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Abstract. Key-encapsulation mechanisms (KEMs) are a common step-
ping stone for constructing public-key encryption. Secure KEMs can be
built from diverse assumptions, including ones related to integer factor-
ization, discrete logarithms, error correcting codes, or lattices. In light
of the recent NIST call for post-quantum secure PKE, the zoo of KEMs
that are believed to be secure continues to grow. Yet, on the question
of which is the most secure KEM opinions are divided. While using the
best candidate might actually not seem necessary to survive everyday
life situations, placing a wrong bet can actually be devastating, should
the employed KEM eventually turn out to be vulnerable.
We introduce KEM combiners as a way to garner trust from different
KEM constructions, rather than relying on a single one: We present
efficient black-box constructions that, given any set of ‘ingredient’ KEMs,
yield a new KEM that is (CCA) secure as long as at least one of the
ingredient KEMs is.
As building blocks our constructions use cryptographic hash functions
and blockciphers. Some corresponding security proofs require idealized
models for these primitives, others get along on standard assumptions.
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1 Introduction

Motivation for PKE combiners. Out of the public-key encryption schemes RSA-
OAEP, Cramer–Shoup, ECIES, and a scheme based on the LWE hardness as-
sumption, which one is, security-wise, the best? This question has no clear an-
swer, as all schemes have advantages and disadvantages. For instance, RSA-
OAEP is based on the arguably best studied hardness assumption but requires
a random oracle. Cramer–Shoup encryption does not require a random oracle
but its security reduces ‘only’ to a decisional assumption (DDH). While one can
give a security reduction for ECIES to a computational assumption (CDH), this
reduction comes with a tightness gap much bigger than that of RSA-OAEP. On
the other hand, the ‘security-per-bit ratio’ for elliptic curve groups is assumed
? The full version of this article can be found in the IACR eprint archive as article
2018/024.
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to be much better than for RSA based schemes. Finally, the LWE scheme is the
only quantum-resistant candidate, although the assumption is relatively new and
arguably not yet well understood. All in all, the challenge of picking the most
secure PKE scheme is arguably impossible to solve. Fortunately, the challenge
can be side-stepped by using a ‘PKE combiner’: Instead of using only one scheme
to encrypt a message, one uses all four of them, combining them in a way such
that security of any implies security of their combination. Thus, when using a
combiner, placing wrong bets is impossible. PKE combiners have been studied
in [6,22] and we give some details on encryption combiners below.

Combiners for other cryptographic primitives. In principle, secure combiners can
be studied for any cryptographic primitive. For some primitives they are easily
constructed and known for quite some time. For instance, sequentially compos-
ing multiple independently keyed blockciphers to a single keyed permutation can
be seen as implementing a (S)PRP combiner. PRFs can be combined by XOR-
ing their outputs into a single value. More intriguing is studying hash function
combiners: Parallelly composing hash functions is a good approach if the goal
is collision resistance, but pre-image resistance suffers from this. A sequential
composition would be better with respect to the latter, but this again harms
collision resistance. Hash function combiners that preserve both properties si-
multaneously exist and can be based on Feistel structures [9]. If indifferentiability
from a random oracle is an additional goal, pure Feistel systems become inse-
cure and more involved combiners are required [10,11]. Recently, also combiners
for indistinguishability obfuscation have been proposed [1,8]. For an overview of
combiners in cryptography we refer to [15,14].

Our target: KEM combiners. Following the contemporary KEM/DEM design
principle of public-key encryption [4], in this work we study combiners for key-
encapsulation mechanisms (KEMs). That is, given a set of KEMs, an unknown
subset of which might be arbitrarily insecure, we investigate how they can be
combined to form a single KEM that is secure if at least one ingredient KEM
is. How such a combiner is constructed certainly depends on the specifics of the
security goal. For instance, if CPA security shall be reached then it can be ex-
pected that combining a set of KEMs by running the encapsulation algorithms in
parallel and XORing the established session keys together is sufficient. However,
if CCA security is intended this construction is obviously weak.

The focus of this paper is on constructing combiners for CCA security. We
propose several candidates and analyze them.3 We stress that our focus is on
practicality, i.e., the combiners we propose do not introduce much overhead and
are designed such that system engineers can easily adopt them. Besides the in-
gredient KEMs, our combiners also mix in further cryptographic primitives like
blockciphers, PRFs, or hash functions. We consider this an acceptable compro-
mise, since they make secure constructions very efficient and arguably are not
3 Obviously, showing feasibility is not a concern for KEM combiners as combiners for
PKE have already been studied (see Section 1.2) and the step from PKE to KEMs
is minimal.
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exposed to the threats we want to hedge against. For instance, the damage that
quantum computers do on AES and SHA256 are generally assumed to be limited
and controllable, tightness gaps can effectively and cheaply be closed by increas-
ing key lengths and block sizes, and their security is often easier to assume than
that of number-theoretic assumptions. While, admittedly, for some of our com-
biners we do require strong properties of the symmetric building blocks (random
oracle model, ideal cipher model, etc.), we also construct a KEM combiner that
is, at a higher computational cost, secure in the standard model. In the end we
offer a selection of combiners, all with specific security and efficiency features,
so that for every need there is a suitable one.

1.1 Our Results

The KEM combiners treated in this paper have a parallel structure: If the num-
ber of KEMs to be combined is n, a public key of the resulting KEM consists of
a vector of n public keys, one for each ingredient; likewise for secret keys. The
encapsulation procedure performs n independent encapsulations, one for each
combined KEM. The ciphertext of the resulting KEM is simply the concatena-
tion of all generated ciphertexts. The session key is obtained as a function W of
keys and ciphertexts (which is arguably the core function of the KEM combiner).
A first proposal for a KEM combiner would be to use as session key the value

K = H(k1, . . . , kn, c1, . . . , cn) ,

where H is a hash function modeled as a random oracle and the pair (ki, ci)
is the result of encapsulation under the ith ingredient KEM. A slightly more
efficient combiner would be

K = H(k1 ⊕ . . .⊕ kn, c1, . . . , cn) ,

where the input session keys are XOR-combined before being fed into the ran-
dom oracle. On the one hand these constructions are secure, as we prove, but
somewhat unfortunate is that they depend so strongly on H behaving like a
random oracle: Indeed, if the second construction were to be reinterpreted as

K = F (k1 ⊕ . . .⊕ kn, c1 ‖ . . .‖cn) ,

where now F is a (standard model) PRF, then the construction would be insecure
(more precisely, we prove that there exists a PRF such that when it is used in the
construction the resulting KEM is insecure). The reason for the last construction
not working is that the linearity of the XOR operation allows for conducting
related-key attacks on the PRF, and PRFs in general are not immune against
such attacks.

Our next proposal towards a KEM combiner that is provably secure in the
standard model involves thus a stronger “key-mixing component”, i.e., one that
is stronger than XOR. Concretely, we study the design that derives the PRF key
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from a chain of blockcipher invocations, each with individual key, on input the
fixed value 0. We obtain

K = F (πkn
◦ . . . ◦ πk1(0), c1 ‖ . . .‖cn) ,

where πk represents a blockcipher π keyed with key k. Unfortunately, also this
construction is generally not secure in the standard model. Yet it is—overall—our
favorite construction, for the following reason: In practice, one could instantiate
F with a construction based on SHA256 (prepend the key to the message before
hashing it, or use NMAC or HMAC), and π with AES. Arguably, SHA256 and
AES likely behave well as PRFs and PRPs, respectively; further, in principle,
SHA256 is a good candidate for a random oracle and AES is a good candidate for
an ideal cipher. Our results on above combiner are as follows: While the combiner
is not secure if F and π are a standard model PRF and PRP, respectively, two
sufficient conditions for the KEM combiner being secure are that F is a random
oracle and π a PRP or F is a PRF and π an ideal cipher. That is, who uses the
named combiner can afford that one of the two primitives, SHA256 or AES, fails
to behave like an ideal primitive. Observe that this is a clear advantage over our
first two (random oracle based) combiners for which security is likely gone in the
moment hash function H fails to be a random oracle.

The attentive reader might have noticed that, so far, we did not propose
a KEM combiner secure in the standard model. As our final contribution we
remedy this absence. In fact, by following a new approach we propose a standard-
model secure KEM combiner. Concretely, if below we write c = c1 ‖ . . . ‖ cn for
the ciphertext vector, our first standard model KEM combiner is

K = F (k1, c)⊕ . . .⊕ F (kn, c) .

While being provably secure if F is a (standard model) PRF, the disad-
vantage over the earlier designs that are secure in idealized models is that this
construction is less efficient, requiring n full passes over the ciphertext vector.
Whether this is affordable or not depends on the particular application and the
size of the KEM ciphertexts (which might be large for post-quantum KEMs).

