdrdφ+

1

2
dzdr2dφ

)
∂(ρvz)
∂z

=

∂(ρvz)
∂z

dV+ o(dr2).

(C.3)

r-direction faces

The mass flow entering through face abcd is expressed by

Q r,in = ρvrrodφdz, (C.4)

while for the outflow through cghd, the change of the area has to be taken into ac-
count as

Q r,out =

(
ρvr +

∂(ρvr)
∂r

dr
)
(ro + dr)dφdz, (C.5)

thus the net mass flow in the radial direction reads
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Q r =

(
ρvr +

∂(ρvr)
∂r

dr
)
(ro + dr)dφdz− ρvrrodφdz =

ρvrdzdrdφ+
∂(ρvr)
∂r

rodzdrdφ+ o(dr2) =

1

ro
ρvzdV+

∂(ρvr)
∂r

dV+ o(dr2).

(C.6)

φ direction faces

In this case the inflow and outflow areas are the same, bfgh = cghd, hence the net
mass flow is given by

Q φ =
∂(ρvφ)
∂φ

dzdrdφ =
1

ro
∂(ρvφ)
∂φ

dV. (C.7)

We now apply the mass conservation principle and re-write all the terms as

time rate of
decrease
of mass inside
the element

=
∂(ρvz)
∂z

dV+
1

ro
ρvzdV+

∂(ρvr)
∂r

dV+
1

ro
∂(ρvφ)
∂φ

dV, (C.8)

where the terms of order dr2 have been neglected. Since rate of decrease of mass in
the control volume is given by−∂ρ

∂t dV, the continuity equation reads

−∂ρ
∂t
dV =

∂(ρvz)
∂z

dV+
1

ro
ρvzdV+

∂(ρvr)
∂r

dV+
1

ro
∂(ρvφ)
∂φ

dV, (C.9)

wherethe infinitesimalvolumetermdVcanbesimplifiedandtheradialcoordinate
generalised in order to obtain

∂ρ
∂t

+
∂(ρvz)
∂z

+
∂(ρrvr)
∂r

+
1

r
∂(ρvφ)
∂φ

= 0. (C.10)

181



182



Permissions

183





11/01/2018 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=8eaabcb3-c83e-4a8b-91e3-af5b49a9… 1/3

SPRINGER NATURE LICENSE
 TERMS AND CONDITIONS

Jan 11, 2018

This Agreement between The University of Sheffield -- Alessandro Melis ("You") and Springer Nature ("Springer Nature") consists of
your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number 4265990390110

License date Jan 11, 2018

Licensed Content Publisher Springer Nature

Licensed Content Publication Medical & Biological Engineering & Computing

Licensed Content Title Multi-branched model of the human arterial system

Licensed Content Author A. P. Avolio

Licensed Content Date Jan 1, 1980

Licensed Content Volume 18

Licensed Content Issue 6

Type of Use Thesis/Dissertation

Requestor type academic/university or research institute

Format electronic

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

Will you be translating? no

Circulation/distribution >50,000

Author of this Springer Nature
content

no

Title Gaussian process emulators for 1D vascular models

Instructor name A. Marzo

Institution name The University of Sheffield

Expected presentation date Jan 2018

Portions Figure 5

Requestor Location The University of Sheffield
 Pam Liversidge Building

 Mappin Street
 Room E09

 Sheffield, S13JD
 United Kingdom

 Attn: The University of Sheffield
Billing Type Invoice

Billing Address The University of Sheffield
 Pam Liversidge Building

 Mappin Street
 Room E09

 Sheffield, United Kingdom S13JD
 Attn: The University of Sheffield

Total 0.00 USD
Terms and Conditions

Springer Nature Terms and Conditions for RightsLink Permissions
Springer Customer Service Centre GmbH (the Licensor) hereby grants you a non-exclusive, world-wide licence to reproduce
the material and for the purpose and requirements specified in the attached copy of your order form, and for no other use,
subject to the conditions below:

1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you
should ensure that the material you are requesting is original to the Licensor and does not carry the copyright of another
entity (as credited in the published version).

