

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer "Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous Europe-Gondwana connections

Citation for published version: Csiki-Sava, Z, Brusatte, S & Vasile, S 2016, "Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous Europe-Gondwana connections' Crètaceous Research, vol. 60, pp. 221-238. DOI: 10.1016/j.cretres.2015.12.004

Digital Object Identifier (DOI):

10.1016/j.cretres.2015.12.004

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: **Cretaceous Research**

Publisher Rights Statement:

Copyright © 2015 Elsevier Ltd. All rights reserved.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Research

Elsevier Editorial System(tm) for Cretaceous

Manuscript Draft

Manuscript Number: YCRES-D-15-00207R2

Title: "Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous Europe-Gondwana connections

Article Type: Full Length Article

Keywords: Southern Dobrogea; Valanginian; Carcharodontosauridae; cratonic Europe; palaeobiogeography

Corresponding Author: Dr. Zoltan Csiki-Sava, Ph.D.

Corresponding Author's Institution: University of Bucharest

First Author: Zoltan Csiki-Sava, Ph.D.

Order of Authors: Zoltan Csiki-Sava, Ph.D.; Stephen L Brusatte; Ștefan Vasile

Abstract: Some of the best records of continental vertebrates from the Cretaceous of Europe come from Romania, particularly two well-known occurrences of dwarfed and morphologically aberrant dinosaurs and other taxa that lived on islands (the Cornet and Hateq Island faunas). Substantially less is known about those vertebrates living in the more stable, cratonic regions of Romania (and Eastern Europe as a whole), particularly during the earliest Cretaceous. We describe one of the few early Early Cretaceous fossils that have ever been found from these regions, the tooth of a large theropod dinosaur from Southern Dobrogea, which was discovered over a century ago but whose age and identification have been controversial. We identify the specimen as coming from the Valanginian stage of the Early Cretaceous, an incredibly poorly sampled interval in global dinosaur evolution, and as belonging to Carcharodontosauridae, a clade of derived, large-bodied apex predators whose earliest Cretaceous history is poorly known. Quantitative analyses demonstrate that the Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, which until now has been known solely from Gondwana. Our results suggest that this subgroup of colossal predators did not evolved vicariantly as Laurasia split from Gondwana, but originated earlier, perhaps in Europe. The carcharodontosaurine diversification may have been tied to a north-tosouth trans-Tethyan dispersal that took place sometime between the Valanginian and Aptian, illustrating the importance of palaeogeographic ties between these two realms during the largely mysterious early-mid Early Cretaceous.

Dear Editors,

We are submitting here the latest, corrected version of our manuscript about an Early Cretaceous carcharodontosaurid dinosaur from southeastern Romania. We have implemented all the changes suggested by the Handling Associated Editor, as outlined below. In the case of the changes concerning the reference list, we have included two different versions, as explained below, due to uncertainties we have about the correct formatting style. We hope that this revised version is now suitable for publication in Cretaceous Research.

Sincerely,

Zoltan Csiki-Sava (also on behalf of the co-authors)

Editor comments:

Page 1 – email addresses removed from other authors than corresponding author, as instructed.

Page 2 – some of the former keywords were replaced by newly selected ones, as suggested.

Page 3, line 75 - in prep.', removed, this work is still ongoing and mentioning it is not entirely necessary.

Page 11, line 258 - 'in part' removed; this is a controversial detail of the local stratigraphy that is of no importance for the economy of this manuscript.

Page 18, line 441 – we have added 3 to 'Figure', thanks for spotting this omission!

Page 22, line 526 – the correct reference is Williamson and Brusatte, 2014, as it is correctly listed in the reference list. We have corrected this reference; again, we are grateful for noting this error.

Page 32, line 786 – '2102' was replaced by '2012'; also, we have updated (here and in the reference list) the reference 'Lü et al., 2014', published in the meantime, to 'Lü et al., 2016'.

Page 36, line 884 – 'see below' was removed from the text, as suggested.

Page 37, line 917 - 'KcKenna' corrected to 'McKenna'

References:

We have checked the latest issue(s) of CR, and are somewhat confused as to the required formatting of the references. We have compared several recently published papers, and have found two different formatting styles, e.g., one that comes from our own recent paper (Csiki-Sava, Z. et al., 2016. The East Side Story - The Transylvanian latest Cretaceous continental

vertebrate record and its implications for understanding Cretaceous-Paleogene boundary events. Cretaceous Research, 57: 662-698. http://dx.doi.org/10.1016/j.cretres.2015.09.003) and one in the still more recent paper of Averianov and Sues (Averianov, A. and Sues, H.-D., 2016. Troodontidae (Dinosauria: Theropoda) from the Upper Cretaceous of Uzbekistan. Cretaceous Research, 59: 98-110. http://dx.doi.org/10.1016/j.cretres.2015.11.005). Accordingly, in our resubmission we have included two different versions of our revised MS, each one following one of the two styles.

In one of the versions, we have retained our original, chronological formatting, that coincides with that used by Averianov and Sues (2016), while the second version follows the formatting implemented in Csiki-Sava et al. (2016) and also suggested by the Handling Editor. In this second version, we have made all of the changes suggested by the Editor, except a few instances such as:

Page 49, lines 1196-1214: Csiki-Sava et al. (2013, 2015) were kept after Csiki and Grigorescu (1998), Csiki et al. (2010), according to the alphabetical order recommended.

Page 60, lines 1475-1484: Rauhut and Werner (1995) kept before Richter et al. (2013) and Royo Torres et al. (2009), according to the alphabetical ordering we followed.

Research highlights

- An isolated, large theropod dinosaur tooth from Romania is referred to Carcharodontosauridae
- The Romanian carcharodontosaurid is Valanginian in age, the oldest Cretaceous record of the clade
- This occurrence supports dispersal from Europe to west-Gondwana during the mid-Early Cretaceous

1	1	"Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous
2 3	2	carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous
4 5 6	3	Europe-Gondwana connections
7 8	4	
9	5	
.1 .2 3	6	Zoltán Csiki-Sava ^{1*} , Stephen L. Brusatte ² , Ștefan Vasile ¹
.4 .5	7	¹ Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, 1
.6 .7 .8	8	Nicolae Bălcescu Boulevard, 010041 Bucharest, Romania , zoltan.csiki@g.unibuc.ro,
_9 20	9	yokozuna_uz@yahoo.com
21 22	10	² School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road,
24 24 25	11	Edinburgh, EH9 3FE, United Kingdom , Stephen.Brusatte@ed.ac.uk
26 27	12	* Corresponding author
28 29 30	13	zoltan.csiki@g.unibuc.ro
81 82	14	
33 34 35	15	ABSTRACT
36 37	16	Some of the best records of continental vertebrates from the Cretaceous of Europe come from
88 89	17	Romania, particularly two well-known occurrences of dwarfed and morphologically aberrant
1 1 1	18	dinosaurs and other taxa that lived on islands (the Cornet and Hateg Island faunas).
4 4	19	Substantially less is known about those vertebrates living in the more stable, cratonic regions
15 16 17	20	of Romania (and Eastern Europe as a whole), particularly during the earliest Cretaceous. We
8 9	21	describe one of the few early Early Cretaceous fossils that have ever been found from these
50 51 52	22	regions, the tooth of a large theropod dinosaur from Southern Dobrogea, which was
53 54	23	discovered over a century ago but whose age and identification have been controversial. We
5 5 5 7	24	identify the specimen as coming from the Valanginian stage of the Early Cretaceous, an
58 59	25	incredibly poorly sampled interval in global dinosaur evolution, and as belonging to
50 51		1
o⊿ 53		

Carcharodontosauridae, a clade of derived, large-bodied apex predators whose earliest Cretaceous history is poorly known. Quantitative analyses demonstrate that the Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, which until now has been known solely from Gondwana. Our results suggest that this subgroup of colossal predators did not evolved vicariantly as Laurasia split from Gondwana, but originated earlier, perhaps in Europe. The carcharodontosaurine diversification may have been tied to a north-to-south trans-Tethyan dispersal that took place sometime between the Valanginian and Aptian, illustrating the importance of palaeogeographic ties between these two realms during the largely mysterious early-mid Early Cretaceous. Keywords RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997; Posmosanu, 2003; Dyke et al., 2011), and the famous latest Cretaceous beds of the Hateg, Rusca Montană and western Transylvanian basins of Transylvania, which have yielded the dinosaur-dominated 'Hateg Island fauna' (e.g. Nopcsa, 1923; Weishampel et al., 1991;

49 Benton et al. 2010; Codrea et al., 2010, 2012; Grigorescu, 2010; Vremir, 2010; Vasile and

the vast Cretaceous European Archipelago of the Neo-Tethys Ocean. Based on their isolated geological settings and the many dwarfed and morphologically aberrant taxa that make up the faunas, both have been interpreted as insular assemblages that give a unique window into how island environments affected the evolution of long-extinct organisms (e.g., Benton et al., 1997, 2010; Csiki-Sava et al., 2015).

The great volume of research on these assemblages over the past century, particularly the 'Hateg Island fauna', has concealed an inconvenient bias: the stable, non-island, cratonic regions of Romania have yielded only extremely rare Mesozoic continental vertebrate remains (i.e., the Moldavian, Moesian and Scythian platforms; Săndulescu, 1984; Mutihac and Mutihac, 2010; Fig. 1). This is mostly because Mesozoic deposits are located in the subsurface in these regions, with only limited subaerial exposures available in the structurally highest-lying parts of the Moesian Platform, in Central and Southern Dobrogea (Middle Jurassic-Upper Cretaceous), as well as in the northeastern-most corner of the Moldavian Platform, along the Prut Valley (lower Upper Cretaceous) (see, e.g., Mutihac and Mutihac, 2010). This bias is unfortunate because fossils from these settings could lead to a better understanding of how mainland and island faunas differed during the Cretaceous, and because the cratonic portion of Europe was an important biogeographic stepping stone between the north and south as the continents fragmented and sea levels fluctuated.

Although the cratonic regions of Romania have yielded few Cretaceous terrestrial fossils, these deposits are not totally barren. In fact, one of the first Mesozoic continental vertebrates ever recorded from Romania comes from one of these deposits, the Lower Cretaceous shallow marine limestones of Southern Dobrogea (Fig. 1). This specimen—the isolated but well-preserved tooth of a large theropod dinosaur—has often been overlooked. It was described a little over a century ago by Simionescu (1913; Fig. 2A), and until a few recent discoveries of very rare isolated specimens (Stoica and Csiki, 2002; Csiki-Sava et al., 2013, in prep.; Dragastan et al., 2014), it remained as the sole published record of Mesozoic
terrestrial vertebrates from the cratonic areas of Romania. It has never been comprehensively
described and its precise age and taxonomic affinities have yet to be clarified, despite its
potential importance as a well-preserved fossil from a poorly sampled area that could have
critical evolutionary and biogeographic implications.

We here present a comprehensive description of the Dobrogea tooth and discuss its relevance for understanding dinosaur evolution and biogeography. We review the peculiar history of how this specimen was collected and curated, thoroughly document its morphology and age, identify it based on comparison to a broad range of theropods, and outline its importance. It turns out that this specimen, although only a single tooth, has wide-ranging implications. We identify it as coming from the Valanginian stage of the Early Cretaceous, which is incredibly poorly sampled both in Europe and globally (Weishampel et al., 2004), and as belonging to a carcharodontosaurid, a group of derived, large-bodied apex predators whose earliest Cretaceous history is poorly known. Carcharodontosaurids were once thought to be a uniquely Gondwanan group, but recent discoveries show that the basal members of the group were more widespread during the late Early-middle Cretaceous (e.g., Sereno et al., 1996; Brusatte and Sereno, 2008). The Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, that until now has been known only from Gondwana. It suggests that this subgroup of enormous predators did not evolve vicariantly as Pangaea split, but originated earlier, and perhaps in Europe, suggesting faunal interchange between Europe and Gondwana during the 'dark ages' of the early Early Cretaceous.

98 Abbreviations: UAIC – University "Alexandru Ioan Cuza", Iași, Romania.

100 2. History of collecting and curation

Only two dinosaurian fossils are currently known from the cratonic areas of Romania: an isolated theropod tooth and an isolated caudal vertebral centrum. Both of these were reported from the Lower Cretaceous deposits of Southern Dobrogea (southeastern Romania; Csiki-Sava et al., 2013, see also below). Unfortunately, exact details of their discovery and places of origin are lost, a fact that can hinder an assessment of their age and interpretation of their phylogenetic and palaeobiogeographic significance. Our aim here is to gather and report all available information concerning the collecting of specimen UAIC (SCM1) 615, that is, the isolated theropod tooth reported by Simionescu (1913; Fig. 2A).

According to the existing information - unpublished museum labels and records, and the preliminary publication of Simionescu (1913) - specimen UAIC (SCM1) 615 was discovered in the surroundings of Cochirleni, a small village south of Cernavodă and close to the right bank of the Danube, in Southern Dobrogea, southeastern Romania (Fig. 1), probably shortly before 1913, the date of its publication by Simionescu (1913).

Although studied and preliminarily described by Simionescu, UAIC (SCM1) 615 was not collected by Simionescu personally. Instead, it was donated by a certain "de Tomas" (also mentioned as "de Thomas" in the registry of the Hârșova Museum) to V. Cotovu from Hârșova (Central Dobrogea), a local teacher, archaeology and natural history aficionado, and amateur fossil collector (see, e.g., Covacef, 1995). Cotovu, described by Simionescu himself as the "zélé fondateur et directeur du muséum de Hârsova" (enthusiastic founder and director of the Hârşova Museum; Simionescu, 1906: p. 2), had previously provided fossil specimens from Southern Dobrogea for study to Simionescu, a nationally acknowledged popular science writer and scientist, whom Cotovu knew personally (Brânzilă, 2010). These circumstances are supported by the fact that in the original description, Simionescu figures the specimen as being accessioned in the "Regional-Museum von Harschowa" (Hârşova Regional Museum; Simionescu, 1913: p. 687, fig.1), a designation he also used to refer to other Dobrogean

specimens not collected by him first-hand (e.g., a specimen of 'Nautilus' pseudoelegans from Cernavodă, or a fragmentary tooth-bearing palatal fragment referred to as 'Coelodus' sp., also originating from Cochirleni; see Simionescu, 1906). Confirming this deduction, an isolated tooth appears accessioned in the old registry book of the Hârsova Museum (under specimen number 200) as "Megalosaurus cf. superbus", with the mention that it was "described by Prof. Simionescu in the Centralblatt f. min. etc.". This is also the case of the 'Coelodus' sp. specimen from Cochirleni (specimen number 86), similarly clearly identified as being described by Simionescu in the registry book.

Both of these vertebrate remains from Dobrogea that were formerly part of the Hârsova Museum collections are currently accessioned in the palaeontology collections of the UAIC (Turculet and Brânzilă, 2012), suggesting that, at one moment, several specimens were transferred there from the Hârşova Museum. Although no details are known about this transfer, it is probable that it took place right before (or when) the Hârşova Museum, including a part of its collections, was burned and largely destroyed during WWI, in 1916, a time when Simionescu still held a position at the UAIC.

After its original description, specimen UAIC (SCM1) 615 underwent a minor amount of damage (see below, Description). Also, at some point between its description in 1913 and the early 1960s (when the specimen was found in its present state in the collections of the UAIC by academic staff members who are still alive today and recall the discovery; I. Turculet, personal communication, May 2013) it was glued into a limestone matrix holder, while it was obviously completely freed of the surrounding matrix when it was described and figured in 1913 (Fig. 2). The circumstances under which these alterations took place are unclear. It is a distinct possibility that they occurred sometimes during WWII, when, in the spring of 1944, the frontline between the German-Romanian and Soviet armies reached the Iași-Chișinău line. At this moment, the geological-palaeontological collections of the UAIC

were packed in crates, and moved together with its personnel and other possessions to Zlatna, in the Apuseni Mountains (western Romania), to safeguard them from any potential damage. Mounting the specimen into the limestone stand would have been a quick way to stabilize it, as it appears that packaging and transport of the specimens was done in haste (M. Brânzilă, personal communication, April 2103). If that was indeed the case, the mounting would have taken place without the knowledge of Simionescu, who left Iaşi and the UAIC in 1929, being invited to become a professor of Palaeontology at the University of Bucharest (Brânzilă, 2010). Then again, however, Simionescu himself or staff of the Hârsova Museum might have re-mounted the tooth after its original description, or else the mounting might have taken place after the return of the collections to Iasi, after WWII.

Unfortunately, it is not documented whether the mounting was made using the original matrix, or if a trough corresponding to the tooth outline was carved into a randomly chosen limestone block. The apparently excellent fit between the tooth and the depression housing it (Fig. 2B, 3) suggests that this operation was completed carefully, and accurate carving of a fake holder is difficult to reconcile with the rush accompanying the evacuation of the Iasi University, in 1944. Alternatively, the presence of a hand-written old registration number on the specimen holder would support its early re-mounting, while still at the Hârșova Museum. As noted previously, the original Hârșova Museum registration number of the specimen was 200, which does not correspond to that currently written both on the limestone holder and on a paper sticker (204). However, according to the old collection registry of the Hârsova Museum, specimen numbers 201 through 225 were given to a series of "indeterminate (fossil) bone fragments" from the "Cochirleni quarries". Thus, these specimens (now apparently lost) came from the same locality as the tooth, and they were collected and donated by the same person to the Museum who donated UAIC (SCM1) 615. There is, thus, a (albeit admittedly remote) possibility that the registration numbers were

mixed up during the re-mounting of the specimen, which in this case took place at an early date in the Hârsova Museum. If this is indeed the case, the limestone used as holder could have been the same as the original matrix of the specimen.

To conclude, the history of recovery and curation of the historically important dinosaurian specimen UAIC (SCM1) 615 is rather convoluted and clouded by many uncertainties. The exact date of discovery remains conjectural, and the exact place of the discovery (thus also the original geological context of the tooth) is even more ambiguous. The current state of the specimen, and especially its mounted status, suggest a curatorial history that produced a moderate amount of damage to, but also partially obscured the detailed morphology of the specimen. The convergence of such unfortunate events makes deciphering the age, identity and evolutionary significance of the specimen troublesome, although many lines of evidence, carefully considered, allow us to draw reasonable conclusions (see below).

5

8

10

3. Geological setting

According to the available collecting information, the isolated theropod tooth UAIC (SCM1) 615 was discovered at Cochirleni (sometimes noted more specifically as the "Cochirleni quarry" or "Cokerleni quarry"). Cochirleni is a small village in southwestern Dobrogea situated close to the right bank of the Danube, and about 9 km south of the main urban center of the region, Cernavodă (Fig. 1). The geology of the area has been well studied, because of the unique outcropping conditions and rich fossiliferous nature of the Lower Cretaceous deposits (reviewed in Avram et al., 1996; Neagu et al., 1997; Dragastan et al., 1998).

Southern Dobrogea is a cratonic area corresponding to the southeastern corner of Romania. Whether it is considered part of the larger Moesian Platform (Săndulescu, 1984; Ionesi, 1994), or a distinct craton (the South-Dobrogean Platform; Mutihac and Mutihac,

2010), researchers agree that it became integrated into the main European Craton towards the end of the Jurassic, at the latest, with the consolidation of the Cimmerian (Early Alpine: Triassic-earliest Cretaceous) North Dobrogean fold-and-thrust belt (Seghedi, 2001; Hyppolite, 2002). The age of its basement is also controversial, with estimates ranging from Archaic–Early Proterozoic (Mutihac and Mutihac, 2010) to latest Proterozoic (Ionesi, 1994).

The Precambrian basement of Southern Dobrogea is overlain by a flat-lying sedimentary cover that begins with the lowermost Palaeozoic and ends with the uppermost Neogene. The sedimentary succession is interrupted by a few major, as well as several less important, sedimentary hiatuses that separate 5 main sedimentary sequences corresponding to the Cambrian-Upper Carboniferous, the Permian-Triassic, the Middle Jurassic-Cretaceous, the Eocene-?Oligocene, and the middle Badenian (middle Miocene)-Upper Pliocene. The Palaeozoic and lower Mesozoic are known only from the subsurface of Southern Dobrogea, but Cretaceous and Cenozoic deposits have limited exposures along the main water courses of the region (Ionesi, 1994; Mutihac and Mutihac, 2010).

The outcropping Cretaceous in Southern Dobrogea is represented mainly by shallow marine, carbonate platform deposits in the lower part of the system, replaced by more open-water, chalky facies towards the later part of the period (e.g., Avram et al., 1993, 1996; Dragastan et al., 1998; Dinu et al., 2007); these crop out only as isolated patches along the main watercourses of the region (Fig. 1).

The Lower Cretaceous Series consists of several lithostratigraphic units with complex, partially overlapping and interfingering relationships (Dragastan et al., 1998, 2014). The lowest (and only artificially) outcropping unit is the Purbeck-type, siliciclastic-evaporitic Upper Kimmeridgian-Lower Berriasian Amara Formation that represents lagoonal to continental environments. This unit is covered by the shallow-marine, richly fossiliferous and locally reefal limestone-dominated Cernavodă Formation (restricted-open lagoonal to

carbonate platform, Upper Berriasian-Lower Hauterivian). A time-correlative unit of the Cernavodă Formation, the limestone-dolomitic Dumbrăveni Formation (Upper Berriasian-Lower Hauterivian), is restricted to the southeastern part of Southern Dobrogea. The Cernavodă and Dumbrăveni formations are covered unconformably by dominantly calcareous deposits with hippuritoid ('pachyodont') coquinas, small reefs and lens-like orbitolinid accumulations, referred to the Barremian-Lower Aptian Ostrov Formation by Dragastan et al. (1998), but to the Ramadan Formation (in part) by Avram et al. (1993, 1996). These deposits, formed in littoral to lagoonal and open reef terrace environments, are in turn capped by the fluvial-lacustrine, siliciclastic deposits of the Gherghina Formation, with Middle–Upper Aptian kaolinitic clays and thin coal intercalations. The Lower Cretaceous succession ends with the transgressive, glauconite-bearing, coastal to sublittoral siliciclastic deposits of the Cochirleni Formation (uppermost Aptian-Albian).

The Upper Cretaceous has a significantly more patchy development, mainly restricted to the eastern part of Southern Dobrogea, excepting the weakly glauconitic, chalky-sandy Pestera Formation (Lower Cenomanian) and the marly Dobromiru Formation (Upper Cenomanian) that cover the western-central parts of the area. The younger Cuza Vodă (Turonian), Murfatlar (Santonian-Lower-Middle Campanian), and Satu Nou (Upper Campanian) formations are dominantly chalky, suggesting the instalment of a relatively deeper, offshore depositional environment; neither of these units is known from western Southern Dobrogea.

In total, the Lower Cretaceous of Southern Dobrogea was deposited in a shallow marine, near-shore setting, fluctuating between carbonate platform, lagoonal, co<u>a</u>stal-tidal flat, and continental environments (see Avram et al., 1996; Dragastan et al., 1998). Its main characteristic features, such as the observed lithological variability, the areal distribution of the different units, and the presence of several unconformities within the series, are all linked

to eustatic sea-level changes that affected the Southern Dobrogean territory during the Early Cretaceous (Dragastan et al., 1998). The main emergent land in the area was represented by the Central Dobrogean Massif, lying north of the study area, almost completely subaerially exposed and actively eroding during the Cretaceous. Consequently, shallow-marine to continental deposits are restricted mainly to the northern part of Southern Dobrogea, close to its boundary with the Central Dobrogean Massif (marked by the Capidava-Ovidiu Fault), and are replaced by more open marine deposits southward. As summarized above, several littoral, and even continental, sequences occur in this succession, including deposits in the Amara, Cernavodă, Ramadan (in part; Avram et al., 1996) and Cochirleni formations, whereas the Gherghina Formation is purely continental, with occasional minor marine interbeds produced during short-term ingressions of the sea.

In the Cernavodă-Cochirleni area the outcropping Mesozoic is restricted to the Lower Cretaceous, and includes deposits belonging to the Cernavodă, Ostrov (or Ramadan), Gherghina, and Cochirleni formations. While the lower-middle part of the Cernavodă Formation is well exposed and widely distributed in this area, its upper part (the lower Hauterivian Vederoasa Member) is unevenly developed. This member is missing in the classical succession from Cernavodă-Hinog, on the right bank of the Danube (Dragastan et al., 1998), but was recently identified in the more eastern Cernavodă-lock section (Dragastan et al., 2014). Similarly, the Ostrov Formation is represented in the area only by its upper subunit (the Lower Aptian Lipnita Member; Dragastan et al., 1998), covering unconformably and transgressively the Valanginian Alimanu Member of the Cernavodă Formation in the southern end of the Cernavodă-Hinog section (Dragastan et al., 1998), and the lower Hauterivian Vederoasa Member in the Cernavodă-lock section (Dragastan et al., 2014).

Northward of the Hinog area, Valanginian deposits of the Alimanu Member areoverlain directly by the Middle–Upper Aptian continental deposits of the Gherghina

Formation. These continental deposits also cover the Orbitolina-bearing calcareous-clayey deposits of the Lipnita Member towards the south, marking the advancement of emerged areas towards the central parts of Southern Dobrogea, including the Cernavodă-Cochirleni area, during this time interval (Avram et al., 1996). Marine conditions returned in the study area again in the latest Aptian, with a transgression marked by widespread deposition of the glauconitic, siliciclastic coastal to innermost shelf deposits of the Cochirleni Formation. These uppermost Aptian to Albian sands and sandstones cover transgressively all the underlying deposits, belonging to the Cernavodă, Ostrov, or Gherghina formations. Siliciclastic shallow-marine sedimentation continued into the Early Cenomanian, with the chalky-glauconitic deposits of the Pestera Formation.

287 4. Palaeontology

The isolated theropod tooth UAIC (SCM1) 615 (formerly in the collections of the Hârșova Museum, registered with no. 200; Fig. 2A) was described in a short note by Simionescu (1913), who referred it to Megalosaurus cf. superbus, a taxon erected by Sauvage (1882) from the Gault ('mid'-Cretaceous: Albian) of the Paris Basin, France. The Gault material described by Sauvage (1882; see also Sauvage, 1876) includes several isolated teeth that were deemed by Simionescu (1913) to be more similar to the Cochirleni tooth than are the teeth of Megalosaurus bucklandi (Buckland, 1824). Subsequently, the French Gault material was referred to the new genus *Erectopus* by Huene (1923), who also noted differences between it and the type species *M. bucklandi*.

The convoluted taxonomic history of *Erectopus superbus* was recently reviewed by Allain (2005), who established that both the isolated teeth first mentioned by Sauvage (1876) and the skeletal elements described by Sauvage (1882) belong to the same taxon, for which the name *Erectopus superbus* was retained. Allain (2005) regarded *Erectopus* as a member of

Carnosauria (= basal Tetanurae), an opinion also shared by Molnar (1990) and Holtz et al. (2004a), whereas the latest review of the Tetanurae (Carrano et al., 2012, p. 254) considered Erectopus superbus "a non-carcharodontosaurian allosauroid, possibly a metriacanthosaurid." Accordingly, if we are following the original assessment of Simionescu (1913) but updating with contemporary taxonomy, the Cochirleni theropod tooth should now be considered referable to the basal tetanuran Erectopus superbus. However, the referral of this tooth to *Erectopus superbus* (or a close relative) was considered to be unsupported by positive evidence by Molnar (1990) and Holtz et al. (2004a). In order to re-assess this referral and to understand the exact taxonomic and phylogenetic affinities of UAIC (SCM1) 615 (Fig. 2B, 3), we provide here a detailed description of its morphology followed by a thorough comparative study of this tooth based on large datasets of theropod dental measurements and discrete characters compiled by Hendrickx and Mateus (2014) and Hendrickx et al. (2015a).

We note that in his review of Romanian dinosaurs, Grigorescu (2003) erroneously considered UAIC (SCM1) 615 as being referred by Simionescu to the taxon *Megalosaurus dunkeri* Kohen (sic; actually, *Megalosaurus dunkeri* Dames, 1884). This is clearly a simple misreading of Simionescu's identification. Additionally, such a referral is also contradicted by the absence of mesial serrations in the holotype tooth of *M. dunkeri*, considered by Carrano et al. (2012) to represent an indeterminate theropod. The Dobrogea tooth, on the other hand, has mesial serrations (see below).

4.1. Age of UAIC (SCM1) 615

The age of UAIC (SCM1) 615 has been contentious, due to the uncertainties concerning its
place of origin. Although it is often mentioned as originating from Cochirleni village (e.g.,
Grigorescu, 2003; Turculeț and Brânzilă, 2012), this has not been definitively established.
According to the original report of Simionescu (1913), the tooth came from the upper part of

the Lower Cretaceous limestone succession exposed in the cliffs extending from Cernavodă to Cochirleni along the right bank of the Danube. The corresponding entry from the Hârşova Museum registry states that it was found in the 'Cochirleni quarry', a location that presently cannot be identified precisely. The only rocks to be quarried in the area are the calcareous deposits of either the Cernavodă or Ostrov formations, particularly the ones that crop out in the Danube bank cliffs between Cernavodă-Hinog-Cochirleni. Finally, although the mention 'Cochirleni' is usually considered to refer to Cochirleni village, it should be mentioned that the cliff-forming hill that extends between Cernavodă and Cochirleni is also known by the same name (Fig. 1). Taking all of this evidence into consideration, it is thus reasonable to conclude that the tooth was most likely found in the Lower Cretaceous limestone succession exposed in the Danube cliffs between Cernavodă and Cochirleni.

Based on the location of the discovery, in the upper part of the local limestone
succession, and the age of the deposits from Cernavodă-Cochirleni known to him,
Simionescu (1913) considered the tooth to be of Barremian age. Subsequently, the age of the
tooth was given as Valanginian–Barremian (Weishampel, 1990; Weishampel et al., 2004) or
Valanginian (e.g., Grigorescu, 2003), but without any supporting information.

New attempts have been made to more precisely constrain the age of UAIC (SCM1) 615. Dragastan et al. (2014) recently sampled the limestone matrix holder of the tooth, and reported from these samples an assemblage of foraminiferans, ostracods and microproblematicae (=incertae sedis microorganisms) that characterize their 'Biozone IX with *Meandrospira favrei*', of latest Valanginian age in the local lithostratigraphic scheme. In parallel, we also sampled the same limestone holder – a yellowish white, friable lime mudstone – that yielded a poor and badly preserved calcareous nannoplankton assemblage with Watznaueria barnesiae, W. ovata, Nannoconus steinmanni, N. kamptneri, N. globulus, Calcicalathina sp., Speetonia colligata and Cyclagelosphaera deflandrei (M. C. Melinte-

Dobrinescu, personal communication, November 2013), an assemblage that suggests a Berriasian-Hauterivian age of the limestone holder.

Since it is not clear if the limestone holder came from the same site as the tooth itself, we managed to take a second sample from the limestone matrix still partly filling the pulp cavity of the tooth, which must definitively be identical with the rocks the tooth was found in. This second, much smaller sample yielded only very scarce specimens of Watznaueria barnesiae, Cyclagelosphaera margerelii and Diazomatolithus lehmanni (M. C. Melinte-Dobrinescu, personal communication, November 2013), the latter two taxa having a peak in abundance during the Berriasian and, especially, the Valanginian.

In the nannoplankton succession reported previously by Avram et al. (1993) and derived from a systematic sampling of the Southern Dobrogean Lower Cretaceous, the concurrent presence of Speetonia colligata, Calcicalathina oblongata, Diazomatolithus lehmanni and Nannoconus steinmanni was noted in samples derived from the Alimanu Member of the Cernavodă Formation. These assemblages were interpreted to represent the nannoplankton zone CC3 of Sissingh (1977), of late Valanginian age. A comparable age was assigned to a roughly similar nannoplankton assemblage reported from the Lower Cretaceous of the Mecsek Mountains, Hungary, by Császár et al. (2000).

Together, all the available evidence (Simionescu's original account, geographic and geologic records, foraminifera, ostracods, microproblematicae, and calcareous nannoplankton) thus suggests that UAIC (SCM1) 615 originates from the Alimanu Member of the Cernavodă Formation, and it is most probably of late Valanginian age.

4.2. Description and comparisons

Specimen UAIC (SCM1) 615 is a large (total length, as preserved, is about 100 mm; Figs. 2, 3) lateral tooth of a theropod dinosaur, with a crown base length (CBL) of 29 mm, crown

base width (CBW) of 16.25 mm, crown height (CH) of 85.5 mm, and apical length (AL) of 91 mm (terminology following Smith et al., 2005 and Hendrickx et al., 2015b). It is remarkably well preserved, with the enamel in pristine condition. It preserves most of the crown and a small basal part of the root, but the crown tip is broken off, with an estimated 5 mm missing in the apical region.

In its present state, the mesial edge and part of the mesial third of the tooth are embedded in the limestone holder (Fig. 2B), although the tooth was once removed (see above, History of collecting and curation; Fig. 2A). Accordingly, it is exposed so that all faces of the tooth are widely visible, including the root region, except for the mesial surface.

Only the basal-most part of the root is preserved, and it is more complete near the mesial margin (Fig. 3B, C). Here, broken areas around the crown-root contact area (cervix) reveal details of the pulp cavity development, as well as the pattern of the dentine thickness variation (Fig. 3B–D). The crown also exhibits a transverse break at about two-thirds of its length (not present so obviously in the original figure of the specimen in Simionescu, 1913), and adjacent to it, the distal carina is also slightly chipped distal to mid-length. The labial face is superficially split near this break (Fig. 3A), while a more prominent region of damage appears on the lingual face, where a large (13 x 5 mm), slightly triangular wedge is broken off, exposing the deeper parts of the dentine (Fig. 3C). The damage to the lingual side apparently occurred after the original description of the tooth (Fig. 2), an observation that is concordant with the complex curatorial history of the specimen.

The basal-most, exposed part of the mesial face lacks the enamel cover (Fig. 3C, D), suggesting that this area already belongs to the root region. The mesial edge of the preserved crown base appears to be wider than the distal one, and is largely rounded transversely. Accordingly, the basal cross-section is teardrop-shaped (lanceolate); it is rounded mesially, but narrows distally into a small carina (Fig. 3D). As mentioned above, the pulp cavity is

exposed basally, being partly filled with a whitish-light gray limestone that is reminiscent of the matrix holder lithology. The pulp cavity narrows rapidly towards the cervix, as it is about 7.1 mm wide (labiolingually) at the apical-most part of the preserved root, but only about 4.5 mm wide at the base of the crown. In parallel, the enamel-dentine wall of the tooth becomes thicker: it is 3.5 mm thick in the apical-most part, 4.4 mm at the base of the crown, but thickens to 5.0–5.8 mm near the apical-most part of the basal break of the crown (Fig. 3B). Mirroring the outside cross-section, the contour of the pulp cavity is also teardrop-shaped (Fig. 3D).

The tooth is ziphodont and only very slightly recurved distally. The distal edge is nearly straight across its length, being very mildly concave in its basal half and slightly convex near its apex (Fig. 2, 3A). Thus, the apex is placed roughly at the distal margin of the tooth crown base. The mesial edge, as shown in the original publication of Simionescu (1913), is strongly convex across its entire length (Fig. 2A). The tooth is labiolingually compressed (Fig. 3B), with a crown base ratio (CBR=CBW/CBL) of 0.56, within the normal range of variation of most theropods. This differs from the thinner teeth of some, but not all, carcharodontosaurids (CBR<0.50), and the much thicker incrassate teeth of derived tyrannosauroids and conical teeth of spinosaurids (CBR>0.75) (Sereno et al., 1996; Brusatte et al., 2010a; Hendrickx and Mateus, 2014; Hendrickx et al., 2015a).

The crown cross-section is slightly asymmetrical labiolingually when it is seen in distal view. In this view, when the carina is facing directly distally, one side of the crown has a more pronounced bulge than its counterpart (about 8.5 mm wide, measured from the carina, vs. 6 mm on the other side; Fig. 3B); based on comparisons with the teeth of *Mapusaurus* (Coria and Currie, 2006), the more bulging side can be interpreted as the lingual one. This asymmetry diminishes apically, where both sides become about equally convex. The distal carina itself twists slightly sideways (labially) in apical direction, such that it is located closer to the labial face where it terminates at the crown apex, and the lingual face of the denticles is
exposed distally (Fig. 3B, F). This twist of the distal carina is accompanied by a similar
outline of the lingual side; in distal view, this is somewhat convex basally, but becomes flat
to slightly concave in the apical two-thirds of the crown. A similar S-shaped curvature of the
crown, albeit more pronounced and different in details, was also reported in *Mapusaurus* and *Giganotosaurus* (Coria and Currie, 2006), and in indeterminate carcharodontosaurid teeth
from Morocco (Richter et al., 2013).

The distal carina extends along the entire tooth height (Fig. 3A–C). It is covered with minute serrations across its entire preserved length; the denticles are proximodistally subrectangular, with a mesiodistal long axis that is greater than the apicobasal long axis (Fig. 3E-H). They are either roughly perpendicular to the tooth margin, or their long axes are oriented obliquely, such that they point slightly apically. The tip of the apex is broken off, so it is not possible to determine whether the serrations continued over the apex of the tooth. There are approximately 12.5 serrations (denticles) per 5 millimetres at the midpoint of the carina. Serration shape and size remain relatively constant across the carina, although the serrations near the midpoint and closer to the base of the carina (12 denticles per 5 mm; Fig. 3G, H) are slightly smaller than those near the apex (9 denticles per 5 mm; Fig. 3E, F). Changes in serration size are gradual across the carina, not sudden or sporadic.

Although they are all more or less rectangular in shape, the apical denticles are relatively shorter proximodistally than the more basal ones. Most of the denticles have slightly rounded, asymmetrically convex triangular tips, instead of being simply squarred-off, and they do not hook as in troodontids and to a lesser extent abelisaurids (Hendrickx and Mateus, 2014). Other denticles near the apex, however, show a faint concavity along their tips, giving them a bilobate aspect, although this is both less conspicuous and far less regularly developed than reported in *Tyrannotitan* (Novas et al., 2005). The denticles are

451 separated by simple, linear grooves (interdenticular slits or sulcae) along their entire length.
452 The interdenticular space between adjacent denticles is broad, measuring more than a third of
453 the apicobasal width of a denticle (Fig. 3E, G). This space continues onto the surface of the
454 crown as a very short interdenticular sulcus ("blood groove" of Currie et al., 1990). These
455 sulci are so short and indistinct that they are only visible under low angle light.

Little can be said about the mesial carina, as it is not visible in the current state of the specimen, buried in the limestone matrix. Based on the description of Simionescu (1913), however, it is covered across its length with minute serrations; these decrease in size towards the base of the crown. Simionescu (1913) reported approximately 15 serrations (denticles) per 5 millimetres at the midpoint of the carina, meaning that the mesial denticles are slightly smaller than those on the distal carina. The denticle size difference index (DSDI: Rauhut and Werner, 1995) is 1.2, within the range of variation of most theropods (Hendrickx and Mateus, 2014). As Simionescu (1913) already pointed out, the presence of a mesial carina that extends towards the base of the crown sets apart UAIC (SCM1) 615 from Megalosaurus bucklandii where this stops well above the cervix (Benson et al., 2008), and it is instead similar to 'M.' superbus (Sauvage, 1876, 1882) in this respect.

The external enamel surface exhibits two forms of ornamentation. First, the majority of the labial and lingual faces are covered by relatively smooth enamel that exhibits a subtle form of braided texture visible under low angle light (Fig. 3A, C, E). This texture is made up of a series of very faint, apico-basally running ridges; these are of unequal lengths, starting at different points of the crown height, but none extends the whole length of the crown. The two longest ridges are placed near the distal carina. The enamel is also finely granulated.

473 Second, near the carinae on both labial and lingual surfaces there are marginal
474 undulations: wrinkles in the enamel that stand out in bas relief (Brusatte et al., 2007). These
475 are much better preserved and visible near the distal carina, where they are so pronounced

that they are clearly observable in normal light (Fig. 3A–C, G, H). Here, about 17 unevenly developed wrinkles are present along the crown height; in the basal half of the crown, the wrinkles extend about 6.5 mm onto the crown. These are elongate, such that they are longer than twice the space separating each undulation. The wrinkles project obliquely (in the mesiobasal direction) relative to the carina. They are apically concave, with a near-horizontal segment on the crown, and curve apically as they approach the carina (at about 45°) with a tendency to become tangential to the distal edge. The wrinkles are especially well developed, prominent and closely spaced in the basal part of the crown (about 7 wrinkles/16 mm; Fig. 3C, G)), but become more widely spaced and indistinct apically (about 3 wrinkles/16 mm). Apically, however, the wrinkles are somewhat wider and longer, extending over about half of the crown fore-aft length. Again, a slight asymmetry is present between the two sides of the crown in wrinkle development as well, these being better expressed on the more rounded, convex lingual face, but less well expressed on the flatter labial face (Fig. 3A, C, H). On the presumed labial face, only some of the basal-most wrinkles, particularly the second and third one, appear well defined.

Towards the base of the crown a few of the wrinkles continue across the labial and lingual surfaces as very subtle transverse undulations. Most conspicuous of these is a 3.5 mm wide horizontal swelling that crosses the crown, at the level of wrinkles 2 and 3; this swelling is clearly visible on both sides of the crown (Fig. 3. A, C). There are no lateral flutes, apico-basal ridges, or longitudinal grooves on the labial or lingual faces, either in the centre of the tooth or paralleling the carinae. Instead, the labial and lingual faces are uniformly convex, giving the tooth its teardrop-shaped outline in cross section.

5. Discussion

5.1. Identification of UAIC (SCM1) 615

The isolated tooth from Cochirleni can be referred to Theropoda based on its large size,
recurved and labiolingually compressed morphology, and presence of a continuous series of
well-defined serrations on the distal carina.

Besides theropods, certain derived crocodyliforms - the sebecosuchians of Colbert (1946; see also Turner and Sertich, 2010; Pol and Powell, 2011; Rabi and Sebők, 2015) - are also known to posess remarkably theropod-like, laterally compressed and serrated teeth, not unlike the morphology shown by UAIC (SCM1) 615. However, most sebecosuchian teeth are significantly smaller than the Southern Dobrogean specimen, especially in the case of the Cretaceous members of the clade (e.g. Baurusuchus; Carvalho et al., 2005). Even the largest, caniniform teeth of the largest representatives of Sebecosuchia, such as the Miocene Barinasuchus (Paolillo and Linares, 2007), are somewhat smaller than UAIC (SCM1) 615; moreover, these teeth are slightly conical and less laterally compressed than the Southern Dobrogean tooth. Finally, it should be noted that the oldest known members of Sebecosuchia appear beginning in the Late Cretaceous (e.g. Kellner et al., 2014), and are thus significantly younger than UAIC (SCM1) 615. Similarly, ziphodont crocodyliform teeth (i.e. with true denticles along their carinae) are reported in Europe only beginning in the Albian (Ösi et al., 2015), and these are both significantly smaller and different in morphology from the Dobrogean tooth. Taken together, these suggest that the hypothesis of sebecosuchian affinities of UAIC (SCM1) 615 can be discarded with confidence, and it indeed represents a theropod tooth.

521 We used four techniques to identify which type of theropod UAIC (SCM1) 615 likely522 belongs to (see also Supplementary Material).

First, we conducted a Principal Components Analysis (PCA) based on a large
database that includes a broad and representative sample of theropod teeth. This dataset was
compiled by Hendrickx et al. (2015a), which built upon the earlier studies of Smith et al.

(2005) and Larson and Currie (2013), and it or a similar version has been used in recent studies to identify isolated theropod teeth (e.g., Williamson and Brusatte, 20132014; Brusatte and Clark, 2015). It comprises nearly 1000 theropod teeth scored for six measurements (CBL, CBW, CH, AL, MC, and DC, the latter two measuring the density of serrations per 5 mm at the midpoint of the mesial and distal carina, respectively). UAIC (SCM1) 615 was added to this dataset, the data were log-transformed prior to analysis, missing values for measurements were estimated with a mean value for that measurement from across the sample, and then a PCA was run using a correlation matrix. The analysis was conducted in PAST v2.17 (Hammer et al., 2001).

In the resulting two dimensional morphospace (Fig. 4), UAIC (SCM1) 615 plots close to many teeth belonging to carcharodontosaurids, along with some teeth belonging to spinosaurids and tyrannosauroids. It falls within the convex hull (maximum morphospace occupation area) of carcharodontosaurids only, although it is closely outside of the edges of spinosaurid and tyrannosauroid space. It also falls within the 95% confidence interval ellipse for carcharodontosaurids, but not within the ellipse of any other group (Supplementary Information). This exercise indicates that UAIC (SCM1) 615 is most similar to carcharodontosaurids.

Secondly, we used the log-transformed dataset that we also used for the PCA to conduct a clustering analysis. We performed the analysis in PAST v2.17, using the paired group algorithm and the correlation similarity measure. In the resulting dendrogram, UAIC (SCM1) 615 groups with a handful of teeth belonging to carcharodontosaurids,

tyrannosauroids, and Allosaurus (Supplementary Information).

Third, we used the tooth measurement database to conduct a discriminant analysis in PAST v3.0 (Hammer et al., 2001). This analysis uses pre-determined groups (in this case, taxonomic clusters) to create a morphospace in which these groups are maximally separated.

This allows teeth of unknown affinities, such as UAIC (SCM1) 615, to be classified according to which taxonomic group it is most similar to in this discriminant morphospace. In total, 67.79% of other teeth are classified correctly when they are treated as having uncertain affinities and their measurements are used to classify them in discriminant space, indicating that this exercise returns reasonable results. Our analysis classifies the Romanian tooth as a carcharodontosaurid. Furthermore, the analysis places UAIC (SCM1) 615 within the convex hulls for carcharodontosaurids and tyrannosauroids, and the 95% confidence ellipses for carcharodontosaurids, coelophysoids, and neovenatorids.

Fourth, we ran a phylogenetic analysis by including UAIC (SCM1) 615 in the discrete character dataset of theropod dental features published by Hendrickx and Mateus (2014). The Romanian specimen was scored as a lateral tooth in this analysis. The analysis was conducted in TNT (Goloboff et al., 2008), and resulted in 224 most parsimonious trees (686 steps, consistency index of 0.338, retention index of 0.566). The strict consensus topology is moderately well resolved and places the Romanian tooth as the sister taxon to Carcharodontosaurus (Supplementary Material). This sister taxon pair is recovered as the sister clade to a grouping of the derived carcharodontosaurids Mapusaurus and Giganotosaurus.

Several synapomorphies support the carcharodontosaurid affinities of UAIC (SCM1) 615. The sister group relationship with *Carcharodontosaurus* is supported by two features: a roughly straight distal margin of the crown (character 68) and pronounced marginal undulations in the enamel that are well visible in normal light (character 112). The broader clade of UAIC (SCM1) 615, Carcharodontosaurus, Mapusaurus, and Giganotosaurus (= Carcharodontosaurinae, as defined by Brusatte and Sereno, 2008, and Carrano et al., 2012) is linked by numerous characters, including: large teeth with a crown height greater than 6 cm (character 65), a bowed or sigmoid distal carina in distal view (character 82), marginal

undulations that are at least twice as long mesiodistally as the space separating each
undulation (character 111), and marginal undulations present on both mesial and distal sides
of the crown (character 113).

The Romanian specimen also lacks many keystone dental synapomorphies of other theropod clades, based on the clade diagnoses of Hendrickx and Mateus (2014) and other cladistic studies that include dental characters. UAIC (SCM1) 615 does not possess the hooked distal denticles of some Abelisauridae, the strongly labially deflected distal carina and pronounced transverse enamel undulations extending across the labial and lingual tooth faces of Ceratosauridae, the incrassate teeth with apicobasal enamel flutes and deeply veined enamel surface texture of Spinosauridae, and the large transverse undulations of some basal allosauroids (Hendrickx and Mateus, 2014). It also lacks the thickened incrassate teeth of derived tyrannosauroids (Brusatte et al., 2010a) and the large and strongly hooked (or pointed) denticles of troodontids and therizinosauroids (e.g., Turner et al., 2012; Brusatte et al., 2014; Hendrickx and Mateus, 2014). The large size, as well as recurved and ziphodont shape of UAIC (SCM1) 615 is strikingly different from the non-ziphodont therizinosauroids, ornithomimosaurs, alvarezsauroids, and most troodontids, which have conical, leaf-shaped, or peg-like teeth (when teeth are present) (e.g., Holtz et al., 2004a; Turner et al., 2012; Brusatte et al., 2014). Finally, besides its remarkably large size, the presence of serrations indicates that UAIC (SCM1) 615 does not belong to groups such as alvarezsauroids, oviraptorosaurs, basal troodontids, or avialans, which have unserrated crowns (e.g., Turner et al., 2012; Hendrickx and Mateus, 2014).

In summary, the four analyses all support carcharodontosaurid affinities for UAIC (SCM1) 615. Both overall tooth proportions and discrete phylogenetic characters point to a carcharodontosaurid identification, and the discriminant function analysis and phylogenetic analysis both explicitly recover the tooth as a carcharodontosaurid. For this reason we refer

this tooth to Carcharodontosauridae. Moreover, it appears to belong to a clade that unites very derived and large-sized carcharodontosaurids (Carcharodontosaurus, Giganotosaurus, and Mapusaurus), separated as such and named Carcharodontosaurinae by Brusatte and Sereno (2008) and Carrano et al. (2012). The well-resolved internal topology of this clade, as recovered in our analysis, is congruent with results of previous analyses based on larger sets of characters from across the skeleton (e.g., Coria and Currie, 2006; Brusatte and Sereno, 2008; Brusatte et al., 2009; Ortega et al., 2010; Eddy and Clarke, 2011; Canale et al., 2015), and offers some support for considering the Romanian carcharodontosaurid from Southern Dobrogea as more closely related to the African Carcharodontosaurus than to the clade of the South American giant carcharodontosaurids Giganotosaurus or Mapusaurus.

Two final notes are worth adding. First, our analyses also incorporated carcharodontosaurids that are usually found to be basal within the clade, such as Acrocanthosaurus and Eocarcharia (e.g., Harris, 1998; Sereno and Brusatte, 2008; Carrano et al., 2012) as well as a host of other allosauroids, including members of Neovenatoridae (*Neovenator*, Australovenator and Fukuiraptor), a clade that is often recovered as sister-taxon to carcharodontosaurids within Carcharodontosauria (e.g., Benson et al., 2010; Carrano et al., 2012; but see Novas et al., 2013; Porfiri et al., 2014, for an alternate placement of neovenatorids in general). Both PCA and phylogenetic analysis clearly identified UAIC (SCM1) 615 as more closely comparable morphologically to derived carcharodontosaurids than to either basal carcharodontosaurids or to any other allosauroid subclade.

Second, our datasets also included teeth of *Erectopus*, the genus erected for *'Megalosaurus' superbus* to which UAIC (SCM1) 615 was originally referred. Again, our
analyses clearly indicate that there are no close morphological and morphometric similarities
between the two, which is in accordance with the suggestion of Carrano et al. (2012) that *Erectopus* represents a non-carcharodontosaurid taxon, while our analysis identifies UAIC

(SCM1) 615 as a carcharodontosaurid. Instead, *Erectopus* groups with abelisauroids in the phylogenetic analysis. This is somewhat surprisingly, as Allain (2005) and Carrano et al. (2012) both identified *Erectopus* as a tetanuran. It should be noted, however, that Albian-aged abelisauroids are known from the same general area (eastern France) as that yielding the material referred to *Erectopus* (Accarie et al., 1995; Carrano and Sampson, 2008), raising the intriguing possibility that this taxon may represent an abelisauroid instead of an allosauroid tetanuran as suggested by Allain (2005) and Carrano et al. (2012). However, it must be remembered that this phylogenetic analysis is based on dental characters only, so it is probably more likely that *Erectopus* is a tetanuran with a dentition convergent to some extent with those of certain abelisauroids.

5.2. Body size of UAIC (SCM1) 615

One of the most salient and remarkable features of UAIC (SCM1) 615 is its large size. In the large and comprehensive sample of theropod teeth from our dataset, tooth size (estimated based on crown height – CH, and used as a rough proxy of body size) ranges from 2.2 mm (in the dromaeosaurid Saurornitholestes and the coelurosaur of uncertain affinities *Richardoestesia*) to 117.1 mm in the gigantic tyrannosauroid *Tyrannosaurus*. The Romanian specimen UAIC (SCM1) 615, with a CH of 85.5 mm, is ranked in the 60-80% maximum size (~ CH) range of the sample, and has a CH that is 73% of the largest tyrannosauroid teeth. Most of the teeth in the dataset (over 61% of the 966 measured teeth) are very small to small (less than 25 mm CH), and less than 10% of these fall in the 60-100% CH size categories. Teeth larger than UAIC (SCM1) 615 make up less than 5% of the total sample, and they represent only five taxa: the megalosaurid *Torvosaurus*, the tyrannosauroid *Tyrannosaurus*, the basal carcharodontosaurid Acrocanthosaurus, and the derived carcharodontosaurines Carcharodontosaurus and Giganotosaurus. Compared to other carcharodontosaurids, UAIC

651 (SCM1) 615 is smaller than the largest teeth of *Acrocanthosaurus* (9% difference),

Carcharodontosaurus (20%), and *Giganotosaurus* (12.5%) in the dataset, but is 13% bigger
than the largest tooth of *Mapusaurus*.

It is thus reasonable to conclude that UAIC (SCM1) 615 belonged to a large-sized carcharodontosaurid, comparable to, even if somewhat smaller than, the truly gigantic carcharodontosaurines Giganotosaurus and Carcharodontosaurus (Sereno et al., 1996; Calvo and Coria, 1998; Therrien and Henderson, 2007), taxa that were recovered as possible close relatives of the Romanian carcharodontosaurid by our phylogenetic analysis. This, in turn, corroborates growing evidence that very large body size was acquired very early in carcharodontosaurid history, since the earliest potential members of the clade are already of relatively large size (Rauhut, 2011). The oldest potential carcharodontosaurid is Veterupristisaurus, represented by isolated vertebrae that indicate an animal between 8.5 and 10 meters in total body length (compared to 11.5+ meters in Acrocanthosaurus and more derived carcharodontosaurids) (Rauhut, 2011). These specimens are known from the uppermost Jurassic of Tanzania, eastern Africa (Rauhut, 2011; Carrano et al., 2012; see below), predating at most ~18 million years (Mya) the occurrence of likely even larger-sized carcharodontosaurids in the Valanginian of Southern Dobrogea, Romania.

The inferred large body size of the South Dobrogean theropod is also remarkable as virtually all other dinosaur remains reported previously from Romania (both from the Early Cretaceous Cornet assemblage and the much later, end Cretaceous Hateg Island fauna) are significantly smaller, and many have been interpreted as insular dwarfs (e.g., Weishampel et al., 1993, 2003; Benton et al., 2006, 2010; Stein et al., 2010; Ősi et al., 2014). Although other Romanian theropod dinosaurs were not particularly dwarfed (e.g. Brusatte et al., 2013), they were nonetheless small (Nopcsa, 1902; Csiki and Grigorescu, 1998; Csiki et al., 2010; Brusatte et al., 2013). This bias towards small bodied Romanian theropods was also

interpreted as a consequence of their insular habitat (Csiki and Grigorescu, 1998), as all previously reported theropod remains come from within the Carpathian Orogen, an area with an archipelago-type palaeogeography during the Cretaceous (Dercourt et al., 2000; Csontos and Vörös, 2004; Csiki-Sava et al., 2015). By contrast, UAIC (SCM1) 615 was found in shallow marine deposits bordering the emerged areas of Central Dobrogea, part of the stable cratonic areas of Europe and connected at least intermittently to the Ukrainean Shield since the Late Jurassic (Fig. 5A). Although cratonic Europe was also transformed into an archipelago of islands during much of the Cretaceous, these islands were often both larger in size and more stable in space and time than were the transient emerged areas of the Tethyan archipelagoes. As such, it is conceivable that the Southern Dobrogean carcharodontosaurid was less constrained by space or resource limitations than the Tethyan insular dinosaurs, allowing it to retain a large body size.

5.3. UAIC (SCM1) 615 and Valanginian dinosaur distribution

Besides documenting the presence of large-sized mainland carcharodontosaurids in the Lower Cretaceous of Romania, UAIC (SCM1) 615 is also important in that it fills a significant gap in our knowledge on the composition and distribution of the Early Cretaceous dinosaurs in Europe. In their review of dinosaur occurrences, Weishampel et al. (2004) listed 83 Early Cretaceous dinosaur localities spread throughout Europe, more than half of these being known from the later part (Barremian-Albian) of that epoch; only around a dozen localities were listed from each age of the early part of the Early Cretaceous (Berriasian, Valanginian, and Hauterivian). Even despite a significant increase in Early Cretaceous dinosaur discoveries in Europe in recent years (e.g., Royo-Torres et al., 2009; Cobos et al., 2010, 2014; Galton, 2009; Norman, 2010, 2013; Pereda-Suberbiola et al., 2011, 2012; Sachs and Hornung, 2013; Blows and Honeysett, 2014), these remain very strongly biased towards

western and southwestern Europe (especially the UK, France and Spain). Frustratingly, no
occurrences are known from the entire central, eastern and southern Europe for the
Berriasian–Hauterivian time interval except for two from Romania: the Berriasian–
Valanginian locality of Cornet (e.g., Jurcsák and Popa, 1979, 1983; Jurcsák, 1982; Benton et
al., 1997) in the northern Apuseni Mountains of northwestern Romania, and the
carcharodontosaurid tooth (Simionescu, 1913) from the Valanginian of Cochirleni, in
Southern Dobrogea, southeastern Romania we are describing here (Fig. 5A).

Our identification of the Romanian tooth as a carcharodontosaurid documents the presence of this clade in Europe in the very early Cretaceous. This is significant, as carcharodontosaurids were widely distributed tens of millions of years later, in the middle Cretaceous (Aptian to Cenomanian), in western Gondwana (Africa and South America, see below). Despite the recent discoveries documenting that the clade was also present in North America and Asia during the middle Cretaceous (e.g., Sereno et al., 1996; Currie and Carpenter, 2000; Brusatte et al., 2009, 2012), there has been only very few occurrences in Europe, most importantly the Barremian-aged *Concavenator* from Spain (Ortega et al., 2010; see below). The carcharodontosaurid tooth from Southern Dobrogea is substantially older than *Concavenator*, demonstrating that carcharodontosaurids appeared in Europe earlier than previously thought and were a long-term component of the European mainland Early Cretaceous faunas. It also suggests that habitat-related palaeobiological differentiation might have been already present between the cratonic, stable European mainland, with a dinosaur fauna made up of normal-sized (even very large) taxa, and the islands from the mobile Alpine areas of the Mediterranean Neo-Tethys, with by now dwarfed dinosaurs such as those described from the Berriasian-Valanginian Cornet assemblage in northwestern Romania (Benton et al., 2006).

This Valanginian carcharodontosaurid represents an important datapoint not only for the Romanian Lower Cretaceous, but also for that of wider Eurasia. The Valanginian is a poorly documented age in dinosaur evolution, with very few precisely dated fossil occurrences from anywhere in the world (e.g., Weishampel et al., 2004). The best record of Valanginian dinosaurs is from Europe, with fewer and less well dated occurrences known from Asia, some of which have debatable or controversial dates. These include sites in Japan (e.g., Manabe and Hasegawa, 1995; Matsukawa et al., 2006; but see Kusuhashi et al., 2009 and Evans and Matsumoto, 2015, supporting an alternative, younger age of these assemblages) and in Thailand (e.g., Buffetaut and Suteethorn, 1998, 2007, with age constraints according to Racey, 2009; Racey and Goodall, 2009). Occurrences of possible Valanginian age from China (e.g., Jerzykiewicz and Russell, 1991; Shen and Mateer, 1992; Lucas and Estep, 1998) are either poorly constrained as early Early Cretaceous, or were shown subsequently to be younger than Valanginian (Lucas, 2006; Tong et al., 2009). Rare dinosaur remains of possible Valanginian (or 'Neocomian') age were also reported from southern Africa (e.g., De Klerk et al., 2000) and, tentatively, from North America (e.g., Lucas, 1901; McDonald, 2011, with age assignments according to Sames et al., 2010; Cifelli et al., 2014).

As one of the two known reports of Valanginian dinosaurs in Europe east of France, the Southern Dobrogean dinosaur record fills a huge palaeogeographic gap between the western European and the eastern Asian dinosaur faunas. Moreover, none of these early Early Cretaceous dinosaur assemblages from outside Europe include carcharodontosaurids (see below), as theropods are represented by coelurosaurians interpreted either as compsognathids (Gishlick and Gauthier, 2007) or basal ornithomimosaurs (Choiniere et al., 2012) in southern Africa, metriacanthosaurid allosauroids ('sinraptorids') in Thailand (Buffetaut and Suteethorn, 2007), and indeterminate allosauroids (Pérez-Moreno et al., 1993), non-
carcharodontosaurid tetanurans (Carrano et al., 2012) or enantiornithine birds (Lacasa Ruiz, 1989), besides indeterminate taxa (Carrano et al., 2012), in western Europe. This may suggest that carcharodontosaurids had not achieved a wide geographic distribution by this point in time, and that their more cosmopolitan distribution came later, during the middle Cretaceous.

Finally, the presence of the Cochirleni carcharodontosaurid might hint at the presence of palaeobiogeographic provinciality between the western and the eastern parts of Europe, partly mirroring those reported from the later part of the Late Cretaceous (e.g., Le Loeuff and Buffetaut, 1995; Weishampel et al., 2010; Ősi et al., 2012; Csiki-Sava et al., 2015). In the reasonably well sampled, and significantly better known, western European dinosaur faunas, Valanginian large carnivorous dinosaurs include non-carcharodontosaurid tetanurans (Becklespinax), as well as indeterminate allosauroids or indeterminate theropods (often described as 'Megalosaurus' dunkeri, 'M.' insignis or 'M.' oweni), none of which can be referred positively to Carcharodontosauridae (Carrano et al., 2012). The apparently provincial geographic distribution of the large-bodied theropods suggests that some degree of faunal differentiation was occurring within the European mainland, most probably promoted by geographic distance. Notably, this intra-European differentiation in theropod assemblages appears to stand in contrast with the faunal homogeneity reported in the case of the ornithopods from the UK and Romania (e.g., Galton, 2009). It is important, however, to reemphasize at this point that the Valanginian dinosaur fossil record is both exceedingly poor and patchy, even in Europe. Accordingly, further discoveries are needed to verify and support (or contradict) the presence of such a distribution pattern pointing to palaeobiogeographic provinciality inside Europe, as the one suggested by our carcharodontosaurid identification for UAIC (SCM1) 615.

5.4. UAIC (SCM1) 615 and carcharodontosaurid evolution and palaeobiogeography

Carcharodontosauridae were long considered as an exclusively Gondwanan group of theropods (e.g., Allain, 2002; Novas et al., 2005) since their first discovery in northern Africa (e.g., Stromer, 1931), and subsequent description of a host of referred taxa from the Aptian-Cenomanian of Africa and South America (Coria and Salgado, 1995; Sereno et al., 1996; Novas et al., 2005; Coria and Currie, 2006; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Cau et al., 2013). This view started to change with the identification of the Early Cretaceous (Aptian-Albian) Acrocanthosaurus from North America as a basal carcharodontosaurid (e.g., Sereno et al., 1996; Harris, 1998; Sereno 1999; Brusatte and Sereno, 2008), suggesting that the clade had a wider, Neopangean palaeobiogeographic distribution by the mid-late Early Cretaceous. Such a wide distribution, even a cosmopolitan one, was further supported by the discovery of definitive carcharodontosaurids in the Lower Cretaceous of Europe (Ortega et al., 2010), and in the upper Lower to lower Upper Cretaceous of China (Brusatte et al., 2009, 2010b, 24012; Mo et al., 2014; Lü et al., 20142016).

Together, the available evidence pointed to an early, pre-mid Early Cretaceous origin of the carcharodontosaurids, followed by their dispersal across Laurasia and western Gondwana beginning at least by the Aptian (Fig. 5B), a scenario that is concordant with the tentatively suggested presence of early carcharodontosaurids in the Upper Jurassic of Tanzania, which are based on fragmentary specimens (Rauhut, 2011; Carrano et al., 2012). It is also concordant with the widespread appearance of carcharodontosaurids in the fossil record starting with the Aptian, when they are reported in Africa (Eocarcharia; Sereno and Brusatte, 2008), South America (Vickers-Rich et al., 1999), North America (Acrocanthosaurus; Stovall and Langston, 1950; Harris, 1998; Currie and Carpenter, 2000 Eddy and Clarke, 2011), Europe (Canudo and Ruiz-Omeñaca, 2003; Pereda-Suberbiola et al.,

2012), and eastern Asia (*Kelmayisaurus*; Brusatte et al., 2012; Lü et al., 2014; Mo et al., 2014; Lü et al., 2016).

During the Albian–Turonian, carcharodontosaurids became especially abundant and diverse in Africa (*Carcharodontosaurus, Sauroniops*; Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007; Le Loeuff et al., 2012; Cau et al., 2013; Richter et al., 2013) and South America (*Tyrannotitan, Giganotosautus, Mapusaurus*, alongside with indeterminate carcharodontosaurids; Coria and Salgado, 1995; Calvo and Coria, 1998; Novas et al., 2005; Coria and Currie, 2006; Casal et al., 2009; Candeiro et al., 2011; Canale et al., 2015; Fig. 5B). They were still present during this time interval in other continents, as well: in North America with *Acrocanthosaurus* until the Albian (D'Emic et al., 2012), in Europe until the Cenomanian (Vullo et al., 2007; Csiki-Sava et al., 2005), and in Eastern Asia with *Shaochilong* until the Turonian (Brusatte et al., 2009, 2010b; see also Chure et al., 1999).

After dominating terrestrial ecosystems at least in Africa, South America and eastern Asia during the Albian–Turonian (Brusatte et al., 2009; Coria and Salgado, 2005; Novas et al., 2013), carcharodontosaurids were considered to disappear from the fossil record after the Turonian in both Asia (Brusatte et al., 2009) and South America (e.g., Coria and Salgado, 2005; Calvo et al., 2006; Novas et al., 2013), to be replaced by other groups of large theropods such as tyrannosaurids in parts of Laurasia and abelisaurids in parts of Gondwana. Canale et al. (2009) even cautioned against assigning isolated theropod teeth from post-Cenomanian deposits of South America to Carcharodontosaridae (e.g., Canudo et al., 2008; Casal et al., 2009; Salgado et al., 2009) due to their morphological similarity to those of the abelisaurid Skorpiovenator. Recently, however, more diagnostic cranial remains were reported to suggest the survival of carcharodontosaurids into the latest Cretaceous (Campanian–Maastrichtian) in Brazil (Azevedo et al., 2013).

Contrasting with this rich and relatively continuous fossil record of Carcharodontosauridae starting with the Aptian, the first half of its evolutionary history is very poorly documented (Fig. 5B). Prior to the identification of UAIC (SCM1) 615, only two occurrences of pre-Aptian Cretaceous carcharodontosaurids were reported, one from the Barremian of Spain (Ortega et al., 2010; Gasca et al., 2014) and the other from the Barremian of Thailand (Buffetaut and Suteethorn, 2012). The Early Cretaceous Kelmavisaurus from Xinjiang, western China, was recognized as a carcharodontosaurid of possibly ?Valanginian to Aptian in age by Brusatte et al. (2012), but the deposits yielding these remains (the Lianmugin, or Lianmuxin, Formation of the Tugulu Group) were dated as Aptian–Albian by Eberth et al. (2001; see also Tong et al., 2009). An important temporal gap – of about 20 to 28 millions of years, according to the dates in Gradstein et al. (2012) - thus stretched between the oldest, tentatively assigned carcharodontosaurids from the Oxfordian-Tithonian of Tanzania, including the formally erected Veterupristisaurus (Rauhut, 2011; see also Carrano et al., 2012), and those that started to appear in the fossil record in the Barremian and then spread widely during the Aptian. Referral of UAIC (SCM1) 615 to Carcharodontosauridae partially fills this frustrating gap, effectively halving this shadowy period in the evolutionary history of the group.

Furthermore, our analyses tentatively cluster the Dobrogean theropod with the derived
members of the Carcharodontosaurinae to the exclusion of the more basal, but significantly
younger non-carcharodontosaurine carcharodontosaurids *Eocarcharia* and *Acrocanthosaurus*.
If this placement is correct, then the Romanian tooth indicates that Carcharodontosaurinae
diverged from other carcharodontosaurids considerably earlier than hitherto recognized.

845 The previously known fossil record of the clade suggested that Carcharodontosaurinae
846 originated sometime between the Aptian and Albian, as basal carcharodontosaurids
847 (*Acrocanthosaurus, Concavenator, Eocarcharia*) were moderately diverse in the Barremian–

Aptian, followed by the appearance of many fossils of carcharodontosaurines beginning in the Albian (Fig. 5B). The proposed affinities of the oldest carcharodontosaurid material – including isolated teeth referred to as 'Megalosaurus' ingens - from the east African Upper Jurassic, considered to be reminiscent of the Aptian-Albian Acrocanthosaurus (Rauhut, 2011), was also consistent with this evolutionary scenario. Now, our identification of UAIC (SCM1) 615 as a carcharodontosaurid dinosaur sharing important dental apomorphies with the derived Carcharodontosaurinae advocates the emergence of this clade (or at least the very large size and dental morphology characterizing it) well before the Albian, during or even before the Valanginian, and relegates taxa such as Eocarcharia, Acrocanthosaurus and *Concavenator* (the dentition of *Shaochilong* is unknown) as late-surviving members of the basal carcharodontosaurid radiation, with a relatively plesiomorphic dentition.

Besides shifting the emergence of the carcharodontosaurines earlier in time, identification of UAIC (SCM1) 615 as a carcharodontosaurid also has interesting palaeobiogeographic implications. As already noted, recent discoveries show that Carcharodontosauridae is not an endemic Gondwanan clade as was once proposed (e.g., Novas et al., 2005), with the identification of its widespread, Pangaean distribution during the late Early Cretaceous (Sereno et al., 1996; Harris, 1998; Chure et al., 1999; Sereno, 1999; Brusatte and Sereno, 2008; Ortega et al., 2010; Brusatte et al., 2009, 2012; Mo et al., 2014). However, within Carcharodontosauridae itself, some palaeogeographic patterns have been widely accepted. For example, it has been widely acknowledged that Carcharodontosaurinae is a endemic subclade of Gondwanan carcharodontosaurids (e.g., Sereno 1999; Holtz et al., 2004b; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Novas et al., 2013), as previously all its recognized members were restricted strictly to either Africa (Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007) or South America (Coria and Salgado, 1995; Novas et al., 2005; Coria and Currie, 2006). Moreover, intra-clade relationships of

Carcharodontosaurinae were still adhering to patterns of continental fragmentation and vicariant evolution, with a basal split between the Albian-Cenomanian African Carcharodontosaurus and the Giganotosaurini, uniting the similarly Albian–Cenomanian southern South American Giganotosaurus and Mapusaurus (together with Tyrannotitan, if this taxon is also recovered within Carcharodontosaurinae; e.g., Novas et al., 2005, 2013).