In the full version of this paper (see [13]) we give an optimized variant of above
combiner where the amount of PRF-processed data is slightly smaller. Exploiting
that the ciphertexts of CCA secure KEMs are non-malleable (in the sense of: If a
single ciphertext bit flips the session key to which this ciphertext decapsulates is
independent of the original one) we observe that the PRF invocation associated
with the ith session key actually does not need to process the ith ciphertext
component. More precisely, if for all i we write ci = c1 ‖ . . .‖ci−1 ‖ci+1 ‖ . . .‖cn,
then also

K = F (k1, c
1)⊕ . . .⊕ F (kn, cn)

is a secure KEM combiner.
split-key pseudorandom functions Note that in all our constructions the
session keys output by the KEM combiner are derived via a function of the form

K = W (k1, . . . , kn, c) ,

4



Parallel KEM combiner, with core function:

an skPRF, defined as:

⊕iF (ki, c)

Lem. 8

H(g(k1, . . . , kn), c), where g is:

id

Ex. 3

⊕ki

Ex. 1

πn
k (0)

Ex. 2

Lem. 6

F (g(k1, . . . , kn), c), where g is:

En
k (0)

Lem. 5

Thm. 1

Fig. 1. Overview of our CCA-preserving KEM combiners for n KEMs. F denotes a
PRF, H a random oracle, π a keyed permutation, and E an ideal cipher. Moreover,
we assume c = c1 .. cn, k = k1 .. kn and write ⊕i for ⊕n

i=1. For x ∈ {π,E} we write
xn

k (·) to denote xkn (. . . xk1 (·) . . .). The left-most construction, ⊕iF (ki, c), is secure in
the standard model, while the remaining constructions require idealized primitives to
be proven secure.

where ki denotes the key output by the encapsulation algorithm of KEM Ki
and c = c1 ‖ . . . ‖ cn. We refer to W as core function. We can pinpoint a suf-
ficient condition of the core function such that the respective KEM combiner
retains CCA security of any of its ingredient KEMs: Intuitively, split-key pseu-
dorandomness captures pseudorandom behavior of W as long as any of the keys
k1, . . . , kn is uniformly distributed (and the other keys known to or controlled
by the adversary).

All KEM combiners studied in this work that retain CCA security may be
found in Figure 1.

1.2 Related Work

To the best of our knowledge KEM combiners have not been studied in the lit-
erature before. However, closely related, encryption combiners were considered.
The idea of encrypting multiple times to strengthen security guarantees dates
back to the seminal work of Shannon [21].

An immediate and well-studied solution (e.g. [5,19]) to combine various sym-
metric encryption schemes is to apply them in a cascade fashion where the
message is encrypted using the first scheme, the resulting ciphertext then being
encrypted with the second scheme, and so on. Even and Goldreich [7] showed
that such a chain is at least as secure as its weakest link.Is this for CPA or
CCA? I guess only CPA, but in the context of our paper it would actually be
interesting to know precisely.
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Focusing on combining PKE schemes and improving on prior work (see [23])
Dodis and Katz [6] gave means to employ various PKE schemes that retain CCA
security of any ‘ingredient’ scheme.

More recently, the work of [22] gave another way to combine PKE schemes
ensuring that CCA security of any ingredient PKE is passed on to the combined
PKE scheme. As a first step, their approach constructs a combiner achieving
merely detectable CCA (DCCA) security4 if any ingredient PKE scheme is CCA
secure. Secondly, a transformation from DCCA to CCA security (see [17]) is
applied to strengthen the PKE combiner.

Conceptually interesting in the context of this paper is the work of [2] where
the authors propose an LWE-based key exchange and integrate it into the TLS
protocol suite. The goal is to make TLS future proof (against quantum comput-
ers). Thereby, they define not only two LWE-based cipher suites, but also two
hybrid ones that, conservatively with respect to the security assumptions, com-
bine the LWE techniques with better-studied cyclic group based Diffie–Hellman
key exchange.

2 Preliminaries

Notation We use the following operators for assigning values to variables: The
symbol ‘←’ is used to assign to a variable (on the left-hand side) a constant value
(on the right-hand side), for example the output of a deterministic algorithm.
Similarly, we use ‘←$’ to assign to a variable either a uniformly sampled value
from a set or the output of a randomized algorithm. If f : A → B is a function
or a deterministic algorithm we let [f ] := f(A) ⊆ B denote the image of A
under f ; if f : A → B is a randomized algorithm with randomness space R we
correspondingly let [f ] := f(A×R) ⊆ B denote the set of all its possible outputs.

Let T be an associative array (also called array, or table), and b any element.
Writing ‘T [·] ← b’ we set T [a] to b for all a. We let [T ] denote the space of all
elements the form T [a] for some a, excluding the rejection symbol ⊥. Moreover,
[T [a, ·]] is the set of all the elements assigned to T [a, a′] for any value a′.

Games. Our security definitions are given in terms of games written in pseu-
docode. Within a game a (possibly) stateful adversary is explicitly invoked.
Depending on the game, the adversary may have oracle access to specific pro-
cedures. We write AO, to indicate that algorithm A has oracle access to O.
Within an oracle, command ‘Return X’ returns X to the algorithm that called
the oracle.

A game terminates when a ‘Stop with X’ command is executed; X then
serves as the output of the game. We write ‘Abort’ as an abbreviation for ‘Stop
with 0’. With ‘G ⇒ 1’ we denote the random variable (with randomness space
4 A confidentiality notion that interpolates between CPA and CCA security. Here, an
adversary is given a crippled decryption oracle that refuses to decrypt a specified set
of efficiently recognizable ciphertexts. See [17].
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specified by the specifics of the game G) that returns true if the output of the
game is 1 and false otherwise.

In proofs that employ game hopping, lines of code that end with a comment
of the form ‘|Gi-Gj ’ (resp. ‘|Gi,Gj ’, ‘|Gi’) are only executed when a game in
Gi–Gj (resp. Gi and Gj , Gi) is run.

Key encapsulation. A key-encapsulation mechanism (KEM) K = (K.gen,K.enc,
K.dec) for a finite session-key space K is a triple of algorithms together with
a public-key space PK, a secret-key space SK, and a ciphertext space C. The
randomized key-generation algorithm K.gen returns a public key pk ∈ PK and
a secret key sk ∈ SK. The randomized encapsulation algorithm K.enc takes
a public key pk ∈ PK and produces a session key k ∈ K and a ciphertext
c ∈ C. Finally, the deterministic decapsulation algorithm K.dec takes a secret
key sk ∈ SK and a ciphertext c ∈ C, and outputs either a session key k ∈ K or
the special symbol ⊥ /∈ K to indicate rejection. For correctness we require that
for all (pk, sk) ∈ [K.gen] and (k, c) ∈ [K.enc(pk)] we have K.dec(sk, c) = k.

We now give a security definition for KEMs that formalizes session-key
indistinguishability. For a KEM K, associate with any adversary A = (A1,A2)
its advantage Advkind

K (A) defined as |Pr[KIND0(A)⇒ 1]−Pr[KIND1(A)⇒ 1]|,
where the games are in Figure 2. We sometimes refer to adversaries that refrain
from posing queries to the Dec oracle as passive or CPA, while we refer to ad-
versaries that pose such queries as active or CCA. Intuitively, a KEM is CPA
secure (respectively, CCA secure) if all practical CPA (resp., CCA) adversaries
achieve a negligible distinguishing advantage.

Game KINDb(A)
00 C∗ ← ∅
01 (pk, sk)←$ K.gen
02 st ←$ ADec

1 (pk)
03 (k∗, c∗)←$ K.enc(pk)
04 k0 ← k∗; k1 ←$ K
05 C∗ ← C∗ ∪ {c∗}
06 b′ ←$ ADec

2 (st, c∗, kb)
07 Stop with b′

Oracle Dec(c)
08 If c ∈ C∗: Abort
09 k ← K.dec(sk, c)
10 Return k

Fig. 2. Security experiments KINDb, b ∈ {0, 1}, modeling the session-key indistin-
guishability of KEM K. With st we denote internal state information of the adversary.

Pseudorandom functions. Fix a finite key space K, an input space X , a finite
output space Y, and a function F : K × X → Y. Towards defining what it
means for F to behave pseudorandomly, associate with any adversary A its
advantage Advpr

F (A) := |Pr[PR0(A) ⇒ 1] − Pr[PR1(A) ⇒ 1]|, where the games
are in Figure 3. Intuitively, F is a pseudorandom function (PRF) if all practical
adversaries achieve a negligible advantage.
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Game PRb(A)
00 X ← ∅
01 k ←$ K
02 b′ ←$ AEval

03 Stop with b′

Oracle Eval(x)
04 If x ∈ X: Abort
05 X ← X ∪ {x}
06 y ← F (k, x)
07 y0 ← y; y1 ←$ Y
08 Return yb

Fig. 3. Security experiments PRb, b ∈ {0, 1}, modeling the pseudorandomness of func-
tion F . Line 04 and 05 implement the requirement that Eval not be queried on the
same input twice.

