
 Morse, J., Kerrison, S., & Eder, K. (2018). On the limitations of analysing
worst-case dynamic energy of processing. ACM Transactions on Embedded
Computing Systems, 17(3), [59]. https://doi.org/10.1145/3173042

Peer reviewed version

Link to published version (if available):
10.1145/3173042

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via ACM at https://dl.acm.org/citation.cfm?id=3173042 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/145645086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3173042
https://doi.org/10.1145/3173042
https://research-information.bris.ac.uk/en/publications/on-the-limitations-of-analysing-worstcase-dynamic-energy-of-processing(10e1b608-617a-4f3b-8cbd-55a906846dfb).html
https://research-information.bris.ac.uk/en/publications/on-the-limitations-of-analysing-worstcase-dynamic-energy-of-processing(10e1b608-617a-4f3b-8cbd-55a906846dfb).html

On the limitations of analysing worst-case
dynamic energy of processing

Jeremy Morse, Steve Kerrison and Kerstin Eder
University of Bristol

December 12, 2017

This paper examines dynamic energy consumption caused by data during software
execution on deeply embedded microprocessors, which can be significant on some
devices. In worst-case energy consumption analysis, energy models are used to find
the most costly execution path. Taking each instruction’s worst case energy produces
a safe but overly pessimistic upper bound. Algorithms for safe and tight bounds would
be desirable. We show that finding exact worst-case energy is NP-hard, and that tight
bounds cannot be approximated with guaranteed safety. We conclude that any energy
model targeting tightness must either sacrifice safety or accept overapproximation
proportional to data-dependent energy.

1 Introduction

A significant design constraint in the development of embedded systems is that of resource
consumption. Software executed on embedded hardware typically has very limited memory and
computing performance available, and yet must meet the requirements of the system. To aid the
design process, analysis tools such as profilers or maximum-stack-depth estimators provide the
developer with information allowing them to refine their designs and satisfy constraints.

A less well studied constraint is the limited energy and power budgets that apply to deeply
embedded systems. This is a contemporary challenge for the proliferation of such devices, partic-
ularly those that operate in isolated environments, with limited energy availability and where the
processor is the largest consumer of energy in the system. A typical example would be a wireless
sensing device powered by battery, that has long intervals between wireless communication, such
that processor activity dominates the system’s energy consumption. The device may need to
operate for a minimum period without the battery being replaced, therefore it has a total energy
budget.

Other examples are systems dependent on energy harvesting, or systems with low thermal
design points and thus have a maximum power dissipation level that may be independent of
the total energy they consume. Whether these constraints are satisfiable can be examined with
software analysis tools, and several techniques have been developed that allow the estimation of
software’s energy consumption [23, 11, 22, 15, 41].

Within energy estimation, Worst Case Energy Consumption (WCEC) has been explored,
determining the maximum amount of energy that can be consumed during the execution of the
software. In this paper, we shall study the calculation of worst-case energy, considering only the

1

effects that different software and inputs can have on a system. The objective is to determine
whether it is possible to establish an upper bound on energy that is tighter than over-estimating
by, for example, using a maximum activity factor. Such a factor may be unachievable during
the execution of a real program, because an operand value that triggers the highest energy
consumption in one instruction may, through data dependency and other constraints, preclude
subsequent instructions from consuming their maximal energy [27].

Energy is the integral of power over a given time interval. The power dissipation of a processor
can be apportioned in two parts: static and dynamic. Static power or leakage is the power
dissipated for as long as the component is turned on, irrespective of its internal state or any
changing inputs and outputs. Dynamic power or switching activity refers to power dissipation
due to changes within the processor: the clock tree, switching of gates and charging of data
buses, which all consume energy. We express these more formally in Section 3. Analysis of
worst-case instantaneous dynamic power has been well studied in the literature, but here we
consider worst-case energy, i.e. the integral of power over a program execution.

Estimating worst-case energy for a particular program requires the computation of these two
distinct contributions to power dissipation. Static power is constant in a stable operating envi-
ronment (for example voltage, frequency and temperature), therefore energy consumption due
to static power is proportional to program execution time. Numerous techniques have been de-
veloped by the Worst Case Execution Time (WCET) community to address this matter [42].
Dynamic power, however, has received much less attention. Several models of how systems con-
sume energy have characterised the dynamic power only for specific inputs, averaged over all
inputs, assumed the upper bound of dynamic power for each instruction [15, 41] or assumed no
dynamic power at all [11].

In this paper we demonstrate that for the proportion of dynamic energy that is due to switching
caused by operand values, the calculation of the worst-case input to a software execution is an
NP-hard problem, and further, that this quantity cannot be approximated to a useful factor.
Our proof applies to processors in general, but in practice this proportion of data dependent
energy may be small. We show that on an example processor, the Xcore XS1-L [26], a cacheless
deeply embedded microprocessor with time-deterministic instruction execution, the proportion
of energy that is infeasible to analyse contributes approximately half of the processor’s dynamic
power.

The rest of the paper is structured as follows: in Section 2 we examine the current state of
energy estimation, and related work. In Section 3 we demonstrate the variation in dynamic power
due to switching caused by operand values, using the Xcore processor as a case study, and consider
this in the context of other embedded processors as well as more complex devices. Section 4
formalises the problem that we are dealing with, which is shown to be NP-hard in Section 5, and
in Section 6 we demonstrate that the problem cannot be effectively approximated. We discuss
the results in Section 7, including system scopes for which accurate prediction of dynamic power
variation due to operand values should be considered, versus those where it is less of a concern.
Finally, we draw conclusions in Section 8, with an outlook on future work.

2 Related work and background

This section identifies existing techniques for determining the energy consumption of software,
techniques for determining the maximum amount of energy a program can consume, and the
theoretical definition of the MAXSAT problem for use in later proofs. We then go on to analyse
the WCEC problem in greater detail.

2

2.1 Energy estimation techniques

Given the high complexity of microprocessors, energy analysis based on hardware designs tends
to be resource intensive, and requires access to proprietary data and tools. Research has instead
focused on using empirical techniques to model how processors consume energy. These models
can then be used to estimate the consumption of a real-world system.

One of the most popular techniques is the instruction level energy model [39]. Various test
patterns of instructions are executed on a processor and their power empirically measured, leading
to a model of per instruction energy costs and the dynamic cost of switching between different
instructions. Simulating an instruction sequence, or interpreting a trace of an execution, can
then be combined with this energy model to produce a cost value for the execution. [36] extend
this model to include the costs of circuit switching in instruction operands. These costs include
the amount of switching occurring on data buses supplying input operands to an instruction,
and the switching on the output when a result is written back to the register file.

Further modelling techniques for dynamic power go beyond the core part of the processor,
such as analysing flash memory [29], caches [7] and DRAMs [20]. High performance processors
feature hardware-provided counters that record metrics such as cache hit rates, which can be
used by appropriately parametrised energy models [32]. The energy consumption on the buses
to these components can also be influenced by data values and can be modelled accordingly.

In this paper, however, where deeply embedded devices without such features are the focus,
we choose to only examine the dynamic power attributable to the core part of the processor.
In larger, more complex processors, the dynamic power due to operand values that we explore
remains valid, but is a smaller proportion of the total power dissipation, and therefore may be a
lower priority for analysis or optimisation.

2.2 Worst Case Energy Consumption (WCEC) analysis

WCEC is a form of energy estimate, where the aim is to find the maximum amount of energy that
a piece of software will consume, without needing to execute that software. The problem is thus
made of two parts: modelling the energy consumption of the software under test, and searching
for the execution of it that will lead to the greatest amount of energy consumed. This problem
is defined in a similar way to the Worst Case Execution Time (WCET) problem [42] where the
execution time of software is modelled, and then the longest possible path found. However, the
techniques required to obtain a solution have a number of differences.

