
An Approach to Enhancing
Security and Privacy of the
Internet of Things with
Federated Identity

Paul Zachary Fremantle

A thesis submitted in partial fulfilment of the requirements for
the award of the degree of Doctor of Philosophy.

School of Computing
University of Portsmouth

July 2017

Abstract

The Internet of Things (IoT) is the set of systems that enable sensors and actuators to
be connected to the Internet. It is estimated that there are already more IoT devices
than humans, and that by 2020 there will be 50 billion connected devices. A re-
view of related literature outlines concerns regarding security and privacy of the IoT,
demonstrating that IoT devices are creating the opportunity to infringe on security
and privacy in numerous ways. One significant challenge is to manage the identity
of IoT devices in an effective way. Many IoT systems are built using middleware sys-
tems. The main research question of this thesis is whether an improved model for IoT
middleware systems — based around federated identity — can provide significant
improvements to security and privacy while maintaining reasonable costs in terms of
user experience and performance.
In a review of related work, a matrix of IoT threats is presented and from this a number
of requirements are identified. A structured survey of literature around IoT middle-
ware systems and platforms identifies 20 systems which are evaluated against those
requirements. From this, a set of gaps in IoT middleware systems are identified.
This work addresses a number of these gaps in a novel approach for linking IoT de-
vices to cloud and web systems. A proposed architecture supports an integrated set of
privacy preserving controls based on federated identity and access management pat-
terns. In particular, a model introduces device and user registration processes that are
adapted to support constrained IoT devices. Federation and de-coupling of systems
are incorporated to allow choice of where data is shared with the result that users
can choose to avoid sharing data with systems that may infringe privacy. Users are
automatically provisioned with a cloud service that manages their devices and data.
Summarisation and filtering of data are incorporated to protect raw data and prevent
fingerprinting attacks.
A formal model of the approach is presented and properties are proved mathemat-
ically, and these properties are used to inform a threat model of the system, which
demonstrates benefits of the model in enhancing privacy and security.
The model is implemented in a prototype system and experimental results on this
system are presented, including energy usage, cost, scalability and performance. The
prototype demonstrates that the approach is both feasible and cost-effective. Perfor-
mance data demonstrates that the impact on users of the approach is minimal and
within norms for such systems. Finally, areas of further research are presented.

i

ii

Declaration

Whilst registered as a candidate for the above degree, I have not been registered for
any other research award. The results and conclusions embodied in this thesis are the
work of the named candidate and have not been submitted for any other academic
award.

46,548 words

Dissemination

Several papers have been published during the preparation of this thesis, in addition
to participation in posters, demos and presentations. This section provides a summary.
Where material that has been included within this thesis has previously been jointly
published, in all cases I was the lead author, and responsible for the technical content
of the papers. The items listed as Contributions as a Co-Author, where I was not the
lead author, do not form any substantive part of this thesis.

Book Chapters

Paul Fremantle. “A Security Survey of Middleware for the IoT”. in: Engineering Secure
Internet of Things Systems. IET, 2016. Chap. 1

Paul Fremantle. “Federated Identity and Access Management in IoT Systems”. In:
Engineering Secure Internet of Things Systems. IET, 2016. Chap. 6

Journal Articles

Paul Fremantle and Philip Scott. “A survey of secure middleware for the Internet of
Things”. In: PeerJ Computer Science 3 (2017), e114

Conference Proceedings

Paul Fremantle, Benjamin Aziz, and Tom Kirkham. “Enhancing IoT Security and Pri-
vacy with Distributed Ledgers - A Position Paper”. In: Proceedings of the 2nd Inter-
national Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS,.
INSTICC. ScitePress, 2017, pp. 344–349. ISBN: 978-989-758-245-5. DOI: 10.5220/
0006353903440349

P. Fremantle and B. Aziz. “OAuthing: Privacy-enhancing federation for the Internet of
Things”. In: 2016 Cloudification of the Internet of Things (CIoT). Nov. 2016, pp. 1–6.
DOI: 10.1109/CIOT.2016.7872911

iii

iv

Workshop Proceedings

Paul Fremantle et al. “Federated Identity and Access Management for the Internet of
Things”. In: 3rd International Workshop on the Secure IoT. 2014

Paul Fremantle, Jacek Kopecký, and Benjamin Aziz. “Web API Management Meets the
Internet of Things”. In: The Semantic Web: ESWC 2015 Satellite Events: ESWC 2015
Satellite Events, Portorož, Slovenia, May 31 – June 4, 2015, Revised Selected Papers.
Ed. by Fabien Gandon et al. Cham: Springer International Publishing, 2015, pp. 367–
375. ISBN: 978-3-319-25639-9. DOI: 10.1007/978-3-319-25639-9_49. URL: http:
//dx.doi.org/10.1007/978-3-319-25639-9_49

Selected as Joint Best Paper at the Workshop

Paul Fremantle. “Privacy-enhancing FederatedMiddleware for the Internet of Things”.
In: Proceedings of the Doctoral Symposium of the 17th International Middleware Confer-
ence. Middleware Doctoral Symposium’16. Trento, Italy: ACM, 2016, 4:1–4:4. ISBN:
978-1-4503-4665-8. DOI: 10.1145/3009925.3009929. URL: http://doi.acm.org/10.
1145/3009925.3009929

Presentations And Posters

Paul Fremantle and Benjamin Aziz. “Privacy-enhancing Federated Middleware for
the Internet of Things”. In: Proceedings of the Posters and Demos Session of the 17th
International Middleware Conference. Middleware Posters and Demos ’16. Trento,
Italy: ACM, 2016, pp. 33–34. ISBN: 978-1-4503-4666-5. DOI: 10.1145/3007592.
3007596. URL: http://doi.acm.org/10.1145/3007592.3007596

OAuthing: Enhancing privacy and security for the Internet of Things, School of Com-
puting Research Seminar Presentation, University of Portsmouth, September 2016