This scenario is now challenged by our finding that the Southern Dobrogean carcharodontosaurid UAIC (SCM1) 615 may nest inside Carcharodontosaurinae. If true, such an affinity would suggest that the origin of Carcharodontosaurinae was not a southern, vicariant by-product of the Gondwana-Laurasia separation, a major palaeogeographic event that is considered to have been well underway by the end of the Jurassic, and essentially completed by the mid-Early Cretaceous (see Weishampel et al., 2010). Indeed, during this time palaeogeographic connections and faunal interactions were virtually non-existent between the northern Tethyan (European) and southern Tethyan (western Gondwanan, but essentially African) areas of the Mediterranean (e.g., Canudo et al., 2009; see below), which makes a vicariant hypothesis intuitive. However, if the Romanian tooth represents a carcharodontosaurine, then it implies a much more complicated palaeogeographic history of the clade, which is not so clearly linked to continental breakup.

The palaeogeographic position of the Southern Dobrogean carcharodontosaurine in cratonic Europe, north of the Neo-Tethys, together with its significantly older age compared to other carcharodontosaurines, could indicate that separation of the carcharodontosaurine lineage took part in Europe and not in western Gondwana as previously assumed. This would also mean that representatives of this lineage were subsequently - after the Barremian -introduced to Africa and South America via trans-Tethyan dispersal, most probably at a time when faunal interactions between the southern and northern margins of the Mediterranean Tethys were resumed, after the early Barremian (Canudo et al., 2009).

Alternatively, it can be hypothesized that appearance of carcharodontosaurines in Southern Dobrogea is a consequence of southern immigration originating in western Gondwana, often considered the place of origin for this clade. However, this scenario has several potential caveats. Although Europe has been considered as forming part of a larger Eurogondwanan palaeobioprovince during the early Early Cretaceous (Ezcurra and Agnolín, 2012), and occasional trans-Tethyan faunal connections have been recognized between Africa and Europe during Late Jurassic to Early Cretaceous times (e.g., Gheerbrant and Rage, 2006), these interchanges either pre-dated the Berriasian (e.g., Gardner et al., 2003; Knoll and Ruiz-Omeñaca, 2009), or post-dated the Barremian (Canudo et al., 2009; Torcida Fernández-Baldor et al., 2011), with no positive evidence for actual faunal exchanges taking place during the 'Neocomian' (Berriasian-Hauterivian) time interval.

More recently, some potential evidence has emerged for Gondwana-to-Europe interchange during the 'Neocomian'. The presence of the basal rebbachisaurid *Histriasaurus* (Dalla Vecchia, 1998) in the upper Hauterivian-lower Barremian of Croatia has been cited as indicative of very early and very rapid northward dispersal of this clade from western Gondwana (southern South America; Carballido et al., 2012; Fanti et al., 2015). Timing of this particular dispersal event was even constrained to the Berriasian-Valanginian time interval (Fanti et al., 2015), which makes it roughly contemporaneous with the record of the Southern Dobrogean carcharodontosaurine. It was also suggested, however, that dispersal of the line leading to *Histriasaurus* was mediated by the northward drift of the Apulian Microplate (= Adria; see Bosselini, 2002), a continental sliver acting as a passive transportation mechanism ('Noah's Ark'; KcKennaMcKenna, 1973) for basal rebbachisaurids after its separation from mainland Africa (e.g., Torcida Fernández-Baldor et al., 2011). Furthermore, the palaeogeographical separation between Africa and Adria (and thus the effective movement of the presumed ark) is considered to be at most an incipient one

during the Early Cretaceous by Bossellini (2002) and Zarcone et al. (2010), with spatial continuity still present between the two landmasses, while deep-water basins continued to separate Adria from the European Craton. Accordingly, although the presence of Histriasaurus can represent a case of northward range extension of rebbachisaurids during the Berriasian–Valanginian, it took place not strictly speaking into Europe, but only reached the northernmost extremity of Adria, a northerly peninsular extension of the African mainland. It was only starting with the Barremian that rebbachisaurids dispersed as far north as the European cratonic areas, including Iberia and the British Isles (Mannion, 2009; Mannion et al., 2011; Torcida Fernández-Baldor et al., 2011), a time when faunal interchanges between Europe and Africa are considered to have been well underway (e.g., Gheerbrant and Rage, 2006; Canudo et al., 2009).

Unlike Histriasaurus, the taxon represented by UAIC (SCM1) 615 was an inhabitant of the European mainland. It is thus unclear to what extent the example of rebbachisaurid range extension into (present-day) Europe during the early Early Cretaceous, as potentially testified by the discovery of the Croatian taxon, would also be applicable for the Southern Dobrogean carcharodontosaurine. The available evidence suggests that these two cases are very different, and that faunal connections during this time interval are not documented between the African and European cratons as already pointed out by Gheerbrant and Rage (2006).

Absence of documented faunal interactions weakens support for a scenario of southto-north immigration of derived carcharodontosaurines in Europe at the very beginning of the Cretaceous, and would argue instead for a local, European development to explain the presence of a Valanginian carcharodontosaurine in Southern Dobrogea. The pre-Barremian presence of carcharodontosaurids in Europe is also consistent with their appearance in the Barremian–Aptian fossil record of Eastern Asia, with Europe acting as a stepping stone in the

eastward dispersal of the clade. Similarly, the presence of Aptian carcharodontosaurids in North America likely requires the presence of pre-Aptian members of the clade in Europe, since faunal exchanges between these two landmasses are known to have been halted before the Aptian (e.g., Kirkland et al., 1999). Interestingly, it appears that only basal carcharodontosaurids were able to spread into the northern Laurasian landmasses, while the derived carcharodontosaurines dispersed exclusively across the Neo-Tethys, into western Gondwana. The causes of these distribution patterns remain as yet unknown, and further support – in the form on new carcharodontosaurid discoveries from the early-middle part of the Early Cretaceous – is required to better uphold such a scenario.

We finally reiterate that if the Romanian tooth does not belong to a carcharodontosaurine, but instead is artefactually grouping with them in the phylogenetic analysis because of the very incomplete nature of the material, then the traditional story of Carcharodontosaurinae as a product of vicariant evolution driven by the breakup of Pangea will remain strongly supported. However, even in such case UAIC (SCM1) 615 would still record the presence of early-occuring large carcharodontosaurid theropods with a very characteristic carcharodontosaurine-type dentition in the eastern part of the European craton, adding to known early Early Cretaceous theropod (and dinosaur) diversity, and potentially documenting dinosaur faunal provinciality in Europe and worldwide.

967 6. Conclusions

We re-describe and interpret the affinities of one of the most significant historical dinosaurian
specimens of Romania, an isolated but well-preserved theropod tooth from Southern
Dobrogea. Our extensive analyses suggest carcharodontosaurid relationships for this tooth,
while the available evidence – including novel calcareous nannoplankton sampling – supports
its Valanginian age. The Southern Dobrogean theropod tooth represents the oldest record of

973 Carcharodontosauridae in the Cretaceous, and the second oldest globally, eclipsed only by a
974 collection of isolated specimens from the Upper Jurassic of eastern Africa. As one of the only
975 two known Valanginian dinosaurian occurrences from Central and Eastern Europe, this
976 record advances our understanding of European dinosaur distribution during the early Early
977 Cretaceous, and also fills an important palaeogeographic gap between Western European and
978 Eastern Asian dinosaurian assemblages of the Valanginian.

Based on dental apomorphies, our analyses further identify UAIC (SCM1) 615 as a possible member of Carcharodontosaurinae, a subclade of derived and gigantic carcharodontosaurids formerly known to be restricted to the Albian-Cenomanian of western Gondwana (Africa and South America). If this finding is correct, the Southern Dobrogean specimen documents the emergence of Carcharodontosaurinae earlier than previously recognized, thus also indicating an earlier acquisition of their characteristically large size. Based on currently known palaeogeographic and chronostratigraphic constraints on the evolution of Carcharodontosauridae, it appears that not only did this clade have a wide distribution, but that crucial events of its evolutionary history such as the emergence of the derived carcharodontosaurines took place north of the Tethys, in cratonic Europe, instead of western Gondwana and as the result of vicariant evolution driven by the Gondwana-Laurasia split, as was formerly suggested. In such a case, instead of endemic evolution the emergence of the western Gondwanan mid-Cretaceous carcharodontosaurines was the result of a north-to-south trans-Tethyan dispersal that took place somewhere between the Valanginian and the Aptian. Recognizing a potential carcharodontosaurine dispersal event from Europe into western Gondwana adds further support for the presence of important palaeogeographic ties between the two realms during the second half of the Early Cretaceous.

997 Acknowledgements

1

This research was supported by the National Research Council of Romania (CNCS) grant PN-IIID-PCE-2011-3-0381 and a Sepkoski grant of the Paleontological Society for Z.Cs.-S. S.L.B. is supported by a Marie Curie Career Integration Grant EC630652, the Division of Paleontology of the American Museum of Natural History, and the School of GeoSciences of the University of Edinburgh. He thanks Mátyás Vremir, Radu Totoianu, and Mark Norell for many hours of fun discussion on Romanian fossils, and for supporting his work and travel in Romania. We thank Mihai Brânzilă and Paul Tibuleac (UAIC) for access to the specimen, for allowing us to collect samples for the nannoplankton analyses, and for their help and collegiality during our visit to Iași, as well as Ilie Turculeț for sharing information about the history of the specimen. Mihaela C. Melinte-Dobrinescu has gracefully analyzed the nannoplankton samples derived from UAIC (SCM1) 615; her contribution was essential in assessing the age of the specimen. Finally, we thank the reviewers Eric W.A. Mulder (Denekamp, the Netherlands) and Xabier Pereda-Suberbiola (Bilbao, Spain), as well as Associated Editor Elena Jagt-Yazykova, for their useful comments and suggestions that helped improve a previous versions of the manuscript.

References

Accarie, H., Beaudoin, B., Dejax, J., Friès, G., Michard, J.G., Taquet, P., 1995. Découverte d'un dinosaure théropode nouveau (Genusaurus sisteronis n. g., n. sp.) dans l'Albien marin de Sisteron (Alpes-de-Haute-Provence, France) et extension au Crétacé inférieur de la lignée cératosaurienne. Comptes Rendus de l'Académie des Sciences Paris, IIa 320, 327-334. Allain, R., 2002. Discovery of a megalosaur (Dinosauria, Theropoda) in the Middle Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae. Journal of Vertebrate Paleontology 22, 548–563.

1022	Allain, R., 2005. The enigmatic theropod dinosaur <i>Erectopus superbus</i> (Sauvage, 1882) from
$\frac{1}{2}$ 1023	the Lower Albian of Louppy-le-Chateau (Meuse, France). In: Carpenter, K. (Ed.), The
4 5 1024 6	Carnivorous Dinosaurs. Indiana University Press, Bloomington, pp. 72-86.
⁷ 1025 8	Avram, E., Szasz, L., Antonescu, E., Baltreş, A., Iva, M., Melinte, M., Neagu, T., Rădan, S.,
9 10 1026	Tomescu, C., 1993. Cretaceous terrestrial and shallow marine deposits in northern South
12 1027 13	Dobrogea (SE Romania). Cretaceous Research 14, 265–305.
¹⁴ 15 1028	Avram, E., Costea, I., Dragastan, O., Muțiu, R., Neagu, T., Șindilar, V., Vinogradov, C.,
16 17 1029 18	1996. Distribution of the Middle-Upper Jurassic and Cretaceous facies in the Romanian
$\frac{19}{20}$ 1030	eastern part of the Moesian Platform. Revue Roumaine de Géologie 39-40, 3-33.
21 22 1031	Azevedo, R.P.F. de, Simbras, F.M., Furtado, M.R., Candeiro, C.R.A., Bergqvist, L.P., 2013.
²³ 24 25	First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the
26 27 1033	Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern
28 29 1034 30	Brazil. Cretaceous Research 40, 131–142.
³¹ 32 1035	Benson, R.B.J., Barrett, P.M., Powell, H.P., Norman, D.B., 2008. The taxonomic status of
33 34 1036 35	Megalosaurus bucklandii (Dinosauria, Theropoda) from the Middle Jurassic of Oxfordshire,
³⁶ 371037	UK. Palaeontology 51, 419–424.
38 39 1038 40	Benson, R.B.J., Carrano, M.T., Brusatte, S.L., 2010. A new clade of archaic large-bodied
$\frac{41}{42}$ 1039	predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.
43 44 1040	Naturwissenschaften 97, 71–78.
45 46 1041 47	Benton, M.J., Cook, E., Grigorescu, D., Popa, E., Tallódi, E., 1997. Dinosaurs and other
48 49 1042	tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania.
50 51 1043 52	Palaeogeography, Palaeoclimatology, Palaeoecology 130, 275–292.
⁵³ 54 1044	Benton, M.J., Minter, N.J., Posmoșanu, E., 2006. Dwarfing in ornithopod dinosaurs from the
55 56 1045 57 58	Early Cretaceous of Romania. In: Csiki, Z. (Ed.), Mesozoic and Cenozoic Vertebrates and
59 60 61 62 63 64 65	42

1882) from

⁵1048 Benton, M.J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, M., Stein, K., Weishampel,

- $^{7}_{8}$ 1049 D.B., 2010. Dinosaurs and the island rule: the dwarfed dinosaurs from Haţeg Island.
- ⁹₁₀1050 Palaeogeography, Palaeoclimatology, Palaeoecology 293, 438–454.
- ¹²1051 Blows, W.T., Honeysett, K., 2014. First Valanginian *Polacanthus foxii* (Dinosauria,
- Ankylosauria) from England, from the Lower Cretaceous of Bexhill, Sussex. Proceedings of
 the Geologists' Association 125, 233–251.
- Bosselini, A., 2002. Dinosaurs "re-write" the geodynamics of the eastern Mediterranean and
 the paleogeography of the Apulia Platform. Earth-Science Reviews 59, 211–234.
- ²⁴ 1056 Brânzilă, M. (ed.), 2010. Academicianul Ion Simionescu savant și dascăl al neamului. Ed.
- ²⁶₂₇1057 Universității "Alexandru Ioan Cuza", Iași, 182 pp.
- ²⁹ 1058 Brusatte, S.L., Sereno, P.C., 2007. A new species of *Carcharodontosaurus* (Dinosauria: ³⁰
- Theropoda) from the Cenomanian of Niger and a revision of the genus. Journal of Vertebrate Paleontology 27, 902–916.
- ³⁶₃₇1061 Brusatte, S.L., Sereno, P.C., 2008. Phylogeny of Allosauroidea (Dinosauria: Theropoda):
- comparative analysis and resolution. Journal of Systematic Palaeontology 6, 155–182.
- ⁴¹₄₂1063 Brusatte, S. L., Clark, N.D.L., 2015. Theropod dinosaurs from the Middle Jurassic (Bajocian-

Bathonian) of Skye, Scotland. Scottish Journal of Geology 51, 157-164. doi:

- ⁴⁶ 1065 10.1144/sjg2014-022
- ⁴⁸₄₉1066 Brusatte, S., Benson, R.B.J., Carr, T.D., Williamson, T.E., Sereno, P.C., 2007. The
- ⁵¹ 1067 systematic utility of theropod enamel wrinkles. Journal of Vertebrate Paleontology 27, 1052–
 ⁵³ 1068 1056.
- 561069 Brusatte, S.L., Benson, R.B.J., Chure, D.J., Xu, X., Sullivan, C., Hone, D.W.E., 2009. The
- $_{59}^{58}$ 1070 first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed
 - 43

4

6

11

18

23

28

35

40

43

45

50

55

57

60

1071 ascent of tyrannosaurids. Naturwissenschaften 96, 1051–1058.Brusatte, S.L., Norell, M.A.,

1072 Carr, T.D., Erickson, G.M., Hutchinson, J.R., Balanoff, A.M., Bever, G.S., Choiniere, J.N.,

Makovicky, P.J., Xu, X., 2010a. Tyrannosaur paleobiology: new research on ancient
exemplar organisms. Science 329, 1481–1485.

Brusatte, S., Chure, D.J., Benson, R.B.J., Xu, X., 2010b. The osteology of *Shaochilong maortuensis*, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of
Asia. Zootaxa 2334, 1–46.

Brusatte, S.L., Benson, R.B.J., Xu, X., 2012. A reassessment of *Kelmayisaurus petrolicus*, a
large theropod dinosaur from the Early Cretaceous of China. Acta Palaeontologica Polonica
57, 65–72.

Brusatte, S.L., Vremir, M., Csiki-Sava, Z., Turner, A.H., Watanabe, A., Erickson, G.M.,
 Norell, M.A., 2013. The osteology of *Balaur bondoc*, an island-dwelling dromaeosaurid
 (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bulletin of the American

1084 Museum of Natural History 374, 3–100. doi: 10.1206/798.1

Brusatte, S.L., Lloyd, G.T., Wang, S.C., Norell, M.A., 2014. Gradual assembly of avian body
 plan culminated in rapid rates of evolution across the dinosaur-bird transition. Current
 Biology 24, 2386–2392.

Buckland, W., 1824. Notice on the *Megalosaurus* or great fossil lizard of Stonesfield.
Transactions of the Geological Society 21, 390–397.

⁴⁶ 1090 Buffetaut, E., Suteethorn, V., 1998. Early Cretaceous dinosaurs from Thailand and their
 ⁴⁸ bearing on the early evolution and biogeographical history of some groups of Cretaceous
 ⁵⁰ dinosaurs. In: Lucas, S.G., Kirkland, J.I., Estep, J.W. (Eds.), Lower and Middle Cretaceous
 ⁵³ 1093 Terrestrial Ecosystems, New Mexico Museum of Natural History and Science Bulletin 14,

1094 pp. 205–210.

1095	Buffetaut, E., Suteethorn, V., 2007. A sinraptorid theropod (Dinosauria: Saurischia) from the
$\frac{1}{3}$ 1096	Phu Kradung Formation of northeastern Thailand. Bulletin de la Société Géologique de
4 5 1097 6	France 178, 497–502.
⁷ 1098	Buffetaut, E., Suteethorn, V., 2012. A carcharodontid theropod (Dinosauria, Saurischia) from
10 10 11	the Sao Khua Formation (Early Cretaceous, Barremian) of Thailand. In: Royo-Torres, R.,
12 1100 13	Gascó, F., Alcalá, L. (Eds.), 10th Annual Meeting of the European Association of Vertebrate
14_{15} 1101	Palaeontologists. ¡Fundamental! 20, Teruel, pp. 27–30.
17 1102 18	Calvo, J.O., Coria, A., 1998. New specimen of Giganotosaurus carolinii (Coria & Salgado,
¹⁹ ₂₀ 1103	1995), supports it as the largest theropod ever found. Gaia 15, 117–122.
21 22 1104 23	Calvo, J.O., Gandossi, P., Porfiri, J.D., 2006. Dinosaur faunal replacement during
²⁴ 1105 25	Cenomanian times in Patagonia, Argentina. In: Evans, S.E., Barrett, P.M. (Eds.), 9th
26 27 1106	Mesozoic Terrestrial Ecosystems and Biota, Manchester, UK, pp. 17–20.
²⁹ 1107 30	Canale, J.I., Scanferla, C.A., Agnolin, F.L., Novas, F.E., 2009. New carnivorous dinosaur
³¹ 32 1108	from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods.
33 34 1109 35	Naturwissenschaften 96, 409–414.
³⁶ ₃₇ 1110	Canale, J.I., Novas, F.E., Pol, D., 2015. Osteology and phylogenetic relationships of
38 39 1111 40	Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda:
⁴¹ ₄₂ 1112	Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Historical
43 44 1113 45	Biology 27, 1–32. doi: 10.1080/08912963.2013.861830.
$\frac{46}{47}$ 1114	Candeiro, C.R.A., Fanti, F., Therrien, F., Lamanna, M.C., 2011. Continental fossil vertebrates
48 49 1115	from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their
50 51 1116 52	relationship with contemporaneous faunas from North Africa. Journal of African Earth
⁵³ 54 1117	Sciences 60, 79–92.
55 56 1118 57	Canudo, J.I., Ruiz-Omeñaca, J.I., 2003. Los restos directos de dinosaurios teropódos
⁵⁸ 1119	(excluyendo Aves) en España. Ciencias de la Tierra 26, 347–373.
60 61 62	45
63	
64	
65	

1120	Canudo, J.I., Filippi, L.S., Salgado, L., Garrido, A.C., Cerda, I.A., Garcia, R., Otero, A.,
$\frac{1}{3}$ 1121	2008. Theropod teeth associated with a sauropod carcass in the Upper Cretaceous (Plottier
4 5 1122 6	Formation) of Rincón de los Sauces. In: Colectivo Arqueológico y Paleontológico de Salas de
⁷ 1123 8	los Infantes (Ed.), Actas de las IV Jornadas Internacionales sobre Paleontología de
9 10 1124	Dinosaurios y su Entorno, Salas de los Infantes, Burgos, pp. 321–330.
12 1125 13	Canudo, J.I. Barco, J.L., Pereda Suberbiola, X., Ruiz-Ome <u>ñn</u> aca, J.I., Salgado, L., Torcida
¹⁴ ₁₅ 1126	Fernández-Baldor, F., Gasulla, J.M., 2009. What Iberian dinosaurs reveal about the bridge
17 1127 18	said to exist between Gondwana and Laurasia in the Early Cretaceous. Bulletin de la Société
¹⁹ ₂₀ 1128	Géologique de France, 180, 5–11.
21 22 1129 23	Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I., Garrido, A., 2012. A new basal
²⁴ 25 1130	rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin;
26 27 1131	evolution and biogeography of the group. Historical Biology 24, 631-654.
29 30 29 1132	Carrano, M.T., Sampson, S.D., 2008. The phylogeny of Ceratosauria (Dinosauria:
³¹ 32 1133	Theropoda). Journal of Systematic Palaeontology 6, 183–236.
33 34 1134 35	Carrano, M.T., Benson, R.B.J., Sampson, S.D., 2012. The phylogeny of Tetanurae
³⁶ 37 1135	(Dinosauria: Theropoda). Journal of Systematic Palaeontology 10, 211–300.Carvalho, I.S.,
38 39 1136 40	Campos, A.C.A., Nobre, P.H., 2005. Baurusuchus salgadoensis, a new Crocodylomorpha
$\frac{41}{42}$ 1137	from the Bauru Basin (Cretaceous), Brazil. Gondwana Research 8, 11–30.
43 44 1138 45	Casal, G., Candeiro, C.R.A., Martinez, R., Ivany, E., Ibiricu, L., 2009. Dientes de Theropoda
46 47 47	(Dinosauria: Saurischia) de la Formación Bajo Barreal, Cretácico Superior, Provincia del
48 49 1140	Chubut, Argentina. Géobios 42, 553–560.
50 51 1141 52	Cau, A., Dalla Vecchia, F.M., Fabbri, M., 2013. A thick-skulled theropod (Dinosauria,
⁵³ 54 1142	Saurischia) from the Upper Cretaceous of Morocco with implications for carcharodontosaurid
55 56 1143 57	cranial evolution. Cretaceous Research 40, 251–260.
58 59	
60 61	46
62 63	
64	
65	

1144	Choiniere, J.N., Forster, C.A., De Klerk, W.J., 2012. New information on Nqwebasaurus
$\frac{1}{3}$ 1145	thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood Formation in South
4 5 1146	Africa. Journal of African Earth Sciences 71–72, 1–17.
$ \frac{7}{8} $ 1147	Chure, D.J., Manabe, M., Tanimoto, M., Tomida, Y., 1999. An unusual theropod tooth from
9 10 1148	the Mifune Group (Late Cenomanian to Early Turonian), Kumamoto, Japan. In: Tomida, Y.,
12 1149 13	Rich, T.H., Vickers-Rich, P. (Eds.), Proceedings of the Second Gondwanan Dinosaur
$^{14}_{15}$ 1150	Symposium. National Science Museum Monographs 15, Tokyo, pp. 291–296.
17 1151 18	Cifelli, R.L., Davis, B.M., Sames, B., 2014. Earliest Cretaceous mammals from the western
¹⁹ ₂₀ 1152	United States. Acta Palaeontologica Polonica 59, 31-52. doi:10.4202/app.2012.0089.
22 1153 23	Cobos, A., Royo-Torres, R., Luque, L., Alcalá, L., Mampel, L., 2010. An Iberian stegosaurs
²⁴ 1154 25	paradise: The Villar del Arzobispo Formation (Tithonian-Berriasian) in Teruel (Spain).
26 27 1155 28	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 223–236.
²⁹ 1156 30	Cobos, A., Lockley, M.G., Gascó, F., Royo-Torres, R., Alcalá, L., 2014. Megatheropods as
31_{32} 1157	apex predators in the typically Jurassic ecosystems of the Villar del Arzobispo Formation
34 1158 35	(Iberian Range, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 399, 31-41. doi:
³⁶ 37 38	10.1016/j.palaeo.2014.02.008.
39 1160 40	Codrea, V., Vremir, M., Jipa, C., Godefroit, P., Csiki, Z., Smith, T., Fărcaș, C., 2010. More
⁴¹ 42 42	than just Nopcsa's Transylvanian dinosaurs: A look outside the Hațeg Basin.
44 1162 45	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 391-405. doi:
46 1163 47	10.1016/j.palaeo.2009.10.027.
48 49 1164 50	Codrea, V., Godefroit, P., Smith, T., 2012. First discovery of Maastrichtian (latest
51 1165 52	Cretaceous) terrestrial vertebrates in Rusca Montană Basin (Romania). In: Godefroit, P. (Ed.)
53 54 55	Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Indiana University Press,
56 1167 57	Bloomington, pp. 570–581.
58 59 60	
61 62	47
63	
64	

1168	Colbert, E.H., 1946. Sebecus, representative of a peculiar suborder of fossil Crocodilia from
2 3 1169	Patagonia. Bulletin of the American Museum of Natural History 87(4), 217–270.
4 5 1170 6	Coria, R.A, Salgado, L., 1995. A new giant carnivorous dinosaur from the Cretaceous of
⁷ 1171 8	Patagonia. Nature 377, 224–226.
9 10 1172 11	Coria, R.A., Salgado, L., 2005. Mid-Cretaceous turnover of saurischian dinosaur
12 1173 13	communities: evidence from the Neuquén Basin. In: Veiga, G.D., Spalletti, L.A., Howell,
¹⁴ 15 16	J.A., Schwartz, E. (Eds.), The Neuquén Basin, Argentina: a case study in sequence
17 1175 18	stratigraphy and basin dynamics. Geological Society, London, Special Publications 252, pp.
¹⁹ ₂₀ 1176	317–327.
21 22 1177 23	Coria, R.A., Currie, P.J., 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the
²⁴ 1178 25	Upper Cretaceous of Argentina. Geodiversitas 28, 71–118.
26 27 1179 28	Covacef, Z., 1995. Pionieri ai culturii românești în Dobrogea; Ioan Cotovu și Vasile Cotovu.
²⁹ 1180 30	Analele Dobrogei I(1), 127–134.
³¹ 32 1181	Császár, G., Kollányi, K., Lantos, M., Lelkes, G. and Tardiné Filácz, E., 2000. A
34 1182 35	Hidasivölgyi Márga Formáció kora és képződési környezete. Földtani Közlöny 130(4), 695–
³⁶ 37 1183	723.
38 39 1184 40	Csiki, Z., Grigorescu, D., 1998. Small theropods of the Late Cretaceous of the Haţeg Basin
⁴¹ 42 1185	(Western Romania) - an unexpected diversity at the top of the food chain. Oryctos 1, 87–104.
43 44 1186 45	Csiki, Z., Vremir, M., Brusatte, S.L., Norell, M.A., 2010. An aberrant island-dwelling
⁴⁶ 1187 47	theropod dinosaur from the Late Cretaceous of Romania. Proceedings of the National
48 49 1188 50	Academy of Sciences 107, 15357–15361.
50 51 1189 52	Csiki-Sava, Z., Codrea, V., Vasile, Ş., 2013. Early Cretaceous dinosaur remains from
⁵³ 54 1190	Dobrogea (southeastern Romania). In: Picot, L. (Ed.), Abstracts, 11th Annual Meeting of the
55 56 1191 57	European Association of Vertebrate Palaeontologists, Villers-sur-Mer, France, pp. 28.
58 59	
60 61 62	48
63	
64 65	

1192	Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., Brusatte, S.L., 2015. Island life		
² ₃ 1193	in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-		
4 5 1194	living vertebrates on the Late Cretaceous European archipelago. Zookeys 469, 1-161. doi:		
$ $	10.3897/zookeys.469.8439.		
9 10 1196	Csontos, L., Vörös, A., 2004. Mesozoic plate tectonic reconstruction of the Carpathian		
12 1197 13	region. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 1-56. doi:		
$^{14}_{15}$ 1198	10.1016/j.palaeo.2004.02.033.		
17 1199 18	Currie, P.J., Carpenter, K., 2000. A new specimen of Acrocanthosaurus atokensis		
¹⁹ 1200	(Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous,		
21 22 1201 23	Aptian) of Oklahoma, USA. Geodiversitas 22, 207–246.		
²⁴ 25 1202	Currie, P.J., Rigby, J.K., Sloan, R.E., 1990. Theropod teeth from the Judith River Formation		
26 27 1203 28	of southern Alberta, Canada. In: Carpenter, K., Currie, P.J. (Eds,), Dinosaur Systematics:		
²⁹ 1204 30	Approaches and Perspectives. Cambridge University Press, <u>Cambridge, Boston, pp. 107–125</u> .		
³¹ 32 1205	Dalla Vecchia, F.M., 1998. Remains of Sauropoda (Reptilia, Saurischia) in the Lower		
33 34 1206 35	Cretaceous (Upper Hauterivian/Lower Barremian) limestones of SW Istria (Croatia).		
³⁶ 37 1207	Geologia Croatica 5, 105–134.		
38 39 1208 40	Dames, W., 1884. Megalosaurus dunkeri. Sitzungberichte Gesellschaft Naturforschender		
⁴¹ 42 1209	Freunde zu Berlin 1884, 186–188.		
43 44 1210 45	De Klerk, W.J., Forster, C.A., Sampson, S.D., Chinsamy, A., Ross, C.F., 2000. A new		
46 47 47	coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate		
48 49 1212	Paleontology 20, 324–332.		
50 51 1213 52	D'Emic, M.D., Melstrom, K.M., Eddy, D.R., 2012. Paleobiology and geographic range of the		
⁵³ 54 1214	large-bodied Cretaceous theropod dinosaur Acrocanthosaurus atokensis. Palaeogeography,		
55 56 1215 57	Palaeoclimatology, Palaeoecology 333–334, 13–23.		
58 59			
60 61 62	49		
63			
64			
65			

1216	Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M., Cadet, J.P.,			
$\frac{1}{3}$ 1217	Crasquin, S., Săndulescu, M., Eds. (2000) Atlas Peri-Tethys Palaeogeographical Maps.			
4 5 1218	CCGM/CGMW, Paris, 269 pp.			
6 7 1219 8	Dinu, C., Grădinaru, E., Stoica, M., Diaconescu, V., 2007. Dobrogea 2007 Field Trip			
9 10 1220	Preparation and Assistance. University of Bucharest, 123 pp.			
11 12 1221 13	Dragastan, O., Neagu, T., Bărbulescu, A., Pană, I., 1998. Jurasicul și Cretacicul din Dobrogea			
$^{14}_{15}$ 1222	Centrală și de Sud. Bucharest, 249 pp.			
16 17 1223	Dragastan, O.N., Antoniade, C., Stoica, M., 2014. Biostratigraphy and zonation of the Lower			
¹⁸ ¹⁹ 20 1224	Cretaceous succession from Cernavodă-lock section, South Dobrogea, eastern part of the			
21 22 1225	Moesian Platform (Romania). Carpathian Journal of Earth and Environmental Sciences 9(1),			
²³ 24 25 1226	231–260.			
26 27 1227	Dyke, G.J., Benton, M.J., Posmoșanu, E., Naish, D., 2011. Early Cretaceous (Berriasian)			
28 29 1228 30	birds and pterosaurs from the Cornet bauxite mine, Romania. Palaeontology 54, 79–95.			
³¹ ₃₂ 1229	Eberth, D.A., Brinkman, D.B., Chen, PJ., Yuan, FT., Wu, XC., Li, G., Cheng, XianX			
33 34 1230 35	Shen, C., 2001. Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil			
$\frac{36}{37}$ 1231	preservation in Jurassic-Cretaceous strata of the Juggar Basin, Xinjiang Autonomous Region,			
38 39 1232 40	People's Republic of China. Canadian Journal of Earth Sciences 38, 1627–1644.			
$\frac{41}{42}$ 1233	Eddy, D.R., Clarke, J.A., 2011. New information on the cranial anatomy of			
43 44 1234	Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea			
45 46 1235 47	(Dinosauria: Theropoda). PLoS ONE 6(3), e17932. doi:10.1371/journal.pone.0017932.			
48 49 1236	Evans, S.E., Matsumoto, R., 2015. An assemblage of lizards from the Early Cretaceous of			
50 51 1237 52	Japan. Palaeontologia Electronica 18.2.36A, 1–36.			
⁵³ ₅₄ 1238	Ezcurra, M.D., Agnolín, F.L., 2012. A new global palaeobiogeographical model for the Late			
55 56 1239 57	Mesozoic and Early Tertiary. Systematic Biology 61, 553–566. doi:10.1093/sysbio/syr115.			
58 59				
60 61	50			
62				
63 64				

1240	Fanti, F., Cau, A., Cantelli, L., Hassine, M., Auditore, M., 2015. New information on
$\frac{2}{3}$ 1241	Tataouinea hannibalis from the Early Cretaceous of Tunisia and implications for the tempo
4 5 1242	and mode of rebbachisaurid sauropod evolution. PLoS ONE 10(4), e0123475.
6 7 1243 8	doi:10.1371/journal.pone.0123475.
9 10 1244	Galton, P.M., 2009. Notes on Neocomian (Lower Cretaceous) ornithopod dinosaurs from
12 1245 13	England - Hypsilophodon, Valdosaurus, "Camptosaurus", "Iguanodon" - and referred
$^{14}_{15}$ 1246	specimens from Romania and elsewhere. Revue de Paléobiologie 28, 211–273.
16 17 1247 18	Gardner, J.D., Evans, S.E., Sigogneau-Russell, D., 2003. New albanerpetontid amphibians
$\frac{19}{20}$ 1248	from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta Palaeontologica
21 22 1249	Polonica 48, 301–319.
²³ ²⁴ 25	Gasca, J.M., Canudo, J.I., Moreno-Azanza, M., 2014. A large-bodied theropod (Tetanurae:
26 27 1251	Carcharodontosauria) from the Mirambel Formation (Barremian) of Spain. Neues Jahrbuch
28 29 1252 30	für Geologie und Paläontologie Abhandlungen 273, 13-23. doi: 10.1127/0077-
³¹ 32 1253	7749/2014/0413.
33 34 1254 35	Gheerbrant, E., Rage, JC., 2006. Paleobiogeography of Africa: How distinct from
$\frac{36}{37}$ 1255	Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology 241, 224–246.
38 39 1256 40	doi:10.1016/j.palaeo.2006.03.016.
$\frac{41}{42}$ 1257	Gishlick, A.D., Gauthier, J.A., 2007. On the manual morphology of Compsognathus longipes
43 44 1258	and its bearing on the diagnosis of Compsognathidae. Zoological Journal of the Linnean
45 46 1259 47	Society_149, 569–581.
48 49 1260	Goloboff, P. A., Farris, J. S., Nixon, K. C., 2008. TNT, a free program for phylogenetic
50 51 1261 52	analysis. Cladistics 24, 774–786.
⁵³ 54 1262	Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), 2012. The Geologic Time
55 56 1263 57	Scale 2012. Elsevier, <u>Amsterdam,</u> 1144 pp.
57 58 59	
60 61	51
62	
63 64	
65	

P.-J. (Eds.), Aspects of Nonmarine Cretaceous Geology. China Ocean Press, Beijing, pp. 142–164.

Grigorescu, D., 2003. Dinosaurs of Romania. Comptes rendus Palevol 2, 97-101.

Grigorescu, D., 2010. The Latest Cretaceous fauna with dinosaurs and mammals from the

Hateg Basin — A historical overview. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 271–282.

Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.

Harris, J.D., 1998. A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and

paleobiogeographic implications, based on a new specimen from Texas. New Mexico

Museum of Natural History and Science Bulletin 13, 1–75.

Hendrickx, C., Mateus, O., 2014. Abelisauridae (Dinosauria: Theropoda) from the Late

Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. Zootaxa 3751(1), 1–74.

Hendrickx, C., Mateus, O., Araújo, R., 2015a. The dentition of megalosaurid theropods. Acta Palaeontologica Polonica 60, 627-642. doi:10.4202/app.00056.2013.

Hendrickx, C., Mateus, O., Araújo, R., 2015b. A proposed terminology of theropod teeth

(Dinosauria, Saurischia). Journal of Vertebrate Paleontology 35(5):-), e982797. doi:

10.1080/02724634.2015.982797.

Holtz, T.R., Jr., Molnar, R.E., Currie, P.J., 2004a. Basal Tetanurae. In: Weishampel, D.B.,

Dodson, P., Osmólska, H. (Eds.), The Dinosauria. Second Edition. University of California

Press, Berkeley, Los Angeles, LondonBerkeley, pp. 71-110.

Holtz, T.R., Chapman, R.E., Lamanna, M.C., 2004b. Mesozoic biogeography of Dinosauria.

In: Weishampel, D.B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. Second Edition.

1289 University of California Press, <u>Berkeley, Los Angeles, London</u>Berkeley, Los Angeles, pp.
 1290 627–642.

Huene, F. von-, 1923. Carnivorous Saurischia in Europe since the Triassic. Bulletin of the Geological Society of America 34, 449–458.

Hippolyte, J.-C., 2002. Geodynamics of Dobrogea (Romania): new constraints on the

evolution of the Tornquist–Teisseyre Line, the Black Sea and the Carpathians.

1295 Tectonophysics 357, 33–53.

296 Ionesi, L., 1994. Geologia unităților de platformă și a orogenului Nord-Dobrogean. Ed.

1297 Tehnică, Bucharest, 280 pp.

Jerzykiewicz, T., Russell, D.A., 1991. Late Mesozoic stratigraphy and vertebrates of the Gobi
 Basin. Cretaceous Research 12, 345–377.

Jurcsák, T., 1982. Occurences nouvelles des Sauriens mésozoïques de Roumanie. Vertebrata
Hungarica 21, 175–184.

1302 Jurcsák, T., Popa, E., 1979. Dinozaurieni ornithopozi din bauxitele de la Cornet (Munții

34 1303 Pădurea Craiului). Nymphaea 7, 37–75.

J1304 Jurcsák, T., Popa, E., 1983. La faune de dinosauriens du Bihor (Roumanie). In: Buffetaut,

39 1305 E., Mazin, J.M., Salmon, E. (Eds.), Actes du Symposium Paléontologique Georges Cuvier.

1306 Le Serpentaire, Montbéliard, pp. 325–335.

Kellner, A.W.A., Pinheiro, A.E.P., Campos, D.A., 2014. A new sebecid from the Paleogene

of Brazil and the crocodyliform radiation after the K–Pg boundary. PLoS ONE 9(1), e81386.

doi:10.1371/journal.pone.0081386.

511310 Kirkland, J.I., Cifelli, R.L., Britt, B.B., Burge, D.L., DeCourten, F.L., Eaton, J.G., Parrish,

² J.M., 1999. Distribution of vertebrate faunas in the Cedar Mountain Formation, east-central

1312 Utah. Utah Geological Survey Miscellaneous Publication 99-1, 201–217.

3 Knoll, F., Ruiz-Omeñaca, J.I., 2009. Theropod teeth from the basalmost Cretaceous of

Anoual (Morocco) and their palaeobiogeographical significance. Geological Magazine 146,602–616.

⁷ 1316 Kusuhashi, N., Matsumoto, A., Murakami, M., Tagami, T., Hirata, T., Iizuka, T., Handa, T.,

Matsuoka, H., 2006. Zircon U-Pb ages from tuff beds of the upper Mesozoic Tetori Group in

the Shokawa district, Gifu Prefecture, central Japan. The Island Arc 15, 378–390.

Lacasa Ruiz, A., 1989. Nuevo genero de ave fosil del yacimiento Neocomiense del Montsec
(Provincia de Lerida, España). Estudios geológicos 45(5-6), 417–425.

Larson, D.W., Currie, P.J., 2013. Multivariate analyses of small theropod dinosaur teeth and
implications for paleoecological turnover through time. PLoS ONE 8(1), e54329.

1323 doi:10.1371/journal.pone.0054329.

1324 Le Loeuff, J., Buffetaut, E., 1995. The evolution of Late Cretaceous non-marine vertebrate

1325 faunas in Europe. In: Sun, A.-L., Wang, Y.-Q. (Eds.), Sixth Symposium on Mesozoic

1326 Terrestrial Ecosystems and Biota, Short Papers. China Ocean Press, Beijing, pp. 181–184.

1327 Le Loeuff, J., Lang, E., Cavin, L., Buffetaut, E., 2012. Between Tendaguru and Bahariya: on

the age of the Early Cretaceous dinosaur sites from the Continental Intercalaire and other

African formations. Journal of Stratigraphy 36, 486–502.

Lucas, F.A., 1901. A new dinosaur, *Stegosaurus marshi*, from the Lower Cretaceous of South
Dakota. Proceedings of the United States National Museum 23(1224), 591–592.

Lucas, S.G., 2006. The *Psittacosaurus* biochron, Early Cretaceous of Asia. Cretaceous Research 27, 189–198.

Lucas, S.G., Estep, J.W., 1998. Vertebrate biostratigraphy and biochronology of the Cretaceous of China. In: Lucas, S.G., Kirkland, J.I., Estep, J.W. (Eds.), Lower and Middle Cretaceous Terrestrial Ecosystems. New Mexico Museum of Natural History and Science Bulletin 14, pp. 1–20.

Lü, J.-C., Xu, L., Pu, H.-Y., Jia, S.-H., Azuma, Y., Chang, H.-L., Zhang, J.-M., 20142016.

Paleogeographical significance of carcharodontosaurid teeth from the late Early Cretaceous of Ruyang, Henan Province of central China. Historical Biology, <u>28</u>, <u>8–13</u>. doi:

10.1080/08912963.2014.947287.

Manabe, M., Hasegawa, Y., 1995. Diapsid fauna and its paleobiogeographical implication,
the Neocomian section of the Tetori Group. In: Sun, A., Wang, Y. (Eds.), Sixth Symposium
on Mesozoic Terrestrial Ecosystems and Biota, Short Papers, China Ocean Press, <u>Beijing</u>,
pp. 179.

Mannion, P.D., 2009. A rebbachisaurid sauropod from the Lower Cretaceous of the Isle of
Wight, England. Cretaceous Research 30, 521–526.

Mannion, P.D., Upchurch, P., Hutt, S., 2011. New rebbachisaurid (Dinosauria: Sauropoda)
material from the Wessex Formation (Barremian, Early Cretaceous), Isle of Wight, United
Kingdom. Cretaceous Research 32, 774–780.

Matsukawa, M., Ito, M., Nishida, N., Koarai, K., Lockley, M.G., Nichols, D.J., 2006. The Cretaceous Tetori biota in Japan and its evolutionary significance for terrestrial ecosystems in Asia. Cretaceous Research 27, 199–225.

McDonald, A.T., 2011. The taxonomy of species assigned to *Camptosaurus* (Dinosauria: 40 41 1355 Ornithopoda). Zootaxa 2783, 52–68.

McKenna, M.C., 1973. Sweepstakes, filters, corridors, Noah's Arks, and Beached Viking
Funeral Ships in palaeogeography. In: Tarling, D.H., Runcorn, S.K. (Eds.), Implications of
Continental Drift to the Earth Sciences. Academic Press, New York, pp. 295–308.

⁵¹1359 Mo, J.-Y., Huang, C.-L., Xie, S.-W., Buffetaut, E., 2014. A megatheropod tooth from the

1360 Early Cretaceous of Fusui, Guangxi, Southern China. Acta Geologica Sinica (English

1361 Edition) 88, 6–12.

1362	Molnar, R.E., 1990. Problematic Theropoda: "Carnosaurs". In: Weishampel, D.B., Dodson,
$\frac{1}{3}$ 1363	P., Osmólska, H. (Eds.), The Dinosauria. University of California Press, Berkeley, Los
4 5 1364	Angeles, Oxford, pp. 306–317.
⁰ 7 1365 8	Mutihac, V., Mutihac, G., 2010. The geology of Romania, within the Central East European
9 10 1366	geostructural context. Ed. Didactică și Pedagogică, Bucharest, 690 pp.
12 1367 13	Neagu, T., Dragastan, O., Csiki, Z., 1997. Early Cretaceous shelf paleocommunities of
¹⁴ 15 16	Cernavodă (South Dobrogea, SE Romania). Acta Palaeontologica Romaniae 1, 28–36.
17 1369 18	Nopcsa, F., 1902. Notizen über cretacische Dinosaurier. Sitzungsberichte der Kaiserlichen
¹⁹ ₂₀ 1370	Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 111, 93–114.
21 22 1371 23	Nopcsa, F., 1923. On the geological importance of the primitive reptilian fauna of the
²⁴ 1372	uppermost Cretaceous of Hungary; with a description of a new tortoise (Kallokibotium).
26 27 1373 28	Quarterly Journal of the Geological Society of London 79, 100–116.
²⁹ 1374 30	Norman, D.B., 2010. A taxonomy of iguanodontians (Dinosauria: Ornithopoda) from the
³¹ 32 1375	lower Wealden Group (Cretaceous: Valanginian) of southern England. Zootaxa 2489, 47-66.
34 1376 35	Norman, D.B., 2013. On the taxonomy and diversity of Wealden iguanodontian dinosaurs
³⁶ ₃₇ 1377	(Ornithischia: Ornithopoda). Revue de Paléobiologie 32 (2) , 385–404.
39 1378 40	Novas, F.E., de Valais, S., Vickers-Rich, P.A., Rich, T.H., 2005. A large Cretaceous theropod
41 42 42	from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften
43 44 1380 45	92, 226–230.
46 1381 47	Novas, F.E., Agnolín, F.L., Ezcurra, M.D., Porfiri, J., Canale, J.I., 2013. Evolution of the
48 49 1382 50	carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretaceous
51 1383 52	Research 45, 174–215.
53 54 55	Ortega, F., Escaso, F., Sanz, J.L., 2010. A bizarre, humped Carcharodontosauria (Theropoda)
56 1385 57	from the Lower Cretaceous of Spain. Nature 467, 203–206.
58 59	
60 61	56
62	
63 64	
65	

1386	Ősi, A., Rabi, M., Makádi, L., S
$\frac{1}{2}$ 1387	Cretaceous continental vertebrat
4 5 1388 6	Godefroit, P. (Ed.), Bernissart D
⁷ 1389 8	Indiana University Press, Bloom
9 10 1390	Ősi, A., Codrea, V., Prondvai, E
¹² 1391 13	Upper Cretaceous of Transylvan
¹⁴ 15 16	10.1016/j.annpal.2014.02.001.
17 1393 18	Ősi, A., Rabi, M., Makádi, L., 2
$\frac{19}{20}$ 1394	western Hungary suggests hidde
21 22 1395 23	European archipelago. PeerJ 3, e
²⁴ 1396	Paolillo, A., Linares, O.J., 2007.
26 27 1397 28	Suramericano (Mesosuchia: Cro
²⁹ 1398 30	Pereda-Suberbiola, X., Ruiz-On
$\frac{31}{32}$ 1399	P., Contreras, R., Izquierdo, L.A
34 1400 35	spined ornithopod dinosaur from
³⁶ 37 38	Spain). Comptes Rendus Palevo
39 1402 40	Pereda-Suberbiola, X., Ruiz-Om
41 42 42	Dinosaur faunas from the Early
43 44 1404 45	(Ed.), Bernissart Dinosaurs and
46 1405 47	Indiana University Press, Bloom
48 49 1406 50	Pérez-Moreno, B.P., Sanz, J.L.
51 1407 52	Lower Cretaceous of southern F
$\frac{53}{54}$ 1408	Pol, D., Powell, J.E., 2011. A ne
56 1409 57	(Palaeocene) of north-western A
⁵⁸ 1410	S36.
61 62	
63 64	
65	

zentesi, Z., Botfalvai, G., Gulyás, P., 2012. The Late

e fauna from Iharkút (western Hungary): a review. In:

Dinosaurs and Early Cretaceous Terrestrial Ecosystems.

nington, pp. 533–569.

L., Csiki-Sava, Z., 2014. New ankylosaurian material from the

ia. Annales de Paléontologie 100, 257–271. doi:

015. An enigmatic crocodyliform tooth from the bauxites of

en mesoeucrocodylian diversity in the Early Cretaceous

e1160. doi:10.7717/peerj.1160.

Nuevos cocodrilos Sebecosuchia del Cenozoico

codylia). Paleobiologia Neotropical 3, 1–25.

neñnaca, J.I., Fernandez-Baldor, F.T., Maisch, M.W., Huerta,

., Huerta, D.M., Montero, V.U., Welle, J., 2011. A tall-

n the Early Cretaceous of Salas de los Infantes (Burgos,

1 10, 551–558.

neñnaca, J.I., Canudo, J.I., Torcida, F., Sanz, J.L., 2012.

Cretaceous (Valanginian–Albian) of Spain. In: Godefroit, P.

Early Cretaceous Terrestrial Ecosystems. Life of the Past.

nington, pp. 378–407.

, Sudre, J., Sigé, B., 1993. A theropod dinosaur from the rance. Revue de Paléobiologie, Volume spéciale 7, 173–188. ew sebecid mesoeucrocodylian from the Rio Loro Formation

rgentina. Zoological Journal of the Linnean Society 163, S7-

1411	Porfiri, J.D., Novas, F.E.
² ₃ 1412	Juvenile specimen of Me
4 5 1413	radiation. Cretaceous Re
$ \frac{7}{8} 1414 $	Posmoșanu, E., 2003. Ig
9 10 1415	Romania. Acta Palaeonte
12 1416 13	Porfiri, J.D., Novas, F.E.
¹⁴ 15 1417	Juvenile specimen of Me
⊥6 17 1418 18	radiation. Cretaceous Re
$ \begin{array}{c} 19 \\ 20 \end{array} $ 1419	Rabi, M., Sebők, N., 20
21 22 1420 23	crocodyliforms and oth
²⁴ 25 1421	between Europe and G
26 27 1422	1197–1211. doi:10.1016
28 29 1423 30	Racey, A., 2009. Meso
³¹ 32 1424	Khorat Group of NE T
33 34 1425 35	(Eds.), Late Palaeozoic
³⁶ 37 1426	London, Special Publica
38 39 1427 40	Racey, A., Goodall, J.G.
$\frac{41}{42}$ 1428	red bed sequences from
43 44 1429	(Eds.), Late Palaeozoic
45 46 1430 47	London, Special Publica
48 49 1431	Rauhut, O.W.M., 2011.
50 51 1432 52	Special Papers in Palaeo
$53 \\ 54 $ 1433	Rauhut, O.W.M., Werne
55 56 1434 57	Theropoda) in the Cretad
⁵⁸ 59 1435	Paläontologische Zeitsch
60 61	
62 63	
64 65	

., Calvo, J.O., Agnolín, F.L., Ezcurra, M.D., Cerda, I.A., 2014.

egaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid esearch 51, 35–55. doi:10.1016/j.cretres.2014.04.007.

uanodontian dinosaurs from the Lower Cretaceous bauxite site from ologica Romaniae 4, 431–439.

., Calvo, J.O., Agnolín, F.L., Ezcurra, M.D., Cerda, I.A., 2014.

egaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid esearch, 51, 35-55. doi:10.1016/j.cretres.2014.04.007.

015. A revised Eurogondwana model: Late Cretaceous notosuchian her vertebrate taxa suggest the retention of episodic faunal links ondwana during most of the Cretaceous. Gondwana Research 28, 5/j.gr.2014.09.015.

zoic red bed sequences from SE Asia and the significance of the hailand. In: Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V. and Mesozoic Ecosystems in SE Asia. The Geological Society, tions 315, pp. 41–67. doi: 10.1144/SP315.5.

S., 2009. Palynology and stratigraphy of the Mesozoic Khorat Group Thailand. In: Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V. and Mesozoic Ecosystems in SE Asia. The Geological Society-of, tion<u>s</u> 315, pp. 69–83. doi: 10.1144/SP315.6.

Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). ontology 86, 195–239.

er, C., 1995. First record of the family Dromaeosauridae (Dinosauria:

ceous of Gondwana (Wadi Milk Formation, northern Sudan.

hrift 69(3/4), 475–489.

1436	Richter, U., Mudroch, A., Buckley, L.G., 2013. Isolated theropod teeth from the Kem Kem
⊥ 2 31437	Beds (Early Cenomanian) near Taouz, Morocco. Paläontologische Zeitschrift 87, 291-309.
4 5 1438	Royo-Torres, R., Cobos, A., Luque, L., Aberasturi, A., Espilez, E., Fierro, I., Gonzales, A.,
⁸ 7 1439	Mampel, L., Alcalá, L., 2009. High European sauropod dinosaur diversity during Jurassic-
9 10 1440	Cretaceous transition in Riodeva (Teruel, Spain). Palaeontology 52, 1009–1027.
12 1441 13	Sachs, S., Hornung, J.J., 2013. Ankylosaur remains from the Early Cretaceous (Valanginian)
¹⁴ 15 1442	of Northwestern Germany. PLoS ONE 8(4), e60571. doi:10.1371/journal.pone.0060571.
16 17 1443 18	Salgado, L., Canudo, J.I., Garrido, A.C., Ruiz-Omeñaca, J.I., Garcia, R.A., de la Fuente,
¹⁹ 20 1444	M.S., Barco, J.L., Bollati, R., 2009. Upper Cretaceous vertebrates from El Anfiteatro area,
21 22 1445 23	Río Negro, Patagonia, Argentina. Cretaceous Research 30, 767–784.
²⁴ 25 1446	Sames, B., Cifelli, R.L., Schudack, M.E., 2010. The nonmarine Lower Cretaceous of the
26 27 1447	North American Western Interior foreland basin: New biostratigraphic results from ostracod
29 29 1448 30	correlations and early mammals, and their implications for paleontology and geology of the
³¹ 32 1449	basin—An overview. Earth-Science Reviews 101, 207–224.
33 34 1450 35	Sauvage, H.E., 1876. Notes sur les reptiles fossiles. Bulletin de la Société Géologique de
³⁶ 37 1451	France 4, 435–442.
38 39 1452 40	Sauvage, H.E., 1882. Recherches sur les reptiles trouves dans le Gault de l'est du bassin de
$\frac{41}{42}$ 1453	Paris. Mémoires de la Société Géologique de France 2, 1–42.
43 44 1454 45	Săndulescu, M., 1984. Geotectonica României. Ed. Tehnică, Bucharest, 329 pp.
⁴⁶ 1455 47	Seghedi, A., 2001. The North Dobrogea orogenic belt (Romania): a review. In: Ziegler, P.A.,
48 49 1456	Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (Eds.), Peri-Tethys Memoir 6: Peri-
50 51 1457 52	Tethyan Rift/Wrench Basins and Passive Margins. Mémoires de la Musée National d'Histoire
⁵³ 54 1458	Naturelle, Paris, pp. 237–257.
55 56 1459 57	Sereno, P.C., 1999. Dinosaurian biogeography: vicariance, dispersal and regional extinction.
58 59	
60 61 62	59
63	
64	

1460	In: Tomida, Y., Rich, T.H., Vickers-Rich, P. (Eds.), Proceedings of the Second Gondwanan
$\frac{1}{3}$ 1461	Dinosaur Symposium. National Science Museum Monographs 15, Tokyo, pp. 249–257.
4 5 1462	Sereno, P.C., Brusatte, S.L., 2008. Basal abelisaurid and carcharodontosaurid theropods from
⁷ 1463 8	the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53, 15–46.
9 10 1464	Sereno, P.C., Dutheil, D.B., Iarochene, M., Larsson, H.C.E., Lyon, G.H., Magwene, P.M.,
12 1465 13	Sidor, C.A., Varricchio, D.J., Wilson, J.A., 1996. Predatory dinosaurs from the Sahara and
¹⁴ 15 1466	Late Cretaceous faunal differentiation. Science 272, 986–991.
16 17 1467 18	Shen, Y.B., Mateer, N.J., 1992. An outline of the Cretaceous system in northern Xinjiang,
¹⁹ ₂₀ 1468	western China. In: Mateer, N.J., Chen, P.J. (Eds.), Aspects of Nonmarine Cretaceous
21 22 1469 23	Geology. China Ocean Press, Beijing, pp. 49–77.
²⁴ 25 1470	Simionescu, I., 1906. Note sur l'age des calcaires de Cernavoda (Dobrogea). Annales
26 27 1471	Scientifiques de l'Université de Jassy 4(1), 1–3.
28 29 1472 30	Simionescu, I., 1913. Megalosaurus aus der Unterkreide der Dobrogea. Centralblatt für
³¹ 32 1473	Mineralogie, Geologie und Paläontologie 1913(20), 686–687.
33 34 1474 35	Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en
³⁶ 37 1475	Mijnbouw 56, 37–65.
38 39 1476 40	Smith, J.B., Vann, D.R., Dodson, P., 2005. Dental morphology and variation in theropod
⁴¹ 42 1477	dinosaurs: implications for the taxonomic identification of isolated teeth. The Anatomical
43 44 1478	Record A 285A, 699–736.
45 46 1479 47	Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D.B., Redelstorff, R., Carballido, J.L.,
48 49 1480	Sander, P.M., 2010. Small body size and extreme cortical bone remodeling indicate phyletic
50 51 1481 52	dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proceedings of the National
⁵³ 54 1482	Academy of Sciences 107, 9258–9263.
55 56	
57 58	
59 60	
61 62	60
0∠ 63	
64	
65	

1483	Stoica, M., Csiki, Z., 2002. An earliest Cretaceous (Purbeckian) vertebrate fauna from
$\frac{1}{3}$ 1484	Southern Dobrogea (southeastern Romania). In: Grigorescu, D., Csiki, Z. (Eds.), 7th European
4 5 1485 6	Workshop on Vertebrate Palaeontology, Sibiu, Romania, <u>Ars Docendi, Bucharest, pp. 34</u> .
$\frac{7}{8}$ 1486	Stovall, J.W., Langston, W., Jr., 1950. Acrocanthosaurus atokensis, a new genus and species
9 10 1487	of Lower Cretaceous Theropoda from Oklahoma. American Midland Naturalist 43, 686–728.
12 1488 13	Stromer, E., 1931. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten
¹⁴ 15 16	Ägyptens. II. Wirbeltier-Reste der Baharîjestufe (unterstes Cenoman). 10. Ein Skelett-Rest
17 1490 18	von Carcharodontosaurus nov. gen. Abhandlungen der Bayerischen Akademie der
¹⁹ 1491 20 21	Wissenschaften, Mathematischnaturwissenschaftliche Abteilung , Neue Folge 9, 1–23.
22 1492 23	Therrien, F., Henderson, D.M., 2007. My theropod is bigger than yours or not: estimating
²⁴ 1493 25 26	body size from skull length in theropods. Journal of Vertebrate Paleontology 27, 108–115.
27 1494 28	Tong, H., Claude, J., Suteethorn, V., Naksri, W., Buffetaut, E., 2009. Turtle assemblages of
29 1495 30	the Khorat Group (Late Jurassic-Early Cretaceous) of NE Thailand and their
32 32 33	palaeobiogeographical significance. In: Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V.
34 1497 35 26	(Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia. The Geological Society,
37 37 38	London, Special Publications 315, pp. 141–151.
39 1499 40	Torcida Fernández-Baldor, F., Canudo, J.I., Huerta, P., Montero, D., Pereda Suberbiola, X.,
⁴¹ 1500 42 43	Salgado, L., 2011. Demandasaurus darwini, a new rebbachisaurid sauropod from the Early
44 1501 45	Cretaceous of the Iberian Peninsula. Acta Palaeontologica Polonica 56, 535–552.
⁴⁶ 1502 47 48	Turculeț, I., Brânzilă, M., 2012. Muzeul colecțiilor paleontologice originale de la
49 1503 50	Universitatea "Alexandru Ioan Cuza" Iași. Editura Universității "Alexandru Ioan Cuza" Iași,
51 1504 52 53	Iași, 173 pp.
55 55 55	Turner, A.H., Sertich, J.J.W., 2010. Phylogenetic history of Simosuchus clarki
56 1506 57	(Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Journal of
58 1507 59 60	Vertebrate Paleontology 30(Supplement 1), 177–236.
61 62	61
63 64	
65	

1508	Turner, A.H., Makovicky, P.J., Norell, M.A., 2012. A review of dromaeosaurid systematics
$\frac{1}{3}$ 1509	and paravian phylogeny. Bulletin of the American Museum of Natural History 371, 1–206.
4 5 1510 6	Vasile, Ş., Csiki, Z., 2011. New Maastrichtian microvertebrates from the Rusca Montană
⁷ 8 1511	Basin (Romania). Oltenia. Studii și comunicări. Științele Naturii 27(1), 221–230.
9 10 1512	Vickers-Rich, P., Rich, T.H., Lanus, D.R., Rich, L.S.V., Vacca, R., 1999. "Big Tooth" from
12 1513 13	the Early Cretaceous of Chubut Province, Patagonia: a possible carcharodontosaurid. In:
¹⁴ 15 16	Tomida, Y., Rich, T.H., Vickers-Rich, P. (Eds.), Proceedings of the Second Gondwanan
17 1515 18	Dinosaur Symposium. National Science Museum Monographs 15, Tokyo, pp. 85-88.
¹⁹ 1516	Vremir, M., 2010. New faunal elements from the Late Cretaceous (Maastrichtian) continental
22 1517 23	deposits of Sebeș area (Transylvania). Terra Sebus. Acta Musei Sabesiensis 2, 635–684.
²⁴ 1518	Vullo, R., Néraudeau, D., Lenglet, T., 2007. Dinosaur teeth from the Cenomanian of
26 27 1519 28	Charentes, western France: evidence for a mixed Laurasian-Gondwanan assemblage. Journal
²⁹ 1520 30	of Vertebrate Paleontology 27, 931–943.
³¹ 32 1521	Weishampel, D.B., 1990. Dinosaurian distribution. In: Weishampel, D.B., Dodson, P.,
34 1522 35	Osmólska, H. (Eds.), The Dinosauria. California University Press, Berkeley, Los Angeles,
³⁶ ₃₇ 1523	<u>Oxford</u> , pp. 63–140.
39 1524 40	Weishampel, D.B., Grigorescu, D., Norman, D.B., 1991. The Dinosaurs of Transylvania.
⁴¹ 1525	National Geographic Research & Exploration 7(2), 196–215.
43 44 1526 45	Weishampel, D.B., Norman, D.B., Grigorescu, D., 1993. Telmatosaurus transsylvanicus from
⁴⁶ 1527 47	the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur. Palaeontology 36,
48 49 1528	361–385.
51 1529 52	Weishampel, D.B., Jianu, C.M., Csiki, Z., Norman, D.B., 2003. Osteology and phylogeny of
⁵³ 54 1530	Zalmoxes (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous of Romania.
55 56 1531 57	Journal of Systematic Palaeontology 1, 65–123.
58 59	
60 61 62 63	62
64 65	

1532	Weishampel, D.B., Barrett, P.M., Coria, R.A., Le Loeuff, J., Xu, X., Zhao, X-J., Sahni, A.,
$\frac{1}{3}$ 1533	Gomani, E.M., Noto, C.R., 2004. Dinosaur distribution. In: Weishampel, D.B., Dodson, P.,
4 5 1534	Osmólska, H. (Eds.), The Dinosauria. Second Edition. University of California Press,
⁷ 1535 8	Berkeley, Los Angeles, London, pp. 517–606.
9 10 1536	Weishampel, D.B., Csiki, Z., Benton, M.J., Grigorescu, D., Codrea, V., 2010.
12 1537 13	Palaeobiogeographic relationships of the Hateg biota — Between isolation and innovation.
¹⁴ 15 16	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 419–437.
17 1539 18	Williamson, T.E., Brusatte, S.L., 2014. Small theropod teeth from the Late Cretaceous of the
¹⁹ 1540	San Juan Basin, northwestern New Mexico and their implications for understanding latest
22 1541 23	Cretaceous dinosaur evolution. PLoS ONE 9(4), e93190. doi:10.1371/journal.pone.0093190.
²⁴ 1542	Zarcone, G., Cillari, F.M.P., Stefano, P.D., Guzzetta, D., Nicosia, U., 2010. A possible bridge
26 27 1543 28	between Adria and Africa: New palaeobiogeographic and stratigraphic constraints on the
²⁹ 1544 30	Mesozoic palaeogeography of the Central Mediterranean area. Earth-Science Reviews 103,
³¹ 32 33	154–162.
34 1546 35	
³⁶ 37 38	
39 1548 40	Figure captions
⁴¹ 42 43	Figure 1. Simplified geological map of the Cernavodă-Cochirleni area; inset shows the
44 1550 45	position of the study area within Romania. Legend: 1. Quaternary: a. Holocene alluvia, b.
⁴⁶ 1551 47	Pleistocene-Holocene loessoid deposits; 2. Pre-Quaternary Cenozoic (Middle Eocene and
48 49 1552 50	Miocene) deposits; Cretaceous: 3. Peștera Formation, Lower Cenomanian; 4. Cochirleni
51 1553 52	Formation; uppermost Aptian–Lower Albian; 5. Gherghina Formation, Middle–Upper
53 54 55	Aptian; 6. Ostrov (= Ramadan) Formation; Barremian–Lower Aptian; 7. Cernavodă
56 1555 57	Formation, Alimanu Member, Berriasian–Valanginian; 8. Water courses. (Redrawn after
⁵⁸ 1556 59	Dragastan et al., 1998, 2014).
61 62 63 64	63

Figure 2. Specimen UAIC (SCM1) 615, indeterminate carcharodontosaurid lateral tooth from
Cochirleni, Southern Dobrogea. A. UAIC (SCM1) 615, as figured by Simionescu (1913); B.
Current state of UAIC (SCM1) 615, mounted in a limestone holder.

Figure 3. Detailed morphology of UAIC (SCM1) 615, an indeterminate carcharodontosaurid
lateral tooth from Cochirleni, Southern Dobrogea. UAIC (SCM1) 615 in A. labial? side; B.,
distal; C., lingual? side, and D., basal (mesial to the right) views. Details of the distal carina
(marked with boxes in A, respectively C): apical part in E., labial? and F. distal views; basal
part in G., lingual? and H., distal views. Scale bar: 1 cm (A–D), 5 mm (E–H).

Figure 4. Dental morphospace of the different theropod clades according to the results of the PCA analysis; UAIC (SCM1) 615 (red star) plots within the morphospace occupied by Carcharodontosauridae. See further details of this analysis, as well as other quantitative analyses used to identify the tooth that deliver similar results (cluster analysis, discriminant function analysis, phylogenetic analysis), in the Supplementary Material.

Figure 5. A. Palaeogeographic setting of the two early Early Cretaceous Romanian dinosaur
occurrences: the Berriasian–Valanginian Cornet locality (orange star), located on a NeoTethyan archipelago island, and the Valanginian Cochirleni locality (red star), situated on the
marginal areas of the Eastern European cratonic mainland. B. Global chronostratigraphic and
palaeobiogeographic distribution of the Carcharodontosauridae, plotted on Middle Aptian
(approx. 120 Mya) palaeogeographic map; red star marks the position of UAIC (SCM1) 615
from Southern Dobrogea. Legend: 1 – *Veterupristisaurus*, '*Megalosaurus' ingens*,
Carcharodontosauridae indet., Tanzania, Late Jurassic; 2 – *Concavenator*, Spain, Barremian;

1582	3 - Carcharodontosauridae indet., Thailand, Barremian; 4 - Acrocanthosaurus, southeastern
$\frac{2}{3}$ 1583	United States, Aptian–Albian; 5 – Carcharodontosauridae indet., Spain, Aptian; 6 –
4 5 1584	Eocarcharia, Niger, Aptian–Albian; 7 – Carcharodontosauridae indet., Guangxi, China,
8 ⁷ 1585 8	Aptian; 8 – Carcharodontosauridae indet., Henan, China, Aptian; 9 – Kelmayisaurus,
9 10 1586	Xinjiang, China, Aptian–Albian; 10 – Carcharodontosauridae indet., France, Cenomanian; 11
12 1587 13	- Sauroniops, Morocco, Cenomanian; 12 - Carcharodontosauridae indet., Japan,
¹⁴ 15 1588	Cenomanian–early Turonian; 13 – Shaochilong, Inner Mongolia, China, Turonian; 14 –
16 17 1589 18	Carcharodontosauridae indet., São Paulo, Brazil, Campanian-Maastrichtian (for relevant
¹⁹ ₂₀ 1590	references, see text, 5.4.). Palaeogeographic maps, courtesy of Ron Blakey
21 22 1591 23 24	(http://cpgeosystems.com/).
25 26	
27	
28 29	
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
41	
42	
43	
44	
46	
47	
48 49	
50	
51	
52	
53 54	
55	
56	
57	
ンダ 59	
60	
61	65
62	
63 64	
65	

"Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous **Europe-Gondwana connections** Zoltán Csiki-Sava^{1*}, Stephen L. Brusatte², Stefan Vasile¹ ¹ Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, 1 Nicolae Bălcescu Boulevard, 010041 Bucharest, Romania ² School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, EH9 3FE, United Kingdom * Corresponding author zoltan.csiki@g.unibuc.ro ABSTRACT Some of the best records of continental vertebrates from the Cretaceous of Europe come from Romania, particularly two well-known occurrences of dwarfed and morphologically aberrant dinosaurs and other taxa that lived on islands (the Cornet and Hateg Island faunas). Substantially less is known about those vertebrates living in the more stable, cratonic regions of Romania (and Eastern Europe as a whole), particularly during the earliest Cretaceous. We describe one of the few early Early Cretaceous fossils that have ever been found from these regions, the tooth of a large theropod dinosaur from Southern Dobrogea, which was discovered over a century ago but whose age and identification have been controversial. We identify the specimen as coming from the Valanginian stage of the Early Cretaceous, an incredibly poorly sampled interval in global dinosaur evolution, and as belonging to Carcharodontosauridae, a clade of derived, large-bodied apex predators whose earliest
Cretaceous history is poorly known. Quantitative analyses demonstrate that the Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, which until now has been known solely from Gondwana. Our results suggest that this subgroup of colossal predators did not evolved vicariantly as Laurasia split from Gondwana, but originated earlier, perhaps in Europe. The carcharodontosaurine diversification may have been tied to a north-to-south trans-Tethyan dispersal that took place sometime between the Valanginian and Aptian, illustrating the importance of palaeogeographic ties between these two realms during the largely mysterious early-mid Early Cretaceous. Keywords Southern Dobrogea; Valanginian; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997; Posmosanu, 2003; Dyke et al., 2011), and the famous latest Cretaceous beds of the Hateg, Rusca Montană and western Transylvanian basins of Transylvania, which have yielded the dinosaur-dominated 'Hateg Island fauna' (e.g. Nopcsa, 1923; Weishampel et al., 1991; Benton et al. 2010; Codrea et al., 2010, 2012; Grigorescu, 2010; Vremir, 2010; Vasile and Csiki, 2011; Csiki-Sava et al., 2015). Both of these faunas inhabited islands that were part of the vast Cretaceous European Archipelago of the Neo-Tethys Ocean. Based on their isolated

51 geological settings and the many dwarfed and morphologically aberrant taxa that make up the 52 faunas, both have been interpreted as insular assemblages that give a unique window into 53 how island environments affected the evolution of long-extinct organisms (e.g., Benton et al., 54 1997, 2010; Csiki-Sava et al., 2015).