 



11/01/2018 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=8eaabcb3-c83e-4a8b-91e3-af5b49a9… 2/3

If the credit line on any part of the material you have requested indicates that it was reprinted or adapted with permission
from another source, then you should also seek permission from that source to reuse the material.

 

2. Where print only permission has been granted for a fee, separate permission must be obtained for any additional
electronic re-use. 

 

3. Permission granted free of charge for material in print is also usually granted for any electronic version of that work,
provided that the material is incidental to your work as a whole and that the electronic version is essentially equivalent to,
or substitutes for, the print version.

 

4. A licence for 'post on a website' is valid for 12 months from the licence date. This licence does not cover use of full text
articles on websites.

 

5. Where 'reuse in a dissertation/thesis' has been selected the following terms apply: Print rights for up to 100 copies,
electronic rights for use only on a personal website or institutional repository as defined by the Sherpa guideline
(www.sherpa.ac.uk/romeo/).

 

6. Permission granted for books and journals is granted for the lifetime of the first edition and does not apply to second and
subsequent editions (except where the first edition permission was granted free of charge or for signatories to the STM
Permissions Guidelines http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/), and does
not apply for editions in other languages unless additional translation rights have been granted separately in the licence.

 

7. Rights for additional components such as custom editions and derivatives require additional permission and may be
subject to an additional fee. Please apply to
Journalpermissions@springernature.com/bookpermissions@springernature.com for these rights.

 

8. The Licensor's permission must be acknowledged next to the licensed material in print. In electronic form, this
acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract, and must be hyperlinked
to the journal/book's homepage. Our required acknowledgement format is in the Appendix below.

 

9. Use of the material for incidental promotional use, minor editing privileges (this does not include cropping, adapting,
omitting material or any other changes that affect the meaning, intention or moral rights of the author) and copies for the
disabled are permitted under this licence.

 

10. Minor adaptations of single figures (changes of format, colour and style) do not require the Licensor's approval. However,
the adaptation should be credited as shown in Appendix below.

 

Appendix — Acknowledgements:
 

For Journal Content:
 Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME]

[REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)
 

For Advance Online Publication papers:
 Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME]

[REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication), advance online
publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].)

For Adaptations/Translations:
 Adapted/Translated by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL

NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

Note: For any republication from the British Journal of Cancer, the following credit line style applies:

Reprinted/adapted/translated by permission from [the Licensor]: on behalf of Cancer Research UK: : [Journal
Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s)
Name), [COPYRIGHT] (year of publication)

For Advance Online Publication papers:
 Reprinted by permission from The [the Licensor]: on behalf of Cancer Research UK: [Journal Publisher (e.g.

Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT]
(year of publication), advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM])



11/01/2018 RightsLink - Your Account

https://s100.copyright.com/MyAccount/web/jsp/viewprintablelicensefrommyorders.jsp?ref=8eaabcb3-c83e-4a8b-91e3-af5b49a9… 3/3

For Book content:
 Reprinted/adapted by permission from [the Licensor]: [Book Publisher (e.g. Palgrave Macmillan, Springer etc) [Book

Title] by [Book author(s)] [COPYRIGHT] (year of publication)
 

Other Conditions:

Version  1.0

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 1/5

ELSEVIER LICENSE

 TERMS AND CONDITIONS

Jan 11, 2018

This Agreement between The University of Sheffield -- Alessandro Melis ("You") and
Elsevier ("Elsevier") consists of your license details and the terms and conditions provided
by Elsevier and Copyright Clearance Center.