Federated Identity and Access Management for the Internet of Things, School of Com-
puting Research Seminar Presentation, University of Portsmouth, October 2014

Federated Identity and Access Management for the Internet of Things, Technology Fac-
ulty Research Conference Poster, University of Portsmouth, July 2014

Towards a Secure Private Middleware for the Internet of Things, Research Seminar,
Institute for the Architecture of Applications and Systems, Stuttgart, Germany, October
2016

The Identity of Things, Presentation to Daimler-Benz, Stuttgart, Germany, October
2016

v

The Identity of Things, Presentation to Zühlke Engineering, Eschborn, Germany, Octo-
ber 2016

Your Thing is Pwned - security challenges for IoT, Presentation at DSS ITSEC 2016, 7th
International Cyber Security Conference, Riga, Latvia, October 2016

Your Thing is Pwned, Presentation at RSM Telemedecine and eHealth, Big data, clouds,
and the internet of healthy things, London, June 2016

Technical Reports

Paul Fremantle. A Reference Architecture for the Internet of Things. Tech. rep. WSO2,
2014

Contributions As A Co-Author

Benjamin Aziz, Paul Fremantle, and Alvaro Arenas. “A reputation model for the Inter-
net of Things”. In: Engineering Secure Internet of Things Systems. IET, 2016. Chap. 10

Jacek Kopecký, Paul Fremantle, and Rich Boakes. “A history and future of Web APIs”.
In: Information Technology (2014)

Tom Kirkham et al. “Privacy Aware On-Demand Resource Provisioning for IoT Data
Processing”. In: Internet of Things. IoT Infrastructures: Second International Sum-
mit, IoT 360 ◦ 2015, Rome, Italy, October 27-29, 2015, Revised Selected Papers, Part II.
Springer International Publishing. 2016, pp. 87–95

Boris Adryan, Dominik Obermaier, and Paul Fremantle. The Technical Foundations of
IoT. Artech House, 2017. ISBN: 9781630812515

Acknowledgements

Firstly, I would like to acknowledge my first supervisor, Benjamin Aziz, who has pro-
vided clear advice, unswerving support, constant effort, and a wealth of knowledge
in security and IoT. Thanks Ben.
Secondly, I’d like to thank the other academics who have provided supervision —
informally and formally. Frank Leymann has been a mentor to me for more than 15
years. His advice is always brilliant, and his questions have been even more valuable.
Jacek Kopecký is one of the smartest people in the department and every time I talk
with him I learn something and come away doubting everything I thought I knew.
Philip Scott welcomed me to the department and has been invaluable in helping me
become at least a little bit academic. Mads Ohm Larsen provided invaluable advice
and proofreading around CSP. Nick Savage always cuts to the chase and sees through
the trees to the wood.
Thirdly, I need to thank WSO2: not only for giving me the time to do this — but
also for giving me the opportunity to meet so many amazing customers who need
identity, security and privacy of IoT and helped me to motivate the requirements. I
can’t possibly name all the WSO2 team who encouraged me, but I specifically want to
thank Prabath Siriwardena for introducing me to the mysteries of OAuth2 and Sanjiva
Weerawarana for encouraging me to work towards a doctorate.
Finally, to Jane, Anna and Dan for all your support, patience, and love. The three of
you inspire me in everything I do.

vi

Abbreviations

ABAC Attribute Based Access Control
ACE Authentication and Authorisation for Constrained Environments
AES Advanced Encryption Standard
API Application Programming Interface
AuthCode Authorisation Code
BLE Bluetooth Low Energy
CCS Communicating Concurrent Systems
CIA Confidentiality Integrity Availability
CIA+ “CIA Plus”
CoAP Constrained Application Protocol
CSP Communicating Sequential Processes
DCR Dynamic Client Registration
DDoS Distributed Denial of Service
DoS Denial of Service
DTLS Datagram Transport Layer Security
ECC Elliptic Curve Cryptography
EXI Efficient XML Interchange
FDR Failures Divergences Refinement
FIAM Federated Identity and Access Management
FIOT Federation of IoT
GCHQ UK Government Communications Headquarters
GDPR General Data Protection Regulations
GPRS General Packet Radio Service
HIP Host Identity Protocol
HTTP HyperText Transfer Protocol

vii

Abbreviations viii

IETF Internet Engineering Task Force
IGNITE Intelligent Gateway for Networked Internet of Things Environments
IoT Internet of Things
JSON JavaScript Object Notation
M2M Machine to Machine
MAC Media Access Control
MQTT Message Queueing Telemetry Transport
NFC Near Field Communication
NSA US National Security Agency
OIDC OpenID Connect
PBD Privacy By Design
PCM Personal Cloud Middleware
PIN Personal Identification Number
PKC Public Key Cryptography
PKI Public Key Infrastructure
PoP Proof of Possession
PSK Pre Shared Key
PZH Personal Zone Hub
QR Quick Response
RFID Radio Frequency Identification Device
RSA Rivest, Shamir, and Adleman public key cryptography
SGX Secure Guard Extensions
SOAP Simple Object Access Protocol
SoC System-on-Chip
TCP Transport Control Protocol
TLS Transport Layer Security
TPM Trusted Platform Module
UDP User Datagram Protocol
UI User Interface
UMA User Managed Access
UML Unified Modelling Language
URU User Registration URI
VM Virtual Machine

Abbreviations ix

WAM Web API Management
WEP Wired Equivalency Privacy
WSN Wireless Sensor Network
XACML XML Access Control Markup Language
XML eXtensible Markup Language

Contents

Abstract i

Declaration ii

Dissemination iii

Acknowledgements vi

Abbreviations vii

I Introduction, Literature Review and Core Technologies 1
1 Introduction 2

1.1 Motivation . 2
1.2 Thesis Approach . 4
1.3 Research Questions . 6
1.4 Summary of Contributions . 6
1.5 Chapter Outline . 7