The first publication to provide a technique for computing the WCEC of software was by
[15], where upper bounds on the energy consumption of several programs were inferred using
energy models of software basic blocks and an ILP solver to find a maximal path through the
program. The authors additionally debunk the suggestion that the execution path consuming
the most time is always the path that also consumes the most energy. With regards to dynamic
power, the authors assume maximal circuit switching on every clock cycle but model power
management techniques within the processor such as clock gating to create a realistic energy
model. The dynamic power of switching due to operand values is not specifically considered, and
indeed the authors show that that its contribution of dynamic power to overall energy is low,
thus their approximation does not introduce significant imprecision. We address the contribution
of operand values to dynamic power in Section 3.

Resource analysis techniques that extract cost relations from programs have been employed
to analyse energy consumption bounds [23, 11]. The costs used in these analyses represent
energy consumption and are based on models that provide a single energy cost per instruction,
obtained by averaging the energy measured from processing random data, constrained to yield
valid operands for the respective instruction [18]. However, bounds obtained in this way cannot

3

be considered safe, as executions would exist where the energy from operand values exceeds the
average case.

More recently, [41] have presented techniques for estimating over and under approximations
of WCEC through implicit path enumeration and genetic algorithms, respectively. They do not,
however, comment on dynamic power at all: their absolute instruction energy model appears
to assume maximum switching for each instruction cost. Their relative energy model does not
consider real energy costs, instead estimating the difference in energy consumption between
instructions, again with no explicit consideration of dynamic power.

Both Jayaseelan and Wägemann identify inefficiency as being a reason why they cannot com-
pute accurate switching activities for circuits. As we will show in this paper, the problem is
infeasibly complex under the P 6= NP assumption.

2.3 Existing complexity results

Switching activity is a matter studied in detail by the VLSI community for circuit design, as
the maximum instantaneous switching in a circuit can affect the power supply requirements [28].
This problem has been shown to be NP-hard [8] and numerous techniques have been developed
to estimate of the worst-case power consumption [12], allowing maximum power analysis.

Power estimation itself does not directly correspond with energy estimation. The objective of
WCEC is finding the maximal amount of circuit activity over a time interval, rather than the
instantaneous maximum, which itself may be incompatible with the circumstances that lead to
maximum energy. In particular, software requires that computations be consistent with past
inputs, creating additional constraints and dependencies.

Switching between instructions is a notable contributor to energy consumption, which can be
controlled through the order in which instructions are executed. Techniques have been developed
to reduce consumption through instruction scheduling [31], but this is known to be an NP-hard
problem. Instruction scheduling uses pre-computed costs of switching between instructions to
determine an optimal static schedule. It does not consider the operands to instructions or any
cost that does not have a fixed value.

None of these complexity results are directly applicable to the estimation of energy in data-
dependent switching during software execution. To the best of our knowledge, we believe this is
the first work to consider data-dependent switching costs.

2.4 Maximum satisfiability

Part of our proof in this paper relies on demonstrating that an NP-hard problem can be rep-
resented within the problem of calculating the amount of circuit switching in a program. We
therefore assume the reader is familiar with the SAT problem (a full treatment of which can
be found in [33]), and remember the definition of the MAXSAT form of the problem, which we
embed within operand value switching in Section 5.

Briefly, the Maximum satisfiability problem “MAXSAT” [3, pp.613–631] takes a set of Boolean
variables, constraints on their values in the form of a set of clauses, and finds the variable
assignment that makes the maximum number of clauses true. Unlike SAT, not all clauses need
to be true. MAXSAT is known to be NP-hard.

Formally, following the presentation of [16], define L to be a set of literals, and C a set of
disjunctive form clauses:

L =
⋃
i>0

{xi, xi}

c ∈ C, c = {l1 ∨ ... ∨ ln | li ∈ L},

4

where each xi is a Boolean variable. A truth assignment defines each xi or its negation to be
true. A clause is deemed to be satisfied if at least one literal in the clause is assigned true. A
MAXSAT problem is a set of literals and set of clauses 〈L,C〉, such that the solution is the truth
assignment that causes the maximal number of clauses to be satisfied.

2.5 WCEC background

The worst-case energy consumption problem goes beyond the worst-case execution time problem,
because the execution time of a single instruction is largely independent of its input data. This is
because timing variability has mostly been eliminated “by design” through the use of synchronous
logic and the limited propagation time associated with executing individual instructions.

Despite this, there are scenarios where WCET is subject to timing anomalies [25]. These arise
when a seemingly shorter execution path later results in an overall increase in time. A cache
miss may cause the worst execution time locally, but this state may later preclude a subsequent
scenario that, with a global view, would in fact be the worst-case.

A comparable anomaly in energy is two equal-time paths, where one path contains an in-
struction known to produce the worst-case energy. However, the input data that reaches that
instruction does not achieve that worst-case, due to transformations performed upon it by pre-
vious instructions in the path. Instead, the sum of instruction energies on the alternate path is
higher than the sum of energies on the apparent worst-case path.

In real-time embedded systems, timing-predictable processors execute instructions within a
fixed number of clock cycles, irrespective of the data the operation works on. This is particu-
larly beneficial to WCET analysis, which can then focus on identifying the worst-case execution
path which is determined by the control flow, rather than by the data flow of the computation.
More advanced micro-architectural features, such as early-out of operations, or cache hierarchies,
provide higher average performance at the cost of predictability. This makes WCET analysis
far more challenging, as tight bounds firmly rely on timing predictability of the target archi-
tecture [37]. However, even operations that have a variable execution time, such as serialized
integer multiply and divide, or floating point operations, can be quantized by the processor’s
clock period into a tractable number of discrete possibilities. The range may be in the order of
tens, hundreds, or thousands of cycles, depending on the type of operation. This extends into
other architectural features, such as caches and branch predictors, which although more complex
to analyse, can still be quantized.

Energy depends on both the execution time and the power dissipation of the operation. Power
is not quantized in terms of the clock period, but could be considered in terms of the number of
transistor and interconnect state changes (i.e. switches) that may take place during an operation,
depending on the data to be processed. The number of possible power dissipation levels is thus
the size of the powerset of the number of transistors in the device. This is several orders of
magnitude larger than the number of timing possibilities that need to be explored by WCET
analysis. This view is itself simplified, as it does not consider the continuous variations in
temperature and voltage that a device will be affected by.

For the techniques that are used in WCET to be directly transferable to WCEC, a set amount
of energy per operation would need to be specified and realised in hardware, similar to specifying
and ensuring, through timing analysis at design time, that each operation fits into a fixed number
of clock cycles. Consider the converse: A processor that presents a similar WCET analysis
difficulty would be an asynchronous design, where the precise execution time is a non-trivial
function of an operation’s input data. Such devices may have an average delay, but actual
performance or tight bounds for a given use case may be harder to determine [17].

Energy estimates can also have varying degrees of accuracy. The strongest is to determine the
exact WCEC, which consists of a program trace causing the maximum amount of energy that

5

can expended, and the input that causes the trace. The computational difficulty of finding the
exact worst-case has fuelled interest in approximation algorithms [40] that guarantee to find an
example of the energy consumed by the program that is within some factor of the worst-case.
This estimate can be considered to be an approximation with a limited amount of uncertainty,
or alternately the approximate energy plus the uncertainty factor can be used as a safe upper
bound on the true WCEC. If the uncertainty factor is low, this may be sufficient to prove that
a design constraint is met.

Finally, upper bounds can be derived from the structure of the program itself through very
coarse over-approximation, for example by assuming a program always exhibits the maximum
activity factor. Such over-approximation is the most inaccurate of such techniques, but also the
most feasibly achievable. The distinction between approximation algorithms and coarse over-
approximation is that the former has a definite relationship with the exact WCEC, while the
latter is based for example only on the length of the program, and provides no guarantees on
what the exact WCEC may be.

This paper addresses the first two forms of WCEC estimate and demonstrates that they are
not feasibly computable, leaving only the coarse over-approximation as a viable technique in
practice.