Pseudorandom permutations. Intuitively, a pseudorandom permutation (PRP)
is a bijective PRF. More precisely, if K is a finite key space and D a finite
domain, then function π : K × D → D is a PRP if for all k ∈ K the partial
function π(k, ·) : D → D is bijective and if π(k, ·) behaves like a random per-
mutation D → D once k ∈ K is assigned uniformly at random. A formalization
of this concept would be in the spirit of Figure 3. In practice, PRPs are often
implemented with blockciphers.

Random oracle model, ideal cipher model. We consider a cryptographic scheme
defined with respect to a hash function H : X → Y in the random oracle model
for H by replacing the scheme’s internal invocations of H by calls to an oracle H
that implements a uniform mapping X → Y. In security analyses of the scheme,
also the adversary gets access to this oracle. Similarly, a scheme defined with
respect to a keyed permutation π : K ×D → D is considered in the ideal cipher
model for π if all computations of π(·, ·) in the scheme algorithms are replaced
by calls to an oracle E(·, ·) that implements a uniform mapping K×D → D such
that E(k, ·) is a bijection for all k, and all computations of π−1(·, ·) are replaced
by calls to an oracle D(·, ·) that implements a uniform mapping K×D → D such
that D(k, ·) is a bijection for all k, and the partial oracles E(k, ·) and D(k, ·)
are inverses of each other (again for all k). In corresponding security analyses
the adversary gets access to both E and D. We write E (resp. D) to denote π
(resp. π−1) every time that we want to remark that π will be considered in the
ideal cipher model.

3 KEM Combiners

A KEM combiner is a template that specifies how a set of existing KEMs can
be joined together, possibly with the aid of further cryptographic primitives, to
obtain a new KEM. In this paper we are exclusively interested in combiners that
are security preserving: The resulting KEM shall be at least as secure as any
of its ingredient KEMs (assuming all further primitives introduced by the com-
biner are secure). While for public-key encryption a serial combination process
is possible and plausible (encrypt the message with the first PKE scheme, the
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resulting ciphertext with the second PKE scheme, and so on, for KEMs a paral-
lel approach, where the ciphertext consists of a set of independently generated
ciphertext components (one component per ingredient KEM), seems more nat-
ural. We formalize a general family of parallel combiners that are parameterized
by a core function that derives a combined session key from a vector of session
keys and a vector of ciphertexts.

Parallel KEM combiner. Let K1, . . . ,Kn be (ingredient) KEMs such that each
Ki = (K.geni,K.enci,K.deci) has session-key space Ki, public-key space PKi,
secret-key space SKi, and ciphertext space Ci. Let K∗ = K1 × . . . × Kn and
PK = PK1 × . . . × PKn and SK = SK1 × . . . × SKn and C = C1 × . . . × Cn.
Let further K be an auxiliary finite session-key space. For any core function
W : K∗×C → K, the parallel combination K := K1 ‖ . . .‖Kn with respect toW is a
KEM with session-key space K that consists of the algorithms K.gen,K.enc,K.dec
specified in Figure 4. The combined KEM K has public-key space PK, secret-key
space SK, and ciphertext space C. A quick inspection of the algorithms shows
that if all ingredient KEMs Ki are correct, then so is K.

Algo K.gen
00 For i← 1 to n:
01 (pki, ski)←$ K.geni

02 pk ← (pk1, . . . , pkn)
03 sk ← (sk1, . . . , skn)
04 Return (pk, sk)

Algo K.enc(pk)
05 (pk1, . . . , pkn)← pk
06 For i← 1 to n:
07 (ki, ci)←$ K.enci(pki)
08 c← c1 .. cn

09 k ←W (k1, . . . , kn, c)
10 Return (k, c)

Algo K.dec(sk, c)
11 (sk1, . . . , skn)← sk
12 c1 .. cn ← c
13 For i← 1 to n:
14 ki ← K.deci(ski, ci)
15 If ki = ⊥: Return ⊥
16 k ←W (k1, . . . , kn, c)
17 Return k

Fig. 4. Parallel KEM combiner, defined with respect to some core function W .

The security properties of the parallel combiner depend crucially on the
choice of the core function W . For instance, if W maps all inputs to one fixed
session key k̄ ∈ K, the obtained KEM does not inherit any security from the
ingredient KEMs. We are thus left with finding good core functions W .

3.1 The XOR Combiner

Assume ingredient KEMs that share a common binary-string session-key space:
K1 = . . . = Kn = {0, 1}k for some k. Consider the XOR core function that,
disregarding its ciphertext inputs, outputs the binary sum of the key inputs.
Formally, after letting K = {0, 1}k this means K∗ = Kn and

W : K∗ × C → K ; (k1, . . . , kn, c1 .. cn) 7→ k1 ⊕ . . .⊕ kn .

On W we prove two statements: If the overall goal is to obtain a CPA-secure
KEM, thenW is useful, in the sense that the parallel combination of KEMs with
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respect to W is CPA secure if at least one of the ingredient KEMs is. However,
if the overall goal is CCA security, then one weak ingredient KEM is sufficient
to break any parallel combination with respect to W .

Lemma 1 (XOR combiner retains CPA security). Let K1, . . . ,Kn be
KEMs and let W be the XOR core function. Consider the parallel combina-
tion K = K1 ‖ . . .‖Kn with respect to W . If at least one Ki is CPA secure, then
also K is CPA secure. Formally, for all indices i ∈ [1 .. n] and every adversary A
that poses no queries to the decapsulation oracle there exists an adversary B such
that

Advkind
K (A) = Advkind

Ki
(B) ,

where also B poses no decapsulation query and its running time is about that
of A.

Proof. From any adversary A = (A1,A2) against K we construct an adver-
sary B = (B1,B2) against Ki as follows. Algorithm B1, on input pki ∈ PKi,
first generates the n − 1 public keys pk1, . . . , pki−1, pki+1, . . . , pkn by means of
(pkj , skj) ←$ K.genj . Then it sets pk ← (pk1, . . . , pkn), invokes st ←$ A1(pk),
and outputs st′ ← (st, pk1, . . . , pki−1, pki+1, . . . , pkn). Algorithm B2, on input
(st′, c∗i , k∗i ), first invokes (k∗j , c∗j ) ←$ K.encj(pkj) for all j 6= i, and then sets
c∗ ← c∗1 .. c

∗
i .. c

∗
n and k∗ ← k∗1 ⊕ . . . ⊕ k∗i ⊕ . . . ⊕ k∗n. Finally it then invokes

b′ ←$ A2(st, c∗, k∗) and outputs b′. It is easy to see that the advantages of A
and B coincide. ut

Remark. Consider a CCA secure KEM (for instance from the many submis-
sions to NIST’s recent Post-Quantum initiative [20]) that is constructed by,
first, taking a CPA secure KEM and then applying a Fujisaki–Okamoto-like
transformation [12,16,18] to it in order to obtain a CCA secure KEM.

To combine multiple KEMs that follow the above design principle, Lemma 1
already provides a highly efficient solution that retains CCA security: To this
end, one would strip away the FO-like transformation of the KEMs to be com-
bined and apply the XOR-combiner to the various CPA secure KEMs. Eventually
one would apply an FO-like transformation to the XOR-combiner.

However, besides results shedding doubts on the instantiability of FO in the
presence of indistinguishability obfuscation [3], we pursue generic KEM combin-
ers that retain CCA security independently of how the ingredient KEMs achieve
their security.

While it is rather obvious that the XOR-combiner is incapable of retaining
CCA security of an ingredient KEM, we formally state and prove it next.

Lemma 2 (XOR combiner does not retain CCA security). In general,
the result of parallelly combining a CCA-secure KEM with other KEMs using
the XOR core function is not CCA secure.

Formally, if n ∈ N and W is the XOR core function, then for all 1 ≤ i ≤ n
there exists a KEM Ki such that for any set of n − 1 KEMs K1, . . . ,Ki−1,
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Ki+1, . . . ,Kn (e.g., all of them CCA secure) there exists an efficient adver-
sary A that poses a single decapsulation query and achieves an advantage of
Advkind

K (A) = 1 − 1/|K|, where K = K1 ‖ . . . ‖Kn is the parallel combination of
K1, . . . ,Kn with respect to W .