2 Security and Privacy Threats for IoT 9
2.1 Summary . 9
2.2 A1. Device Confidentiality . 12
2.3 B1: Network Confidentiality . 14
2.4 C1. Cloud confidentiality . 16
2.5 A2: Integrity & Hardware/Device . 17
2.6 B2: Network Integrity . 18
2.7 C2: Cloud Integrity . 19
2.8 A3: Hardware Availability . 19
2.9 B3. Network Availability . 19
2.10 C3: Cloud Availability . 20
2.11 A4: Device Authentication . 20
2.12 B4: Network Authentication . 21
2.13 C4: Cloud Authentication . 22
2.14 A5: Device Access Control . 23
2.15 B5: Network Access Control . 24
2.16 C5: Cloud Access Control . 24
2.17 A6: Device Non-Repudiation . 24
2.18 B6: Network Non-Repudiation . 25

x

CONTENTS xi

2.19 C6: Cloud Non-Repudiation . 25
2.20 Privacy . 25

2.20.1 Privacy Properties . 26
2.20.2 User Sphere . 27
2.20.3 Joint Sphere . 28
2.20.4 Recipient Sphere . 29

2.21 Summary of the Review of Security Issues 29

3 Secure Middleware for the Internet of Things 32
3.1 Introduction . 32
3.2 Review Methodology . 32
3.3 Non-Secured Systems . 33
3.4 Secured Systems . 36

3.4.1 &Cube . 36
3.4.2 Device Cloud . 36
3.4.3 DREMS . 37
3.4.4 DropLock . 38
3.4.5 FIWARE . 38
3.4.6 Hydra / Linksmart . 38
3.4.7 INCOME . 39
3.4.8 IoT-MP . 39
3.4.9 NAPS . 40
3.4.10 NERD . 40
3.4.11 NOS . 40
3.4.12 OpenIoT . 40
3.4.13 SensorAct . 40
3.4.14 SIRENA . 41
3.4.15 SMEPP . 41
3.4.16 SOCRADES . 41
3.4.17 UBIWARE . 42
3.4.18 WEBINOS . 42
3.4.19 VIRTUS . 43
3.4.20 XMPP . 44

3.5 Summary of IoT Middleware Security 44
3.5.1 Overall Gaps in the Security of Middleware 46

3.6 Discussion . 46

4 Core Technologies 48
4.1 OAuth2 . 48

4.1.1 Related Standards . 51
4.2 MQTT . 53

II Part II - Preliminary Investigations 56
5 Investigations into FIAM for IoT 57

5.1 Summary . 57
5.1.1 Motivation for Federated Identity and Access Management in IoT 57
5.1.2 Research Questions and Contributions 58

CONTENTS xii

5.1.3 Outline of the Chapter . 59
5.2 Federated Identity and Access Management for IoT 60

5.2.1 Research Questions of the FIOT Work 60
5.2.2 FIOT Implementation . 60
5.2.3 Results of the Prototyping of the FIOT System 63
5.2.4 Conclusions of the first phase 65

5.3 Exploration of FIAM and API Management in IoT 65
5.3.1 Related Work on Web API Management 66
5.3.2 IGNITE - an API Gateway for IoT Protocols 67

5.4 Results . 68
5.5 Discussion . 71

III Part III - Main Research 73
6 Model 74

6.1 Introduction . 74
6.2 Informal description of the model . 75

6.2.1 Assumptions and Boundaries 75
6.2.2 Participants . 76
6.2.3 Lifecycle . 79
6.2.4 Personal Cloud Middleware . 79
6.2.5 Scopes . 80

6.3 Formal Modelling . 81
6.3.1 Alternatives to CSP . 82
6.3.2 A Brief Introduction to CSP . 83
6.3.3 Refinement . 86

6.4 The Model in CSP . 87
6.4.1 Assumptions and Boundaries of the Model 88
6.4.2 Devices . 88
6.4.3 Manufacturer . 93
6.4.4 User Identity Provider . 93
6.4.5 Device Identity Provider . 94
6.4.6 Third Party Application . 98
6.4.7 User . 99
6.4.8 Intelligent Gateway (IG) . 101
6.4.9 Personal Cloud Middleware (PCM) 101
6.4.10 Event Sharing Across the Overall System 103
6.4.11 The Complete System . 109

6.5 Properties of the System . 110
6.5.1 End-to-End Analysis . 110
6.5.2 Data Flow Between Components 114

6.6 Conclusions of the Formal Modelling 115

7 Threat Modelling 116
7.1 Threat Modeling . 116

7.1.1 Assets and Access Points . 117
7.2 Security Threats . 119

7.2.1 Spoofing . 120

CONTENTS xiii

7.2.2 Tampering . 121
7.2.3 Repudiation . 121
7.2.4 Information Disclosure . 122
7.2.5 Denial of Service . 123
7.2.6 Elevation of Privilege . 123

7.3 Privacy Threats . 123
7.3.1 Linkability . 123
7.3.2 Identifiability . 123
7.3.3 Plausible Deniability . 124
7.3.4 Undetectability and Unobservability 124
7.3.5 Confidentiality . 124
7.3.6 Content Awareness . 124
7.3.7 Policy and Consent Noncompliance 124

7.4 Comparing the Model Against the Requirements 125
7.5 Conclusions of the Threat Modeling . 126

8 Implementation of a Prototype 127
8.1 Implementation . 127

8.1.1 Protocol Mapping . 128
8.1.2 Handling Refresh Flows in OAuthing 130
8.1.3 Data and Command Protocol 131

8.2 Components . 132
8.2.1 The OAuthing DIdP . 133
8.2.2 IGNITE . 133
8.2.3 Personal Cloud Middleware . 134
8.2.4 Device Hardware . 134
8.2.5 Manufacturing Process . 135
8.2.6 Sample Third Party Application 136