3 Circuit switching on Xcore

Prior WCEC papers have relied on the suggestion that the variation in dynamic power is small in
relation to other energy costs in a processor, at approximately 3 % [38], therefore a conservative
average-based model may be suitable. Other work has presented a mixed picture: [35] found
that the switched capacitance (i.e. switching cost) of a StrongARM processor had little variance
across applications, suggesting that switching costs contribute little to overall program energy;
while [2] observe that data switching accounts for up to 50% of processor core energy.

Here, we affirm two properties of dynamic power dissipation in a processor by analysing the
Xcore [26] XS1-L. First, that dynamic power due to operand values can be high, and second,
that this cost can vary significantly.

3.1 Defining power dissipation in a micro-processor

The energy, E, of an electronic device is the integral of its power dissipation, P , over a given
time period, T :

E =

∫ T

t=0

P (t) dt. (1)

Power is an instantaneous measure of the rate of work. Typically, this is sampled repeatedly in
order to discretise the integral, or the power is averaged, simplifying the equation to E = P ×T .
In digital devices such as processors, the total power dissipation of the device, Ptot is typically
apportioned into two additive parts, termed static and dynamic, denoted here as Ps and Pd

respectively:
Ptot = Ps + Pd. (2)

Elaborating on these, static power is determined by the operating voltage, Vdd of the device
and Ileak, the leakage current present, which is itself dependent upon physical characteristics
such as operating temperature, transistor feature size and the manufacturing process that is
used [4], yielding an exponential equation [10]:

Ileak = WIse
Vth
Vdd , (3)

6

for transistor width, W , sub-threshold current, Is, as well as the voltage threshold and operating
voltage, Vth and Vdd, respectively. However, a linear approximation is sufficient for the normal
operating range of many devices, therefore a simplified representation of static power is:

Ps = VddIleak, ∴ Ps ∝ Vdd (4)

Dynamic power is dependent upon the capacitance of the components that are being switched,
Csw, as well as the operating voltage and the frequency of switching, f . In a processor, f is
governed by the clock frequency. The proportion of the device that is switching is dependent
upon the instruction and data being executed and related changes in state. This is represented
by an activity factor, α, where each instruction or action performed by the processor may have
a different α.

Pd = αCswV
2
ddf, ∴ Pd ∝ V 2

dd (5)

There is a quadratic relationship between voltage and dynamic power. The necessary operating
voltage is approximately linearly proportional to the operating frequency in processors operating
above the threshold voltage of their transistors [19].

3.2 Apportioning dynamic power

The power dissipation of a single instruction is typically expressed as the average power observed
during the execution of that instruction. When considering a model of power per instruction, it
is important to calculate an appropriate α per instruction, or some equivalent by abstraction.
However, the instruction is not the sole influence upon the α value. The operands supplied to the
processor’s functional units (for example, arithmetic unit), will affect the amount of switching.
This includes changes to the input and output of the functional unit, as well as internal switching
within the unit as the new result is computed. As such, one instruction may have a range of
possible α values that are dependent on the input data.

Prior work [15] has suggested that this variation in α is small and therefore not significant
enough to consider when constructing a worst-case energy model. However, we demonstrate that
variation in input data can be responsible for as much as 42 % of a core’s power dissipation and
thus becomes a relevant contributor to the model. This is pertinent to systems with minimal
additional components, such as those that are deeply embedded, where the processor is the major
consumer of energy. In larger, more complex systems, with multi-layer memory hierarchies, many
external peripheral devices and several power supplies, the variation in total system energy due
to operand values is proportionally smaller.

Internal processor data buses are one of the largest contributors to dynamic power in an
embedded processor. These buses interconnect various internal units, and so changing values
on these buses indicate the charge or discharge of connections between a number of gate inputs
and outputs, which may have different loads depending on their fan-in or fan-out and connection
length. The [36] energy model explores this and discovers that approximately 20 % of overall
processor power can be attributed to the Hamming distance between transitions on buses.

To determine the dynamic power cost on our target device (the Xcore XS1-L), we performed
experiments in the manner of [36]. For a set of instructions, we tested every combination of
input operand values from zero to 255 for each operand, creating a sequence of tests, P. We
alternate between instructions with this data set and all-zero operands, to ensure we measure
the Hamming weight on each cycle. On the Xcore, this instruction sequence is achieved with four
parallel, tightly coupled threads that are issued into the pipeline round-robin by the processor’s
deterministic hardware scheduling. Alternating threads perform the desired operation on all-zero
data and the operand values under test. Unrolled sequences are used to minimize noise from

7

r0 initialised to zero , r1 and r2 initialised to desired operand
values for each test.
OP is desired operation , e.g. add , sub , ...
First operand is destination register (e.g OP dest , src1 , src2)
OP r0 , r0, r0
OP r3 , r1, r2
OP r0 , r0, r0
OP r3 , r1, r2

... # Repeat until sufficient power samples are collected

Listing 1: Example trace of instructions.

loop instructions that we do not want to measure. In a single-threaded in-order processor, a
similar sequence can be achieved with one thread.

An example instruction trace is given in Listing 1. This method effects a change in energy
consumption due to operand values along the core’s internal datapath, starting at the reading
of the register file, progressing through the functional units of the core, then once again to the
register file for write-back. The effect of memory access does not fall within the scope of this
work, although we acknowledge the impact of this in Section 2.5 and discuss the proportional
contributions at the system level in Section 7.

The Xcore is a cache-less multi-threaded processor with time-deterministic execution, therefore
there is no complex memory hierarchy to influence power or time, and all of the instructions that
we test take the same, constant execution time. Test sequences were constructed in such a
way to ensure we exercised the datapath between the register file and functional units in every
instruction cycle. Tests are applied in a single-core context, with no inter-thread communication.
Although the processor has 32-bit operands, exhaustive testing over 8-bit data presents data-
sensitive energy patterns that are sufficient to expose the behaviours of interest to this work. For
wider data, these patterns repeat, potentially with larger patterns becoming apparent. This is
also evident for narrower data, where patterns are still observable in smaller subdivisions of the
figures that we present in the following subsection. As such, using the full width of the processor
is not necessary to analyse the problem that we present in this paper.

The device is operated with a 1.0 V core power supply and 500 MHz clock frequency. Power
is sampled at the 3.3 V input to the DC-DC converter that supplies the cores and is done using
a vendor-supplied sampling and debug device that uses a shunt resistor to determine current.
The tests are each run repeatedly for a 0.5 s duration in order to acquire several thousand power
samples, then taking the average.

The device under test is the XS1-A16A-128, a dual-core component, tested with single-core
code. The device has two discrete cores in a single processor package, with voltage regulators
and unused analogue peripherals being the only shared components also measured. We assume
the peripheral components consume negligible energy when unused, and that the power supply
contribution will be proportionally similar on single core, assuming the DC-DC is re-selected to
achieve the same efficiency at a lower current.

We remove the additional energy consumption that would not be present if a single-core version
of the component were to be used. We refine the total power, Ptot, by considering the distribution
of power between the two cores. This is established through a simple step, measuring the total
power of the dual-core device when idle, represented as Ptdual, then enabling us to ascertain
Ptsingle, representing a single core:

Ptsingle =
Ptdual

2
. (6)

Following this, the dynamic power dissipation due to operand values is isolated. Executing
instruction power tests on one core, leaving the remaining core idle, produces a sequence of test

8

results, P = {P0, . . . , Pn}. We define the dynamic power contribution of the lowest and highest
power test cases as Pdmin and Pdmax respectively, and the dynamic power range, Pdrng:

Pdmin = min(P)− Ptdual, (7)

Pdmax = max(P)− Ptdual, (8)

Pdrng = Pdmax − Pdmin, (9)

or as a percentage contribution to total processor power:

Px

Ptsingle + Px
, ∀x ∈ {dmin, dmax}. (10)

We observe for the device under test that Ptdual = 328 mW and therefore Ptsingle = 164 mW.
Any additional power observed during tests is used to determine how much dynamic power
variation is possible for the set of input values tested. This is not solely static power, because
even at idle, switching in components such as the clock tree is taking place, contributing to
dynamic power. Thus, the difference in power observed during instruction and data tests is not
the total dynamic power contribution, but does establish the degree of variation in dynamic
power that can take place, and what proportion of total core power this amounts to.