Proof. We construct KEM Ki such that public and secret keys play no role, it
has only two ciphertexts, and it establishes always the same session key: Fix any
k̄ ∈ K, let Ci = {0, 1}, and let K.enci and K.deci always output (k̄, 0) ∈ K×Ci and
k̄ ∈ K, respectively. Define adversary A = (A1,A2) such that A1 does nothing
and A2, on input of c∗ and k∗, parses c∗ as c∗1 .. c∗i .. c∗n (where c∗i = 0), poses a
decapsulation query k∗∗ ← Dec(c∗∗) on ciphertext c∗∗ = c∗1 .. c

∗
i−11c∗i+1 .. c

∗
n, and

outputs 1 iff k∗ = k∗∗. It is easy to see that A achieves the claimed advantage.
ut

3.2 The XOR-Then-PRF Combiner

We saw that the KEM combiner that uses the core function that simply outputs
the XOR sum of the session keys fails miserably to provide security against
active adversaries. The main reason is that it completely ignores the ciphertext
inputs, so that the latter can be altered by an adversary without affecting the
corresponding session key. As an attempt to remedy this, we next consider a
core function that, using a PRF, mixes all ciphertext bits into the session key
that it outputs. The PRF is keyed with the XOR sum of the input session keys
and shall serve as an integrity protection on the ciphertexts.

Formally, under the same constraints on K,K1, . . . ,Kn,K∗ as in Section 3.1,
and assuming a (pseudorandom) function F : K × C → K, the XOR-then-PRF
core function WF is defined as per

WF : K∗ × C → K ; (k1, . . . , kn, c1 .. cn) 7→ F (k1 ⊕ . . .⊕ kn, c1 .. cn) .

Of course, to leverage on the pseudorandomness of the function F its key has to
be uniform. The hope, based on the intuition that at least one of the ingredient
KEMs is assumed secure and thus the corresponding session key uniform, is that
the XOR sum of all session keys works fine as a PRF key. Unfortunately, as we
prove next, this is not the case in general. The key insight is that the pseudoran-
domness definition does not capture robustness against related-key attacks: We
present a KEM/PRF combination where manipulating KEM ciphertexts allows
to exploit a particular structure of the PRF.5

Lemma 3 (XOR-then-PRF combiner does not retain CCA security).
There exist KEM/PRF configurations such that if the KEM is parallelly com-
bined with other KEMs using the XOR-then-PRF core function, then the re-
sulting KEM is weak against active attacks. More precisely, for all n ∈ N and
5 Note that in Lemma 6 we prove that if F behaves like a random oracle and is thus
free of related-key conditions, the XOR-then-PRF core function actually does yield
a secure CCA combiner.
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i ∈ [1 .. n] there exists a KEM Ki and a (pseudorandom) function F such that for
any set of n − 1 (arbitrarily secure) KEMs K1, . . . ,Ki−1,Ki+1, . . . ,Kn there ex-
ists an efficient adversary A that poses a single decapsulation query and achieves
advantage Advkind

K (A) = 1 − 1/|K|, where K = K1 ‖ . . .‖Kn is the parallel com-
bination of K1, . . . ,Kn with respect to the XOR-then-PRF core function WF .
Function F is constructed from a function F ′ such that if F ′ is pseudorandom
then so is F .
Proof. In the following we write K = {0, 1} × K′ (where K′ = {0, 1}k−1). We
construct Ki such that public and secret keys play no role, there are only two
ciphertexts, and the two ciphertexts decapsulate to different session keys: Fix
any k̄ ∈ K′, let Ci = {0, 1}, let K.enci always output ((0, k̄), 0) ∈ K × Ci, and let
K.deci, on input ciphertext B ∈ Ci, output session key (B, k̄) ∈ K.

We next construct a specific function F and argue that it is pseudorandom.
Consider the involution π : C → C that flips the bit value of the ith ciphertext
component, i.e.,

π(c1 .. ci−1 B ci+1 .. cn) = c1 .. ci−1 (1−B) ci+1 .. cn ,

and let F ′ : K′×C → K be a (pseudorandom) function. Construct F : K×C → K
from π and F ′ as per

F ((D, k′), c) =
{
F ′(k′, c) if D = 0
F ′(k′, π(c)) if D = 1 .

(1)

It is not difficult to see that if F ′ is pseudorandom then so is F . For completeness,
we give a formal statement and proof immediately after this proof.

Consider now the following adversary A = (A1,A2): Let algorithm A1 do
nothing, and let algorithm A2, on input of c∗ and k∗, parse the ciphertext as
c∗ = c∗1 .. c

∗
i .. c

∗
n (where c∗i = 0), pose a decapsulation query k∗∗ ← Dec(c∗∗) on

ciphertext c∗∗ = c∗1 .. c
∗
i−11c∗i+1 .. c

∗
n, and output 1 iff k∗ = k∗∗.

Let us analyze the advantage of A. For all 1 ≤ j ≤ n, let (dj , k′j) ∈ K be
the session keys to which ciphertext components c∗j decapsulate. That is, the
session key k to which c∗ decapsulates can be computed as k = F ((d1, k

′
1) ⊕

. . . ⊕ (dn, k′n), c∗), by specification of WF . By setting D = d1 ⊕ . . . ⊕ dn and
expanding F into F ′ and π we obtain

k = F ′(k′1 ⊕ . . .⊕ k′n, c∗1 .. c∗i−1Dc
∗
i+1 .. c

∗
n) .

Consider next the key k∗∗ that is returned by the Dec oracle. Internally, the
oracle recovers the same keys (d1, k

′
1), . . . , (dn, k′n) as above, with exception of di

which is inverted. Let D∗∗ = d1⊕ . . .⊕ dn be the corresponding (updated) sum.
We obtain

k∗∗ = F ′(k′1 ⊕ . . .⊕ k′n, c∗1 .. c∗i−1(1−D∗∗)c∗i+1 .. c
∗
n) .

Thus, as D∗∗ is the inverse of D, we have k = k∗∗ and adversary A achieves the
claimed advantage. ut

We now give the formal statement that, if F ′ is a PRF then the same holds
for F as defined in (1).
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Lemma 4. Let K′,X ,Y be sets such that K′,Y are finite. Let F ′ : K′ ×X → Y
be a function, and let π : X → X be any (efficient) bijection.6 Let K = {0, 1}×K′
and define function F : K ×X → Y such that

F ((D, k′), x) =
{
F ′(k′, x) if D = 0
F ′(k′, π(x)) if D = 1 .

(2)

Then if F ′ is a PRF, the same holds for F . More precisely, for every adversary A
there is an adversary B such that

Advpr
F (A) = Advpr

F ′(B) ,

the running times of A and B are roughly the same, and if A queries its evalu-
ation oracle qe times then B queries its own evaluation oracle qe times.

Proof. Let A be an adversary against the pseudorandomness of F . We build an
adversary B against the pseudorandomness of F ′ as follows. B generates a bit D
and runs A. For every Eval query of A on input x, adversary B queries its own
evaluation oracle on input x if D = 0, or π(x) if D = 1. The output of this query
is returned to A. At the end of A’s execution its output is returned by B.

We argue that B provides a correct simulation of the pseudorandomness
games to A. First we notice that if the input values to Eval by A are unique, so
are the input values to Eval by B, since π is a bijection and D is constant during
each run of the simulation. Conversely, any input repetition by A leads to an
input repetition by B, thus aborting the pseudorandomness game. If B is playing
against the real game PR0 for F ′ then it correctly computes the function F for A
and the distribution of the output to A is the same as that in game PR0 for F .
Otherwise B receives uniform independent elements from its oracle Eval, and
hence correctly simulates the game PR1 for F to A. This proves our statement.

ut

3.3 KEM Combiners from Split-Key PRFs

The two core functions for the parallel KEM combiner that we studied so far
did not achieve security against active attacks. We next identify a sufficient
condition that guarantees satisfactory results: If the core function is split-key
pseudorandom, and at least one of the ingredient KEMs of the parallel combiner
from Figure 4 is CCA secure, then the resulting KEM is CCA secure as well.

Split-key pseudorandom functions. We say a symmetric key primitive (syntac-
tically) uses split keys if its key space K is the Cartesian product of a finite
number of (sub)key spaces K1, . . . ,Kn. In the following we study the correspond-
ing notion of split-key pseudorandom function. In principle, such functions are
just a special variant of PRFs, so that the security notion of pseudorandomness
6 No cryptographic property is required of π, just that it can be efficiently computed.
An easy example is the flip-the-first-bit function.
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(see Figure 3) remains meaningful. However, we introduce split-key pseudoran-
domness as a dedicated, refined property. In brief, a split-key function has this
property if it behaves like a random function if at least one component of its
key is picked uniformly at random (while the other components may be known
or even chosen by the adversary).