License Number 4266000693588

License date Jan 11, 2018

Licensed Content Publisher Elsevier

Licensed Content Publication Journal of Biomechanics

Licensed Content Title Modelling the circle of Willis to assess the effects of anatomical

variations and occlusions on cerebral flows

Licensed Content Author J. Alastruey,K.H. Parker,J. Peiró,S.M. Byrd,S.J. Sherwin

Licensed Content Date Jan 1, 2007

Licensed Content Volume 40

Licensed Content Issue 8

Licensed Content Pages 12

Start Page 1794

End Page 1805

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of

figures/tables/illustrations

1

Format electronic

Are you the author of this

Elsevier article?

No

Will you be translating? No

Original figure numbers Figure 5

Title of your

thesis/dissertation

Gaussian process emulators for 1D vascular models

Expected completion date Jan 2018

Estimated size (number of

pages)

190

Requestor Location The University of Sheffield

 Pam Liversidge Building

 Mappin Street

 Room E09

 Sheffield, Please choose a State S13JD

 United Kingdom

 Attn: The University of Sheffield

Publisher Tax ID GB 494 6272 12

Total 0.00 GBP

Terms and Conditions

INTRODUCTION
1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 2/5

established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source.  If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made
to any Lancet figures/tables and they must be reproduced in full.
6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions.  If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted.  Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions.  These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction.  In the event of



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 3/5

any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you.  Notice of such denial will be made using the contact information provided by you. 
Failure to receive such notice will not alter or invalidate the denial.  In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE
The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non-exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper-text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password-protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available
version. Please note that Cell Press, The Lancet and some society-owned have different
preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an
article that has been accepted for publication and which typically includes author-
incorporated changes suggested during submission, peer review and editor-author
communications.
Authors can share their accepted author manuscript:

immediately
via their non-commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 4/5

via their research institute or institutional repository for internal institutional
uses or as part of an invitation-only research collaboration work-group
directly by providing copies to their students or to research collaborators for
their personal use
for private scholarly sharing as part of an invitation-only work group on
commercial sites with which Elsevier has an agreement

After the embargo period
via non-commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

link to the formal publication via its DOI
bear a CC-BY-NC-ND license - this is easy to do
if aggregated with other manuscripts, for example in a repository or other site, be
shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value-adding publishing activities including peer review co-ordination, copy-editing,
formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access
articles:
Subscription Articles: If you are an author, please share a link to your article rather than the
full-text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.
Gold Open Access Articles: May be shared according to the author-selected end-user
license and should contain a CrossMark logo, the end user license, and a DOI link to the
formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above:  
Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
permitted to post a summary of their chapter only in their institution's repository.
19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.
 
Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly
2000 established subscription journals that support open access publishing. Permitted third
party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 5/5

Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

Associating advertising with the full text of the Article
Charging fees for document delivery or access
Article aggregation
Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
 
20. Other Conditions:
 
v1.9
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or

+1-978-646-2777.



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 1/4

JOHN WILEY AND SONS LICENSE

 TERMS AND CONDITIONS

Jan 11, 2018

This Agreement between The University of Sheffield -- Alessandro Melis ("You") and John
Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and
conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4265990092795

License date Jan 11, 2018

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication International Journal of Numerical Methods in Biomedical

Engineering

Licensed Content Title A global multiscale mathematical model for the human circulation

with emphasis on the venous system

Licensed Content Author Lucas O. Müller,Eleuterio F. Toro

Licensed Content Date Jan 15, 2014

Licensed Content Pages 45

Type of use Dissertation/Thesis

Requestor type University/Academic

Format Electronic

Portion Figure/table

Number of figures/tables 1

Original Wiley figure/table

number(s)

Figure 5

Will you be translating? No

Title of your thesis /

dissertation

Gaussian process emulators for 1D vascular models

Expected completion date Jan 2018

Expected size (number of

pages)

1

Requestor Location The University of Sheffield

 Pam Liversidge Building

 Mappin Street

 Room E09

 Sheffield, S13JD

 United Kingdom

 Attn: The University of Sheffield

Publisher Tax ID EU826007151

Total 0.00 GBP

Terms and Conditions

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 2/4

you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions
 

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license.
The first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

 
With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

 
The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

 
NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 3/4

ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU. 