3.2.1 Heat-map observations

To aid analysis of the results of these experiments, we present a series of “heat-map” figures,
showing measured dynamic power in colour, and with operand (input) and result (output) Ham-
ming weights in greyscale. These plots use measurements from tests of the add instruction,
although similar data-dependent behaviours were observed in other instructions.

Figure 1 shows total dynamic power for add with all combinations of two 8-bit operands. The
diagonal striping indicates a strong correlation with the number of bits set to 1 in the result of the
computation. This is observable due to alternating between test add operations and operations
with all-zero inputs and outputs. The Hamming weight of the result values are shown in Figure 2.
This is determined to represent 4.4 mW per output bit set in respect to the data from Figure 1.
Using the Hamming weight range as a scale from zero mW to the maximum mW observed, the
Hamming weight predicts dynamic power with a mean error of 3mW.

Subtracting the calculated switching power per result bit from the original dynamic power
measurements gives Figure 3. This reveals a second pattern of vertical and horizontal striping
that was previously obscured by the dominant effects of the Hamming weight of the output value
of the add operation. Intuitively, this corresponds to the Hamming weight of both input operands,
demonstrated in Figure 4. We determine this to be 1.3 mW per input bit set. The input Hamming
weight predicts power in Figure 3 with a mean error of less than 1mW. Repeating this process
and subtracting the calculated power per input bit gives Figure 5, which closely corresponds to
the pattern observed for the Hamming weight shown in Figure 2, as previously stated.

Finally, by subtracting the dynamic power of both the input and output bits produces Figure 6,
which shows that the remaining variation in dynamic power is an order of magnitude lower than
the effect of these Hamming weights, ranging from 12 mW to 0 mW. Expressed as a series of
matrix operations, where P is the measured dynamic power and the input and output Hamming
weights are presented as Hi and Ho respectively, the remaining unaccounted for dynamic power,
D of Figure 6, is:

D = P − (Hi · 1.3)− (Ho · 4.4) mW. (11)

In a real-world program, instructions would not be interleaved with the loading of zero-value
operands, as was done in our experiments. However, with each new instruction, a Hamming

9

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

0

8

16

24

32

40

48

56

Figure 1: Dynamic power in milliwatts for
add, over a range of input operand
values.

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

Figure 2: Hamming weight of the output value
from performing add, in number of
bits set.

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

0

5

10

15

20

25

30

35

40

45

Figure 3: Dynamic power in milliwatts for
add, with the output value cost sub-
tracted, at 4.4mW per bit.

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

0

2

4

6

8

10

12

14

16

Figure 4: Hamming weight of both input
operands to add, in number of bits
set.

10

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

0

5

10

15

20

25

30

35

40

45

Figure 5: Dynamic power in milliwatts for add
instruction, with input datapath
cost subtracted (assuming 1.3mW
per bit).

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

0

5

10

15

20

25

30

35

40

45

Figure 6: Dynamic power in milliwatts for
add instruction, with operand and
result value costs subtracted.

distance would be present between the previous and current input values, as well as the previ-
ous and current output value. As such, the properties described here naturally translate from
Hamming weights into Hamming distances.

3.2.2 Dynamic power range due to operand values

For the add instruction, Pdmin = 34 mW and Pdmax = 96 mW, giving Pdrng = 62 mW. Using
Eq. (10), this demonstrates that for add, a range of 17–37 % of the core’s power dissipation is
governed by operand values. This is a twenty percentage point range due to operand values. In a
system where processor power is significant, this is a substantial variation, inaccurate predictions
of which may be undesirable or unsafe.

Across all of our experiments, the Pdmax observed was 123 mW, caused by the sub instruction.
This is due to sub producing a negative two’s complement output that results in all bits being set
in the output operand, causing maximal Hamming distance in the output datapath. However,
compared to Ptsingle this means that on the Xcore, dynamic switching contributes as much as
42 % of the total processor power, and that over two-thirds of this contribution is due to operand
values. Similar work for 8-bit AVR [30] shows dynamic power making up 15 % of processor
power, which is lower than the Xcore, most likely due to its narrower data width but also due
to a range of other architectural and manufacturing differences. The AVR, like the Xcore, is
cache-less and a candidate for use in deeply embedded systems. Further processor examples
include variants of ARM cores in the Cortex-M series, which do not typically include complex
memory subsystems [1].

This data demonstrates that, at least on the Xcore and the AVR, the contribution of dynamic
power to the full processor cost is non-trivial, and certainly a significant contributor to calculating
the worst-case energy in deeply embedded programs. We also observe that the result values for
our particular processor are the most significant contributor to dynamic power. This is still
input data dependent, because the result value is a transformation of an instruction’s input.
For simplicity we focus only on the most significant component, the result value, in subsequent
sections: specifically, the Hamming distance between the output values of operations across

11

subsequent clock cycles. We briefly discuss other components in Section 7.

3.3 Summary and Discussion

With regard to prior work that analyses the significance of dynamic power in software execution,
we have demonstrated that on the Xcore dynamic power can be a large proportion of overall
energy consumption by the processor, but cannot discount prior work that found little contribu-
tion on other platforms. This suggests that dynamic power contribution can be significant, but
that it varies from processor to processor. It should also be considered that in real programs,
sequences of instructions are unlikely to yield operand values that produce the worst-case for
each instruction. In other work [30] we have found energy consumption can vary up to 7% in
two benchmarks on Xcore depending on their inputs, and up to 9% for the same benchmarks on
AVR. However, our intent is to examine the feasibility of finding a bound that is both safe and
tight, avoiding methods with less than absolute certainty.

The system context should also be considered, for two main reasons. Firstly, a large system,
for example that features a display and backlight component, will have its total energy consump-
tion dominated by these over all other components [5]. Looking beyond embedded systems, large
multi-core processors such as the Xeon Phi [34] consume significantly more energy in caches and
memories than in computation. This will of course significantly reduce the impact of any varia-
tion in processor core’s energy. Secondly, the type of system and its performance requirements
will influence processor choice, and the amount of power variation of the chosen processor will
determine whether it is necessary to consider it. If this is the case, the computational workload
placed upon the system will then determine how much each part of the processor is exercised. It
is shown in [13] that both processor choice and workload change how processor subcomponents
such as the register file and functional units contribute to total energy consumption.

With this in mind, we observe that consideration of dynamic power caused by operand val-
ues is most relevant for real-time, deeply embedded applications. Such applications typically
have energy budgets as a primary concern, have some non-trivial processing task that requires
a microcontroller, but do not use a large processor featuring caches and other performance en-
hancing hardware that would adversely affect timing predictability. When attempting to meet
design constraints such as battery lifetime, determining the worst-case energy consumption of
software would be of interest, and thus determining the impact of data operands on dynamic
energy consumption.

4 Formalising the circuit switching problem

As illustrated in the previous section, the matter we consider is the amount of energy caused
by circuit switching, specifically the switching occurring on the output datapath in a processor.
Here, we formalise our problem, which we name the “Circuit SWitching Problem” (CSWP),
discussing its limitations and generality. Our objective is to take a program, determine the
maximum amount of output datapath switching activity that can occur in that program, and,
in the process, find the program input that triggers it.

Because we are only concerned with the amount of circuit switching that can occur due to
operand values, we choose to limit the problem and avoid any facility for varying the length of
a program in this formalisation, i.e. the number of instructions executed. A CSWP program
thus cannot have any branch instructions or conditional execution ability: it corresponds closely
with a trace of a general program execution, or a general program that has been unrolled and
all conditional branches eliminated. Dealing with programs of varying length would involve
searching different paths through the program, and the variation of energy consumed by static

12

power would become a significant consideration. We chose to work with fixed-length CSWP
programs to maintain focus on switching in data operands.