For formalizing this, fix finite key spaces K1, . . . ,Kn, an input space X , and
a finite output space Y. Furtehr, let K = K1 × . . .×Kn and consider a function
F : K × X → Y. For each index i ∈ [1 .. n], associate with an adversary A its
advantage Advpr

F,i(A) := |Pr[PR0
i (A)⇒ 1]− Pr[PR1

i (A)⇒ 1]|, where the game
is given in Figure 5. Observe that, for any index i, in the game PRb

i , b ∈ {0, 1},
the ith key component of F is assigned at random (in line 01), while the adversary
contributes the remaining n− 1 components on a per-query basis (see line 06).
We say that F is a split-key pseudorandom function (skPRF) if the advantages
Advpr

F,i for all key indices are negligible for all practical adversaries.

Games PRb
i (A)

00 X ← ∅
01 ki ←$ Ki

02 b′ ←$ AEval

03 Stop with b′

Oracle Eval(k′, x)
04 If x ∈ X: Abort
05 X ← X ∪ {x}
06 k1 .. ki−1ki+1 .. kn ← k′

07 y ← F (k1 .. ki .. kn, x)
08 y0 ← y; y1 ←$ Y
09 Return yb

Fig. 5. Security game PRb
i , b ∈ {0, 1}, 1 ≤ i ≤ n, modeling the split-key pseudoran-

domness of function F . Lines 04 and 05 implement the requirement that Eval not be
queried on the same input twice.

With lines 04 and 05 we require that the oracle Eval be executed at most once
on an input value x, independently on the input value k′. One could imagine a
relaxed version of this requirement, where Eval accepts any non-repeating in-
put pair (k′, x), thus permitting repeated values of x in distinct queries to Eval.
Most of the following proofs are however not straightforward to be adapted to
the relaxed definition, and in many case this would directly lead to an insecure
construction. Notice, however, that our current definition of split-key pseudo-
randomness for a function F still suffices to prove that F is a standard PRF.

Theorem 1. If the core function used in the parallel composition is split-key
pseudorandom, the parallel combiner yields a CCA-secure KEM if at least one
of the ingredient KEMs is CCA secure.

More precisely, for all n,K1, . . . ,Kn, if K = K1 ‖ . . . ‖Kn with core function
W then for all indices i and all adversaries A against the key indistinguishability
of K there exist adversaries B against the key indistinguishability of Ki and C
against the split-key pseudorandomness of W such that

Advkind
K (A) ≤ 2 ·

(
Advkind

Ki
(B) + Advpr

W,i(C)
)
.
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Moreover, if adversary A calls at most qd times the oracle Dec, then adversary B
makes at most qd calls to the oracle Dec, and adversary C makes at most qd + 1
calls to the oracle Eval. The running times of B and C are roughly the same as
that of A.

Proof sketch. The proof constitutes of a sequence of games interpolating
between games G0 and G4. Noting that the KEMs we consider are perfectly
correct, those two games correspond respectively to games KIND0 and KIND1

for the KEM K = K1 ‖ . . .‖Kn. Code detailing the games involved is in Figure 7
and the main differences between consecutive games are explained in Figure 6.
In a nutshell, we proceed as follows: In game G1 we replace the key k∗i output by
(k∗i , c∗i )←$ K.enci(pki) by a uniform key. As Ki is CCA secure this modification
is oblivious to A. As a second step, we replace the real challenge session key k∗ as
obtained via k∗ ←W (k∗1 , . . . , k∗n, c∗1 .. c∗n) with a uniform session key in game G2.
Since the core functionW is split-key pseudorandom and k∗i is uniform, this step
is oblivious to A as well. However—for technical reasons within the reduction—
replacing the challenge session key will introduce an artifact to the decapsulation
procedure: queries of the form Dec(. . . , c∗i , . . .) will not be processed usingW but
answered with uniform session keys. In the transition to game G3 we employ
the split-key pseudorandomness of W again to remove the artifact from the
decapsulation oracle. Eventually, in game G4 we undo our first modification and
replace the currently uniform key k∗i with the actual key obtained by running
K.enci(pki). Still, the challenge session key k∗ remains uniform. Again, the CCA
security of Ki ensures that A will not detect the modification.

We proceed with a detailed proof.

Game k∗i k∗ Dec(. . . , c∗i , . . .) ∆

G0 (≡ KIND0) real real real Advkind
KiG1 random real real Advpr
W,iG2 random random random Advpr
W,iG3 random random real Advkind
KiG4 (≡ KIND1) real random real

Fig. 6. Overview of the proof of Theorem 1. We have (k∗i , c∗i )←$ K.enci(pki). Further-
more, k∗ ←W (k∗1 , . . . , k∗n, c∗1 .. c∗n) denotes the challenge session key given to A2 along
with c∗1 .. c∗n.

Proof (Theorem 1). LetA denote an adversary attacking the CCA security of the
KEM K that issues at most qd queries to the decapsulation oracle. We proceed
with detailed descriptions of the games (see Figure 7) used in our proof.

Game G0 The KIND0 game instantiated with the KEM K as given in Figure 4.
Beyond that we made merely syntactical changes: In line 00 a set C∗i and an
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Games G0 to G4
00 C∗, C∗i ← ∅; L[·]← ⊥
01 For j ← 1 to n:
02 (pkj , skj)←$ K.genj

03 pk ← (pk1, . . . , pkn)
04 st ←$ ADec

1 (pk)
05 For j ← 1 to n:
06 (k∗j , c∗j )←$ K.encj(pkj)
07 k∗i ←$ Ki | G1-G3
08 c∗ ← c∗1 .. c

∗
n

09 k∗ ←W (k∗1 , . . . , k∗n, c∗)
10 k∗ ←$ K | G2-G4
11 C∗ ← C∗ ∪ {c∗}; C∗i ← C∗i ∪ {c∗i }
12 b′ ←$ ADec

2 (st, c∗, k∗)
13 Stop with b′

Oracle Dec(c)
14 If c ∈ C∗: Abort
15 If L[c] 6= ⊥: Return L[c]
16 c1 .. cn ← c
17 For j ∈ [1 .. n] \ {i}:
18 kj ← K.decj(skj , cj)
19 If kj = ⊥: Return ⊥
20 If ci ∈ C∗i :
21 ki ← k∗i
22 Else:
23 ki ← K.deci(ski, ci)
24 If ki = ⊥: Return ⊥
25 L[c]←W (k1, . . . , kn, c)
26 If ci ∈ C∗i : L[c]←$ K | G2
27 Return L[c]

Fig. 7. Games G0–G4 as used in the proof of Theorem 1. Note that i is implicitly a
parameter of all games above.

array L are initialized as empty. In line 15 we check if the adversary has already
queried the oracle for the same input and we return the same output. Lines 20
and 21 are added such that, instead of using ski to decapsulate c∗i , the key k∗i is
used. Note that if line 21 is executed then key k∗i is already defined, since C∗i 6= ∅.

Claim 1. Pr[KIND0 ⇒ 1] = Pr[G0 ⇒ 1].

This follows immediately from the correctness of Ki and the fact that the de-
capsulation algorithm is deterministic.

Game G1 Line 07 is added to replace the key k∗i with a uniform key from Ki.

Claim 2. There is an adversary B = (B1,B2) against session-key indistinguisha-
bility of Ki (see Figure 8) that issues at most qd decapsulation queries such
that

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Advkind
Ki

(B) ,

and the running time of B is roughly the running time of A.

Proof. We construct B = (B1,B2) as given in Figure 8: Adversary B1 gets pki
as input, and runs (pkj , skj) ←$ K.genj for all j ∈ [1 .. n] \ {i} to instantiate
the other KEMs (see lines 01–03). To answer the decapsulation queries of A1,
B1 decapsulates all ci for j 6= i using skj (lines 16–18) and queries its own
decapsulation oracle to decapsulate ci (lines 21–23).