8.3 Conclusions and Further Work . 136

9 Test framework, methodology and results 137
9.1 Test Methodology and frameworks . 137

9.1.1 Measures . 137
9.1.2 Testing Across Multiple Clients 139
9.1.3 Energy and Power Measurement 141

9.2 Test Results . 143
9.2.1 Device Memory Usage . 145
9.2.2 Power and Energy Measurement 147

9.3 Analysis of Results . 148
9.4 Conclusions . 150

IV Part IV - Conclusions 151
10 Comparison with related work 152

10.1 Comparison with FIOT and IGNITE . 152
10.2 Comparison with others . 153

11 Discussion, Further Work and Conclusions 155
11.1 Addressing the Research Questions . 155

CONTENTS xiv

11.1.1 Research Question 1 . 156
11.1.2 Research Question 2 . 156
11.1.3 Research Question 3 . 156

11.2 Contributions and Impact . 157
11.2.1 Contributions . 157
11.2.2 Impact . 158

11.3 Strengths and Limitation . 158
11.4 Further Work . 159

11.4.1 Provider Choice . 159
11.4.2 Distributed Ledger Design . 159
11.4.3 Improved Scopes, Summarisation and Filtering 160
11.4.4 Device and Application Revocation 160
11.4.5 Attestation of PCMs . 160
11.4.6 Unikernel Approach for PCMs 161
11.4.7 Validation with Commercial and Other Organisations 161

11.5 Discussion . 161

Bibliography 164

Appendix - Ethics Review 188

List of Figures

1.1 Thesis Approach . 4

2.1 Three Layer Privacy Model Applied to IoT 28

4.1 Authorisation Code flow . 51

5.1 Component Diagram of FIOT . 61
5.2 FIOT Arduino Device Prototype with 9-axis IMU 63
5.3 UML Sequence Diagram of the Bootstrap in FIOT 64
5.4 UML Sequence Diagram of OAuth Access Control in FIOT 64
5.5 IGNITE System Architecture . 68
5.6 IGNITE Test Architecture . 69
5.7 CONNECT Performance Test with IGNITE 70
5.8 PUBLISH Performance Test with IGNITE 71

6.1 Existing Model . 76
6.2 Proposed Model . 77
6.3 Device Publishing Data to App . 78
6.4 Lifecycle of a Device . 80
6.5 FDR in Use . 82
6.6 UML for a Device . 90

8.1 Prototype of the OAuthing System . 129
8.2 HTTP flow to Create OAuth2 Refresh Token 129
8.3 OAuthing MQTT flow to Create OAuth2 Refresh Token 130
8.4 Comparing the Embedded Broker to the FIOT Approach 131
8.5 Sample Device . 135

9.1 Test Environment . 140
9.2 Power Management Test System . 141
9.3 One Second Client IGNITE vs Mosquitto 144
9.4 One Second Client IGNITE Percentiles 144
9.5 Device Connect Latency . 145
9.6 Stress Client IGNITE Performance . 145
9.7 Dynamic Client Registration Latency and Throughput 146
9.8 Throughput and Latency of the Introspection API on the DIdP 146
9.9 ESP8266 Memory Utilisation . 147
9.10 Time and Energy to Bootstrap . 147
9.11 Power Usage . 148

xv

List of Tables

2.1 Matrix of Security Challenges for the IoT 10

3.1 Summary of Reviewed Middleware Systems and Major Properties . . . 37

4.1 OAuth2 and Related Protocols . 52

6.1 Mapping of Scopes to Participants . 81
6.2 Scopes and their Meanings . 95
6.3 Events Shared Between the App and Other Components 110
6.4 Component Data Sharing Matrix . 114

7.1 Assets of the System . 117

8.1 APIs and their Associated Scopes . 132

xvi

Part I

Introduction, Literature Review
and Core Technologies

1

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) was originally coined as a phrase by Kevin Ashton in
1990 [19], with reference to “taggable” items that used Radio Frequency Identifica-
tion Device (RFID) chips to become electronically identifiable and therefore amenable
to interactions with the Internet. With the ubiquity of cheap processors and System-
on-Chip (SoC) based devices, the definition has expanded to include wireless and
Internet-attached sensors and actuators, including smart meters, home automation
systems, Internet-attached set-top-boxes, smartphones, connected cars, and other sys-
tems that connect the physical world to the Internet either by measuring it or affecting
it.

There are a number of definitions of IoT. For the purposes of this work, IoT will be
defined in the following way. An IoT device is a system that contains either sensors or
actuators or both and supports connection to the Internet either directly or via some
intermediary. A sensor is a sub-component of an IoT device that measures some part of
the world, allowing the IoT device to update Internet and Cloud systems with this in-
formation. A sensor may be as simple as a button (e.g. Amazon Dash Button). Sensors
widely deployed include weather sensors (barometers, anemometers, thermometers),
accelerometers and GPS units, light sensors, air quality sensors, people-counters, as
well as medical sensors (blood sugar, heart rate, etc), industrial sensors (production
line monitoring, etc) and many more. Actuators are electronically controlled systems
that affect the physical world. These includes lights, heaters, locks, motors, pumps,
and relays. Therefore the IoT is the network of such devices together with the Inter-
net systems that are designed to inter-operate and communicate with those devices,
including the websites, cloud servers, gateways and so forth.

The number of IoT devices has grown rapidly, with a recent estimate suggesting that

2

CHAPTER 1. INTRODUCTION 3

there were 12.5 billion Internet attached devices in 2010 and a prediction of 50 billion
devices by 2020 [88]. This brings with it multiple security challenges:

• The sheer scale and number of predicted devices will create new challenges and
require new approaches to security.

• These devices are becoming more central to people’s lives, including in safety
critical systems such as cars. Therefore the security of IoT devices is becoming
more important.

• Many IoT devices collect information that may be fingerprinted [146] and there-
fore become personally identifiable. This can lead to privacy concerns.

• Because devices can affect the physical world, there are attacks that can cause
physical harm to people and systems.

• These devices, due to size and power limitations, may not support the same level
of security that is expected from more traditional Internet connected systems.