The great volume of research on these assemblages over the past century, particularly the 'Hateg Island fauna', has concealed an inconvenient bias: the stable, non-island, cratonic regions of Romania have yielded only extremely rare Mesozoic continental vertebrate remains (i.e., the Moldavian, Moesian and Scythian platforms; Săndulescu, 1984; Mutihac and Mutihac, 2010; Fig. 1). This is mostly because Mesozoic deposits are located in the subsurface in these regions, with only limited subaerial exposures available in the structurally highest-lying parts of the Moesian Platform, in Central and Southern Dobrogea (Middle Jurassic-Upper Cretaceous), as well as in the northeastern-most corner of the Moldavian Platform, along the Prut Valley (lower Upper Cretaceous) (see, e.g., Mutihac and Mutihac, 2010). This bias is unfortunate because fossils from these settings could lead to a better understanding of how mainland and island faunas differed during the Cretaceous, and because the cratonic portion of Europe was an important biogeographic stepping stone between the north and south as the continents fragmented and sea levels fluctuated.

Although the cratonic regions of Romania have yielded few Cretaceous terrestrial fossils, these deposits are not totally barren. In fact, one of the first Mesozoic continental vertebrates ever recorded from Romania comes from one of these deposits, the Lower Cretaceous shallow marine limestones of Southern Dobrogea (Fig. 1). This specimen-the isolated but well-preserved tooth of a large theropod dinosaur-has often been overlooked. It was described a little over a century ago by Simionescu (1913; Fig. 2A), and until a few recent discoveries of very rare isolated specimens (Stoica and Csiki, 2002; Csiki-Sava et al., 2013; Dragastan et al., 2014), it remained as the sole published record of Mesozoic terrestrial

vertebrates from the cratonic areas of Romania. It has never been comprehensively described and its precise age and taxonomic affinities have yet to be clarified, despite its potential importance as a well-preserved fossil from a poorly sampled area that could have critical evolutionary and biogeographic implications.

We here present a comprehensive description of the Dobrogea tooth and discuss its relevance for understanding dinosaur evolution and biogeography. We review the peculiar history of how this specimen was collected and curated, thoroughly document its morphology and age, identify it based on comparison to a broad range of theropods, and outline its importance. It turns out that this specimen, although only a single tooth, has wide-ranging implications. We identify it as coming from the Valanginian stage of the Early Cretaceous, which is incredibly poorly sampled both in Europe and globally (Weishampel et al., 2004), and as belonging to a carcharodontosaurid, a group of derived, large-bodied apex predators whose earliest Cretaceous history is poorly known. Carcharodontosaurids were once thought to be a uniquely Gondwanan group, but recent discoveries show that the basal members of the group were more widespread during the late Early-middle Cretaceous (e.g., Sereno et al., 1996; Brusatte and Sereno, 2008). The Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, that until now has been known only from Gondwana. It suggests that this subgroup of enormous predators did not evolve vicariantly as Pangaea split, but originated earlier, and perhaps in Europe, suggesting faunal interchange between Europe and Gondwana during the 'dark ages' of the early Early Cretaceous.

97 Abbreviations: UAIC – University "Alexandru Ioan Cuza", Iași, Romania.

2. History of collecting and curation

Only two dinosaurian fossils are currently known from the cratonic areas of Romania: an isolated theropod tooth and an isolated caudal vertebral centrum. Both of these were reported from the Lower Cretaceous deposits of Southern Dobrogea (southeastern Romania; Csiki-Sava et al., 2013, see also below). Unfortunately, exact details of their discovery and places of origin are lost, a fact that can hinder an assessment of their age and interpretation of their phylogenetic and palaeobiogeographic significance. Our aim here is to gather and report all available information concerning the collecting of specimen UAIC (SCM1) 615, that is, the isolated theropod tooth reported by Simionescu (1913; Fig. 2A).

According to the existing information - unpublished museum labels and records, and the preliminary publication of Simionescu (1913) - specimen UAIC (SCM1) 615 was discovered in the surroundings of Cochirleni, a small village south of Cernavodă and close to the right bank of the Danube, in Southern Dobrogea, southeastern Romania (Fig. 1), probably shortly before 1913, the date of its publication by Simionescu (1913).

Although studied and preliminarily described by Simionescu, UAIC (SCM1) 615 was not collected by Simionescu personally. Instead, it was donated by a certain "de Tomas" (also mentioned as "de Thomas" in the registry of the Hârșova Museum) to V. Cotovu from Hârșova (Central Dobrogea), a local teacher, archaeology and natural history aficionado, and amateur fossil collector (see, e.g., Covacef, 1995). Cotovu, described by Simionescu himself as the "zélé fondateur et directeur du muséum de Hârsova" (enthusiastic founder and director of the Hârşova Museum; Simionescu, 1906: p. 2), had previously provided fossil specimens from Southern Dobrogea for study to Simionescu, a nationally acknowledged popular science writer and scientist, whom Cotovu knew personally (Brânzilă, 2010). These circumstances are supported by the fact that in the original description, Simionescu figures the specimen as being accessioned in the "Regional-Museum von Harschowa" (Hârşova Regional Museum; Simionescu, 1913: p. 687, fig.1), a designation he also used to refer to other Dobrogean

specimens not collected by him first-hand (e.g., a specimen of '*Nautilus' pseudoelegans* from Cernavodă, or a fragmentary tooth-bearing palatal fragment referred to as '*Coelodus*' sp., also originating from Cochirleni; see Simionescu, 1906). Confirming this deduction, an isolated tooth appears accessioned in the old registry book of the Hârşova Museum (under specimen number 200) as "*Megalosaurus* cf. *superbus*", with the mention that it was "*described by Prof. Simionescu in the Centralblatt f. min. etc.*". This is also the case of the '*Coelodus*' sp. specimen from Cochirleni (specimen number 86), similarly clearly identified as being described by Simionescu in the registry book.

Both of these vertebrate remains from Dobrogea that were formerly part of the Hârșova Museum collections are currently accessioned in the palaeontology collections of the UAIC (Turculeț and Brânzilă, 2012), suggesting that, at one moment, several specimens were transferred there from the Hârșova Museum. Although no details are known about this transfer, it is probable that it took place right before (or when) the Hârșova Museum, including a part of its collections, was burned and largely destroyed during WWI, in 1916, a time when Simionescu still held a position at the UAIC.

After its original description, specimen UAIC (SCM1) 615 underwent a minor amount of damage (see below, Description). Also, at some point between its description in 1913 and the early 1960s (when the specimen was found in its present state in the collections of the UAIC by academic staff members who are still alive today and recall the discovery; I. Turculet, personal communication, May 2013) it was glued into a limestone matrix holder, while it was obviously completely freed of the surrounding matrix when it was described and figured in 1913 (Fig. 2). The circumstances under which these alterations took place are unclear. It is a distinct possibility that they occurred sometimes during WWII, when, in the spring of 1944, the frontline between the German-Romanian and Soviet armies reached the Iași-Chișinău line. At this moment, the geological-palaeontological collections of the UAIC

were packed in crates, and moved together with its personnel and other possessions to Zlatna, in the Apuseni Mountains (western Romania), to safeguard them from any potential damage. Mounting the specimen into the limestone stand would have been a quick way to stabilize it, as it appears that packaging and transport of the specimens was done in haste (M. Brânzilă, personal communication, April 2103). If that was indeed the case, the mounting would have taken place without the knowledge of Simionescu, who left Iaşi and the UAIC in 1929, being invited to become a professor of Palaeontology at the University of Bucharest (Brânzilă, 2010). Then again, however, Simionescu himself or staff of the Hârsova Museum might have re-mounted the tooth after its original description, or else the mounting might have taken place after the return of the collections to Iasi, after WWII.

Unfortunately, it is not documented whether the mounting was made using the original matrix, or if a trough corresponding to the tooth outline was carved into a randomly chosen limestone block. The apparently excellent fit between the tooth and the depression housing it (Fig. 2B, 3) suggests that this operation was completed carefully, and accurate carving of a fake holder is difficult to reconcile with the rush accompanying the evacuation of the Iasi University, in 1944. Alternatively, the presence of a hand-written old registration number on the specimen holder would support its early re-mounting, while still at the Hârșova Museum. As noted previously, the original Hârșova Museum registration number of the specimen was 200, which does not correspond to that currently written both on the limestone holder and on a paper sticker (204). However, according to the old collection registry of the Hârsova Museum, specimen numbers 201 through 225 were given to a series of "indeterminate (fossil) bone fragments" from the "Cochirleni quarries". Thus, these specimens (now apparently lost) came from the same locality as the tooth, and they were collected and donated by the same person to the Museum who donated UAIC (SCM1) 615. There is, thus, a (albeit admittedly remote) possibility that the registration numbers were

mixed up during the re-mounting of the specimen, which in this case took place at an early date in the Hârsova Museum. If this is indeed the case, the limestone used as holder could have been the same as the original matrix of the specimen.

To conclude, the history of recovery and curation of the historically important dinosaurian specimen UAIC (SCM1) 615 is rather convoluted and clouded by many uncertainties. The exact date of discovery remains conjectural, and the exact place of the discovery (thus also the original geological context of the tooth) is even more ambiguous. The current state of the specimen, and especially its mounted status, suggest a curatorial history that produced a moderate amount of damage to, but also partially obscured the detailed morphology of the specimen. The convergence of such unfortunate events makes deciphering the age, identity and evolutionary significance of the specimen troublesome, although many lines of evidence, carefully considered, allow us to draw reasonable conclusions (see below).

3. Geological setting

According to the available collecting information, the isolated theropod tooth UAIC (SCM1) 615 was discovered at Cochirleni (sometimes noted more specifically as the "Cochirleni quarry" or "Cokerleni quarry"). Cochirleni is a small village in southwestern Dobrogea situated close to the right bank of the Danube, and about 9 km south of the main urban center of the region, Cernavodă (Fig. 1). The geology of the area has been well studied, because of the unique outcropping conditions and rich fossiliferous nature of the Lower Cretaceous deposits (reviewed in Avram et al., 1996; Neagu et al., 1997; Dragastan et al., 1998).

Southern Dobrogea is a cratonic area corresponding to the southeastern corner of Romania. Whether it is considered part of the larger Moesian Platform (Săndulescu, 1984; Ionesi, 1994), or a distinct craton (the South-Dobrogean Platform; Mutihac and Mutihac,

200 2010), researchers agree that it became integrated into the main European Craton towards the
201 end of the Jurassic, at the latest, with the consolidation of the Cimmerian (Early Alpine:
202 Triassic–earliest Cretaceous) North Dobrogean fold-and-thrust belt (Seghedi, 2001;
203 Hyppolite, 2002). The age of its basement is also controversial, with estimates ranging from
204 Archaic–Early Proterozoic (Mutihac and Mutihac, 2010) to latest Proterozoic (Ionesi, 1994).

The Precambrian basement of Southern Dobrogea is overlain by a flat-lying sedimentary cover that begins with the lowermost Palaeozoic and ends with the uppermost Neogene. The sedimentary succession is interrupted by a few major, as well as several less important, sedimentary hiatuses that separate 5 main sedimentary sequences corresponding to the Cambrian-Upper Carboniferous, the Permian-Triassic, the Middle Jurassic-Cretaceous, the Eocene-?Oligocene, and the middle Badenian (middle Miocene)-Upper Pliocene. The Palaeozoic and lower Mesozoic are known only from the subsurface of Southern Dobrogea, but Cretaceous and Cenozoic deposits have limited exposures along the main water courses of the region (Ionesi, 1994; Mutihac and Mutihac, 2010).

The outcropping Cretaceous in Southern Dobrogea is represented mainly by shallow marine, carbonate platform deposits in the lower part of the system, replaced by more openwater, chalky facies towards the later part of the period (e.g., Avram et al., 1993, 1996; Dragastan et al., 1998; Dinu et al., 2007); these crop out only as isolated patches along the main watercourses of the region (Fig. 1).

The Lower Cretaceous Series consists of several lithostratigraphic units with complex, partially overlapping and interfingering relationships (Dragastan et al., 1998, 2014). The lowest (and only artificially) outcropping unit is the Purbeck-type, siliciclastic-evaporitic Upper Kimmeridgian–Lower Berriasian Amara Formation that represents lagoonal to continental environments. This unit is covered by the shallow-marine, richly fossiliferous and locally reefal limestone-dominated Cernavodă Formation (restricted-open lagoonal to

carbonate platform, Upper Berriasian-Lower Hauterivian). A time-correlative unit of the Cernavodă Formation, the limestone-dolomitic Dumbrăveni Formation (Upper Berriasian-Lower Hauterivian), is restricted to the southeastern part of Southern Dobrogea. The Cernavodă and Dumbrăveni formations are covered unconformably by dominantly calcareous deposits with hippuritoid ('pachyodont') coquinas, small reefs and lens-like orbitolinid accumulations, referred to the Barremian-Lower Aptian Ostrov Formation by Dragastan et al. (1998), but to the Ramadan Formation (in part) by Avram et al. (1993, 1996). These deposits, formed in littoral to lagoonal and open reef terrace environments, are in turn capped by the fluvial-lacustrine, siliciclastic deposits of the Gherghina Formation, with Middle–Upper Aptian kaolinitic clays and thin coal intercalations. The Lower Cretaceous succession ends with the transgressive, glauconite-bearing, coastal to sublittoral siliciclastic deposits of the Cochirleni Formation (uppermost Aptian-Albian).

The Upper Cretaceous has a significantly more patchy development, mainly restricted to the eastern part of Southern Dobrogea, excepting the weakly glauconitic, chalky-sandy Pestera Formation (Lower Cenomanian) and the marly Dobromiru Formation (Upper Cenomanian) that cover the western-central parts of the area. The younger Cuza Vodă (Turonian), Murfatlar (Santonian-Lower-Middle Campanian), and Satu Nou (Upper Campanian) formations are dominantly chalky, suggesting the instalment of a relatively deeper, offshore depositional environment; neither of these units is known from western Southern Dobrogea.

In total, the Lower Cretaceous of Southern Dobrogea was deposited in a shallow marine, near-shore setting, fluctuating between carbonate platform, lagoonal, coastal-tidal flat, and continental environments (see Avram et al., 1996; Dragastan et al., 1998). Its main characteristic features, such as the observed lithological variability, the areal distribution of the different units, and the presence of several unconformities within the series, are all linked

to eustatic sea-level changes that affected the Southern Dobrogean territory during the Early Cretaceous (Dragastan et al., 1998). The main emergent land in the area was represented by the Central Dobrogean Massif, lying north of the study area, almost completely subaerially exposed and actively eroding during the Cretaceous. Consequently, shallow-marine to continental deposits are restricted mainly to the northern part of Southern Dobrogea, close to its boundary with the Central Dobrogean Massif (marked by the Capidava-Ovidiu Fault), and are replaced by more open marine deposits southward. As summarized above, several littoral, and even continental, sequences occur in this succession, including deposits in the Amara, Cernavodă, Ramadan (Avram et al., 1996) and Cochirleni formations, whereas the Gherghina Formation is purely continental, with occasional minor marine interbeds produced during short-term ingressions of the sea.

In the Cernavodă-Cochirleni area the outcropping Mesozoic is restricted to the Lower Cretaceous, and includes deposits belonging to the Cernavodă, Ostrov (or Ramadan), Gherghina, and Cochirleni formations. While the lower-middle part of the Cernavodă Formation is well exposed and widely distributed in this area, its upper part (the lower Hauterivian Vederoasa Member) is unevenly developed. This member is missing in the classical succession from Cernavodă-Hinog, on the right bank of the Danube (Dragastan et al., 1998), but was recently identified in the more eastern Cernavodă-lock section (Dragastan et al., 2014). Similarly, the Ostrov Formation is represented in the area only by its upper subunit (the Lower Aptian Lipnita Member; Dragastan et al., 1998), covering unconformably and transgressively the Valanginian Alimanu Member of the Cernavodă Formation in the southern end of the Cernavodă-Hinog section (Dragastan et al., 1998), and the lower Hauterivian Vederoasa Member in the Cernavodă-lock section (Dragastan et al., 2014).

273 Northward of the Hinog area, Valanginian deposits of the Alimanu Member are274 overlain directly by the Middle–Upper Aptian continental deposits of the Gherghina

Formation. These continental deposits also cover the Orbitolina-bearing calcareous-clayey deposits of the Lipnita Member towards the south, marking the advancement of emerged areas towards the central parts of Southern Dobrogea, including the Cernavodă-Cochirleni area, during this time interval (Avram et al., 1996). Marine conditions returned in the study area again in the latest Aptian, with a transgression marked by widespread deposition of the glauconitic, siliciclastic coastal to innermost shelf deposits of the Cochirleni Formation. These uppermost Aptian to Albian sands and sandstones cover transgressively all the underlying deposits, belonging to the Cernavodă, Ostrov, or Gherghina formations. Siliciclastic shallow-marine sedimentation continued into the Early Cenomanian, with the chalky-glauconitic deposits of the Pestera Formation.

286 4. Palaeontology

The isolated theropod tooth UAIC (SCM1) 615 (formerly in the collections of the Hârșova Museum, registered with no. 200; Fig. 2A) was described in a short note by Simionescu (1913), who referred it to Megalosaurus cf. superbus, a taxon erected by Sauvage (1882) from the Gault ('mid'-Cretaceous: Albian) of the Paris Basin, France. The Gault material described by Sauvage (1882; see also Sauvage, 1876) includes several isolated teeth that were deemed by Simionescu (1913) to be more similar to the Cochirleni tooth than are the teeth of Megalosaurus bucklandi (Buckland, 1824). Subsequently, the French Gault material was referred to the new genus *Erectopus* by Huene (1923), who also noted differences between it and the type species *M. bucklandi*.

The convoluted taxonomic history of *Erectopus superbus* was recently reviewed by Allain (2005), who established that both the isolated teeth first mentioned by Sauvage (1876) and the skeletal elements described by Sauvage (1882) belong to the same taxon, for which the name *Erectopus superbus* was retained. Allain (2005) regarded *Erectopus* as a member of

Carnosauria (= basal Tetanurae), an opinion also shared by Molnar (1990) and Holtz et al. (2004a), whereas the latest review of the Tetanurae (Carrano et al., 2012, p. 254) considered Erectopus superbus "a non-carcharodontosaurian allosauroid, possibly a metriacanthosaurid." Accordingly, if we are following the original assessment of Simionescu (1913) but updating with contemporary taxonomy, the Cochirleni theropod tooth should now be considered referable to the basal tetanuran Erectopus superbus. However, the referral of this tooth to *Erectopus superb*us (or a close relative) was considered to be unsupported by positive evidence by Molnar (1990) and Holtz et al. (2004a). In order to re-assess this referral and to understand the exact taxonomic and phylogenetic affinities of UAIC (SCM1) 615 (Fig. 2B, 3), we provide here a detailed description of its morphology followed by a thorough comparative study of this tooth based on large datasets of theropod dental measurements and discrete characters compiled by Hendrickx and Mateus (2014) and Hendrickx et al. (2015a).

We note that in his review of Romanian dinosaurs, Grigorescu (2003) erroneously considered UAIC (SCM1) 615 as being referred by Simionescu to the taxon *Megalosaurus dunkeri* Kohen (sic; actually, *Megalosaurus dunkeri* Dames, 1884). This is clearly a simple misreading of Simionescu's identification. Additionally, such a referral is also contradicted by the absence of mesial serrations in the holotype tooth of *M. dunkeri*, considered by Carrano et al. (2012) to represent an indeterminate theropod. The Dobrogea tooth, on the other hand, has mesial serrations (see below).

4.1. Age of UAIC (SCM1) 615

The age of UAIC (SCM1) 615 has been contentious, due to the uncertainties concerning its
place of origin. Although it is often mentioned as originating from Cochirleni village (e.g.,
Grigorescu, 2003; Turculeț and Brânzilă, 2012), this has not been definitively established.
According to the original report of Simionescu (1913), the tooth came from the upper part of

the Lower Cretaceous limestone succession exposed in the cliffs extending from Cernavodă to Cochirleni along the right bank of the Danube. The corresponding entry from the Hârşova Museum registry states that it was found in the 'Cochirleni quarry', a location that presently cannot be identified precisely. The only rocks to be quarried in the area are the calcareous deposits of either the Cernavodă or Ostrov formations, particularly the ones that crop out in the Danube bank cliffs between Cernavodă-Hinog-Cochirleni. Finally, although the mention 'Cochirleni' is usually considered to refer to Cochirleni village, it should be mentioned that the cliff-forming hill that extends between Cernavodă and Cochirleni is also known by the same name (Fig. 1). Taking all of this evidence into consideration, it is thus reasonable to conclude that the tooth was most likely found in the Lower Cretaceous limestone succession exposed in the Danube cliffs between Cernavodă and Cochirleni.

Based on the location of the discovery, in the upper part of the local limestone
succession, and the age of the deposits from Cernavodă-Cochirleni known to him,
Simionescu (1913) considered the tooth to be of Barremian age. Subsequently, the age of the
tooth was given as Valanginian–Barremian (Weishampel, 1990; Weishampel et al., 2004) or
Valanginian (e.g., Grigorescu, 2003), but without any supporting information.

New attempts have been made to more precisely constrain the age of UAIC (SCM1) 615. Dragastan et al. (2014) recently sampled the limestone matrix holder of the tooth, and reported from these samples an assemblage of foraminiferans, ostracods and microproblematicae (=incertae sedis microorganisms) that characterize their 'Biozone IX with *Meandrospira favrei*', of latest Valanginian age in the local lithostratigraphic scheme. In parallel, we also sampled the same limestone holder – a yellowish white, friable lime mudstone – that yielded a poor and badly preserved calcareous nannoplankton assemblage with Watznaueria barnesiae, W. ovata, Nannoconus steinmanni, N. kamptneri, N. globulus, Calcicalathina sp., Speetonia colligata and Cyclagelosphaera deflandrei (M. C. Melinte-

Dobrinescu, personal communication, November 2013), an assemblage that suggests a Berriasian-Hauterivian age of the limestone holder.

Since it is not clear if the limestone holder came from the same site as the tooth itself, we managed to take a second sample from the limestone matrix still partly filling the pulp cavity of the tooth, which must definitively be identical with the rocks the tooth was found in. This second, much smaller sample yielded only very scarce specimens of Watznaueria barnesiae, Cyclagelosphaera margerelii and Diazomatolithus lehmanni (M. C. Melinte-Dobrinescu, personal communication, November 2013), the latter two taxa having a peak in abundance during the Berriasian and, especially, the Valanginian.

In the nannoplankton succession reported previously by Avram et al. (1993) and derived from a systematic sampling of the Southern Dobrogean Lower Cretaceous, the concurrent presence of Speetonia colligata, Calcicalathina oblongata, Diazomatolithus lehmanni and Nannoconus steinmanni was noted in samples derived from the Alimanu Member of the Cernavodă Formation. These assemblages were interpreted to represent the nannoplankton zone CC3 of Sissingh (1977), of late Valanginian age. A comparable age was assigned to a roughly similar nannoplankton assemblage reported from the Lower Cretaceous of the Mecsek Mountains, Hungary, by Császár et al. (2000).

Together, all the available evidence (Simionescu's original account, geographic and geologic records, foraminifera, ostracods, microproblematicae, and calcareous nannoplankton) thus suggests that UAIC (SCM1) 615 originates from the Alimanu Member of the Cernavodă Formation, and it is most probably of late Valanginian age.

4.2. Description and comparisons

Specimen UAIC (SCM1) 615 is a large (total length, as preserved, is about 100 mm; Figs. 2, 3) lateral tooth of a theropod dinosaur, with a crown base length (CBL) of 29 mm, crown

base width (CBW) of 16.25 mm, crown height (CH) of 85.5 mm, and apical length (AL) of 91 mm (terminology following Smith et al., 2005 and Hendrickx et al., 2015b). It is remarkably well preserved, with the enamel in pristine condition. It preserves most of the crown and a small basal part of the root, but the crown tip is broken off, with an estimated 5 mm missing in the apical region.

In its present state, the mesial edge and part of the mesial third of the tooth are embedded in the limestone holder (Fig. 2B), although the tooth was once removed (see above, History of collecting and curation; Fig. 2A). Accordingly, it is exposed so that all faces of the tooth are widely visible, including the root region, except for the mesial surface.

Only the basal-most part of the root is preserved, and it is more complete near the mesial margin (Fig. 3B, C). Here, broken areas around the crown-root contact area (cervix) reveal details of the pulp cavity development, as well as the pattern of the dentine thickness variation (Fig. 3B–D). The crown also exhibits a transverse break at about two-thirds of its length (not present so obviously in the original figure of the specimen in Simionescu, 1913), and adjacent to it, the distal carina is also slightly chipped distal to mid-length. The labial face is superficially split near this break (Fig. 3A), while a more prominent region of damage appears on the lingual face, where a large (13 x 5 mm), slightly triangular wedge is broken off, exposing the deeper parts of the dentine (Fig. 3C). The damage to the lingual side apparently occurred after the original description of the tooth (Fig. 2), an observation that is concordant with the complex curatorial history of the specimen.

The basal-most, exposed part of the mesial face lacks the enamel cover (Fig. 3C, D), suggesting that this area already belongs to the root region. The mesial edge of the preserved crown base appears to be wider than the distal one, and is largely rounded transversely. Accordingly, the basal cross-section is teardrop-shaped (lanceolate); it is rounded mesially, but narrows distally into a small carina (Fig. 3D). As mentioned above, the pulp cavity is

exposed basally, being partly filled with a whitish-light gray limestone that is reminiscent of the matrix holder lithology. The pulp cavity narrows rapidly towards the cervix, as it is about 7.1 mm wide (labiolingually) at the apical-most part of the preserved root, but only about 4.5 mm wide at the base of the crown. In parallel, the enamel-dentine wall of the tooth becomes thicker: it is 3.5 mm thick in the apical-most part, 4.4 mm at the base of the crown, but thickens to 5.0–5.8 mm near the apical-most part of the basal break of the crown (Fig. 3B). Mirroring the outside cross-section, the contour of the pulp cavity is also teardrop-shaped (Fig. 3D).

The tooth is ziphodont and only very slightly recurved distally. The distal edge is nearly straight across its length, being very mildly concave in its basal half and slightly convex near its apex (Fig. 2, 3A). Thus, the apex is placed roughly at the distal margin of the tooth crown base. The mesial edge, as shown in the original publication of Simionescu (1913), is strongly convex across its entire length (Fig. 2A). The tooth is labiolingually compressed (Fig. 3B), with a crown base ratio (CBR=CBW/CBL) of 0.56, within the normal range of variation of most theropods. This differs from the thinner teeth of some, but not all, carcharodontosaurids (CBR<0.50), and the much thicker incrassate teeth of derived tyrannosauroids and conical teeth of spinosaurids (CBR>0.75) (Sereno et al., 1996; Brusatte et al., 2010a; Hendrickx and Mateus, 2014; Hendrickx et al., 2015a).

The crown cross-section is slightly asymmetrical labiolingually when it is seen in distal view. In this view, when the carina is facing directly distally, one side of the crown has a more pronounced bulge than its counterpart (about 8.5 mm wide, measured from the carina, vs. 6 mm on the other side; Fig. 3B); based on comparisons with the teeth of *Mapusaurus* (Coria and Currie, 2006), the more bulging side can be interpreted as the lingual one. This asymmetry diminishes apically, where both sides become about equally convex. The distal carina itself twists slightly sideways (labially) in apical direction, such that it is located closer to the labial face where it terminates at the crown apex, and the lingual face of the denticles is
exposed distally (Fig. 3B, F). This twist of the distal carina is accompanied by a similar
outline of the lingual side; in distal view, this is somewhat convex basally, but becomes flat
to slightly concave in the apical two-thirds of the crown. A similar S-shaped curvature of the
crown, albeit more pronounced and different in details, was also reported in *Mapusaurus* and *Giganotosaurus* (Coria and Currie, 2006), and in indeterminate carcharodontosaurid teeth
from Morocco (Richter et al., 2013).

The distal carina extends along the entire tooth height (Fig. 3A–C). It is covered with minute serrations across its entire preserved length; the denticles are proximodistally subrectangular, with a mesiodistal long axis that is greater than the apicobasal long axis (Fig. 3E-H). They are either roughly perpendicular to the tooth margin, or their long axes are oriented obliquely, such that they point slightly apically. The tip of the apex is broken off, so it is not possible to determine whether the serrations continued over the apex of the tooth. There are approximately 12.5 serrations (denticles) per 5 millimetres at the midpoint of the carina. Serration shape and size remain relatively constant across the carina, although the serrations near the midpoint and closer to the base of the carina (12 denticles per 5 mm; Fig. 3G, H) are slightly smaller than those near the apex (9 denticles per 5 mm; Fig. 3E, F). Changes in serration size are gradual across the carina, not sudden or sporadic.

Although they are all more or less rectangular in shape, the apical denticles are relatively shorter proximodistally than the more basal ones. Most of the denticles have slightly rounded, asymmetrically convex triangular tips, instead of being simply squarred-off, and they do not hook as in troodontids and to a lesser extent abelisaurids (Hendrickx and Mateus, 2014). Other denticles near the apex, however, show a faint concavity along their tips, giving them a bilobate aspect, although this is both less conspicuous and far less regularly developed than reported in *Tyrannotitan* (Novas et al., 2005). The denticles are

450 separated by simple, linear grooves (interdenticular slits or sulcae) along their entire length.
451 The interdenticular space between adjacent denticles is broad, measuring more than a third of
452 the apicobasal width of a denticle (Fig. 3E, G). This space continues onto the surface of the
453 crown as a very short interdenticular sulcus ("blood groove" of Currie et al., 1990). These
454 sulci are so short and indistinct that they are only visible under low angle light.

Little can be said about the mesial carina, as it is not visible in the current state of the specimen, buried in the limestone matrix. Based on the description of Simionescu (1913), however, it is covered across its length with minute serrations; these decrease in size towards the base of the crown. Simionescu (1913) reported approximately 15 serrations (denticles) per 5 millimetres at the midpoint of the carina, meaning that the mesial denticles are slightly smaller than those on the distal carina. The denticle size difference index (DSDI: Rauhut and Werner, 1995) is 1.2, within the range of variation of most theropods (Hendrickx and Mateus, 2014). As Simionescu (1913) already pointed out, the presence of a mesial carina that extends towards the base of the crown sets apart UAIC (SCM1) 615 from Megalosaurus bucklandii where this stops well above the cervix (Benson et al., 2008), and it is instead similar to 'M.' superbus (Sauvage, 1876, 1882) in this respect.

The external enamel surface exhibits two forms of ornamentation. First, the majority of the labial and lingual faces are covered by relatively smooth enamel that exhibits a subtle form of braided texture visible under low angle light (Fig. 3A, C, E). This texture is made up of a series of very faint, apico-basally running ridges; these are of unequal lengths, starting at different points of the crown height, but none extends the whole length of the crown. The two longest ridges are placed near the distal carina. The enamel is also finely granulated.

472 Second, near the carinae on both labial and lingual surfaces there are marginal
473 undulations: wrinkles in the enamel that stand out in bas relief (Brusatte et al., 2007). These
474 are much better preserved and visible near the distal carina, where they are so pronounced

that they are clearly observable in normal light (Fig. 3A–C, G, H). Here, about 17 unevenly developed wrinkles are present along the crown height; in the basal half of the crown, the wrinkles extend about 6.5 mm onto the crown. These are elongate, such that they are longer than twice the space separating each undulation. The wrinkles project obliquely (in the mesiobasal direction) relative to the carina. They are apically concave, with a near-horizontal segment on the crown, and curve apically as they approach the carina (at about 45°) with a tendency to become tangential to the distal edge. The wrinkles are especially well developed, prominent and closely spaced in the basal part of the crown (about 7 wrinkles/16 mm; Fig. 3C, G)), but become more widely spaced and indistinct apically (about 3 wrinkles/16 mm). Apically, however, the wrinkles are somewhat wider and longer, extending over about half of the crown fore-aft length. Again, a slight asymmetry is present between the two sides of the crown in wrinkle development as well, these being better expressed on the more rounded, convex lingual face, but less well expressed on the flatter labial face (Fig. 3A, C, H). On the presumed labial face, only some of the basal-most wrinkles, particularly the second and third one, appear well defined.

Towards the base of the crown a few of the wrinkles continue across the labial and lingual surfaces as very subtle transverse undulations. Most conspicuous of these is a 3.5 mm wide horizontal swelling that crosses the crown, at the level of wrinkles 2 and 3; this swelling is clearly visible on both sides of the crown (Fig. 3. A, C). There are no lateral flutes, apico-basal ridges, or longitudinal grooves on the labial or lingual faces, either in the centre of the tooth or paralleling the carinae. Instead, the labial and lingual faces are uniformly convex, giving the tooth its teardrop-shaped outline in cross section.

5. Discussion

5.1. Identification of UAIC (SCM1) 615

The isolated tooth from Cochirleni can be referred to Theropoda based on its large size,
recurved and labiolingually compressed morphology, and presence of a continuous series of
well-defined serrations on the distal carina.

Besides theropods, certain derived crocodyliforms - the sebecosuchians of Colbert (1946; see also Turner and Sertich, 2010; Pol and Powell, 2011; Rabi and Sebők, 2015) - are also known to posess remarkably theropod-like, laterally compressed and serrated teeth, not unlike the morphology shown by UAIC (SCM1) 615. However, most sebecosuchian teeth are significantly smaller than the Southern Dobrogean specimen, especially in the case of the Cretaceous members of the clade (e.g. Baurusuchus; Carvalho et al., 2005). Even the largest, caniniform teeth of the largest representatives of Sebecosuchia, such as the Miocene Barinasuchus (Paolillo and Linares, 2007), are somewhat smaller than UAIC (SCM1) 615; moreover, these teeth are slightly conical and less laterally compressed than the Southern Dobrogean tooth. Finally, it should be noted that the oldest known members of Sebecosuchia appear beginning in the Late Cretaceous (e.g. Kellner et al., 2014), and are thus significantly younger than UAIC (SCM1) 615. Similarly, ziphodont crocodyliform teeth (i.e. with true denticles along their carinae) are reported in Europe only beginning in the Albian (Ösi et al., 2015), and these are both significantly smaller and different in morphology from the Dobrogean tooth. Taken together, these suggest that the hypothesis of sebecosuchian affinities of UAIC (SCM1) 615 can be discarded with confidence, and it indeed represents a theropod tooth.

520 We used four techniques to identify which type of theropod UAIC (SCM1) 615 likely521 belongs to (see also Supplementary Material).

First, we conducted a Principal Components Analysis (PCA) based on a large
database that includes a broad and representative sample of theropod teeth. This dataset was
compiled by Hendrickx et al. (2015a), which built upon the earlier studies of Smith et al.

(2005) and Larson and Currie (2013), and it or a similar version has been used in recent studies to identify isolated theropod teeth (e.g., Williamson and Brusatte, 2014; Brusatte and Clark, 2015). It comprises nearly 1000 theropod teeth scored for six measurements (CBL, CBW, CH, AL, MC, and DC, the latter two measuring the density of serrations per 5 mm at the midpoint of the mesial and distal carina, respectively). UAIC (SCM1) 615 was added to this dataset, the data were log-transformed prior to analysis, missing values for measurements were estimated with a mean value for that measurement from across the sample, and then a PCA was run using a correlation matrix. The analysis was conducted in PAST v2.17 (Hammer et al., 2001).

In the resulting two dimensional morphospace (Fig. 4), UAIC (SCM1) 615 plots close to many teeth belonging to carcharodontosaurids, along with some teeth belonging to spinosaurids and tyrannosauroids. It falls within the convex hull (maximum morphospace occupation area) of carcharodontosaurids only, although it is closely outside of the edges of spinosaurid and tyrannosauroid space. It also falls within the 95% confidence interval ellipse for carcharodontosaurids, but not within the ellipse of any other group (Supplementary Information). This exercise indicates that UAIC (SCM1) 615 is most similar to carcharodontosaurids.

Secondly, we used the log-transformed dataset that we also used for the PCA to conduct a clustering analysis. We performed the analysis in PAST v2.17, using the paired group algorithm and the correlation similarity measure. In the resulting dendrogram, UAIC (SCM1) 615 groups with a handful of teeth belonging to carcharodontosaurids,

tyrannosauroids, and Allosaurus (Supplementary Information).

Third, we used the tooth measurement database to conduct a discriminant analysis in PAST v3.0 (Hammer et al., 2001). This analysis uses pre-determined groups (in this case, taxonomic clusters) to create a morphospace in which these groups are maximally separated.

This allows teeth of unknown affinities, such as UAIC (SCM1) 615, to be classified according to which taxonomic group it is most similar to in this discriminant morphospace. In total, 67.79% of other teeth are classified correctly when they are treated as having uncertain affinities and their measurements are used to classify them in discriminant space, indicating that this exercise returns reasonable results. Our analysis classifies the Romanian tooth as a carcharodontosaurid. Furthermore, the analysis places UAIC (SCM1) 615 within the convex hulls for carcharodontosaurids and tyrannosauroids, and the 95% confidence ellipses for carcharodontosaurids, coelophysoids, and neovenatorids.

Fourth, we ran a phylogenetic analysis by including UAIC (SCM1) 615 in the discrete character dataset of theropod dental features published by Hendrickx and Mateus (2014). The Romanian specimen was scored as a lateral tooth in this analysis. The analysis was conducted in TNT (Goloboff et al., 2008), and resulted in 224 most parsimonious trees (686 steps, consistency index of 0.338, retention index of 0.566). The strict consensus topology is moderately well resolved and places the Romanian tooth as the sister taxon to Carcharodontosaurus (Supplementary Material). This sister taxon pair is recovered as the sister clade to a grouping of the derived carcharodontosaurids Mapusaurus and Giganotosaurus.

Several synapomorphies support the carcharodontosaurid affinities of UAIC (SCM1) 615. The sister group relationship with *Carcharodontosaurus* is supported by two features: a roughly straight distal margin of the crown (character 68) and pronounced marginal undulations in the enamel that are well visible in normal light (character 112). The broader clade of UAIC (SCM1) 615, Carcharodontosaurus, Mapusaurus, and Giganotosaurus (= Carcharodontosaurinae, as defined by Brusatte and Sereno, 2008, and Carrano et al., 2012) is linked by numerous characters, including: large teeth with a crown height greater than 6 cm (character 65), a bowed or sigmoid distal carina in distal view (character 82), marginal

undulations that are at least twice as long mesiodistally as the space separating each
undulation (character 111), and marginal undulations present on both mesial and distal sides
of the crown (character 113).

The Romanian specimen also lacks many keystone dental synapomorphies of other theropod clades, based on the clade diagnoses of Hendrickx and Mateus (2014) and other cladistic studies that include dental characters. UAIC (SCM1) 615 does not possess the hooked distal denticles of some Abelisauridae, the strongly labially deflected distal carina and pronounced transverse enamel undulations extending across the labial and lingual tooth faces of Ceratosauridae, the incrassate teeth with apicobasal enamel flutes and deeply veined enamel surface texture of Spinosauridae, and the large transverse undulations of some basal allosauroids (Hendrickx and Mateus, 2014). It also lacks the thickened incrassate teeth of derived tyrannosauroids (Brusatte et al., 2010a) and the large and strongly hooked (or pointed) denticles of troodontids and therizinosauroids (e.g., Turner et al., 2012; Brusatte et al., 2014; Hendrickx and Mateus, 2014). The large size, as well as recurved and ziphodont shape of UAIC (SCM1) 615 is strikingly different from the non-ziphodont therizinosauroids, ornithomimosaurs, alvarezsauroids, and most troodontids, which have conical, leaf-shaped, or peg-like teeth (when teeth are present) (e.g., Holtz et al., 2004a; Turner et al., 2012; Brusatte et al., 2014). Finally, besides its remarkably large size, the presence of serrations indicates that UAIC (SCM1) 615 does not belong to groups such as alvarezsauroids, oviraptorosaurs, basal troodontids, or avialans, which have unserrated crowns (e.g., Turner et al., 2012; Hendrickx and Mateus, 2014).

In summary, the four analyses all support carcharodontosaurid affinities for UAIC (SCM1) 615. Both overall tooth proportions and discrete phylogenetic characters point to a carcharodontosaurid identification, and the discriminant function analysis and phylogenetic analysis both explicitly recover the tooth as a carcharodontosaurid. For this reason we refer

this tooth to Carcharodontosauridae. Moreover, it appears to belong to a clade that unites very derived and large-sized carcharodontosaurids (Carcharodontosaurus, Giganotosaurus, and Mapusaurus), separated as such and named Carcharodontosaurinae by Brusatte and Sereno (2008) and Carrano et al. (2012). The well-resolved internal topology of this clade, as recovered in our analysis, is congruent with results of previous analyses based on larger sets of characters from across the skeleton (e.g., Coria and Currie, 2006; Brusatte and Sereno, 2008; Brusatte et al., 2009; Ortega et al., 2010; Eddy and Clarke, 2011; Canale et al., 2015), and offers some support for considering the Romanian carcharodontosaurid from Southern Dobrogea as more closely related to the African Carcharodontosaurus than to the clade of the South American giant carcharodontosaurids Giganotosaurus or Mapusaurus.

Two final notes are worth adding. First, our analyses also incorporated carcharodontosaurids that are usually found to be basal within the clade, such as Acrocanthosaurus and Eocarcharia (e.g., Harris, 1998; Sereno and Brusatte, 2008; Carrano et al., 2012) as well as a host of other allosauroids, including members of Neovenatoridae (*Neovenator*, Australovenator and Fukuiraptor), a clade that is often recovered as sister-taxon to carcharodontosaurids within Carcharodontosauria (e.g., Benson et al., 2010; Carrano et al., 2012; but see Novas et al., 2013; Porfiri et al., 2014, for an alternate placement of neovenatorids in general). Both PCA and phylogenetic analysis clearly identified UAIC (SCM1) 615 as more closely comparable morphologically to derived carcharodontosaurids than to either basal carcharodontosaurids or to any other allosauroid subclade.

Second, our datasets also included teeth of *Erectopus*, the genus erected for *'Megalosaurus' superbus* to which UAIC (SCM1) 615 was originally referred. Again, our
analyses clearly indicate that there are no close morphological and morphometric similarities
between the two, which is in accordance with the suggestion of Carrano et al. (2012) that *Erectopus* represents a non-carcharodontosaurid taxon, while our analysis identifies UAIC

(SCM1) 615 as a carcharodontosaurid. Instead, *Erectopus* groups with abelisauroids in the phylogenetic analysis. This is somewhat surprisingly, as Allain (2005) and Carrano et al. (2012) both identified *Erectopus* as a tetanuran. It should be noted, however, that Albian-aged abelisauroids are known from the same general area (eastern France) as that yielding the material referred to *Erectopus* (Accarie et al., 1995; Carrano and Sampson, 2008), raising the intriguing possibility that this taxon may represent an abelisauroid instead of an allosauroid tetanuran as suggested by Allain (2005) and Carrano et al. (2012). However, it must be remembered that this phylogenetic analysis is based on dental characters only, so it is probably more likely that *Erectopus* is a tetanuran with a dentition convergent to some extent with those of certain abelisauroids.

636 5.2. Body size of UAIC (SCM1) 615

One of the most salient and remarkable features of UAIC (SCM1) 615 is its large size. In the large and comprehensive sample of theropod teeth from our dataset, tooth size (estimated based on crown height – CH, and used as a rough proxy of body size) ranges from 2.2 mm (in the dromaeosaurid Saurornitholestes and the coelurosaur of uncertain affinities *Richardoestesia*) to 117.1 mm in the gigantic tyrannosauroid *Tyrannosaurus*. The Romanian specimen UAIC (SCM1) 615, with a CH of 85.5 mm, is ranked in the 60-80% maximum size $(\sim CH)$ range of the sample, and has a CH that is 73% of the largest tyrannosauroid teeth. Most of the teeth in the dataset (over 61% of the 966 measured teeth) are very small to small (less than 25 mm CH), and less than 10% of these fall in the 60-100% CH size categories. Teeth larger than UAIC (SCM1) 615 make up less than 5% of the total sample, and they represent only five taxa: the megalosaurid *Torvosaurus*, the tyrannosauroid *Tyrannosaurus*, the basal carcharodontosaurid Acrocanthosaurus, and the derived carcharodontosaurines Carcharodontosaurus and Giganotosaurus. Compared to other carcharodontosaurids, UAIC

650 (SCM1) 615 is smaller than the largest teeth of *Acrocanthosaurus* (9% difference),

Carcharodontosaurus (20%), and *Giganotosaurus* (12.5%) in the dataset, but is 13% bigger
than the largest tooth of *Mapusaurus*.

It is thus reasonable to conclude that UAIC (SCM1) 615 belonged to a large-sized carcharodontosaurid, comparable to, even if somewhat smaller than, the truly gigantic carcharodontosaurines Giganotosaurus and Carcharodontosaurus (Sereno et al., 1996; Calvo and Coria, 1998; Therrien and Henderson, 2007), taxa that were recovered as possible close relatives of the Romanian carcharodontosaurid by our phylogenetic analysis. This, in turn, corroborates growing evidence that very large body size was acquired very early in carcharodontosaurid history, since the earliest potential members of the clade are already of relatively large size (Rauhut, 2011). The oldest potential carcharodontosaurid is Veterupristisaurus, represented by isolated vertebrae that indicate an animal between 8.5 and 10 meters in total body length (compared to 11.5+ meters in Acrocanthosaurus and more derived carcharodontosaurids) (Rauhut, 2011). These specimens are known from the uppermost Jurassic of Tanzania, eastern Africa (Rauhut, 2011; Carrano et al., 2012; see below), predating at most ~18 million years (Mya) the occurrence of likely even larger-sized carcharodontosaurids in the Valanginian of Southern Dobrogea, Romania.

The inferred large body size of the South Dobrogean theropod is also remarkable as virtually all other dinosaur remains reported previously from Romania (both from the Early Cretaceous Cornet assemblage and the much later, end Cretaceous Hateg Island fauna) are significantly smaller, and many have been interpreted as insular dwarfs (e.g., Weishampel et al., 1993, 2003; Benton et al., 2006, 2010; Stein et al., 2010; Ősi et al., 2014). Although other Romanian theropod dinosaurs were not particularly dwarfed (e.g. Brusatte et al., 2013), they were nonetheless small (Nopcsa, 1902; Csiki and Grigorescu, 1998; Csiki et al., 2010; Brusatte et al., 2013). This bias towards small bodied Romanian theropods was also

interpreted as a consequence of their insular habitat (Csiki and Grigorescu, 1998), as all previously reported theropod remains come from within the Carpathian Orogen, an area with an archipelago-type palaeogeography during the Cretaceous (Dercourt et al., 2000; Csontos and Vörös, 2004; Csiki-Sava et al., 2015). By contrast, UAIC (SCM1) 615 was found in shallow marine deposits bordering the emerged areas of Central Dobrogea, part of the stable cratonic areas of Europe and connected at least intermittently to the Ukrainean Shield since the Late Jurassic (Fig. 5A). Although cratonic Europe was also transformed into an archipelago of islands during much of the Cretaceous, these islands were often both larger in size and more stable in space and time than were the transient emerged areas of the Tethyan archipelagoes. As such, it is conceivable that the Southern Dobrogean carcharodontosaurid was less constrained by space or resource limitations than the Tethyan insular dinosaurs, allowing it to retain a large body size.

5.3. UAIC (SCM1) 615 and Valanginian dinosaur distribution

Besides documenting the presence of large-sized mainland carcharodontosaurids in the Lower Cretaceous of Romania, UAIC (SCM1) 615 is also important in that it fills a significant gap in our knowledge on the composition and distribution of the Early Cretaceous dinosaurs in Europe. In their review of dinosaur occurrences, Weishampel et al. (2004) listed 83 Early Cretaceous dinosaur localities spread throughout Europe, more than half of these being known from the later part (Barremian-Albian) of that epoch; only around a dozen localities were listed from each age of the early part of the Early Cretaceous (Berriasian, Valanginian, and Hauterivian). Even despite a significant increase in Early Cretaceous dinosaur discoveries in Europe in recent years (e.g., Royo-Torres et al., 2009; Cobos et al., 2010, 2014; Galton, 2009; Norman, 2010, 2013; Pereda-Suberbiola et al., 2011, 2012; Sachs and Hornung, 2013; Blows and Honeysett, 2014), these remain very strongly biased towards

western and southwestern Europe (especially the UK, France and Spain). Frustratingly, no
occurrences are known from the entire central, eastern and southern Europe for the
Berriasian–Hauterivian time interval except for two from Romania: the Berriasian–
Valanginian locality of Cornet (e.g., Jurcsák and Popa, 1979, 1983; Jurcsák, 1982; Benton et
al., 1997) in the northern Apuseni Mountains of northwestern Romania, and the
carcharodontosaurid tooth (Simionescu, 1913) from the Valanginian of Cochirleni, in
Southern Dobrogea, southeastern Romania we are describing here (Fig. 5A).

Our identification of the Romanian tooth as a carcharodontosaurid documents the presence of this clade in Europe in the very early Cretaceous. This is significant, as carcharodontosaurids were widely distributed tens of millions of years later, in the middle Cretaceous (Aptian to Cenomanian), in western Gondwana (Africa and South America, see below). Despite the recent discoveries documenting that the clade was also present in North America and Asia during the middle Cretaceous (e.g., Sereno et al., 1996; Currie and Carpenter, 2000; Brusatte et al., 2009, 2012), there has been only very few occurrences in Europe, most importantly the Barremian-aged *Concavenator* from Spain (Ortega et al., 2010; see below). The carcharodontosaurid tooth from Southern Dobrogea is substantially older than *Concavenator*, demonstrating that carcharodontosaurids appeared in Europe earlier than previously thought and were a long-term component of the European mainland Early Cretaceous faunas. It also suggests that habitat-related palaeobiological differentiation might have been already present between the cratonic, stable European mainland, with a dinosaur fauna made up of normal-sized (even very large) taxa, and the islands from the mobile Alpine areas of the Mediterranean Neo-Tethys, with by now dwarfed dinosaurs such as those described from the Berriasian-Valanginian Cornet assemblage in northwestern Romania (Benton et al., 2006).

This Valanginian carcharodontosaurid represents an important datapoint not only for the Romanian Lower Cretaceous, but also for that of wider Eurasia. The Valanginian is a poorly documented age in dinosaur evolution, with very few precisely dated fossil occurrences from anywhere in the world (e.g., Weishampel et al., 2004). The best record of Valanginian dinosaurs is from Europe, with fewer and less well dated occurrences known from Asia, some of which have debatable or controversial dates. These include sites in Japan (e.g., Manabe and Hasegawa, 1995; Matsukawa et al., 2006; but see Kusuhashi et al., 2009 and Evans and Matsumoto, 2015, supporting an alternative, younger age of these assemblages) and in Thailand (e.g., Buffetaut and Suteethorn, 1998, 2007, with age constraints according to Racey, 2009; Racey and Goodall, 2009). Occurrences of possible Valanginian age from China (e.g., Jerzykiewicz and Russell, 1991; Shen and Mateer, 1992; Lucas and Estep, 1998) are either poorly constrained as early Early Cretaceous, or were shown subsequently to be younger than Valanginian (Lucas, 2006; Tong et al., 2009). Rare dinosaur remains of possible Valanginian (or 'Neocomian') age were also reported from southern Africa (e.g., De Klerk et al., 2000) and, tentatively, from North America (e.g., Lucas, 1901; McDonald, 2011, with age assignments according to Sames et al., 2010; Cifelli et al., 2014).

As one of the two known reports of Valanginian dinosaurs in Europe east of France, the Southern Dobrogean dinosaur record fills a huge palaeogeographic gap between the western European and the eastern Asian dinosaur faunas. Moreover, none of these early Early Cretaceous dinosaur assemblages from outside Europe include carcharodontosaurids (see below), as theropods are represented by coelurosaurians interpreted either as compsognathids (Gishlick and Gauthier, 2007) or basal ornithomimosaurs (Choiniere et al., 2012) in southern Africa, metriacanthosaurid allosauroids ('sinraptorids') in Thailand (Buffetaut and Suteethorn, 2007), and indeterminate allosauroids (Pérez-Moreno et al., 1993), non-

carcharodontosaurid tetanurans (Carrano et al., 2012) or enantiornithine birds (Lacasa Ruiz, 1989), besides indeterminate taxa (Carrano et al., 2012), in western Europe. This may suggest that carcharodontosaurids had not achieved a wide geographic distribution by this point in time, and that their more cosmopolitan distribution came later, during the middle Cretaceous.

Finally, the presence of the Cochirleni carcharodontosaurid might hint at the presence of palaeobiogeographic provinciality between the western and the eastern parts of Europe, partly mirroring those reported from the later part of the Late Cretaceous (e.g., Le Loeuff and Buffetaut, 1995; Weishampel et al., 2010; Ősi et al., 2012; Csiki-Sava et al., 2015). In the reasonably well sampled, and significantly better known, western European dinosaur faunas, Valanginian large carnivorous dinosaurs include non-carcharodontosaurid tetanurans (Becklespinax), as well as indeterminate allosauroids or indeterminate theropods (often described as 'Megalosaurus' dunkeri, 'M.' insignis or 'M.' oweni), none of which can be referred positively to Carcharodontosauridae (Carrano et al., 2012). The apparently provincial geographic distribution of the large-bodied theropods suggests that some degree of faunal differentiation was occurring within the European mainland, most probably promoted by geographic distance. Notably, this intra-European differentiation in theropod assemblages appears to stand in contrast with the faunal homogeneity reported in the case of the ornithopods from the UK and Romania (e.g., Galton, 2009). It is important, however, to reemphasize at this point that the Valanginian dinosaur fossil record is both exceedingly poor and patchy, even in Europe. Accordingly, further discoveries are needed to verify and support (or contradict) the presence of such a distribution pattern pointing to palaeobiogeographic provinciality inside Europe, as the one suggested by our carcharodontosaurid identification for UAIC (SCM1) 615.

5.4. UAIC (SCM1) 615 and carcharodontosaurid evolution and palaeobiogeography

Carcharodontosauridae were long considered as an exclusively Gondwanan group of theropods (e.g., Allain, 2002; Novas et al., 2005) since their first discovery in northern Africa (e.g., Stromer, 1931), and subsequent description of a host of referred taxa from the Aptian-Cenomanian of Africa and South America (Coria and Salgado, 1995; Sereno et al., 1996; Novas et al., 2005; Coria and Currie, 2006; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Cau et al., 2013). This view started to change with the identification of the Early Cretaceous (Aptian-Albian) Acrocanthosaurus from North America as a basal carcharodontosaurid (e.g., Sereno et al., 1996; Harris, 1998; Sereno 1999; Brusatte and Sereno, 2008), suggesting that the clade had a wider, Neopangean palaeobiogeographic distribution by the mid-late Early Cretaceous. Such a wide distribution, even a cosmopolitan one, was further supported by the discovery of definitive carcharodontosaurids in the Lower Cretaceous of Europe (Ortega et al., 2010), and in the upper Lower to lower Upper Cretaceous of China (Brusatte et al., 2009, 2010b, 2012; Mo et al., 2014; Lü et al., 2016). Together, the available evidence pointed to an early, pre-mid Early Cretaceous origin

of the carcharodontosaurids, followed by their dispersal across Laurasia and western Gondwana beginning at least by the Aptian (Fig. 5B), a scenario that is concordant with the tentatively suggested presence of early carcharodontosaurids in the Upper Jurassic of Tanzania, which are based on fragmentary specimens (Rauhut, 2011; Carrano et al., 2012). It is also concordant with the widespread appearance of carcharodontosaurids in the fossil record starting with the Aptian, when they are reported in Africa (Eocarcharia; Sereno and Brusatte, 2008), South America (Vickers-Rich et al., 1999), North America (Acrocanthosaurus; Stovall and Langston, 1950; Harris, 1998; Currie and Carpenter, 2000 Eddy and Clarke, 2011), Europe (Canudo and Ruiz-Omeñaca, 2003; Pereda-Suberbiola et al., 2012), and eastern Asia (Kelmayisaurus; Brusatte et al., 2012; Mo et al., 2014; Lü et al., 2016).

During the Albian-Turonian, carcharodontosaurids became especially abundant and diverse in Africa (Carcharodontosaurus, Sauroniops; Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007; Le Loeuff et al., 2012; Cau et al., 2013; Richter et al., 2013) and South America (Tyrannotitan, Giganotosautus, Mapusaurus, alongside with indeterminate carcharodontosaurids; Coria and Salgado, 1995; Calvo and Coria, 1998; Novas et al., 2005; Coria and Currie, 2006; Casal et al., 2009; Candeiro et al., 2011; Canale et al., 2015; Fig. 5B). They were still present during this time interval in other continents, as well: in North America with Acrocanthosaurus until the Albian (D'Emic et al., 2012), in Europe until the Cenomanian (Vullo et al., 2007; Csiki-Sava et al., 2015), and in Eastern Asia with Shaochilong until the Turonian (Brusatte et al., 2009, 2010b; see also Chure et al., 1999). After dominating terrestrial ecosystems at least in Africa, South America and eastern Asia during the Albian–Turonian (Brusatte et al., 2009; Coria and Salgado, 2005; Novas et al., 2013), carcharodontosaurids were considered to disappear from the fossil record after the Turonian in both Asia (Brusatte et al., 2009) and South America (e.g., Coria and Salgado, 2005; Calvo et al., 2006; Novas et al., 2013), to be replaced by other groups of large theropods such as tyrannosaurids in parts of Laurasia and abelisaurids in parts of Gondwana. Canale et al. (2009) even cautioned against assigning isolated theropod teeth from post-Cenomanian deposits of South America to Carcharodontosaridae (e.g., Canudo et al., 2008; Casal et al., 2009; Salgado et al., 2009) due to their morphological similarity to those of the abelisaurid Skorpiovenator. Recently, however, more diagnostic cranial remains were reported to suggest the survival of carcharodontosaurids into the latest Cretaceous (Campanian–Maastrichtian) in Brazil (Azevedo et al., 2013). Contrasting with this rich and relatively continuous fossil record of Carcharodontosauridae starting with the Aptian, the first half of its evolutionary history is very poorly documented (Fig. 5B). Prior to the identification of UAIC (SCM1) 615, only two

occurrences of pre-Aptian Cretaceous carcharodontosaurids were reported, one from the Barremian of Spain (Ortega et al., 2010; Gasca et al., 2014) and the other from the Barremian of Thailand (Buffetaut and Suteethorn, 2012). The Early Cretaceous Kelmayisaurus from Xinjiang, western China, was recognized as a carcharodontosaurid of possibly ?Valanginian to Aptian in age by Brusatte et al. (2012), but the deposits yielding these remains (the Lianmugin, or Lianmuxin, Formation of the Tugulu Group) were dated as Aptian–Albian by Eberth et al. (2001; see also Tong et al., 2009). An important temporal gap – of about 20 to 28 millions of years, according to the dates in Gradstein et al. (2012) – thus stretched between the oldest, tentatively assigned carcharodontosaurids from the Oxfordian-Tithonian of Tanzania, including the formally erected *Veterupristisaurus* (Rauhut, 2011; see also Carrano et al., 2012), and those that started to appear in the fossil record in the Barremian and then spread widely during the Aptian. Referral of UAIC (SCM1) 615 to Carcharodontosauridae partially fills this frustrating gap, effectively halving this shadowy period in the evolutionary history of the group.

Furthermore, our analyses tentatively cluster the Dobrogean theropod with the derived members of the Carcharodontosaurinae to the exclusion of the more basal, but significantly younger non-carcharodontosaurine carcharodontosaurids *Eocarcharia* and *Acrocanthosaurus*.
If this placement is correct, then the Romanian tooth indicates that Carcharodontosaurinae diverged from other carcharodontosaurids considerably earlier than hitherto recognized.

The previously known fossil record of the clade suggested that Carcharodontosaurinae
originated sometime between the Aptian and Albian, as basal carcharodontosaurids
(*Acrocanthosaurus, Concavenator, Eocarcharia*) were moderately diverse in the Barremian–
Aptian, followed by the appearance of many fossils of carcharodontosaurines beginning in
the Albian (Fig. 5B). The proposed affinities of the oldest carcharodontosaurid material –
including isolated teeth referred to as '*Megalosaurus*' *ingens* – from the east African Upper

Jurassic, considered to be reminiscent of the Aptian-Albian Acrocanthosaurus (Rauhut, 2011), was also consistent with this evolutionary scenario. Now, our identification of UAIC (SCM1) 615 as a carcharodontosaurid dinosaur sharing important dental apomorphies with the derived Carcharodontosaurinae advocates the emergence of this clade (or at least the very large size and dental morphology characterizing it) well before the Albian, during or even before the Valanginian, and relegates taxa such as Eocarcharia, Acrocanthosaurus and *Concavenator* (the dentition of *Shaochilong* is unknown) as late-surviving members of the basal carcharodontosaurid radiation, with a relatively plesiomorphic dentition.

Besides shifting the emergence of the carcharodontosaurines earlier in time, identification of UAIC (SCM1) 615 as a carcharodontosaurid also has interesting palaeobiogeographic implications. As already noted, recent discoveries show that Carcharodontosauridae is not an endemic Gondwanan clade as was once proposed (e.g., Novas et al., 2005), with the identification of its widespread, Pangaean distribution during the late Early Cretaceous (Sereno et al., 1996; Harris, 1998; Chure et al., 1999; Sereno, 1999; Brusatte and Sereno, 2008; Ortega et al., 2010; Brusatte et al., 2009, 2012; Mo et al., 2014). However, within Carcharodontosauridae itself, some palaeogeographic patterns have been widely accepted. For example, it has been widely acknowledged that Carcharodontosaurinae is a endemic subclade of Gondwanan carcharodontosaurids (e.g., Sereno 1999; Holtz et al., 2004b; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Novas et al., 2013), as previously all its recognized members were restricted strictly to either Africa (Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007) or South America (Coria and Salgado, 1995; Novas et al., 2005; Coria and Currie, 2006). Moreover, intra-clade relationships of Carcharodontosaurinae were still adhering to patterns of continental fragmentation and vicariant evolution, with a basal split between the Albian-Cenomanian African *Carcharodontosaurus* and the Giganotosaurini, uniting the similarly Albian–Cenomanian

southern South American Giganotosaurus and Mapusaurus (together with Tyrannotitan, if this taxon is also recovered within Carcharodontosaurinae; e.g., Novas et al., 2005, 2013).

This scenario is now challenged by our finding that the Southern Dobrogean carcharodontosaurid UAIC (SCM1) 615 may nest inside Carcharodontosaurinae. If true, such an affinity would suggest that the origin of Carcharodontosaurinae was not a southern, vicariant by-product of the Gondwana-Laurasia separation, a major palaeogeographic event that is considered to have been well underway by the end of the Jurassic, and essentially completed by the mid-Early Cretaceous (see Weishampel et al., 2010). Indeed, during this time palaeogeographic connections and faunal interactions were virtually non-existent between the northern Tethyan (European) and southern Tethyan (western Gondwanan, but essentially African) areas of the Mediterranean (e.g., Canudo et al., 2009), which makes a vicariant hypothesis intuitive. However, if the Romanian tooth represents a carcharodontosaurine, then it implies a much more complicated palaeogeographic history of the clade, which is not so clearly linked to continental breakup.

The palaeogeographic position of the Southern Dobrogean carcharodontosaurine in cratonic Europe, north of the Neo-Tethys, together with its significantly older age compared to other carcharodontosaurines, could indicate that separation of the carcharodontosaurine lineage took part in Europe and not in western Gondwana as previously assumed. This would also mean that representatives of this lineage were subsequently – after the Barremian – introduced to Africa and South America via trans-Tethyan dispersal, most probably at a time when faunal interactions between the southern and northern margins of the Mediterranean Tethys were resumed, after the early Barremian (Canudo et al., 2009).

Alternatively, it can be hypothesized that appearance of carcharodontosaurines in Southern Dobrogea is a consequence of southern immigration originating in western Gondwana, often considered the place of origin for this clade. However, this scenario has

several potential caveats. Although Europe has been considered as forming part of a larger Eurogondwanan palaeobioprovince during the early Early Cretaceous (Ezcurra and Agnolín, 2012), and occasional trans-Tethyan faunal connections have been recognized between Africa and Europe during Late Jurassic to Early Cretaceous times (e.g., Gheerbrant and Rage, 2006), these interchanges either pre-dated the Berriasian (e.g., Gardner et al., 2003; Knoll and Ruiz-Omeñaca, 2009), or post-dated the Barremian (Canudo et al., 2009; Torcida Fernández-Baldor et al., 2011), with no positive evidence for actual faunal exchanges taking place during the 'Neocomian' (Berriasian-Hauterivian) time interval.

More recently, some potential evidence has emerged for Gondwana-to-Europe interchange during the 'Neocomian'. The presence of the basal rebbachisaurid Histriasaurus (Dalla Vecchia, 1998) in the upper Hauterivian-lower Barremian of Croatia has been cited as indicative of very early and very rapid northward dispersal of this clade from western Gondwana (southern South America; Carballido et al., 2012; Fanti et al., 2015). Timing of this particular dispersal event was even constrained to the Berriasian–Valanginian time interval (Fanti et al., 2015), which makes it roughly contemporaneous with the record of the Southern Dobrogean carcharodontosaurine. It was also suggested, however, that dispersal of the line leading to Histriasaurus was mediated by the northward drift of the Apulian Microplate (= Adria; see Bosselini, 2002), a continental sliver acting as a passive transportation mechanism ('Noah's Ark'; McKenna, 1973) for basal rebbachisaurids after its separation from mainland Africa (e.g., Torcida Fernández-Baldor et al., 2011). Furthermore, the palaeogeographical separation between Africa and Adria (and thus the effective movement of the presumed ark) is considered to be at most an incipient one during the Early Cretaceous by Bossellini (2002) and Zarcone et al. (2010), with spatial continuity still present between the two landmasses, while deep-water basins continued to separate Adria from the European Craton. Accordingly, although the presence of *Histriasaurus* can represent a case
of northward range extension of rebbachisaurids during the Berriasian-Valanginian, it took place not strictly speaking into Europe, but only reached the northernmost extremity of Adria, a northerly peninsular extension of the African mainland. It was only starting with the Barremian that rebbachisaurids dispersed as far north as the European cratonic areas, including Iberia and the British Isles (Mannion, 2009; Mannion et al., 2011; Torcida Fernández-Baldor et al., 2011), a time when faunal interchanges between Europe and Africa are considered to have been well underway (e.g., Gheerbrant and Rage, 2006; Canudo et al., 2009).

Unlike Histriasaurus, the taxon represented by UAIC (SCM1) 615 was an inhabitant of the European mainland. It is thus unclear to what extent the example of rebbachisaurid range extension into (present-day) Europe during the early Early Cretaceous, as potentially testified by the discovery of the Croatian taxon, would also be applicable for the Southern Dobrogean carcharodontosaurine. The available evidence suggests that these two cases are very different, and that faunal connections during this time interval are not documented between the African and European cratons as already pointed out by Gheerbrant and Rage (2006).

Absence of documented faunal interactions weakens support for a scenario of south-to-north immigration of derived carcharodontosaurines in Europe at the very beginning of the Cretaceous, and would argue instead for a local, European development to explain the presence of a Valanginian carcharodontosaurine in Southern Dobrogea. The pre-Barremian presence of carcharodontosaurids in Europe is also consistent with their appearance in the Barremian-Aptian fossil record of Eastern Asia, with Europe acting as a stepping stone in the eastward dispersal of the clade. Similarly, the presence of Aptian carcharodontosaurids in North America likely requires the presence of pre-Aptian members of the clade in Europe, since faunal exchanges between these two landmasses are known to have been halted before

the Aptian (e.g., Kirkland et al., 1999). Interestingly, it appears that only basal
carcharodontosaurids were able to spread into the northern Laurasian landmasses, while the
derived carcharodontosaurines dispersed exclusively across the Neo-Tethys, into western
Gondwana. The causes of these distribution patterns remain as yet unknown, and further
support – in the form on new carcharodontosaurid discoveries from the early-middle part of
the Early Cretaceous – is required to better uphold such a scenario.

We finally reiterate that if the Romanian tooth does not belong to a carcharodontosaurine, but instead is artefactually grouping with them in the phylogenetic analysis because of the very incomplete nature of the material, then the traditional story of Carcharodontosaurinae as a product of vicariant evolution driven by the breakup of Pangea will remain strongly supported. However, even in such case UAIC (SCM1) 615 would still record the presence of early-occuring large carcharodontosaurid theropods with a very characteristic carcharodontosaurine-type dentition in the eastern part of the European craton, adding to known early Early Cretaceous theropod (and dinosaur) diversity, and potentially documenting dinosaur faunal provinciality in Europe and worldwide.

965 6. Conclusions

We re-describe and interpret the affinities of one of the most significant historical dinosaurian specimens of Romania, an isolated but well-preserved theropod tooth from Southern Dobrogea. Our extensive analyses suggest carcharodontosaurid relationships for this tooth, while the available evidence – including novel calcareous nannoplankton sampling – supports its Valanginian age. The Southern Dobrogean theropod tooth represents the oldest record of Carcharodontosauridae in the Cretaceous, and the second oldest globally, eclipsed only by a collection of isolated specimens from the Upper Jurassic of eastern Africa. As one of the only two known Valanginian dinosaurian occurrences from Central and Eastern Europe, this

974 record advances our understanding of European dinosaur distribution during the early Early
975 Cretaceous, and also fills an important palaeogeographic gap between Western European and
976 Eastern Asian dinosaurian assemblages of the Valanginian.