Adversary B2, run on the challenge (c∗i , k∗i ), executes (k∗j , c∗j ) ←$ K.encj for
j 6= i on its own (lines 07, 08). Then it computes the challenge session key
k∗ ←W (k∗1 , . . . , k∗n, c∗1, . . . , c∗n) (line 10) and runs A2 on (c∗1, . . . , c∗n, k∗) (line 12).
Decryption queries are answered as in phase one unless B2 has to decapsulate c∗i
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Adversary BDec
1 (pki)

00 C∗, C∗i ← ∅
01 For j ∈ [1 .. n] \ {i}:
02 (pkj , skj)←$ K.genj

03 pk ← (pk1, . . . , pkn)
04 st ←$ ADec

1 (pk)
05 st′ ← (st, pk, sk1, . . . , ski−1, ski+1, . . . , skn)
06 Return st′

Adversary BDec
2 (st′, c∗i , k∗i )

07 For j ∈ [1 .. n] \ {i}:
08 (k∗j , c∗j )←$ K.encj(pkj)
09 c∗ ← c∗1 .. c

∗
n

10 k∗ ←W (k∗1 , . . . , k∗n, c∗)
11 C∗ ← C∗ ∪ {c∗}; C∗i ← C∗i ∪ {c∗i }
12 b′ ←$ ADec

2 (st, c∗, k∗)
13 Stop with b′

If A calls Dec(c):
14 If c ∈ C∗: Abort
15 c1 .. cn ← c
16 For j ∈ [1 .. n] \ {i}:
17 kj ← K.decj(skj , cj)
18 If kj = ⊥: Return ⊥
19 If ci ∈ C∗i :
20 ki ← k∗i
21 Else:
22 ki ← Dec(ci)
23 If ki = ⊥: Return ⊥
24 k ←W (k1, . . . , kn, c)
25 Return k

Fig. 8. Adversary B = (B1,B2) against session-key indistinguishability of Ki from
adversary (A1,A2) against session-key indistinguishability of K.

where it uses k∗i instead (lines 19, 20). At the end B2 relays A2’s output and
halts (line 13).
Analysis Games G0 and G1 only differ on the key k∗i used to compute k∗ for
A2, and, consequently, when answering A2’s decapsulation queries involving c∗i .
If B is run by the game KIND0, that is, key k∗i is a real key output of K.enci,
then B perfectly emulates game G0. Otherwise, if B is run by the game KIND1,
and thus the key k∗i is uniform, then B emulates G1. Hence

Pr[G0 ⇒ 1] = Pr[KIND0 ⇒ 1]

and
Pr[G1 ⇒ 1] = Pr[KIND1 ⇒ 1] .

Lastly we observe that B issues at most as many decapsulation queries as A.
Our claim follows. ut

Game G2 We add line 10 and line 26. Thus, whenever W is evaluated on a
ciphertext whose ith component is c∗i (that is, either when computing the chal-
lenge session key k∗ or when answering decapsulation queries involving c∗i as
the ith ciphertext component) the output is overwritten with a uniform value
from Y.

Claim 3. There exists an adversary C against the split-key pseudorandomness
security of W that issues at most qd + 1 evaluation queries such that

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Advpr
W,i(C) ,

and the running time of C is roughly the running time of A.

17



Proof. We construct an adversary C that breaks the split-key pseudorandomness
of W on the ith key if A distinguishes between games G1 and G2.

Adversary C runs K.genj for all j ∈ [1 .. n] to instantiate all KEMs (see
lines 01–03). Then for each KEM Kj it generates a pair key-ciphertext (k∗j , c∗j )
(lines 05 and 06). All ciphertexts, and all the keys k∗j for j 6= i, are collected
and used as input for a call to Eval to generate A2’s challenge (lines 07–09). To
answer the decapsulation queries of A on input c1 .. cn, the adversary keeps track
of previous decapsulation queries and returns the same result for two queries with
the same input (line 14). C uses the secret keys it generated to decapsulate all
ciphertext components cj for j 6= i (lines 16–18). The same procedure is used
to decapsulate ci if ci 6= c∗i ; otherwise it queries its own decapsulation oracle
(lines 19–25).

Adversary CEval

00 C∗, C∗i ← ∅; L[·]← ⊥
01 For j ← 1 to n:
02 (pkj , skj)←$ K.genj

03 pk ← (pk1, . . . , pkn)
04 st ←$ ADec

1 (pk)
05 For j ← 1 to n:
06 (k∗j , c∗j )←$ K.encj(pkj)
07 k′

∗ ← k∗1 .. k
∗
i−1k

∗
i+1 .. k

∗
n

08 c∗ ← (c∗1, . . . , c∗n)
09 k∗ ← Eval(k′∗, c∗)
10 C∗ ← C∗ ∪ {c∗}; C∗i ← C∗i ∪ {c∗i }
11 b′ ←$ ADec

2 (st, c∗, k∗)
12 Stop with b′

If A calls Dec(c):
13 If c ∈ C∗: Abort
14 If L[c] 6= ⊥: Return L[c]
15 (c1, . . . , cn)← c
16 For j ∈ [1 .. n] \ {i}:
17 kj ← K.decj(skj , cj)
18 If kj = ⊥: Return ⊥
19 If ci ∈ C∗i :
20 k′ ← k1 .. ki−1ki+1 .. kn

21 L[c]← Eval(k′, c)
22 Else:
23 ki ← K.deci(ski, ci)
24 If ki = ⊥: Return ⊥
25 L[c]←W (k1 .. ki .. kn, c)
26 Return L[c]

Fig. 9. Adversary C against multi-key pseudorandomness of F .

Analysis First we note that by the conditions in lines 13 and 14 in Figure 9
all calls to Eval by Cb have different input and thus we can always use Eval to
simulate W .

Observe that when C plays against PR0
i we are implicitly setting k∗i as the

key internally generated by PR0
i . Hence C correctly simulates game G1 to A.

Otherwise when C plays against PR1
i the oracle Eval consistently outputs random

elements in K. Thus C correctly simulates game G2 to A. Therefore

Pr[G1 ⇒ 1] = Pr[PR0
i ⇒ 1]

and
Pr[G2 ⇒ 1] = Pr[PR1

i ⇒ 1]| .

Thus
|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Advpr

W,i(C) .
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We count the number of Eval queries by C. From the definition of C we see
that the oracle Eval is called once to generate the challenge. Further, for each
Dec query by A, C queries Eval at most once. ut

Game G3 We remove lines 26 to undo the modifications of the Dec oracle in-
troduced in game G2. Thus, during decapsulation, whenever W is evaluated on
a ciphertext whose ith component is c∗i the output is computed evaluating the
function W on the decapsulated keys instead of returning a uniform input.

Claim 4. There exists an adversary C′ against the split-key pseudorandomness
security of W that issues at most qd evaluation queries such that

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ Advpr
W,i(C

′) ,

and the running time of C′ is roughly the running time of A.

Proof. Adversary C′ is essentially the same as adversary C in Figure 9, with the
exception that we replace line 09 with the generation of a uniform session key
(k∗ ←$ K). The proof analysis is the same as in Claim 3. Notice that since this
time the challenge session key is uniform, C′ calls Eval just qd times instead
of qd + 1. ut

Note that, currently, the only difference from game G1 is the addition of
line 10, i.e., the challenge session key k∗ is uniform.

Game G4 Line 07 is removed to undo the modification introduced in game G1.
That is, we replace the uniform key k∗i with a real key output by K.enci(pki).

Claim 5. There exists an adversary B′ = (B′1,B′2) against the session-key indis-
tinguishability of Ki that issues at most qd decapsulation queries such that

|Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ Advkind
Ki

(B′) ,

and the running time of B′ is roughly the running time of A.

Proof. Adversary B′ is the same as adversary B in Figure 8, with the exception
that we replace line 10 with the generation of a uniform session key (k∗ ←$ K).
The proof analysis is the same as in Claim 2. ut

Claim 6. Pr[G4 ⇒ 1] = Pr[KIND1 ⇒ 1].

This follows immediately from the correctness of Ki and the fact that the de-
capsulation algorithm is deterministic.

The proof of the main statement follows from collecting the statements from
Claims 1 to 6. ut
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4 Split-Key PRFs in Idealized Models

In the previous section we have shown that if the core function of the parallel
combiner is split-key pseudorandom, then said combiner preserves CCA security
of any of its ingredient KEMs. It remains to present explicit, practical construc-
tions of skPRFs.

In our first approach we proceed as follows: Given some keys k1, . . . , kn and
some input x, we mingle together the keys to build a new key k for some (single-
key) pseudorandom function F . The output of our candidate skPRF is obtained
evaluating F (k, x). In this section we consider variations on how to compute
the PRF key k, along with formal proofs for the security of the corresponding
candidate skPRFs.

Considering our parallel combiner with such skPRF, evaluating a session
key becomes relatively efficient compared to the unavoidable cost of running n
distinct encapsulations. Alas, the security of the constructions in this section
necessitates some idealized building block, that is, a random oracle or an ideal
cipher.

We attempt to abate this drawback by analyzing the following construction
form different angles:

W (k1, . . . , kn, x) := F (π(kn, π(. . . π(k1, 0) . . .)), x) , (3)

where F is a pseudorandom function and π is a pseudorandom permutation.
Specifically, we show that W is an skPRF if π is modeled as an ideal cipher
(Lemma 5) or F is modeled as a random oracle (Lemma 6 in combination with
Example 2).

This statement might be interesting in practice: When implementing such
construction the real world, F could reasonably be fixed to SHA-2 (prepending
the key), while AES could reasonably be chosen as π. Both primitives are believed
to possess good cryptographic properties, arguably so to behave as idealized
primitives. Moreover, there is no indication to assume that if one primitive failed
to behave ‘ideally’, then the other would be confronted with the same problem.

In Section 4.1 we prove that the construction above is secure in the ideal
cipher model. In Section 4.2 we give some secure constructions in the case that F
is modeled as a random oracle.