Because of the pervasive nature of IoT, privacy and security are important areas for
research. In 2016, more than 100,000 IoT devices were conjoined into a hostile botnet
named Mirai that attacked the DNS servers of the east coast of the US [283]. The total
attack bandwidth of this system was measured at more than 600Gbps. In fact, the
number of devices attacked was a small number compared to the potential: previous
research [66] has identified several million devices that are available for attack.

Privacy and security are best defined in terms of specific properties that can either be
kept or broken by systems or people. Broadly speaking, security properties are those
which prevent attackers from breaking, misusing, or stealing access to systems or data.
Broadly speaking, privacy properties allow people to act without themselves or their
actions being identifiable. A detailed description of security and privacy properties
and threats comes in Chapter 2.

Therefore there is a strong motivation to find approaches to improve and enhance the
security and privacy of the IoT. Many IoT projects use existing platforms, also known
as middleware to build upon. The Oxford English Dictionary [73] defines middleware
as:

Software that acts as a bridge between an operating system or database
and applications, especially on a network.

Such systems can either improve security or reduce it: if the platform is built with
privacy and security in mind then such systems can embed best-practices and enable
system designers to rapidly create secure systems. If platforms are built without secu-
rity, or security is added as an after-thought, then it is possible that not only does the
platform encourage the creation of insecure, privacy-negating systems, but also that

CHAPTER 1. INTRODUCTION 4

it may make it more difficult to add security when problems are found. The creation
of systems with security and privacy as a key design principle is known as Privacy
by Design [54]. The security and privacy capabilities and weaknesses of existing IoT
middleware are explored in Chapter 3.

The remainder of this chapter explores the thesis from multiple dimensions, including
the methodology, the research questions and the contributions. In each case, there are
pointers to the remaining chapters. In addition, the overall chapter outline provides
a clear outline of each chapter.

1.2 Thesis Approach

The aim of this thesis is to look at challenges in the security and privacy of IoT systems,
and to identify improved approaches to address these, especially the creation of a
secure, privacy-enhancing platform.

Figure 1.1 shows the overall approach.

Matrix Review
Structured Survey

of Middleware

FIOTIGNITEOAuthing

OAuthing Model Data Sharing Matrix
Security and

Privacy Properties

Prototype
Experimental

Results

Conclusions and

Further Work

Evaluation
Criteria

Gap Analysis

IterationIteration

Modeling

Formal
Analysis

Threat
Modeling

Prototyping

Tests

Analysis

Analysis

Figure 1.1: Thesis Approach

The thesis structure starts with a broad literature review of IoT threats, challenges
and approaches (labelled Matrix Review). This approach is enhanced by the creation
of a threat matrix, which emerged as part of the review and was then used to inform

CHAPTER 1. INTRODUCTION 5

the review still further. The outcome of this part of the literature review is a set
of requirements for IoT systems to implement. This set of requirements is used as
part of a literature review of existing IoT middleware (labeled Structured Survey of
Middleware): this uses a structured surveymethodology to identify a set of IoT systems
and middleware that are evaluated on the basis of their security attributes and their
ability to meet the previously identified requirements. This is used to identify a set of
gaps in the available systems. This literature review was published in [93], with an
updated version published in [102].

These gaps are used to inform a set of approaches that were created to address them.
The first prototype approach that was implemented is named FIOT. This work, which
was originally published in [103], described experiments and findings in using token-
based, federated authentication and authorisation models in IoT. Based on gaps in
this work, a second prototype was created (named IGNITE). This work, which was
published in [101], improves upon the FIOT system in resolving specific security con-
cerns, especially around the refreshing of tokens. In addition, experimental testing
on IGNITE provided comparisons with existing approaches. Both of these prototypes
can be considered “preliminary investigations”. Aspects of the approach — but not
the actual code — of the first IGNITE prototype are re-used as part of the later work.

Based on the evaluations of these first prototypes, a new model, named OAuthing was
created. This model incorporates a number of important improvements upon the pre-
vious approaches and forms the main basis for the research in this thesis. The new
model extends the federated identity and access control approach into a wider mid-
dleware model for IoT. OAuthing demonstrates device and user registration flows,
pseudonymous interactions, and the use of personal cloud middleware, where each
user has their own runtime to control sharing of data and managing external com-
mands to their devices.

OAuthing is formally modeled in Communicating Sequential Processes (CSP), a pro-
cess algebra. This formal model is used to prove specific properties of the model,
including end-to-end consent-based authorisation and pseudonymity. The proven
properties of the model include a data sharing matrix, which is then used to create
a threat model. The threat model uses side-by-side approaches based on published
threat modeling methodologies to analyse the data sharing matrix and identify the
enhancements to security and privacy that OAuthing provides.

A prototype of this model was created, including an updated version of IGNITE. In
addition a test harness and test system was created, and this was used to perform
controlled experiments on the OAuthing system. The results of this are presented.
The results of the theoretical threat modeling and experimental testing of the system
are analysed, identifying the strengths and weaknesses, together with areas of further
research. The initial research into the OAuthing model was published in [95, 97].

CHAPTER 1. INTRODUCTION 6

Although this approach is presented in a broadly linear format, it is clear that there
were multiple iterations. The three prototypes demonstrate that, but in addition, each
prototype explored different approaches with further iterations in each case.

The overall flow of this thesis demonstrates a clear consistent, logical progression
from: the threats, gaps and requirements identified in the literature review; the model
developed and analysed; the threat modeling; through the creation of a prototype of
the model; the experimental testing of the prototype; the analysis of the test results;
to the conclusions.

1.3 Research Questions

The research sets out to answer specific research questions around the security and
privacy of IoT. These research questions are summarised here and then the results of
these are addressed in Chapter 11.

RQ1
What are the privacy and security requirements, especially those on identity and
access control, for the Internet of Things? How do they differ from the existing
requirements on the classical Internet.

RQ2
What is a model and architecture for IoT systems that can meet the requirements
identified in RQ1? What are the threats and risks of this compared to the risks
and threats identified in RQ1?

RQ3
Is there a practical instantiation of this architecture, and if so, what are the
increased costs in complexity, performance, latency and resources compared to
existing systems.