 
WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

 
You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

 
IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

 
Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

 
The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

 
This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

 
Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

 
These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

 
In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

 



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 4/4

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

 
This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

 
This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

 

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

 
Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:
 

v1.10 Last updated September 2015
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or

+1-978-646-2777.



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 1/4

JOHN WILEY AND SONS LICENSE

 TERMS AND CONDITIONS

Jan 11, 2018

This Agreement between The University of Sheffield -- Alessandro Melis ("You") and John
Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and
conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4265981415212

License date Jan 11, 2018

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication International Journal of Numerical Methods in Biomedical

Engineering

Licensed Content Title Issue Information

Licensed Content Author

Licensed Content Date Dec 4, 2017

Licensed Content Pages 2

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be translating? No

Title of your thesis /

dissertation

Gaussian process emulators for 1D vascular models

Expected completion date Jan 2018

Expected size (number of

pages)

1

Requestor Location The University of Sheffield

 Pam Liversidge Building

 Mappin Street

 Room E09

 Sheffield, S13JD

 United Kingdom

 Attn: The University of Sheffield

Publisher Tax ID EU826007151

Total 0.00 GBP

Terms and Conditions

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions
 



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 2/4

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license.
The first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

 
With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

 
The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

 
NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU. 

 
WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 3/4

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

 
IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

 
Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

 
The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

 
This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

 
Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

 
These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

 
In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

 
WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

 



11/01/2018 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 4/4

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

 
This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

 

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

 
Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:
 

v1.10 Last updated September 2015
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or

+1-978-646-2777.


	Abstract
	List of figures
	List of tables
	Introduction
	Aim and objectives
	Thesis outline

	Literature review
	The cardiovascular system
	Vascular modelling
	Sensitivity analysis
	Gaussian process

	Methodology
	Vascular modelling
	Flow through elastic vessels equations
	Blood flow model assumptions
	Linearised equations
	RLC circuit analogy

	Method of Characteristics
	Hyperbolic system
	1D flow system Riemann invariants

	Finite volume method
	Godunov's scheme
	MUSCL scheme
	Source term
	CFL condition

	Boundary and interface conditions
	Inlet
	Outlet
	Junctions

	Concluding remarks

	Sensitivity analysis
	Scatterplots and correlations
	Variance-based sensitivity analysis
	Main effect plots
	Sensitivity indices

	Concluding remarks

	Gaussian process
	Kernels
	Kernels combination

	Model selection
	Sampling
	Latin hypercube

	Concluding remarks


	Clinical applications
	Numerical modelvalidation
	Analytical solution
	Numerical benchmarks
	Single artery models
	Iliac bifurcation
	Systemic circulation

	Experimental measurements
	In-vitro model
	Circle of Willis

	Discussion and conclusions
	Limitations and Future Improvements


	Wave propagation through a vascular bifurcation
	Introduction
	Methodology
	Gaussian process emulator verification
	Results and discussion
	Conclusions

	Scalability study
	Introduction
	Methodology
	Results and discussion
	Conclusions

	Cerebral vasospasm
	Introduction
	Methodology
	Deterministic model
	Biomarker pool identification
	Sensitivity analysis for CVS biomarker selection
	Cerebral vasospasm simulations
	TCD measurements comparison

	Results
	Numerical model and emulator validations
	Sensitivity analysis and CVS biomarkers selection
	CVS simulations

	Discussion and Conclusions

	Conclusions
	Key Findings
	Limitations
	Future works

	References
	Appendices
	Blood flow equations
	Mathematical model
	Constitutive equation for arterial wall mechanics

	Analytical solution
	Continuity equation
	Derivation in cylindrical coordinates