Based on dental apomorphies, our analyses further identify UAIC (SCM1) 615 as a possible member of Carcharodontosaurinae, a subclade of derived and gigantic carcharodontosaurids formerly known to be restricted to the Albian-Cenomanian of western Gondwana (Africa and South America). If this finding is correct, the Southern Dobrogean specimen documents the emergence of Carcharodontosaurinae earlier than previously recognized, thus also indicating an earlier acquisition of their characteristically large size. Based on currently known palaeogeographic and chronostratigraphic constraints on the evolution of Carcharodontosauridae, it appears that not only did this clade have a wide distribution, but that crucial events of its evolutionary history such as the emergence of the derived carcharodontosaurines took place north of the Tethys, in cratonic Europe, instead of western Gondwana and as the result of vicariant evolution driven by the Gondwana-Laurasia split, as was formerly suggested. In such a case, instead of endemic evolution the emergence of the western Gondwanan mid-Cretaceous carcharodontosaurines was the result of a northto-south trans-Tethyan dispersal that took place somewhere between the Valanginian and the Aptian. Recognizing a potential carcharodontosaurine dispersal event from Europe into western Gondwana adds further support for the presence of important palaeogeographic ties between the two realms during the second half of the Early Cretaceous.

5 Acknowledgements

This research was supported by the National Research Council of Romania (CNCS) grant PN-IIID-PCE-2011-3-0381 and a Sepkoski grant of the Paleontological Society for Z.Cs.-S.

3

998 S.L.B. is supported by a Marie Curie Career Integration Grant EC630652, the Division of Paleontology of the American Museum of Natural History, and the School of GeoSciences of 999 the University of Edinburgh. He thanks Mátyás Vremir, Radu Totoianu, and Mark Norell for many hours of fun discussion on Romanian fossils, and for supporting his work and travel in Romania. We thank Mihai Brânzilă and Paul Țibuleac (UAIC) for access to the specimen, for allowing us to collect samples for the nannoplankton analyses, and for their help and collegiality during our visit to Iași, as well as Ilie Turculeț for sharing information about the history of the specimen. Mihaela C. Melinte-Dobrinescu has gracefully analyzed the nannoplankton samples derived from UAIC (SCM1) 615; her contribution was essential in assessing the age of the specimen. Finally, we thank the reviewers Eric W.A. Mulder (Denekamp, the Netherlands) and Xabier Pereda-Suberbiola (Bilbao, Spain), as well as Associated Editor Elena Jagt-Yazykova, for their useful comments and suggestions that helped improve previous versions of the manuscript.

References

Accarie, H., Beaudoin, B., Dejax, J., Friès, G., Michard, J.G., Taquet, P., 1995. Découverte d'un dinosaure théropode nouveau (Genusaurus sisteronis n. g., n. sp.) dans l'Albien marin de Sisteron (Alpes-de-Haute-Provence, France) et extension au Crétacé inférieur de la lignée cératosaurienne. Comptes Rendus de l'Académie des Sciences Paris, IIa 320, 327-334. Allain, R., 2002. Discovery of a megalosaur (Dinosauria, Theropoda) in the Middle Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae. Journal of Vertebrate Paleontology 22, 548–563. Allain, R., 2005. The enigmatic theropod dinosaur Erectopus superbus (Sauvage, 1882) from the Lower Albian of Louppy-le-Chateau (Meuse, France). In: Carpenter, K. (Ed.), The Carnivorous Dinosaurs. Indiana University Press, Bloomington, pp. 72–86.

1023	Avram, E., Szasz, L., Antonescu, E., Baltreş, A., Iva, M., Melinte, M., Neagu, T., Rădan, S.,
¹ 2 3 1024	Tomescu, C., 1993. Cretaceous terrestrial and shallow marine deposits in northern South
4 5 1025	Dobrogea (SE Romania). Cretaceous Research 14, 265–305.
⁷ 1026 8	Avram, E., Costea, I., Dragastan, O., Muțiu, R., Neagu, T., Șindilar, V., Vinogradov, C.,
9 10 1027	1996. Distribution of the Middle-Upper Jurassic and Cretaceous facies in the Romanian
12 1028 13	eastern part of the Moesian Platform. Revue Roumaine de Géologie 39-40, 3-33.
¹⁴ 15 1029	Azevedo, R.P.F. de, Simbras, F.M., Furtado, M.R., Candeiro, C.R.A., Bergqvist, L.P., 2013.
16 17 1030 18	First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the
$\frac{19}{20}$ 1031	Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern
21 22 1032 23	Brazil. Cretaceous Research 40, 131–142.
²⁴ 25 1033	Benson, R.B.J., Barrett, P.M., Powell, H.P., Norman, D.B., 2008. The taxonomic status of
26 27 1034	Megalosaurus bucklandii (Dinosauria, Theropoda) from the Middle Jurassic of Oxfordshire,
29 29 30	UK. Palaeontology 51, 419–424.
³¹ 32 1036	Benson, R.B.J., Carrano, M.T., Brusatte, S.L., 2010. A new clade of archaic large-bodied
33 34 1037 35	predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.
³⁶ 37 1038	Naturwissenschaften 97, 71–78.
38 39 1039 40	Benton, M.J., Cook, E., Grigorescu, D., Popa, E., Tallódi, E., 1997. Dinosaurs and other
$\frac{41}{42}$ 1040	tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania.
43 44 1041 45	Palaeogeography, Palaeoclimatology, Palaeoecology 130, 275–292.
46 47 47	Benton, M.J., Minter, N.J., Posmoșanu, E., 2006. Dwarfing in ornithopod dinosaurs from the
48 49 1043	Early Cretaceous of Romania. In: Csiki, Z. (Ed.), Mesozoic and Cenozoic Vertebrates and
50 51 1044 52	Paleoenvironments; Tributes to the Career of Prof. Dan Grigorescu. Ars Docendi, Bucharest,
⁵³ 54 1045	рр. 79–87.
55 56 57	
57 58 59	
60 61	42
62 63	
64 65	

1046	Benton, M.J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, M., Stein, K., Weishampel,
$\frac{1}{3}$ 1047	D.B., 2010. Dinosaurs and the island rule: the dwarfed dinosaurs from Hateg Island.
4 5 1048	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 438–454.
6 ⁷ 1049 8	Blows, W.T., Honeysett, K., 2014. First Valanginian Polacanthus foxii (Dinosauria,
9 10 1050	Ankylosauria) from England, from the Lower Cretaceous of Bexhill, Sussex. Proceedings of
12 12 13	the Geologists' Association 125, 233–251.
$^{14}_{15}$ 1052	Bosselini, A., 2002. Dinosaurs "re-write" the geodynamics of the eastern Mediterranean and
16 17 1053 1 9	the paleogeography of the Apulia Platform. Earth-Science Reviews 59, 211–234.
¹⁹ 20 1054	Brânzilă, M. (ed.), 2010. Academicianul Ion Simionescu - savant și dascăl al neamului. Ed.
21 22 1055	Universității "Alexandru Ioan Cuza", Iași, 182 pp.
²⁴ 25 1056	Brusatte, S.L., Sereno, P.C., 2007. A new species of Carcharodontosaurus (Dinosauria:
26 27 1057	Theropoda) from the Cenomanian of Niger and a revision of the genus. Journal of Vertebrate
29 29 30	Paleontology 27, 902–916.
³¹ 32 1059	Brusatte, S.L., Sereno, P.C., 2008. Phylogeny of Allosauroidea (Dinosauria: Theropoda):
34 1060 35	comparative analysis and resolution. Journal of Systematic Palaeontology 6, 155–182.
³⁶ 37 1061	Brusatte, S. L., Clark, N.D.L., 2015. Theropod dinosaurs from the Middle Jurassic (Bajocian-
38 39 1062 40	Bathonian) of Skye, Scotland. Scottish Journal of Geology 51, 157-164. doi:
⁴¹ 42 1063	10.1144/sjg2014-022
43 44 1064	Brusatte, S., Benson, R.B.J., Carr, T.D., Williamson, T.E., Sereno, P.C., 2007. The
45 46 47 47	systematic utility of theropod enamel wrinkles. Journal of Vertebrate Paleontology 27, 1052-
48 49 1066	1056.
50 51 1067 52	Brusatte, S.L., Benson, R.B.J., Chure, D.J., Xu, X., Sullivan, C., Hone, D.W.E., 2009. The
⁵³ 541068	first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed
55 56 1069 57	ascent of tyrannosaurids. Naturwissenschaften 96, 1051–1058.Brusatte, S.L., Norell, M.A.,
⁵⁸ 59 1070	Carr, T.D., Erickson, G.M., Hutchinson, J.R., Balanoff, A.M., Bever, G.S., Choiniere, J.N.,
60 61	43
62 63	
64 65	
CO	

Makovicky, P.J., Xu, X., 2010a. Tyrannosaur paleobiology: new research on ancient
exemplar organisms. Science 329, 1481–1485.

Brusatte, S., Chure, D.J., Benson, R.B.J., Xu, X., 2010b. The osteology of *Shaochilong maortuensis*, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of
Asia. Zootaxa 2334, 1–46.

Brusatte, S.L., Benson, R.B.J., Xu, X., 2012. A reassessment of *Kelmayisaurus petrolicus*, a
large theropod dinosaur from the Early Cretaceous of China. Acta Palaeontologica Polonica
57, 65–72.

Brusatte, S.L., Vremir, M., Csiki-Sava, Z., Turner, A.H., Watanabe, A., Erickson, G.M.,

Norell, M.A., 2013. The osteology of *Balaur bondoc*, an island-dwelling dromaeosaurid

1081 (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bulletin of the American
1082 Museum of Natural History 374, 3–100. doi: 10.1206/798.1

²⁹ 1083 Brusatte, S.L., Lloyd, G.T., Wang, S.C., Norell, M.A., 2014. Gradual assembly of avian body
 ³¹ 1084 plan culminated in rapid rates of evolution across the dinosaur-bird transition. Current
 ³³ Biology 24, 2386–2392.

Buckland, W., 1824. Notice on the *Megalosaurus* or great fossil lizard of Stonesfield.
 Transactions of the Geological Society 21, 390–397.

⁴¹ 1088 Buffetaut, E., Suteethorn, V., 1998. Early Cretaceous dinosaurs from Thailand and their
⁴³
⁴⁴ 1089 bearing on the early evolution and biogeographical history of some groups of Cretaceous
⁴⁵
⁴⁶ 1090 dinosaurs. In: Lucas, S.G., Kirkland, J.I., Estep, J.W. (Eds.), Lower and Middle Cretaceous
⁴⁸
⁴⁹ 1091 Terrestrial Ecosystems, New Mexico Museum of Natural History and Science Bulletin 14,
⁵⁰
⁵¹ 1092 pp. 205–210.

Buffetaut, E., Suteethorn, V., 2007. A sinraptorid theropod (Dinosauria: Saurischia) from the
Phu Kradung Formation of northeastern Thailand. Bulletin de la Société Géologique de
France 178, 497–502.

1096	Buffetaut, E., Suteethorn, V., 2012. A carcharodontid theropod (Dinosauria, Saurischia) from
² 3 1097	the Sao Khua Formation (Early Cretaceous, Barremian) of Thailand. In: Royo-Torres, R.,
4 5 1098	Gascó, F., Alcalá, L. (Eds.), 10th Annual Meeting of the European Association of Vertebrate
7 8 8	Palaeontologists. ¡Fundamental! 20, Teruel, pp. 27–30.
9 10 1100	Calvo, J.O., Coria, A., 1998. New specimen of Giganotosaurus carolinii (Coria & Salgado,
12 1101 13	1995), supports it as the largest theropod ever found. Gaia 15, 117–122.
¹⁴ 15 16	Calvo, J.O., Gandossi, P., Porfiri, J.D., 2006. Dinosaur faunal replacement during
17 1103 18	Cenomanian times in Patagonia, Argentina. In: Evans, S.E., Barrett, P.M. (Eds.), 9th
¹⁹ ₂₀ 1104	Mesozoic Terrestrial Ecosystems and Biota. Manchester, UK, pp. 17–20.
21 22 1105 23	Canale, J.I., Scanferla, C.A., Agnolin, F.L., Novas, F.E., 2009. New carnivorous dinosaur
²⁴ 25 1106	from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods.
26 27 1107 28	Naturwissenschaften 96, 409–414.
²⁹ 1108 30	Canale, J.I., Novas, F.E., Pol, D., 2015. Osteology and phylogenetic relationships of
³¹ 32 1109	Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda:
34 1110 35	Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Historical
³⁶ 37 1111	Biology 27, 1–32. doi: 10.1080/08912963.2013.861830.
38 39 1112 40	Candeiro, C.R.A., Fanti, F., Therrien, F., Lamanna, M.C., 2011. Continental fossil vertebrates
⁴¹ ₄₂ 1113	from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their
43 44 1114 45	relationship with contemporaneous faunas from North Africa. Journal of African Earth
46 47 47	Sciences 60, 79–92.
48 49 1116	Canudo, J.I., Ruiz-Omeñaca, J.I., 2003. Los restos directos de dinosaurios teropódos
51 1117 52	(excluyendo Aves) en España. Ciencias de la Tierra 26, 347–373.
53 54 1118	Canudo, J.I., Filippi, L.S., Salgado, L., Garrido, A.C., Cerda, I.A., Garcia, R., Otero, A.,
55 56 1119 57	2008. Theropod teeth associated with a sauropod carcass in the Upper Cretaceous (Plottier
⁵⁸ 1120	Formation) of Rincón de los Sauces. In: Colectivo Arqueológico y Paleontológico de Salas de
60 61 62	45
63	
64	
65	

1121	los Infantes (Ed.), Actas de las IV Jornadas Internacionales sobre Paleontología de
² ₃ 1122	Dinosaurios y su Entorno, Salas de los Infantes, Burgos, pp. 321-330.
4 5 1123	Canudo, J.I. Barco, J.L., Pereda Suberbiola, X., Ruiz-Omeñaca, J.I., Salgado, L., Torcida
$ $	Fernández-Baldor, F., Gasulla, J.M., 2009. What Iberian dinosaurs reveal about the bridge
9 10 1125	said to exist between Gondwana and Laurasia in the Early Cretaceous. Bulletin de la Société
12 1126 13	Géologique de France, 180, 5–11.
¹⁴ ₁₅ 1127	Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I., Garrido, A., 2012. A new basal
16 17 1128 18	rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin;
¹⁹ ₂₀ 1129	evolution and biogeography of the group. Historical Biology 24, 631-654.
21 22 1130 23	Carrano, M.T., Sampson, S.D., 2008. The phylogeny of Ceratosauria (Dinosauria:
$24 \\ 25 \\ 1131$	Theropoda). Journal of Systematic Palaeontology 6, 183–236.
26 27 1132	Carrano, M.T., Benson, R.B.J., Sampson, S.D., 2012. The phylogeny of Tetanurae
28 29 1133 30	(Dinosauria: Theropoda). Journal of Systematic Palaeontology 10, 211–300.Carvalho, I.S.,
$\frac{31}{32}$ 1134	Campos, A.C.A., Nobre, P.H., 2005. Baurusuchus salgadoensis, a new Crocodylomorpha
33 34 1135 35	from the Bauru Basin (Cretaceous), Brazil. Gondwana Research 8, 11–30.
³⁶ 371136	Casal, G., Candeiro, C.R.A., Martinez, R., Ivany, E., Ibiricu, L., 2009. Dientes de Theropoda
38 39 1137 40	(Dinosauria: Saurischia) de la Formación Bajo Barreal, Cretácico Superior, Provincia del
$\frac{41}{42}$ 1138	Chubut, Argentina. Géobios 42, 553–560.
43 44 1139	Cau, A., Dalla Vecchia, F.M., Fabbri, M., 2013. A thick-skulled theropod (Dinosauria,
45 46 1140 47	Saurischia) from the Upper Cretaceous of Morocco with implications for carcharodontosaurid
48 49 1141	cranial evolution. Cretaceous Research 40, 251–260.
50 51 1142 52	Choiniere, J.N., Forster, C.A., De Klerk, W.J., 2012. New information on Nqwebasaurus
⁵³ 54 1143	thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood Formation in South
55 56 1144 57	Africa. Journal of African Earth Sciences 71–72, 1–17.
57 58 59	
60 61	46
62	
63	
04 65	

1145 1	Chure, D.J., Manabe, M., Tanimoto, M., Tomida, Y., 1999. An unusual theropod tooth from
2 3 1146	the Mifune Group (Late Cenomanian to Early Turonian), Kumamoto, Japan. In: Tomida, Y.,
4 5 1147	Rich, T.H., Vickers-Rich, P. (Eds.), Proceedings of the Second Gondwanan Dinosaur
° 7 1148 8	Symposium. National Science Museum Monographs 15, Tokyo, pp. 291–296.
9 10 1149	Cifelli, R.L., Davis, B.M., Sames, B., 2014. Earliest Cretaceous mammals from the western
12 1150 13	United States. Acta Palaeontologica Polonica 59, 31–52. doi:10.4202/app.2012.0089.
¹⁴ 15 1151	Cobos, A., Royo-Torres, R., Luque, L., Alcalá, L., Mampel, L., 2010. An Iberian stegosaurs
16 17 1152 18	paradise: The Villar del Arzobispo Formation (Tithonian-Berriasian) in Teruel (Spain).
¹⁹ ₂₀ 1153	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 223–236.
21 22 1154 23	Cobos, A., Lockley, M.G., Gascó, F., Royo–Torres, R., Alcalá, L., 2014. Megatheropods as
²⁴ 25 25	apex predators in the typically Jurassic ecosystems of the Villar del Arzobispo Formation
26 27 1156	(Iberian Range, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 399, 31-41. doi:
29 1157 30	10.1016/j.palaeo.2014.02.008.
³¹ 32 1158	Codrea, V., Vremir, M., Jipa, C., Godefroit, P., Csiki, Z., Smith, T., Fărcaș, C., 2010. More
34 1159 35	than just Nopcsa's Transylvanian dinosaurs: A look outside the Hateg Basin.
³⁶ 37 1160	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 391–405. doi:
39 1161 40	10.1016/j.palaeo.2009.10.027.
⁴¹ 42 1162	Codrea, V., Godefroit, P., Smith, T., 2012. First discovery of Maastrichtian (latest
43 44 1163 45	Cretaceous) terrestrial vertebrates in Rusca Montană Basin (Romania). In: Godefroit, P. (Ed.)
⁴⁶ 1164 47	Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Indiana University Press,
48 49 1165 50	Bloomington, pp. 570–581.
51 1166 52	Colbert, E.H., 1946. Sebecus, representative of a peculiar suborder of fossil Crocodilia from
⁵³ 54 55	Patagonia. Bulletin of the American Museum of Natural History 87(4), 217–270.
56 1168 57	Coria, R.A, Salgado, L., 1995. A new giant carnivorous dinosaur from the Cretaceous of
⁵⁸ 1169	Patagonia. Nature 377, 224–226.
61 62	47
63	

1170 1	Coria, R.A., Salgado, L., 2005. Mid-Cretaceous turnover of saurischian dinosaur
$\frac{2}{3}$ 1171	communities: evidence from the Neuquén Basin. In: Veiga, G.D., Spalletti, L.A., Howell,
4 5 1172	J.A., Schwartz, E. (Eds.), The Neuquén Basin, Argentina: a case study in sequence
6 7 1173 8	stratigraphy and basin dynamics. Geological Society, London, Special Publications 252, pp.
9 10 1174	317–327.
11 12 1175 13	Coria, R.A., Currie, P.J., 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the
$^{14}_{15}$ 1176	Upper Cretaceous of Argentina. Geodiversitas 28, 71–118.
16 17 1177	Covacef, Z., 1995. Pionieri ai culturii românești în Dobrogea; Ioan Cotovu și Vasile Cotovu.
10 19 1178	Analele Dobrogei I(1), 127–134.
21 22 1179	Császár, G., Kollányi, K., Lantos, M., Lelkes, G. and Tardiné Filácz, E., 2000. A
²³ ²⁴ 25	Hidasivölgyi Márga Formáció kora és képződési környezete. Földtani Közlöny 130(4), 695–
26 27 1181	723.
28 29 1182 30	Csiki, Z., Grigorescu, D., 1998. Small theropods of the Late Cretaceous of the Hateg Basin
³¹ 321183	(Western Romania) - an unexpected diversity at the top of the food chain. Oryctos 1, 87–104.
33 34 1184 35	Csiki, Z., Vremir, M., Brusatte, S.L., Norell, M.A., 2010. An aberrant island-dwelling
$\frac{36}{37}$ 1185	theropod dinosaur from the Late Cretaceous of Romania. Proceedings of the National
38 39 1186	Academy of Sciences 107, 15357–15361.
$40 \\ 41 \\ 42$ 1187	Csiki-Sava, Z., Codrea, V., Vasile, Ş., 2013. Early Cretaceous dinosaur remains from
$\substack{43\\44}1188$	Dobrogea (southeastern Romania). In: Picot, L. (Ed.), Abstracts, 11th Annual Meeting of the
45 46 1189 47	European Association of Vertebrate Palaeontologists, Villers-sur-Mer, France, pp. 28.
$48 \\ 49 1190$	Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., Brusatte, S.L., 2015. Island life
50 51 1191 52	in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-
⁵³ 541192	living vertebrates on the Late Cretaceous European archipelago. Zookeys 469, 1–161. doi:
55 56 1193 57	10.3897/zookeys.469.8439.
57	
59 60	
61	48
62 62	
03 64	

1194	Csontos, L., Vörös, A., 2004. Mesozoic plate tectonic reconstruction of the Carpathian
1 2 3 1195	region. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 1–56. doi:
4 5 1196 6	10.1016/j.palaeo.2004.02.033.
⁷ 1197 8	Currie, P.J., Carpenter, K., 2000. A new specimen of Acrocanthosaurus atokensis
9 10 11 11	(Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous,
12 1199 13	Aptian) of Oklahoma, USA. Geodiversitas 22, 207–246.
$^{14}_{15}$ 1200	Currie, P.J., Rigby, J.K., Sloan, R.E., 1990. Theropod teeth from the Judith River Formation
16 17 1201 18	of southern Alberta, Canada. In: Carpenter, K., Currie, P.J. (Eds,), Dinosaur Systematics:
¹⁹ 1202	Approaches and Perspectives. Cambridge University Press, Cambridge, Boston, pp. 107–125.
21 22 1203 23	Dalla Vecchia, F.M., 1998. Remains of Sauropoda (Reptilia, Saurischia) in the Lower
²⁴ 25 25	Cretaceous (Upper Hauterivian/Lower Barremian) limestones of SW Istria (Croatia).
26 27 1205	Geologia Croatica 5, 105–134.
20 29 1206 30	Dames, W., 1884. Megalosaurus dunkeri. Sitzungberichte Gesellschaft Naturforschender
³¹ 32 1207	Freunde zu Berlin 1884, 186–188.
33 34 1208 35	De Klerk, W.J., Forster, C.A., Sampson, S.D., Chinsamy, A., Ross, C.F., 2000. A new
³⁶ 37 1209	coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate
38 39 1210 40	Paleontology 20, 324–332.
$\frac{41}{42}$ 1211	D'Emic, M.D., Melstrom, K.M., Eddy, D.R., 2012. Paleobiology and geographic range of the
43 44 1212 45	large-bodied Cretaceous theropod dinosaur Acrocanthosaurus atokensis. Palaeogeography,
46 47 47	Palaeoclimatology, Palaeoecology 333–334, 13–23.
48 49 1214	Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M., Cadet, J.P.,
50 51 1215 52	Crasquin, S., Săndulescu, M., Eds. (2000) Atlas Peri-Tethys Palaeogeographical Maps.
⁵³ 1216	CCGM/CGMW, Paris, 269 pp.
55 56 1217 57	Dinu, C., Grădinaru, E., Stoica, M., Diaconescu, V., 2007. Dobrogea 2007 Field Trip
⁵⁸ 59 1218	Preparation and Assistance. University of Bucharest, 123 pp.
60 61	49
62 63	
64 65	

Dragastan, O., Neagu, T., Bărbulescu, A., Pană, I., 1998. Jurasicul şi Cretacicul din Dobrogea
Centrală şi de Sud. Bucharest, 249 pp.

Dragastan, O.N., Antoniade, C., Stoica, M., 2014. Biostratigraphy and zonation of the Lower
 Cretaceous succession from Cernavodă-lock section, South Dobrogea, eastern part of the
 Moesian Platform (Romania). Carpathian Journal of Earth and Environmental Sciences 9(1),
 231–260.

Dyke, G.J., Benton, M.J., Posmoşanu, E., Naish, D., 2011. Early Cretaceous (Berriasian)
 birds and pterosaurs from the Cornet bauxite mine, Romania. Palaeontology 54, 79–95.

1227 Eberth, D.A., Brinkman, D.B., Chen, P.-J., Yuan, F.-T., Wu, X.-C., Li, G., Cheng, X.-S.,

221228 2001. Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil preservation in

1229 Jurassic–Cretaceous strata of the Juggar Basin, Xinjiang Autonomous Region, People's

1230 Republic of China. Canadian Journal of Earth Sciences 38, 1627–1644.

Eddy, D.R., Clarke, J.A., 2011. New information on the cranial anatomy of

1232 Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea

³⁴1233 (Dinosauria: Theropoda). PLoS ONE 6(3), e17932. doi:10.1371/journal.pone.0017932.

Evans, S.E., Matsumoto, R., 2015. An assemblage of lizards from the Early Cretaceous of Japan. Palaeontologia Electronica 18.2.36A, 1–36.

1236 Ezcurra, M.D., Agnolín, F.L., 2012. A new global palaeobiogeographical model for the Late

Mesozoic and Early Tertiary. Systematic Biology 61, 553–566. doi:10.1093/sysbio/syr115.

Fanti, F., Cau, A., Cantelli, L., Hassine, M., Auditore, M., 2015. New information on

1239 *Tataouinea hannibalis* from the Early Cretaceous of Tunisia and implications for the tempo

and mode of rebbachisaurid sauropod evolution. PLoS ONE 10(4), e0123475.

doi:10.1371/journal.pone.0123475.

Galton, P.M., 2009. Notes on Neocomian (Lower Cretaceous) ornithopod dinosaurs from England - Hypsilophodon, Valdosaurus, "Camptosaurus", "Iguanodon" - and referred specimens from Romania and elsewhere. Revue de Paléobiologie 28, 211-273.

Gardner, J.D., Evans, S.E., Sigogneau-Russell, D., 2003. New albanerpetontid amphibians

from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta Palaeontologica Polonica 48, 301–319.

Gasca, J.M., Canudo, J.I., Moreno-Azanza, M., 2014. A large-bodied theropod (Tetanurae:

Carcharodontosauria) from the Mirambel Formation (Barremian) of Spain. Neues Jahrbuch

für Geologie und Paläontologie Abhandlungen 273, 13-23. doi: 10.1127/0077-

7749/2014/0413.

Gheerbrant, E., Rage, J.-C., 2006. Paleobiogeography of Africa: How distinct from

Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology 241, 224–246. doi:10.1016/j.palaeo.2006.03.016.

Gishlick, A.D., Gauthier, J.A., 2007. On the manual morphology of Compsognathus longipes and its bearing on the diagnosis of Compsognathidae. Zoological Journal of the Linnean Society 149, 569-581.

Goloboff, P. A., Farris, J. S., Nixon, K. C., 2008. TNT, a free program for phylogenetic

analysis. Cladistics 24, 774-786.

Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), 2012. The Geologic Time

Scale 2012. Elsevier, Amsterdam, 1144 pp.

Grigorescu, D., 1992. Nonmarine Cretaceous Formations of Romania. In: Matter, N.J., Chen,

P.-J. (Eds.), Aspects of Nonmarine Cretaceous Geology. China Ocean Press, Beijing, pp.

142–164.

Grigorescu, D., 2003. Dinosaurs of Romania. Comptes rendus Palevol 2, 97-101.

Singoreseu, D., 2010. The Europe Createrous future with emosures and manimus from the
Hațeg Basin — A historical overview. Palaeogeography, Palaeoclimatology, Palaeoecology
293, 271–282.
Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. Paleontological statistics software package
for education and data analysis. Palaeontologia Electronica 4, 1–9.
Harris, J.D., 1998. A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and
paleobiogeographic implications, based on a new specimen from Texas. New Mexico
Museum of Natural History and Science Bulletin 13, 1–75.
Hendrickx, C., Mateus, O., 2014. Abelisauridae (Dinosauria: Theropoda) from the Late
Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of
isolated theropod teeth. Zootaxa 3751(1), 1–74.
Hendrickx, C., Mateus, O., Araújo, R., 2015a. The dentition of megalosaurid theropods. Acta
Palaeontologica Polonica 60, 627-642. doi:10.4202/app.00056.2013.
Hendrickx, C., Mateus, O., Araújo, R., 2015b. A proposed terminology of theropod teeth
(Dinosauria, Saurischia). Journal of Vertebrate Paleontology 35(5), e982797. doi:
10.1080/02724634.2015.982797.
Holtz, T.R., Jr., Molnar, R.E., Currie, P.J., 2004a. Basal Tetanurae. In: Weishampel, D.B.,
Dodson, P., Osmólska, H. (Eds.), The Dinosauria. Second Edition. University of California
Press, Berkeley, Los Angeles, London, pp. 71–110.
Holtz, T.R., Chapman, R.E., Lamanna, M.C., 2004b. Mesozoic biogeography of Dinosauria.
In: Weishampel, D.B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. Second Edition.
University of California Press, Berkeley, Los Angeles, London, pp. 627-642.
Huene, F. von, 1923. Carnivorous Saurischia in Europe since the Triassic. Bulletin of the
Geological Society of America 34, 449–458.
Hippolyte, JC., 2002. Geodynamics of Dobrogea (Romania): new constraints on the
52

1291 evolution of the Tornquist–Teisseyre Line, the Black Sea and the Carpathians.

1292 Tectonophysics 357, 33–53.

I293 Ionesi, L., 1994. Geologia unităților de platformă și a orogenului Nord-Dobrogean. Ed.

1294 Tehnică, Bucharest, 280 pp.

Jerzykiewicz, T., Russell, D.A., 1991. Late Mesozoic stratigraphy and vertebrates of the GobiBasin. Cretaceous Research 12, 345–377.

Jurcsák, T., 1982. Occurences nouvelles des Sauriens mésozoïques de Roumanie. Vertebrata
Hungarica 21, 175–184.

Jurcsák, T., Popa, E., 1979. Dinozaurieni ornithopozi din bauxitele de la Cornet (Munții

1300 Pădurea Craiului). Nymphaea 7, 37–75.

1301 Jurcsák, T., Popa, E., 1983. La faune de dinosauriens du Bihor (Roumanie). In: Buffetaut,

E., Mazin, J.M., Salmon, E. (Eds.), Actes du Symposium Paléontologique Georges Cuvier.
Le Serpentaire, Montbéliard, pp. 325–335.

Kellner, A.W.A., Pinheiro, A.E.P., Campos, D.A., 2014. A new sebecid from the Paleogene

of Brazil and the crocodyliform radiation after the K–Pg boundary. PLoS ONE 9(1), e81386.

1306 doi:10.1371/journal.pone.0081386.

391307 Kirkland, J.I., Cifelli, R.L., Britt, B.B., Burge, D.L., DeCourten, F.L., Eaton, J.G., Parrish,

J.M., 1999. Distribution of vertebrate faunas in the Cedar Mountain Formation, east-central

1309 Utah. Utah Geological Survey Miscellaneous Publication 99-1, 201–217.

1310 Knoll, F., Ruiz-Omeñaca, J.I., 2009. Theropod teeth from the basalmost Cretaceous of

1311 Anoual (Morocco) and their palaeobiogeographical significance. Geological Magazine 146,

1312 602–616.

Kusuhashi, N., Matsumoto, A., Murakami, M., Tagami, T., Hirata, T., Iizuka, T., Handa, T.,
 Matsuoka, H., 2006. Zircon U–Pb ages from tuff beds of the upper Mesozoic Tetori Group in

the Shokawa district, Gifu Prefecture, central Japan. The Island Arc 15, 378–390.

1316	Lacasa Ruiz, A., 1989. Nuevo genero de ave fosil del yacimiento Neocomiense del Montsec
$\frac{1}{3}$ 1317	(Provincia de Lerida, España). Estudios geológicos 45(5-6), 417-425.
4 5 1318	Larson, D.W., Currie, P.J., 2013. Multivariate analyses of small theropod dinosaur teeth and
⁷ 1319 8	implications for paleoecological turnover through time. PLoS ONE 8(1), e54329.
9 10 1320	doi:10.1371/journal.pone.0054329.
12 1321 13	Le Loeuff, J., Buffetaut, E., 1995. The evolution of Late Cretaceous non-marine vertebrate
¹⁴ 15 16	faunas in Europe. In: Sun, AL., Wang, YQ. (Eds.), Sixth Symposium on Mesozoic
17 1323 18	Terrestrial Ecosystems and Biota, Short Papers. China Ocean Press, Beijing, pp. 181–184.
¹⁹ ₂₀ 1324	Le Loeuff, J., Lang, E., Cavin, L., Buffetaut, E., 2012. Between Tendaguru and Bahariya: on
21 22 1325 23	the age of the Early Cretaceous dinosaur sites from the Continental Intercalaire and other
²⁴ 25 1326	African formations. Journal of Stratigraphy 36, 486–502.
26 27 1327	Lucas, F.A., 1901. A new dinosaur, Stegosaurus marshi, from the Lower Cretaceous of South
²⁹ 1328 30	Dakota. Proceedings of the United States National Museum 23(1224), 591–592.
³¹ 32 1329	Lucas, S.G., 2006. The Psittacosaurus biochron, Early Cretaceous of Asia. Cretaceous
33 34 1330 35	Research 27, 189–198.
³⁶ 37 1331	Lucas, S.G., Estep, J.W., 1998. Vertebrate biostratigraphy and biochronology of the
38 39 1332 40	Cretaceous of China. In: Lucas, S.G., Kirkland, J.I., Estep, J.W. (Eds.), Lower and Middle
$\frac{41}{42}$ 1333	Cretaceous Terrestrial Ecosystems. New Mexico Museum of Natural History and Science
43 44 1334	Bulletin 14, pp. 1–20.
45 46 1335 47	Lü, JC., Xu, L., Pu, HY., Jia, SH., Azuma, Y., Chang, HL., Zhang, JM., 2016.
48 49 1336	Paleogeographical significance of carcharodontosaurid teeth from the late Early Cretaceous
50 51 1337 52	of Ruyang, Henan Province of central China. Historical Biology, 28, 8–13. doi:
⁵³ 54 1338	10.1080/08912963.2014.947287.
55 56 1339 57	Manabe, M., Hasegawa, Y., 1995. Diapsid fauna and its paleobiogeographical implication,
⁵⁸ 59 1340	the Neocomian section of the Tetori Group. In: Sun, A., Wang, Y. (Eds.), Sixth Symposium
60 61	54
0⊿ 63	
64	
65	

on Mesozoic Terrestrial Ecosystems and Biota, Short Papers. China Ocean Press, Beijing, pp.1342 179.

Mannion, P.D., 2009. A rebbachisaurid sauropod from the Lower Cretaceous of the Isle ofWight, England. Cretaceous Research 30, 521–526.

Mannion, P.D., Upchurch, P., Hutt, S., 2011. New rebbachisaurid (Dinosauria: Sauropoda) material from the Wessex Formation (Barremian, Early Cretaceous), Isle of Wight, United Kingdom. Cretaceous Research 32, 774–780.

Matsukawa, M., Ito, M., Nishida, N., Koarai, K., Lockley, M.G., Nichols, D.J., 2006. The
Cretaceous Tetori biota in Japan and its evolutionary significance for terrestrial ecosystems in
Asia. Cretaceous Research 27, 199–225.

McDonald, A.T., 2011. The taxonomy of species assigned to *Camptosaurus* (Dinosauria: Ornithopoda). Zootaxa 2783, 52–68.

McKenna, M.C., 1973. Sweepstakes, filters, corridors, Noah's Arks, and Beached Viking
Funeral Ships in palaeogeography. In: Tarling, D.H., Runcorn, S.K. (Eds.), Implications of
Continental Drift to the Earth Sciences. Academic Press, New York, pp. 295–308.

1356 Mo, J.-Y., Huang, C.-L., Xie, S.-W., Buffetaut, E., 2014. A megatheropod tooth from the

1357 Early Cretaceous of Fusui, Guangxi, Southern China. Acta Geologica Sinica (English

1358 Edition) 88, 6–12.

Molnar, R.E., 1990. Problematic Theropoda: "Carnosaurs". In: Weishampel, D.B., Dodson,

1360 P., Osmólska, H. (Eds.), The Dinosauria. University of California Press, Berkeley, Los

²1361 Angeles, Oxford, pp. 306–317.

- ⁵¹1362 Mutihac, V., Mutihac, G., 2010. The geology of Romania, within the Central East European
 ⁵²
 ⁵³1363 geostructural context. Ed. Didactică și Pedagogică, Bucharest, 690 pp.
- 561364 Neagu, T., Dragastan, O., Csiki, Z., 1997. Early Cretaceous shelf paleocommunities of
 - ⁸ 1365 Cernavodă (South Dobrogea, SE Romania). Acta Palaeontologica Romaniae 1, 28–36.

1366	Nopcsa, F., 1902. Notizen über cretacische Dinosaurier. Sitzungsberichte der Kaiserlichen
$\frac{1}{3}$ 1367	Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 111, 93–114.
4 5 1368	Nopcsa, F., 1923. On the geological importance of the primitive reptilian fauna of the
6 ⁷ 1369 8	uppermost Cretaceous of Hungary; with a description of a new tortoise (Kallokibotium).
9 10 1370	Quarterly Journal of the Geological Society of London 79, 100-116.
11 12 1371 13	Norman, D.B., 2010. A taxonomy of iguanodontians (Dinosauria: Ornithopoda) from the
$^{14}_{15}$ 1372	lower Wealden Group (Cretaceous: Valanginian) of southern England. Zootaxa 2489, 47-66.
16 17 1373 1 9	Norman, D.B., 2013. On the taxonomy and diversity of Wealden iguanodontian dinosaurs
¹⁹ 20 1374	(Ornithischia: Ornithopoda). Revue de Paléobiologie 32, 385-404.
21 22 1375	Novas, F.E., de Valais, S., Vickers-Rich, P.A., Rich, T.H., 2005. A large Cretaceous theropod
²³ ²⁴ 25	from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften
26 27 1377	92, 226–230.
28 29 1378 30	Novas, F.E., Agnolín, F.L., Ezcurra, M.D., Porfiri, J., Canale, J.I., 2013. Evolution of the
³¹ 32 1379	carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretaceous
33 34 1380 35	Research 45, 174–215.
³⁶ 371381	Ortega, F., Escaso, F., Sanz, J.L., 2010. A bizarre, humped Carcharodontosauria (Theropoda)
38 39 1382 40	from the Lower Cretaceous of Spain. Nature 467, 203–206.
$\frac{41}{42}$ 1383	Ősi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., Gulyás, P., 2012. The Late
43 44 1384	Cretaceous continental vertebrate fauna from Iharkút (western Hungary): a review. In:
⁴⁶ 1385 47	Godefroit, P. (Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems.
48 49 1386	Indiana University Press, Bloomington, pp. 533–569.
50 51 1387 52	Ősi, A., Codrea, V., Prondvai, E., Csiki-Sava, Z., 2014. New ankylosaurian material from the
⁵³ 54 1388	Upper Cretaceous of Transylvania. Annales de Paléontologie 100, 257–271. doi:
55 56 1389 57	10.1016/j.annpal.2014.02.001.
58 59	
60 61 62 63	56

1390	Ősi, A., Rabi, M., Makádi, L., 2015. An enigmatic crocodyliform tooth from the bauxites of
$\frac{1}{3}$ 1391	western Hungary suggests hidden mesoeucrocodylian diversity in the Early Cretaceous
4 5 1392	European archipelago. PeerJ 3, e1160. doi:10.7717/peerj.1160.
6 ⁷ 1393 8	Paolillo, A., Linares, O.J., 2007. Nuevos cocodrilos Sebecosuchia del Cenozoico
9 10 1394	Suramericano (Mesosuchia: Crocodylia). Paleobiologia Neotropical 3, 1–25.
11 12 1395 13	Pereda-Suberbiola, X., Ruiz-Omeñaca, J.I., Fernandez-Baldor, F.T., Maisch, M.W., Huerta,
$^{14}_{15}$ 1396	P., Contreras, R., Izquierdo, L.A., Huerta, D.M., Montero, V.U., Welle, J., 2011. A tall-
16 17 1397 18	spined ornithopod dinosaur from the Early Cretaceous of Salas de los Infantes (Burgos,
¹⁹ ₂₀ 1398	Spain). Comptes Rendus Palevol 10, 551–558.
21 22 1399	Pereda-Suberbiola, X., Ruiz-Omeñaca, J.I., Canudo, J.I., Torcida, F., Sanz, J.L., 2012.
²⁴ 25 25	Dinosaur faunas from the Early Cretaceous (Valanginian–Albian) of Spain. In: Godefroit, P.
26 27 1401	(Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Indiana University
28 29 1402 30	Press, Bloomington, pp. 378–407.
³¹ 32 1403	Pérez-Moreno, B.P., Sanz, J.L., Sudre, J., Sigé, B., 1993. A theropod dinosaur from the
33 34 1404 35	Lower Cretaceous of southern France. Revue de Paléobiologie Volume spéciale 7, 173–188.
³⁶ 371405	Pol, D., Powell, J.E., 2011. A new sebecid mesoeucrocodylian from the Rio Loro Formation
38 39 1406 40	(Palaeocene) of north-western Argentina. Zoological Journal of the Linnean Society 163, S7-
$\frac{41}{42}$ 1407	S36.
43 44 1408	Porfiri, J.D., Novas, F.E., Calvo, J.O., Agnolín, F.L., Ezcurra, M.D., Cerda, I.A., 2014.
⁴⁶ 1409 47	Juvenile specimen of Megaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid
⁴⁸ 49 1410	radiation. Cretaceous Research 51, 35-55. doi:10.1016/j.cretres.2014.04.007.
50 51 1411 52	Posmoșanu, E., 2003. Iguanodontian dinosaurs from the Lower Cretaceous bauxite site from
⁵³ 54 1412	Romania. Acta Palaeontologica Romaniae 4, 431–439.
55 56 1413 57	Rabi, M., Sebők, N., 2015. A revised Eurogondwana model: Late Cretaceous notosuchian
⁵⁸ 1414 59	crocodyliforms and other vertebrate taxa suggest the retention of episodic faunal links
60 61	57
62 63	
64	

3

6

between Europe and Gondwana during most of the Cretaceous. Gondwana Research 28, 1415 ² 1416 1197–1211. doi:10.1016/j.gr.2014.09.015.

4 5 **1417** Racey, A., 2009. Mesozoic red bed sequences from SE Asia and the significance of the $\frac{7}{8}$ 1418 Khorat Group of NE Thailand. In: Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V. (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia. Geological Society, London, Special Publications 315, pp. 41-67. doi: 10.1144/SP315.5.

Racey, A., Goodall, J.G.S., 2009. Palynology and stratigraphy of the Mesozoic Khorat Group 16 red bed sequences from Thailand. In: Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V. 17 **1422** 18 ¹⁹₂₀ **1423** (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia. Geological Society, London, 21 Special Publications 315, pp. 69–83. doi: 10.1144/SP315.6.

Rauhut, O.W.M., 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). 25 26 Special Papers in Palaeontology 86, 195–239.

Rauhut, O.W.M., Werner, C., 1995. First record of the family Dromaeosauridae (Dinosauria:

Theropoda) in the Cretaceous of Gondwana (Wadi Milk Formation, northern Sudan.

34 **1429** Paläontologische Zeitschrift 69, 475–489.

Richter, U., Mudroch, A., Buckley, L.G., 2013. Isolated theropod teeth from the Kem Kem

Beds (Early Cenomanian) near Taouz, Morocco. Paläontologische Zeitschrift 87, 291-309.

Royo-Torres, R., Cobos, A., Luque, L., Aberasturi, A., Espilez, E., Fierro, I., Gonzales, A.,

Mampel, L., Alcalá, L., 2009. High European sauropod dinosaur diversity during Jurassic-

Cretaceous transition in Riodeva (Teruel, Spain). Palaeontology 52, 1009–1027.

Sachs, S., Hornung, J.J., 2013. Ankylosaur remains from the Early Cretaceous (Valanginian)

51 **1436** of Northwestern Germany. PLoS ONE 8(4), e60571. doi:10.1371/journal.pone.0060571.

Salgado, L., Canudo, J.I., Garrido, A.C., Ruiz-Omeñaca, J.I., Garcia, R.A., de la Fuente,

M.S., Barco, J.L., Bollati, R., 2009. Upper Cretaceous vertebrates from El Anfiteatro area,

Río Negro, Patagonia, Argentina. Cretaceous Research 30, 767–784.

1440 1	Sames, B., Cifelli, R.L., Schudack, M.E., 2010. The nonmarine Lower Cretaceous of the
$\frac{1}{3}$ 1441	North American Western Interior foreland basin: New biostratigraphic results from ostracod
4 5 1442	correlations and early mammals, and their implications for paleontology and geology of the
6 ⁷ 1443 8	basin—An overview. Earth-Science Reviews 101, 207–224.
9 10 1444	Sauvage, H.E., 1876. Notes sur les reptiles fossiles. Bulletin de la Société Géologique de
12 1445 13	France 4, 435–442.
¹⁴ 15 1446	Sauvage, H.E., 1882. Recherches sur les reptiles trouves dans le Gault de l'est du bassin de
⊥6 17 1447 18	Paris. Mémoires de la Société Géologique de France 2, 1–42.
¹⁹ 20 1448	Săndulescu, M., 1984. Geotectonica României. Ed. Tehnică, Bucharest, 329 pp.
21 22 1449 23	Seghedi, A., 2001. The North Dobrogea orogenic belt (Romania): a review. In: Ziegler, P.A.,
²⁴ 1450 25	Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (Eds.), Peri-Tethys Memoir 6: Peri-
26 27 1451	Tethyan Rift/Wrench Basins and Passive Margins. Mémoires de la Musée National d'Histoire
²⁸ ²⁹ 1452 30	Naturelle, Paris, pp. 237–257.
$\frac{31}{32}$ 1453	Sereno, P.C., 1999. Dinosaurian biogeography: vicariance, dispersal and regional extinction.
33 34 1454 35	In: Tomida, Y., Rich, T.H., Vickers-Rich, P. (Eds.), Proceedings of the Second Gondwanan
$\frac{36}{37}$ 1455	Dinosaur Symposium. National Science Museum Monographs 15, Tokyo, pp. 249–257.
38 39 1456	Sereno, P.C., Brusatte, S.L., 2008. Basal abelisaurid and carcharodontosaurid theropods from
40 41 42 457	the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53, 15–46.
43 44 1458	Sereno, P.C., Dutheil, D.B., Iarochene, M., Larsson, H.C.E., Lyon, G.H., Magwene, P.M.,
45 46 1459 47	Sidor, C.A., Varricchio, D.J., Wilson, J.A., 1996. Predatory dinosaurs from the Sahara and
48 49 1460	Late Cretaceous faunal differentiation. Science 272, 986–991.
50 51 1461 52	Shen, Y.B., Mateer, N.J., 1992. An outline of the Cretaceous system in northern Xinjiang,
⁵³ 54 1462	western China. In: Mateer, N.J., Chen, P.J. (Eds.), Aspects of Nonmarine Cretaceous
55 56 1463 57	Geology. China Ocean Press, Beijing, pp. 49–77.
58 59 60 61 62 63 64	59

Simionescu, I., 1906. Note sur l'age des calcaires de Cernavoda (Dobrogea). Annales
Scientifiques de l'Université de Jassy 4(1), 1–3.

Simionescu, I., 1913. *Megalosaurus* aus der Unterkreide der Dobrogea. Centralblatt für
Mineralogie, Geologie und Paläontologie 1913(20), 686–687.

Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie enMijnbouw 56, 37–65.

Smith, J.B., Vann, D.R., Dodson, P., 2005. Dental morphology and variation in theropod
dinosaurs: implications for the taxonomic identification of isolated teeth. The Anatomical
Record A 285A, 699–736.

Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D.B., Redelstorff, R., Carballido, J.L.,
 Sander, P.M., 2010. Small body size and extreme cortical bone remodeling indicate phyletic
 dwarfism in *Magyarosaurus dacus* (Sauropoda: Titanosauria). Proceedings of the National
 Academy of Sciences 107, 9258–9263.

1477 Stoica, M., Csiki, Z., 2002. An earliest Cretaceous (Purbeckian) vertebrate fauna from

1478 Southern Dobrogea (southeastern Romania). In: Grigorescu, D., Csiki, Z. (Eds.), 7th European

Workshop on Vertebrate Palaeontology, Sibiu, Romania. Ars Docendi, Bucharest, pp. 34.

1480 Stovall, J.W., Langston, W., Jr., 1950. Acrocanthosaurus atokensis, a new genus and species

1481 of Lower Cretaceous Theropoda from Oklahoma. American Midland Naturalist 43, 686–728.

482 Stromer, E., 1931. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten

Agyptens. II. Wirbeltier-Reste der Baharijestufe (unterstes Cenoman). 10. Ein Skelett-Rest

484 von Carcharodontosaurus nov. gen. Abhandlungen der Bayerischen Akademie der

1485 Wissenschaften, Mathematischnaturwissenschaftliche Abteilung Neue Folge 9, 1–23.

86 Therrien, F., Henderson, D.M., 2007. My theropod is bigger than yours ... or not: estimating

60

body size from skull length in theropods. Journal of Vertebrate Paleontology 27, 108–115.

Tong, H., Claude, J., Suteethorn, V., Naksri, W., Buffetaut, E., 2009. Turtle assemblages of 1488 the Khorat Group (Late Jurassic-Early Cretaceous) of NE Thailand and their palaeobiogeographical significance. In: Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V. (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia. The Geological Society, London, Special Publications 315, pp. 141–151. Torcida Fernández-Baldor, F., Canudo, J.I., Huerta, P., Montero, D., Pereda Suberbiola, X., Salgado, L., 2011. *Demandasaurus darwini*, a new rebbachisaurid sauropod from the Early Cretaceous of the Iberian Peninsula. Acta Palaeontologica Polonica 56, 535–552. Turculet, I., Brânzilă, M., 2012. Muzeul colecțiilor paleontologice originale de la Universitatea "Alexandru Ioan Cuza" Iași. Editura Universității "Alexandru Ioan Cuza" Iași, Iași, 173 pp. Turner, A.H., Sertich, J.J.W., 2010. Phylogenetic history of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 30(Supplement 1), 177–236. Turner, A.H., Makovicky, P.J., Norell, M.A., 2012. A review of dromaeosaurid systematics and paravian phylogeny. Bulletin of the American Museum of Natural History 371, 1–206. Vasile, Ş., Csiki, Z., 2011. New Maastrichtian microvertebrates from the Rusca Montană Basin (Romania). Oltenia. Studii și comunicări. Științele Naturii 27(1), 221–230. Vickers-Rich, P., Rich, T.H., Lanus, D.R., Rich, L.S.V., Vacca, R., 1999. "Big Tooth" from the Early Cretaceous of Chubut Province, Patagonia: a possible carcharodontosaurid. In: Tomida, Y., Rich, T.H., Vickers-Rich, P. (Eds.), Proceedings of the Second Gondwanan Dinosaur Symposium. National Science Museum Monographs 15, Tokyo, pp. 85–88. Vremir, M., 2010. New faunal elements from the Late Cretaceous (Maastrichtian) continental deposits of Sebeș area (Transylvania). Terra Sebus. Acta Musei Sabesiensis 2, 635-684.

Charentes, western France: evidence for a mixed Laurasian-Gondwanan assemblage. Journal of Vertebrate Paleontology 27, 931–943. Weishampel, D.B., 1990. Dinosaurian distribution. In: Weishampel, D.B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. California University Press, Berkeley, Los Angeles, Oxford, pp. 63–140. Weishampel, D.B., Grigorescu, D., Norman, D.B., 1991. The Dinosaurs of Transylvania. National Geographic Research & Exploration 7(2), 196–215. Weishampel, D.B., Norman, D.B., Grigorescu, D., 1993. Telmatosaurus transsylvanicus from the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur. Palaeontology 36, 361-385. Weishampel, D.B., Jianu, C.M., Csiki, Z., Norman, D.B., 2003. Osteology and phylogeny of Zalmoxes (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous of Romania. Journal of Systematic Palaeontology 1, 65–123. Weishampel, D.B., Barrett, P.M., Coria, R.A., Le Loeuff, J., Xu, X., Zhao, X-J., Sahni, A., Gomani, E.M., Noto, C.R., 2004. Dinosaur distribution. In: Weishampel, D.B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. Second Edition. University of California Press, Berkeley, Los Angeles, London, pp. 517–606. Weishampel, D.B., Csiki, Z., Benton, M.J., Grigorescu, D., Codrea, V., 2010. Palaeobiogeographic relationships of the Hateg biota — Between isolation and innovation. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 419–437. Williamson, T.E., Brusatte, S.L., 2014. Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution. PLoS ONE 9(4), e93190. doi:10.1371/journal.pone.0093190.

Vullo, R., Néraudeau, D., Lenglet, T., 2007. Dinosaur teeth from the Cenomanian of

Zarcone, G., Cillari, F.M.P., Stefano, P.D., Guzzetta, D., Nicosia, U., 2010. A possible bridge
between Adria and Africa: New palaeobiogeographic and stratigraphic constraints on the
Mesozoic palaeogeography of the Central Mediterranean area. Earth-Science Reviews 103,
154–162.

1542 Figure captions

Figure 1. Simplified geological map of the Cernavodă-Cochirleni area; inset shows the
position of the study area within Romania. Legend: 1. Quaternary: a. Holocene alluvia, b.
Pleistocene–Holocene loessoid deposits; 2. Pre-Quaternary Cenozoic (Middle Eocene and
Miocene) deposits; Cretaceous: 3. Peştera Formation, Lower Cenomanian; 4. Cochirleni
Formation; uppermost Aptian–Lower Albian; 5. Gherghina Formation, Middle–Upper
Aptian; 6. Ostrov (= Ramadan) Formation; Barremian–Lower Aptian; 7. Cernavodă
Formation, Alimanu Member, Berriasian–Valanginian; 8. Water courses. (Redrawn after
Dragastan et al., 1998, 2014).

Figure 2. Specimen UAIC (SCM1) 615, indeterminate carcharodontosaurid lateral tooth from
Cochirleni, Southern Dobrogea. A. UAIC (SCM1) 615, as figured by Simionescu (1913); B.
Current state of UAIC (SCM1) 615, mounted in a limestone holder.

Figure 3. Detailed morphology of UAIC (SCM1) 615, an indeterminate carcharodontosaurid lateral tooth from Cochirleni, Southern Dobrogea. UAIC (SCM1) 615 in A. labial? side; B., distal; C., lingual? side, and D., basal (mesial to the right) views. Details of the distal carina (marked with boxes in A, respectively C): apical part in E., labial? and F. distal views; basal part in G., lingual? and H., distal views. Scale bar: 1 cm (A–D), 5 mm (E–H). Figure 4. Dental morphospace of the different theropod clades according to the results of the PCA analysis; UAIC (SCM1) 615 (red star) plots within the morphospace occupied by Carcharodontosauridae. See further details of this analysis, as well as other quantitative analyses used to identify the tooth that deliver similar results (cluster analysis, discriminant function analysis, phylogenetic analysis), in the Supplementary Material.

Figure 5. A. Palaeogeographic setting of the two early Early Cretaceous Romanian dinosaur occurrences: the Berriasian-Valanginian Cornet locality (orange star), located on a Neo-Tethyan archipelago island, and the Valanginian Cochirleni locality (red star), situated on the marginal areas of the Eastern European cratonic mainland. B. Global chronostratigraphic and palaeobiogeographic distribution of the Carcharodontosauridae, plotted on Middle Aptian (approx. 120 Mya) palaeogeographic map; red star marks the position of UAIC (SCM1) 615 from Southern Dobrogea. Legend: 1 – Veterupristisaurus, 'Megalosaurus' ingens, Carcharodontosauridae indet., Tanzania, Late Jurassic; 2 – Concavenator, Spain, Barremian; 3 – Carcharodontosauridae indet., Thailand, Barremian; 4 – Acrocanthosaurus, southeastern United States, Aptian-Albian; 5 - Carcharodontosauridae indet., Spain, Aptian; 6 -Eocarcharia, Niger, Aptian-Albian; 7 - Carcharodontosauridae indet., Guangxi, China, Aptian; 8 – Carcharodontosauridae indet., Henan, China, Aptian; 9 – Kelmayisaurus, Xinjiang, China, Aptian–Albian; 10 – Carcharodontosauridae indet., France, Cenomanian; 11 - Sauroniops, Morocco, Cenomanian; 12 - Carcharodontosauridae indet., Japan, Cenomanian–early Turonian; 13 – Shaochilong, Inner Mongolia, China, Turonian; 14 – Carcharodontosauridae indet., São Paulo, Brazil, Campanian-Maastrichtian (for relevant references, see text, 5.4.). Palaeogeographic maps, courtesy of Ron Blakey (http://cpgeosystems.com/). 64

1 2 2	1	"Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous
3 4 5	2	carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous
5 6 7	3	Europe-Gondwana connections
, 8 9	4	
10 11	5	
12 13	6	Zoltán Csiki-Sava ^{1*} , Stephen L. Brusatte ² , Ștefan Vasile ¹
14 15	7	¹ Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, 1
16 17	8	Nicolae Bălcescu Boulevard, 010041 Bucharest, Romania , zoltan.csiki@g.unibuc.ro,
18 19	9	yokozuna_uz@yahoo.com
20 21	10	² School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road,
22 23	11	Edinburgh, EH9 3FE, United Kingdom , Stephen.Brusatte@ed.ac.uk
24 25	12	* Corresponding author
20 27 28	13	zoltan.csiki@g.unibuc.ro
20 29 30	14	
31 32	15	ABSTRACT
33 34	16	Some of the best records of continental vertebrates from the Cretaceous of Europe come from
35 36	17	Romania, particularly two well-known occurrences of dwarfed and morphologically aberrant
37 38	18	dinosaurs and other taxa that lived on islands (the Cornet and Hateg Island faunas).
39 40	19	Substantially less is known about those vertebrates living in the more stable, cratonic regions
41 42	20	of Romania (and Eastern Europe as a whole), particularly during the earliest Cretaceous. We
43 44	21	describe one of the few early Early Cretaceous fossils that have ever been found from these
45 46	22	regions, the tooth of a large theropod dinosaur from Southern Dobrogea, which was
48	23	discovered over a century ago but whose age and identification have been controversial. We
50 51	24	identify the specimen as coming from the Valanginian stage of the Early Cretaceous, an
52 53	25	incredibly poorly sampled interval in global dinosaur evolution, and as belonging to
54 55		1
56		
57		
59		

² 26	Carcharodontosauridae, a clade of derived, large-bodied apex predators whose earliest
4 27	Cretaceous history is poorly known. Quantitative analyses demonstrate that the Romanian
28	tooth shows affinities with a derived carcharodontosaurid subgroup, the
³ 29	Carcharodontosaurinae, which until now has been known solely from Gondwana. Our results
30	suggest that this subgroup of colossal predators did not evolved vicariantly as Laurasia split
2 3 31	from Gondwana, but originated earlier, perhaps in Europe. The carcharodontosaurine
1 5 32	diversification may have been tied to a north-to-south trans-Tethyan dispersal that took place
5 7 33	sometime between the Valanginian and Aptian, illustrating the importance of
3 9 34	palaeogeographic ties between these two realms during the largely mysterious early-mid
) _ 35	Early Cretaceous.
3 36	
£ 5 37	Keywords
5	
5 7 38	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda;
5 7 38 3 9 39	Romania <u>Southern Dobrogea;</u> Lower Cretaceous <u>Valanginian; Theropoda;</u> Carcharodontosauridae; <u>cratonic Europe;</u> palaeobiogeography
5 7 38 3 9 39) - 40	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography
	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; <u>cratonic Europe;</u> palaeobiogeography 1. Introduction
	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous
	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils
$\begin{array}{c} 5 \\ 7 \\ 3 \\ 3 \\ 9 \\ 3 \\ 9 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4$	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of
$\begin{array}{c} 5\\ 7\\ 8\\ 8\\ 9\\ 9\\ 2\\ 40\\ 2\\ 40\\ 2\\ 41\\ 4\\ 42\\ 5\\ 42\\ 7\\ 8\\ 43\\ 9\\ 44\\ 2\\ 2\\ 45\\ \end{array}$	 RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997;
$\begin{array}{c} 5 \\ 7 \\ 3 \\ 3 \\ 3 \\ 9 \\ 2 \\ 4 \\ 4 \\ 2 \\ 4 \\ 3 \\ 4 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 2 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4$	 RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997; Posmoşanu, 2003; Dyke et al., 2011), and the famous latest Cretaceous beds of the Hateg,
$\begin{array}{c} 5 \\ 7 \\ 38 \\ 39 \\ 39 \\ 2 \\ 40 \\ 2 \\ 40 \\ 2 \\ 40 \\ 2 \\ 41 \\ 41 \\ 42 \\ 42 \\ 43 \\ 44 \\ 2 \\ 45 \\ 44 \\ 45 \\ 44 \\ 45 \\ 46 \\ 5 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 48 \\ 46 \\ 5 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 48 \\ 46 \\ 5 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 48 \\ 46 \\ 5 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 48 \\ 46 \\ 5 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 $	RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; <u>cratonic Europe;</u> palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997; Posmoşanu, 2003; Dyke et al., 2011), and the famous latest Cretaceous beds of the Hateg, Rusca Montană and western Transylvanian basins of Transylvania, which have yielded the
	 RomaniaSouthern Dobrogea; Lower CretaceousValanginian; Theropoda; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997; Posmoşanu, 2003; Dyke et al., 2011), and the famous latest Cretaceous beds of the Haţeg, Rusca Montană and western Transylvanian basins of Transylvania, which have yielded the dinosaur-dominated 'Haţeg Island fauna' (e.g., Nopcsa, 1923; Weishampel et al., 1991;

Csiki, 2011; Csiki-Sava et al., 2015). Both of these faunas inhabited islands that were part of

the vast Cretaceous European Archipelago of the Neo-Tethys Ocean. Based on their isolated geological settings and the many dwarfed and morphologically aberrant taxa that make up the faunas, both have been interpreted as insular assemblages that give a unique window into how island environments affected the evolution of long-extinct organisms (e.g., Benton et al., 1997, 2010; Csiki-Sava et al., 2015).

The great volume of research on these assemblages over the past century, particularly the 'Hateg Island fauna', has concealed an inconvenient bias: the stable, non-island, cratonic regions of Romania have yielded only extremely rare Mesozoic continental vertebrate remains (i.e., the Moldavian, Moesian and Scythian platforms; Săndulescu, 1984; Mutihac and Mutihac, 2010; Fig. 1). This is mostly because Mesozoic deposits are located in the subsurface in these regions, with only limited subaerial exposures available in the structurally highest-lying parts of the Moesian Platform, in Central and Southern Dobrogea (Middle Jurassic-Upper Cretaceous), as well as in the northeastern-most corner of the Moldavian Platform, along the Prut Valley (lower Upper Cretaceous) (see, e.g., Mutihac and Mutihac, 2010). This bias is unfortunate because fossils from these settings could lead to a better understanding of how mainland and island faunas differed during the Cretaceous, and because the cratonic portion of Europe was an important biogeographic stepping stone between the north and south as the continents fragmented and sea levels fluctuated.

Although the cratonic regions of Romania have yielded few Cretaceous terrestrial fossils, these deposits are not totally barren. In fact, one of the first Mesozoic continental vertebrates ever recorded from Romania comes from one of these deposits, the Lower Cretaceous shallow marine limestones of Southern Dobrogea (Fig. 1). This specimen-the isolated but well-preserved tooth of a large theropod dinosaur-has often been overlooked. It was described a little over a century ago by Simionescu (1913; Fig. 2A), and until a few recent discoveries of very rare isolated specimens (Stoica and Csiki, 2002; Csiki-Sava et al.,

2013, in prep.; Dragastan et al., 2014), it remained as the sole published record of Mesozoic terrestrial vertebrates from the cratonic areas of Romania. It has never been comprehensively described and its precise age and taxonomic affinities have yet to be clarified, despite its potential importance as a well-preserved fossil from a poorly sampled area that could have critical evolutionary and biogeographic implications.

We here present a comprehensive description of the Dobrogea tooth and discuss its relevance for understanding dinosaur evolution and biogeography. We review the peculiar history of how this specimen was collected and curated, thoroughly document its morphology and age, identify it based on comparison to a broad range of theropods, and outline its importance. It turns out that this specimen, although only a single tooth, has wide-ranging implications. We identify it as coming from the Valanginian stage of the Early Cretaceous, which is incredibly poorly sampled both in Europe and globally (Weishampel et al., 2004), and as belonging to a carcharodontosaurid, a group of derived, large-bodied apex predators whose earliest Cretaceous history is poorly known. Carcharodontosaurids were once thought to be a uniquely Gondwanan group, but recent discoveries show that the basal members of the group were more widespread during the late Early-middle Cretaceous (e.g., Sereno et al., 1996; Brusatte and Sereno, 2008). The Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, that until now has been known only from Gondwana. It suggests that this subgroup of enormous predators did not evolve vicariantly as Pangaea split, but originated earlier, and perhaps in Europe, suggesting faunal interchange between Europe and Gondwana during the 'dark ages' of the early Early Cretaceous.

 Abbreviations: UAIC - University "Alexandru Ioan Cuza", Iași, Romania.

2. History of collecting and curation

Only two dinosaurian fossils are currently known from the cratonic areas of Romania: an isolated theropod tooth and an isolated caudal vertebral centrum. Both of these were reported from the Lower Cretaceous deposits of Southern Dobrogea (southeastern Romania; Csiki-Sava et al., 2013, see also below). Unfortunately, exact details of their discovery and places of origin are lost, a fact that can hinder an assessment of their age and interpretation of their phylogenetic and palaeobiogeographic significance. Our aim here is to gather and report all available information concerning the collecting of specimen UAIC (SCM1) 615, that is, the isolated theropod tooth reported by Simionescu (1913; Fig. 2A).

According to the existing information - unpublished museum labels and records, and the preliminary publication of Simionescu (1913) - specimen UAIC (SCM1) 615 was discovered in the surroundings of Cochirleni, a small village south of Cernavodă and close to the right bank of the Danube, in Southern Dobrogea, southeastern Romania (Fig. 1), probably shortly before 1913, the date of its publication by Simionescu (1913).

Although studied and preliminarily described by Simionescu, UAIC (SCM1) 615 was not
collected by Simionescu personally. Instead, it was donated by a certain "de Tomas" (also
mentioned as "de Thomas" in the registry of the Hârşova Museum) to V. Cotovu from
Hârşova (Central Dobrogea), a local teacher, archaeology and natural history aficionado, and
amateur fossil collector (see, e.g., Covacef, 1995). Cotovu, described by Simionescu himself
as the "zélé fondateur et directeur du muséum de Hârşova" (*enthusiastic founder and director of the Hârşova Museum*; Simionescu, 1906: p. 2), had previously provided fossil specimens
from Southern Dobrogea for study to Simionescu, a nationally acknowledged popular science
writer and scientist, whom Cotovu knew personally (Brânzilă, 2010). These circumstances
are supported by the fact that in the original description, Simionescu figures the specimen as
being accessioned in the "Regional-Museum von Harschowa" (*Hârşova Regional Museum*;
Simionescu, 1913: p. 687, fig.1), a designation he also used to refer to other Dobrogean

2 126 specimens not collected by him first-hand (e.g., a specimen of 'Nautilus' pseudoelegans from ⁴ 127 Cernavodă, or a fragmentary tooth-bearing palatal fragment referred to as 'Coelodus' sp., 6 7 **128** also originating from Cochirleni; see Simionescu, 1906). Confirming this deduction, an 129 isolated tooth appears accessioned in the old registry book of the Hârşova Museum (under 130 specimen number 200) as "Megalosaurus cf. superbus", with the mention that it was 12 13 131 "described by Prof. Simionescu in the Centralblatt f. min. etc.". This is also the case of the 14 15 **132** 'Coelodus' sp. specimen from Cochirleni (specimen number 86), similarly clearly identified 17 **133** as being described by Simionescu in the registry book.

19 134 Both of these vertebrate remains from Dobrogea that were formerly part of the Hârsova Museum collections are currently accessioned in the palaeontology collections of the 21 135 UAIC (Turculet and Brânzilă, 2012), suggesting that, at one moment, several specimens were 23 136 25 137 transferred there from the Hârşova Museum. Although no details are known about this 27 138 transfer, it is probable that it took place right before (or when) the Hârşova Museum, 29 139 including a part of its collections, was burned and largely destroyed during WWI, in 1916, a 31 140 time when Simionescu still held a position at the UAIC.

After its original description, specimen UAIC (SCM1) 615 underwent a minor ³⁵ 142 amount of damage (see below, Description). Also, at some point between its description in ³⁷ 143 1913 and the early 1960s (when the specimen was found in its present state in the collections 40⁹144 of the UAIC by academic staff members who are still alive today and recall the discovery; I. 42¹⁴⁵ Turculeț, personal communication, May 2013) it was glued into a limestone matrix holder, 44 146 while it was obviously completely freed of the surrounding matrix when it was described and 46 147 figured in 1913 (Fig. 2). The circumstances under which these alterations took place are unclear. It is a distinct possibility that they occurred sometimes during WWII, when, in the 48 148 spring of 1944, the frontline between the German-Romanian and Soviet armies reached the 50 149 52 150 Iași-Chișinău line. At this moment, the geological-palaeontological collections of the UAIC

6

1

3

5

8 9

10 11

16

18

- 63
- 64 65

were packed in crates, and moved together with its personnel and other possessions to Zlatna, in the Apuseni Mountains (western Romania), to safeguard them from any potential damage. Mounting the specimen into the limestone stand would have been a quick way to stabilize it, as it appears that packaging and transport of the specimens was done in haste (M. Brânzilă, personal communication, April 2103). If that was indeed the case, the mounting would have taken place without the knowledge of Simionescu, who left Iaşi and the UAIC in 1929, being invited to become a professor of Palaeontology at the University of Bucharest (Brânzilă, 2010). Then again, however, Simionescu himself or staff of the Hârşova Museum might have re-mounted the tooth after its original description, or else the mounting might have taken place after the return of the collections to Iasi, after WWII.