RQ1 is addressed in Chapters 2 and 3. RQ2 is addressed in Chapters 6 and 7. RQ3 is
addressed in Chapter 9.

1.4 Summary Of Contributions

The contributions of this work in addressing these research questions include:

• A matrix model for evaluating threats to IoT systems (in Chapter 2) and a struc-
tured literature review of security of middleware systems for IoT (in Chapter 3).

CHAPTER 1. INTRODUCTION 7

• An architecture and system model that allows the decoupling of multiple par-
ties: the manufacturer, the identity provider, the device identity management,
and cloud services and applications that require access to IoT data (in Chap-
ter 6). This decoupling encourages choice of provider as well as reducing the
data available in any given attack. This model includes:

– Clearly defined device and user registration processes, based on the OAuth2
protocol, that have been extended to support IoT devices and be effective
in device scenarios (in Chapter 6).

– An approach to pseudonymity for users in IoT systems, reducing the chance
that leaked data can be tied to users (in Chapter 6).

– A model and architecture that provides each user with a separate cloud
instance to handle sharing device data, and an approach for dynamically
provisioning these cloud instances (in Chapters 6 and 8).

– A threat model based on structured approaches to threat modeling, includ-
ing the STRIDE and LINDDUN approaches (in Chapter 7)

• A demonstration of the workability of themodel through the creation and testing
of a working prototype (in Chapter 8), including:

– The creation of a cloud-based test harness for emulating devices and col-
lecting test results, as well as a test harness formeasuring power and energy
consumption in IoT devices (in Chapter 9).

– Experimental results including energy and power consumption, performance,
cost and capacity metrics of the prototype (in Chapter 9).

1.5 Chapter Outline

In Chapter 2, an improved security threat matrix is proposed into which IoT security
threats and challenges are modelled. This matrix is used as a basis for a wide ranging
review of existing threats and work to address these. Out of this review, criteria are
identified for judging IoT middleware systems to evaluate their security and privacy
capabilities.

In Chapter 3 a structured literature review approach is used to identify IoT middle-
ware systems and these are evaluated using the criteria from the previous section.
The outcome of this analysis is both an understanding of best practices in the IoT
middleware space and the identification of gaps in the current best practice.

In Chapter 4, there is an introduction to two core technologies used in this work,
specifically the OAuth2 authorisation framework and MQTT.

CHAPTER 1. INTRODUCTION 8

In Chapter 5, two preliminary investigations (FIOT and IGNITE) into identity and
access management for IoT are examined. These systems were prototyped and the
results are presented.

In Chapter 6, the creation of an improved model, OAuthing, is presented. This model
improves on the preliminary systems and provides enhanced security and privacy.
The model is presented in CSP [126] with some non-normative Unified Modelling
Language (UML) [227] diagrams added to aid communication. The CSP model is
used to prove specific properties of the model.

These properties are then used to create a threat model of the system, which is pre-
sented in Chapter 7.

In Chapter 8, a prototype system is presented. The prototype demonstrates full end-
to-end flows of the system from secured device through to third-party data recipients.

In Chapter 9 there is a description of the test harness that was created in order to run
the experiments, together with information on the test methodology. In this chapter
there are also the results of performance tests and cost analysis of the prototype.

In Chapter 10, the approach is compared to related work.

In Chapter 11, strengths and weaknesses of the thesis are presented, and the impact
of this work is assessed. Further work is identified and conclusions are drawn.

Chapter 2

Security and Privacy Threats for
IoT

2.1 Summary

The rapid growth of small Internet connected devices, known as the Internet of Things
(IoT), is creating a new set of challenges to create secure, private infrastructures.
The purpose of this chapter is to review the current literature on the challenges and
approaches to security and privacy in the Internet of Things.

In order to understand the security threats against the Internet of Things, there is a
need for an approach to classifying threats. The most widely used ontology of secu-
rity threats is the Confidentiality Integrity Availability (CIA) triad [206] which has
been extended over time. This extended ontology is now often referred to as the “CIA
Plus” (CIA+) model [250]. In the course of reviewing the available literature and
approaches to IoT security, a new approach was created. This proposed expansion of
the existing ontology is a simple matrix model that specifically targets the IoT space.
In particular, this ontology creates a matrix of evaluation where each of the clas-
sic security challenges is evaluated against three different aspects: device/hardware,
network, and cloud/server-side. In some cells in this matrix, no challenges were iden-
tified areas where the IoT space presents a difference to classical Internet systems: in
other words, whilst the domain space covered by these cells contains security chal-
lenges, those challenges are no different from existing Web and Internet security chal-
lenges in that domain. In those cells the challenges are “unchanged”. In other cells
the challenges that are significantly modified by the unique nature of the Internet of
Things are called out.

In addition to the matrix, the Three Layer Privacy Model from Spiekermann and Cra-
nor [255] is used to explore privacy concerns in more detail.

9

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 10

Security Characteristic A. Device / Hardware B. Network C. Cloud / Server-Side

1. Confidentiality A1. Hardware attacks B1. Encryption with low
capability devices

C1. Privacy
Data leaks
Fingerprinting

2. Integrity A2. Spoofing;
Lack of attestation

B2. Signatures with low
capability devices
Sybil attacks

C2. No common device Identity

3. Availability A3. Physical attacks; B3. Unreliable networks,
DDoS, Radio jamming

C3. DDoS
(as usual)

4. Authentication A4. Lack of UI,
Default Passwords,
Hardware secret retrieval

B4. Default Passwords, lack
of secure identities

C4. No common device identity,
insecure flows

5. Access Control A5. Physical access;
Lack of local authentication

B5. Lightweight distributed
protocols for Access Control

C5. Inappropriate use of
traditional ACLs,
Device Shadow

6. Non-Repudiation A6. No secure local storage;
No attestation, forgery

B6. Lack of Signatures with
low capability devices

C6. Lack of secure identity and
signatures

	

Table 2.1: Matrix of Security Challenges for the IoT

Table 2.1 shows the matrix that will be used for evaluating security challenges. In
each cell of the table, the main challenges are summarised that are different in the IoT
world, or exacerbated by the challenges of IoT compared to existing Internet security
challenges. Each cell in the matrix is explored in detail below. Each of the cells is
given a designation from A1 to C6 and these letters are used as a key to refer to the
cells below.