4.1 Split-Key PRFs in the Ideal Cipher Model

Here we consider constructions of skPRFs where the key-mixing step is conducted
in the ideal cipher model followed by a (standard model) PRF evaluation.

Before stating the main result of this section we introduce two additional
security notions for keyed functions. The first one is a natural extension of pseu-
dorandomness, whereby an adversary is given access to multiple instances of a
keyed function (under uniform keys) or truly random functions.
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Multi-instance pseudorandomness See Figure 10 for the security game that de-
fines the multi-instance pseudorandomness of F . For any adversary A and num-
ber of instances n we define its advantage Advmipr

F,n (A) := |Pr[MIPR0(A)⇒ 1]−
Pr[MIPR1(A)⇒ 1]|. Intuitively, F is multi-instance pseudorandom if all practi-
cal adversary achieve a negligible advantage.

Game MIPRb(A)
00 X1, . . . , Xn ← ∅
01 k1, . . . , kn ←$ K
02 b′ ←$ AEval

03 Stop with b′

Oracle Eval(i, x)
04 If x ∈ Xi: Abort
05 Xi ← Xi ∪ {x}
06 y ← F (ki, x)
07 y0 ← y; y1 ←$ Y
08 Return yb

Fig. 10. Security experiments MIPRb, b ∈ {0, 1}, modeling multi-instance pseudoran-
domness of F for n instances.

While one usually considers indistinguishability between outputs of a pseu-
dorandom functions and uniform elements, key inextractability requires instead
that the PRF key be hidden from any efficient adversary. We give a formalization
of the latter property in the multi-instance setting next.

Multi-instance key inextractability Next we introduce multi-instance key inex-
tractability for a keyed function F . To this end, consider the game MIKI given in
Figure 11. To any adversary A and any number of instances n we associate its ad-
vantage Advmiki

F,n (A) := Pr[MIKI(A) ⇒ 1]. Intuitively, F satisfies multi-instance
key inextractability if all practical adversaries achieve a negligible advantage.

Game MIKI(A)
00 k1, . . . , kn ←$ K
01 Run AEval,Check

02 Stop with 0

Oracle Eval(i, x)
03 y ← F (ki, x)
04 Return y

Oracle Check(k)
05 If k ∈ {k1, . . . , kn}:
06 Stop with 1

Fig. 11. Security experiment MIKI modeling multi-instance key inextractability of F
for n instances.

Lemma 5. Let K, H and Y be finite sets, X be a set and n a positive integer.
Let F : H×X → Y, E : K×H → H, and D : K×H → H be functions such that
for all k ∈ K the function E(k, ·) is invertible with inverse D(k, ·). Consider the
function W defined by:

W : Kn ×X → Y , W (k1, . . . , kn, x) := F (E(kn, E(. . . E(k1, 0) . . .)), x) .

If the function F is pseudorandom then the function W is split-key pseudo-
random in the ideal cipher model.

21



More precisely, suppose that E is modeled as an ideal cipher with inverse D.
Then for any i ∈ [1 .. n] and for any adversary A against the split-key pseu-
dorandomness of W there exists an adversary B against the multi-instance key
inextractability of F and an adversary C against the multi-instance pseudoran-
domness of F such that:

Advpr
W,i(A) ≤ Q+ nqe

|K| − n
+ 6 · (Q+ 2nqe)2

|H| − 2Q− 2nqe
+ Advmiki

F,qe
(B) + Advmipr

F,qe
(C) ,

where qe (resp. Q) is the maximum number of calls by A to the oracle Eval (resp.
to the ideal cipher or its inverse). Moreover, B calls at most qe (resp. 2Q+nqe)
times the oracle Eval (resp. Check), and C calls at most qe times the oracle Eval.
The running times of B and C are roughly the same as that of A.

Proof sketch. The proof consists of a sequence of games interpolating be-
tween the games PR0

i and PR1
i for any i ∈ [1 .. n]. Our final goal is to make

the PRF keys used in Eval as input to F uniform, and then employ the PRF
security of F . To achieve this we show that, except with a small probability,
the adversary cannot manipulate the game to use anything but independent,
uniformly generated values as key input to F .

The PRF keys are sequences of the form h = E(kn, E(. . . E(k1, 0) . . .)) for
some keys k1 .. kn. We fix an index i: The key ki is uniformly generated by
the pseudorandomness game, and the remaining keys are chosen by the ad-
versary on each query to Eval. The proof can be conceptually divided into
two parts. Initially (games G0–G3) we work on the first part of the sequence,
namely h′ = E(ki, E(. . . E(k1, 0) . . .)). Here we build towards a game in which
all elements h′ that are generated from different key vectors k1 .. ki−1 are in-
dependent uniform values. In the next games (games G4–G9) we work on the
second part of the sequence, namely h = E(kn, E(. . . E(ki+1, h

′) . . .)). Again, we
show that all elements h are independent and uniform, assuming independent
uniform values h′.

We describe now each single game hop. We start from game G0, equivalent
to the real game PR0

i , and we proceed as follows. Game G1 aborts if the key ki is
directly used as input by the adversary in one of its oracle queries. In game G2 the
output of E under the uniform key ki is precomputed and stored in a list R, which
is then used by Eval. Game G3 aborts when, in a query to Eval, the adversary
triggers an evaluation of E(ki−1, E(. . . E(k1, 0) . . .)) that gives the same output
as one of a previous evaluations using a different key vector. At this point we want
to argue that an adversary sequentially evaluating n − i times the ideal cipher
under know keys but uniform initial input still cannot obtain anything but a(n
almost) uniform output. This will be achieved by uniformly pre-generating the
enciphering output used to evaluate the sequences E(kn, E(. . . E(ki+1, h

′) . . .)).
These elements are precomputed in game G4 and stored in a list R, but not yet
used. In game G5 the elements stored in R are removed from the range of the
ideal cipher. In game G6, the oracle Eval uses the values in R to sample the
ideal cipher. Since this might not always be possible, the oracle Eval resumes
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standard sampling if any value to be sampled has already been set in E or D.
The next game makes a step forward to guarantee that the previous condition
does not occur: If the two oracles E and D have never been queried with input
any value that is used as key to the PRF F , then the game aborts if any element
stored in R (but not used as a PRF key) is queried to E or D. All previous steps
have only involved information-theoretical arguments. In game G8 we disjoin our
simulated ideal cipher from the PRF keys. This requires many small changes to
the game structure, but eventually the price paid to switch from game G7 is the
advantage in breaking multi-instance key inextractability of the PRF, i.e., to
recover one of the PRF keys from the PRF output. At this point, for any fixed
input k′ = k1 .. ki−1ki+1 .. kn to Eval we are sampling independent, uniformly
generated elements to be used as the PRF keys. Finally endowed with uniform
keys, in G9 the PRF output is replaced with uniform values. If no abort condition
is triggered, then the output distributions of G9 and PR1

i are identical.
The complete proof can be found in the full version of the paper [13].

4.2 Split-Key PRFs in the Random Oracle Model

Next, we consider constructions of skPRFs where the key-mixing step employs
standard model primitives. However, to achieve security we idealize the PRF that
is employed afterwards. Here we identify a sufficient condition on the key-mixing
function such that the overall construction achieves split-key pseudorandomness.
We begin by giving the aforementioned property for the key-mixing function.

Almost uniformity of a key-mixing function. For all i ∈ [1 .. n] let Ki be a finite
key space and K any key space. Consider a function

g : K1 × . . .×Kn → K .

We say that g is ε-almost uniform w.r.t. the ith key if for all k ∈ K and all
kj ∈ Kj for j ∈ [1 .. n] \ {i} we have:

Pr
ki←$Ki

[g(k1 .. kn) = k] ≤ ε .

We say that g is ε-almost uniform if it is ε-almost uniform w.r.t. the ith key for
all i ∈ [1 .. n].

We give three standard model instantiations of key-mixing functions that
enjoy almost uniformity.

Example 1. Let K1 = . . . = Kn = K = {0, 1}k for some k ∈ N and define

g⊕(k1 .. kn) :=
n⊕
j=1

kj .

Then g⊕ is 1/ |K|-almost uniform.
The proof follows from observing that for any i ∈ [1 .. n] and any fixed

k1 .. ki−1ki+1 .. kn, the function g⊕(k1 .. ki−1 · ki+1 .. kn) is a permutation.
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Example 2. Let K,H be finite and π : K × H → H such that for all k ∈ K we
have that π(k, ·) is a permutation on H. Let

g(k1 .. kn) := π(kn, . . . π(k1, 0) . . .) ,

for some 0 ∈ K.
If for all k ∈ K, π(k, ·) is a pseudorandom permutation (i.e., π is a blockci-

pher) then for all i and all k1 .. ki−1ki+1 .. kn there exists an adversary A against
the pseudorandomness of π such that g is Advprp

π (A) + 1/ |K|-almost uniform.
Here Advprp

π (A) is the advantage of A in distinguishing π under a uniform key
from a uniform permutation.