Formally, we consider a CSWP program, X, to be a finite sequence of n instructions, xi, such
that X = x1, x2, ..., xn. Each instruction is a 3-tuple 〈m, i, o〉, where m is a mnemonic m ∈ M ,
i is a set of input operands (discussed below), and o is an output operand. Both inputs and
outputs (discussed further below) are considered to be bit-vectors of width w.

A CSWP program executes on an abstract machine with a monotonically incrementing pro-
gram counter, an infinite number of registers, and a memory store of finite size. Memory is
considered to be an array of size 2w with each memory cell a bit-vector of width w. For each
instruction xi in the CSWP program the machine takes the input operands, computes an out-
put according to the function of the instruction mnemonic, and writes the result to the output
operand. The objective function of CSWP is then to compute:

n−1∑
i=1

h(oi, oi+1) , (12)

where h is a function computing Hamming distance between two values, i.e. the output values
of each subsequent instruction, corresponding to the output datapath of the abstract machine.

Each mnemonic m ∈M represents a function over the input operands, resulting in a single out-
put result. In line with the constraints detailed above, CSWP programs only perform arithmetic
and logic computations, mapping input operands to an output. There are no branch mnemonics,
neither are there any instructions that induce side effects of any form (such as changing some
state or the program counter). We do not define a set of mnemonics that a CSWP program may
use, however for the purposes of this paper we write listings using standard RISC mnemonics
such as add, sub, ldr, mov [14].

Each input operand is permitted to be one of four classes of sources:

• Free inputs, which we denote with the text free.

• Constant values, which we write in hexadecimal, e.g. 0x1.

• A memory access to a fixed address m[x], with x the address.

• The output result of a prior instruction, written oi, where for the current instruction xj ,
i < j.

The value of every input is always a bit-vector of width w. Free inputs may take any value,
likewise constants may only have one value, defined in the instruction being executed. Mem-
ory accesses evaluate to the contents of a memory cell, but for simplicity we only permit the
addressing of fixed memory addresses. Prior output operands correspond to the output of each
instruction being written to one of the registers, which may then be read as an input to another
instruction.

All instructions are considered to have an output of bit-width w, i.e., they all write some value
to the output datapath of the machine. A nop (no-operation) instruction would be any instruction
that repeats the output value of the previous instruction, causing no switching activity on the
output datapath. Outputs may optionally be written to a memory cell m[x], where x is a fixed
address for the output value to be written to. In this circumstance, the output value may still
be referred to as oi, as a store to memory still causes the bits in the machine’s result datapath
to flip.

This formalisation has a number of limitations, most notably that without an infinite data
store or ability to programmatically address it, it is not Turing complete. Given that our aim
is to find the maximum switching for a particular path through a general program, this is a

13

suitable restriction. The formalisation does not correspond to a particular machine, although
with additional restrictions it may correctly model the execution trace of existing processors.
The memory array may be considered to be superfluous given the lack of complex addressing,
however it provides a useful mechanism for illustrating our examples through the rest of this
paper.

We observe that CSWP is in class NP, as one may easily check the validity of a solution. Given
the CSWP program and an input valuation for each free input, we can simulate the program
with the given inputs, counting the number of bit flips at the same time. The complexity of this
process scales linearly with the number of instructions, n.

5 Reducing MAXSAT2 to the circuit switching problem

To demonstrate that the CSWP is NP-hard, we must reduce any NP-hard problem to CSWP in
polynomial time. For this, we turn to the MAXSAT problem, which is known to be NP-hard [3].
Specifically, we work with the MAXSAT2 variant, where each clause is limited to having at most
two literals. Despite 2SAT being solvable in polynomial time, MAXSAT2 is still known to be
NP-hard [40].

We reduce MAXSAT2 to CSWP by simulating MAXSAT2 in the switching activity of an
instruction sequence, where the input that causes the maximum amount of circuit switching
corresonds to an assignment to the Boolean variables that causes the maximum number of
clauses to be satisfied. The reduction is illustrated in Algorithm 1, which takes the number of
Boolean variables and the set of clauses as input, and outputs a CSWP program that simulates
MAXSAT2. Here, we assume that the function PrintInsn causes a CSWP instruction to be
emitted from the algorithm, with the instruction mnemonic, set of variables, and optional output
destination as its respective arguments. The return value identifies the output operand of the
instruction.

First, we read a series of free input values, and for the moment we assume they lie in the range
[0, 1], i.e. represent true or false in the lowest bit of the otherwise zero bit-vector. We consider
each of these values to be an assignment to a Boolean variable in the MAXSAT2 problem. Each
bit, and its complement, are stored to a location in memory. This creates an array of values
corresponding to the truth of each literal. At the end of this process we insert a mov instruction
that loads a zero value, for the purpose of resetting the value on the output datapath to zero.
The net effect is that for each Boolean variable read, a constant amount of switching activity
occurs. Consider each value the free variable may have:

1. True: Reading the input switches the lowest output datapath bit to on, the subsequent
xor switches it to off, and the final mov causes no switching.

2. False: Reading the input causes no switching, the xor switches the lowest output datapath
bit to on, and the subsequent mov switches it back to off.

Thus, for each Boolean variable read, the CSWP program always causes two bit flips.
We then proceed to use the memory region prepared with literal valuations to simulate the

MAXSAT2 problem. We assume a mapping between each literal of the Boolean variables and
the address of its valuation in the memory array, and use the function LitToMemAddr to translate
from literal to memory address. Then, for each clause, we produce an instruction sequence that
loads each literal valuation using the constant-switching technique used to read free inputs. Once
the literals are loaded, they are or’d together, after which the output datapath is loaded with
zero again.

The CSWP program produced by Algorithm 1 has both a constant and data dependent portion
of switching activity. Two bit-flips occur for each Boolean variable in the input MAXSAT2

14

Algorithm 1: Algorithm for encoding of MAXSAT2 formula within a CSWP program,
printed via PrintInsn.

Input: Number of variables n and set of clauses C
Output: CSWP program encoding MAXSAT2 problem
var addr = 0;
for i = 0 ; i < n ; i++ do

out1 = PrintInsn(“mov”, [free]);
out2 = PrintInsn(“xor”, [out1, 0x1]);
PrintInsn(“store”, [out1], m[var addr++]);
PrintInsn(“store”, [out2], m[var addr++]);
PrintInsn(“mov”, [0]);

end
foreach c ∈ C do

< l1, l2 >= c;
laddr1 = LitToMemAddr(l1);
laddr2 = LitToMemAddr(l2);
lit1 = PrintInsn(“load”, [m[laddr1]]);
PrintInsn(“xor”, [lit1, 0x1]);
PrintInsn(“mov”, [0]);
lit2 = PrintInsn(“load”, [m[laddr2]]);
PrintInsn(“xor”, [lit2, 0x1);
PrintInsn(“mov”, [0]);
PrintInsn(“or”, [lit1, lit2]);
PrintInsn(“mov”, [0]);

end

15

problem, and four for each clause. The switching activity from the or instruction, however,
directly corresponds to the satisfiability of the clauses: if a clause is satisfiable (i.e., one of the
literals is true) then the or and following mov will cause two additional bit-flips. If a clause is
not satisfiable, the same instructions will cause no switching. As a result, the maximum amount
of switching in the program is caused by the maximum number of clauses being satisfied. The
assignment to the free variables which causes this is also an assignment to the Boolean variables
of the MAXSAT2 problem that causes the maximum number of clauses to be satisfied. As a
result, CSWP must be at least as hard as MAXSAT2 (i.e. NP-hard). As we know CSWP is also
in class NP (Section 4), CWSP is NP-hard. �

The assumption that free variables are either one or zero is to simplify the presentation: a
similar technique to balance switching can be used to translate any input word into one or zero,
with constant switching. For example on a machine with a condition status register, one may
compare the input register with zero, exclusive-or the entire input register with an all-ones value,
then store the comparison result flag to a general register and continue with the procedure above.