The three aspects (Hardware/Device, Network, Cloud/Server) were chosen because
as the available literature was studied, these areas offered a clear way of segmenting
the unique challenges within the context of the IoT. These form a clear logical grouping
of the different assets involved in IoT systems. Before the matrix details are presented,
a short overview of each column heading is provided.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 11

Device and Hardware
IoT devices have specific challenges that go beyond those of existing Internet
clients. These challenges come from: the different form factors of IoT devices,
from the power requirements of IoT devices, and from the hardware aspects of
IoT devices. The rise of cheap mobile telephony has driven down the costs of
32-bit processors (especially those based around the ARM architecture [106]),
and this is increasingly creating lower cost microcontrollers and System-on-Chip
(SoC) devices based on ARM. However, there are still many IoT devices built on
8-bit processors, and occasionally, 16-bit [280]. In particular the open source
hardware platform Arduino [16] supports both 8-bit and 32-bit controllers, but
the 8-bit controllers remain considerably cheaper and at the time of writing are
still widely used.

The challenges of low-power hardware mean that certain technologies are more
or less suitable. The detailed description of each cell below will address and
analyse specific details as they pertain to security. In addition, there are specific
protocols and approaches designed for IoT usage that use less power and are
more effective. In [111] there is a comparison of eXtensible Markup Language
(XML) parsing with binary alternatives. The processing time on a constrained
device is more than a magnitude slower using XML, and that the heap memory
used by XML is more than 10Kb greater than with binary formats. These im-
provements result in a 15% saving in power usage in their tests. XML security
standards such as XML Encryption and the relatedWS-Encryption standard have
significant problems in an IoT device model. For example, any digital signature
in XML Security needs a process known as XML Canonicalisation (XML C14N).
XML Canonicalisation is a costly process in both time and memory. [40] shows
that the memory usage is more than 10× the size of the message in memory (and
XML messages are already large for IoT devices). A search was conducted for
any work on implementing WS-Security on Arduino, ESP8266 or Atmel systems
(which are common targets for IoT device implementations) without success.
XML performance on small devices can be improved using Efficient XML Inter-
change (EXI), which reduces network traffic [157].

Network
IoT devices may usemuch lower power, lower bandwidth networks than existing
Internet systems. Cellular networks often have much higher latency and more
“dropouts” than fixed networks [55]. The protocols that are used for the Web
are often too data-intensive and power-hungry for IoT devices. Network security
approaches such as encryption and digital signatures are difficult and in some
cases impractical in small devices. New low-power, low-bandwidth networks

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 12

such as LoRaWan 1 are gaining significant traction.

There have been some limited studies comparing the power usage of different
protocols. In [157] there is comparison of using Constrained Application Pro-
tocol (CoAP) with EXI against HyperText Transfer Protocol (HTTP), showing
efficiency gains in using CoAP. In [191], MQTT over TLS is shown to use less
power than HTTP over TLS in several scenarios. In [264], there is a comparison
of network traffic between CoAP and Message Queueing Telemetry Transport
(MQTT) showing that each performs better in different scenarios, with similar
overall performance. This is an area where more study is clearly needed, but
it is a valid conclusion to draw that traditional protocols such as Simple Object
Access Protocol (SOAP) are unsuited to IoT usage.

Cloud/Server-Side
While many of the existing challenges apply here, there are some aspects that
are exacerbated by the IoT for the server-side or cloud infrastructure. These
include: the often highly personal nature of data that is being collected and the
requirement to manage privacy; the need to provide user-managed controls for
access; and the lack of clear identities for devices making it easier to spoof or
impersonate devices.

2.2 A1. Device Confidentiality

Hardware devices have their own challenges for security. There are systems that can
provide tamper-proofing and try to minimise attacks, but if an attacker has direct ac-
cess to the hardware, they can often break it in many ways. For example, there are
devices that will copy the memory from flash memory into another system (known
as NAND Mirroring). Code that has been secured can often be broken with Scanning
Electron Microscopes. Skorobogatov from Cambridge University has written a com-
prehensive study [252] of many semi-invasive attacks that can be done on hardware.
Another common attack is called a side-channel attack [293, 165] where the power
usage or other indirect information from the device can be used to steal information.
This means that it is very difficult to protect secrets on a device from a committed
attacker.

A specific outcome of this is that designers should not rely on obscurity to protect
devices. A clear example of this was the Mifare card used as the London Oyster card
and for many other authentication and smart-card applications. The designers created
their own cryptographic approach and encryption algorithms. Security researchers
used a number of techniques to break the obscurity, decode the algorithm, find flaws

1https://www.lora-alliance.org/

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 13

in it and create a hack that allowed free transport in London as well as breaking
the security on a number of military installations and nuclear power plants [107].
Similarly, relying on the security of a device to protect a key that is used across many
devices is a significant error. For example, the encryption keys used in DVD players and
XBoX gaming consoles [257] were broken meaning that all devices were susceptible
to attack.

A related issue to confidentiality of the data on the device is the challenges inherent
in updating devices and pushing keys out to devices. The use of Public Key Infras-
tructure (PKI) requires devices to be updated as certificates expire. The complexity
of performing updates on IoT devices is harder, especially in smaller devices where
there is no user interface. For example, some devices need to be connected to a laptop
in order to perform updates. Others need to be taken to a dealership or vendor. The
distribution and maintenance of certificates and public-keys onto embedded devices
is complex [282]. In [197] a novel approach to supporting mutual authentication
in IoT networks is proposed. However, this model assumes that each device has a
secure, shared key (called kIR already deployed and managed into every device. As
discussed above, ensuring this key is not compromised is a challenge, as the authors
admit: “However, further research is required to realize the secure sharing of kIR.”

