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Abstract

The conditional maximum likelihood estimator of the fixed-effect logit model suffers from a curse
of dimensionality that may have severely limited its use in practice. As the number of alterna-
tives and the number of choice situations per individual increase, the number of addends in the
denominator of the fixed-effect logit formula grows exponentially. We propose to by-pass this
curse of dimensionality by exploiting a classic result by McFadden (1978) and to consistently
estimate the fixed-effect logit model on random samples of permutations of the observed choice
sequences.
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1 Introduction

As Chamberlain (1980) showed (see also Rasch, 1961, for an earlier reference), the fixed-
effect (FE) logit model can be estimated consistently by a conditional maximum likelihood
estimator (CMLE). However, it is well known that this estimator suffers from a “curse of
dimensionality” that may have severely limited its use in practice (e.g., Arellano & Honoré,
2001, p. 3269, Baltagi, 2005, p. 235, and Greene, 2011, p. 723): as the number of alternatives
and the number of choice situations per individual increase, the number of addends in the
denominator of the FE logit formula grows exponentially.
Suppose there are i = 1, . . . , n individuals who are observed making discrete choices from
j = 1, . . . , J alternatives over t = 1, . . . , T choice situations. Vector Y it = (Yi1t, . . . , YiJt),
with elements Yijt = 1 {i chooses j in t}, indicates i’s choice in choice situation t. Individual
i’s sequence of choices is Y i = (Y i1, . . . ,Y iT ). Then, the distribution of times i chose each
of the J alternatives over the T choice situations is the Chamberlinian statistic

∑T
t=1 Y it =

ci = (ci1, . . . , ciJ), which is sufficient for the individual fixed effects.
An impractical feature of the FE logit model is its growing “size” with respect to J and T . In-
deed, i’s probability of choosing any sequence of alternatives compatible with the distribution
of choices ci is a multinomial logit model with

T !

ci1! · · · cij ! · · · ciJ !
(1)

addends in the denominator (see Chamberlain, 1980, p. 231). This number increases sharply
with T and potentially with J . For example, with T = 10 and J = 2, the maximum number
of addends would be 252, but with J ≥ 10, it would be over 3.5 million.
Currently, statistical software such as STATA implements the estimation of the FE logit model
by CMLE, thus computing and including in the denominator of the FE logit formula all the
addends in (1).1 In applications with large datasets, this may cause the practical computation
of the CMLE to be at best extremely time consuming and, at worst, infeasible altogether.
As Chamberlain (1980, p. 231) shows, the FE logit model is a multinomial logit model with
respect to the set of permutations of the observed sequence of choices Y i = si. Using this
idea and exploiting a classical result by McFadden (1978), we propose an alternative estimator
that by-passes the “curse of dimensionality” of the CMLE. Specifically, we estimate the model
by using random subsets of sequences consistent with

∑T
t=1 Y it = ci.

In Section 2, we define the new estimator and derive its asymptotic properties. In Section 3,
1For example, STATA provides two such commands: clogit for the binary case (J = 2) and the recent

femlogit for the general case (see Pforr, 2014).
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we report the results of a Monte Carlo exercise that illustrates the practical usefulness of the
proposed estimator.

2 Random Samples of Permutations of Observed Choice Se-
quences

Suppose the indirect utility of individual i for alternative j in choice situation t is Uijt =

αij +X
′
ijtβ+ εijt, where αij is i’s fixed-effect for alternative j, Xijt a vector of time-varying

regressors potentially correlated with αij , β a vector of preference parameters, and εijt are
i.i.d. and follow a Gumbel distribution. For any observed sequence of choices Y i = si

with
∑T

t=1 sit = ci, let P (ci) be the set of all permutations of i’s observed sequence of
choices: P (ci) =

{
k = (k1, ...,kT )|

∑T
t=1 kt = ci

}
. Finally, for any sequence k, let Zi(k) =∑T

t=1Xiktt. Then, as shown by Chamberlain (1980, p. 231), i’s probability of choosing any
sequence Y i = si compatible with ci is:

Pr

[
Y i = si

∣∣∣∣ T∑
t=1

Y it = ci,β

]
= Pr [Y i = si| P (ci) ,β]

=

T∏
t=1

exp
(
αisit +X

′
isittβ

)
∑

k∈P(ci)

T∏
t=1

exp
(
αikt +X

′
ikttβ

)
=

exp
(
Zi(si)

′β
)∑

k∈P(ci)

exp
(
Zi(k)

′β
) , (2)

which is a multinomial logit model for the choice of sequences of alternatives over the set
P (ci). The set P (ci) contains T ! (ci1! · · · cij ! · · · ciJ !)−1 sequences of alternatives, which can
result in an infeasibly large number of addends in the denominator of multinomial logit formula
(2).
We now introduce our estimator. Following McFadden (1978, p. 87-91), our idea is to restrict
P
(∑T

t=1 Y it

)
to a random subset Di. Let π

[
Di = di|Y i = si,

∑T
t=1 Y it = ci

]
be the prob-

ability of drawing di. We focus on sampling schemes satisfying the uniform conditioning prop-
erty, meaning that for any two sequences of alternatives si, ki inDi, π

[
Di = di|Y i = si,

∑T
t=1 Y it = ci

]
=

π
[
Di = di|Y i = ki,

∑T
t=1 Y it = ci

]
.2 Then β can be consistently estimated by maximizing

2Since the sampling scheme is devised by the econometrician, it is always possible to satisfy this property.
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the log-likelihood function:

L (β) =

n∑
i=1

ln

(
Pr

[
Y i = si|Di = di,

T∑
t=1

Y it = ci,β

])

=
n∑

i=1

ln

 π
[
Di = di|Y i = si,

∑T
t=1 Y it = ci

]
Pr
[
Y i = si|

∑T
t=1 Y it = ci,β

]
∑
k∈di

π
[
Di = di|Y i = k,

∑T
t=1 Y it = ci

]
Pr
[
Y i = k|

∑T
t=1 Y it = ci,β

]


=
n∑

i=1

ln

 exp
(
Zi(si)

′β
)∑

k∈di

exp
(
Zi(k)

′β
)
 . (3)

The second equality follows from Bayes’s rule and π
[
Di = di|Y i = ki,

∑T
t=1 Y it = ci

]
= 0

for any ki /∈ di, and the third from the uniform conditioning property. Note how, for each i,
the summation in the denominator of (3) is over di rather than P (ci).
An easily implementable random sampling scheme that satisfies the uniform conditioning
property is to select Di to be a set of L+1 sequences containing (a) the observed sequence of
choices Y i and (b) L other randomly drawn sequences from P

(∑T
t=1 Y it

)
without replace-

ment. Denote by Ri = T ! (ci1! · · · cij ! · · · ciJ !)−1 the number of elements in P (ci), then for any
si ∈ di:

π

[
Di = di

∣∣Y i = si,

T∑
t=1

Y it = ci

]
=

(
Ri − 1

L

)−1
= π

[
Di = di

∣∣ T∑
t=1

Y it = ci

]
, (4)

which implies that the uniform conditioning property indeed holds.

The next proposition provides the asymptotic properties of our estimator, β̂sub, and compares
them with those of the CMLE, β̂CMLE . Let us introduce some additional notation. Because
we consider i.i.d. samples, we can omit individual indices hereafter. LetX = (X ′11, ...,X

′
JT )
′,

Pjd = Pr(Y = j|D = d,X), Pj = Pr(Y = j|X), Zd =
∑

j∈dPjdZ(j), P = {0, 1}JT and

I(β̂sub) =
∑
j∈P

E
[
PjZ(j)Z(j)′

]
− E

[
Z(j)E

[
PjDZ

′
D|X

]]
.