We sketch a proof of Example 2. First, observe that, since kj for all j 6= i is
known by A, all permutations π(kj , ·) can be disregarded. Secondly, we replace
the permutation π(ki, ·) with a uniform permutation, losing the term Advprp

π (A).
The claim follows.

Example 3. Let K1, . . . ,Kn, K be finite. Let

g(k1 .. kn) := k1 ‖ . . .‖kn ,

then g is 1/ |K|-almost uniform.
The proof uses the same argument as in Example 1.

We now show that we can generically construct a pseudorandom skPRF from
any almost-uniform key-mixing function in the random oracle model.

Lemma 6. Let g : K∗ → K′ be a function. Let H : K′ × X → Y be a (hash)
function. Let

H � g : K∗ ×X → Y, (H � g)(k1, . . . , kn, x) := H(g(k1 .. kn), x) .

If H is modeled as a random oracle then for any adversary A such that g is
ε-almost uniform and A makes at most qH H queries and qe Eval queries and
all i we have

Advpr
i (A) ≤ qH · ε .

Proof sketch. Note that any adversary against the pseudorandomness of
H � g is given access to Eval and H, the latter implementing a random oracle.
Now, intuitively, A is unlikely to predict the output of the g invocation within
an Eval query as g is almost uniform. Hence, A will not query H on the same
input as done within Eval. Thus, even in the real game, the output of Eval is
likely to be uniform.

We give a refined analysis next.

Proof (Lemma 6). We bound the distance between the probabilities of A out-
putting 1 in game PR0

i and PR1
i . The PRb

i game is given in Figure 12. For game
PRb

i we performed merely syntactical changes: A is given access to H via oracle
H. Two sets SE , SH are initialized as empty and updated in lines 01, 11, 17 and
used to define an event in line 05.
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Games PRb
i

00 X ← ∅
01 SE , SH ← ∅
02 ki ←$ Ki

03 b′ ←$ AEval,H

04 If SH ∩ SE 6= ∅:
05 bad← true
06 Stop with b′

Oracle Eval(k′, x)
07 If x ∈ X: Abort
08 X ← X ∪ {x}
09 k1 .. ki−1ki+1 .. kn ← k′

10 k′′ ← g(k1 .. ki .. kn)
11 SE ← SE ∪ {(k′′, x)}
12 If H[k′′, x] = ⊥:
13 H[k′′, x]←$ K′
14 y ← H[k′′, x]
15 y0 ← y; y1 ←$ Y
16 Return yb

Oracle H(k′′, x)
17 SH ← SH ∪ {(k′′, x)}
18 If H[k′′, x] = ⊥:
19 H[k′′, x]←$ K′
20 Return H[k′′, x]

Fig. 12. Game PRb
i for i ∈ [1 .. n] instantiated with H � g.

Observe that for all i the PR0
i and PR1

i games are identical if bad does not
happen: As SH ∩ SE remains empty, adversary A did not query H on an input
that H was evaluated on during an Eval query (see line 14). Hence, y ← H(k′′, x)
is uniform and thus, y0 ← y and y1 ← Y are identically distributed.

We bound Pr[bad] in PR1
i . To this end, let (k′′j , xj) for j ∈ [1 .. qH ] denote

the H queries made by A. We have

Pr[bad] = Pr[SH ∩ SE 6= ∅] ≤
qH∑
j=1

Pr[(k′′j , xj) ∈ SE ] .

Recall from line 07 that for every x ∈ X there is at most one query Eval(·, x)
by A. Hence, for each (k′′j , xj) in SH there is at most one element of the form
(·, xj) in SE . Assume it exists7 and let k′′xj

be such that (k′′xj
, xj) ∈ SE denotes

that element. Then
qH∑
j=1

Pr[(k′′j , xj) ∈ SE ] ≤
qH∑
j=1

Pr[k′′j = k′′xj
]

=
qH∑
j=1

Pr
ki,xj

←Ki

[k′′j = g(k′1 .. ki−1ki,xjki+1 .. k
′
n)]

for k′1, . . . , k′i−1, k
′
i+1, . . . , k

′
n chosen by A and uniform ki,xj such that it sat-

isfies g(k′1 .. ki−1ki,xj
ki+1 .. k

′
n) = k′′xj

. Eventually, we can employ the ε-almost
uniformity of g to conclude that

qH∑
j=1

Pr
ki,xj

←Ki

[k′′j = g(k′1 .. ki−1ki,xjki+1 .. k
′
n)] ≤

qH∑
j=1

ε ≤ qH · ε .

ut
Next, we show that, generally, the construction from Lemma 6 does not yield

a split-key pseudorandom function in the standard model.
7 If such an element does not exist the following bounds would only become tighter.
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Lemma 7. Let g be with syntax as in Lemma 6 and let F be with syntax as
H in Lemma 6. There exists an instantiation of g and F such that g is almost
uniform and F is pseudorandom but

F � g : K∗ ×X → Y , (F � g)(k1, . . . , kn, x) := F (g(k1 .. kn), x)

is not a pseudorandom skPRF.

Proof. We saw in Example 1 that g⊕ is almost uniform. Further, we saw in
Lemma 3 that, when using F �g⊕ as a core function, there exists a pseudorandom
function F such that the combined KEM is not CCA secure. If F � g⊕ (with
such F ) were split-key pseudorandom, then this would contradict Theorem 1.

ut

5 A KEM Combiner in the Standard Model

Our approach was hitherto to mix the keys k1, . . . , kn to obtain a key for a
PRF, which was then evaluated on the ciphertext vector. The drawback of this
is that to show security we had to turn to idealized primitives. In the following
we embark on a different approach, with the goal to obtain a standard model
construction.

5.1 The PRF-Then-XOR Split-Key PRF

Here we abstain from mixing the keys together, but use each key ki in a PRF
evaluation. The security of the model is offset by its price in terms of efficiency:
When employed in a parallel combiner, the skPRF requires n PRF calls, whereas
for our constructions secure in idealized models in Section 4.2 a single call to a
PRF suffices. We give our construction next.

As before we want to allow possibly different session-key spaces of the ingredi-
ent KEMs. Thus, as the keys ki in Construction 2 come from an encapsulation of
Ki, we allow the construction to use distinct PRFs. Yet, one may choose Fi = Fj
for all i, j, if supported by the ingredient KEM’s syntax.

Construction 2. For all i ∈ [1 .. n] let Fi : Ki × X → Y be a function and let
K = K1 × . . .×Kn. We define the PRF-then-XOR composition of F1, . . . , Fn:

[F1 .. Fn] : K ×X → Y , [F1 .. Fn](k1, . . . , kn, x) :=
n⊕
i=1

Fi(ki, x) .

Lemma 8. For all i ∈ [1 .. n] let Fi be as in Construction 2. If all Fi are pseu-
dorandom then [F1 .. Fn] is split-key pseudorandom.

More precisely, for all n, F1, . . . , Fn, for all indices i and all adversaries A
there exist an adversary B such that

Advpr
[F1 .. Fn],i(A) ≤ Advpr

Fi
(B) .
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Suppose that A poses at most q queries to its evaluation oracle. Then adversary B
poses at most q queries to its own encapsulation oracle. The running times of B
is roughly the same as of A.

Proof. We fix an index i ∈ [1 .. n] and we build an adversary B against the
PRF Fi from an adversary A against the skPRF [F1 .. Fn].

Adversary B works as follows. It starts by running adversary A. Each time
that A queries the oracle Eval on input (k′, x) it queries its own evaluation
oracle on input x, obtaining the output y ∈ Y. Then it computes the key k :=
y⊕
⊕

j 6=i Fj(kj , x), and returns the key to A. Finally, B returns the output of A.
We observe that if B is playing against game PR0 then it receives a real

evaluation of Fi from the oracle Eval. Hence B returns to A a real key and A
is playing against game PR0

i . If B is playing against game PR1 instead, then B
receives independent, uniformly distributed values from the oracle Eval (note
that, by the restrictions of game PR1

i , adversary A queries its oracle on distinct
input each time). If we add any constant value to y ←$ Y the result remains
uniformly distributed. Hence, on each query to Eval adversary B returns to A
independent uniformly distributed keys and A is playing against game PR1

i . ut

Note that Lemma 8 gives raise to a standard model KEM combiner that re-
quires n PRF invocations, each processing the concatenation of n encapsulations
c = c1 ‖ . . .‖cn. For a slightly more efficient combiner where each of the n PRF
invocations is evaluated on the concatenation of n−1 encapsulations see the full
version of this paper [13].
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