Unfortunately, it is not documented whether the mounting was made using the original matrix, or if a trough corresponding to the tooth outline was carved into a randomly chosen limestone block. The apparently excellent fit between the tooth and the depression housing it (Fig. 2B, 3) suggests that this operation was completed carefully, and accurate carving of a fake holder is difficult to reconcile with the rush accompanying the evacuation of the Iaşi University, in 1944. Alternatively, the presence of a hand-written old registration number on the specimen holder would support its early re-mounting, while still at the Hârşova Museum. As noted previously, the original Hârşova Museum registration number of the specimen was 200, which does not correspond to that currently written both on the limestone holder and on a paper sticker (204). However, according to the old collection registry of the Hârşova Museum, specimen numbers 201 through 225 were given to a series of "indeterminate (fossil) bone fragments" from the "Cochirleni quarries". Thus, these specimens (now apparently lost) came from the same locality as the tooth, and they were collected and donated by the same person to the Museum who donated UAIC (SCM1) 615. There is, thus, a (albeit admittedly remote) possibility that the registration numbers were mixed up during the re-mounting of the specimen, which in this case took place at an early date in the Hârşova Museum. If this is indeed the case, the limestone used as holder could have been the same as the original matrix of the specimen.

To conclude, the history of recovery and curation of the historically important dinosaurian specimen UAIC (SCM1) 615 is rather convoluted and clouded by many uncertainties. The exact date of discovery remains conjectural, and the exact place of the discovery (thus also the original geological context of the tooth) is even more ambiguous. The current state of the specimen, and especially its mounted status, suggest a curatorial history that produced a moderate amount of damage to, but also partially obscured the detailed morphology of the specimen. The convergence of such unfortunate events makes deciphering the age, identity and evolutionary significance of the specimen troublesome, although many lines of evidence, carefully considered, allow us to draw reasonable conclusions (see below).

3. Geological setting

According to the available collecting information, the isolated theropod tooth UAIC (SCM1) 615 was discovered at Cochirleni (sometimes noted more specifically as the "*Cochirleni quarry*" or "*Cokerleni quarry*"). Cochirleni is a small village in southwestern Dobrogea situated close to the right bank of the Danube, and about 9 km south of the main urban center of the region, Cernavodă (Fig. 1). The geology of the area has been well studied, because of the unique outcropping conditions and rich fossiliferous nature of the Lower Cretaceous deposits (reviewed in Avram et al., 1996; Neagu et al., 1997; Dragastan et al., 1998).

Southern Dobrogea is a cratonic area corresponding to the southeastern corner of
Romania. Whether it is considered part of the larger Moesian Platform (Săndulescu, 1984;
Ionesi, 1994), or a distinct craton (the South-Dobrogean Platform; Mutihac and Mutihac,

2 201 2010), researchers agree that it became integrated into the main European Craton towards the ⁴ 202 end of the Jurassic, at the latest, with the consolidation of the Cimmerian (Early Alpine: Triassic-earliest Cretaceous) North Dobrogean fold-and-thrust belt (Seghedi, 2001; Hyppolite, 2002). The age of its basement is also controversial, with estimates ranging from Archaic-Early Proterozoic (Mutihac and Mutihac, 2010) to latest Proterozoic (Ionesi, 1994).

The Precambrian basement of Southern Dobrogea is overlain by a flat-lying sedimentary cover that begins with the lowermost Palaeozoic and ends with the uppermost Neogene. The sedimentary succession is interrupted by a few major, as well as several less important, sedimentary hiatuses that separate 5 main sedimentary sequences corresponding to the Cambrian–Upper Carboniferous, the Permian–Triassic, the Middle Jurassic–Cretaceous, the Eocene-?Oligocene, and the middle Badenian (middle Miocene)-Upper Pliocene. The Palaeozoic and lower Mesozoic are known only from the subsurface of Southern Dobrogea, but Cretaceous and Cenozoic deposits have limited exposures along the main water courses of the region (Ionesi, 1994; Mutihac and Mutihac, 2010).

The outcropping Cretaceous in Southern Dobrogea is represented mainly by shallow marine, carbonate platform deposits in the lower part of the system, replaced by more openwater, chalky facies towards the later part of the period (e.g., Avram et al., 1993, 1996; Dragastan et al., 1998; Dinu et al., 2007); these crop out only as isolated patches along the main watercourses of the region (Fig. 1).

The Lower Cretaceous Series consists of several lithostratigraphic units with complex, partially overlapping and interfingering relationships (Dragastan et al., 1998, 2014). The lowest (and only artificially) outcropping unit is the Purbeck-type, siliciclastic-evaporitic Upper Kimmeridgian-Lower Berriasian Amara Formation that represents lagoonal to continental environments. This unit is covered by the shallow-marine, richly fossiliferous and locally reefal limestone-dominated Cernavodă Formation (restricted-open lagoonal to

1

3

5
3

5

2 226 carbonate platform, Upper Berriasian-Lower Hauterivian). A time-correlative unit of the ⁴ 227 Cernavodă Formation, the limestone-dolomitic Dumbrăveni Formation (Upper Berriasian-Lower Hauterivian), is restricted to the southeastern part of Southern Dobrogea. The Cernavodă and Dumbrăveni formations are covered unconformably by dominantly calcareous deposits with hippuritoid ('pachyodont') coquinas, small reefs and lens-like orbitolinid accumulations, referred to the Barremian-Lower Aptian Ostrov Formation by Dragastan et al. (1998), but to the Ramadan Formation (in part) by Avram et al. (1993, 1996). These deposits, formed in littoral to lagoonal and open reef terrace environments, are in turn capped by the fluvial-lacustrine, siliciclastic deposits of the Gherghina Formation, with Middle–Upper Aptian kaolinitic clays and thin coal intercalations. The Lower Cretaceous succession ends with the transgressive, glauconite-bearing, coastal to sublittoral siliciclastic deposits of the Cochirleni Formation (uppermost Aptian-Albian).

The Upper Cretaceous has a significantly more patchy development, mainly restricted to the eastern part of Southern Dobrogea, excepting the weakly glauconitic, chalky-sandy Pestera Formation (Lower Cenomanian) and the marly Dobromiru Formation (Upper Cenomanian) that cover the western-central parts of the area. The younger Cuza Vodă (Turonian), Murfatlar (Santonian-Lower-Middle Campanian), and Satu Nou (Upper Campanian) formations are dominantly chalky, suggesting the instalment of a relatively deeper, offshore depositional environment; neither of these units is known from western Southern Dobrogea.

In total, the Lower Cretaceous of Southern Dobrogea was deposited in a shallow marine, near-shore setting, fluctuating between carbonate platform, lagoonal, coastal-tidal flat, and continental environments (see Avram et al., 1996; Dragastan et al., 1998). Its main characteristic features, such as the observed lithological variability, the areal distribution of the different units, and the presence of several unconformities within the series, are all linked

to eustatic sea-level changes that affected the Southern Dobrogean territory during the Early Cretaceous (Dragastan et al., 1998). The main emergent land in the area was represented by the Central Dobrogean Massif, lying north of the study area, almost completely subaerially exposed and actively eroding during the Cretaceous. Consequently, shallow-marine to continental deposits are restricted mainly to the northern part of Southern Dobrogea, close to its boundary with the Central Dobrogean Massif (marked by the Capidava-Ovidiu Fault), and are replaced by more open marine deposits southward. As summarized above, several littoral, and even continental, sequences occur in this succession, including deposits in the Amara, Cernavodă, Ramadan (in part; Avram et al., 1996) and Cochirleni formations, whereas the Gherghina Formation is purely continental, with occasional minor marine interbeds produced during short-term ingressions of the sea.

In the Cernavodă-Cochirleni area the outcropping Mesozoic is restricted to the Lower Cretaceous, and includes deposits belonging to the Cernavodă, Ostrov (or Ramadan), Gherghina, and Cochirleni formations. While the lower–middle part of the Cernavodă Formation is well exposed and widely distributed in this area, its upper part (the lower Hauterivian Vederoasa Member) is unevenly developed. This member is missing in the classical succession from Cernavodă-Hinog, on the right bank of the Danube (Dragastan et al., 1998), but was recently identified in the more eastern Cernavodă-lock section (Dragastan et al., 2014). Similarly, the Ostrov Formation is represented in the area only by its upper subunit (the Lower Aptian Lipnița Member; Dragastan et al., 1998), covering unconformably and transgressively the Valanginian Alimanu Member of the Cernavodă Formation in the southern end of the Cernavodă-Hinog section (Dragastan et al., 1998), and the lower Hauterivian Vederoasa Member in the Cernavodă-lock section (Dragastan et al., 2014).

Northward of the Hinog area, Valanginian deposits of the Alimanu Member are
 overlain directly by the Middle–Upper Aptian continental deposits of the Gherghina

1

Formation. These continental deposits also cover the *Orbitolina*-bearing calcareous-clayey deposits of the Lipnița Member towards the south, marking the advancement of emerged areas towards the central parts of Southern Dobrogea, including the Cernavodă-Cochirleni area, during this time interval (Avram et al., 1996). Marine conditions returned in the study area again in the latest Aptian, with a transgression marked by widespread deposition of the glauconitic, siliciclastic coastal to innermost shelf deposits of the Cochirleni Formation. These uppermost Aptian to Albian sands and sandstones cover transgressively all the underlying deposits, belonging to the Cernavodă, Ostrov, or Gherghina formations. Siliciclastic shallow-marine sedimentation continued into the Early Cenomanian, with the chalky-glauconitic deposits of the Peştera Formation.

7 4. Palaeontology

The isolated theropod tooth UAIC (SCM1) 615 (formerly in the collections of the Hârșova Museum, registered with no. 200; Fig. 2A) was described in a short note by Simionescu (1913), who referred it to *Megalosaurus* cf. *superbus*, a taxon erected by Sauvage (1882) from the Gault ('mid'-Cretaceous: Albian) of the Paris Basin, France. The Gault material described by Sauvage (1882; see also Sauvage, 1876) includes several isolated teeth that were deemed by Simionescu (1913) to be more similar to the Cochirleni tooth than are the teeth of *Megalosaurus bucklandi* (Buckland, 1824). Subsequently, the French Gault material was referred to the new genus *Erectopus* by Huene (1923), who also noted differences between it and the type species *M. bucklandi*.

The convoluted taxonomic history of *Erectopus superbus* was recently reviewed by Allain (2005), who established that both the isolated teeth first mentioned by Sauvage (1876) and the skeletal elements described by Sauvage (1882) belong to the same taxon, for which the name *Erectopus superbus* was retained. Allain (2005) regarded *Erectopus* as a member of

3

2 301 Carnosauria (= basal Tetanurae), an opinion also shared by Molnar (1990) and Holtz et al. ⁴ 302 (2004a), whereas the latest review of the Tetanurae (Carrano et al., 2012, p. 254) considered *Erectopus superbus* "a non-carcharodontosaurian allosauroid, possibly a metriacanthosaurid." Accordingly, if we are following the original assessment of Simionescu (1913) but updating with contemporary taxonomy, the Cochirleni theropod tooth should now be considered referable to the basal tetanuran *Erectopus superbus*. However, the referral of this tooth to Erectopus superbus (or a close relative) was considered to be unsupported by positive evidence by Molnar (1990) and Holtz et al. (2004a). In order to re-assess this referral and to understand the exact taxonomic and phylogenetic affinities of UAIC (SCM1) 615 (Fig. 2B, 3), we provide here a detailed description of its morphology followed by a thorough comparative study of this tooth based on large datasets of theropod dental measurements and discrete characters compiled by Hendrickx and Mateus (2014) and Hendrickx et al. (2015a).

We note that in his review of Romanian dinosaurs, Grigorescu (2003) erroneously considered UAIC (SCM1) 615 as being referred by Simionescu to the taxon Megalosaurus dunkeri Kohen (sic; actually, Megalosaurus dunkeri Dames, 1884). This is clearly a simple misreading of Simionescu's identification. Additionally, such a referral is also contradicted by the absence of mesial serrations in the holotype tooth of *M. dunkeri*, considered by Carrano et al. (2012) to represent an indeterminate theropod. The Dobrogea tooth, on the other hand, has mesial serrations (see below).

4.1. Age of UAIC (SCM1) 615

The age of UAIC (SCM1) 615 has been contentious, due to the uncertainties concerning its place of origin. Although it is often mentioned as originating from Cochirleni village (e.g., Grigorescu, 2003; Turculet and Brânzilă, 2012), this has not been definitively established. According to the original report of Simionescu (1913), the tooth came from the upper part of

1	
2 326 3	the Lower Cretaceous limestone succession exposed in the cliffs extending from Cernavodă
4 327 5	to Cochirleni along the right bank of the Danube. The corresponding entry from the Hârșova
6 328 7	Museum registry states that it was found in the 'Cochirleni quarry', a location that presently
⁸ 329 9	cannot be identified precisely. The only rocks to be quarried in the area are the calcareous
10 11 330	deposits of either the Cernavodă or Ostrov formations, particularly the ones that crop out in
12 13 331	the Danube bank cliffs between Cernavodă-Hinog-Cochirleni. Finally, although the mention
14 15 332	'Cochirleni' is usually considered to refer to Cochirleni village, it should be mentioned that
16 17 333	the cliff-forming hill that extends between Cernavodă and Cochirleni is also known by the
19^{18} 19 334	same name (Fig. 1). Taking all of this evidence into consideration, it is thus reasonable to
20 21 335	conclude that the tooth was most likely found in the Lower Cretaceous limestone succession
22 23 336 24	exposed in the Danube cliffs between Cernavodă and Cochirleni.
25 337	Based on the location of the discovery, in the upper part of the local limestone
26 27 338 28	succession, and the age of the deposits from Cernavodă-Cochirleni known to him,
29 339 30	Simionescu (1913) considered the tooth to be of Barremian age. Subsequently, the age of the
31 340 32	tooth was given as Valanginian-Barremian (Weishampel, 1990; Weishampel et al., 2004) or
³³ 341 34	Valanginian (e.g., Grigorescu, 2003), but without any supporting information.
³⁵ 342 36	New attempts have been made to more precisely constrain the age of UAIC (SCM1)
³⁷ 343 38	615. Dragastan et al. (2014) recently sampled the limestone matrix holder of the tooth, and
39 40 3 44	reported from these samples an assemblage of foraminiferans, ostracods and
41 42 345	microproblematicae (=incertae sedis microorganisms) that characterize their 'Biozone IX
$43 \\ 44 346$	with Meandrospira favrei', of latest Valanginian age in the local lithostratigraphic scheme. In
45 46 347	parallel, we also sampled the same limestone holder – a yellowish white, friable lime
48 348	mudstone - that yielded a poor and badly preserved calcareous nannoplankton assemblage
49 50 349 51	with Watznaueria barnesiae, W. ovata, Nannoconus steinmanni, N. kamptneri, N. globulus,
52 350 53	Calcicalathina sp., Speetonia colligata and Cyclagelosphaera deflandrei (M. C. Melinte-
54	14
56	
57 58	
59	
60 61	
62	
63	
64	

1

Dobrinescu, personal communication, November 2013), an assemblage that suggests a Berriasian-Hauterivian age of the limestone holder. Since it is not clear if the limestone holder came from the same site as the tooth itself, we managed to take a second sample from the limestone matrix still partly filling the pulp 354 355 cavity of the tooth, which must definitively be identical with the rocks the tooth was found in. This second, much smaller sample yielded only very scarce specimens of Watznaueria barnesiae, Cyclagelosphaera margerelii and Diazomatolithus lehmanni (M. C. Melinte-Dobrinescu, personal communication, November 2013), the latter two taxa having a peak in abundance during the Berriasian and, especially, the Valanginian. In the nannoplankton succession reported previously by Avram et al. (1993) and derived from a systematic sampling of the Southern Dobrogean Lower Cretaceous, the concurrent presence of Speetonia colligata, Calcicalathina oblongata, Diazomatolithus lehmanni and Nannoconus steinmanni was noted in samples derived from the Alimanu Member of the Cernavodă Formation. These assemblages were interpreted to represent the nannoplankton zone CC3 of Sissingh (1977), of late Valanginian age. A comparable age was assigned to a roughly similar nannoplankton assemblage reported from the Lower Cretaceous of the Mecsek Mountains, Hungary, by Császár et al. (2000). Together, all the available evidence (Simionescu's original account, geographic and geologic records, foraminifera, ostracods, microproblematicae, and calcareous nannoplankton) thus suggests that UAIC (SCM1) 615 originates from the Alimanu Member of the Cernavodă Formation, and it is most probably of late Valanginian age. 4.2. Description and comparisons Specimen UAIC (SCM1) 615 is a large (total length, as preserved, is about 100 mm; Figs. 2, 3) lateral tooth of a theropod dinosaur, with a crown base length (CBL) of 29 mm, crown 15

base width (CBW) of 16.25 mm, crown height (CH) of 85.5 mm, and apical length (AL) of 91 mm (terminology following Smith et al., 2005 and Hendrickx et al., 2015b). It is remarkably well preserved, with the enamel in pristine condition. It preserves most of the crown and a small basal part of the root, but the crown tip is broken off, with an estimated 5 mm missing in the apical region.

In its present state, the mesial edge and part of the mesial third of the tooth are embedded in the limestone holder (Fig. 2B), although the tooth was once removed (see above, History of collecting and curation; Fig. 2A). Accordingly, it is exposed so that all faces of the tooth are widely visible, including the root region, except for the mesial surface.

Only the basal-most part of the root is preserved, and it is more complete near the mesial margin (Fig. 3B, C). Here, broken areas around the crown-root contact area (cervix) reveal details of the pulp cavity development, as well as the pattern of the dentine thickness variation (Fig. 3B–D). The crown also exhibits a transverse break at about two-thirds of its length (not present so obviously in the original figure of the specimen in Simionescu, 1913), and adjacent to it, the distal carina is also slightly chipped distal to mid-length. The labial face is superficially split near this break (Fig. 3A), while a more prominent region of damage appears on the lingual face, where a large (13 x 5 mm), slightly triangular wedge is broken off, exposing the deeper parts of the dentine (Fig. 3C). The damage to the lingual side apparently occurred after the original description of the tooth (Fig. 2), an observation that is concordant with the complex curatorial history of the specimen.

The basal-most, exposed part of the mesial face lacks the enamel cover (Fig. 3C, D), suggesting that this area already belongs to the root region. The mesial edge of the preserved crown base appears to be wider than the distal one, and is largely rounded transversely. Accordingly, the basal cross-section is teardrop-shaped (lanceolate); it is rounded mesially, but narrows distally into a small carina (Fig. 3D). As mentioned above, the pulp cavity is

exposed basally, being partly filled with a whitish-light gray limestone that is reminiscent of the matrix holder lithology. The pulp cavity narrows rapidly towards the cervix, as it is about 7.1 mm wide (labiolingually) at the apical-most part of the preserved root, but only about 4.5 mm wide at the base of the crown. In parallel, the enamel-dentine wall of the tooth becomes thicker: it is 3.5 mm thick in the apical-most part, 4.4 mm at the base of the crown, but thickens to 5.0–5.8 mm near the apical-most part of the basal break of the crown (Fig. 3B). Mirroring the outside cross-section, the contour of the pulp cavity is also teardrop-shaped (Fig. 3D).

The tooth is ziphodont and only very slightly recurved distally. The distal edge is nearly straight across its length, being very mildly concave in its basal half and slightly convex near its apex (Fig. 2, 3A). Thus, the apex is placed roughly at the distal margin of the tooth crown base. The mesial edge, as shown in the original publication of Simionescu (1913), is strongly convex across its entire length (Fig. 2A). The tooth is labiolingually compressed (Fig. 3B), with a crown base ratio (CBR=CBW/CBL) of 0.56, within the normal range of variation of most theropods. This differs from the thinner teeth of some, but not all, carcharodontosaurids (CBR<0.50), and the much thicker incrassate teeth of derived tyrannosauroids and conical teeth of spinosaurids (CBR>0.75) (Sereno et al., 1996; Brusatte et al., 2010a; Hendrickx and Mateus, 2014; Hendrickx et al., 2015a).

The crown cross-section is slightly asymmetrical labiolingually when it is seen in distal view. In this view, when the carina is facing directly distally, one side of the crown has a more pronounced bulge than its counterpart (about 8.5 mm wide, measured from the carina, vs. 6 mm on the other side; Fig. 3B); based on comparisons with the teeth of *Mapusaurus* (Coria and Currie, 2006), the more bulging side can be interpreted as the lingual one. This asymmetry diminishes apically, where both sides become about equally convex. The distal carina itself twists slightly sideways (labially) in apical direction, such that it is located closer to the labial face where it terminates at the crown apex, and the lingual face of the denticles is exposed distally (Fig. 3B, F). This twist of the distal carina is accompanied by a similar outline of the lingual side; in distal view, this is somewhat convex basally, but becomes flat to slightly concave in the apical two-thirds of the crown. A similar S-shaped curvature of the crown, albeit more pronounced and different in details, was also reported in *Mapusaurus* and *Giganotosaurus* (Coria and Currie, 2006), and in indeterminate carcharodontosaurid teeth from Morocco (Richter et al., 2013).

The distal carina extends along the entire tooth height (Fig. 3A–C). It is covered with minute serrations across its entire preserved length; the denticles are proximodistally subrectangular, with a mesiodistal long axis that is greater than the apicobasal long axis (Fig. 3E–H). They are either roughly perpendicular to the tooth margin, or their long axes are oriented obliquely, such that they point slightly apically. The tip of the apex is broken off, so it is not possible to determine whether the serrations continued over the apex of the tooth. There are approximately 12.5 serrations (denticles) per 5 millimetres at the midpoint of the carina. Serration shape and size remain relatively constant across the carina, although the serrations near the midpoint and closer to the base of the carina (12 denticles per 5 mm; Fig. 3G, H) are slightly smaller than those near the apex (9 denticles per 5 mm; Fig. <u>3E</u>, F). Changes in serration size are gradual across the carina, not sudden or sporadic.

Although they are all more or less rectangular in shape, the apical denticles are relatively shorter proximodistally than the more basal ones. Most of the denticles have slightly rounded, asymmetrically convex triangular tips, instead of being simply squarred-off, and they do not hook as in troodontids and to a lesser extent abelisaurids (Hendrickx and Mateus, 2014). Other denticles near the apex, however, show a faint concavity along their tips, giving them a bilobate aspect, although this is both less conspicuous and far less regularly developed than reported in *Tyrannotitan* (Novas et al., 2005). The denticles are

3

5

2 451 separated by simple, linear grooves (interdenticular slits or sulcae) along their entire length. ⁴ 452 The interdenticular space between adjacent denticles is broad, measuring more than a third of 6 7 7 the apicobasal width of a denticle (Fig. 3E, G). This space continues onto the surface of the 454 crown as a very short interdenticular sulcus ("blood groove" of Currie et al., 1990). These sulci are so short and indistinct that they are only visible under low angle light.

Little can be said about the mesial carina, as it is not visible in the current state of the specimen, buried in the limestone matrix. Based on the description of Simionescu (1913), however, it is covered across its length with minute serrations; these decrease in size towards the base of the crown. Simionescu (1913) reported approximately 15 serrations (denticles) per 5 millimetres at the midpoint of the carina, meaning that the mesial denticles are slightly smaller than those on the distal carina. The denticle size difference index (DSDI: Rauhut and Werner, 1995) is 1.2, within the range of variation of most theropods (Hendrickx and Mateus, 2014). As Simionescu (1913) already pointed out, the presence of a mesial carina that extends towards the base of the crown sets apart UAIC (SCM1) 615 from Megalosaurus bucklandii where this stops well above the cervix (Benson et al., 2008), and it is instead similar to 'M.' superbus (Sauvage, 1876, 1882) in this respect.

The external enamel surface exhibits two forms of ornamentation. First, the majority of the labial and lingual faces are covered by relatively smooth enamel that exhibits a subtle form of braided texture visible under low angle light (Fig. 3A, C, E). This texture is made up of a series of very faint, apico-basally running ridges; these are of unequal lengths, starting at different points of the crown height, but none extends the whole length of the crown. The two longest ridges are placed near the distal carina. The enamel is also finely granulated.

Second, near the carinae on both labial and lingual surfaces there are marginal undulations: wrinkles in the enamel that stand out in bas relief (Brusatte et al., 2007). These are much better preserved and visible near the distal carina, where they are so pronounced

2 476 that they are clearly observable in normal light (Fig. 3A-C, G, H). Here, about 17 unevenly developed wrinkles are present along the crown height; in the basal half of the crown, the wrinkles extend about 6.5 mm onto the crown. These are elongate, such that they are longer than twice the space separating each undulation. The wrinkles project obliquely (in the mesiobasal direction) relative to the carina. They are apically concave, with a near-horizontal segment on the crown, and curve apically as they approach the carina (at about 45°) with a tendency to become tangential to the distal edge. The wrinkles are especially well developed, prominent and closely spaced in the basal part of the crown (about 7 wrinkles/16 mm; Fig. 3C, G)), but become more widely spaced and indistinct apically (about 3 wrinkles/16 mm). Apically, however, the wrinkles are somewhat wider and longer, extending over about half of the crown fore-aft length. Again, a slight asymmetry is present between the two sides of the crown in wrinkle development as well, these being better expressed on the more rounded, convex lingual face, but less well expressed on the flatter labial face (Fig. 3A, C, H). On the presumed labial face, only some of the basal-most wrinkles, particularly the second and third one, appear well defined.

Towards the base of the crown a few of the wrinkles continue across the labial and lingual surfaces as very subtle transverse undulations. Most conspicuous of these is a 3.5 mm wide horizontal swelling that crosses the crown, at the level of wrinkles 2 and 3; this swelling is clearly visible on both sides of the crown (Fig. 3. A, C). There are no lateral flutes, apicobasal ridges, or longitudinal grooves on the labial or lingual faces, either in the centre of the tooth or paralleling the carinae. Instead, the labial and lingual faces are uniformly convex, giving the tooth its teardrop-shaped outline in cross section.

9 5. Discussion

0 5.1. Identification of UAIC (SCM1) 615

The isolated tooth from Cochirleni can be referred to Theropoda based on its large size, recurved and labiolingually compressed morphology, and presence of a continuous series of well-defined serrations on the distal carina.

Besides theropods, certain derived crocodyliforms - the sebecosuchians of Colbert (1946; see also Turner and Sertich, 2010; Pol and Powell, 2011; Rabi and Sebők, 2015) - are also known to posess remarkably theropod-like, laterally compressed and serrated teeth, not unlike the morphology shown by UAIC (SCM1) 615. However, most sebecosuchian teeth are significantly smaller than the Southern Dobrogean specimen, especially in the case of the Cretaceous members of the clade (e.g. Baurusuchus; Carvalho et al., 2005). Even the largest, caniniform teeth of the largest representatives of Sebecosuchia, such as the Miocene Barinasuchus (Paolillo and Linares, 2007), are somewhat smaller than UAIC (SCM1) 615; moreover, these teeth are slightly conical and less laterally compressed than the Southern Dobrogean tooth. Finally, it should be noted that the oldest known members of Sebecosuchia appear beginning in the Late Cretaceous (e.g. Kellner et al., 2014), and are thus significantly younger than UAIC (SCM1) 615. Similarly, ziphodont crocodyliform teeth (i.e. with true denticles along their carinae) are reported in Europe only beginning in the Albian (Ösi et al., 2015), and these are both significantly smaller and different in morphology from the Dobrogean tooth. Taken together, these suggest that the hypothesis of sebecosuchian affinities of UAIC (SCM1) 615 can be discarded with confidence, and it indeed represents a theropod tooth. We used four techniques to identify which type of theropod UAIC (SCM1) 615 likely

belongs to (see also Supplementary Material).

First, we conducted a Principal Components Analysis (PCA) based on a large database that includes a broad and representative sample of theropod teeth. This dataset was compiled by Hendrickx et al. (2015a), which built upon the earlier studies of Smith et al. (2005) and Larson and Currie (2013), and it or a similar version has been used in recent studies to identify isolated theropod teeth (e.g., Williamson and Brusatte, 20132014; Brusatte and Clark, 2015). It comprises nearly 1000 theropod teeth scored for six measurements (CBL, CBW, CH, AL, MC, and DC, the latter two measuring the density of serrations per 5 mm at the midpoint of the mesial and distal carina, respectively). UAIC (SCM1) 615 was added to this dataset, the data were log-transformed prior to analysis, missing values for measurements were estimated with a mean value for that measurement from across the sample, and then a PCA was run using a correlation matrix. The analysis was conducted in PAST v2.17 (Hammer et al., 2001).

In the resulting two dimensional morphospace (Fig. 4), UAIC (SCM1) 615 plots close to many teeth belonging to carcharodontosaurids, along with some teeth belonging to spinosaurids and tyrannosauroids. It falls within the convex hull (maximum morphospace occupation area) of carcharodontosaurids only, although it is closely outside of the edges of spinosaurid and tyrannosauroid space. It also falls within the 95% confidence interval ellipse for carcharodontosaurids, but not within the ellipse of any other group (Supplementary Information). This exercise indicates that UAIC (SCM1) 615 is most similar to carcharodontosaurids.

43 Secondly, we used the log-transformed dataset that we also used for the PCA to
44 conduct a clustering analysis. We performed the analysis in PAST v2.17, using the paired
45 group algorithm and the correlation similarity measure. In the resulting dendrogram, UAIC
46 (SCM1) 615 groups with a handful of teeth belonging to carcharodontosaurids,

547 tyrannosauroids, and *Allosaurus* (Supplementary Information).

Third, we used the tooth measurement database to conduct a discriminant analysis in
PAST v3.0 (Hammer et al., 2001). This analysis uses pre-determined groups (in this case,
taxonomic clusters) to create a morphospace in which these groups are maximally separated.

This allows teeth of unknown affinities, such as UAIC (SCM1) 615, to be classified according to which taxonomic group it is most similar to in this discriminant morphospace. In total, 67.79% of other teeth are classified correctly when they are treated as having uncertain affinities and their measurements are used to classify them in discriminant space, indicating that this exercise returns reasonable results. Our analysis classifies the Romanian tooth as a carcharodontosaurid. Furthermore, the analysis places UAIC (SCM1) 615 within the convex hulls for carcharodontosaurids and tyrannosauroids, and the 95% confidence ellipses for carcharodontosaurids, coelophysoids, and neovenatorids.

Fourth, we ran a phylogenetic analysis by including UAIC (SCM1) 615 in the discrete character dataset of theropod dental features published by Hendrickx and Mateus (2014). The Romanian specimen was scored as a lateral tooth in this analysis. The analysis was conducted in TNT (Goloboff et al., 2008), and resulted in 224 most parsimonious trees (686 steps, consistency index of 0.338, retention index of 0.566). The strict consensus topology is moderately well resolved and places the Romanian tooth as the sister taxon to *Carcharodontosaurus* (Supplementary Material). This sister taxon pair is recovered as the sister clade to a grouping of the derived carcharodontosaurids *Mapusaurus* and *Giganotosaurus*.

Several synapomorphies support the carcharodontosaurid affinities of UAIC (SCM1) 615. The sister group relationship with *Carcharodontosaurus* is supported by two features: a 70 roughly straight distal margin of the crown (character 68) and pronounced marginal 71 undulations in the enamel that are well visible in normal light (character 112). The broader 72 clade of UAIC (SCM1) 615, *Carcharodontosaurus, Mapusaurus*, and *Giganotosaurus* (= 73 Carcharodontosaurinae, as defined by Brusatte and Sereno, 2008, and Carrano et al., 2012) is 74 linked by numerous characters, including: large teeth with a crown height greater than 6 cm 75 (character 65), a bowed or sigmoid distal carina in distal view (character 82), marginal undulations that are at least twice as long mesiodistally as the space separating each
undulation (character 111), and marginal undulations present on both mesial and distal sides
of the crown (character 113).

The Romanian specimen also lacks many keystone dental synapomorphies of other theropod clades, based on the clade diagnoses of Hendrickx and Mateus (2014) and other cladistic studies that include dental characters. UAIC (SCM1) 615 does not possess the hooked distal denticles of some Abelisauridae, the strongly labially deflected distal carina and pronounced transverse enamel undulations extending across the labial and lingual tooth faces of Ceratosauridae, the incrassate teeth with apicobasal enamel flutes and deeply veined enamel surface texture of Spinosauridae, and the large transverse undulations of some basal allosauroids (Hendrickx and Mateus, 2014). It also lacks the thickened incrassate teeth of derived tyrannosauroids (Brusatte et al., 2010a) and the large and strongly hooked (or pointed) denticles of troodontids and therizinosauroids (e.g., Turner et al., 2012; Brusatte et al., 2014; Hendrickx and Mateus, 2014). The large size, as well as recurved and ziphodont shape of UAIC (SCM1) 615 is strikingly different from the non-ziphodont therizinosauroids, ornithomimosaurs, alvarezsauroids, and most troodontids, which have conical, leaf-shaped, or peg-like teeth (when teeth are present) (e.g., Holtz et al., 2004a; Turner et al., 2012; Brusatte et al., 2014). Finally, besides its remarkably large size, the presence of serrations indicates that UAIC (SCM1) 615 does not belong to groups such as alvarezsauroids, oviraptorosaurs, basal troodontids, or avialans, which have unserrated crowns (e.g., Turner et al., 2012; Hendrickx and Mateus, 2014).

In summary, the four analyses all support carcharodontosaurid affinities for UAIC
(SCM1) 615. Both overall tooth proportions and discrete phylogenetic characters point to a
carcharodontosaurid identification, and the discriminant function analysis and phylogenetic
analysis both explicitly recover the tooth as a carcharodontosaurid. For this reason we refer

1	
² 601	this tooth to Carcharodontosauridae. Moreover, it appears to belong to a clade that unites very
4 602 5	derived and large-sized carcharodontosaurids (Carcharodontosaurus, Giganotosaurus, and
^б 603	Mapusaurus), separated as such and named Carcharodontosaurinae by Brusatte and Sereno
8 9 604	(2008) and Carrano et al. (2012). The well-resolved internal topology of this clade, as
10 11 605	recovered in our analysis, is congruent with results of previous analyses based on larger sets
12 13 606	of characters from across the skeleton (e.g., Coria and Currie, 2006; Brusatte and Sereno,
14 15 607	2008; Brusatte et al., 2009; Ortega et al., 2010; Eddy and Clarke, 2011; Canale et al., 2015),
16 17 608	and offers some support for considering the Romanian carcharodontosaurid from Southern
18 19 609	Dobrogea as more closely related to the African Carcharodontosaurus than to the clade of
20 21 610	the South American giant carcharodontosaurids Giganotosaurus or Mapusaurus.
22 23 611	Two final notes are worth adding. First, our analyses also incorporated
24 25 612 26	carcharodontosaurids that are usually found to be basal within the clade, such as
27 613	Acrocanthosaurus and Eocarcharia (e.g., Harris, 1998; Sereno and Brusatte, 2008; Carrano
28 29 614 30	et al., 2012) as well as a host of other allosauroids, including members of Neovenatoridae
³¹ 615 32	(Neovenator, Australovenator and Fukuiraptor), a clade that is often recovered as sister-
$33 \\ 34 $ 616	taxon to carcharodontosaurids within Carcharodontosauria (e.g., Benson et al., 2010; Carrano
³⁵ 617 36	et al., 2012; but see Novas et al., 2013; Porfiri et al., 2014, for an alternate placement of
³⁷ 618 38	neovenatorids in general). Both PCA and phylogenetic analysis clearly identified UAIC
$\frac{39}{40}$ 619	(SCM1) 615 as more closely comparable morphologically to derived carcharodontosaurids
41 42 620	than to either basal carcharodontosaurids or to any other allosauroid subclade.
$^{43}_{44}_{44}$ 621	Second, our datasets also included teeth of Erectopus, the genus erected for
45 46 622	'Megalosaurus' superbus to which UAIC (SCM1) 615 was originally referred. Again, our
47 48 623	analyses clearly indicate that there are no close morphological and morphometric similarities
49 50 624	between the two, which is in accordance with the suggestion of Carrano et al. (2012) that
51 52 625	Erectopus represents a non-carcharodontosaurid taxon, while our analysis identifies UAIC
53	25
55 56	
57	
58	
59 60	
61	
62	

63

(SCM1) 615 as a carcharodontosaurid. Instead, *Erectopus* groups with abelisauroids in the phylogenetic analysis. This is somewhat surprisingly, as Allain (2005) and Carrano et al. (2012) both identified *Erectopus* as a tetanuran. It should be noted, however, that Albianaged abelisauroids are known from the same general area (eastern France) as that yielding the material referred to *Erectopus* (Accarie et al., 1995; Carrano and Sampson, 2008), raising the intriguing possibility that this taxon may represent an abelisauroid instead of an allosauroid tetanuran as suggested by Allain (2005) and Carrano et al. (2012). However, it must be remembered that this phylogenetic analysis is based on dental characters only, so it is probably more likely that *Erectopus* is a tetanuran with a dentition convergent to some extent with those of certain abelisauroids.

5.2. Body size of UAIC (SCM1) 615

One of the most salient and remarkable features of UAIC (SCM1) 615 is its large size. In the large and comprehensive sample of theropod teeth from our dataset, tooth size (estimated based on crown height – CH, and used as a rough proxy of body size) ranges from 2.2 mm (in the dromaeosaurid *Saurornitholestes* and the coelurosaur of uncertain affinities *Richardoestesia*) to 117.1 mm in the gigantic tyrannosauroid *Tyrannosaurus*. The Romanian specimen UAIC (SCM1) 615, with a CH of 85.5 mm, is ranked in the 60-80% maximum size (~ CH) range of the sample, and has a CH that is 73% of the largest tyrannosauroid teeth. Most of the teeth in the dataset (over 61% of the 966 measured teeth) are very small to small (less than 25 mm CH), and less than 10% of these fall in the 60-100% CH size categories. Teeth larger than UAIC (SCM1) 615 make up less than 5% of the total sample, and they represent only five taxa: the megalosaurid *Torvosaurus*, the tyrannosauroid *Tyrannosaurus*, the basal carcharodontosaurid *Acrocanthosaurus*, and the derived carcharodontosaurines *Carcharodontosaurus* and *Giganotosaurus*. Compared to other carcharodontosaurids, UAIC (SCM1) 615 is smaller than the largest teeth of *Acrocanthosaurus* (9% difference),
 Carcharodontosaurus (20%), and *Giganotosaurus* (12.5%) in the dataset, but is 13% bigger
 than the largest tooth of *Mapusaurus*.

654 It is thus reasonable to conclude that UAIC (SCM1) 615 belonged to a large-sized 655 carcharodontosaurid, comparable to, even if somewhat smaller than, the truly gigantic carcharodontosaurines Giganotosaurus and Carcharodontosaurus (Sereno et al., 1996; Calvo and Coria, 1998; Therrien and Henderson, 2007), taxa that were recovered as possible close relatives of the Romanian carcharodontosaurid by our phylogenetic analysis. This, in turn, corroborates growing evidence that very large body size was acquired very early in carcharodontosaurid history, since the earliest potential members of the clade are already of relatively large size (Rauhut, 2011). The oldest potential carcharodontosaurid is Veterupristisaurus, represented by isolated vertebrae that indicate an animal between 8.5 and 10 meters in total body length (compared to 11.5+ meters in Acrocanthosaurus and more derived carcharodontosaurids) (Rauhut, 2011). These specimens are known from the uppermost Jurassic of Tanzania, eastern Africa (Rauhut, 2011; Carrano et al., 2012; see below), predating at most ~18 million years (Mya) the occurrence of likely even larger-sized carcharodontosaurids in the Valanginian of Southern Dobrogea, Romania. The inferred large body size of the South Dobrogean theropod is also remarkable as

virtually all other dinosaur remains reported previously from Romania (both from the Early
Cretaceous Cornet assemblage and the much later, end Cretaceous Haţeg Island fauna) are
significantly smaller, and many have been interpreted as insular dwarfs (e.g., Weishampel et
al., 1993, 2003; Benton et al., 2006, 2010; Stein et al., 2010; Ősi et al., 2014). Although other
Romanian theropod dinosaurs were not particularly dwarfed (e.g. Brusatte et al., 2013), they
were nonetheless small (Nopcsa, 1902; Csiki and Grigorescu, 1998; Csiki et al., 2010;
Brusatte et al., 2013). This bias towards small bodied Romanian theropods was also

interpreted as a consequence of their insular habitat (Csiki and Grigorescu, 1998), as all previously reported theropod remains come from within the Carpathian Orogen, an area with an archipelago-type palaeogeography during the Cretaceous (Dercourt et al., 2000; Csontos and Vörös, 2004; Csiki-Sava et al., 2015). By contrast, UAIC (SCM1) 615 was found in shallow marine deposits bordering the emerged areas of Central Dobrogea, part of the stable cratonic areas of Europe and connected at least intermittently to the Ukrainean Shield since the Late Jurassic (Fig. 5A). Although cratonic Europe was also transformed into an archipelago of islands during much of the Cretaceous, these islands were often both larger in size and more stable in space and time than were the transient emerged areas of the Tethyan archipelagoes. As such, it is conceivable that the Southern Dobrogean carcharodontosaurid was less constrained by space or resource limitations than the Tethyan insular dinosaurs, allowing it to retain a large body size.

5.3. UAIC (SCM1) 615 and Valanginian dinosaur distribution

Besides documenting the presence of large-sized mainland carcharodontosaurids in the Lower Cretaceous of Romania, UAIC (SCM1) 615 is also important in that it fills a significant gap in our knowledge on the composition and distribution of the Early Cretaceous dinosaurs in Europe. In their review of dinosaur occurrences, Weishampel et al. (2004) listed 83 Early Cretaceous dinosaur localities spread throughout Europe, more than half of these being known from the later part (Barremian–Albian) of that epoch; only around a dozen localities were listed from each age of the early part of the Early Cretaceous (Berriasian, Valanginian, and Hauterivian). Even despite a significant increase in Early Cretaceous dinosaur discoveries in Europe in recent years (e.g., Royo-Torres et al., 2009; Cobos et al., 2010, 2014; Galton, 2009; Norman, 2010, 2013; Pereda-Suberbiola et al., 2011, 2012; Sachs and Hornung, 2013; Blows and Honeysett, 2014), these remain very strongly biased towards

701	western and southwestern Europe (especially the UK, France and Spain). Frustratingly, no
702	occurrences are known from the entire central, eastern and southern Europe for the
703	Berriasian-Hauterivian time interval except for two from Romania: the Berriasian-
704	Valanginian locality of Cornet (e.g., Jurcsák and Popa, 1979, 1983; Jurcsák, 1982; Benton et
705	al., 1997) in the northern Apuseni Mountains of northwestern Romania, and the
706	carcharodontosaurid tooth (Simionescu, 1913) from the Valanginian of Cochirleni, in
707	Southern Dobrogea, southeastern Romania we are describing here (Fig. 5A).
708	Our identification of the Romanian tooth as a carcharodontosaurid documents the
709	presence of this clade in Europe in the very early Cretaceous. This is significant, as
710	carcharodontosaurids were widely distributed tens of millions of years later, in the middle
711	Cretaceous (Aptian to Cenomanian), in western Gondwana (Africa and South America, see
/12	below). Despite the recent discoveries documenting that the clade was also present in North
/13	America and Asia during the middle Cretaceous (e.g., Sereno et al., 1996; Currie and
714	Carpenter, 2000; Brusatte et al., 2009, 2012), there has been only very few occurrences in
715	Europe, most importantly the Barremian-aged Concavenator from Spain (Ortega et al., 2010;
716	see below). The carcharodontosaurid tooth from Southern Dobrogea is substantially older
717	than Concavenator, demonstrating that carcharodontosaurids appeared in Europe earlier than
718	previously thought and were a long-term component of the European mainland Early
719	Cretaceous faunas. It also suggests that habitat-related palaeobiological differentiation might
720	have been already present between the cratonic, stable European mainland, with a dinosaur
/21	fauna made up of normal-sized (even very large) taxa, and the islands from the mobile Alpine
/22	areas of the Mediterranean Neo-Tethys, with by now dwarfed dinosaurs such as those
723	described from the Berriasian–Valanginian Cornet assemblage in northwestern Romania
24	(Benton et al., 2006).

² 725	This Valanginian carcharodontosaurid represents an important datapoint not only for
4 726 5	the Romanian Lower Cretaceous, but also for that of wider Eurasia. The Valanginian is a
6 7 7	poorly documented age in dinosaur evolution, with very few precisely dated fossil
8 728 9	occurrences from anywhere in the world (e.g., Weishampel et al., 2004). The best record of
10 11 729	Valanginian dinosaurs is from Europe, with fewer and less well dated occurrences known
12 13 730	from Asia, some of which have debatable or controversial dates. These include sites in Japan
14 15 731	(e.g., Manabe and Hasegawa, 1995; Matsukawa et al., 2006; but see Kusuhashi et al., 2009
16 17 732	and Evans and Matsumoto, 2015, supporting an alternative, younger age of these
18 19 733	assemblages) and in Thailand (e.g., Buffetaut and Suteethorn, 1998, 2007, with age
20 21 734	constraints according to Racey, 2009; Racey and Goodall, 2009). Occurrences of possible
22 23 735	Valanginian age from China (e.g., Jerzykiewicz and Russell, 1991; Shen and Mateer, 1992;
24 25 73 6 26	Lucas and Estep, 1998) are either poorly constrained as early Early Cretaceous, or were
27 737 28	shown subsequently to be younger than Valanginian (Lucas, 2006; Tong et al., 2009). Rare
29 738 30	dinosaur remains of possible Valanginian (or 'Neocomian') age were also reported from
31 739 32	southern Africa (e.g., De Klerk et al., 2000) and, tentatively, from North America (e.g.,
³³ 740 34	Lucas, 1901; McDonald, 2011, with age assignments according to Sames et al., 2010; Cifelli
³⁵ 741 36	et al., 2014).
³⁷ 742 38	As one of the two known reports of Valanginian dinosaurs in Europe east of France,
39 40 743	the Southern Dobrogean dinosaur record fills a huge palaeogeographic gap between the
41 42 744	western European and the eastern Asian dinosaur faunas. Moreover, none of these early Early
43 44 745	Cretaceous dinosaur assemblages from outside Europe include carcharodontosaurids (see
45 46 746	below), as theropods are represented by coelurosaurians interpreted either as compsognathid
47 48 747	(Gishlick and Gauthier, 2007) or basal ornithomimosaurs (Choiniere et al., 2012) in southern
49 50 748	Africa, metriacanthosaurid allosauroids ('sinraptorids') in Thailand (Buffetaut and
5⊥ 52 749 53	Suteethorn, 2007), and indeterminate allosauroids (Pérez-Moreno et al., 1993), non-
54	30
55 56	
57	
58 59	
60	
61	
62 62	
63 64	
65	

T	
2 750 3	carcharodontosaurid tetanurans (Carrano et al., 2012) or enantiornithine birds (Lacasa Ruiz,
4 751 5	1989), besides indeterminate taxa (Carrano et al., 2012), in western Europe. This may suggest
6 752 7	that carcharodontosaurids had not achieved a wide geographic distribution by this point in
⁸ 753 9	time, and that their more cosmopolitan distribution came later, during the middle Cretaceous.
LO 754 L1	Finally, the presence of the Cochirleni carcharodontosaurid might hint at the presence
L2 L3 755	of palaeobiogeographic provinciality between the western and the eastern parts of Europe,
L4 L5 756	partly mirroring those reported from the later part of the Late Cretaceous (e.g., Le Loeuff and
L6 L7 757	Buffetaut, 1995; Weishampel et al., 2010; Ősi et al., 2012; Csiki-Sava et al., 2015). In the
L9 758	reasonably well sampled, and significantly better known, western European dinosaur faunas,
2 <u>1</u> 759	Valanginian large carnivorous dinosaurs include non-carcharodontosaurid tetanurans
23 760 24	(Becklespinax), as well as indeterminate allosauroids or indeterminate theropods (often
25 761 26	described as 'Megalosaurus' dunkeri, 'M.' insignis or 'M.' oweni), none of which can be
27 762 28	referred positively to Carcharodontosauridae (Carrano et al., 2012). The apparently
29 763 30	provincial geographic distribution of the large-bodied theropods suggests that some degree of
31 764 32	faunal differentiation was occurring within the European mainland, most probably promoted
³³ 765 34	by geographic distance. Notably, this intra-European differentiation in theropod assemblages
³⁵ 766 36	appears to stand in contrast with the faunal homogeneity reported in the case of the
³⁷ 767	ornithopods from the UK and Romania (e.g., Galton, 2009). It is important, however, to re-
³⁹ 768	emphasize at this point that the Valanginian dinosaur fossil record is both exceedingly poor
^{±⊥} 12 12	and patchy, even in Europe. Accordingly, further discoveries are needed to verify and support
13 14 15	(or contradict) the presence of such a distribution pattern pointing to palaeobiogeographic
15 16 771 17	provinciality inside Europe, as the one suggested by our carcharodontosaurid identification
18 772 19	for UAIC (SCM1) 615.
- 772	

5.4. UAIC (SCM1) 615 and carcharodontosaurid evolution and palaeobiogeography

Carcharodontosauridae were long considered as an exclusively Gondwanan group of theropods (e.g., Allain, 2002; Novas et al., 2005) since their first discovery in northern Africa (e.g., Stromer, 1931), and subsequent description of a host of referred taxa from the Aptian– Cenomanian of Africa and South America (Coria and Salgado, 1995; Sereno et al., 1996; Novas et al., 2005; Coria and Currie, 2006; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Cau et al., 2013). This view started to change with the identification of the Early Cretaceous (Aptian–Albian) *Acrocanthosaurus* from North America as a basal carcharodontosaurid (e.g., Sereno et al., 1996; Harris, 1998; Sereno 1999; Brusatte and Sereno, 2008), suggesting that the clade had a wider, Neopangean palaeobiogeographic distribution by the mid–late Early Cretaceous. Such a wide distribution, even a cosmopolitan one, was further supported by the discovery of definitive carcharodontosaurids in the Lower Cretaceous of Europe (Ortega et al., 2010), and in the upper Lower to lower Upper Cretaceous of China (Brusatte et al., 2009, 2010b, 240<u>1</u>2; Mo et al., 2014; Lü et al., <u>20142016</u>).

Together, the available evidence pointed to an early, pre-mid Early Cretaceous origin of the carcharodontosaurids, followed by their dispersal across Laurasia and western Gondwana beginning at least by the Aptian (Fig. 5B), a scenario that is concordant with the tentatively suggested presence of early carcharodontosaurids in the Upper Jurassic of Tanzania, which are based on fragmentary specimens (Rauhut, 2011; Carrano et al., 2012). It is also concordant with the widespread appearance of carcharodontosaurids in the fossil record starting with the Aptian, when they are reported in Africa (*Eocarcharia*; Sereno and Brusatte, 2008), South America (Vickers-Rich et al., 1999), North America (*Acrocanthosaurus*; Stovall and Langston, 1950; Harris, 1998; Currie and Carpenter, 2000 Eddy and Clarke, 2011), Europe (Canudo and Ruiz-Omeñaca, 2003; Pereda-Suberbiola et al.,

During the Albian–Turonian, carcharodontosaurids became especially abundant and diverse in Africa (*Carcharodontosaurus*, *Sauroniops*; Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007; Le Loeuff et al., 2012; Cau et al., 2013; Richter et al., 2013) and South America (*Tyrannotitan*, *Giganotosautus*, *Mapusaurus*, alongside with indeterminate carcharodontosaurids; Coria and Salgado, 1995; Calvo and Coria, 1998; Novas et al., 2005; Coria and Currie, 2006; Casal et al., 2009; Candeiro et al., 2011; Canale et al., 2015; Fig. 5B). They were still present during this time interval in other continents, as well: in North America with *Acrocanthosaurus* until the Albian (D'Emic et al., 2012), in Europe until the Cenomanian (Vullo et al., 2007; Csiki-Sava et al., 2015), and in Eastern Asia with *Shaochilong* until the Turonian (Brusatte et al., 2009, 2010b; see also Chure et al., 1999).

After dominating terrestrial ecosystems at least in Africa, South America and eastern Asia during the Albian–Turonian (Brusatte et al., 2009; Coria and Salgado, 2005; Novas et al., 2013), carcharodontosaurids were considered to disappear from the fossil record after the Turonian in both Asia (Brusatte et al., 2009) and South America (e.g., Coria and Salgado, 2005; Calvo et al., 2006; Novas et al., 2013), to be replaced by other groups of large theropods such as tyrannosaurids in parts of Laurasia and abelisaurids in parts of Gondwana. Canale et al. (2009) even cautioned against assigning isolated theropod teeth from post-Cenomanian deposits of South America to Carcharodontosaridae (e.g., Canudo et al., 2008; Casal et al., 2009; Salgado et al., 2009) due to their morphological similarity to those of the abelisaurid *Skorpiovenator*. Recently, however, more diagnostic cranial remains were reported to suggest the survival of carcharodontosaurids into the latest Cretaceous (Campanian–Maastrichtian) in Brazil (Azevedo et al., 2013).

33

65

² 823	Contrasting with this rich and relatively continuous fossil record of
4 824	Carcharodontosauridae starting with the Aptian, the first half of its evolutionary history is
6 825	very poorly documented (Fig. 5B). Prior to the identification of UAIC (SCM1) 615, only two
8 826	occurrences of pre-Aptian Cretaceous carcharodontosaurids were reported, one from the
10 11 827	Barremian of Spain (Ortega et al., 2010; Gasca et al., 2014) and the other from the Barremian
12 13 828	of Thailand (Buffetaut and Suteethorn, 2012). The Early Cretaceous Kelmayisaurus from
14 15 829	Xinjiang, western China, was recognized as a carcharodontosaurid of possibly ?Valanginian
16 17 830	to Aptian in age by Brusatte et al. (2012), but the deposits yielding these remains (the
18 19 831	Lianmugin, or Lianmuxin, Formation of the Tugulu Group) were dated as Aptian-Albian by
20 21 832	Eberth et al. (2001; see also Tong et al., 2009). An important temporal gap – of about 20 to
22 23 833	28 millions of years, according to the dates in Gradstein et al. (2012) – thus stretched between
24 25 83 4	the oldest, tentatively assigned carcharodontosaurids from the Oxfordian-Tithonian of
20 27 835	Tanzania, including the formally erected Veterupristisaurus (Rauhut, 2011; see also Carrano
20 29 836 30	et al., 2012), and those that started to appear in the fossil record in the Barremian and then
31 837 32	spread widely during the Aptian. Referral of UAIC (SCM1) 615 to Carcharodontosauridae
33 838 34	partially fills this frustrating gap, effectively halving this shadowy period in the evolutionary
³⁵ 839 36	history of the group.
³⁷ 840 38	Furthermore, our analyses tentatively cluster the Dobrogean theropod with the derived
³⁹ 40 ⁸⁴¹	members of the Carcharodontosaurinae to the exclusion of the more basal, but significantly
41 42 842	younger non-carcharodontosaurine carcharodontosaurids Eocarcharia and Acrocanthosaurus.
43 44 843	If this placement is correct, then the Romanian tooth indicates that Carcharodontosaurinae
45 46 ⁸⁴⁴	diverged from other carcharodontosaurids considerably earlier than hitherto recognized.
47 48 845	The previously known fossil record of the clade suggested that Carcharodontosaurinae
49 50 846	originated sometime between the Aptian and Albian, as basal carcharodontosaurids
52 847 53	(Acrocanthosaurus, Concavenator, Eocarcharia) were moderately diverse in the Barremian-
55 54 55	34
56	
57	
59 60	
61	
62 63	
64	
65	

1	
2 848 3	Aptian, followed by the appearance of many fossils of carcharodontosaurines beginning in
4 849 5	the Albian (Fig. 5B). The proposed affinities of the oldest carcharodontosaurid material –
6 7 850	including isolated teeth referred to as 'Megalosaurus' ingens - from the east African Upper
8 851 9	Jurassic, considered to be reminiscent of the Aptian-Albian Acrocanthosaurus (Rauhut,
10 11 852	2011), was also consistent with this evolutionary scenario. Now, our identification of UAIC
12 13 853	(SCM1) 615 as a carcharodontosaurid dinosaur sharing important dental apomorphies with
14 15 854	the derived Carcharodontosaurinae advocates the emergence of this clade (or at least the very
16 17 855	large size and dental morphology characterizing it) well before the Albian, during or even
18 19 856	before the Valanginian, and relegates taxa such as Eocarcharia, Acrocanthosaurus and
20 21 857	Concavenator (the dentition of Shaochilong is unknown) as late-surviving members of the
22 23 858	basal carcharodontosaurid radiation, with a relatively plesiomorphic dentition.
24 25 859	Besides shifting the emergence of the carcharodontosaurines earlier in time,
20 27 860 28	identification of UAIC (SCM1) 615 as a carcharodontosaurid also has interesting
29 861	palaeobiogeographic implications. As already noted, recent discoveries show that
31 862 32	Carcharodontosauridae is not an endemic Gondwanan clade as was once proposed (e.g.,
³³ 863 34	Novas et al., 2005), with the identification of its widespread, Pangaean distribution during the
³⁵ 864 36	late Early Cretaceous (Sereno et al., 1996; Harris, 1998; Chure et al., 1999; Sereno, 1999;
³⁷ 38 865	Brusatte and Sereno, 2008; Ortega et al., 2010; Brusatte et al., 2009, 2012; Mo et al., 2014).
³⁹ 40 866	However, within Carcharodontosauridae itself, some palaeogeographic patterns have been
$\frac{41}{42}$ 867	widely accepted. For example, it has been widely acknowledged that Carcharodontosaurinae
43 44 868	is a endemic subclade of Gondwanan carcharodontosaurids (e.g., Sereno 1999; Holtz et al.,
45 46 869	2004b; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Novas et al., 2013), as
4 / 48 870	previously all its recognized members were restricted strictly to either Africa (Stromer, 1931;
49 50 871 51	Sereno et al., 1996; Brusatte and Sereno, 2007) or South America (Coria and Salgado, 1995;
52 872 53	Novas et al., 2005; Coria and Currie, 2006). Moreover, intra-clade relationships of
54 55	35
56	
57 58	
59	
60	
61 62	
63	
64	

Carcharodontosaurinae were still adhering to patterns of continental fragmentation and
 vicariant evolution, with a basal split between the Albian–Cenomanian African
 Carcharodontosaurus and the Giganotosaurini, uniting the similarly Albian–Cenomanian
 southern South American *Giganotosaurus* and *Mapusaurus* (together with *Tyrannotitan*, if
 this taxon is also recovered within Carcharodontosaurinae; e.g., Novas et al., 2005, 2013).
 This scenario is now challenged by our finding that the Southern Dobrogean
 carcharodontosaurid UAIC (SCM1) 615 may nest inside Carcharodontosaurinae. If true, such
 an affinity would suggest that the origin of Carcharodontosaurinae was not a southern,
 vicariant by-product of the Gondwana-Laurasia separation, a major palaeogeographic event
 that is considered to have been well underway by the end of the Jurassic, and essentially
 completed by the mid-Early Cretaceous (see Weishampel et al., 2010). Indeed, during this
 time palaeogeographic connections and faunal interactions were virtually non-existent
 between the northern Tethyan (European) and southern Tethyan (western Gondwanan, but
 essentially African) areas of the Mediterranean (e.g., Canudo et al., 2009; see below), which

makes a vicariant hypothesis intuitive. However, if the Romanian tooth represents a
carcharodontosaurine, then it implies a much more complicated palaeogeographic history of
the clade, which is not so clearly linked to continental breakup.

The palaeogeographic position of the Southern Dobrogean carcharodontosaurine in cratonic Europe, north of the Neo-Tethys, together with its significantly older age compared to other carcharodontosaurines, could indicate that separation of the carcharodontosaurine lineage took part in Europe and not in western Gondwana as previously assumed. This would also mean that representatives of this lineage were subsequently – after the Barremian – introduced to Africa and South America via trans-Tethyan dispersal, most probably at a time when faunal interactions between the southern and northern margins of the Mediterranean Tethys were resumed, after the early Barremian (Canudo et al., 2009).

1					
2 898 3	Alternatively, it can be hypothesized that appearance of carcharodontosaurines in				
4 899 5	Southern Dobrogea is a consequence of southern immigration originating in western				
6 900 7	Gondwana, often considered the place of origin for this clade. However, this scenario has				
8 901	several potential caveats. Although Europe has been considered as forming part of a larger				
10 11 902	Eurogondwanan palaeobioprovince during the early Early Cretaceous (Ezcurra and Agnolín,				
12 13 903	2012), and occasional trans-Tethyan faunal connections have been recognized between				
14 15 904	Africa and Europe during Late Jurassic to Early Cretaceous times (e.g., Gheerbrant and Rage				
16 17 905	2006), these interchanges either pre-dated the Berriasian (e.g., Gardner et al., 2003; Knoll and				
18 19 906	Ruiz-Omeñaca, 2009), or post-dated the Barremian (Canudo et al., 2009; Torcida Fernández-				
20 21 907	Baldor et al., 2011), with no positive evidence for actual faunal exchanges taking place				
22 23 908	during the 'Neocomian' (Berriasian-Hauterivian) time interval.				
24 25 909	More recently, some potential evidence has emerged for Gondwana-to-Europe				
26 27 910	interchange during the 'Neocomian'. The presence of the basal rebbachisaurid Histriasaurus				
28 29 911	(Dalla Vecchia, 1998) in the upper Hauterivian–lower Barremian of Croatia has been cited as				
30 31 912 32	indicative of very early and very rapid northward dispersal of this clade from western				
³³ 913	Gondwana (southern South America; Carballido et al., 2012; Fanti et al., 2015). Timing of				
³⁵ 914 36	this particular dispersal event was even constrained to the Berriasian-Valanginian time				
³⁷ 38915	interval (Fanti et al., 2015), which makes it roughly contemporaneous with the record of the				
39 40 916	Southern Dobrogean carcharodontosaurine. It was also suggested, however, that dispersal of				
41 42 917	the line leading to Histriasaurus was mediated by the northward drift of the Apulian				
43 44 918	Microplate (= Adria; see Bosselini, 2002), a continental sliver acting as a passive				
45 46 919	transportation mechanism ('Noah's Ark'; KcKennaMcKenna, 1973) for basal				
47 48 920	rebbachisaurids after its separation from mainland Africa (e.g., Torcida Fernández-Baldor et				
49 50 921	al., 2011). Furthermore, the palaeogeographical separation between Africa and Adria (and				
5⊥ 52 922	thus the effective movement of the presumed ark) is considered to be at most an incipient one				
53 54	37				
55 56					
57					
58					
59					

during the Early Cretaceous by Bossellini (2002) and Zarcone et al. (2010), with spatial continuity still present between the two landmasses, while deep-water basins continued to separate Adria from the European Craton. Accordingly, although the presence of *Histriasaurus* can represent a case of northward range extension of rebbachisaurids during the Berriasian–Valanginian, it took place not strictly speaking into Europe, but only reached the northernmost extremity of Adria, a northerly peninsular extension of the African mainland. It was only starting with the Barremian that rebbachisaurids dispersed as far north as the European cratonic areas, including Iberia and the British Isles (Mannion, 2009; Mannion et al., 2011; Torcida Fernández-Baldor et al., 2011), a time when faunal interchanges between Europe and Africa are considered to have been well underway (e.g., Gheerbrant and Rage, 2006; Canudo et al., 2009). Unlike *Histriasaurus*, the taxon represented by UAIC (SCM1) 615 was an inhabitant

of the European mainland. It is thus unclear to what extent the example of rebbachisaurid range extension into (present-day) Europe during the early Early Cretaceous, as potentially testified by the discovery of the Croatian taxon, would also be applicable for the Southern Dobrogean carcharodontosaurine. The available evidence suggests that these two cases are very different, and that faunal connections during this time interval are not documented between the African and European cratons as already pointed out by Gheerbrant and Rage (2006).

Absence of documented faunal interactions weakens support for a scenario of southto-north immigration of derived carcharodontosaurines in Europe at the very beginning of the Cretaceous, and would argue instead for a local, European development to explain the presence of a Valanginian carcharodontosaurine in Southern Dobrogea. The pre-Barremian presence of carcharodontosaurids in Europe is also consistent with their appearance in the Barremian–Aptian fossil record of Eastern Asia, with Europe acting as a stepping stone in the

2 948 3	eastward dispersal of the clade. Similarly, the presence of Aptian carcharodontosaurids in
4 949 5	North America likely requires the presence of pre-Aptian members of the clade in Europe,
6 950 7	since faunal exchanges between these two landmasses are known to have been halted before
⁸ 951 9	the Aptian (e.g., Kirkland et al., 1999). Interestingly, it appears that only basal
10 11 952	carcharodontosaurids were able to spread into the northern Laurasian landmasses, while the
12 13 953	derived carcharodontosaurines dispersed exclusively across the Neo-Tethys, into western
14 15 954	Gondwana. The causes of these distribution patterns remain as yet unknown, and further
16 17 955	support - in the form on new carcharodontosaurid discoveries from the early-middle part of
18 19 956	the Early Cretaceous – is required to better uphold such a scenario.
20 21 957	We finally reiterate that if the Romanian tooth does not belong to a
22 23 958 24	carcharodontosaurine, but instead is artefactually grouping with them in the phylogenetic
24 25 959 26	analysis because of the very incomplete nature of the material, then the traditional story of
27 960	Carcharodontosaurinae as a product of vicariant evolution driven by the breakup of Pangea
29 961 30	will remain strongly supported. However, even in such case UAIC (SCM1) 615 would still
31 962	record the presence of early-occuring large carcharodontosaurid theropods with a very
³³ 963 34	characteristic carcharodontosaurine-type dentition in the eastern part of the European craton,
³⁵ 964 36	adding to known early Early Cretaceous theropod (and dinosaur) diversity, and potentially
³⁷ 965 38	documenting dinosaur faunal provinciality in Europe and worldwide.
³⁹ 40 966	
$\frac{41}{42}$ 967	6. Conclusions
43 44 968	We re-describe and interpret the affinities of one of the most significant historical dinosaurian
45 46 969	specimens of Romania, an isolated but well-preserved theropod tooth from Southern
47 48 970	Dobrogea. Our extensive analyses suggest carcharodontosaurid relationships for this tooth,
50 971	while the available evidence - including novel calcareous nannoplankton sampling - supports
5⊥ 52 972 53	its Valanginian age. The Southern Dobrogean theropod tooth represents the oldest record of
54	39
55 56	
57 58	
59	
60 61	
62	
63	
64 65	
60	

² 973 Carcharodontosauridae in the Cretaceous, and the second oldest globally, eclipsed only by a
 ⁴ 974 collection of isolated specimens from the Upper Jurassic of eastern Africa. As one of the only
 ⁶ 975 two known Valanginian dinosaurian occurrences from Central and Eastern Europe, this
 ⁸ 976 record advances our understanding of European dinosaur distribution during the early Early
 ⁹ 977 Cretaceous, and also fills an important palaeogeographic gap between Western European and
 ² 978 Eastern Asian dinosaurian assemblages of the Valanginian.

Based on dental apomorphies, our analyses further identify UAIC (SCM1) 615 as a possible member of Carcharodontosaurinae, a subclade of derived and gigantic carcharodontosaurids formerly known to be restricted to the Albian-Cenomanian of western Gondwana (Africa and South America). If this finding is correct, the Southern Dobrogean specimen documents the emergence of Carcharodontosaurinae earlier than previously recognized, thus also indicating an earlier acquisition of their characteristically large size. Based on currently known palaeogeographic and chronostratigraphic constraints on the evolution of Carcharodontosauridae, it appears that not only did this clade have a wide distribution, but that crucial events of its evolutionary history such as the emergence of the derived carcharodontosaurines took place north of the Tethys, in cratonic Europe, instead of western Gondwana and as the result of vicariant evolution driven by the Gondwana-Laurasia split, as was formerly suggested. In such a case, instead of endemic evolution the emergence of the western Gondwanan mid-Cretaceous carcharodontosaurines was the result of a northto-south trans-Tethyan dispersal that took place somewhere between the Valanginian and the Aptian. Recognizing a potential carcharodontosaurine dispersal event from Europe into western Gondwana adds further support for the presence of important palaeogeographic ties between the two realms during the second half of the Early Cretaceous.