Proposition 1 Suppose that (Y i,Xi)i=1,...,n are i.i.d. and that I(β̂sub) is nonsingular.
Then:
Intuition suggests that more elaborate sampling schemes may increase the efficiency of the estimator. For
an early example of a sampling scheme that does not satisfy the uniform conditioning property, see Train,
McFadden, and Ben-Akiva (1987).
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1.
√
n
(
β̂sub − β

)
d−→ N

(
0, I(β̂sub)

−1
)
.

2. β̂sub is asymptotically less efficient than β̂CMLE: I(β̂sub)
−1 is larger than the asymptotic

variance of β̂CMLE.

The proposition is proved in our supplement. Note that the asymptotic variance takes a similar
form as that of the multinomial logit (see, e.g., Amemiya, 1985, pp. 288 and 296). Since β̂sub

is also a conditional maximum likelihood estimator, classical results (see, e.g., Andersen, 1970)
imply that one can compute standard errors using the hessian of the objective function.

3 Monte Carlo Exercise

Each simulated dataset has n = 1000 individuals making choices over T choice situations.
During each choice situation, individuals can choose from five alternatives {a, b, c, d, e}. The
conditional indirect utility of individual i for alternative j in choice situation t is:

Uijt = αij + β1xijt1 + β2xijt2 + εijt, εijt ∼ Gumbel. (5)

Both regressors are independently and normally distributed with xijt1 ∼ 3 · Normal (µj , 1)
and xijt2 ∼ Normal (µj , 1), where µa = 0, µb = 0.5, µc = 1, µd = 1.5, and µe = 2. Preferences
take values (α, β1, β2) = (0,−2, 2). Since their effect on computation time is null, αij = 0 for
all (i, j).
We generate fifty datasets for each of six data generating processes (DGP’s) and then average
the results. The six DGP’s differ in the number of choice situations T each individual faces.
For each of the simulated datasets, we estimate parameters β1 and β2 from the multinomial
FE logit model implied by (5) using both the CMLE and our estimator. To compute our
estimator, we use sets of 2,500, 5,000, and 10,000 permutations of the observed sequences of
choices.
For each method, the average computation time required for estimation by a desktop computer
with typical computing power is divided into two components: (permutation time) the amount
of time required to enumerate all the addends in the denominator of the respective multinomial
FE logit formula and, given the denominator, (estimation time) the actual time required to
estimate β1 and β2.
Table 1 summarizes the results of the simulations. As anticipated, the time and memory costs
implied by the CMLE are rapidly increasing in T : with a typical desktop computer, we are
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unable to estimate the model with T > 10, since the computer runs out of memory.3 By
contrast, the proposed method is always able to estimate β1 and β2. Moreover, whenever we
can compute the CMLE, our method only requires a small fraction of the CMLE time.
The original motivation of McFadden (1978) was to reduce what we call here estimation
time. First, table 1 confirms that McFadden (1978)’s method works well in that respect.
Furthermore, in the context of the FE logit model, the proposed method is also effective in
reducing the time required to compute the denominator of the multinomial logit probability.
As T increases, the number of possible permutations of the observed sequences of choices
rises exponentially, and so does the time required to enumerate them all when computing the
CMLE. By contrast, the proposed method allows to cap the number of permutations to be
enumerated. This enables to significantly reduce the permutation time in smaller examples,
and to estimate the model at all in larger applications. Note that for any fixed number
of permutations, the permutation time still increases with T . This happens because the
observed sequences of choices become longer and each of their permutations takes more time
to be executed.
The computational advantages of the proposed method do not come for free. As expected
given Proposition 1, the CMLE is more precise than our estimator. Moreover, and probably
intuitively, the larger our random set of permutations is, the more accurate our estimator is.
Collectively, these results suggest that one should use the CMLE whenever possible but,
otherwise, one should rely on the method proposed in this paper using as many sampled
sequences as possible, so as to limit the efficiency loss.

3In these cases individuals had multinomial logit probabilities with millions of addends in the denominator.
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