We observe that the reduction is performed in polynomial time, as it scales linearly with the
number of Boolean variables n and the number of clauses, of which there can be at most n2.

Given this result, we can conclude that there cannot be an efficient algorithm that solves
the CSWP, unless P = NP. Thus, given that general programs can be unrolled and reduced
to a CSWP, it is infeasible to determine the exact worst-case switching due to operand values
in a program, defeating energy estimation techniques that would rely on such a model. This
corresponds to the first form of WCEC estimate given in Section 2.5. However, given such a
limitation, there could still be algorithms that approximate the worst-case switching to a certain
degree of accuracy, allowing worst-case switching to be narrowed down to a small range of values.
We address this in the next section.

6 Inapproximability

Algorithm 2: Algorithm encoding a SAT problem into CSWP, with an output gap
governed by satisfiability

Input: Number of variables n and set of clauses C
Output: CSWP program with switching gap
/* Decision phase */

base var addr = var addr = 0;
insn count = 0;
for i = 0 ; i < n ; i++ do

out1 = PrintInsn(“mov”, [free]);
PrintInsn(“store”, [out1], m[var addr++]);

end
result = CheckSat(base var addr, C);
bit pattern = PrintInsn(“ite”, [result, 0xFFFFFFFF, 0]);
/* Switching phase */

decision insn count = insn count;
for i = 0 ; i < ((decision insn count)/2 + 1) ; i++ do

PrintInsn(“mov”, [bit pattern]);
PrintInsn(“mov”, [0]);

end

16

Having shown that CSWP is NP-hard, we will now show that it also cannot be approximated
to any useful factor, i.e. the second form of WCEC estimate in Section 2.5 is infeasible. We
demonstrate that there is no constant ε for which an approximation factor of 1 − ε can be
achieved, and then that polynomial approximation factors also cannot be achieved. Intuitively,
this is because each bit flip caused by the program is the result of an arbitrary computation,
meaning there is no structure to the combinatorial problem that one can generally rely upon
when constructing an approximation.

Formally, we demonstrate CSWPs inapproximability using a gap introducing reduction [40]
from SAT to CSWP. Such a reduction transforms an NP-complete decision problem into an NP-
hard optimisation problem, with a quantity (the “gap”) of the feature being optimised governed
by the truth of the decision problem. By demonstrating such a gap, one shows that a portion
of the NP-hard problem cannot be approximated in polynomial time, as the approximation
algorithm would have to solve an NP-complete problem in the process.

In the context of CSWP, we demonstrate that for any instance of SAT problem p, we can
reduce it to a CSWP program q where a portion of the switching activity is governed by the
truth of whether p is satisfiable. The transformation is illustrated in Algorithm 2, which we
divide into two discrete portions: the decision phase, and the switching phase. We use the same
functions as in Algorithm 1, with the modification that the PrintInsn function increments a
counter, insn count, for every instruction printed.

Throughout the decision phase, we are not concerned with the switching activity that may
occur, and do not seek to control it, in contrast with the previous algorithm. We begin by reading
n free variables, which for now we assume to be bit-vectors with either zero or one in the least
significant bit and all other bits zero. These free variables are stored to fixed addresses in memory.
We then pass the address of the variable valuations and the SAT clauses to the CheckSat function,
which emits a CSWP program that evaluates the clauses over the Boolean variables stored at
base var addr, and returns an output operand identifying whether the assignment satisfied the
clauses. Significantly, we do not seek to define how CheckSat checks the satisfiability of the
clauses, we only assume that it achieves it in a number of instructions polynomial in n, the
number of Boolean variables. We know that SAT is in NP, so due to complexity theory we also
know an assignment can be verified in a polynomial number of instructions.1 We then produce
an output, bit pattern, using an “if-then-else” instruction that evaluates to zero if the Boolean
variables do not satisfy the clauses, and has all bits set if they do.

For the switching phase, the CSWP instruction counter, insn count, is read to learn how many
instructions there are in the decision phase of the CSWP program. We then emit a pattern that
repeatedly loads the variable bit pattern and then zero. The effect of this is to produce a phase
in the program that causes a large amount of switching if the SAT problem p was satisfied; and
to not if it was unsatisfiable. In this sequence, a satisfying assignment will cause the switching
phase to flip every bit in the result datapath, every instruction; while no switching will occur
otherwise.

We have thus introduced a gap in the switching activity of the CSWP program q, that is
governed by whether the SAT problem p is satisfiable or not. We use the length of the decision
phase of the program to ensure that the switching phase is at least the length of the decision
phase, plus one or two instructions. This ensures that, regardless of the amount of switching in
the decision phase, the switching phase dominates the switching activity of the program. When
solving CSWP, if the SAT problem p were satisfiable, then the maximum amount of switching
would include the switching phase, and the CSWP solver would be obliged to yield an input to
the program that satisfied the reduced SAT problem. If p is unsatisfiable, it would instead yield
whatever input maximised the switching in the decision phase.

1We note that, as the inputs to CheckSat are free variables, we are essentially modelling a SAT solver.

17

We use the size of the gap to demonstrate that CSWP cannot be approximated. In the
previous example the switching phase constitutes at least 1/2 of the possible switching activity:
if one possessed an algorithm to approximate such a CSWP program to within a factor of 1/2,
then it would be obliged to activate the switching phase of any CSWP program reduced from a
satisfiable SAT formula, thus acting as an oracle for an NP-complete problem. Under the P 6=
NP assumption, such an algorithm does not exist. �

Furthermore, we are able to extend this result to any constant factor. For any value of ε
and SAT instance p, take the desired approximation factor f = 1 − ε and set the length of the
switching phase to be declen× (1/f), where declen is the number of instructions in the decision
phase of CSWP q. Such a program will have a gap of at least 1/f times the decision phase, that
depends entirely on the satisfiability of p, and thus cannot be approximated. One need not limit
this approach to a constant factor either: one may instead compute f to be some factor that is a
polynomial function of the size of SAT problem p, for example n2, and achieve the same result.
This shows that there can be no useful approximation factor for CSWP.

The safety of this result depends on the reduction to q being polynomial in the number of
variables n in p. Introducing the variables of p scales linearly with n, checking the satisfiability
of a particular assignment is known to be checkable in polynomial time, and the evaluation of
the result into bit pattern is constant-time. The decision phase is thus a polynomial reduction.
The switching phase is controlled by the length of the decision phase (which is polynomial), but
also the desired approximation factor. Provided the approximation factor is polynomial, the full
reduction is also polynomial.

The assumption in Algorithm 2 that free inputs are only zero or one is again to ease presen-
tation: the precise value is irrelevant so long as the switching phase accounts for the maximum
amount of switching it can cause. The only requirement is that a sufficient number of free bits
are supplied to CheckSat to represent the free inputs to the SAT problem p.

7 Discussion

We consider here the scope of these results with regards to the hardware for which dynamic
operand energy should be a consideration, and the implications of these results for WCEC
analysis.

7.1 Hardware scope

Determining a program’s switching activity caused by operand values is NP-hard, therefore
calculating the worst-case dynamic energy for a program in a way that accounts for its input
data set is infeasible. Our result is relevant when the cost of dynamic power is dominated by
switching in the output datapath. Clearly, the exact cost of such switching will vary between
processors, however our result may be used as a basis for demonstrating that calculating the
switching in other components of the processor is also infeasible. For example, because all inputs
to instructions are inevitably a direct input or the result of some other instruction, it is reasonable
to assume that it is NP-hard to estimate the switching activity of input operands too.

7.1.1 Processor architecture considerations

The simplest processor architectures, such as deeply embedded AVR or ARM M0 that might be
found in low power IoT scenarios, feature few additional components that would make further
contributions to dynamic energy consumption. However, more complex architectures, present in
larger IoT and embedded systems, introduce extra contributions.