7 Acknowledgements

8	This research was supported by the National Research Council of Romania (CNCS) grant	
9	PN-IIID-PCE-2011-3-0381 and a Sepkoski grant of the Paleontological Society for Z.CsS.	
0	S.L.B. is supported by a Marie Curie Career Integration Grant EC630652, the Division of	
1	Paleontology of the American Museum of Natural History, and the School of GeoSciences of	
2	the University of Edinburgh. He thanks Mátyás Vremir, Radu Totoianu, and Mark Norell for	
3	many hours of fun discussion on Romanian fossils, and for supporting his work and travel in	
4	Romania. We thank Mihai Brânzilă and Paul Țibuleac (UAIC) for access to the specimen, for	
5	allowing us to collect samples for the nannoplankton analyses, and for their help and	
6	collegiality during our visit to Iași, as well as Ilie Turculeț for sharing information about the	
7	history of the specimen. Mihaela C. Melinte-Dobrinescu has gracefully analyzed the	
8	nannoplankton samples derived from UAIC (SCM1) 615; her contribution was essential in	
9	assessing the age of the specimen. Finally, we thank the reviewers Eric W.A. Mulder	
0	(Denekamp, the Netherlands) and Xabier Pereda-Suberbiola (Bilbao, Spain). as well as	
1	Associated Editor Elena Jagt-Yazykova, for their useful comments and suggestions that	
2	helped improve a-previous versions of the manuscript.	
3		
4	References	
5	Accarie, H., Beaudoin, B., Dejax, J., Friès, G., Michard, J. G., <u>&</u> Taquet, P ., <u>(</u>1995) .	
6	Découverte d'un dinosaure théropode nouveau (Genusaurus sisteronis n. g., n. sp.) dans	
7	l'Albien marin de Sisteron (Alpes-de-Haute-Provence, France) et extension au Crétacé	
8	inférieur de la lignée cératosaurienne, Comptes Rendus de l'Académie des Sciences Paris, IIa	Formatted: Font: Italic
9	320, 327–334.	
0	Allain, R.,. (2002). Discovery of a megalosaur (Dinosauria, Theropoda) in the Middle	
1	Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae.	
2	Journal of Vertebrate Paleontology, 22, 548–563.	Formatted: Font: Italic
	41	Formatted: Font: Italic

1 21023 3	Allain, R.,(2005). The enigmatic theropod dinosaur <i>Erectopus superbus</i> (Sauvage, 1882)
41024 5	from the Lower Albian of Louppy-le-Chateau (Meuse, France). In <u>K.</u> ; Carpenter , K. (Ed.),
61025	The Carnivorous Dinosaurs (pp. 72-86). Indiana University Press, Bloomington: Indiana
⁸ 1026	<u>University Press, pp. 72–86</u> .
$10 \\ 11 \\ 11 \\ 1027$	Avram, E., Costea, I., Dragastan, O., Muțiu, R., Neagu, T., Şindilar, V., & Vinogradov, C.
$^{12}_{13}$ 1028	(1996). Distribution of the Middle-Upper Jurassic and Cretaceous facies in the Romanian
14 15 ¹⁰²⁹	eastern part of the Moesian Platform. Revue Roumaine de Géologie, 39-40, 3-33.
16 17 <mark>1030</mark>	Avram, E., Szasz, L., Antonescu, E., Baltreş, A., Iva, M., Melinte, M., Neagu, T., Rădan, S.,
18 1 031 و 1	<u>&</u> Tomescu, C.,. (1993). Cretaceous terrestrial and shallow marine deposits in northern
20 2 <u>1</u> 1032	South Dobrogea (SE Romania). Cretaceous Research, 14, 265–305.
22 23 1033	Avram, E., Costea, I., Dragastan, O., Muțiu, R., Neagu, T., Șindilar, V., Vinogradov, C,
24 251034	1996. Distribution of the Middle Upper Jurassic and Cretaceous facies in the Romanian
26 271035	eastern part of the Moesian Platform. <i>Revue Roumaine de Géologie 39-40</i> , 3-33.
28 291036	Azevedo, R. P. F. de, Simbras, F. M., Furtado, M. R., Candeiro, C. R. A., & Bergqvist, L. P.,
311037	(2013). First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the
³³ 1038	Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern
³⁵ 1039	Brazil. Cretaceous Research, 40, 131–142.
³⁷ 1040 38	Benson, R. B. J., Barrett, P. M., Powell, H. P., <u>&</u> Norman, D. B., (2008). The taxonomic
39 40 ¹⁰⁴¹	status of Megalosaurus bucklandii (Dinosauria, Theropoda) from the Middle Jurassic of
41 42 ¹⁰⁴²	Oxfordshire, UK. Palaeontology. 51, 419-424.
43 44 ¹ 043	Benson, R. B. J., Carrano, M. T., <u>&</u> Brusatte, S. L. , (2010). A new clade of archaic large-
45 46 ¹⁰⁴⁴	bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.
47 48 1045	Naturwissenschaften, 97, 71–78.
49 50	
51 52	
53 54	42
55 56	
57 58 50	
60 61	
62 62	
63 64	

Formatted: Font: Italic

Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

1 21046	Benton, M.J., Cook, E., Grigorescu, D., Popa, E., <u>&</u> Tallódi, E ., <u>(</u>1997) . Dinosaurs and		
3 41047 5	other tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania.		
6 1048 7	Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 275–292.	Formatted: Font: Italic	
⁸ 1049 9	Benton, M. J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, M., Stein, K., &		
10 11 1050	Weishampel, D. B. (2010). Dinosaurs and the island rule: the dwarfed dinosaurs from Hateg		
12 13 ¹⁰⁵¹	Island. <u>Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 438–454.</u>	Formatted: Font: Italic	
14 15 ¹⁰⁵²	Benton, M.J., Minter, N.J., <u>&</u> Posmoșanu, E. , (2006). Dwarfing in ornithopod dinosaurs		
16 171053	from the Early Cretaceous of Romania. In: <u>Z.</u> Csiki , Z. (Ed.), <i>Mesozoic and Cenozoic</i>	Formatted: Font: Italic	
18 19 1054	Vertebrates and Paleoenvironments; Tributes to the Career of Prof. Dan Grigorescu (pp. 79–		
20 2 <u>1</u> 1055	87). Ars Docendi, Bucharest: Ars Docendi, pp. 79–87.		
231056 24	Benton, M.J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, M., Stein, K., Weishampel,		
251057 26	D.B., 2010. Dinosaurs and the island rule: the dwarfed dinosaurs from Hateg Island.		
271058 28	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 438-454.		
29 <u>1059</u> 30	Blows, W.T., & Honeysett, K., (2014). First Valanginian Polacanthus foxii (Dinosauria,		
31 <u>1060</u> 32	Ankylosauria) from England, from the Lower Cretaceous of Bexhill, Sussex. <i>Proceedings of</i>	Formatted: Font: Italic	
³³ 1061 34	the Geologists' Association, 125, 233–251.	Formatted: Font: Italic	
³⁵ 1062 36	Bosselini, A., (2002). Dinosaurs "re-write" the geodynamics of the eastern Mediterranean		
³⁷ 1063 38	and the paleogeography of the Apulia Platform. <i>Earth-Science Reviews</i> , 59, 211–234.	Formatted: Font: Italic	
39 40 ¹⁰⁶⁴	Brânzilă, M. (ed.), (2010). Academicianul Ion Simionescu - savant și dascăl al neamului (p.	Formatted: Font: Italic Formatted: Font: Italic	
41 42 ¹⁰⁶⁵	<u>182)</u> . <u>Iași:</u> Ed. Universității "Alexandru Ioan Cuza" , Iași, 182 pp .		
43 44 ¹⁰⁶⁶	Brusatte, S.L., Sereno, P.C., 2007. A new species of Carcharodontosaurus (Dinosauria:		
45 46 ¹⁰⁶⁷	Theropoda) from the Cenomanian of Niger and a revision of the genus. Journal of Vertebrate		
47 481068	Paleontology 27, 902–916.		
49 501069	Brusatte, S.L., Sereno, P.C., 2008. Phylogeny of Allosauroidea (Dinosauria: Theropoda):		
51 521070	comparative analysis and resolution. Journal of Systematic Palaeontology 6, 155–182.		
53 54	43		
55 56			
57			
58 59			
60			
61 62			
63			
64			

1	Brusatte, S. L., Clark, N.D.L., 2015. Theropod dinosaurs from the Middle Jurassic (Bajocian-		
2	Bathonian) of Skye, Scotland. Scottish Journal of Geology 51, 157164. doi: 10.1144/sjg2014-		Formatted: Font: Italic
3	022		
4	Brusatte, S., Benson, RBJ., Carr, TD., Williamson, TE., <u>&</u> Sereno, PC.,(2007). The		
5	systematic utility of theropod enamel wrinkles. Journal of Vertebrate Paleontology, 27,		Formatted: Font: Italic
5	1052–1056.		
7	Brusatte, S. L., Benson, R. B. J., Chure, D. J., Xu, X., Sullivan, C., & Hone, D. W. E.,.		
3	(2009). The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the		
Э	delayed ascent of tyrannosaurids. Naturwissenschaften, 96, 1051-1058.	(Formatted: Font: Italic
n	Brusatte, S. L., Benson, R. B. L. & Xu, X. (2012). A reassessment of <i>Kelmavisaurus</i>	(Formatted: Adjust space between
			Latin and Asian text, Adjust space between Asian text and numbers
1	<i>petrolicus</i> , a large theropod dinosaur from the Early Cretaceous of China. <u>Acta</u>	(Formatted: Font: Italic
2	Palaeontologica Polonica, 57, 65–72.	(Formatted: Font: Italic
3	Brusatte, S. L., & Clark, N. D. L. (2015). Theropod dinosaurs from the Middle Jurassic		
4	(Bajocian-Bathonian) of Skye, Scotland. Scottish Journal of Geology, 51, 157-164. doi:		
5	<u>10.1144/sjg2014-022</u>		
5	Brusatte, S., Chure, D. J., Benson, R. B. J., & Xu, X. (2010b). The osteology of Shaochilong		
7	maortuensis, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of		
8	<u>Asia. Zootaxa, 2334, 1–46.</u>	(Formatted: Font: Italic
Э	Brusatte, S. L., Lloyd, G. T., Wang, S. C., & Norell, M. A. (2014). Gradual assembly of		
D	avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition.		
1	<u>Current Biology, 24, 2386–2392.</u>	(Formatted: Font: Italic
2	Brusatte, S. L., Norell, M. A., Carr, T. D., Erickson, G. M., Hutchinson, J. R., Balanoff, A.		
3	M., Bever, GS., Choiniere, JN., Makovicky, PJ., <u>&</u> Xu, X. , (2010a). Tyrannosaur		
4	paleobiology: new research on ancient exemplar organisms. Science, 329, 1481–1485.		Formatted: Font: Italic
			Formatted: Font: Italic

95	Brusatte, S., Chure, D.J., Benson, R.B.J., Xu, X., 2010b. The osteology of Shaochilong		
96	maortuensis, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of		
97	Asia. Zootaxa 2334, 1–46.		
98	Brusatte, S.L., Benson, R.B.J., Xu, X., 2012. A reassessment of Kelmayisaurus petrolicus, a		
99	large theropod dinosaur from the Early Cretaceous of China. Acta Palaeontologica Polonica		
00	57, 65-72.		
)1	Brusatte, S.L., Vremir, M., Csiki Sava, Z., Turner, A.H., Watanabe, A., Erickson, G.M.,		
)2	Norell, M.A., 2013. The osteology of <i>Balaur bondoc</i> , an island dwelling dromaeosaurid		
)3	(Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bulletin of the American		
)4	Museum of Natural History 374, 3–100. doi: 10.1206/798.1		
)5	Brusatte, S.L., Lloyd, G.T., Wang, S.C., Norell, M.A., 2014. Gradual assembly of avian body		
)6	plan culminated in rapid rates of evolution across the dinosaur bird transition. Current		
)7	Biology 24, 2386–2392.		
)8	Brusatte, S. L., & Sereno, P. C. (2007). A new species of <i>Carcharodontosaurus</i> (Dinosauria:		
)9	Theropoda) from the Cenomanian of Niger and a revision of the genus. <i>Journal of Vertebrate</i>	_	Formatted: Font: Italic
		- (
10	Paleontology, 27, 902–916.		Formatted: Font: Italic
L1	Brusatte, S. L., & Sereno, P. C. (2008). Phylogeny of Allosauroidea (Dinosauria: Theropoda):		Formatted: Adjust space between
2	commenting and resolution Journal of Surface stip Delayant show (155, 192		between Asian text, adjust space
LZ	comparative analysis and resolution. <i>Journal of Systematic Palaeoniology</i> , 0, 155–182.	-1	Formatted: Font: Italic
13	Brusatte, S. L., Vremir, M., Csiki-Sava, Z., Turner, A. H., Watanabe, A., Erickson, G. M., &	1	Formatted: Font: Italic
L4	Norell, M. A. (2013). The osteology of Balaur bondoc, an island-dwelling dromaeosaurid		
۱5	(Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bulletin of the American	_	Formatted: Font: Italic
16	Museum of Natural History, 374, 3–100. doi: 10.1206/798.1	-1	Formatted: Font: Italic
١7	Buckland, W. , (1824) . Notice on the <i>Megalosaurus</i> or great fossil lizard of Stonesfield.		
8	Transactions of the Geological Society 21, 390–397	_	Formatted: Font: Italic
.0	114154010105 0j Inc Ocological Society, 21, 570-571.	\leq	Formatted: Font: Italic
		l	

)	Buffetaut, E., <u>&</u> Suteethorn, V.,(1998). Early Cretaceous dinosaurs from Thailand and their			
)	bearing on the early evolution and biogeographical history of some groups of Cretaceous			
	dinosaurs. In: Lucas, S. G. Lucas, Kirkland, J. I. Kirkland, Estep, & J. W. Estep (Eds.), Lower		Formatted: Font: Italic	
2	and Middle Cretaceous Terrestrial Ecosystems (pp. 205–210), New Mexico Museum of		Formatted: Font: Not Italic	
3	Natural History and Science Bulletin, 14 , pp. 205–210 .			
ł	Buffetaut, E., <u>&</u> Suteethorn, V.,(2007). A sinraptorid theropod (Dinosauria: Saurischia)			
5	from the Phu Kradung Formation of northeastern Thailand. Bulletin de la Société Géologique		Formatted: Font: Italic	
5	de France, 178, 497–502.		Formatted: Font: Italic	
7	Buffetaut, E., <u>&</u> Suteethorn, V., (2012). A carcharodontid theropod (Dinosauria, Saurischia)			
3	from the Sao Khua Formation (Early Cretaceous, Barremian) of Thailand. In : Royo-Torres,			
)	R. <u>Royo-Torres</u> , Gascó, F. Gascó, <u>& Alcalá, L. Alcalá</u> (Eds.), 10th Annual Meeting of the		Formatted: Font: Italic	
)	European Association of Vertebrate Palaeontologists (pp. 27–30). Teruel: ¡Fundamental!, 20,			
L	pp. 27–30 .			
2	Calvo, J.O., <u>&</u> Coria, A., (1998). New specimen of <i>Giganotosaurus carolinii</i> (Coria &			
3	Salgado, 1995), supports it as the largest theropod ever found. <i>Gaia</i> , 15, 117–122.	<	Formatted: Font: Italic	
ł	Calvo, JO., Gandossi, P., <u>&</u> Porfiri, JD .,. (2006). Dinosaur faunal replacement during		Formatted: Font: Italic	
5	Cenomanian times in Patagonia, Argentina. In: Evans, S. E. Evans, <u>& Barrett, P. M. Barrett</u>			
5	(Eds.), 9th Mesozoic Terrestrial Ecosystems and Biota, (pp. 17–20). Manchester, UK, pp.		Formatted: Font: Italic	
7	17–20 .			
3	Canale, J. I., Scanferla, C. A., Agnolin, F. L., <u>&</u> Novas, F. E ., (2009). New carnivorous			
)	dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid			
)	theropods. Naturwissenschaften, 96, 409–414.		Formatted: Font: Italic	
L	Canale, J. I., Novas, F. E., <u>& Pol, D., (2015)</u> . Osteology and phylogenetic relationships of			
2	Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda:			

1	
- 21143 3	Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. <i>Historical</i>
41144 5	<i>Biology</i> 27, 1–32. doi: 10.1080/08912963.2013.861830.
6 1145 7	Candeiro, CRA., Fanti, F., Therrien, F., <u>&</u> Lamanna, MC ., . (2011). Continental fossil
⁸ 1146	vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and
10 11 11	their relationship with contemporaneous faunas from North Africa. Journal of African Earth
12 13 1148	Sciences, 60, 79–92.
14 15 1149	Canudo, J. I. Barco, J. L., Pereda Suberbiola, X., Ruiz-Omeñaca, J. I., Salgado, L., Torcida
16 17 1150	Fernández-Baldor, F., & Gasulla, J. M. (2009). What Iberian dinosaurs reveal about the
18 19 1151	bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bulletin de la
20 21 1152	Société Géologique de France, 180, 5–11.
22 23 1153	Canudo, J. I., Filippi, L. S., Salgado, L., Garrido, A. C., Cerda, I. A., Garcia, R., & Otero, A.
24 251154	(2008). Theropod teeth associated with a sauropod carcass in the Upper Cretaceous (Plottier
26 271155	Formation) of Rincón de los Sauces. In Colectivo Arqueológico y Paleontológico de Salas de
28 291156 30	los Infantes (Ed.), <u>Actas de las IV Jornadas Internacionales sobre Paleontología de</u>
³¹ 1157	Dinosaurios y su Entorno (pp. 321-330). Salas de los Infantes, Burgos.
³³ 1158 34	Canudo, J. <u>I., & Ruiz-Omeñaca, J. I., (2003)</u> . Los restos directos de dinosaurios teropódos
³⁵ 1159 36	(excluyendo Aves) en España. Ciencias de la Tierra 26, 347-373.
³⁷ 1160 38	Canudo, J.I., Filippi, L.S., Salgado, L., Garrido, A.C., Cerda, I.A., Garcia, R., Otero, A.,
³⁹ 40 ¹¹⁶¹	2008. Theropod teeth associated with a sauropod carcass in the Upper Cretaceous (Plottier
$^{41}_{42}$ 1162	Formation) of Rincón de los Sauces. In: Colectivo Arqueológico y Paleontológico de Salas de
43 44 <mark>1163</mark>	los Infantes (Ed.), Actas de las IV Jornadas Internacionales sobre Paleontología de
45 461164	Dinosaurios y su Entorno, Salas de los Infantes, Burgos, pp. 321-330.
47 481165	Canudo, J.I. Barco, J.L., Pereda Suberbiola, X., Ruiz-Omenaca, J.I., Salgado, L., Torcida
49 501166	Fernández-Baldor, F., Gasulla, J.M., 2009. What Iberian dinosaurs reveal about the bridge
51 52	
53 54	47
55 56 57	
58 59	
60 61	
62	
64 67	
69	

	\square	Formatted:	Font: Italic
		Formatted:	Font: Italic
-			
<u>e</u>			
		Formatted:	Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: (Default) Times New Roman

Formatted: Font: Italic

7	said to exist between Gondwana and Laurasia in the Early Cretaceous. Bulletin de la Société		
8	Géologique de France, 180, 5–11.		
9	Carballido, J. <u>L., Salgado, L., Pol, D., Canudo, J.I., &</u> Garrido, A ., <u>(</u>2012) . A new basal		
0	rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin;		
1	evolution and biogeography of the group. <i>Historical Biology</i> , 24, 631–654.		Formatted: Font: Italic
2	Common M.T. Barson B.D.J. & Common S.D. (2012). The relationship of Totomuroe		Formatted: Font: Italic
2	Carrano, M. 1., Benson, R. B. J., & Sampson, S. D. (2012). The phylogeny of Tetanurae		
3	(Dinosauria: Theropoda). Journal of Systematic Palaeontology, 10, 211–300.	<	Formatted: Font: Italic
4	Carrano, M.T., <u>&</u> Sampson, S.D., (2008). The phylogeny of Ceratosauria (Dinosauria:		Formatted: Font: Italic
5	Theropoda). Journal of Systematic Palaeontology, 6, 183–236.		Formatted: Font: Italic
6	Carrano, M.T., Benson, R.B.J., Sampson, S.D., 2012. The phylogeny of Tetanurae		
7	(Dinosauria: Theropoda). Journal of Systematic Palaeontology 10, 211-300.		
8	Carvalho, I. S., Campos, A. C. A., <u>&</u> Nobre, P. H., (2005). <i>Baurusuchus salgadoensis</i> , a		
9	new Crocodylomorpha from the Bauru Basin (Cretaceous), Brazil. Gondwana Research, 8,		Formatted: Font: Italic
0	11–30.		Formatted: Font: Italic
1	Casal, G., Candeiro, CRA., Martinez, R., Ivany, E., & Ibiricu, L., (2009). Dientes de		
2	Theropoda (Dinosauria: Saurischia) de la Formación Bajo Barreal, Cretácico Superior,		
3	Provincia del Chubut, Argentina. Géobios, 42, 553–560.		Formatted: Font: Italic
4	Cau, A., Dalla Vecchia, F. M., <u>&</u> Fabbri, M ., (2013). A thick-skulled theropod (Dinosauria,		Formatted: Font: Italic
5	Saurischia) from the Upper Cretaceous of Morocco with implications for carcharodontosaurid		
6	cranial evolution Cretaceous Research 40, 251–260		Formatted: Font: Italic
0	eraniar evolution. <i>Cretaceous Research</i> , 40, 251–200.	<	Formatted: Font: Italic
7	Choiniere, J. N., Forster, C. A., & De Klerk, W. J., (2012). New information on		
8	Nqwebasaurus thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood		
9	Formation in South Africa. Journal of African Earth Sciences, 71–72, 1–17.		Formatted: Font: Italic
0	Chure, D.J., Manabe, M., Tanimoto, M., & Tomida, Y., (1999). An unusual theropod tooth		
1	from the Mifune Group (Late Cenomanian to Early Turonian), Kumamoto, Japan. In:		
	48		

1		
2 <mark>1192</mark> 3	Tomida, Y. Tomida, Rich, T. H. Rich, & Vickers Rich, P. Vickers-Rich (Eds.), Proceedings	Formatted: Font: Italic
4 <mark>1193</mark> 5	of the Second Gondwanan Dinosaur Symposium (pp. 291–296). Tokyo: National Science	
61194 7	Museum Monographs <u>,</u> 15 , Tokyo, pp. 291–296 .	
81195 9	Cifelli, RL., Davis, BM., & Sames, B., (2014). Earliest Cretaceous mammals from the	
$^{10}_{11}$ 1196	western United States. Acta Palaeontologica Polonica, 59, 31-52.	Formatted: Font: Italic
12 13 1197	doi:10.4202/app.2012.0089.	
14 15 ¹¹⁹⁸	Cobos, A., Lockley, M. G., Gascó, F., Royo-Torres, R., & Alcalá, L. (2014). Megatheropods	
16 17 1199	as apex predators in the typically Jurassic ecosystems of the Villar del Arzobispo Formation	
18 19 1200	(Iberian Range, Spain). <u>Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 31–41.</u>	Formatted: Font: Italic
20 21 1201	doi: 10.1016/j.palaeo.2014.02.008.	Formatted: Font: Italic
22 23 1202 24	Cobos, A., Royo-Torres, R., Luque, L., Alcalá, L., <u>&</u> Mampel, L ., <u>(</u>2010) . An Iberian	
251203 26	stegosaurs paradise: The Villar del Arzobispo Formation (Tithonian–Berriasian) in Teruel	
27 1204	(Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 223–236.	Formatted: Font: Italic
29 1205 30	Cobos, A., Lockley, M.G., Gascó, F., Royo Torres, R., Alcalá, L., 2014. Megatheropods as	Formatted: Font: Italic
³¹ 1206	apex predators in the typically Jurassic ecosystems of the Villar del Arzobispo Formation	
³³ 1207 34	(Iberian Range, Spain). Palacogeography, Palaeoclimatology, Palacoecology 399, 31-41. doi:	
³⁵ 1208 36	10.1016/j.palaeo.2014.02.008.	
³⁷ 1209 38	Codrea, V., Godefroit, P., & Smith, T. (2012). First discovery of Maastrichtian (latest	
39 40 ¹ 210	Cretaceous) terrestrial vertebrates in Rusca Montană Basin (Romania). In P. Godefroit (Ed.)	
41 42 ¹²¹¹	<u>Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (pp. 570–581).</u>	Formatted: Font: Italic
43 44 ¹ 212	Bloomington: Indiana University Press.	
45 46 <mark>1213</mark>	Codrea, V., Vremir, M., Jipa, C., Godefroit, P., Csiki, Z., Smith, T., <u>&</u> Fărcaș, C., (2010).	
47 48 1214	More than just Nopcsa's Transylvanian dinosaurs: A look outside the Hateg Basin.	
49 50 1215	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 391–405. doi:	Formatted: Font: Italic
51 5 21216	10.1016/j.palaeo.2009.10.027.	
53 54	49	
55 56		
57		
59		
61		
62 63		
64 65		

1 21217 3	Codrea, V., Godefroit, P., Smith, T., 2012. First discovery of Maastrichtian (latest	
4 1218 5	Cretaceous) terrestrial vertebrates in Rusea Montană Basin (Romania). In: Godefroit, P. (Ed.)	
6 1219	Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Indiana University Press,	
, 81220	Bloomington, pp. 570-581.	
10 11 1221	Colbert, E. <u>H. (</u> ,-1946). Sebecus, representative of a peculiar suborder of fossil Crocodilia	
12 12 12222	from Patagonia. Bulletin of the American Museum of Natural History, 87(4), 217–270.	Formatted: Font: Italic
14 1 1 1 1	Coria, R. A., & Currie, P. J. (2006). A new carcharodontosaurid (Dinosauria, Theropoda)	
⊥5 16 1 ⊐1224	from the Upper Cretaceous of Argentina, <i>Geodiversitas</i> , 28, 71–118.	Formatted: Font: Italic
18	Coria P. A. & Salgado I. (1005). A new giant corritorous dinescur from the Crotacoous	Formatted: Font: Italic
191225 20	Coria, R. A, & Salgado, L., (1995). A new grant carmivorous dinosaur from the Cretaceous	
21 1226	of Patagonia. <i>Nature</i> , 377, 224–226.	Formatted: Font: Italic
22 231227	Coria, RA., <u>&</u> Salgado, L.,(2005). Mid-Cretaceous turnover of saurischian dinosaur	Formatted: Font: Italic
24 251228	communities: evidence from the Neuquén Basin. In : Veiga, G.D. <u>Veiga</u> , Spalletti, L.A.	
26 271229	Spalletti, Howell, J. A. Howell, <u>& Schwartz, E. Schwartz</u> (Eds.), <i>The Neuquén Basin</i> ,	Formatted: Font: Italic
28 29 <u>1230</u>	Argentina: a case study in sequence stratigraphy and basin dynamics (pp. 317–327).	
30 31 <u>1231</u>	Geological Society, London, Special Publications, 252, pp. 317-327.	
³ ³ 1232	Coria, R.A., Currie, P.J., 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the	
³⁵ 1233	Upper Cretaceous of Argentina. Geodiversitas 28, 71–118.	
³⁷ 38	Covacef, Z.,,(1995). Pionieri ai culturii românești în Dobrogea; Ioan Cotovu și Vasile	
39 40 ¹²³⁵	Cotovu. Analele Dobrogei, I(1), 127–134.	Formatted: Font: Italic
41 4 2 ¹²³⁶	Császár, G., Kollányi, K., Lantos, M., Lelkes, G. <u>, and &</u> Tardiné Filácz, E ., . (2000 <u>)</u> . A	Formatted: Font: Italic
43 4 ¹ 237	Hidasivölgyi Márga Formáció kora és képződési környezete. <i>Földtani Közlöny</i> , 130(4), 695–	Formatted: Font: Italic
45 4 (1238	723.	Formatted: Font: Italic
47 481239	Csiki, Z., & Grigorescu, D., (1998). Small theropods of the Late Cretaceous of the Hateg	
49 50 1240	Basin (Western Romania) - an unexpected diversity at the top of the food chain. <i>Oryctos</i> , 1,	Formatted: Font: Italic
51 5 <i>2</i> 1241	87–104.	Formatted: Font: Italic
53		
54 55	50	
56		
57 58		
59		
60		
6⊥ 62		
63		
64		
65		

242	Csiki, Z., Vremir, M., Brusatte, S. L., <u>&</u> Norell, M. A., (2010). An aberrant island-dwelling			
243	theropod dinosaur from the Late Cretaceous of Romania. Proceedings of the National	_	Formatted: Font: Italic	
244	Academy of Sciences, 107, 15357–15361.		Formatted: Font: Italic	
245	Csiki Sava, Z., Codrea, V., Vasile, Ş., 2013. Early Cretaceous dinosaur remains from			
246	Dobrogea (southeastern Romania). In: Picot, L. (Ed.), Abstracts, 11th Annual Meeting of the			
247	European Association of Vertebrate Palacontologists, Villers-sur-Mer, France, pp. 28.			
248	Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., <u>&</u> Brusatte, S. L.,. (2015).			
249	Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of			
250	land-living vertebrates on the Late Cretaceous European archipelago. Zookeys, 469, 1–161.	<	Formatted: Font: Italic	
251	doi: 10.3897/zookeys.469.8439.		Formatted: Font: Italic	
252	Csiki-Sava, Z., Codrea, V., & Vasile, Ş. (2013). Early Cretaceous dinosaur remains from			
253	Dobrogea (southeastern Romania). In L. Picot (Ed.), Abstracts, 11th Annual Meeting of the			
254	European Association of Vertebrate Palaeontologists (pp. 28). Villers-sur-Mer, France.			
255	Csontos, L., <u>& Vörös</u> , A.,. (2004). Mesozoic plate tectonic reconstruction of the Carpathian			
256	region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 1-56. doi:		Formatted: Font: Italic	
257	10.1016/j.palaeo.2004.02.033.		Formatted: Font: Italic	
258	Currie, P.J., & Carpenter, K., (2000). A new specimen of Acrocanthosaurus atokensis			
259	(Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous,			
260	Aptian) of Oklahoma, USA. <i>Geodiversitas</i> . 22, 207–246.		Formatted: Font: Italic	
261	Currie, P.J., Rigby, J.K., <u>&</u> Sloan, R.E., (1990). Theropod teeth from the Judith River			
262	Formation of southern Alberta, Canada. In: Carpenter, K. Carpenter, & Currie, P. J. Currie			
263	(Eds,), .), Dinosaur Systematics: Approaches and Perspectives (pp. 107–125). Cambridge,	_	Formatted: Font: Italic	
264	Boston: Cambridge University Press , pp. 107–125 .			

1 2 <mark>1265</mark>	Dalla Vecchia, F. M. , (1998) . Remains of Sauropoda (Reptilia, Saurischia) in the Lower		
3 4 1266	Cretaceous (Upper Hauterivian/Lower Barremian) limestones of SW Istria (Croatia).		
5 61267 7	Geologia Croatica, 5, 105–134.	 Formatted: Font: Italic	
8 1268 9	Dames, W., (1884). Megalosaurus dunkeri. Sitzungberichte Gesellschaft Naturforschender	 Formatted: Font: Italic	
10 11 1269	Freunde zu Berlin, 1884, 186–188.	Formatted: Font: Italic	
12 13 14	De Klerk, WJ., Forster, CA., Sampson, SD., Chinsamy, A., & Ross, CF. (2000). A new		
15 ¹⁴ 1271	coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate	 Formatted: Font: Italic	
16 17 1272	Paleontology, 20, 324–332.	Formatted: Font: Italic	
18 19 1273 20	D'Emic, M. D., Melstrom, K. M., <u>&</u> Eddy, D. R., (2012). Paleobiology and geographic		
210 211274 22	range of the large-bodied Cretaceous theropod dinosaur Acrocanthosaurus atokensis.		
231275	Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334, 13–23.	Formatted: Font: Italic	_
24 251276 26	Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M., Cadet, J. P.,	Formatted: Font: Italic	
20 27 1277 28	Crasquin, S., <u>& Săndulescu</u> , M., <u>(Eds.)</u> (2000). <u>Atlas Peri-Tethys Palaeogeographical Maps</u>	Formatted: Font: Italic	
29 1278 30	(269 p). Paris: CCGM/CGMW , Paris, 269 pp .		
31 <mark>1279</mark> 32	Dinu, C., Grădinaru, E., Stoica, M., <u>&</u> Diaconescu, V.,. (2007). <i>Dobrogea 2007 Field Trip</i>	Formatted: Font: Italic	
³³ 1280 34	Preparation and Assistance (123 p.). University of Bucharest, 123 pp.		
³⁵ 1281 36	Dragastan, O. N., Antoniade, C., & Stoica, M. (2014). Biostratigraphy and zonation of the		
³⁷ 1282 38	Lower Cretaceous succession from Cernavodă-lock section, South Dobrogea, eastern part of		
39 40 ¹²⁸³	the Moesian Platform (Romania). Carpathian Journal of Earth and Environmental Sciences,	 Formatted: Font: Italic	_
41 42 ¹²⁸⁴	<u>9, 231–260.</u>	 Formatted: Font: Italic	
43 44 ¹ 285	Dragastan, O., Neagu, T., Bărbulescu, A., <u>&</u> Pană, I ., <u>(</u>1998). <i>Jurasicul și Cretacicul din</i>	 Formatted: Font: Italic	
45 46 ¹ 286	Dobrogea Centrală și de Sud <u>(249 p.)</u> . Bucharest , 249 pp .		
4 / 481287	Dragastan, O.N., Antoniade, C., Stoica, M., 2014. Biostratigraphy and zonation of the Lower		
49 501288 51	Cretaceous succession from Cernavodă-lock section, South Dobrogea, eastern part of the		
52			
53 54	50		
55	52		
56			
57 58			
59			
60			
61 62			
63			
64			
65			

9	Moesian Platform (Romania). Carpathian Journal of Earth and Environmental Sciences 9(1),		
0	231–260.		
1	Dyke, G.J., Benton, M.J., Posmoșanu, E., <u>&</u> Naish, D ., <u>(</u>2011) . Early Cretaceous		
2	(Berriasian) birds and pterosaurs from the Cornet bauxite mine, Romania. <i>Palaeontology</i> , 54,		Formatted: Font: Italic
3	79–95.		
4	Eberth, DA., Brinkman, DB., Chen, PJ., Yuan, FT., Wu, XC., Li, G., <u>& Cheng.</u>		
5	XianXShen, C.,. (2001). Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil		
6	preservation in Jurassic–Cretaceous strata of the Juggar Basin, Xinjiang Autonomous Region,		
7	People's Republic of China, Canadian Journal of Earth Sciences, 38, 1627–1644		Formatted: Font: Italic
'	Teople's Republic of China. <i>Canadian Journal of Earth Sciences</i> , 58, 1027–1044.	\leq	Formatted, Font: Italic
8	Eddy, DR., <u>&</u> Clarke, JA.,. (2011). New information on the cranial anatomy of		Formatted: Font: Italic
9	Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea		
0	(Dinosauria: Theropoda). <i>PLoS ONE</i> , 6(3), e17932. doi:10.1371/journal.pone.0017932.		Formatted: Font: Italic
1	Evans, S. <u>E.</u> , <u>&</u> Matsumoto, R., (2015). An assemblage of lizards from the Early Cretaceous		Formatted: Font: Italic
2	of Japan. Palaeontologia Electronica, 18.2.36A, 1–36.		Formatted: Font: Italic
3	Ezcurra, M. D., <u>& Agnolín, F. L., (2012)</u> . A new global palaeobiogeographical model for		
4	the Late Mesozoic and Early Tertiary, Systematic Biology, 61, 553–566.		Formatted: Font: Italic
		\leq	Formatted: Font: Italic
5	doi:10.1093/sysbio/syr115.		
6	Fanti, F., Cau, A., Cantelli, L., Hassine, M., <u>&</u> Auditore, M., (2015). New information on		
7	Tataouinea hannibalis from the Early Cretaceous of Tunisia and implications for the tempo		
8	and mode of rebbachisaurid sauropod evolution. PLoS ONE, 10(4), e0123475.		Formatted: Font: Italic
9	doi:10.1371/journal.pone.0123475.		Formatted: Font: Italic
0	Galton, P. M., (2009). Notes on Neocomian (Lower Cretaceous) ornithopod dinosaurs from		
1	England - Hypsilophodon, Valdosaurus, "Camptosaurus", "Iguanodon" - and referred		
2	specimens from Romania and elsewhere. Revue de Paléobiologie, 28, 211-273.		Formatted: Font: Italic
			Formatted: Font: Italic

3	Gardner, J. D., Evans, S. E., <u>&</u> Sigogneau-Russell, D., (2003). New albanerpetontid			
4	amphibians from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta		Formatted: Font: Italic	_
5	Palaeontologica Polonica, 48, 301–319.		Formatted: Font: Italic	
6	Gasca, JM., Canudo, JI., <u>&</u> Moreno-Azanza, M ., (2014). A large-bodied theropod			
7	(Tetanurae: Carcharodontosauria) from the Mirambel Formation (Barremian) of Spain. Neues		Formatted: Font: Italic	
8	Jahrbuch für Geologie und Paläontologie Abhandlungen, 273, 13–23. doi: 10.1127/0077-		Formatted: Font: Italic	
9	7749/2014/0413.			
0	Gheerbrant, E., <u>&</u> Rage, JC ., <u>(</u>2006) . Paleobiogeography of Africa: How distinct from			
1	Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 224–		Formatted: Font: Italic	
-		\leq	Formatted: Font: Italic	
2	246. doi:10.1016/j.palaeo.2006.03.016.			
3	Gishlick, AD., & Gauthier, JA.,. (2007). On the manual morphology of <i>Compsognathus</i>			
4	longipes and its bearing on the diagnosis of Compsognathidae. Zoological Journal of the	_	Formatted: Font: Italic	_
5	Linnean Society <u>.</u> 149, 569–581.			
6	Goloboff, P. A., Farris, J. S., <u>&</u> Nixon, K. C ., <u>(</u>2008) . TNT, a free program for phylogenetic			
7	analysis. Cladistics, 24, 774–786.		Formatted: Font: Italic	_
		<	Formatted: Font: Italic	_
8	Gradstein, FM., Ogg, JG., Schmitz, MD., <u>&</u> Ogg, GM. (Eds .), .) (2012). <i>The Geologic</i>		Formatted: Font: Italic	
9	<i>Time Scale 2012<u>(1144 p.)</u>. <u>Amsterdam:</u> Elsevier, 1144 pp.</i>			
0	Grigorescu, D. , (1992) . Nonmarine Cretaceous Formations of Romania. In: Matter, N.J.			
1	Matter, <u>& Chen, PJ. Chen</u> (Eds.), Aspects of Nonmarine Cretaceous Geology (pp. 142–164).		Formatted: Font: Italic	_
2	Beijing: China Ocean Press, Beijing, pp. 142–164.			
3	Grigorescu, D. . (2003). Dinosaurs of Romania. <i>Comptes rendus Rendus Palevol. 2, 97–101.</i>	_	Formatted: Font: Italic	
0		<	Formatted: Font: Italic	-
4	Grigorescu, D., (2010). The Latest Cretaceous fauna with dinosaurs and mammals from the			
5	Hateg Basin — A historical overview, <i>Palaeogeography</i> , <i>Palaeoclimatology</i> , <i>Palaeoecology</i> ,		Formatted: Font: Italic	
		\leq	Formatted: Font: Italic	_
6	293, 271–282.			

1 21337	Hammer, O., Harper, D. A. T., &
3 41338	package for education and data a
5 61339	Harris, J. <u>D., (</u> 1998). A reanalys
8 1340	and paleobiogeographic implicat
10 11 1341	Museum of Natural History and
12 13 ¹³⁴²	Hendrickx, C., <u>&</u> Mateus, O ., <u>(</u>2
14 15 ¹³⁴³	Jurassic of Portugal and dentition
16 17 ¹³⁴⁴	isolated theropod teeth. Zootaxa,
18 19 1345	Hendrickx, C., Mateus, O., <u>&</u> Ar
20 21 1346	Acta Palaeontologica Polonica
22 23 1347	Hendrickx, C., Mateus, O., <u>&</u> Ar
24 25 1348	teeth (Dinosauria, Saurischia). Jo
26 271349 28	10.1080/02724634.2015.982797
29 1350 30	Holtz, T. R., Chapman, R. E., &
31 <u>1351</u> 32	Dinosauria. In D. B. Weishampe
³³ 1352 34	Second Edition (pp. 627–642). B
³⁵ 1353 36	Press.
³⁷ 1354 38	Holtz, TR., Jr., Molnar, RE.,
39 40 ¹³⁵⁵	Weishampel, P. Dodson, & H. O
41 42 ¹³⁵⁶	(Eds.), The Dinosauria. Second I
43 44 <mark>1357</mark>	Berkeley, Los Angeles, London:
45 46 ¹ 358	Holtz, T.R., Chapman, R.E., Lan
47 481359	In: Weishampel, D.B., Dodson, I
49 501360	University of California Press, B
51	
53 54	
55	
56 57	
58	
59 60	
61	
62	
ьз 64	
65	

nmer, O., Harper, DAT., <u>&</u> Ryan, PD .,, (2001). Paleontological statistics software			
cage for education and data analysis. <i>Palaeontologia Electronica</i> , 4, 1–9.		Formatted: Font: Italic	
ris, JD.,		Formatted: Font: Italic	
paleobiogeographic implications, based on a new specimen from Texas. New Mexico		Formatted: Font: Italic	
eum of Natural History and Science Bulletin, 13, 1–75.			
drickx, C., <u>& Mateus</u> , O.,, (2014). Abelisauridae (Dinosauria: Theropoda) from the Late			
ssic of Portugal and dentition-based phylogeny as a contribution for the identification of			
ated theropod teeth. Zootaxa, 3751(1), 1–74.		Formatted: Font: Italic	
drickx, C., Mateus, O., <u>&</u> Araújo, R ., <u>(</u>2015a) . The dentition of megalosaurid theropods.		Formatted: Font: Italic	
a Palaeontologica Polonica, 60, 627–642. doi:10.4202/app.00056.2013.	<	Formatted: Font: Italic	
drickx, C., Mateus, O., <u>&</u> Araújo, R ., <u>(</u>2015b) . A proposed terminology of theropod		Formatted: Font: Italic	
n (Dinosauria, Saurischia). Journal of Vertebrate Paleontology, 35(5):-), e982797. doi:	<	Formatted: Font: Italic	
080/02724634.2015.982797.		Formatted: Font: Italic	
tz, T. R., Chapman, R. E., & Lamanna, M. C. (2004b). Mesozoic biogeography of			
osauria. In D. B. Weishampel, P. Dodson, & H. Osmólska (Eds.), The Dinosauria.		Formatted: Font: Italic	
ond Edition (pp. 627-642). Berkeley, Los Angeles, London: University of California			
<u>i8.</u>			
tz, T. R., Jr., Molnar, R. E., <u>&</u> Currie, P. J ., <u>(</u>2004a) . Basal Tetanurae. In : <u>D. B.</u>			
shampel, P. Dodson, & H. OsmólskaWeishampel, D.B., Dodson, P., Osmólska, H.			
s.), The Dinosauria. Second Edition (pp. 71–110). University of California Press,		Formatted: Font: Italic	
keley, Los Angeles, London: University of California Press-pp. 71–110.			
tz, T.R., Chapman, R.E., Lamanna, M.C., 2004b. Mesozoic biogeography of Dinosauria.			
Weishampel, D.B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. Second Edition.			
versity of California Press, Berkeley, Los Angeles, pp. 627–642.			

1		
- 21361 3	Huene, F. von- (1923). Carnivorous Saurischia in Europe since the Triassic. <i>Bulletin of the</i>	Formatted: Font: Italic
41362 5	Geological Society of America, 34, 449–458.	Formatted: Font: Italic
61363 7	Hippolyte, JC., (2002). Geodynamics of Dobrogea (Romania): new constraints on the	
81364 9	evolution of the Tornquist–Teisseyre Line, the Black Sea and the Carpathians.	
10_{11} 1365	Tectonophysics, 357, 33–53.	Formatted: Font: Italic
12 1366	Ionesi, L. , (1994). Geologia unitătilor de platformă și a orogenului Nord-Dobrogean (p.	Formatted: Font: Italic
⊥3 14 15 <mark>1367</mark>	<u>280)</u> . <u>Ed. Tehnică,</u> Bucharest <u>: Ed. Tehnică, 280 pp</u> .	
16 17 <mark>1368</mark>	Jerzykiewicz, T., <u>& Russell, D. A., (1991)</u> . Late Mesozoic stratigraphy and vertebrates of	
18 1 91369	the Gobi Basin. Cretaceous Research, 12, 345–377.	Formatted: Font: Italic
20 21 1370	Jurcsák, T. , (1982). Occurences nouvelles des Sauriens mésozoïques de Roumanie.	Formatted: Font: Italic
22 23 1371	Vertebrata Hungarica, 21, 175–184.	Formatted: Font: Italic
24		Formatted: Font: Italic
251372 26	Jurcsak, 1., <u>& Popa, E., (1979)</u> . Dinozaurieni ornitnopozi din bauxitele de la Cornet (Munții	
271373	Pădurea Craiului). <i>Nymphaea</i> . 7, 37–75.	Formatted: Font: Italic
29 1374	Jurcsák, T., <u>&</u> Popa, E ., <u>(</u>1983). La faune de dinosauriens du Bihor (Roumanie). In:	Formatted: Font: Italic
30 31 <u>1</u> 375 32	Buffetaut, E. Buffetaut, Mazin, J. M. Mazin, Salmon, E. Salmon (Eds.), Actes du Symposium	Formatted: Font: Italic
³³ 1376 34	Paléontologique Georges Cuvier (pp. 325–335). Le Serpentaire, Montbéliard: Le Serpentaire,	
³⁵ 1377 36	pp. 325–335 .	
³⁷ 1378 38	Kellner, AWA., Pinheiro, AEP., & Campos, DA.,(2014). A new sebecid from the	
³⁹ 40 ¹³⁷⁹	Paleogene of Brazil and the crocodyliform radiation after the K–Pg boundary. <i>PLoS ONE</i> .	Formatted: Font: Italic
41 42 ¹³⁸⁰	9(1), e81386. doi:10.1371/journal.pone.0081386.	Formatted: Font: Italic
43 44 ¹³⁸¹	Kirkland, J. I., Cifelli, R. L., Britt, B. B., Burge, D. L., DeCourten, F. L., Eaton, J. G., <u>&</u>	
45 46 ¹³⁸²	Parrish, J. <u>M., (1999)</u> . Distribution of vertebrate faunas in the Cedar Mountain Formation,	
47 481383	east-central Utah. Utah Geological Survey Miscellaneous Publication, 99-1, 201–217.	Formatted: Font: Italic
49 50		Formatted: Font: Italic
50 51		
52		
53 54	56	
55	50	
56		
57		

² 1384 3	Knoll, F., <u>&</u> Ruiz-Omeñaca, J. I., (2009). Theropod teeth from the basalmost Cretaceous of
41385 5	Anoual (Morocco) and their palaeobiogeographical significance. Geological Magazine, 146,
61386 7	602–616.
8 <mark>1387</mark> 9	Kusuhashi, N., Matsumoto, A., Murakami, M., Tagami, T., Hirata, T., Iizuka, T., Handa, T.,
10 11 11	& Matsuoka, H., (2006). Zircon U-Pb ages from tuff beds of the upper Mesozoic Tetori
12 13 13	Group in the Shokawa district, Gifu Prefecture, central Japan. <i>The Island Arc</i> , 15, 378–390.
14 15 ¹³⁹⁰	Lacasa Ruiz, A. , (1989). Nuevo genero de ave fosil del yacimiento Neocomiense del Montsec
16 17 <mark>1391</mark>	(Provincia de Lerida, España). Estudios geológicos, 45(5-6), 417–425.
18 19 1392	Larson, D. W., & Currie, P. J., (2013). Multivariate analyses of small theropod dinosaur
20 211393	teeth and implications for paleoecological turnover through time. <i>PLoS ONE</i> $\underline{8(1)}$, e54329.
22 231394	doi:10.1371/journal.pone.0054329.
24 251395 26	Le Loeuff, J., <u>&</u> Buffetaut, E. <u>-</u> (1995). The evolution of Late Cretaceous non-marine
20 271396 28	vertebrate faunas in Europe. In: Sun, AL. Sun, & Wang, YQ. Wang (Eds.), Sixth
29 29 1397 30	Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers (pp. 181–184).
31 <u>1</u> 398 32	China Ocean Press, Beijing,: China Ocean Press-pp. 181–184.
³³ 1399 34	Le Loeuff, J., Lang, E., Cavin, L., <u>&</u> Buffetaut, E ., (2012). Between Tendaguru and
³⁵ 1400 36	Bahariya: on the age of the Early Cretaceous dinosaur sites from the Continental Intercalaire
³⁷ 1401 38	and other African formations. Journal of Stratigraphy, 36, 486–502.
³⁹ 40 ¹⁴⁰²	Lucas, FA.,. (1901). A new dinosaur, Stegosaurus marshi, from the Lower Cretaceous of
41 42 ¹⁴⁰³	South Dakota. <i>Proceedings of the United States National Museum</i> , 23(1224), 591–592.
43 44 ¹ 404	Lucas, S. G., (2006). The Psittacosaurus biochron, Early Cretaceous of Asia. Cretaceous
45 46 ¹⁴⁰⁵	Research. 27, 189–198.
4 / 4 81406	Lucas, SG., <u>&</u> Estep, JW., (1998). Vertebrate biostratigraphy and biochronology of the
49 501407	Cretaceous of China. In Lucas, SG. Lucas, Kirkland, JI. Kirkland, Estep, JW. Estep
52	
53 54	57
55	
56 57	
58	
59	
60 61	
62	
63	
65	

1

Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

432	Mo, JY., Huang, CL., Xie, SW., <u>&</u> Buffetaut, E.,. (2014). A megatheropod tooth from			
433	the Early Cretaceous of Fusui, Guangxi, Southern China. Acta Geologica Sinica (English		Formatted: Font: Italic	_
434	<i>Edition</i>) <u>.</u> 88, 6–12.		Formatted: Font: Italic	
435	Molnar, R. <u>E., (1990)</u> . Problematic Theropoda: "Carnosaurs". In: Weishampel, D. B.			
436	Weishampel, Dodson, P. Dodson, <u>& Osmólska, H. Osmólska</u> (Eds.), <i>The Dinosauria (pp.</i>		Formatted: Font: Italic	
437	306–317). University of California Press, Berkeley, Los Angeles, Oxford, : University of			
438	<u>California Presspp. 306–317</u> .			
439	Mutihac, V., <u>& Mutihac, G., (2010)</u> . <i>The geology of Romania, within the Central East</i>		Formatted: Font: Italic	_
440	European geostructural context (p. 690). Ed. Didactică și Pedagogică, Bucharest: Ed.			
441	Didactică și Pedagogică, 690 pp.			
442	Neagu, T., Dragastan, O., <u>&</u> Csiki, Z.,. (1997). Early Cretaceous shelf paleocommunities of			
443	Cernavodă (South Dobrogea, SE Romania). Acta Palaeontologica Romaniae, 1, 28–36.	_	Formatted: Font: Italic	
444	Nopcsa, F.,. (1902). Notizen über cretacische Dinosaurier. Sitzungsberichte der Kaiserlichen		Formatted: Font: Italic Formatted: Font: Italic	
445	Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe. 111, 93–114.		Formatted: Font: Italic	_
446	Nopcsa, F., (1923). On the geological importance of the primitive reptilian fauna of the			
447	uppermost Cretaceous of Hungary; with a description of a new tortoise (Kallokibotium).			
448	Quarterly Journal of the Geological Society of London, 79, 100–116.		Formatted: Font: Italic	
449	Norman, D. B., (2010). A taxonomy of iguanodontians (Dinosauria: Ornithopoda) from the		Formatted: Font: Italic	
450	lower Wealden Group (Cretaceous: Valanginian) of southern England. Zootaxa, 2489, 47-66.		Formatted: Font: Italic	
451	Norman, DB.,. (2013). On the taxonomy and diversity of Wealden iguanodontian dinosaurs		Formatted: Font: Italic	
452	(Ornithischia: Ornithopoda). <i>Revue de Paléobiologie</i> , 32(2), 385–404.		Formatted: Font: Italic	
453	Novas, F. E., Agnolín, F. L., Ezcurra, M. D., Porfiri, J., & Canale, J. I. (2013). Evolution of		Formatted: Font: Italic	
454	the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. <u>Cretaceous</u>		Formatted: Font: Italic	
455	<u>Research, 45, 174–215.</u>		Formatted: Font: Italic	

1			
- 4456 3	Novas, F. E., de Valais, S., Vickers-Rich, P. A., <u>&</u> Rich, T. H., (2005). A large Cretaceous		
4 1457	theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids.		
	Naturwissenschaften, 92, 226–230.	Formatted: Font: Italic	
7 1459	Novas, F.E., Agnolín, F.L., Ezcurra, M.D., Porfiri, J., Canale, J.I., 2013. Evolution of the	Formatted: Font: Italic	
) 1460	carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretaceous		
2 1461	Research 45, 174–215.		
1 _1462	Ortega, F., Escaso, F., <u>&</u> Sanz, J. L., (2010). A bizarre, humped Carcharodontosauria		
5 ₇ 1463	(Theropoda) from the Lower Cretaceous of Spain. Nature, 467, 203-206.	 Formatted: Font: Italic	
3 ∮1464	Ősi, A., Codrea, V., Prondvai, E., & Csiki-Sava, Z. (2014). New ankylosaurian material from	Formatted: Font: Italic	
) 1465	the Upper Cretaceous of Transylvania. Annales de Paléontologie, 100, 257–271. doi:	Formatted: Font: Italic	
2		Formatted: Font: Italic	
31466 1	<u>10.1016/j.annpai.2014.02.001.</u>		
1467	Ősi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., <u>&</u> Gulyás, P. , (2012). The Late		
5 71468 3	Cretaceous continental vertebrate fauna from Iharkút (western Hungary): a review. In:		
21469	Godefroit, P. Godefroit (Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial	 Formatted: Font: Italic	
4470	Ecosystems (pp. 533-569). Indiana University Press, Bloomington, : Indiana University		
- 3 1471 1	<u>Press</u> pp. 533–569.		
	Ősi, A., Codrea, V., Prondvai, E., Csiki-Sava, Z., 2014. New ankylosaurian material from the		
7 1473 3	Upper Cretaceous of Transylvania. Annales de Paléontologie 100, 257-271. doi:		
) 1474	10.1016/j.annpal.2014.02.001.		
1475_1	Ősi, A., Rabi, M., <u>& Makádi, L., (2015)</u> . An enigmatic crocodyliform tooth from the		
3 1476	bauxites of western Hungary suggests hidden mesoeucrocodylian diversity in the Early		
5 -1477	Cretaceous European archipelago. <i>PeerJ</i> , 3, e1160. doi:10.7717/peerj.1160.	Formatted: Font: Italic	
7 31 478	Paolillo, A., <u>&</u> Linares, O. J., (2007). Nuevos cocodrilos Sebecosuchia del Cenozoico	Formatted: Font: Italic	
) 1479	Suramericano (Mesosuchia: Crocodylia). <i>Paleobiologia Neotropical</i> , 3, 1–25.	Formatted: Font: Italic	
L		Formatted: Font: Italic	
۲			

-			
⊥ 21480 3	Pereda-Suberbiola, X., Ruiz-Omeñaca, J. I., Canudo, J. I., Torcida, F., & Sanz, J. L. (2012).		
41481 5	Dinosaur faunas from the Early Cretaceous (Valanginian-Albian) of Spain. In P. Godefroit		
61482 7	(Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (pp. 378–407).		Formatted: Font: Italic
8 1483 9	Bloomington: Indiana University Press.		
10 1484 11	Pereda-Suberbiola, X., Ruiz-Ome <u>n</u> aca, J. I., Fernandez-Baldor, F. T., Maisch, M. W.,		
12 1 485 13	Huerta, P., Contreras, R., Izquierdo, LA., Huerta, DM., Montero, VU., <u>&</u> Welle, J ., .		
14 15 ¹⁴⁸⁶	(2011). A tall-spined ornithopod dinosaur from the Early Cretaceous of Salas de los Infantes		
16 ₁₇ 1487	(Burgos, Spain). Comptes Rendus Palevol, 10, 551–558.		Formatted: Font: Italic
18 19 1488	Pereda-Suberbiola, X., Ruiz-Omenaca, J.I., Canudo, J.I., Torcida, F., Sanz, J.L., 2012.		Formatted: Font: Italic
20 21 1489	Dinosaur faunas from the Early Cretaceous (Valanginian Albian) of Spain. In: Godefroit, P.		
22 23 1490	(Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Life of the Past.		
24 251491 26	Indiana University Press, Bloomington, pp. 378–407.		
2 71492 28	Pérez-Moreno, BP., Sanz, JL., Sudre, J., & Sigé, B., (1993). A theropod dinosaur from		
2 91493 30	the Lower Cretaceous of southern France. <i>Revue de Paléobiologie</i> , <i>Volume spéciale 7</i> , 173–	\langle	Formatted: Font: Italic
³¹ 1494	188.		Formatted: Font: Italic
^{3 3} 1495 3 4	Pol, D., <u>&</u> Powell, J. <u>E., (2011)</u> . A new sebecid mesoeucrocodylian from the Rio Loro		
³⁵ 1496 36	Formation (Palaeocene) of north-western Argentina. Zoological Journal of the Linnean		Formatted: Font: Italic
³⁷ 1497 38	Society, 163, S7–S36.		Formatted: Font: Italic
39 10 1498	Porfiri, J. D., Novas, F. E., Calvo, J. O., Agnolín, F. L., Ezcurra, M. D., & Cerda, I. A.		
41 42 ¹⁴⁹⁹	(2014). Juvenile specimen of Megaraptor (Dinosauria, Theropoda) sheds light about		
43 441500	tyrannosauroid radiation. Cretaceous Research, 51, 35-55. doi:10.1016/j.cretres.2014.04.007.		Formatted: Font: Italic
45 46 ¹⁵⁰¹	Posmoșanu, E.,		Formatted: Font: Italic
47 1¢1502	from Romania, Acta Palaeontologica Romaniae, 4, 431–439.		Formatted: Font: Italic
49		\leq	Formatted: Font: Italic

503	Porfiri, J.D., Novas, F.E., Calvo, J.O., Agnolín, F.L., Ezcurra, M.D., Cerda, I.A., 2014.		
504	Juvenile specimen of Megaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid		
505	radiation. Cretaceous Research, 51, 3555. doi:10.1016/j.cretres.2014.04.007.		
506	Rabi, M., <u>&</u> Sebők, N ., (2015) . A revised Eurogondwana model: Late Cretaceous		Formatted: Left, Adjust space
507	notosuchian crocodyliforms and other vertebrate taxa suggest the retention of episodic faunal		space between Asian text and numbers
508	links between Europe and Gondwana during most of the Cretaceous. Gondwana Research_		Formatted: Font: Italic
509	28, 1197–1211. doi:10.1016/j.gr.2014.09.015.		Formatted: Font: Italic
510	Racey, A.,(2009). Mesozoic red bed sequences from SE Asia and the significance of the		
511	Khorat Group of NE Thailand. In : Buffetaut, E. <u>Buffetaut</u> , Cuny, G. <u>Cuny</u> , Le Loeuff, J.<u>Le</u>		
512	Loeuff, <u>& Suteethorn, V. Suteethorn</u> (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE		Formatted: Font: Italic
513	Asia (pp. 41–67). The Geological Society, London, Special Publications, 315, pp. 41–67. doi:		
514	10.1144/SP315.5.		
515	Racey, A., <u>&</u> Goodall, JGS.,(2009). Palynology and stratigraphy of the Mesozoic Khorat		
516	Group red bed sequences from Thailand. In: Buffetaut, E. Buffetaut, Cuny, G. Cuny, Le		
517	Loeuff, J. Le Loeuff, & Suteethorn, V. Suteethorn (Eds.), Late Palaeozoic and Mesozoic		Formatted: Font: Italic
518	Ecosystems in SE Asia (pp. 69–83). The Geological Society of, London, Special Publications.		
519	315 , pp. 69–83 . doi: 10.1144/SP315.6.		
520	Rauhut, OWM(2011). Theropod dinosaurs from the Late Jurassic of Tendaguru		
521	(Tanzania). Special Papers in Palaeontology, 86, 195–239.		Formatted: Font: Italic
522	Rauhut, OWM., & Werner, C.,. (1995). First record of the family Dromaeosauridae		Formatted: Font: Italic
523	(Dinosauria: Theropoda) in the Cretaceous of Gondwana (Wadi Milk Formation, northern		
524	Sudan. Paläontologische Zeitschrift, 69 (3/4) , 475–489.		Formatted: Font: Italic
525	Richter, U., Mudroch, A., & Buckley, L. G., (2013). Isolated theropod teeth from the Kem		Formatted: Font: Italic
526	Kem Beds (Early Cenomanian) near Taouz, Morocco. <i>Paläontologische Zeitschrift</i> , 87, 291–		Formatted: Font: Italic
527	309.	\leq	Formatted: Font: Italic
	207. 60		
	02		

3	Royo-Torres, R., Cobos, A., Luque, L., Aberasturi, A., Espilez, E., Fierro, I., Gonzales, A.,	
9	Mampel, L., <u>&</u> Alcalá, L ., <u>(</u>2009) . High European sauropod dinosaur diversity during	
)	Jurassic-Cretaceous transition in Riodeva (Teruel, Spain). Palaeontology, 52, 1009-1027.	 Formatted: Font: Italic
1	Sachs, S., <u>& Hornung, J. J., (2013)</u> . Ankylosaur remains from the Early Cretaceous	Formatted: Font: Italic
2	(Valanginian) of Northwestern Germany. <i>PLoS ONE</i> , 8(4), e60571.	Formatted: Font: Italic
3	doi:10.1371/journal.pone.0060571.	Formatted: Font: Italic
1	Salgado, L., Canudo, J. I., Garrido, A. C., Ruiz-Omeñaca, J. I., Garcia, R. A., de la Fuente,	
5	MS., Barco, JL., <u>&</u> Bollati, R., (2009). Upper Cretaceous vertebrates from El Anfiteatro	
5	area, Río Negro, Patagonia, Argentina. Cretaceous Research, 30, 767–784.	Formatted: Font: Italic
7	Samas P. Cifalli P. L. & Sabudaak M. E. (2010) The nonmarine Lower Crotecoous of	Formatted: Font: Italic
<i>'</i>	Sames, B., Chem, KL., & Schudack, M. L., 12010. The hommarme Lower Cretaceous of	
3	the North American Western Interior foreland basin: New biostratigraphic results from	
)	ostracod correlations and early mammals, and their implications for paleontology and	
)	geology of the basin—An overview. <i>Earth-Science Reviews</i> , 101, 207–224.	Formatted: Font: Italic
1	Sauvage H E_ (1876) Notes sur les reptiles fossiles <i>Bulletin de la Société Géologique de</i>	Formatted: Font: Italic
L	Sauvage, II. L., 1070]. Notes sur les reputes rossiles. <i>Duttent de la Societe Geologique de</i>	Formatted: Font: Italic
2	France, 4, 435–442.	 Formatted: Font: Italic
3	Sauvage, H. E., (1882). Recherches sur les reptiles trouves dans le Gault de l'est du bassin	
1	de Paris. Mémoires de la Société Géologique de France, 2, 1–42.	Formatted: Font: Italic
_	Săndulagou M. (1984), Castastaniag Româniai (n. 220), Ed. Tahniaă, Rusharast, 220 nn;	Formatted: Font: Italic
)	Sandulescu, M .,. (1984). <i>Geolecionica Romaniei</i> (p. 329). Ed. Tennica, Bucharest , 329 pp.	 Formatted: Font: Italic
5	Ed. Tehnică.	
7	Seghedi, A.,	
3	A. Ziegler, Cavazza, W. Cavazza, Robertson, A. H. F. Robertson, & Crasquin Soleau, S.	
Ð	Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive	Formatted: Font: Italic
)	Margins (pp. 237–257). Paris: Mémoires de la Musée National d'Histoire Naturelle, Paris, pp.	
L	237–257 .	
2	Sereno, P. <u>C., (1999)</u> . Dinosaurian biogeography: vicariance, dispersal and regional	
	63	

1				
21553 3	extinction. In: Tomida, Y. Tomida, Rich, T. H. Rich, & Vickers Rich, P. Vickers-Rich (Eds.),			
41554 5	Proceedings of the Second Gondwanan Dinosaur Symposium (pp. 249–257). Tokyo: National	_	Formatted: Font: Italic	_
61555 7	Science Museum Monographs <u>.</u> 15 , Tokyo, pp. 249–257 .			
8 9 556	Sereno, PC., <u>&</u> Brusatte, SL.,			
10 11 11	theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica		Formatted: Font: Italic	_
12 13 ¹⁵⁵⁸	<i>Polonica</i> , 53, 15–46.		Formatted: Font: Italic	
14 15 ¹⁵⁵⁹	Sereno, PC., Dutheil, DB., Iarochene, M., Larsson, HCE., Lyon, GH., Magwene, PM.,			
16 17 <mark>1560</mark>	Sidor, CA., Varricchio, DJ., <u>&</u> Wilson, JA., <u>(1996)</u> . Predatory dinosaurs from the Sahara			
18 19 1561	and Late Cretaceous faunal differentiation. <i>Science</i> , 272, 986–991.	<	Formatted: Font: Italic	
20 2 <u>1</u> 1562	Shen, YB., <u>&</u> Mateer, NJ.,. (1992). An outline of the Cretaceous system in northern		Formatted: Font: Italic	
22 231563	Xinjiang, western China. In: Mateer, N.J. Mateer, & Chen, P.J. Chen (Eds.), Aspects of		Formatted: Font: Italic	_
24 251564 26	Nonmarine Cretaceous Geology (pp. 49–77). China Ocean Press, Beijing: China Ocean			
20 271565 28	<u>Press, pp. 49–77</u> .			
291566 30	Simionescu, I. , (1906). Note sur l'age des calcaires de Cernavoda (Dobrogea). <u>Annales</u>		Formatted: Font: Italic	
31 <u>1567</u> 32	Scientifiques de l'Université de Jassy, 4(1), 1–3.		Formatted: Font: Italic	
³³ 1568 34	Simionescu, I. , (1913) . Megalosaurus aus der Unterkreide der Dobrogea. <u>Centralblatt für</u>		Formatted: Font: Italic	
³⁵ 1569 36	Mineralogie, Geologie und Paläontologie, 1913(20), 686–687.		Formatted: Font: Italic	_
³⁷ 1570 38	Sissingh, W., (1977). Biostratigraphy of Cretaceous calcareous nannoplankton. <i>Geologie en</i>		Formatted: Font: Italic	_
39 40 ¹⁵⁷¹	<i>Mijnbouw</i> , 56, 37–65.		Formatted: Font: Italic	_
41 42 ¹⁵⁷²	Smith, JB., Vann, DR., & Dodson, P.,. (2005). Dental morphology and variation in			
43 44 ¹⁵⁷³	theropod dinosaurs: implications for the taxonomic identification of isolated teeth. <i>The</i>		Formatted: Font: Italic	_
45 46 ¹⁵⁷⁴	Anatomical Record A, 285A, 699–736.		Formatted: Font: Italic	_
47 481575	Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D. B., Redelstorff, R., Carballido, J. L.,			
49 50 1576	& Sander, P. M., (2010). Small body size and extreme cortical bone remodeling indicate			
51				
53				
54 55	64			
56				
57				
58				
59				
60				
61 62				
02 63				
64				
65				

1		
21602 3	Turculeț, I., <u>&</u> Brânzilă, M.,. (2012). <i>Muzeul colecțiilor paleontologice originale de la</i>	Formatted: Font: Italic
41603 5	Universitatea "Alexandru Ioan Cuza" Iași <u>(p. 173)</u> . Editura Universității "Alexandru Ioan	
6 1604 7	Cuza" Iași, Iași , <u>:</u> Editura Universității "Alexandru Ioan Cuza" Iași 173 pp .	
8 1605	Turner, A. H., Makovicky, P. J., & Norell, M. A. (2012). A review of dromaeosaurid	
10 11 11	systematics and paravian phylogeny. Bulletin of the American Museum of Natural History,	Formatted: Font: Italic
12 13 ¹⁶⁰⁷	<u>371, 1–206.</u>	Formatted: Font: Italic
14 15 ¹⁶⁰⁸	Turner, A. H., <u>&</u> Sertich, J. J. W., (2010). Phylogenetic history of Simosuchus clarki	
16 17 <mark>1609</mark>	(Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Journal of	Formatted: Font: Italic
18 19 1610	Vertebrate Paleontology, 30(Supplement 1), 177–236.	Formatted: Font: Italic
20 21 1611	Turner, A.H., Makovicky, P.J., Norell, M.A., 2012. A review of dromaeosaurid systematics	
22 231612	and paravian phylogeny. Bulletin of the American Museum of Natural History 371, 1-206.	
24 251613	Vasile, Ş., <u>&</u> Csiki, Z.,. (2011). New Maastrichtian microvertebrates from the Rusca	
26 271614	Montană Basin (Romania). <i>Oltenia. Studii și comunicări. Științele Naturii</i> , 27(1), 221–230.	Formatted: Font: Italic
20 291615 30	Vickers-Rich, P., Rich, TH., Lanus, DR., Rich, LSV., <u>& Vacca, R., (1999)</u> . "Big	Formatted: Font: Italic
31 <u>1616</u>	Tooth" from the Early Cretaceous of Chubut Province, Patagonia: a possible	
³³ 1617 34	carcharodontosaurid. In : Tomida, Y. <u>Tomida</u> , Rich, T. H. <u>Rich</u> , Vickers-Rich, <u>&</u> P. <u>Vickers-</u>	
³⁵ 1618 36	Rich (Eds.), <i>Proceedings of the Second Gondwanan Dinosaur Symposium</i> (pp. 85–88).	Formatted: Font: Italic
³⁷ 1619 38	Tokyo: National Science Museum Monographs, 15 , Tokyo, pp. 85-88 .	
39 40 ¹⁶²⁰	Vremir, M.,(2010). New faunal elements from the Late Cretaceous (Maastrichtian)	
41 42 ¹⁶²¹	continental deposits of Sebeş area (Transylvania). <i>Terra Sebus. Acta Musei Sabesiensis</i> , 2,	Formatted: Font: Italic
43 44 <mark>1622</mark>	635–684.	Formatted: Font: Italic
45 46 ¹⁶²³	Vullo, R., Néraudeau, D., <u>&</u> Lenglet, T.,. (2007). Dinosaur teeth from the Cenomanian of	
47 481624	Charentes, western France: evidence for a mixed Laurasian-Gondwanan assemblage. Journal	Formatted: Font: Italic
49 501625	of Vertebrate Paleontology, 27, 931–943.	Formatted: Font: Italic
51 52		
53 54	бб	
55		
56		
57		
58 59		
60		
61		
62		
63		
64		
65		

1 21626 3	Weishampel, D. B., (1990). Dinosaurian distribution. In: Weishampel, D. B. Weishampel,
41627 5	Dodson, P. Dodson, Osmólska, & H. Osmólska (Eds.), The Dinosauria (pp. 63–140).
61628 7	California University Press, Berkeley, Los Angeles, OxfordBerkeley,: California University
81629 9	<u>Press pp. 63–140</u> .
$^{10}_{11}$ 1630	Weishampel, D. B., Barrett, P. M., Coria, R. A., Le Loeuff, J., Xu, X., Zhao, X-J., Sahni, A.,
12 13 ¹⁶³¹	Gomani, E. M., & Noto, C. R. (2004). Dinosaur distribution. In D. B. Weishampel, P.
14 151632	Dodson, & H. Osmólska (Eds.), The Dinosauria. Second Edition (pp. 517-606). Berkeley,
16 17 <mark>1633</mark>	Los Angeles, London: University of California Press.
18 1634و 1	Weishampel, D. B., Csiki, Z., Benton, M. J., Grigorescu, D., & Codrea, V. (2010).
20 2 <u>1</u> 1635	Palaeobiogeographic relationships of the Hateg biota — Between isolation and innovation.
231636	Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 419–437.
24 251637	Weishampel, DB., Grigorescu, D., <u>& Norman, D. B., (1991)</u> . The Dinosaurs of
26 271638	Transylvania. National Geographic Research & Exploration, 7(2), 196–215.
28 291639 30	Weishampel, D. B., Jianu, C. M., Csiki, Z., & Norman, D. B. (2003). Osteology and
31 <u>1</u> 640	phylogeny of Zalmoxes (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous
³³ 1641	of Romania. Journal of Systematic Palaeontology, 1, 65–123.
³⁵ 1642	Weishampel, DB., Norman, DB., <u>&</u> Grigorescu, D .,. (1993). Telmatosaurus
³⁷ 1643 38	<i>transsylvanicus</i> from the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur.
³⁹ 40 ¹⁶⁴⁴	Palaeontology, 36, 361–385.
41 42 ¹⁶⁴⁵	Weishampel, D.B., Jianu, C.M., Csiki, Z., Norman, D.B., 2003. Osteology and phylogeny of
43 441646	Zalmoxes (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous of Romania.
45 461647	Journal of Systematic Palaeontology 1, 65–123.
47 48 1648	Weishampel, D.B., Barrett, P.M., Coria, R.A., Le Locuff, J., Xu, X., Zhao, X-J., Sahni, A.,
49 501649	Gomani, E.M., Noto, C.R., 2004. Dinosaur distribution. In: Weishampel, D.B., Dodson, P.,
51	
53 54	67
55 56	
57 58	
59 60	
61 62	
63	
64 65	

Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic Formatted: Font: Italic

Formatted: Font: Italic Formatted: Font: Italic

	Osmólska, H. (Eds.), The Dinosauria. Second Edition. University of California Press,	
	Berkeley, Los Angeles, London, pp. 517-606.	
	Weishampel, D.B., Csiki, Z., Benton, M.J., Grigorescu, D., Codrea, V., 2010.	
	Palaeobiogeographic relationships of the Hateg biota — Between isolation and innovation.	
	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 419-437.	
	Williamson, TE., <u>&</u> Brusatte, SL.,. (2014). Small theropod teeth from the Late Cretaceous	
	of the San Juan Basin, northwestern New Mexico and their implications for understanding	
	latest Cretaceous dinosaur evolution. <i>PLoS ONE</i> , 9(4), e93190.	 Formatted: Font: Italic
	doi:10.1371/journal.pone.0093190.	Formatted: Font: Italic
ĺ	Zarcone, G., Cillari, FMP., Stefano, PD., Guzzetta, D., <u>&</u> Nicosia, U ., . (2010). A	
	possible bridge between Adria and Africa: New palaeobiogeographic and stratigraphic	
	constraints on the Mesozoic palaeogeography of the Central Mediterranean area. Earth-	 Formatted: Font: Italic
	Science Reviews, 103, 154–162.	 Formatted: Font: Italic

Figure captions

Figure 1. Simplified geological map of the Cernavodă-Cochirleni area; inset shows the
position of the study area within Romania. Legend: 1. Quaternary: a. Holocene alluvia, b.
Pleistocene–Holocene loessoid deposits; 2. Pre-Quaternary Cenozoic (Middle Eocene and
Miocene) deposits; Cretaceous: 3. Peştera Formation, Lower Cenomanian; 4. Cochirleni
Formation; uppermost Aptian–Lower Albian; 5. Gherghina Formation, Middle–Upper
Aptian; 6. Ostrov (= Ramadan) Formation; Barremian–Lower Aptian; 7. Cernavodă
Formation, Alimanu Member, Berriasian–Valanginian; 8. Water courses. (Redrawn after
Dragastan et al., 1998, 2014).