18

For example, data caches will contribute dynamic energy too. First, in the computations they
perform to decide upon an outcome, for example determining if a memory address is present in
cache. Second is the cost of that outcome, for example the subsequent request to a higher-level
cache or main memory. These also depend on program inputs to an extent, but are not modelled
by our CSWP formalisation. Other processor components may contribute dynamic energy that is
not affected by the inputs to a program. The switching associated with instruction logic (decode,
functional unit activation, instruction cache) may contribute dynamic energy regardless of the
program input.

Features in some processors, such as out-of-order execution may also defeat our analysis. The
circuit switching cost is still present, and its determination will still be NP-hard, however it may
occur in an unpredictable fashion that depends on a processor-internal unobservable instruction
execution schedule.

Energy saving mechanisms such as power- and clock-gating may also reduce the impact of
dynamic energy due to operand values. However, if present, the extent of their effect will be
dependent upon the architecture design as well as the technology with which it is manufactured.
Coarse-grained mechanisms such as sleep states may also warrant attention, although these may
need to be accounted for differently if they are directly controlled by software.

7.1.2 System-level considerations

Considering again a cache hierarchy, difference in its dynamic power contribution due to the cost
of a hit versus the cost of a miss is likely to be higher than the range of dynamic power due
to operand values within the processor core. If this cache cost is added to the dynamic energy
of the processor core, then the dynamic variation due to operand values is now a much smaller
proportion of total energy consumption.

In such a system, it remains infeasible to determine a worst-case due to operand values as
per our CSWP formalisation. While the impact of this may be lower, there remains a level of
uncertainty that risks compromising the safety of any energy consumption assumptions that are
made when modelling is performed. A mitigation strategy, such as more conservative assumptions
of worst-case energy per instruction, must therefore be used. The accuracy of cache modelling
must also now be considered, where safety of any energy bounds is compromised if the model
does not precisely reflect cache hits and misses for a program.

Beyond caches, systems may have peripherals that eclipse the processor in terms of energy
consumption, such as wireless transmitters for communication-heavy IoT applications. In such
circumstances, the impact of unsafe or overly-conservative worst-case instruction energy mod-
elling is unlikely to be of concern in the context of energy budgeting.

In summary, it is essential to assess the proportion of energy consumed in the system by the
processor, and its dynamic consumption due to operand value, to determine if CSWP should be
a concern. This is primarily why the focus of this paper has been upon processors for deeply
embedded systems.

7.2 Implications for WCEC analysis

7.2.1 No guarantees

The infeasibility result for estimating dynamic operand energy over time renders the first two
forms of WCEC estimation discussed in Section 2.5 infeasible. Further, it prevents the con-
struction of an instruction level energy model that identifies an accurate worst-case switching
cost for each instruction in a given program. Existing techniques that apply WCEC analy-
sis [15, 23, 11, 22, 9, 41] to software can thus never have an energy model that accurately
accounts for worst-case achievable dynamic energy of the given computation.

19

We are still left with the coarse over-approximation WCEC estimation techniques. Such tech-
niques provide a safe upper bound but no relationship between that bound and the true WCEC,
and our result shows that any such relationship would be infeasible to calculate. For example,
calculating the absolute maximum operand switching cost for an execution in the manner of [15]
and [41] would be sufficient. The over-approximation inherent with this approach will not yield
a tight bound. For example, on the XMOS XS1-L, with dynamic energy contributing 42 % of
energy consumption, one would have a similarly sized amount of potential over-approximation
regarding the energy consumption of any execution. The expected over-approximation would
therefore be somewhere within this range, likely towards the middle if an average case is as-
sumed.

7.2.2 Alternatives

Viable techniques for estimating dynamic energy consumption can come from a variety of fields:
in particular, statistical methods [30] may be effective for determining the distribution of energy
consumption under normal operation. Such a model may be used by assuming that the most
energy the program can consume occurs only 1 % of the time, and taking the energy value
corresponding to that probability as the program’s worst-case energy consumption. This does
not provide a safe upper bound on the program’s energy consumption as it is based on normal
operation. However, on the balance of probability it is very likely to present an upper bound.
Depending on the use case, such a bound may be more useful in making energy consumption of
software transparent to developers than gross over-approximation.

Another alternative is to refine coarse over-approximations: simply assuming maximum switch-
ing activity for the whole length of the program yields a likely very inaccurate upper bound. Fur-
ther techniques such as static analysis or abstract interpretation could reduce this inaccuracy.
For example, if one can determine the integer interval of a variable, then one can potentially
bound the amount of switching between adjacent instructions, and thus determine the maximum
switching of a specific instruction sequence to be lower than its absolute maximum.

In all circumstances, alternative estimation techniques will posses some level of unquantifiable
over-approximation, unsafeness or incompleteness, otherwise they will be NP-hard as proven in
this work.

8 Conclusions and future work

In this paper we have considered the energy consumption in a processor that can directly be
attributed to the data or inputs to the software being executed, and demonstrate that the
general analysis of circuit switching in processor datapaths — the “circuit switching problem”
— is NP-hard. Further, we demonstrate that there is no efficient approximation algorithm for
the circuit switching problem to any constant or polynomial factor. We conclude that only the
coarsest of estimation techniques can be used in the analysis of worst-case energy in polynomial
time. This limitation introduces an uncertain amount of over-approximation in the gap between
the true WCEC and the estimated WCEC.

We consider alternate techniques and questions that one could pose that do not amount to
worst-case analysis but do provide an estimate of how large the worst case could be, and how
they can contribute to understanding software energy consumption.

In the future we believe that work is best focused on statistical methods of modelling program
energy consumption, or otherwise characterising the way in which software operates. Similar
efforts are being made that model the WCET problem probabilistically [6], for example using
extreme value theory (EVT) [24], although recent research suggests EVT may not be completely

20

applicable to WCET in general [21]. Critically, we cannot continue to think in terms of a math-
ematically proven “worst-case” energy consumption, but must instead turn to other methods for
energy consumption analysis that may not be sound or accurate, but are at least feasible.

Further exploration of the scope of data-dependent energy would also benefit WCEC. For
example, whilst it is intuitive that a cache miss has a higher energy cost than a cache hit by a
significant margin, how large a contribution to dynamic power is made by the address and data
values on the buses in the memory hierarchy? This would establish whether caches can present
energy anomalies of a similar nature to already studied timing anomalies. In addition, this could
further address how tight a safe WCEC bound can be in more complex microarchitectures.

8.1 Acknowledgements

We would like to thank David May, Benjamin Sach, Kyriakos Georgiou and James Pallister for
their insights into and motivation of this work. The research leading to these results has received
funding from the European Union 7th Framework Programme (FP7/2007-2013) under grant
agreement no 318337, ENTRA - Whole-Systems Energy Transparency; and grant agreement no
611004, ICT-Energy.

References

[1] ARM. Arm cortex-m programming guide to memory barrier instructions. Technical report,
ARM, 2012.

[2] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide Sarta. An instruction-level
power analysis model with data dependency. VLSI DESIGN, 12(2):245–273, 2001.

[3] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam,
The Netherlands, The Netherlands, 2009.

[4] Paulo Francisco Butzen and Renato Perez Ribas. Leakage current in sub-micrometer cmos
gates. Technical report, Universidade Federal do Rio Grande do Sul, 2006.

[5] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone.
In Proceedings of the 2010 USENIX conference on USENIX annual technical conference,
USENIXATC’10, page 21, Berkeley, CA, USA, 2010. USENIX Association.

[6] Francisco J. Cazorla, Tullio Vardanega, Eduardo Quiñones, and Jaume Abella. Upper-
bounding Program Execution Time with Extreme Value Theory. In Claire Maiza, editor,
13th International Workshop on Worst-Case Execution Time Analysis, volume 30 of Ope-
nAccess Series in Informatics (OASIcs), pages 64–76, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[7] Lokesh Chandra and Sourav Roy. Estimation of energy consumed by software in processor
caches. In 2008 IEEE International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pages 21–24. IEEE, April 2008.