Figure 2. Specimen UAIC (SCM1) 615, indeterminate carcharodontosaurid lateral tooth from
Cochirleni, Southern Dobrogea. A. UAIC (SCM1) 615, as figured by Simionescu (1913); B.
Current state of UAIC (SCM1) 615, mounted in a limestone holder.

Figure 3. Detailed morphology of UAIC (SCM1) 615, an indeterminate carcharodontosaurid
lateral tooth from Cochirleni, Southern Dobrogea. UAIC (SCM1) 615 in A. labial? side; B.,
distal; C., lingual? side, and D., basal (mesial to the right) views. Details of the distal carina
(marked with boxes in A, respectively C): apical part in E., labial? and F. distal views; basal
part in G., lingual? and H., distal views. Scale bar: 1 cm (A–D), 5 mm (E–H).

Figure 4. Dental morphospace of the different theropod clades according to the results of the
PCA analysis; UAIC (SCM1) 615 (red star) plots within the morphospace occupied by
Carcharodontosauridae. See further details of this analysis, as well as other quantitative
analyses used to identify the tooth that deliver similar results (cluster analysis, discriminant
function analysis, phylogenetic analysis), in the Supplementary Material.

Figure 5. A. Palaeogeographic setting of the two early Early Cretaceous Romanian dinosaur
occurrences: the Berriasian–Valanginian Cornet locality (orange star), located on a NeoTethyan archipelago island, and the Valanginian Cochirleni locality (red star), situated on the
marginal areas of the Eastern European cratonic mainland. B. Global chronostratigraphic and
palaeobiogeographic distribution of the Carcharodontosauridae, plotted on Middle Aptian
(approx. 120 Mya) palaeogeographic map; red star marks the position of UAIC (SCM1) 615
from Southern Dobrogea. Legend: 1 – *Veterupristisaurus*, '*Megalosaurus' ingens*,
Carcharodontosauridae indet., Tanzania, Late Jurassic; 2 – *Concavenator*, Spain, Barremian;
3 – Carcharodontosauridae indet., Thailand, Barremian; 4 – *Acrocanthosaurus*, southeastern

700	United States, Aptian-Albian; 5 - Carcharodontosauridae indet., Spain, Aptian; 6 -
701	Eocarcharia, Niger, Aptian-Albian; 7 - Carcharodontosauridae indet., Guangxi, China,
702	Aptian; 8 – Carcharodontosauridae indet., Henan, China, Aptian; 9 – Kelmayisaurus,
703	Xinjiang, China, Aptian–Albian; 10 – Carcharodontosauridae indet., France, Cenomanian; 11
704	- Sauroniops, Morocco, Cenomanian; 12 - Carcharodontosauridae indet., Japan,
705	Cenomanian-early Turonian; 13 - Shaochilong, Inner Mongolia, China, Turonian; 14 -
706	Carcharodontosauridae indet., São Paulo, Brazil, Campanian-Maastrichtian (for relevant
707	references, see text, 5.4.). Palaeogeographic maps, courtesy of Ron Blakey
708	(http://cpgeosystems.com/).

"Megalosaurus cf. superbus" from southeastern Romania: the oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous **Europe-Gondwana connections** Zoltán Csiki-Sava^{1*}, Stephen L. Brusatte², Stefan Vasile¹ ¹ Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, 1 Nicolae Bălcescu Boulevard, 010041 Bucharest, Romania ² School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh, EH9 3FE, United Kingdom * Corresponding author zoltan.csiki@g.unibuc.ro ABSTRACT Some of the best records of continental vertebrates from the Cretaceous of Europe come from Romania, particularly two well-known occurrences of dwarfed and morphologically aberrant dinosaurs and other taxa that lived on islands (the Cornet and Hateg Island faunas). Substantially less is known about those vertebrates living in the more stable, cratonic regions of Romania (and Eastern Europe as a whole), particularly during the earliest Cretaceous. We describe one of the few early Early Cretaceous fossils that have ever been found from these regions, the tooth of a large theropod dinosaur from Southern Dobrogea, which was discovered over a century ago but whose age and identification have been controversial. We identify the specimen as coming from the Valanginian stage of the Early Cretaceous, an incredibly poorly sampled interval in global dinosaur evolution, and as belonging to Carcharodontosauridae, a clade of derived, large-bodied apex predators whose earliest

Cretaceous history is poorly known. Quantitative analyses demonstrate that the Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, which until now has been known solely from Gondwana. Our results suggest that this subgroup of colossal predators did not evolved vicariantly as Laurasia split from Gondwana, but originated earlier, perhaps in Europe. The carcharodontosaurine diversification may have been tied to a north-to-south trans-Tethyan dispersal that took place sometime between the Valanginian and Aptian, illustrating the importance of palaeogeographic ties between these two realms during the largely mysterious early-mid Early Cretaceous. Keywords Southern Dobrogea; Valanginian; Carcharodontosauridae; cratonic Europe; palaeobiogeography 1. Introduction Romania boasts one of the best records of continental vertebrate fossils from the Cretaceous of Europe (e.g., Grigorescu, 1992, 2003; Csiki-Sava et al., 2015). The vast majority of fossils come from two well-known occurrences: the Early Cretaceous bauxite accumulations of Cornet, in the northern Apuseni Mountains (e.g., Jurcsák, 1982; Benton et al., 1997; Posmosanu, 2003; Dyke et al., 2011), and the famous latest Cretaceous beds of the Hateg, Rusca Montană and western Transylvanian basins of Transylvania, which have yielded the dinosaur-dominated 'Hateg Island fauna' (e.g. Nopcsa, 1923; Weishampel et al., 1991; Benton et al. 2010; Codrea et al., 2010, 2012; Grigorescu, 2010; Vremir, 2010; Vasile and Csiki, 2011; Csiki-Sava et al., 2015). Both of these faunas inhabited islands that were part of the vast Cretaceous European Archipelago of the Neo-Tethys Ocean. Based on their isolated

51 geological settings and the many dwarfed and morphologically aberrant taxa that make up the 52 faunas, both have been interpreted as insular assemblages that give a unique window into 53 how island environments affected the evolution of long-extinct organisms (e.g., Benton et al., 54 1997, 2010; Csiki-Sava et al., 2015).

The great volume of research on these assemblages over the past century, particularly the 'Hateg Island fauna', has concealed an inconvenient bias: the stable, non-island, cratonic regions of Romania have yielded only extremely rare Mesozoic continental vertebrate remains (i.e., the Moldavian, Moesian and Scythian platforms; Săndulescu, 1984; Mutihac and Mutihac, 2010; Fig. 1). This is mostly because Mesozoic deposits are located in the subsurface in these regions, with only limited subaerial exposures available in the structurally highest-lying parts of the Moesian Platform, in Central and Southern Dobrogea (Middle Jurassic-Upper Cretaceous), as well as in the northeastern-most corner of the Moldavian Platform, along the Prut Valley (lower Upper Cretaceous) (see, e.g., Mutihac and Mutihac, 2010). This bias is unfortunate because fossils from these settings could lead to a better understanding of how mainland and island faunas differed during the Cretaceous, and because the cratonic portion of Europe was an important biogeographic stepping stone between the north and south as the continents fragmented and sea levels fluctuated.

Although the cratonic regions of Romania have yielded few Cretaceous terrestrial fossils, these deposits are not totally barren. In fact, one of the first Mesozoic continental vertebrates ever recorded from Romania comes from one of these deposits, the Lower Cretaceous shallow marine limestones of Southern Dobrogea (Fig. 1). This specimen-the isolated but well-preserved tooth of a large theropod dinosaur-has often been overlooked. It was described a little over a century ago by Simionescu (1913; Fig. 2A), and until a few recent discoveries of very rare isolated specimens (Stoica and Csiki, 2002; Csiki-Sava et al., 2013; Dragastan et al., 2014), it remained as the sole published record of Mesozoic terrestrial

vertebrates from the cratonic areas of Romania. It has never been comprehensively described and its precise age and taxonomic affinities have yet to be clarified, despite its potential importance as a well-preserved fossil from a poorly sampled area that could have critical evolutionary and biogeographic implications.

We here present a comprehensive description of the Dobrogea tooth and discuss its relevance for understanding dinosaur evolution and biogeography. We review the peculiar history of how this specimen was collected and curated, thoroughly document its morphology and age, identify it based on comparison to a broad range of theropods, and outline its importance. It turns out that this specimen, although only a single tooth, has wide-ranging implications. We identify it as coming from the Valanginian stage of the Early Cretaceous, which is incredibly poorly sampled both in Europe and globally (Weishampel et al., 2004), and as belonging to a carcharodontosaurid, a group of derived, large-bodied apex predators whose earliest Cretaceous history is poorly known. Carcharodontosaurids were once thought to be a uniquely Gondwanan group, but recent discoveries show that the basal members of the group were more widespread during the late Early-middle Cretaceous (e.g., Sereno et al., 1996; Brusatte and Sereno, 2008). The Romanian tooth shows affinities with a derived carcharodontosaurid subgroup, the Carcharodontosaurinae, that until now has been known only from Gondwana. It suggests that this subgroup of enormous predators did not evolve vicariantly as Pangaea split, but originated earlier, and perhaps in Europe, suggesting faunal interchange between Europe and Gondwana during the 'dark ages' of the early Early Cretaceous.

97 Abbreviations: UAIC – University "Alexandru Ioan Cuza", Iași, Romania.

2. History of collecting and curation

Only two dinosaurian fossils are currently known from the cratonic areas of Romania: an isolated theropod tooth and an isolated caudal vertebral centrum. Both of these were reported from the Lower Cretaceous deposits of Southern Dobrogea (southeastern Romania; Csiki-Sava et al., 2013, see also below). Unfortunately, exact details of their discovery and places of origin are lost, a fact that can hinder an assessment of their age and interpretation of their phylogenetic and palaeobiogeographic significance. Our aim here is to gather and report all available information concerning the collecting of specimen UAIC (SCM1) 615, that is, the isolated theropod tooth reported by Simionescu (1913; Fig. 2A).

According to the existing information - unpublished museum labels and records, and the preliminary publication of Simionescu (1913) - specimen UAIC (SCM1) 615 was discovered in the surroundings of Cochirleni, a small village south of Cernavodă and close to the right bank of the Danube, in Southern Dobrogea, southeastern Romania (Fig. 1), probably shortly before 1913, the date of its publication by Simionescu (1913).

Although studied and preliminarily described by Simionescu, UAIC (SCM1) 615 was not collected by Simionescu personally. Instead, it was donated by a certain "de Tomas" (also mentioned as "de Thomas" in the registry of the Hârșova Museum) to V. Cotovu from Hârșova (Central Dobrogea), a local teacher, archaeology and natural history aficionado, and amateur fossil collector (see, e.g., Covacef, 1995). Cotovu, described by Simionescu himself as the "zélé fondateur et directeur du muséum de Hârsova" (enthusiastic founder and director of the Hârşova Museum; Simionescu, 1906: p. 2), had previously provided fossil specimens from Southern Dobrogea for study to Simionescu, a nationally acknowledged popular science writer and scientist, whom Cotovu knew personally (Brânzilă, 2010). These circumstances are supported by the fact that in the original description, Simionescu figures the specimen as being accessioned in the "Regional-Museum von Harschowa" (Hârşova Regional Museum; Simionescu, 1913: p. 687, fig.1), a designation he also used to refer to other Dobrogean

specimens not collected by him first-hand (e.g., a specimen of '*Nautilus' pseudoelegans* from Cernavodă, or a fragmentary tooth-bearing palatal fragment referred to as '*Coelodus*' sp., also originating from Cochirleni; see Simionescu, 1906). Confirming this deduction, an isolated tooth appears accessioned in the old registry book of the Hârşova Museum (under specimen number 200) as "*Megalosaurus* cf. *superbus*", with the mention that it was "*described by Prof. Simionescu in the Centralblatt f. min. etc.*". This is also the case of the '*Coelodus*' sp. specimen from Cochirleni (specimen number 86), similarly clearly identified as being described by Simionescu in the registry book.

Both of these vertebrate remains from Dobrogea that were formerly part of the Hârșova Museum collections are currently accessioned in the palaeontology collections of the UAIC (Turculeț and Brânzilă, 2012), suggesting that, at one moment, several specimens were transferred there from the Hârșova Museum. Although no details are known about this transfer, it is probable that it took place right before (or when) the Hârșova Museum, including a part of its collections, was burned and largely destroyed during WWI, in 1916, a time when Simionescu still held a position at the UAIC.

After its original description, specimen UAIC (SCM1) 615 underwent a minor amount of damage (see below, Description). Also, at some point between its description in 1913 and the early 1960s (when the specimen was found in its present state in the collections of the UAIC by academic staff members who are still alive today and recall the discovery; I. Turculet, personal communication, May 2013) it was glued into a limestone matrix holder, while it was obviously completely freed of the surrounding matrix when it was described and figured in 1913 (Fig. 2). The circumstances under which these alterations took place are unclear. It is a distinct possibility that they occurred sometimes during WWII, when, in the spring of 1944, the frontline between the German-Romanian and Soviet armies reached the Iași-Chișinău line. At this moment, the geological-palaeontological collections of the UAIC

were packed in crates, and moved together with its personnel and other possessions to Zlatna, in the Apuseni Mountains (western Romania), to safeguard them from any potential damage. Mounting the specimen into the limestone stand would have been a quick way to stabilize it, as it appears that packaging and transport of the specimens was done in haste (M. Brânzilă, personal communication, April 2103). If that was indeed the case, the mounting would have taken place without the knowledge of Simionescu, who left Iaşi and the UAIC in 1929, being invited to become a professor of Palaeontology at the University of Bucharest (Brânzilă, 2010). Then again, however, Simionescu himself or staff of the Hârsova Museum might have re-mounted the tooth after its original description, or else the mounting might have taken place after the return of the collections to Iasi, after WWII.

Unfortunately, it is not documented whether the mounting was made using the original matrix, or if a trough corresponding to the tooth outline was carved into a randomly chosen limestone block. The apparently excellent fit between the tooth and the depression housing it (Fig. 2B, 3) suggests that this operation was completed carefully, and accurate carving of a fake holder is difficult to reconcile with the rush accompanying the evacuation of the Iasi University, in 1944. Alternatively, the presence of a hand-written old registration number on the specimen holder would support its early re-mounting, while still at the Hârșova Museum. As noted previously, the original Hârșova Museum registration number of the specimen was 200, which does not correspond to that currently written both on the limestone holder and on a paper sticker (204). However, according to the old collection registry of the Hârsova Museum, specimen numbers 201 through 225 were given to a series of "indeterminate (fossil) bone fragments" from the "Cochirleni quarries". Thus, these specimens (now apparently lost) came from the same locality as the tooth, and they were collected and donated by the same person to the Museum who donated UAIC (SCM1) 615. There is, thus, a (albeit admittedly remote) possibility that the registration numbers were

mixed up during the re-mounting of the specimen, which in this case took place at an early date in the Hârsova Museum. If this is indeed the case, the limestone used as holder could have been the same as the original matrix of the specimen.

To conclude, the history of recovery and curation of the historically important dinosaurian specimen UAIC (SCM1) 615 is rather convoluted and clouded by many uncertainties. The exact date of discovery remains conjectural, and the exact place of the discovery (thus also the original geological context of the tooth) is even more ambiguous. The current state of the specimen, and especially its mounted status, suggest a curatorial history that produced a moderate amount of damage to, but also partially obscured the detailed morphology of the specimen. The convergence of such unfortunate events makes deciphering the age, identity and evolutionary significance of the specimen troublesome, although many lines of evidence, carefully considered, allow us to draw reasonable conclusions (see below).

3. Geological setting

According to the available collecting information, the isolated theropod tooth UAIC (SCM1) 615 was discovered at Cochirleni (sometimes noted more specifically as the "Cochirleni quarry" or "Cokerleni quarry"). Cochirleni is a small village in southwestern Dobrogea situated close to the right bank of the Danube, and about 9 km south of the main urban center of the region, Cernavodă (Fig. 1). The geology of the area has been well studied, because of the unique outcropping conditions and rich fossiliferous nature of the Lower Cretaceous deposits (reviewed in Avram et al., 1996; Neagu et al., 1997; Dragastan et al., 1998).

Southern Dobrogea is a cratonic area corresponding to the southeastern corner of Romania. Whether it is considered part of the larger Moesian Platform (Săndulescu, 1984; Ionesi, 1994), or a distinct craton (the South-Dobrogean Platform; Mutihac and Mutihac,

200 2010), researchers agree that it became integrated into the main European Craton towards the
201 end of the Jurassic, at the latest, with the consolidation of the Cimmerian (Early Alpine:
202 Triassic–earliest Cretaceous) North Dobrogean fold-and-thrust belt (Seghedi, 2001;
203 Hyppolite, 2002). The age of its basement is also controversial, with estimates ranging from
204 Archaic–Early Proterozoic (Mutihac and Mutihac, 2010) to latest Proterozoic (Ionesi, 1994).

The Precambrian basement of Southern Dobrogea is overlain by a flat-lying sedimentary cover that begins with the lowermost Palaeozoic and ends with the uppermost Neogene. The sedimentary succession is interrupted by a few major, as well as several less important, sedimentary hiatuses that separate 5 main sedimentary sequences corresponding to the Cambrian-Upper Carboniferous, the Permian-Triassic, the Middle Jurassic-Cretaceous, the Eocene-?Oligocene, and the middle Badenian (middle Miocene)-Upper Pliocene. The Palaeozoic and lower Mesozoic are known only from the subsurface of Southern Dobrogea, but Cretaceous and Cenozoic deposits have limited exposures along the main water courses of the region (Ionesi, 1994; Mutihac and Mutihac, 2010).

The outcropping Cretaceous in Southern Dobrogea is represented mainly by shallow marine, carbonate platform deposits in the lower part of the system, replaced by more openwater, chalky facies towards the later part of the period (e.g., Avram et al., 1993, 1996; Dragastan et al., 1998; Dinu et al., 2007); these crop out only as isolated patches along the main watercourses of the region (Fig. 1).

The Lower Cretaceous Series consists of several lithostratigraphic units with complex, partially overlapping and interfingering relationships (Dragastan et al., 1998, 2014). The lowest (and only artificially) outcropping unit is the Purbeck-type, siliciclastic-evaporitic Upper Kimmeridgian–Lower Berriasian Amara Formation that represents lagoonal to continental environments. This unit is covered by the shallow-marine, richly fossiliferous and locally reefal limestone-dominated Cernavodă Formation (restricted-open lagoonal to

carbonate platform, Upper Berriasian-Lower Hauterivian). A time-correlative unit of the Cernavodă Formation, the limestone-dolomitic Dumbrăveni Formation (Upper Berriasian-Lower Hauterivian), is restricted to the southeastern part of Southern Dobrogea. The Cernavodă and Dumbrăveni formations are covered unconformably by dominantly calcareous deposits with hippuritoid ('pachyodont') coquinas, small reefs and lens-like orbitolinid accumulations, referred to the Barremian-Lower Aptian Ostrov Formation by Dragastan et al. (1998), but to the Ramadan Formation (in part) by Avram et al. (1993, 1996). These deposits, formed in littoral to lagoonal and open reef terrace environments, are in turn capped by the fluvial-lacustrine, siliciclastic deposits of the Gherghina Formation, with Middle–Upper Aptian kaolinitic clays and thin coal intercalations. The Lower Cretaceous succession ends with the transgressive, glauconite-bearing, coastal to sublittoral siliciclastic deposits of the Cochirleni Formation (uppermost Aptian-Albian).

The Upper Cretaceous has a significantly more patchy development, mainly restricted to the eastern part of Southern Dobrogea, excepting the weakly glauconitic, chalky-sandy Pestera Formation (Lower Cenomanian) and the marly Dobromiru Formation (Upper Cenomanian) that cover the western-central parts of the area. The younger Cuza Vodă (Turonian), Murfatlar (Santonian-Lower-Middle Campanian), and Satu Nou (Upper Campanian) formations are dominantly chalky, suggesting the instalment of a relatively deeper, offshore depositional environment; neither of these units is known from western Southern Dobrogea.

In total, the Lower Cretaceous of Southern Dobrogea was deposited in a shallow marine, near-shore setting, fluctuating between carbonate platform, lagoonal, coastal-tidal flat, and continental environments (see Avram et al., 1996; Dragastan et al., 1998). Its main characteristic features, such as the observed lithological variability, the areal distribution of the different units, and the presence of several unconformities within the series, are all linked

to eustatic sea-level changes that affected the Southern Dobrogean territory during the Early Cretaceous (Dragastan et al., 1998). The main emergent land in the area was represented by the Central Dobrogean Massif, lying north of the study area, almost completely subaerially exposed and actively eroding during the Cretaceous. Consequently, shallow-marine to continental deposits are restricted mainly to the northern part of Southern Dobrogea, close to its boundary with the Central Dobrogean Massif (marked by the Capidava-Ovidiu Fault), and are replaced by more open marine deposits southward. As summarized above, several littoral, and even continental, sequences occur in this succession, including deposits in the Amara, Cernavodă, Ramadan (Avram et al., 1996) and Cochirleni formations, whereas the Gherghina Formation is purely continental, with occasional minor marine interbeds produced during short-term ingressions of the sea.

In the Cernavodă-Cochirleni area the outcropping Mesozoic is restricted to the Lower Cretaceous, and includes deposits belonging to the Cernavodă, Ostrov (or Ramadan), Gherghina, and Cochirleni formations. While the lower-middle part of the Cernavodă Formation is well exposed and widely distributed in this area, its upper part (the lower Hauterivian Vederoasa Member) is unevenly developed. This member is missing in the classical succession from Cernavodă-Hinog, on the right bank of the Danube (Dragastan et al., 1998), but was recently identified in the more eastern Cernavodă-lock section (Dragastan et al., 2014). Similarly, the Ostrov Formation is represented in the area only by its upper subunit (the Lower Aptian Lipnita Member; Dragastan et al., 1998), covering unconformably and transgressively the Valanginian Alimanu Member of the Cernavodă Formation in the southern end of the Cernavodă-Hinog section (Dragastan et al., 1998), and the lower Hauterivian Vederoasa Member in the Cernavodă-lock section (Dragastan et al., 2014).

273 Northward of the Hinog area, Valanginian deposits of the Alimanu Member are274 overlain directly by the Middle–Upper Aptian continental deposits of the Gherghina
Formation. These continental deposits also cover the Orbitolina-bearing calcareous-clayey deposits of the Lipnita Member towards the south, marking the advancement of emerged areas towards the central parts of Southern Dobrogea, including the Cernavodă-Cochirleni area, during this time interval (Avram et al., 1996). Marine conditions returned in the study area again in the latest Aptian, with a transgression marked by widespread deposition of the glauconitic, siliciclastic coastal to innermost shelf deposits of the Cochirleni Formation. These uppermost Aptian to Albian sands and sandstones cover transgressively all the underlying deposits, belonging to the Cernavodă, Ostrov, or Gherghina formations. Siliciclastic shallow-marine sedimentation continued into the Early Cenomanian, with the chalky-glauconitic deposits of the Pestera Formation.

286 4. Palaeontology

The isolated theropod tooth UAIC (SCM1) 615 (formerly in the collections of the Hârșova Museum, registered with no. 200; Fig. 2A) was described in a short note by Simionescu (1913), who referred it to Megalosaurus cf. superbus, a taxon erected by Sauvage (1882) from the Gault ('mid'-Cretaceous: Albian) of the Paris Basin, France. The Gault material described by Sauvage (1882; see also Sauvage, 1876) includes several isolated teeth that were deemed by Simionescu (1913) to be more similar to the Cochirleni tooth than are the teeth of Megalosaurus bucklandi (Buckland, 1824). Subsequently, the French Gault material was referred to the new genus *Erectopus* by Huene (1923), who also noted differences between it and the type species *M. bucklandi*.

The convoluted taxonomic history of *Erectopus superbus* was recently reviewed by Allain (2005), who established that both the isolated teeth first mentioned by Sauvage (1876) and the skeletal elements described by Sauvage (1882) belong to the same taxon, for which the name *Erectopus superbus* was retained. Allain (2005) regarded *Erectopus* as a member of

Carnosauria (= basal Tetanurae), an opinion also shared by Molnar (1990) and Holtz et al. (2004a), whereas the latest review of the Tetanurae (Carrano et al., 2012, p. 254) considered Erectopus superbus "a non-carcharodontosaurian allosauroid, possibly a metriacanthosaurid." Accordingly, if we are following the original assessment of Simionescu (1913) but updating with contemporary taxonomy, the Cochirleni theropod tooth should now be considered referable to the basal tetanuran Erectopus superbus. However, the referral of this tooth to *Erectopus superb*us (or a close relative) was considered to be unsupported by positive evidence by Molnar (1990) and Holtz et al. (2004a). In order to re-assess this referral and to understand the exact taxonomic and phylogenetic affinities of UAIC (SCM1) 615 (Fig. 2B, 3), we provide here a detailed description of its morphology followed by a thorough comparative study of this tooth based on large datasets of theropod dental measurements and discrete characters compiled by Hendrickx and Mateus (2014) and Hendrickx et al. (2015a).

We note that in his review of Romanian dinosaurs, Grigorescu (2003) erroneously considered UAIC (SCM1) 615 as being referred by Simionescu to the taxon *Megalosaurus dunkeri* Kohen (sic; actually, *Megalosaurus dunkeri* Dames, 1884). This is clearly a simple misreading of Simionescu's identification. Additionally, such a referral is also contradicted by the absence of mesial serrations in the holotype tooth of *M. dunkeri*, considered by Carrano et al. (2012) to represent an indeterminate theropod. The Dobrogea tooth, on the other hand, has mesial serrations (see below).

4.1. Age of UAIC (SCM1) 615

The age of UAIC (SCM1) 615 has been contentious, due to the uncertainties concerning its
place of origin. Although it is often mentioned as originating from Cochirleni village (e.g.,
Grigorescu, 2003; Turculeț and Brânzilă, 2012), this has not been definitively established.
According to the original report of Simionescu (1913), the tooth came from the upper part of

the Lower Cretaceous limestone succession exposed in the cliffs extending from Cernavodă to Cochirleni along the right bank of the Danube. The corresponding entry from the Hârşova Museum registry states that it was found in the 'Cochirleni quarry', a location that presently cannot be identified precisely. The only rocks to be quarried in the area are the calcareous deposits of either the Cernavodă or Ostrov formations, particularly the ones that crop out in the Danube bank cliffs between Cernavodă-Hinog-Cochirleni. Finally, although the mention 'Cochirleni' is usually considered to refer to Cochirleni village, it should be mentioned that the cliff-forming hill that extends between Cernavodă and Cochirleni is also known by the same name (Fig. 1). Taking all of this evidence into consideration, it is thus reasonable to conclude that the tooth was most likely found in the Lower Cretaceous limestone succession exposed in the Danube cliffs between Cernavodă and Cochirleni.

Based on the location of the discovery, in the upper part of the local limestone
succession, and the age of the deposits from Cernavodă-Cochirleni known to him,
Simionescu (1913) considered the tooth to be of Barremian age. Subsequently, the age of the
tooth was given as Valanginian–Barremian (Weishampel, 1990; Weishampel et al., 2004) or
Valanginian (e.g., Grigorescu, 2003), but without any supporting information.

New attempts have been made to more precisely constrain the age of UAIC (SCM1) 615. Dragastan et al. (2014) recently sampled the limestone matrix holder of the tooth, and reported from these samples an assemblage of foraminiferans, ostracods and microproblematicae (=incertae sedis microorganisms) that characterize their 'Biozone IX with *Meandrospira favrei*', of latest Valanginian age in the local lithostratigraphic scheme. In parallel, we also sampled the same limestone holder – a yellowish white, friable lime mudstone – that yielded a poor and badly preserved calcareous nannoplankton assemblage with Watznaueria barnesiae, W. ovata, Nannoconus steinmanni, N. kamptneri, N. globulus, Calcicalathina sp., Speetonia colligata and Cyclagelosphaera deflandrei (M. C. Melinte-

Dobrinescu, personal communication, November 2013), an assemblage that suggests a Berriasian-Hauterivian age of the limestone holder.

Since it is not clear if the limestone holder came from the same site as the tooth itself, we managed to take a second sample from the limestone matrix still partly filling the pulp cavity of the tooth, which must definitively be identical with the rocks the tooth was found in. This second, much smaller sample yielded only very scarce specimens of Watznaueria barnesiae, Cyclagelosphaera margerelii and Diazomatolithus lehmanni (M. C. Melinte-Dobrinescu, personal communication, November 2013), the latter two taxa having a peak in abundance during the Berriasian and, especially, the Valanginian.

In the nannoplankton succession reported previously by Avram et al. (1993) and derived from a systematic sampling of the Southern Dobrogean Lower Cretaceous, the concurrent presence of Speetonia colligata, Calcicalathina oblongata, Diazomatolithus lehmanni and Nannoconus steinmanni was noted in samples derived from the Alimanu Member of the Cernavodă Formation. These assemblages were interpreted to represent the nannoplankton zone CC3 of Sissingh (1977), of late Valanginian age. A comparable age was assigned to a roughly similar nannoplankton assemblage reported from the Lower Cretaceous of the Mecsek Mountains, Hungary, by Császár et al. (2000).

Together, all the available evidence (Simionescu's original account, geographic and geologic records, foraminifera, ostracods, microproblematicae, and calcareous nannoplankton) thus suggests that UAIC (SCM1) 615 originates from the Alimanu Member of the Cernavodă Formation, and it is most probably of late Valanginian age.

4.2. Description and comparisons

Specimen UAIC (SCM1) 615 is a large (total length, as preserved, is about 100 mm; Figs. 2, 3) lateral tooth of a theropod dinosaur, with a crown base length (CBL) of 29 mm, crown

base width (CBW) of 16.25 mm, crown height (CH) of 85.5 mm, and apical length (AL) of 91 mm (terminology following Smith et al., 2005 and Hendrickx et al., 2015b). It is remarkably well preserved, with the enamel in pristine condition. It preserves most of the crown and a small basal part of the root, but the crown tip is broken off, with an estimated 5 mm missing in the apical region.

In its present state, the mesial edge and part of the mesial third of the tooth are embedded in the limestone holder (Fig. 2B), although the tooth was once removed (see above, History of collecting and curation; Fig. 2A). Accordingly, it is exposed so that all faces of the tooth are widely visible, including the root region, except for the mesial surface.

Only the basal-most part of the root is preserved, and it is more complete near the mesial margin (Fig. 3B, C). Here, broken areas around the crown-root contact area (cervix) reveal details of the pulp cavity development, as well as the pattern of the dentine thickness variation (Fig. 3B–D). The crown also exhibits a transverse break at about two-thirds of its length (not present so obviously in the original figure of the specimen in Simionescu, 1913), and adjacent to it, the distal carina is also slightly chipped distal to mid-length. The labial face is superficially split near this break (Fig. 3A), while a more prominent region of damage appears on the lingual face, where a large (13 x 5 mm), slightly triangular wedge is broken off, exposing the deeper parts of the dentine (Fig. 3C). The damage to the lingual side apparently occurred after the original description of the tooth (Fig. 2), an observation that is concordant with the complex curatorial history of the specimen.

The basal-most, exposed part of the mesial face lacks the enamel cover (Fig. 3C, D), suggesting that this area already belongs to the root region. The mesial edge of the preserved crown base appears to be wider than the distal one, and is largely rounded transversely. Accordingly, the basal cross-section is teardrop-shaped (lanceolate); it is rounded mesially, but narrows distally into a small carina (Fig. 3D). As mentioned above, the pulp cavity is

exposed basally, being partly filled with a whitish-light gray limestone that is reminiscent of the matrix holder lithology. The pulp cavity narrows rapidly towards the cervix, as it is about 7.1 mm wide (labiolingually) at the apical-most part of the preserved root, but only about 4.5 mm wide at the base of the crown. In parallel, the enamel-dentine wall of the tooth becomes thicker: it is 3.5 mm thick in the apical-most part, 4.4 mm at the base of the crown, but thickens to 5.0–5.8 mm near the apical-most part of the basal break of the crown (Fig. 3B). Mirroring the outside cross-section, the contour of the pulp cavity is also teardrop-shaped (Fig. 3D).

The tooth is ziphodont and only very slightly recurved distally. The distal edge is nearly straight across its length, being very mildly concave in its basal half and slightly convex near its apex (Fig. 2, 3A). Thus, the apex is placed roughly at the distal margin of the tooth crown base. The mesial edge, as shown in the original publication of Simionescu (1913), is strongly convex across its entire length (Fig. 2A). The tooth is labiolingually compressed (Fig. 3B), with a crown base ratio (CBR=CBW/CBL) of 0.56, within the normal range of variation of most theropods. This differs from the thinner teeth of some, but not all, carcharodontosaurids (CBR<0.50), and the much thicker incrassate teeth of derived tyrannosauroids and conical teeth of spinosaurids (CBR>0.75) (Sereno et al., 1996; Brusatte et al., 2010a; Hendrickx and Mateus, 2014; Hendrickx et al., 2015a).

The crown cross-section is slightly asymmetrical labiolingually when it is seen in distal view. In this view, when the carina is facing directly distally, one side of the crown has a more pronounced bulge than its counterpart (about 8.5 mm wide, measured from the carina, vs. 6 mm on the other side; Fig. 3B); based on comparisons with the teeth of *Mapusaurus* (Coria and Currie, 2006), the more bulging side can be interpreted as the lingual one. This asymmetry diminishes apically, where both sides become about equally convex. The distal carina itself twists slightly sideways (labially) in apical direction, such that it is located closer to the labial face where it terminates at the crown apex, and the lingual face of the denticles is
exposed distally (Fig. 3B, F). This twist of the distal carina is accompanied by a similar
outline of the lingual side; in distal view, this is somewhat convex basally, but becomes flat
to slightly concave in the apical two-thirds of the crown. A similar S-shaped curvature of the
crown, albeit more pronounced and different in details, was also reported in *Mapusaurus* and *Giganotosaurus* (Coria and Currie, 2006), and in indeterminate carcharodontosaurid teeth
from Morocco (Richter et al., 2013).

The distal carina extends along the entire tooth height (Fig. 3A–C). It is covered with minute serrations across its entire preserved length; the denticles are proximodistally subrectangular, with a mesiodistal long axis that is greater than the apicobasal long axis (Fig. 3E-H). They are either roughly perpendicular to the tooth margin, or their long axes are oriented obliquely, such that they point slightly apically. The tip of the apex is broken off, so it is not possible to determine whether the serrations continued over the apex of the tooth. There are approximately 12.5 serrations (denticles) per 5 millimetres at the midpoint of the carina. Serration shape and size remain relatively constant across the carina, although the serrations near the midpoint and closer to the base of the carina (12 denticles per 5 mm; Fig. 3G, H) are slightly smaller than those near the apex (9 denticles per 5 mm; Fig. 3E, F). Changes in serration size are gradual across the carina, not sudden or sporadic.

Although they are all more or less rectangular in shape, the apical denticles are relatively shorter proximodistally than the more basal ones. Most of the denticles have slightly rounded, asymmetrically convex triangular tips, instead of being simply squarred-off, and they do not hook as in troodontids and to a lesser extent abelisaurids (Hendrickx and Mateus, 2014). Other denticles near the apex, however, show a faint concavity along their tips, giving them a bilobate aspect, although this is both less conspicuous and far less regularly developed than reported in *Tyrannotitan* (Novas et al., 2005). The denticles are

450 separated by simple, linear grooves (interdenticular slits or sulcae) along their entire length.
451 The interdenticular space between adjacent denticles is broad, measuring more than a third of
452 the apicobasal width of a denticle (Fig. 3E, G). This space continues onto the surface of the
453 crown as a very short interdenticular sulcus ("blood groove" of Currie et al., 1990). These
454 sulci are so short and indistinct that they are only visible under low angle light.

Little can be said about the mesial carina, as it is not visible in the current state of the specimen, buried in the limestone matrix. Based on the description of Simionescu (1913), however, it is covered across its length with minute serrations; these decrease in size towards the base of the crown. Simionescu (1913) reported approximately 15 serrations (denticles) per 5 millimetres at the midpoint of the carina, meaning that the mesial denticles are slightly smaller than those on the distal carina. The denticle size difference index (DSDI: Rauhut and Werner, 1995) is 1.2, within the range of variation of most theropods (Hendrickx and Mateus, 2014). As Simionescu (1913) already pointed out, the presence of a mesial carina that extends towards the base of the crown sets apart UAIC (SCM1) 615 from Megalosaurus bucklandii where this stops well above the cervix (Benson et al., 2008), and it is instead similar to 'M.' superbus (Sauvage, 1876, 1882) in this respect.

The external enamel surface exhibits two forms of ornamentation. First, the majority of the labial and lingual faces are covered by relatively smooth enamel that exhibits a subtle form of braided texture visible under low angle light (Fig. 3A, C, E). This texture is made up of a series of very faint, apico-basally running ridges; these are of unequal lengths, starting at different points of the crown height, but none extends the whole length of the crown. The two longest ridges are placed near the distal carina. The enamel is also finely granulated.

472 Second, near the carinae on both labial and lingual surfaces there are marginal
473 undulations: wrinkles in the enamel that stand out in bas relief (Brusatte et al., 2007). These
474 are much better preserved and visible near the distal carina, where they are so pronounced

that they are clearly observable in normal light (Fig. 3A–C, G, H). Here, about 17 unevenly developed wrinkles are present along the crown height; in the basal half of the crown, the wrinkles extend about 6.5 mm onto the crown. These are elongate, such that they are longer than twice the space separating each undulation. The wrinkles project obliquely (in the mesiobasal direction) relative to the carina. They are apically concave, with a near-horizontal segment on the crown, and curve apically as they approach the carina (at about 45°) with a tendency to become tangential to the distal edge. The wrinkles are especially well developed, prominent and closely spaced in the basal part of the crown (about 7 wrinkles/16 mm; Fig. 3C, G)), but become more widely spaced and indistinct apically (about 3 wrinkles/16 mm). Apically, however, the wrinkles are somewhat wider and longer, extending over about half of the crown fore-aft length. Again, a slight asymmetry is present between the two sides of the crown in wrinkle development as well, these being better expressed on the more rounded, convex lingual face, but less well expressed on the flatter labial face (Fig. 3A, C, H). On the presumed labial face, only some of the basal-most wrinkles, particularly the second and third one, appear well defined.

Towards the base of the crown a few of the wrinkles continue across the labial and lingual surfaces as very subtle transverse undulations. Most conspicuous of these is a 3.5 mm wide horizontal swelling that crosses the crown, at the level of wrinkles 2 and 3; this swelling is clearly visible on both sides of the crown (Fig. 3. A, C). There are no lateral flutes, apico-basal ridges, or longitudinal grooves on the labial or lingual faces, either in the centre of the tooth or paralleling the carinae. Instead, the labial and lingual faces are uniformly convex, giving the tooth its teardrop-shaped outline in cross section.

5. Discussion

5.1. Identification of UAIC (SCM1) 615

The isolated tooth from Cochirleni can be referred to Theropoda based on its large size,
recurved and labiolingually compressed morphology, and presence of a continuous series of
well-defined serrations on the distal carina.

Besides theropods, certain derived crocodyliforms - the sebecosuchians of Colbert (1946; see also Turner and Sertich, 2010; Pol and Powell, 2011; Rabi and Sebők, 2015) - are also known to posess remarkably theropod-like, laterally compressed and serrated teeth, not unlike the morphology shown by UAIC (SCM1) 615. However, most sebecosuchian teeth are significantly smaller than the Southern Dobrogean specimen, especially in the case of the Cretaceous members of the clade (e.g. Baurusuchus; Carvalho et al., 2005). Even the largest, caniniform teeth of the largest representatives of Sebecosuchia, such as the Miocene Barinasuchus (Paolillo and Linares, 2007), are somewhat smaller than UAIC (SCM1) 615; moreover, these teeth are slightly conical and less laterally compressed than the Southern Dobrogean tooth. Finally, it should be noted that the oldest known members of Sebecosuchia appear beginning in the Late Cretaceous (e.g. Kellner et al., 2014), and are thus significantly younger than UAIC (SCM1) 615. Similarly, ziphodont crocodyliform teeth (i.e. with true denticles along their carinae) are reported in Europe only beginning in the Albian (Ösi et al., 2015), and these are both significantly smaller and different in morphology from the Dobrogean tooth. Taken together, these suggest that the hypothesis of sebecosuchian affinities of UAIC (SCM1) 615 can be discarded with confidence, and it indeed represents a theropod tooth.

520 We used four techniques to identify which type of theropod UAIC (SCM1) 615 likely521 belongs to (see also Supplementary Material).

First, we conducted a Principal Components Analysis (PCA) based on a large
database that includes a broad and representative sample of theropod teeth. This dataset was
compiled by Hendrickx et al. (2015a), which built upon the earlier studies of Smith et al.

(2005) and Larson and Currie (2013), and it or a similar version has been used in recent studies to identify isolated theropod teeth (e.g., Williamson and Brusatte, 2014; Brusatte and Clark, 2015). It comprises nearly 1000 theropod teeth scored for six measurements (CBL, CBW, CH, AL, MC, and DC, the latter two measuring the density of serrations per 5 mm at the midpoint of the mesial and distal carina, respectively). UAIC (SCM1) 615 was added to this dataset, the data were log-transformed prior to analysis, missing values for measurements were estimated with a mean value for that measurement from across the sample, and then a PCA was run using a correlation matrix. The analysis was conducted in PAST v2.17 (Hammer et al., 2001).

In the resulting two dimensional morphospace (Fig. 4), UAIC (SCM1) 615 plots close to many teeth belonging to carcharodontosaurids, along with some teeth belonging to spinosaurids and tyrannosauroids. It falls within the convex hull (maximum morphospace occupation area) of carcharodontosaurids only, although it is closely outside of the edges of spinosaurid and tyrannosauroid space. It also falls within the 95% confidence interval ellipse for carcharodontosaurids, but not within the ellipse of any other group (Supplementary Information). This exercise indicates that UAIC (SCM1) 615 is most similar to carcharodontosaurids.

Secondly, we used the log-transformed dataset that we also used for the PCA to conduct a clustering analysis. We performed the analysis in PAST v2.17, using the paired group algorithm and the correlation similarity measure. In the resulting dendrogram, UAIC (SCM1) 615 groups with a handful of teeth belonging to carcharodontosaurids,

tyrannosauroids, and Allosaurus (Supplementary Information).

Third, we used the tooth measurement database to conduct a discriminant analysis in PAST v3.0 (Hammer et al., 2001). This analysis uses pre-determined groups (in this case, taxonomic clusters) to create a morphospace in which these groups are maximally separated.

This allows teeth of unknown affinities, such as UAIC (SCM1) 615, to be classified according to which taxonomic group it is most similar to in this discriminant morphospace. In total, 67.79% of other teeth are classified correctly when they are treated as having uncertain affinities and their measurements are used to classify them in discriminant space, indicating that this exercise returns reasonable results. Our analysis classifies the Romanian tooth as a carcharodontosaurid. Furthermore, the analysis places UAIC (SCM1) 615 within the convex hulls for carcharodontosaurids and tyrannosauroids, and the 95% confidence ellipses for carcharodontosaurids, coelophysoids, and neovenatorids.

Fourth, we ran a phylogenetic analysis by including UAIC (SCM1) 615 in the discrete character dataset of theropod dental features published by Hendrickx and Mateus (2014). The Romanian specimen was scored as a lateral tooth in this analysis. The analysis was conducted in TNT (Goloboff et al., 2008), and resulted in 224 most parsimonious trees (686 steps, consistency index of 0.338, retention index of 0.566). The strict consensus topology is moderately well resolved and places the Romanian tooth as the sister taxon to Carcharodontosaurus (Supplementary Material). This sister taxon pair is recovered as the sister clade to a grouping of the derived carcharodontosaurids Mapusaurus and Giganotosaurus.

Several synapomorphies support the carcharodontosaurid affinities of UAIC (SCM1) 615. The sister group relationship with *Carcharodontosaurus* is supported by two features: a roughly straight distal margin of the crown (character 68) and pronounced marginal undulations in the enamel that are well visible in normal light (character 112). The broader clade of UAIC (SCM1) 615, Carcharodontosaurus, Mapusaurus, and Giganotosaurus (= Carcharodontosaurinae, as defined by Brusatte and Sereno, 2008, and Carrano et al., 2012) is linked by numerous characters, including: large teeth with a crown height greater than 6 cm (character 65), a bowed or sigmoid distal carina in distal view (character 82), marginal

undulations that are at least twice as long mesiodistally as the space separating each
undulation (character 111), and marginal undulations present on both mesial and distal sides
of the crown (character 113).

The Romanian specimen also lacks many keystone dental synapomorphies of other theropod clades, based on the clade diagnoses of Hendrickx and Mateus (2014) and other cladistic studies that include dental characters. UAIC (SCM1) 615 does not possess the hooked distal denticles of some Abelisauridae, the strongly labially deflected distal carina and pronounced transverse enamel undulations extending across the labial and lingual tooth faces of Ceratosauridae, the incrassate teeth with apicobasal enamel flutes and deeply veined enamel surface texture of Spinosauridae, and the large transverse undulations of some basal allosauroids (Hendrickx and Mateus, 2014). It also lacks the thickened incrassate teeth of derived tyrannosauroids (Brusatte et al., 2010a) and the large and strongly hooked (or pointed) denticles of troodontids and therizinosauroids (e.g., Turner et al., 2012; Brusatte et al., 2014; Hendrickx and Mateus, 2014). The large size, as well as recurved and ziphodont shape of UAIC (SCM1) 615 is strikingly different from the non-ziphodont therizinosauroids, ornithomimosaurs, alvarezsauroids, and most troodontids, which have conical, leaf-shaped, or peg-like teeth (when teeth are present) (e.g., Holtz et al., 2004a; Turner et al., 2012; Brusatte et al., 2014). Finally, besides its remarkably large size, the presence of serrations indicates that UAIC (SCM1) 615 does not belong to groups such as alvarezsauroids, oviraptorosaurs, basal troodontids, or avialans, which have unserrated crowns (e.g., Turner et al., 2012; Hendrickx and Mateus, 2014).

In summary, the four analyses all support carcharodontosaurid affinities for UAIC (SCM1) 615. Both overall tooth proportions and discrete phylogenetic characters point to a carcharodontosaurid identification, and the discriminant function analysis and phylogenetic analysis both explicitly recover the tooth as a carcharodontosaurid. For this reason we refer

this tooth to Carcharodontosauridae. Moreover, it appears to belong to a clade that unites very derived and large-sized carcharodontosaurids (Carcharodontosaurus, Giganotosaurus, and Mapusaurus), separated as such and named Carcharodontosaurinae by Brusatte and Sereno (2008) and Carrano et al. (2012). The well-resolved internal topology of this clade, as recovered in our analysis, is congruent with results of previous analyses based on larger sets of characters from across the skeleton (e.g., Coria and Currie, 2006; Brusatte and Sereno, 2008; Brusatte et al., 2009; Ortega et al., 2010; Eddy and Clarke, 2011; Canale et al., 2015), and offers some support for considering the Romanian carcharodontosaurid from Southern Dobrogea as more closely related to the African Carcharodontosaurus than to the clade of the South American giant carcharodontosaurids Giganotosaurus or Mapusaurus.

Two final notes are worth adding. First, our analyses also incorporated carcharodontosaurids that are usually found to be basal within the clade, such as Acrocanthosaurus and Eocarcharia (e.g., Harris, 1998; Sereno and Brusatte, 2008; Carrano et al., 2012) as well as a host of other allosauroids, including members of Neovenatoridae (*Neovenator*, Australovenator and Fukuiraptor), a clade that is often recovered as sister-taxon to carcharodontosaurids within Carcharodontosauria (e.g., Benson et al., 2010; Carrano et al., 2012; but see Novas et al., 2013; Porfiri et al., 2014, for an alternate placement of neovenatorids in general). Both PCA and phylogenetic analysis clearly identified UAIC (SCM1) 615 as more closely comparable morphologically to derived carcharodontosaurids than to either basal carcharodontosaurids or to any other allosauroid subclade.

Second, our datasets also included teeth of *Erectopus*, the genus erected for *'Megalosaurus' superbus* to which UAIC (SCM1) 615 was originally referred. Again, our
analyses clearly indicate that there are no close morphological and morphometric similarities
between the two, which is in accordance with the suggestion of Carrano et al. (2012) that *Erectopus* represents a non-carcharodontosaurid taxon, while our analysis identifies UAIC

(SCM1) 615 as a carcharodontosaurid. Instead, *Erectopus* groups with abelisauroids in the phylogenetic analysis. This is somewhat surprisingly, as Allain (2005) and Carrano et al. (2012) both identified *Erectopus* as a tetanuran. It should be noted, however, that Albian-aged abelisauroids are known from the same general area (eastern France) as that yielding the material referred to *Erectopus* (Accarie et al., 1995; Carrano and Sampson, 2008), raising the intriguing possibility that this taxon may represent an abelisauroid instead of an allosauroid tetanuran as suggested by Allain (2005) and Carrano et al. (2012). However, it must be remembered that this phylogenetic analysis is based on dental characters only, so it is probably more likely that *Erectopus* is a tetanuran with a dentition convergent to some extent with those of certain abelisauroids.

636 5.2. Body size of UAIC (SCM1) 615

One of the most salient and remarkable features of UAIC (SCM1) 615 is its large size. In the large and comprehensive sample of theropod teeth from our dataset, tooth size (estimated based on crown height – CH, and used as a rough proxy of body size) ranges from 2.2 mm (in the dromaeosaurid Saurornitholestes and the coelurosaur of uncertain affinities *Richardoestesia*) to 117.1 mm in the gigantic tyrannosauroid *Tyrannosaurus*. The Romanian specimen UAIC (SCM1) 615, with a CH of 85.5 mm, is ranked in the 60-80% maximum size $(\sim CH)$ range of the sample, and has a CH that is 73% of the largest tyrannosauroid teeth. Most of the teeth in the dataset (over 61% of the 966 measured teeth) are very small to small (less than 25 mm CH), and less than 10% of these fall in the 60-100% CH size categories. Teeth larger than UAIC (SCM1) 615 make up less than 5% of the total sample, and they represent only five taxa: the megalosaurid *Torvosaurus*, the tyrannosauroid *Tyrannosaurus*, the basal carcharodontosaurid Acrocanthosaurus, and the derived carcharodontosaurines Carcharodontosaurus and Giganotosaurus. Compared to other carcharodontosaurids, UAIC

650 (SCM1) 615 is smaller than the largest teeth of *Acrocanthosaurus* (9% difference),

Carcharodontosaurus (20%), and *Giganotosaurus* (12.5%) in the dataset, but is 13% bigger
than the largest tooth of *Mapusaurus*.

It is thus reasonable to conclude that UAIC (SCM1) 615 belonged to a large-sized carcharodontosaurid, comparable to, even if somewhat smaller than, the truly gigantic carcharodontosaurines Giganotosaurus and Carcharodontosaurus (Sereno et al., 1996; Calvo and Coria, 1998; Therrien and Henderson, 2007), taxa that were recovered as possible close relatives of the Romanian carcharodontosaurid by our phylogenetic analysis. This, in turn, corroborates growing evidence that very large body size was acquired very early in carcharodontosaurid history, since the earliest potential members of the clade are already of relatively large size (Rauhut, 2011). The oldest potential carcharodontosaurid is Veterupristisaurus, represented by isolated vertebrae that indicate an animal between 8.5 and 10 meters in total body length (compared to 11.5+ meters in Acrocanthosaurus and more derived carcharodontosaurids) (Rauhut, 2011). These specimens are known from the uppermost Jurassic of Tanzania, eastern Africa (Rauhut, 2011; Carrano et al., 2012; see below), predating at most ~18 million years (Mya) the occurrence of likely even larger-sized carcharodontosaurids in the Valanginian of Southern Dobrogea, Romania.

The inferred large body size of the South Dobrogean theropod is also remarkable as virtually all other dinosaur remains reported previously from Romania (both from the Early Cretaceous Cornet assemblage and the much later, end Cretaceous Hateg Island fauna) are significantly smaller, and many have been interpreted as insular dwarfs (e.g., Weishampel et al., 1993, 2003; Benton et al., 2006, 2010; Stein et al., 2010; Ősi et al., 2014). Although other Romanian theropod dinosaurs were not particularly dwarfed (e.g. Brusatte et al., 2013), they were nonetheless small (Nopcsa, 1902; Csiki and Grigorescu, 1998; Csiki et al., 2010; Brusatte et al., 2013). This bias towards small bodied Romanian theropods was also

interpreted as a consequence of their insular habitat (Csiki and Grigorescu, 1998), as all previously reported theropod remains come from within the Carpathian Orogen, an area with an archipelago-type palaeogeography during the Cretaceous (Dercourt et al., 2000; Csontos and Vörös, 2004; Csiki-Sava et al., 2015). By contrast, UAIC (SCM1) 615 was found in shallow marine deposits bordering the emerged areas of Central Dobrogea, part of the stable cratonic areas of Europe and connected at least intermittently to the Ukrainean Shield since the Late Jurassic (Fig. 5A). Although cratonic Europe was also transformed into an archipelago of islands during much of the Cretaceous, these islands were often both larger in size and more stable in space and time than were the transient emerged areas of the Tethyan archipelagoes. As such, it is conceivable that the Southern Dobrogean carcharodontosaurid was less constrained by space or resource limitations than the Tethyan insular dinosaurs, allowing it to retain a large body size.

5.3. UAIC (SCM1) 615 and Valanginian dinosaur distribution

Besides documenting the presence of large-sized mainland carcharodontosaurids in the Lower Cretaceous of Romania, UAIC (SCM1) 615 is also important in that it fills a significant gap in our knowledge on the composition and distribution of the Early Cretaceous dinosaurs in Europe. In their review of dinosaur occurrences, Weishampel et al. (2004) listed 83 Early Cretaceous dinosaur localities spread throughout Europe, more than half of these being known from the later part (Barremian-Albian) of that epoch; only around a dozen localities were listed from each age of the early part of the Early Cretaceous (Berriasian, Valanginian, and Hauterivian). Even despite a significant increase in Early Cretaceous dinosaur discoveries in Europe in recent years (e.g., Royo-Torres et al., 2009; Cobos et al., 2010, 2014; Galton, 2009; Norman, 2010, 2013; Pereda-Suberbiola et al., 2011, 2012; Sachs and Hornung, 2013; Blows and Honeysett, 2014), these remain very strongly biased towards

western and southwestern Europe (especially the UK, France and Spain). Frustratingly, no
occurrences are known from the entire central, eastern and southern Europe for the
Berriasian–Hauterivian time interval except for two from Romania: the Berriasian–
Valanginian locality of Cornet (e.g., Jurcsák and Popa, 1979, 1983; Jurcsák, 1982; Benton et
al., 1997) in the northern Apuseni Mountains of northwestern Romania, and the
carcharodontosaurid tooth (Simionescu, 1913) from the Valanginian of Cochirleni, in
Southern Dobrogea, southeastern Romania we are describing here (Fig. 5A).

Our identification of the Romanian tooth as a carcharodontosaurid documents the presence of this clade in Europe in the very early Cretaceous. This is significant, as carcharodontosaurids were widely distributed tens of millions of years later, in the middle Cretaceous (Aptian to Cenomanian), in western Gondwana (Africa and South America, see below). Despite the recent discoveries documenting that the clade was also present in North America and Asia during the middle Cretaceous (e.g., Sereno et al., 1996; Currie and Carpenter, 2000; Brusatte et al., 2009, 2012), there has been only very few occurrences in Europe, most importantly the Barremian-aged *Concavenator* from Spain (Ortega et al., 2010; see below). The carcharodontosaurid tooth from Southern Dobrogea is substantially older than *Concavenator*, demonstrating that carcharodontosaurids appeared in Europe earlier than previously thought and were a long-term component of the European mainland Early Cretaceous faunas. It also suggests that habitat-related palaeobiological differentiation might have been already present between the cratonic, stable European mainland, with a dinosaur fauna made up of normal-sized (even very large) taxa, and the islands from the mobile Alpine areas of the Mediterranean Neo-Tethys, with by now dwarfed dinosaurs such as those described from the Berriasian-Valanginian Cornet assemblage in northwestern Romania (Benton et al., 2006).

This Valanginian carcharodontosaurid represents an important datapoint not only for the Romanian Lower Cretaceous, but also for that of wider Eurasia. The Valanginian is a poorly documented age in dinosaur evolution, with very few precisely dated fossil occurrences from anywhere in the world (e.g., Weishampel et al., 2004). The best record of Valanginian dinosaurs is from Europe, with fewer and less well dated occurrences known from Asia, some of which have debatable or controversial dates. These include sites in Japan (e.g., Manabe and Hasegawa, 1995; Matsukawa et al., 2006; but see Kusuhashi et al., 2009 and Evans and Matsumoto, 2015, supporting an alternative, younger age of these assemblages) and in Thailand (e.g., Buffetaut and Suteethorn, 1998, 2007, with age constraints according to Racey, 2009; Racey and Goodall, 2009). Occurrences of possible Valanginian age from China (e.g., Jerzykiewicz and Russell, 1991; Shen and Mateer, 1992; Lucas and Estep, 1998) are either poorly constrained as early Early Cretaceous, or were shown subsequently to be younger than Valanginian (Lucas, 2006; Tong et al., 2009). Rare dinosaur remains of possible Valanginian (or 'Neocomian') age were also reported from southern Africa (e.g., De Klerk et al., 2000) and, tentatively, from North America (e.g., Lucas, 1901; McDonald, 2011, with age assignments according to Sames et al., 2010; Cifelli et al., 2014).

As one of the two known reports of Valanginian dinosaurs in Europe east of France, the Southern Dobrogean dinosaur record fills a huge palaeogeographic gap between the western European and the eastern Asian dinosaur faunas. Moreover, none of these early Early Cretaceous dinosaur assemblages from outside Europe include carcharodontosaurids (see below), as theropods are represented by coelurosaurians interpreted either as compsognathids (Gishlick and Gauthier, 2007) or basal ornithomimosaurs (Choiniere et al., 2012) in southern Africa, metriacanthosaurid allosauroids ('sinraptorids') in Thailand (Buffetaut and Suteethorn, 2007), and indeterminate allosauroids (Pérez-Moreno et al., 1993), non-

carcharodontosaurid tetanurans (Carrano et al., 2012) or enantiornithine birds (Lacasa Ruiz, 1989), besides indeterminate taxa (Carrano et al., 2012), in western Europe. This may suggest that carcharodontosaurids had not achieved a wide geographic distribution by this point in time, and that their more cosmopolitan distribution came later, during the middle Cretaceous.

Finally, the presence of the Cochirleni carcharodontosaurid might hint at the presence of palaeobiogeographic provinciality between the western and the eastern parts of Europe, partly mirroring those reported from the later part of the Late Cretaceous (e.g., Le Loeuff and Buffetaut, 1995; Weishampel et al., 2010; Ősi et al., 2012; Csiki-Sava et al., 2015). In the reasonably well sampled, and significantly better known, western European dinosaur faunas, Valanginian large carnivorous dinosaurs include non-carcharodontosaurid tetanurans (Becklespinax), as well as indeterminate allosauroids or indeterminate theropods (often described as 'Megalosaurus' dunkeri, 'M.' insignis or 'M.' oweni), none of which can be referred positively to Carcharodontosauridae (Carrano et al., 2012). The apparently provincial geographic distribution of the large-bodied theropods suggests that some degree of faunal differentiation was occurring within the European mainland, most probably promoted by geographic distance. Notably, this intra-European differentiation in theropod assemblages appears to stand in contrast with the faunal homogeneity reported in the case of the ornithopods from the UK and Romania (e.g., Galton, 2009). It is important, however, to reemphasize at this point that the Valanginian dinosaur fossil record is both exceedingly poor and patchy, even in Europe. Accordingly, further discoveries are needed to verify and support (or contradict) the presence of such a distribution pattern pointing to palaeobiogeographic provinciality inside Europe, as the one suggested by our carcharodontosaurid identification for UAIC (SCM1) 615.

5.4. UAIC (SCM1) 615 and carcharodontosaurid evolution and palaeobiogeography

Carcharodontosauridae were long considered as an exclusively Gondwanan group of theropods (e.g., Allain, 2002; Novas et al., 2005) since their first discovery in northern Africa (e.g., Stromer, 1931), and subsequent description of a host of referred taxa from the Aptian-Cenomanian of Africa and South America (Coria and Salgado, 1995; Sereno et al., 1996; Novas et al., 2005; Coria and Currie, 2006; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Cau et al., 2013). This view started to change with the identification of the Early Cretaceous (Aptian-Albian) Acrocanthosaurus from North America as a basal carcharodontosaurid (e.g., Sereno et al., 1996; Harris, 1998; Sereno 1999; Brusatte and Sereno, 2008), suggesting that the clade had a wider, Neopangean palaeobiogeographic distribution by the mid-late Early Cretaceous. Such a wide distribution, even a cosmopolitan one, was further supported by the discovery of definitive carcharodontosaurids in the Lower Cretaceous of Europe (Ortega et al., 2010), and in the upper Lower to lower Upper Cretaceous of China (Brusatte et al., 2009, 2010b, 2012; Mo et al., 2014; Lü et al., 2016). Together, the available evidence pointed to an early, pre-mid Early Cretaceous origin

of the carcharodontosaurids, followed by their dispersal across Laurasia and western Gondwana beginning at least by the Aptian (Fig. 5B), a scenario that is concordant with the tentatively suggested presence of early carcharodontosaurids in the Upper Jurassic of Tanzania, which are based on fragmentary specimens (Rauhut, 2011; Carrano et al., 2012). It is also concordant with the widespread appearance of carcharodontosaurids in the fossil record starting with the Aptian, when they are reported in Africa (Eocarcharia; Sereno and Brusatte, 2008), South America (Vickers-Rich et al., 1999), North America (Acrocanthosaurus; Stovall and Langston, 1950; Harris, 1998; Currie and Carpenter, 2000 Eddy and Clarke, 2011), Europe (Canudo and Ruiz-Omeñaca, 2003; Pereda-Suberbiola et al., 2012), and eastern Asia (Kelmayisaurus; Brusatte et al., 2012; Mo et al., 2014; Lü et al., 2016).

During the Albian-Turonian, carcharodontosaurids became especially abundant and diverse in Africa (Carcharodontosaurus, Sauroniops; Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007; Le Loeuff et al., 2012; Cau et al., 2013; Richter et al., 2013) and South America (Tyrannotitan, Giganotosautus, Mapusaurus, alongside with indeterminate carcharodontosaurids; Coria and Salgado, 1995; Calvo and Coria, 1998; Novas et al., 2005; Coria and Currie, 2006; Casal et al., 2009; Candeiro et al., 2011; Canale et al., 2015; Fig. 5B). They were still present during this time interval in other continents, as well: in North America with Acrocanthosaurus until the Albian (D'Emic et al., 2012), in Europe until the Cenomanian (Vullo et al., 2007; Csiki-Sava et al., 2015), and in Eastern Asia with Shaochilong until the Turonian (Brusatte et al., 2009, 2010b; see also Chure et al., 1999). After dominating terrestrial ecosystems at least in Africa, South America and eastern Asia during the Albian–Turonian (Brusatte et al., 2009; Coria and Salgado, 2005; Novas et al., 2013), carcharodontosaurids were considered to disappear from the fossil record after the Turonian in both Asia (Brusatte et al., 2009) and South America (e.g., Coria and Salgado, 2005; Calvo et al., 2006; Novas et al., 2013), to be replaced by other groups of large theropods such as tyrannosaurids in parts of Laurasia and abelisaurids in parts of Gondwana. Canale et al. (2009) even cautioned against assigning isolated theropod teeth from post-Cenomanian deposits of South America to Carcharodontosaridae (e.g., Canudo et al., 2008; Casal et al., 2009; Salgado et al., 2009) due to their morphological similarity to those of the abelisaurid Skorpiovenator. Recently, however, more diagnostic cranial remains were reported to suggest the survival of carcharodontosaurids into the latest Cretaceous (Campanian–Maastrichtian) in Brazil (Azevedo et al., 2013). Contrasting with this rich and relatively continuous fossil record of Carcharodontosauridae starting with the Aptian, the first half of its evolutionary history is very poorly documented (Fig. 5B). Prior to the identification of UAIC (SCM1) 615, only two

occurrences of pre-Aptian Cretaceous carcharodontosaurids were reported, one from the Barremian of Spain (Ortega et al., 2010; Gasca et al., 2014) and the other from the Barremian of Thailand (Buffetaut and Suteethorn, 2012). The Early Cretaceous Kelmayisaurus from Xinjiang, western China, was recognized as a carcharodontosaurid of possibly ?Valanginian to Aptian in age by Brusatte et al. (2012), but the deposits yielding these remains (the Lianmugin, or Lianmuxin, Formation of the Tugulu Group) were dated as Aptian–Albian by Eberth et al. (2001; see also Tong et al., 2009). An important temporal gap – of about 20 to 28 millions of years, according to the dates in Gradstein et al. (2012) – thus stretched between the oldest, tentatively assigned carcharodontosaurids from the Oxfordian-Tithonian of Tanzania, including the formally erected *Veterupristisaurus* (Rauhut, 2011; see also Carrano et al., 2012), and those that started to appear in the fossil record in the Barremian and then spread widely during the Aptian. Referral of UAIC (SCM1) 615 to Carcharodontosauridae partially fills this frustrating gap, effectively halving this shadowy period in the evolutionary history of the group.

Furthermore, our analyses tentatively cluster the Dobrogean theropod with the derived members of the Carcharodontosaurinae to the exclusion of the more basal, but significantly younger non-carcharodontosaurine carcharodontosaurids *Eocarcharia* and *Acrocanthosaurus*.
If this placement is correct, then the Romanian tooth indicates that Carcharodontosaurinae diverged from other carcharodontosaurids considerably earlier than hitherto recognized.

The previously known fossil record of the clade suggested that Carcharodontosaurinae
originated sometime between the Aptian and Albian, as basal carcharodontosaurids
(*Acrocanthosaurus, Concavenator, Eocarcharia*) were moderately diverse in the Barremian–
Aptian, followed by the appearance of many fossils of carcharodontosaurines beginning in
the Albian (Fig. 5B). The proposed affinities of the oldest carcharodontosaurid material –
including isolated teeth referred to as '*Megalosaurus*' *ingens* – from the east African Upper

Jurassic, considered to be reminiscent of the Aptian-Albian Acrocanthosaurus (Rauhut, 2011), was also consistent with this evolutionary scenario. Now, our identification of UAIC (SCM1) 615 as a carcharodontosaurid dinosaur sharing important dental apomorphies with the derived Carcharodontosaurinae advocates the emergence of this clade (or at least the very large size and dental morphology characterizing it) well before the Albian, during or even before the Valanginian, and relegates taxa such as Eocarcharia, Acrocanthosaurus and *Concavenator* (the dentition of *Shaochilong* is unknown) as late-surviving members of the basal carcharodontosaurid radiation, with a relatively plesiomorphic dentition.

Besides shifting the emergence of the carcharodontosaurines earlier in time, identification of UAIC (SCM1) 615 as a carcharodontosaurid also has interesting palaeobiogeographic implications. As already noted, recent discoveries show that Carcharodontosauridae is not an endemic Gondwanan clade as was once proposed (e.g., Novas et al., 2005), with the identification of its widespread, Pangaean distribution during the late Early Cretaceous (Sereno et al., 1996; Harris, 1998; Chure et al., 1999; Sereno, 1999; Brusatte and Sereno, 2008; Ortega et al., 2010; Brusatte et al., 2009, 2012; Mo et al., 2014). However, within Carcharodontosauridae itself, some palaeogeographic patterns have been widely accepted. For example, it has been widely acknowledged that Carcharodontosaurinae is a endemic subclade of Gondwanan carcharodontosaurids (e.g., Sereno 1999; Holtz et al., 2004b; Brusatte and Sereno, 2007; Sereno and Brusatte, 2008; Novas et al., 2013), as previously all its recognized members were restricted strictly to either Africa (Stromer, 1931; Sereno et al., 1996; Brusatte and Sereno, 2007) or South America (Coria and Salgado, 1995; Novas et al., 2005; Coria and Currie, 2006). Moreover, intra-clade relationships of Carcharodontosaurinae were still adhering to patterns of continental fragmentation and vicariant evolution, with a basal split between the Albian-Cenomanian African *Carcharodontosaurus* and the Giganotosaurini, uniting the similarly Albian–Cenomanian

southern South American Giganotosaurus and Mapusaurus (together with Tyrannotitan, if this taxon is also recovered within Carcharodontosaurinae; e.g., Novas et al., 2005, 2013).