[8] Ana T. Freitas, Horcio C. Neto, and Arlindo L. Oliveira. On the cmoplexity of Power
Estimation Problems. 2004.

[9] Kyriakos Georgiou, Steve Kerrison, and Kerstin Eder. On the value and limits of multi-
level energy consumption static analysis for deeply embedded single and multi-threaded
programs. Technical report, University of Bristol, 2015.

21

[10] Ricardo Gonzalez, Benjamin M Gordon, and Mark A Horowitz. Supply and threshold
voltage scaling for low power cmos. IEEE Journal of Solid-State Circuits, 32(8):1210–1216,
1997.

[11] Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison, Jeremy Morse, and Ker-
stin Eder. Static analysis of energy consumption for llvm ir programs. In Proceedings of the
18th International Workshop on Software and Compilers for Embedded Systems, SCOPES
’15, pages 12–21, New York, NY, USA, 2015. ACM.

[12] Hadi Hajimiri, Kamran Rahmani, and Prabhat Mishra. Efficient peak power estimation
using probabilistic cost-benefit analysis. In VLSI Design (VLSID), 2015 28th International
Conference on, pages 369–374, Jan 2015.

[13] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Ben-
jamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Understanding
sources of inefficiency in general-purpose chips. Proceedings of the 37th annual international
symposium on Computer architecture - ISCA ’10, page 37, 2010.

[14] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,
2011.

[15] Ramkumar Jayaseelan, Tulika Mitra, and Xianfeng Li. Estimating the worst-case energy
consumption of embedded software. In Proceedings of the 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, RTAS ’06, pages 81–90, Washington, DC,
USA, 2006. IEEE Computer Society.

[16] David S. Johnson. Approximation algorithms for combinatorial problems. In Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, STOC ’73, pages 38–49, New
York, NY, USA, 1973. ACM.

[17] David Kearney and Neil W. Bergmann. Performance evaluation of asynchronous logic
pipelines with data dependent processing delays. In Asynchronous Design Methodologies,
1995. Proceedings., Second Working Conference on, pages 4–13, May 1995.

[18] Steve Kerrison and Kerstin Eder. Energy modeling of software for a hardware multithreaded
embedded microprocessor. ACM Trans. Embedded Comput. Syst., 14(3):56, 2015.

[19] NS Kim, T Austin, D Baauw, and T Mudge. Leakage current: Moore’s law meets static
power. Computer, pages 68–75, 2003.

[20] Yebin Lee and Soontae Kim. DRAM energy reduction by prefetching-based memory traffic
clustering. Proceedings of the 21st edition of the great lakes symposium on Great lakes
symposium on VLSI - GLSVLSI ’11, page 103, 2011.

[21] G. Lima, D. Dias, and E. Barros. Extreme value theory for estimating task execution
time bounds: A careful look. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 200–211, July 2016.

[22] Umer. Liqat, Kyriakos. Georgiou, Steve. Kerrison, Pedro. Lopez-Garcia, John P. Gallagher,
Manuel V. Hermenegildo, and Kerstin. Eder. Inferring Parametric Energy Consumption
Functions at Different Software Levels: ISA vs. LLVM IR, pages 81–100. Springer Interna-
tional Publishing, Cham, 2016.

22

[23] Umer Liqat, Steve Kerrison, Alejandro Serrano, Kyriakos Georgiou, Pedro Lopez-Garcia,
Neville Grech, Manuel V. Hermenegildo, and Kerstin Eder. Energy Consumption Analysis
of Programs based on XMOS ISA-level Models. In Logic-Based Program Synthesis and
Transformation, 23rd International Symposium, LOPSTR 2013, Revised Selected Papers,
volume 8901 of Lecture Notes in Computer Science, pages 72–90. Springer, 2014.

[24] F. Longin. Extreme Events in Finance: A Handbook of Extreme Value Theory and its
Applications. Wiley Handbooks in Financial Engineering and Econometrics. Wiley, 2016.

[25] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled mi-
croprocessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99,
pages 12–, Washington, DC, USA, 1999. IEEE Computer Society.

[26] David May. The XMOS XS1 architecture. available online:
http://www.xmos.com/published/xmos-xs1-architecture, 2013.

[27] Michael Hsiao et al. K2: an estimator for peak sustainable power of VLSI circuits. Low
Power Electronics and Design, 1997.

[28] Pedro Marques Morgado, Paulo F. Flores, and Luis Miguel Silveira. Generating realis-
tic stimuli for accurate power grid analysis. ACM Trans. Des. Autom. Electron. Syst.,
14(3):40:1–40:26, June 2009.

[29] James Pallister, Kerstin Eder, Simon J. Hollis, and Jeremy Bennett. A high-level model of
embedded flash energy consumption. In Proceedings of the 2014 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems - CASES ’14, pages 1–9,
New York, New York, USA, 2014. ACM Press.

[30] James Pallister, Steve Kerrison, Jeremy Morse, and Kerstin Eder. Data dependent energy
modelling: A worst case perspective. In Proceedings of the 18th International Workshop on
Software and Compilers for Embedded Systems, SCOPES ’17, New York, NY, USA, 2017.
ACM. To appear, preprint at http://arxiv.org/abs/1505.03374.

[31] Amisha Parikh, Soontae Kim, Mahmut T. Kandemir, Narayanan Vijaykrishnan, and
Mary Jane Irwin. Instruction scheduling for low power. Journal of VLSI signal processing
systems for signal, image and video technology, 37(1):129–149, 2004.

[32] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A comparison of
high-level full-system power models. In Proceedings of the 2008 Conference on Power Aware
Computing and Systems, HotPower’08, pages 3–3, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[33] Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms and Analyses.
Mathematik für Anwendungen. Lehmanns Media, 2013.

[34] Yakun Sophia Shao and David Brooks. Energy characterization and instruction-level energy
model of Intel’s Xeon Phi processor. In International Symposium on Low Power Electronics
and Design (ISLPED), number November, pages 389–394. IEEE, September 2013.

[35] Amit Sinha and Anantha P. Chandrakasan. Energy aware software. In Proceedings of the
13th International Conference on VLSI Design, VLSID ’00, pages 50–, Washington, DC,
USA, 2000. IEEE Computer Society.

23

http://arxiv.org/abs/1505.03374

[36] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel. An Accurate and Fine
Grain Instruction-level Energy Model Supporting Software Optimizations. In Proceedings
of PATMOS, 2001.

[37] Lothar Thiele and Reinhard Wilhelm. Design for timing predictability. Real-Time Syst.,
28(2-3):157–177, November 2004.

[38] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software:
a first step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):437–445, Dec 1994.

[39] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. Instruction level
power analysis and optimization of software. J. VLSI Signal Process. Syst., 13(2-3):223–
238, August 1996.

[40] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.

[41] Peter Wägemann, Tobias Distler, Timo Hönig, Heiko Janker, Rüdiger Kapitza, and Wolf-
gang Schröder-Preikschat. Worst-case energy consumption analysis for energy-constrained
embedded systems. In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on,
pages 105–114, July 2015.

[42] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

24

	Introduction
	Related work and background
	Energy estimation techniques
	Worst Case Energy Consumption (WCEC) analysis
	Existing complexity results
	Maximum satisfiability
	WCEC background

	Circuit switching on Xcore
	Defining power dissipation in a micro-processor
	Apportioning dynamic power
	Heat-map observations
	Dynamic power range due to operand values

	Summary and Discussion

	Formalising the circuit switching problem
	Reducing MAXSAT2 to the circuit switching problem
	Inapproximability
	Discussion
	Hardware scope
	Processor architecture considerations
	System-level considerations

	Implications for WCEC analysis
	No guarantees
	Alternatives

	Conclusions and future work
	Acknowledgements