This scenario is now challenged by our finding that the Southern Dobrogean carcharodontosaurid UAIC (SCM1) 615 may nest inside Carcharodontosaurinae. If true, such an affinity would suggest that the origin of Carcharodontosaurinae was not a southern, vicariant by-product of the Gondwana-Laurasia separation, a major palaeogeographic event that is considered to have been well underway by the end of the Jurassic, and essentially completed by the mid-Early Cretaceous (see Weishampel et al., 2010). Indeed, during this time palaeogeographic connections and faunal interactions were virtually non-existent between the northern Tethyan (European) and southern Tethyan (western Gondwanan, but essentially African) areas of the Mediterranean (e.g., Canudo et al., 2009), which makes a vicariant hypothesis intuitive. However, if the Romanian tooth represents a carcharodontosaurine, then it implies a much more complicated palaeogeographic history of the clade, which is not so clearly linked to continental breakup.

The palaeogeographic position of the Southern Dobrogean carcharodontosaurine in cratonic Europe, north of the Neo-Tethys, together with its significantly older age compared to other carcharodontosaurines, could indicate that separation of the carcharodontosaurine lineage took part in Europe and not in western Gondwana as previously assumed. This would also mean that representatives of this lineage were subsequently – after the Barremian – introduced to Africa and South America via trans-Tethyan dispersal, most probably at a time when faunal interactions between the southern and northern margins of the Mediterranean Tethys were resumed, after the early Barremian (Canudo et al., 2009).

Alternatively, it can be hypothesized that appearance of carcharodontosaurines in Southern Dobrogea is a consequence of southern immigration originating in western Gondwana, often considered the place of origin for this clade. However, this scenario has

several potential caveats. Although Europe has been considered as forming part of a larger Eurogondwanan palaeobioprovince during the early Early Cretaceous (Ezcurra and Agnolín, 2012), and occasional trans-Tethyan faunal connections have been recognized between Africa and Europe during Late Jurassic to Early Cretaceous times (e.g., Gheerbrant and Rage, 2006), these interchanges either pre-dated the Berriasian (e.g., Gardner et al., 2003; Knoll and Ruiz-Omeñaca, 2009), or post-dated the Barremian (Canudo et al., 2009; Torcida Fernández-Baldor et al., 2011), with no positive evidence for actual faunal exchanges taking place during the 'Neocomian' (Berriasian-Hauterivian) time interval.

More recently, some potential evidence has emerged for Gondwana-to-Europe interchange during the 'Neocomian'. The presence of the basal rebbachisaurid Histriasaurus (Dalla Vecchia, 1998) in the upper Hauterivian-lower Barremian of Croatia has been cited as indicative of very early and very rapid northward dispersal of this clade from western Gondwana (southern South America; Carballido et al., 2012; Fanti et al., 2015). Timing of this particular dispersal event was even constrained to the Berriasian–Valanginian time interval (Fanti et al., 2015), which makes it roughly contemporaneous with the record of the Southern Dobrogean carcharodontosaurine. It was also suggested, however, that dispersal of the line leading to Histriasaurus was mediated by the northward drift of the Apulian Microplate (= Adria; see Bosselini, 2002), a continental sliver acting as a passive transportation mechanism ('Noah's Ark'; McKenna, 1973) for basal rebbachisaurids after its separation from mainland Africa (e.g., Torcida Fernández-Baldor et al., 2011). Furthermore, the palaeogeographical separation between Africa and Adria (and thus the effective movement of the presumed ark) is considered to be at most an incipient one during the Early Cretaceous by Bossellini (2002) and Zarcone et al. (2010), with spatial continuity still present between the two landmasses, while deep-water basins continued to separate Adria from the European Craton. Accordingly, although the presence of *Histriasaurus* can represent a case

of northward range extension of rebbachisaurids during the Berriasian-Valanginian, it took place not strictly speaking into Europe, but only reached the northernmost extremity of Adria, a northerly peninsular extension of the African mainland. It was only starting with the Barremian that rebbachisaurids dispersed as far north as the European cratonic areas, including Iberia and the British Isles (Mannion, 2009; Mannion et al., 2011; Torcida Fernández-Baldor et al., 2011), a time when faunal interchanges between Europe and Africa are considered to have been well underway (e.g., Gheerbrant and Rage, 2006; Canudo et al., 2009).

Unlike Histriasaurus, the taxon represented by UAIC (SCM1) 615 was an inhabitant of the European mainland. It is thus unclear to what extent the example of rebbachisaurid range extension into (present-day) Europe during the early Early Cretaceous, as potentially testified by the discovery of the Croatian taxon, would also be applicable for the Southern Dobrogean carcharodontosaurine. The available evidence suggests that these two cases are very different, and that faunal connections during this time interval are not documented between the African and European cratons as already pointed out by Gheerbrant and Rage (2006).

Absence of documented faunal interactions weakens support for a scenario of south-to-north immigration of derived carcharodontosaurines in Europe at the very beginning of the Cretaceous, and would argue instead for a local, European development to explain the presence of a Valanginian carcharodontosaurine in Southern Dobrogea. The pre-Barremian presence of carcharodontosaurids in Europe is also consistent with their appearance in the Barremian-Aptian fossil record of Eastern Asia, with Europe acting as a stepping stone in the eastward dispersal of the clade. Similarly, the presence of Aptian carcharodontosaurids in North America likely requires the presence of pre-Aptian members of the clade in Europe, since faunal exchanges between these two landmasses are known to have been halted before

the Aptian (e.g., Kirkland et al., 1999). Interestingly, it appears that only basal
carcharodontosaurids were able to spread into the northern Laurasian landmasses, while the
derived carcharodontosaurines dispersed exclusively across the Neo-Tethys, into western
Gondwana. The causes of these distribution patterns remain as yet unknown, and further
support – in the form on new carcharodontosaurid discoveries from the early-middle part of
the Early Cretaceous – is required to better uphold such a scenario.

We finally reiterate that if the Romanian tooth does not belong to a carcharodontosaurine, but instead is artefactually grouping with them in the phylogenetic analysis because of the very incomplete nature of the material, then the traditional story of Carcharodontosaurinae as a product of vicariant evolution driven by the breakup of Pangea will remain strongly supported. However, even in such case UAIC (SCM1) 615 would still record the presence of early-occuring large carcharodontosaurid theropods with a very characteristic carcharodontosaurine-type dentition in the eastern part of the European craton, adding to known early Early Cretaceous theropod (and dinosaur) diversity, and potentially documenting dinosaur faunal provinciality in Europe and worldwide.

965 6. Conclusions

We re-describe and interpret the affinities of one of the most significant historical dinosaurian specimens of Romania, an isolated but well-preserved theropod tooth from Southern Dobrogea. Our extensive analyses suggest carcharodontosaurid relationships for this tooth, while the available evidence – including novel calcareous nannoplankton sampling – supports its Valanginian age. The Southern Dobrogean theropod tooth represents the oldest record of Carcharodontosauridae in the Cretaceous, and the second oldest globally, eclipsed only by a collection of isolated specimens from the Upper Jurassic of eastern Africa. As one of the only two known Valanginian dinosaurian occurrences from Central and Eastern Europe, this

974 record advances our understanding of European dinosaur distribution during the early Early
975 Cretaceous, and also fills an important palaeogeographic gap between Western European and
976 Eastern Asian dinosaurian assemblages of the Valanginian.

Based on dental apomorphies, our analyses further identify UAIC (SCM1) 615 as a possible member of Carcharodontosaurinae, a subclade of derived and gigantic carcharodontosaurids formerly known to be restricted to the Albian-Cenomanian of western Gondwana (Africa and South America). If this finding is correct, the Southern Dobrogean specimen documents the emergence of Carcharodontosaurinae earlier than previously recognized, thus also indicating an earlier acquisition of their characteristically large size. Based on currently known palaeogeographic and chronostratigraphic constraints on the evolution of Carcharodontosauridae, it appears that not only did this clade have a wide distribution, but that crucial events of its evolutionary history such as the emergence of the derived carcharodontosaurines took place north of the Tethys, in cratonic Europe, instead of western Gondwana and as the result of vicariant evolution driven by the Gondwana-Laurasia split, as was formerly suggested. In such a case, instead of endemic evolution the emergence of the western Gondwanan mid-Cretaceous carcharodontosaurines was the result of a northto-south trans-Tethyan dispersal that took place somewhere between the Valanginian and the Aptian. Recognizing a potential carcharodontosaurine dispersal event from Europe into western Gondwana adds further support for the presence of important palaeogeographic ties between the two realms during the second half of the Early Cretaceous.

5 Acknowledgements

This research was supported by the National Research Council of Romania (CNCS) grant PN-IIID-PCE-2011-3-0381 and a Sepkoski grant of the Paleontological Society for Z.Cs.-S.

Paleontology of the American Museum of Natural History, and the School of GeoSciences of the University of Edinburgh. He thanks Mátyás Vremir, Radu Totoianu, and Mark Norell for many hours of fun discussion on Romanian fossils, and for supporting his work and travel in Romania. We thank Mihai Brânzilă and Paul Țibuleac (UAIC) for access to the specimen, for allowing us to collect samples for the nannoplankton analyses, and for their help and collegiality during our visit to Iași, as well as Ilie Turculeț for sharing information about the history of the specimen. Mihaela C. Melinte-Dobrinescu has gracefully analyzed the nannoplankton samples derived from UAIC (SCM1) 615; her contribution was essential in assessing the age of the specimen. Finally, we thank the reviewers Eric W.A. Mulder (Denekamp, the Netherlands) and Xabier Pereda-Suberbiola (Bilbao, Spain), as well as Associated Editor Elena Jagt-Yazykova, for their useful comments and suggestions that helped improve previous versions of the manuscript.

Accarie, H., Beaudoin, B., Dejax, J., Friès, G., Michard, J. G., & Taquet, P. (1995). Découverte d'un dinosaure théropode nouveau (Genusaurus sisteronis n. g., n. sp.) dans l'Albien marin de Sisteron (Alpes-de-Haute-Provence, France) et extension au Crétacé inférieur de la lignée cératosaurienne. Comptes Rendus de l'Académie des Sciences Paris, IIa

Allain, R. (2002). Discovery of a megalosaur (Dinosauria, Theropoda) in the Middle Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae. Journal of Vertebrate Paleontology, 22, 548–563.

41

1021	Allain, R. (2005). The enigmatic theropod dinosaur <i>Erectopus superbus</i> (Sauvage, 1882)
1 2 3 1022	from the Lower Albian of Louppy-le-Chateau (Meuse, France). In K. Carpenter (Ed.), The
4 5 1023	Carnivorous Dinosaurs (pp. 72-86). Bloomington: Indiana University Press.
⁷ 1024	Avram, E., Costea, I., Dragastan, O., Muțiu, R., Neagu, T., Şindilar, V., & Vinogradov, C.
9 10 10 11	(1996). Distribution of the Middle-Upper Jurassic and Cretaceous facies in the Romanian
12 1026 13	eastern part of the Moesian Platform. Revue Roumaine de Géologie, 39-40, 3-33.
¹⁴ 15 1027	Avram, E., Szasz, L., Antonescu, E., Baltreş, A., Iva, M., Melinte, M., Neagu, T., Rădan, S.,
16 17 1028 18	& Tomescu, C. (1993). Cretaceous terrestrial and shallow marine deposits in northern South
¹⁹ ₂₀ 1029	Dobrogea (SE Romania). Cretaceous Research, 14, 265-305.
21 22 1030	Azevedo, R. P. F. de, Simbras, F. M., Furtado, M. R., Candeiro, C. R. A., & Bergqvist, L. P.
²³ ²⁴ 25	(2013). First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the
26 27 1032	Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern
28 29 1033 30	Brazil. Cretaceous Research, 40, 131–142.
³¹ 32 1034	Benson, R. B. J., Barrett, P. M., Powell, H. P., & Norman, D. B. (2008). The taxonomic
33 34 1035 35	status of Megalosaurus bucklandii (Dinosauria, Theropoda) from the Middle Jurassic of
³⁶ 37 1036	Oxfordshire, UK. Palaeontology, 51, 419-424.
38 39 1037 40	Benson, R. B. J., Carrano, M. T., & Brusatte, S. L. (2010). A new clade of archaic large-
$\frac{41}{42}$ 1038	bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic.
43 44 1039	Naturwissenschaften, 97, 71–78.
45 46 1040 47	Benton, M. J., Cook, E., Grigorescu, D., Popa, E., & Tallódi, E. (1997). Dinosaurs and other
48 49 1041	tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania.
50 51 1042 52	Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 275–292.
⁵³ ₅₄ 1043	Benton, M. J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, M., Stein, K., &
55 56 1044 57	Weishampel, D. B. (2010). Dinosaurs and the island rule: the dwarfed dinosaurs from Haţeg
⁵⁸ 59 1045	Island. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 438–454.
60 61 62 63 64 65	42

1046 1	Benton, M. J., Minter, N. J., & Posmoșanu, E. (2006). Dwarfing in ornithopod dinosaurs
² ₃ 1047	from the Early Cretaceous of Romania. In Z. Csiki (Ed.), Mesozoic and Cenozoic Vertebrates
4 5 1048	and Paleoenvironments; Tributes to the Career of Prof. Dan Grigorescu (pp. 79–87).
6 7 1049 8	Bucharest: Ars Docendi.
9 10 1050	Blows, W. T., & Honeysett, K. (2014). First Valanginian Polacanthus foxii (Dinosauria,
12 1051 13	Ankylosauria) from England, from the Lower Cretaceous of Bexhill, Sussex. Proceedings of
$^{14}_{15}$ 1052	the Geologists' Association, 125, 233–251.
16 17 1053 18	Bosselini, A. (2002). Dinosaurs "re-write" the geodynamics of the eastern Mediterranean
$\frac{19}{20}$ 1054	and the paleogeography of the Apulia Platform. Earth-Science Reviews, 59, 211–234.
21 22 1055	Brânzilă, M. (ed.) (2010). Academicianul Ion Simionescu - savant și dascăl al neamului (p.
²³ ²⁴ 25	182). Iași: Ed. Universității "Alexandru Ioan Cuza".
26 27 1057	Brusatte, S., Benson, R. B. J., Carr, T. D., Williamson, T. E., & Sereno, P. C. (2007). The
28 29 1058 30	systematic utility of theropod enamel wrinkles. Journal of Vertebrate Paleontology, 27,
$\frac{31}{32}$ 1059	1052–1056.
33 34 1060 35	Brusatte, S. L., Benson, R. B. J., Chure, D. J., Xu, X., Sullivan, C., & Hone, D. W. E. (2009).
$\frac{36}{37}$ 1061	The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed
38 39 1062 40	ascent of tyrannosaurids. Naturwissenschaften, 96, 1051–1058.
$41 \\ 42$ 1063	Brusatte, S. L., Benson, R. B. J., & Xu, X. (2012). A reassessment of Kelmayisaurus
43 44 1064	petrolicus, a large theropod dinosaur from the Early Cretaceous of China. Acta
45 46 1065 47	Palaeontologica Polonica, 57, 65–72.
$48 \\ 49 \\ 1066$	Brusatte, S. L., & Clark, N. D. L. (2015). Theropod dinosaurs from the Middle Jurassic
50 51 1067 52	(Bajocian-Bathonian) of Skye, Scotland. Scottish Journal of Geology, 51, 157-164. doi:
$53 \\ 54$ 1068	10.1144/sjg2014-022
55 56	
57 58 59	
60	
61	43
62	
ьз 64	
65	

Brusatte, S., Chure, D. J., Benson, R. B. J., & Xu, X. (2010b). The osteology of Shaochilong maortuensis, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Asia. Zootaxa, 2334, 1–46. Brusatte, S. L., Lloyd, G. T., Wang, S. C., & Norell, M. A. (2014). Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Current Biology, 24, 2386–2392. Brusatte, S. L., Norell, M. A., Carr, T. D., Erickson, G. M., Hutchinson, J. R., Balanoff, A. M., Bever, G. S., Choiniere, J. N., Makovicky, P. J., & Xu, X. (2010a). Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science, 329, 1481–1485. Brusatte, S. L., & Sereno, P. C. (2007). A new species of Carcharodontosaurus (Dinosauria: Theropoda) from the Cenomanian of Niger and a revision of the genus. Journal of Vertebrate Paleontology, 27, 902-916. Brusatte, S. L., & Sereno, P. C. (2008). Phylogeny of Allosauroidea (Dinosauria: Theropoda): comparative analysis and resolution. Journal of Systematic Palaeontology, 6, 155–182. Brusatte, S. L., Vremir, M., Csiki-Sava, Z., Turner, A. H., Watanabe, A., Erickson, G. M., & Norell, M. A. (2013). The osteology of Balaur bondoc, an island-dwelling dromaeosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bulletin of the American Museum of Natural History, 374, 3-100. doi: 10.1206/798.1 Buckland, W. (1824). Notice on the Megalosaurus or great fossil lizard of Stonesfield. Transactions of the Geological Society, 21, 390–397. Buffetaut, E., & Suteethorn, V. (1998). Early Cretaceous dinosaurs from Thailand and their bearing on the early evolution and biogeographical history of some groups of Cretaceous dinosaurs. In S. G. Lucas, J. I. Kirkland, & J. W. Estep (Eds.), Lower and Middle Cretaceous

Terrestrial Ecosystems (pp. 205–210), New Mexico Museum of Natural History and Science
Bulletin, 14.

Buffetaut, E., & Suteethorn, V. (2007). A sinraptorid theropod (Dinosauria: Saurischia) from
the Phu Kradung Formation of northeastern Thailand. *Bulletin de la Société Géologique de France*, *178*, 497–502.

Buffetaut, E., & Suteethorn, V. (2012). A carcharodontid theropod (Dinosauria, Saurischia)
 from the Sao Khua Formation (Early Cretaceous, Barremian) of Thailand. In R. Royo-Torres,
 F. Gascó, & L. Alcalá (Eds.), *10th Annual Meeting of the European Association of Vertebrate Palaeontologists* (pp. 27–30). Teruel: ¡Fundamental!, 20.

221102 Calvo, J. O., & Coria, A. (1998). New specimen of Giganotosaurus carolinii (Coria &

1103 Salgado, 1995), supports it as the largest theropod ever found. *Gaia*, *15*, 117–122.

Calvo, J. O., Gandossi, P., & Porfiri, J. D. (2006). Dinosaur faunal replacement during

1105 Cenomanian times in Patagonia, Argentina. In: S. E. Evans, & P. M. Barrett (Eds.), 9th

1106 *Mesozoic Terrestrial Ecosystems and Biota* (pp. 17–20). Manchester, UK.

Canale, J. I., Scanferla, C. A., Agnolin, F. L., & Novas, F. E. (2009). New carnivorous
 dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid

8 9 1109 theropods. *Naturwissenschaften*, 96, 409–414.

Lino Canale, J. I., Novas, F. E., & Pol, D. (2015). Osteology and phylogenetic relationships of

Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda:

⁴⁶ 1112 Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. *Historical*

^og 1113 Biology, 27, 1–32. doi: 10.1080/08912963.2013.861830.

⁵¹1114 Candeiro, C. R. A., Fanti, F., Therrien, F., & Lamanna, M. C. (2011). Continental fossil
 ⁵³₅₄1115 vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and
 ⁵⁵₅₆1116 their relationship with contemporaneous faunas from North Africa. *Journal of African Earth*

⁸ 1117 Sciences, 60, 79–92.

1118	Canudo, J. I. Barco, J. L., Pereda Suberbiola, X., Ruiz-Omeñaca, J. I., Salgado, L., Torcida		
$\frac{1}{3}$ 1119	Fernández-Baldor, F., & Gasulla, J. M. (2009). What Iberian dinosaurs reveal about the		
4 5 1120 6	bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bulletin de la		
$\frac{7}{8}$ 1121	Société Géologique de France, 180, 5–11.		
9 10 1122	Canudo, J. I., Filippi, L. S., Salgado, L., Garrido, A. C., Cerda, I. A., Garcia, R., & Otero, A.		
12 1123 13	(2008). Theropod teeth associated with a sauropod carcass in the Upper Cretaceous (Plottier		
$^{14}_{15}$ 1124	Formation) of Rincón de los Sauces. In Colectivo Arqueológico y Paleontológico de Salas de		
17 1125 18	los Infantes (Ed.), Actas de las IV Jornadas Internacionales sobre Paleontología de		
$\frac{19}{20}$ 1126	Dinosaurios y su Entorno (pp. 321-330). Salas de los Infantes, Burgos.		
21 22 1127 23	Canudo, J. I., & Ruiz-Omeñaca, J. I. (2003). Los restos directos de dinosaurios teropódos		
²⁴ 1128 25	(excluyendo Aves) en España. Ciencias de la Tierra 26, 347–373.		
26 27 1129 28	Carballido, J. L., Salgado, L., Pol, D., Canudo, J. I., & Garrido, A. (2012). A new basal		
²⁹ 1130 30	rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin;		
$31 \\ 32 \\ 1131 \\ 33$	evolution and biogeography of the group. Historical Biology, 24, 631-654.		
34 1132 35	Carrano, M. T., Benson, R. B. J., & Sampson, S. D. (2012). The phylogeny of Tetanurae		
³⁶ ₃₇ 1133	(Dinosauria: Theropoda). Journal of Systematic Palaeontology, 10, 211-300.		
38 39 1134 40	Carrano, M. T., & Sampson, S. D. (2008). The phylogeny of Ceratosauria (Dinosauria:		
$^{41}_{42}$ 1135	Theropoda). Journal of Systematic Palaeontology, 6, 183–236.		
$43 \\ 44 \\ 1136 \\ 45$	Carvalho, I. S., Campos, A. C. A., & Nobre, P. H. (2005). Baurusuchus salgadoensis, a new		
$\frac{46}{47}$ 1137	Crocodylomorpha from the Bauru Basin (Cretaceous), Brazil. Gondwana Research, 8, 11–30.		
48 49 1138	Casal, G., Candeiro, C. R. A., Martinez, R., Ivany, E., & Ibiricu, L. (2009). Dientes de		
51 1139 52	Theropoda (Dinosauria: Saurischia) de la Formación Bajo Barreal, Cretácico Superior,		
53 54 1140	Provincia del Chubut, Argentina. Géobios, 42, 553–560.		
55 56 57			
58 59			
60 61	46		
62			
63			
04 65			

atic Palaeontology,	6, 183–236.

- A., & Nobre, P. H. (2005). Baurusuchus salgadoensis, a new
- uru Basin (Cretaceous), Brazil. Gondwana Research, 8, 11–30.
- Martinez, R., Ivany, E., & Ibiricu, L. (2009). Dientes de

- schia) de la Formación Bajo Barreal, Cretácico Superior,
 - na. *Géobios*, 42, 553–560.

Cau, A., Dalla Vecchia, F. M., & Fabbri, M. (2013). A thick-skulled theropod (Dinosauria, 1141

- Saurischia) from the Upper Cretaceous of Morocco with implications for carcharodontosaurid cranial evolution. Cretaceous Research, 40, 251-260.
- Choiniere, J. N., Forster, C. A., & De Klerk, W. J. (2012). New information on
- Nqwebasaurus thwazi, a coelurosaurian theropod from the Early Cretaceous Kirkwood
- Formation in South Africa. Journal of African Earth Sciences, 71–72, 1–17.
- Chure, D. J., Manabe, M., Tanimoto, M., & Tomida, Y. (1999). An unusual theropod tooth
- from the Mifune Group (Late Cenomanian to Early Turonian), Kumamoto, Japan. In Y.
 - Tomida, T. H. Rich, & P. Vickers-Rich (Eds.), Proceedings of the Second Gondwanan
- Dinosaur Symposium (pp. 291–296). Tokyo: National Science Museum Monographs, 15.
- Cifelli, R. L., Davis, B. M., & Sames, B. (2014). Earliest Cretaceous mammals from the United States. Palaeontologica Polonica, 59, 31-52. western Acta doi:10.4202/app.2012.0089.
- Cobos, A., Lockley, M. G., Gascó, F., Royo-Torres, R., & Alcalá, L. (2014). Megatheropods as apex predators in the typically Jurassic ecosystems of the Villar del Arzobispo Formation (Iberian Range, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 31-41. doi: 10.1016/j.palaeo.2014.02.008.
- Cobos, A., Royo-Torres, R., Luque, L., Alcalá, L., & Mampel, L. (2010). An Iberian
- stegosaurs paradise: The Villar del Arzobispo Formation (Tithonian-Berriasian) in Teruel
- (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 223–236.
- Codrea, V., Godefroit, P., & Smith, T. (2012). First discovery of Maastrichtian (latest
- Cretaceous) terrestrial vertebrates in Rusca Montană Basin (Romania). În P. Godefroit (Ed.)
- Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (pp. 570–581).
 - Bloomington: Indiana University Press.
- 47

65
1165	Codrea, V., Vremir, M., Jipa, C., Godefroit, P., Csiki, Z., Smith, T., & Fărcaş, C. (2010).						
$\frac{1}{3}$ 1166	More than just Nopcsa's Transylvanian dinosaurs: A look outside the Hateg Basin.						
4 5 1167	Palaeogeography, Palaeoclimatology, Palaeoecology 293, 391–405. doi:						
⁶ 7 1168 8	10.1016/j.palaeo.2009.10.027.						
9 10 1169	Colbert, E. H. (1946). Sebecus, representative of a peculiar suborder of fossil Crocodilia from						
12 1170 13	Patagonia. Bulletin of the American Museum of Natural History, 87(4), 217–270.						
¹⁴ 15 1171	Coria, R. A., & Currie, P. J. (2006). A new carcharodontosaurid (Dinosauria, Theropoda)						
16 17 1172 18	from the Upper Cretaceous of Argentina. Geodiversitas, 28, 71–118.						
¹⁹ ₂₀ 1173	Coria, R. A, & Salgado, L. (1995). A new giant carnivorous dinosaur from the Cretaceous o						
21 22 1174 23	Patagonia. Nature, 377, 224–226.						
²⁴ 25 1175	Coria, R. A., & Salgado, L. (2005). Mid-Cretaceous turnover of saurischian dinosaur						
26 27 1176	communities: evidence from the Neuquén Basin. In G. D. Veiga, L. A. Spalletti, J. A.						
29 29 30	Howell, & E. Schwartz (Eds.), The Neuquén Basin, Argentina: a case study in sequence						
³¹ 32 1178	stratigraphy and basin dynamics (pp. 317-327). Geological Society, London, Special						
34 1179 35	Publications, 252.						
³⁶ ₃₇ 1180	Covacef, Z. (1995). Pionieri ai culturii românești în Dobrogea; Ioan Cotovu și Vasile Cotovu.						
38 39 1181 40	Analele Dobrogei, I(1), 127–134.						
⁴¹ ₄₂ 1182	Császár, G., Kollányi, K., Lantos, M., Lelkes, G., & Tardiné Filácz, E. (2000). A						
43 44 1183 45	Hidasivölgyi Márga Formáció kora és képződési környezete. Földtani Közlöny, 130, 695–						
46 47 47	723.						
48 49 1185	Csiki, Z., & Grigorescu, D. (1998). Small theropods of the Late Cretaceous of the Hațeg						
50 51 1186 52	Basin (Western Romania) - an unexpected diversity at the top of the food chain. Oryctos, 1,						
⁵³ ₅₄ 1187	87–104.						
55 56 57							
57 58 59							
60 61	48						
62							
63 64							
65							

Csiki, Z., Vremir, M., Brusatte, S. L., & Norell, M. A. (2010). An aberrant island-dwelling
theropod dinosaur from the Late Cretaceous of Romania. *Proceedings of the National Academy of Sciences*, *107*, 15357–15361.

Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., & Brusatte, S. L. (2015). Island
life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of landliving vertebrates on the Late Cretaceous European archipelago. *Zookeys*, *469*, 1–161. doi:
10.3897/zookeys.469.8439.

1195 Csiki-Sava, Z., Codrea, V., & Vasile, Ş. (2013). Early Cretaceous dinosaur remains from

Dobrogea (southeastern Romania). In L. Picot (Ed.), Abstracts, 11th Annual Meeting of the

197 *European Association of Vertebrate Palaeontologists* (pp. 28). Villers-sur-Mer, France.

198 Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian

199 region. *Palaeogeography, Palaeoclimatology, Palaeoecology, 210*, 1–56. doi:

10.1016/j.palaeo.2004.02.033.

1201 Currie, P. J., & Carpenter, K. (2000). A new specimen of Acrocanthosaurus atokensis

1202 (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous,

1203 Aptian) of Oklahoma, USA. *Geodiversitas*, 22, 207–246.

Currie, P. J., Rigby, J. K., & Sloan, R. E. (1990). Theropod teeth from the Judith River

Formation of southern Alberta, Canada. In K. Carpenter, & P. J. Currie (Eds.), *Dinosaur*

Systematics: Approaches and Perspectives (pp. 107–125). Cambridge, Boston: Cambridge
University Press.

^o 1208 Dalla Vecchia, F. M. (1998). Remains of Sauropoda (Reptilia, Saurischia) in the Lower

¹ 1209 Cretaceous (Upper Hauterivian/Lower Barremian) limestones of SW Istria (Croatia).

³1210 *Geologia Croatica*, 5, 105–134.

5 **1211** Dames, W. (1884). *Megalosaurus dunkeri. Sitzungberichte Gesellschaft Naturforschender*

⁸₉1212 Freunde zu Berlin, 1884, 186–188.

1213	De Klerk, W. J., Forster, C. A., Sampson, S. D., Chinsamy, A., & Ross, C. F. (2000). A new
$\frac{1}{2}$ 1214	coelurosaurian dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate
4 5 1215 6	Paleontology, 20, 324–332.
⁷ 1216	D'Emic, M. D., Melstrom, K. M., & Eddy, D. R. (2012). Paleobiology and geographic range
9 10 1217 11	of the large-bodied Cretaceous theropod dinosaur Acrocanthosaurus atokensis.
12 1218 13	Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334, 13–23.
$^{14}_{15}$ 1219 16	Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M., Cadet, J. P.,
17 1220 18	Crasquin, S., & Săndulescu, M. (Eds.) (2000). Atlas Peri-Tethys Palaeogeographical Maps
¹⁹ 1221 21	(269 p). Paris: CCGM/CGMW .
22 1222 23	Dinu, C., Grădinaru, E., Stoica, M., & Diaconescu, V. (2007). Dobrogea 2007 Field Trip
²⁴ 1223	Preparation and Assistance (123 p.). University of Bucharest.
26 27 1224 28	Dragastan, O. N., Antoniade, C., & Stoica, M. (2014). Biostratigraphy and zonation of the
29 1225 30	Lower Cretaceous succession from Cernavodă-lock section, South Dobrogea, eastern part of
$\frac{31}{32}$ 1226	the Moesian Platform (Romania). Carpathian Journal of Earth and Environmental Sciences,
34 1227 35	9, 231–260.
³⁶ 37 38	Dragastan, O., Neagu, T., Bărbulescu, A., & Pană, I. (1998). Jurasicul și Cretacicul din
39 1229 40	Dobrogea Centrală și de Sud (249 p.). Bucharest.
$41 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ $	Dyke, G. J., Benton, M. J., Posmoșanu, E., & Naish, D. (2011). Early Cretaceous (Berriasian)
43 44 1231 45	birds and pterosaurs from the Cornet bauxite mine, Romania. Palaeontology, 54, 79–95.
46 1232 47	Eberth, D. A., Brinkman, D. B., Chen, PJ., Yuan, FT., Wu, XC., Li, G., & Cheng, XS.
48 49 1233 50	(2001). Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil preservation in
51 1234 52	Jurassic-Cretaceous strata of the Juggar Basin, Xinjiang Autonomous Region, People's
⁵³ 54 55	Republic of China. Canadian Journal of Earth Sciences, 38, 1627–1644.
56 57	
58 59	
60 61	50
62 63	
64	
65	

1236 Eddy, D. R., & Clarke, J. A. (2011). New information on the cranial anatomy of

1237 Acrocanthosaurus atokensis and its implications for the phylogeny of Allosauroidea

1238 (Dinosauria: Theropoda). *PLoS ONE*, *6*(*3*), e17932. doi:10.1371/journal.pone.0017932.

Evans, S. E., & Matsumoto, R. (2015). An assemblage of lizards from the Early Cretaceous of Japan. *Palaeontologia Electronica*, *18.2.36A*, 1–36.

Ezcurra, M. D., & Agnolín, F. L. (2012). A new global palaeobiogeographical model for the
Late Mesozoic and Early Tertiary. *Systematic Biology*, *61*, 553–566.

doi:10.1093/sysbio/syr115.

Fanti, F., Cau, A., Cantelli, L., Hassine, M., & Auditore, M. (2015). New information on

1245 *Tataouinea hannibalis* from the Early Cretaceous of Tunisia and implications for the tempo

and mode of rebbachisaurid sauropod evolution. *PLoS ONE*, *10*(4), e0123475.

1247 doi:10.1371/journal.pone.0123475.

Galton, P. M. (2009). Notes on Neocomian (Lower Cretaceous) ornithopod dinosaurs from England - *Hypsilophodon*, *Valdosaurus*, "*Camptosaurus*", "*Iguanodon*" - and referred specimens from Romania and elsewhere. *Revue de Paléobiologie*, 28, 211–273.

1251 Gardner, J. D., Evans, S. E., & Sigogneau-Russell, D. (2003). New albanerpetontid

amphibians from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta

1253 *Palaeontologica Polonica*, 48, 301–319.

Gasca, J. M., Canudo, J. I., & Moreno-Azanza, M. (2014). A large-bodied theropod

1255 (Tetanurae: Carcharodontosauria) from the Mirambel Formation (Barremian) of Spain. *Neues*

Jahrbuch für Geologie und Paläontologie Abhandlungen, 273, 13–23. doi: 10.1127/0077-

1257 7749/2014/0413.

Gheerbrant, E., & Rage, J.-C. (2006). Paleobiogeography of Africa: How distinct from

Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 224–

⁸ 1260 246. doi:10.1016/j.palaeo.2006.03.016.

⁷ 1264 Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic
 ⁹ 101265 analysis. *Cladistics*, 24, 774–786.

¹² 1266 Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.) (2012). *The Geologic* ¹⁴ 15
 ¹⁵ 1267 *Time Scale 2012* (1144 p.). Amsterdam: Elsevier.

17 1268 Grigorescu, D. (1992). Nonmarine Cretaceous Formations of Romania. In N. J. Matter, & P.-

J. Chen (Eds.), *Aspects of Nonmarine Cretaceous Geology* (pp. 142–164). Beijing: China
Ocean Press .

⁴ 1271 Grigorescu, D. (2003). Dinosaurs of Romania. *Comptes Rendus Palevol*, 2, 97–101.

Grigorescu, D. (2010). The Latest Cretaceous fauna with dinosaurs and mammals from the

Haţeg Basin — A historical overview. *Palaeogeography, Palaeoclimatology, Palaeoecology*,
293, 271–282.

341275 Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). Paleontological statistics software

package for education and data analysis. *Palaeontologia Electronica*, 4, 1–9.

391277 Harris, J. D. (1998). A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and

¹ 1278 paleobiogeographic implications, based on a new specimen from Texas. *New Mexico*

441279 Museum of Natural History and Science Bulletin, 13, 1–75.

⁴⁶1280 Hendrickx, C., & Mateus, O. (2014). Abelisauridae (Dinosauria: Theropoda) from the Late

Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. *Zootaxa*, *3751(1)*, 1–74.

³₄1283 Hendrickx, C., Mateus, O., & Araújo, R. (2015a). The dentition of megalosaurid theropods.

56 1284 Acta Palaeontologica Polonica, 60, 627–642. doi:10.4202/app.00056.2013.

Hendrickx, C., Mateus, O., & Araújo, R. (2015b). A proposed terminology of theropod teeth
(Dinosauria, Saurischia). *Journal of Vertebrate Paleontology*, *35*(*5*), e982797. doi:
10.1080/02724634.2015.982797.

Holtz, T. R., Chapman, R. E., & Lamanna, M. C. (2004b). Mesozoic biogeography of

289 Dinosauria. In D. B. Weishampel, P. Dodson, & H. Osmólska (Eds.), *The Dinosauria*.

Second Edition (pp. 627–642). Berkeley, Los Angeles, London: University of California
Press.

1251 11035.

Holtz, T. R., Jr., Molnar, R. E., & Currie, P. J. (2004a). Basal Tetanurae. In D. B.

1293 Weishampel, P. Dodson, & H. Osmólska (Eds.), The Dinosauria. Second Edition (pp. 71–

1294 110). Berkeley, Los Angeles, London: University of California Press.

Huene, F. von (1923). Carnivorous Saurischia in Europe since the Triassic. *Bulletin of the Geological Society of America*, *34*, 449–458.

1297 Hippolyte, J.-C. (2002). Geodynamics of Dobrogea (Romania): new constraints on the

1298 evolution of the Tornquist–Teisseyre Line, the Black Sea and the Carpathians.

34 **1299** *Tectonophysics*, *357*, 33–53.

Ionesi, L. (1994). *Geologia unităților de plațformă și a orogenului Nord-Dobrogean* (p. 280).
 Bucharest: Ed. Tehnică.

Jerzykiewicz, T., & Russell, D. A. (1991). Late Mesozoic stratigraphy and vertebrates of the
Gobi Basin. *Cretaceous Research*, *12*, 345–377.

Jurcsák, T. (1982). Occurences nouvelles des Sauriens mésozoïques de Roumanie. *Vertebrata* Hungarica, 21, 175–184.

Jurcsák, T., & Popa, E. (1979). Dinozaurieni ornithopozi din bauxitele de la Cornet (Munții
 Jano Pădurea Craiului). *Nymphaea*, 7, 37–75.

1308 1	Jurcsák, T., & Popa, E. (1983). La faune de dinosauriens du Bihor (Roumanie). In E.
² ₃ 1309	Buffetaut, J. M. Mazin, E. Salmon (Eds.), Actes du Symposium Paléontologique Georges
4 5 1310	Cuvier (pp. 325-335). Montbéliard: Le Serpentaire.
6 7 1311 8	Kellner, A. W. A., Pinheiro, A. E. P., & Campos, D. A. (2014). A new sebecid from the
9 10 1312	Paleogene of Brazil and the crocodyliform radiation after the K-Pg boundary. PLoS ONE,
11 12 1313 13	9(1), e81386. doi:10.1371/journal.pone.0081386.
$14 \\ 15 $ 1314	Kirkland, J. I., Cifelli, R. L., Britt, B. B., Burge, D. L., DeCourten, F. L., Eaton, J. G., &
16 17 1315	Parrish, J. M. (1999). Distribution of vertebrate faunas in the Cedar Mountain Formation,
¹⁸ ¹⁹ 20 1316	east-central Utah. Utah Geological Survey Miscellaneous Publication, 99-1, 201–217.
21 22 1317	Knoll, F., & Ruiz-Omeñaca, J. I. (2009). Theropod teeth from the basalmost Cretaceous of
23 24 1318 25	Anoual (Morocco) and their palaeobiogeographical significance. Geological Magazine, 146,
26 27 1319	602–616.
28 29 1320 30	Kusuhashi, N., Matsumoto, A., Murakami, M., Tagami, T., Hirata, T., Iizuka, T., Handa, T.,
³¹ 321321	& Matsuoka, H. (2006). Zircon U-Pb ages from tuff beds of the upper Mesozoic Tetori
33 34 1322 35	Group in the Shokawa district, Gifu Prefecture, central Japan. The Island Arc, 15, 378–390.
³⁶ 37 1323	Lacasa Ruiz, A. (1989). Nuevo genero de ave fosil del yacimiento Neocomiense del Montsec
38 39 1324 40	(Provincia de Lerida, España). Estudios geológicos, 45(5-6), 417–425.
$\frac{40}{42}$ 1325	Larson, D. W., & Currie, P. J. (2013). Multivariate analyses of small theropod dinosaur teeth
43 44 1326	and implications for paleoecological turnover through time. PLoS ONE, 8(1), e54329.
45 46 1 327 47	doi:10.1371/journal.pone.0054329.
48 49 1328	Le Loeuff, J., & Buffetaut, E. (1995). The evolution of Late Cretaceous non-marine
50 51 1329 52	vertebrate faunas in Europe. In AL. Sun, & YQ. Wang (Eds.), Sixth Symposium on
⁵³ 54 1330	Mesozoic Terrestrial Ecosystems and Biota, Short Papers (pp. 181–184). Beijing: China
55 56 1331 57	Ocean Press.
58 59	
60 61	54
62	
63	

Le Loeuff, J., Lang, E., Cavin, L., & Buffetaut, E. (2012). Between Tendaguru and Bahariya:
on the age of the Early Cretaceous dinosaur sites from the Continental Intercalaire and other
African formations. *Journal of Stratigraphy*, *36*, 486–502.

Lucas, F. A. (1901). A new dinosaur, *Stegosaurus marshi*, from the Lower Cretaceous of
South Dakota. *Proceedings of the United States National Museum*, 23(1224), 591–592.

Lucas, S. G. (2006). The *Psittacosaurus* biochron, Early Cretaceous of Asia. *Cretaceous Research*, 27, 189–198.

Lucas, S. G., & Estep, J. W. (1998). Vertebrate biostratigraphy and biochronology of the Cretaceous of China. In S. G. Lucas, J. I. Kirkland, J. W. Estep (Eds.), *Lower and Middle Cretaceous Terrestrial Ecosystems* (pp. 1–20). New Mexico Museum of Natural History and Science Bulletin, 14.

1343 Lü, J.-C., Xu, L., Pu, H.-Y., Jia, S.-H., Azuma, Y., Chang, H.-L., & Zhang, J.-M. (2016).

1344 Paleogeographical significance of carcharodontosaurid teeth from the late Early Cretaceous

of Ruyang, Henan Province of central China. *Historical Biology*, 28, 8–13. doi:

341346 10.1080/08912963.2014.947287.

³⁶ 1347 Manabe, M., & Hasegawa, Y. (1995). Diapsid fauna and its paleobiogeographical
 ³⁸ implication, the Neocomian section of the Tetori Group. In A. Sun, & Y. Wang (Eds.), *Sixth* ⁴¹ 1349 *Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers* (pp. 179). Beijing:
 ⁴³ 44 1350 China Ocean Press.

Mannion, P. D. (2009). A rebbachisaurid sauropod from the Lower Cretaceous of the Isle of Wight, England. *Cretaceous Research*, *30*, 521–526.

⁵¹1353 Mannion, P. D., Upchurch, P., & Hutt, S. (2011). New rebbachisaurid (Dinosauria:
 ⁵³₅₄1354 Sauropoda) material from the Wessex Formation (Barremian, Early Cretaceous), Isle of
 ⁵⁵₅₆1355 Wight, United Kingdom. *Cretaceous Research*, *32*, 774–780.

Matsukawa, M., Ito, M., Nishida, N., Koarai, K., Lockley, M. G., Nichols, D. J. (2006). The
Cretaceous Tetori biota in Japan and its evolutionary significance for terrestrial ecosystems in
Asia. *Cretaceous Research*, 27, 199–225.

McDonald, A. T. (2011). The taxonomy of species assigned to *Camptosaurus* (Dinosauria:
Ornithopoda). *Zootaxa*, 2783, 52–68.

McKenna, M. C. (1973). Sweepstakes, filters, corridors, Noah's Arks, and Beached Viking Funeral Ships in palaeogeography. In D. H. Tarling, S. K. Runcorn (Eds.), *Implications of Continental Drift to the Earth Sciences* (pp. 295–308). New York: Academic Press.

Mo, J.-Y., Huang, C.-L., Xie, S.-W., & Buffetaut, E. (2014). A megatheropod tooth from the

Early Cretaceous of Fusui, Guangxi, Southern China. *Acta Geologica Sinica (English Edition*), 88, 6–12.

1367 Molnar, R. E. (1990). Problematic Theropoda: "Carnosaurs". In D. B. Weishampel, P.

1368 Dodson, & H. Osmólska (Eds.), The Dinosauria (pp. 306–317). Berkeley, Los Angeles,

1369 Oxford: University of California Press.

1370 Mutihac, V., & Mutihac, G. (2010). The geology of Romania, within the Central East

2,1371 European geostructural context (p. 690). Bucharest: Ed. Didactică și Pedagogică.

Neagu, T., Dragastan, O., & Csiki, Z. (1997). Early Cretaceous shelf paleocommunities of

1373 Cernavodă (South Dobrogea, SE Romania). *Acta Palaeontologica Romaniae*, *1*, 28–36.

1374 Nopcsa, F. (1902). Notizen über cretacische Dinosaurier. Sitzungsberichte der Kaiserlichen

1375 Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 111, 93–114.

1376 Nopcsa, F. (1923). On the geological importance of the primitive reptilian fauna of the

1377 uppermost Cretaceous of Hungary; with a description of a new tortoise (*Kallokibotium*).

1378 *Quarterly Journal of the Geological Society of London*, 79, 100–116.

Norman, D. B. (2010). A taxonomy of iguanodontians (Dinosauria: Ornithopoda) from the

lower Wealden Group (Cretaceous: Valanginian) of southern England. *Zootaxa*, 2489, 47–66.

Norman, D. B. (2013). On the taxonomy and diversity of Wealden iguanodontian dinosaurs 1381 (Ornithischia: Ornithopoda). Revue de Paléobiologie, 32, 385-404. Novas, F. E., Agnolín, F. L., Ezcurra, M. D., Porfiri, J., & Canale, J. I. (2013). Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretaceous Research, 45, 174–215. Novas, F. E., de Valais, S., Vickers-Rich, P. A., & Rich, T. H. (2005). A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften, 92, 226–230. Ortega, F., Escaso, F., & Sanz, J. L. (2010). A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain. Nature, 467, 203-206. Ősi, A., Codrea, V., Prondvai, E., & Csiki-Sava, Z. (2014). New ankylosaurian material from the Upper Cretaceous of Transylvania. Annales de Paléontologie, 100, 257-271. doi: 10.1016/j.annpal.2014.02.001. Ősi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., & Gulvás, P. (2012). The Late Cretaceous continental vertebrate fauna from Iharkút (western Hungary): a review. In P. Godefroit (Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (pp. 533–569). Bloomington: Indiana University Press. Ősi, A., Rabi, M., & Makádi, L. (2015). An enigmatic crocodyliform tooth from the bauxites of western Hungary suggests hidden mesoeucrocodylian diversity in the Early Cretaceous European archipelago. PeerJ, 3, e1160. doi:10.7717/peerj.1160. Paolillo, A., & Linares, O. J. (2007). Nuevos cocodrilos Sebecosuchia del Cenozoico Suramericano (Mesosuchia: Crocodylia). Paleobiologia Neotropical, 3, 1–25. Pereda-Suberbiola, X., Ruiz-Omeñaca, J. I., Canudo, J. I., Torcida, F., & Sanz, J. L. (2012). Dinosaur faunas from the Early Cretaceous (Valanginian-Albian) of Spain. In P. Godefroit 57

Bloomington: Indiana University Press.

⁵ 1407 Pereda-Suberbiola, X., Ruiz-Omeñaca, J. I., Fernandez-Baldor, F. T., Maisch, M. W., Huerta,

(Ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems (pp. 378–407).

P., Contreras, R., Izquierdo, L. A., Huerta, D. M., Montero, V. U., & Welle, J. (2011). A tall-

spined ornithopod dinosaur from the Early Cretaceous of Salas de los Infantes (Burgos,

L410 Spain). *Comptes Rendus Palevol*, 10, 551–558.

Pérez-Moreno, B. P., Sanz, J. L., Sudre, J., & Sigé, B. (1993). A theropod dinosaur from the
Lower Cretaceous of southern France. *Revue de Paléobiologie*, *Volume spéciale* 7, 173–188.

Pol, D., & Powell, J. E. (2011). A new sebecid mesoeucrocodylian from the Rio Loro

Formation (Palaeocene) of north-western Argentina. *Zoological Journal of the Linnean Society*, *163*, S7–S36.

Porfiri, J. D., Novas, F. E., Calvo, J. O., Agnolín, F. L., Ezcurra, M. D., & Cerda, I. A.

1417 (2014). Juvenile specimen of *Megaraptor* (Dinosauria, Theropoda) sheds light about

tyrannosauroid radiation. *Cretaceous Research*, *51*, 35–55. doi:10.1016/j.cretres.2014.04.007.

³⁴1419 Posmoşanu, E. (2003). Iguanodontian dinosaurs from the Lower Cretaceous bauxite site from

1420 Romania. Acta Palaeontologica Romaniae, 4, 431–439.

391421 Rabi, M., & Sebők, N. (2015). A revised Eurogondwana model: Late Cretaceous notosuchian

1422 crocodyliforms and other vertebrate taxa suggest the retention of episodic faunal links

1423 between Europe and Gondwana during most of the Cretaceous. *Gondwana Research*, 28,

⁵1424 1197–1211. doi:10.1016/j.gr.2014.09.015.

Racey, A. (2009). Mesozoic red bed sequences from SE Asia and the significance of the Khorat Group of NE Thailand. In E. Buffetaut, G. Cuny, J. Le Loeuff, & V. Suteethorn (Eds.), *Late Palaeozoic and Mesozoic Ecosystems in SE Asia* (pp. 41–67). Geological Society, London, Special Publications, 315. doi: 10.1144/SP315.5.

1429	Racey, A., & Goodall, J. G. S. (2009). Palynology and stratigraphy of the Mesozoic Khorat
$\frac{2}{3}$ 1430	Group red bed sequences from Thailand. In E. Buffetaut, G. Cuny, J. Le Loeuff, & V.
4 5 1431	Suteethorn (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia (pp. 69-83).
6 7 1432 8	Geological Society, London, Special Publications, 315. doi: 10.1144/SP315.6.
9 10 1433	Rauhut, O. W. M. (2011). Theropod dinosaurs from the Late Jurassic of Tendaguru
11 12 1434	(Tanzania). Special Papers in Palaeontology, 86, 195–239.
$14 \\ 15 $ 1435	Rauhut, O. W. M., & Werner, C. (1995). First record of the family Dromaeosauridae
16 17 1436	(Dinosauria: Theropoda) in the Cretaceous of Gondwana (Wadi Milk Formation, northern
18 ¹⁹ 20 1437	Sudan. Paläontologische Zeitschrift, 69, 475–489.
21 22 1438	Richter, U., Mudroch, A., & Buckley, L. G. (2013). Isolated theropod teeth from the Kem
23 24 1439	Kem Beds (Early Cenomanian) near Taouz, Morocco. Paläontologische Zeitschrift, 87, 291-
25 26 27 1440	309.
28 29 1441 30	Royo-Torres, R., Cobos, A., Luque, L., Aberasturi, A., Espilez, E., Fierro, I., Gonzales, A.,
³¹ 32 1442	Mampel, L., & Alcalá, L. (2009). High European sauropod dinosaur diversity during
33 34 1443 35	Jurassic-Cretaceous transition in Riodeva (Teruel, Spain). Palaeontology, 52, 1009-1027.
$\frac{36}{37}$ 1444	Sachs, S., & Hornung, J. J. (2013). Ankylosaur remains from the Early Cretaceous
38 39 1445	(Valanginian) of Northwestern Germany. PLoS ONE, 8(4), e60571.
40 41 42 1446 42	doi:10.1371/journal.pone.0060571.
43 44 1447	Salgado, L., Canudo, J. I., Garrido, A. C., Ruiz-Omeñaca, J. I., Garcia, R. A., de la Fuente,
45 46 1448 47	M. S., Barco, J. L., & Bollati, R. (2009). Upper Cretaceous vertebrates from El Anfiteatro
$48 \\ 49 \\ 1449 \\ 52 \\ 1449 \\ 1440 \\$	area, Río Negro, Patagonia, Argentina. Cretaceous Research, 30, 767–784.
50 51 1450 52	Sames, B., Cifelli, R. L., & Schudack, M. E. (2010). The nonmarine Lower Cretaceous of the
⁵³ 54 1451	North American Western Interior foreland basin: New biostratigraphic results from ostracod
55 56 1452 57	correlations and early mammals, and their implications for paleontology and geology of the
⁵⁸ 59 1453	basin—An overview. Earth-Science Reviews, 101, 207-224.
60 61 62 63 64	59

Sauvage, H. E. (1876). Notes sur les reptiles fossiles. Bulletin de la Société Géologique de *France*, 4, 435–442.

Sauvage, H. E. (1882). Recherches sur les reptiles trouves dans le Gault de l'est du bassin de Paris. *Mémoires de la Société Géologique de France*, 2, 1–42.

1458 Săndulescu, M. (1984). Geotectonica României (p. 329). Bucharest: Ed. Tehnică.

1459 Seghedi, A. (2001). The North Dobrogea orogenic belt (Romania): a review. In P. A. Ziegler,

1460 W. Cavazza, A. H. F. Robertson, & S. Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6: Peri-

1461 Tethyan Rift/Wrench Basins and Passive Margins (pp. 237–257). Paris: Mémoires de la

1462 Musée National d'Histoire Naturelle .

Sereno, P. C. (1999). Dinosaurian biogeography: vicariance, dispersal and regional

extinction. In Y. Tomida, T. H. Rich, & P. Vickers-Rich (Eds.), Proceedings of the Second

Gondwanan Dinosaur Symposium (pp. 249–257). Tokyo: National Science MuseumMonographs, 15 .

Sereno, P. C., & Brusatte, S. L. (2008). Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. *Acta Palaeontologica Polonica*, *53*,

, 1469 15–46.

1470 Sereno, P. C., Dutheil, D. B., Iarochene, M., Larsson, H. C. E., Lyon, G. H., Magwene, P. M.,

1471 Sidor, C. A., Varricchio, D. J., & Wilson, J. A. (1996). Predatory dinosaurs from the Sahara

and Late Cretaceous faunal differentiation. *Science*, 272, 986–991.

1473 Shen, Y. B., & Mateer, N. J. (1992). An outline of the Cretaceous system in northern

1474 Xinjiang, western China. In N. J. Mateer, & P. J. Chen (Eds.), Aspects of Nonmarine

1475 *Cretaceous Geology* (pp. 49–77). Beijing: China Ocean Press.

³ Simionescu, I. (1906). Note sur l'age des calcaires de Cernavoda (Dobrogea). Annales

56 1477 Scientifiques de l'Université de Jassy, 4(1), 1–3.

478 Simionescu, I. (1913). *Megalosaurus* aus der Unterkreide der Dobrogea. *Centralblatt für*.479 *Mineralogie, Geologie und Paläontologie, 1913(20),* 686–687.

480 Sissingh, W. (1977). Biostratigraphy of Cretaceous calcareous nannoplankton. *Geologie en*481 *Mijnbouw*, 56, 37–65.

Smith, J. B., Vann, D. R., & Dodson, P. (2005). Dental morphology and variation in theropod
dinosaurs: implications for the taxonomic identification of isolated teeth. *The Anatomical Record A*, 285A, 699–736.

Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D. B., Redelstorff, R., Carballido, J. L.,

& Sander, P. M. (2010). Small body size and extreme cortical bone remodeling indicate

phyletic dwarfism in *Magyarosaurus dacus* (Sauropoda: Titanosauria). *Proceedings of the National Academy of Sciences*, 107, 9258–9263.

Stoica, M., & Csiki, Z. (2002). An earliest Cretaceous (Purbeckian) vertebrate fauna from
 Southern Dobrogea (southeastern Romania). In D. Grigorescu, & Z. Csiki (Eds.), 7th

European Workshop on Vertebrate Palaeontology, Sibiu, Romania (pp. 34). Bucharest: Ars
Docendi.

Stovall, J. W., & Langston, W., Jr. (1950). *Acrocanthosaurus atokensis*, a new genus and
species of Lower Cretaceous Theropoda from Oklahoma. *American Midland Naturalist*, 43,
686–728.

496 Stromer, E. (1931). Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten

1497 Ägyptens. II. Wirbeltier-Reste der Baharîjestufe (unterstes Cenoman). 10. Ein Skelett-Rest

1498 von Carcharodontosaurus nov. gen. Abhandlungen der Bayerischen Akademie der

1499 Wissenschaften, Mathematischnaturwissenschaftliche Abteilung, Neue Folge 9, 1–23.

Therrien, F., & Henderson, D. M. (2007). My theropod is bigger than yours ... or not: estimating body size from skull length in theropods. *Journal of Vertebrate Paleontology*, 27, 108–115.

Tong, H., Claude, J., Suteethorn, V., Naksri, W., & Buffetaut, E. (2009). Turtle assemblages 1503 ² 1504 of the Khorat Group (Late Jurassic-Early Cretaceous) of NE Thailand and their ₅ 1505 palaeobiogeographical significance. In E. Buffetaut, G. Cuny, J. Le Loeuff, & V. Suteethorn ⁷ 1506 8 (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia (pp. 141-151). Geological Society, London, Special Publications, 315. Torcida Fernández-Baldor, F., Canudo, J. I., Huerta, P., Montero, D., Pereda Suberbiola, X., & Salgado, L. (2011). Demandasaurus darwini, a new rebbachisaurid sauropod from the Early Cretaceous of the Iberian Peninsula. Acta Palaeontologica Polonica, 56, 535-552. Turculeț, I., & Brânzilă, M. (2012). Muzeul colecțiilor paleontologice originale de la Universitatea "Alexandru Ioan Cuza" Iași (p. 173). Iași: Editura Universității "Alexandru Ioan Cuza" Iași. Turner, A. H., Makovicky, P. J., & Norell, M. A. (2012). A review of dromaeosaurid systematics and paravian phylogeny. Bulletin of the American Museum of Natural History, 371, 1–206. Turner, A. H., & Sertich, J. J. W. (2010). Phylogenetic history of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 30(Supplement 1), 177–236. Vasile, S., & Csiki, Z. (2011). New Maastrichtian microvertebrates from the Rusca Montană Basin (Romania). Oltenia. Studii și comunicări. Științele Naturii, 27(1), 221–230. Vickers-Rich, P., Rich, T. H., Lanus, D. R., Rich, L. S. V., & Vacca, R. (1999). "Big Tooth" from the Early Cretaceous of Chubut Province, Patagonia: a possible carcharodontosaurid. In Y. Tomida, T. H. Rich, & P. Vickers-Rich (Eds.), Proceedings of the Second Gondwanan Dinosaur Symposium (pp. 85–88). Tokyo: National Science Museum Monographs, 15. 62

1526 Vremir, M. (2010). New faunal elements from the Late Cretaceous (Maastrichtian)

continental deposits of Sebeş area (Transylvania). *Terra Sebus. Acta Musei Sabesiensis*, 2,
635–684.

1529 Vullo, R., Néraudeau, D., & Lenglet, T. (2007). Dinosaur teeth from the Cenomanian of
1530 Charentes, western France: evidence for a mixed Laurasian-Gondwanan assemblage. *Journal*

of Vertebrate Paleontology, *27*, 931–943.

Weishampel, D. B. (1990). Dinosaurian distribution. In D. B. Weishampel, P. Dodson, & H.
Osmólska (Eds.), *The Dinosauria* (pp. 63–140). Berkeley, Los Angeles, Oxford: California
University Press.

1535 Weishampel, D. B., Barrett, P. M., Coria, R. A., Le Loeuff, J., Xu, X., Zhao, X-J., Sahni, A.,

1536 Gomani, E. M., & Noto, C. R. (2004). Dinosaur distribution. In D. B. Weishampel, P.

1537 Dodson, & H. Osmólska (Eds.), The Dinosauria. Second Edition (pp. 517–606). Berkeley,

Los Angeles, London: University of California Press.

Weishampel, D. B., Csiki, Z., Benton, M. J., Grigorescu, D., & Codrea, V. (2010).

³⁴1540 Palaeobiogeographic relationships of the Hateg biota — Between isolation and innovation.

21541 *Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 419–437.*

39 1542 Weishampel, D. B., Grigorescu, D., & Norman, D. B. (1991). The Dinosaurs of Transylvania.

1543 National Geographic Research & Exploration, 7(2), 196–215.

Weishampel, D. B., Jianu, C. M., Csiki, Z., & Norman, D. B. (2003). Osteology and

phylogeny of *Zalmoxes* (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous

1546 of Romania. Journal of Systematic Palaeontology, 1, 65–123.

¹1547 Weishampel, D. B., Norman, D. B., & Grigorescu, D. (1993). *Telmatosaurus transsylvanicus*

1548 from the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur. *Palaeontology*,

56**1549** *36*, 361–385.

Williamson, T. E., & Brusatte, S. L. (2014). Small theropod teeth from the Late Cretaceous
of the San Juan Basin, northwestern New Mexico and their implications for understanding
latest Cretaceous dinosaur evolution. *PLoS ONE*, *9*(4), e93190.

doi:10.1371/journal.pone.0093190.

Zarcone, G., Cillari, F. M. P., Stefano, P. D., Guzzetta, D., & Nicosia, U. (2010). A possible
bridge between Adria and Africa: New palaeobiogeographic and stratigraphic constraints on
the Mesozoic palaeogeography of the Central Mediterranean area. *Earth-Science Reviews*, *103*, 154–162.

1560 Figure captions

Figure 1. Simplified geological map of the Cernavodă-Cochirleni area; inset shows the
position of the study area within Romania. Legend: 1. Quaternary: a. Holocene alluvia, b.
Pleistocene–Holocene loessoid deposits; 2. Pre-Quaternary Cenozoic (Middle Eocene and
Miocene) deposits; Cretaceous: 3. Peştera Formation, Lower Cenomanian; 4. Cochirleni
Formation; uppermost Aptian–Lower Albian; 5. Gherghina Formation, Middle–Upper
Aptian; 6. Ostrov (= Ramadan) Formation; Barremian–Lower Aptian; 7. Cernavodă
Formation, Alimanu Member, Berriasian–Valanginian; 8. Water courses. (Redrawn after
Dragastan et al., 1998, 2014).

Figure 2. Specimen UAIC (SCM1) 615, indeterminate carcharodontosaurid lateral tooth from
Cochirleni, Southern Dobrogea. A. UAIC (SCM1) 615, as figured by Simionescu (1913); B.
Current state of UAIC (SCM1) 615, mounted in a limestone holder.

Figure 3. Detailed morphology of UAIC (SCM1) 615, an indeterminate carcharodontosaurid
lateral tooth from Cochirleni, Southern Dobrogea. UAIC (SCM1) 615 in A. labial? side; B.,
distal; C., lingual? side, and D., basal (mesial to the right) views. Details of the distal carina
(marked with boxes in A, respectively C): apical part in E., labial? and F. distal views; basal
part in G., lingual? and H., distal views. Scale bar: 1 cm (A–D), 5 mm (E–H).

Figure 4. Dental morphospace of the different theropod clades according to the results of the PCA analysis; UAIC (SCM1) 615 (red star) plots within the morphospace occupied by Carcharodontosauridae. See further details of this analysis, as well as other quantitative analyses used to identify the tooth that deliver similar results (cluster analysis, discriminant function analysis, phylogenetic analysis), in the Supplementary Material.

Figure 5. A. Palaeogeographic setting of the two early Early Cretaceous Romanian dinosaur
occurrences: the Berriasian–Valanginian Cornet locality (orange star), located on a NeoTethyan archipelago island, and the Valanginian Cochirleni locality (red star), situated on the
marginal areas of the Eastern European cratonic mainland. B. Global chronostratigraphic and
palaeobiogeographic distribution of the Carcharodontosauridae, plotted on Middle Aptian
(approx. 120 Mya) palaeogeographic map; red star marks the position of UAIC (SCM1) 615
from Southern Dobrogea. Legend: 1 – *Veterupristisaurus*, '*Megalosaurus' ingens*,
Carcharodontosauridae indet., Tanzania, Late Jurassic; 2 – *Concavenator*, Spain, Barremian;
3 – Carcharodontosauridae indet., Thailand, Barremian; 4 – *Acrocanthosaurus*, southeastern
United States, Aptian–Albian; 5 – Carcharodontosauridae indet., Spain, Aptian; 6 – *Eocarcharia*, Niger, Aptian–Albian; 7 – Carcharodontosauridae indet., Guangxi, China,
Aptian; 8 – Carcharodontosauridae indet., Henan, China, Aptian; 9 – *Kelmayisaurus*,
Xinjiang, China, Aptian–Albian; 10 – Carcharodontosauridae indet., France, Cenomanian; 11

1599	- Sauroniops, Morocco, Cenomanian; 12 - Carcharodontosauridae indet., Japan,
$\frac{1}{3}$ 1600	Cenomanian–early Turonian; 13 – Shaochilong, Inner Mongolia, China, Turonian; 14 –
4 5 1601 6	Carcharodontosauridae indet., São Paulo, Brazil, Campanian-Maastrichtian (for relevant
⁷ 1602	references, see text, 5.4.). Palaeogeographic maps, courtesy of Ron Blakey
9 10 1603 11	(http://cpgeosystems.com/).
12	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
33	
34	
35 36	
37	
38	
39 40	
41	
42	
43 44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	
61	66
6⊿ 63	
64	
65	

Figure 2 color Click here to download high resolution image

Figure 3 color Click here to download high resolution image

Figure 5 color Click here to download high resolution image

 basal / indeterminate Carcharodontosauridae
 UAIC (SCM1) 615

Carcharodontosaurinae

Δ

Δ

 ∇

Giganotosaurus

Carcharodontosaurus

- Mapusaurus
- Tyrannotitan

1 2 3	Taxon	Side	Position	Specimen	Source froi CBL	CE	SW CH	
4	ROMANIAN TOOTH			SCM1 615		29	16.25	85.5
5	Eoraptor	Left	pmx2	PVSJ 512	Pers. Obsei	2.5	1.62	6.74
6 7	Eoraptor	Left	pmx3	PVSJ 512	Pers. Obsei	1.97	2.35	5.92
8	Eoraptor	Left	pmx4	PVSJ 512	Pers. Obsei	2.19	1.74	6.52
9	Eoraptor	Right	pmx2	PVSJ 512	Pers. Obsei	2.17	1.56	5.01
10	Eoraptor	Right	pmx4	PVSJ 512	Pers. Obsei	2.08	1.61	4.17
⊥⊥ 12	Eoraptor	Left	, mx2	PVSJ 512	Pers. Obsei	2.69	1.82	5.55
13	Eoraptor	Left	mx4	PVSJ 512	Pers. Obsei	3.03	1.48	5.65
14	Eoraptor	Left	mx5	PVSJ 512	Pers. Obsei	3.56	1.69	5.48
15	Eoraptor	Left	mx9	PVSJ 512	Pers. Obsei	2.49	1.75	5.11
17	Eoraptor	Left	mx10	PVSJ 512	Pers. Obsei	2.7	1.22	4.58
18	Eoraptor	Left	mx11	PVSJ 512	Pers. Obsei	2.32	1.42	2.34
19	Eoraptor	Left	pm02	PVSJ 512	Smith & La	2.88	1.85	7.15
20	Eoraptor	Left	pm03	PVSJ 512	Smith & La	1.98	1.48	5.73
22	Eoraptor	Left	pm04	PVSJ 512	Smith & La	1.89	1.55	6.12
23	Eoraptor	Right	pm02	PVSJ 512	Smith & La	2.32	1.8	5.19
24	Eoraptor	Left	mx02	PVSJ 512	Smith & La	2.11	1.51	5.71
25 26	Eoraptor	Left	mx04	PVSJ 512	Smith & La	3.04	1.97	6.58
27	Eoraptor	Left	mx06	PVSJ 512	Smith & La	2.9	1.74	5.44
28	Eoraptor	Left	mx07	PVSJ 512	Smith & La	2.71	1.58	6.17
29	Eoraptor	Left	mx09	PVSJ 512	Smith & La	2.67	1.82	4.99
31	Eoraptor	Left	mx10	PVSJ 512	Smith & La	2.56	1.69	4.72
32	Eoraptor	Right	mx02	PVSJ 512	Smith & La	2.94	1.87	5.32
33	Eoraptor	Right	mx04	PVSJ 512	Smith & La	2.54	1.55	6.5
34 35	Eoraptor	Right	mx05	PVSJ 512	Smith & La	3.33	1.82	6.76
36	Eoraptor	Right	mx07	PVSJ 512	Smith & La	2.86	1.6	4.83
37	Eoraptor	Right	mx08	PVSJ 512	Smith & La	2.8	1.5	4.71
38	Ischisaurus	Right	pmx1	MACN 18.0	Pers. Obsei	8.16	4.7	14.62
40	Ischisaurus	Right	pmx2	MACN 18.0	Pers. Obsei	7.48	4.43	14.5
41	Eodromaeus	Left	mx3	PVSJ 561	Pers. Obsei	3.61	1.59	9.67
42	Coelophysis	Left	pmx2	CM 82931	Pers. Obsei	1.7	0.54	4
43 44	Coelophysis	Left	pmx3	CM 82931	Pers. Obsei	1.8	1.03	6.8
45	Coelophysis	Left	, mx1	CM 81765	Pers. Obsei	3	1.49	8.2
46	Coelophysis	Left	mx2	CM 81765	Pers. Obsei	4.1	1.37	8.9
47 10	Coelophysis	Left	mx4	CM 81765	Pers. Obsei	4.4	1.63	11.6
40 49	Coelophysis	Left	mx6	CM 81765	Pers. Obsei	5.5	1.71	9.7
50	Coelophysis	Left	mx8	CM 81765	Pers. Obsei	5.9	1.79	9.3
51	Coelophysis	Left	mx9	CM 81765	Pers. Obsei	5.4	1.74	8.6
52	Coelophysis	Left	mx11	CM 81765	Pers. Obsei	5.4	1.85	7.5
54	Coelophysis	Left	mx13	CM 81765	Pers. Obsei	4.7	1.58	5.5
55	Coelophysis	Left	mx14	CM 81765	Pers. Obsei	5.2	1.7	6.2
56 57	Coelophysis	Left	mx15	CM 81765	Pers. Obsei	3.9	1.49	5.4
58	Coelophysis	Left	mx16	CM 81765	Pers. Obsei	3.3	1.14	5
59	Coelophysis	Left	mx17	CM 81765	Pers. Obsei	3.5	1.63	4.1
60	Coelophysis	Left	mx19	CM 81765	Pers. Obsei	3.35	1.86	3.3
ь⊥ 62	Coelophysis	Left	mx21	CM 81765	Pers. Obsei	3.54	0.93	3.45
~								