In addition, sensor networks may be connected intermittently to the network result-
ing in limited or no access to the Certificate Authority (CA). To address this, the use of
threshold cryptographic systems that do not depend on a single central CA has been
proposed [295], but this technology is not widely adopted: in any given environment
this would require many heterogeneous Things to support the same threshold cryp-
tographic approach. This requires human intervention and validation, and in many
cases this is another area where security falls down. For example, many situations
exist where security flaws have been fixed but because devices are in homes, or re-
mote locations, or seen as appliances rather than computing devices, updates are not
installed [125]. The Misfortune Cookie [208] demonstrates that even when secu-
rity fixes are available, some manufacturers do not make them available to customers
and continue to ship insecure systems. It is clear from the number of publicised at-
tacks [169, 142, 125] that many device designers have not adjusted to the challenges
of designing devices that will be connected either directly or indirectly to the Internet.

A further security challenge for confidentiality and hardware is the fingerprinting of
sensors or data from sensors. In [43] it has been shown that microphones, accelerom-
eters and other sensors within devices have unique “fingerprints” that can uniquely
identify devices. Effectively there are small random differences in the physical de-
vices that appear during manufacturing that can be identified and used to recognise
individual devices across multiple interactions.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 14

2.3 B1: Network Confidentiality

The confidentiality of data on the network is usually protected by encryption of the
data. There are a number of challenges with using encryption in small devices. Per-
forming public key encryption on 8-bit microcontrollers has been enhanced by the use
of Elliptic Curve Cryptography (ECC) [145, 174]. ECC reduces the time and power
requirements for the same level of encryption as an equivalent Rivest, Shamir, and
Adleman public key cryptography (RSA) public-key encryption [223] by an order of
magnitude [116, 242, 243]: RSA encryption on constrained 8-bit microcontrollers
may take minutes to complete, whereas similar ECC-based cryptography completes in
seconds. However, despite the fact that ECC enables 8-bit microcontrollers to partic-
ipate in public-key encryption systems, in many cases it is not used. It is possible to
speculate as to why this is: firstly, as evidenced by [243], the encryption algorithms
consume a large proportion of the available ROM on small controllers. Secondly,
there is a lack of standard open source software. For example, a search that I carried
out (on the 21st April 2015) of the popular open source site Github for the words “Ar-
duino” and “Encryption” revealed 10 repositories compared to “Arduino” and “HTTP”
which revealed 467 repositories. These 10 repositories were not limited to network
level encryption. However, recently an open source library for AES on Arduino [151]
has made the it more effective to use cryptography on Atmel-based hardware.2

While ECC is making it possible for low-power devices to be more efficient in per-
forming cryptography operations, in 2015 the NSA made an unprecedented warning
against ECC 3. It is not known why, as of the time of writing. There are differing
theories. One known issue with both Prime Numbers and Elliptic Curves is Quantum
Computing. In Quantum computers, instead of each bit being 0 or 1, each qubit allows
a superposition of both 0 and 1, allowing Quantum computers to solve problems that
are very slow for classical computers in a fraction of the time. At the moment gen-
eral purpose Quantum computers are very simple and confined to laboratories, but
they are increasing in power and reliability. In 1994, Peter Shor identified an algo-
rithm for Quantum Computers [245] that performs prime factorisation in polynomial
time, which effectively means that most existing Public Key Cryptography (PKC) will
be broken once sufficiently powerful Quantum computers come online. Given that
most Quantum Computers are as yet ineffective, there is some concern that maybe
the problem with ECC is actually based on classical computing, but this is all specula-
tion. One thing that that is clear is that ECC is much easier to do on IoT devices, and
especially on low-power, 8- or 16-bit systems. Therefore this warning is worrying for

2The same search was repeated on the 10th Feb 2017. The number of repositories for “Arduino” and
“Encryption” had grown to 21, while for “Arduino” and “HTTP” had reached 941, demonstrating that
support for encryption is growing slowly.

3https://threatpost.com/nsas-divorce-from-ecc-causing-crypto-hand-wringing/
115150/

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 15

IoT developers.

Another key challenge in confidentiality is the complexity of the most commonly used
encryption protocols. The standard Transport Layer Security (TLS) [74] protocol can
be configured to use ECC, but even in this case the handshake process requires a num-
ber of message flows and is sub-optimal for small devices as documented in [148].
[201] has argued that using TLS with Pre Shared Key (PSK) improves the handshake.
PSK effectively allows TLS to use traditional symmetric cryptography instead of Pub-
lic Key (assymetric) cryptography. However, they fail to discuss in any detail the
significant challenges with using PSK with IoT devices: the fact that either individual
symmetric keys need to be deployed onto each device during the device manufactur-
ing process, or the same key re-used. In this case there is a serious security risk that
a single device will be broken and thus the key will be available.

Some IoT devices use User Datagram Protocol (UDP) instead of the more commonly
used Transport Control Protocol (TCP). Both protocols are supported on the Internet.
UDP is unreliable, and is typically better suited to local communications on trusted
networks. It is more commonly used between IoT devices and gateways rather than
directly over the Internet, although, like all generalisations there are exceptions to this
rule. TLS only works with TCP, and there is an alternative protocol for UDP. Datagram
Transport Layer Security (DTLS) [218] provides a mapping of TLS to UDP networks,
by adding retransmission and sequencing which are assumed by TLS.While the combi-
nation of DTLS and UDP is lighter-weight than TLS and TCP, there is still a reasonably
large RAM and ROM size required for this [141], and this requires that messages be
sent over UDP which has significant issues with firewalls and home routers, making it
a less effective protocol for IoT applications [22]. There is ongoing work at the IETF
to produce an effective profile of both TLS and DTLS for the IoT [270].

A significant area of challenge for network confidentiality in IoT is the emergence
of new radio protocols for networking. Previously there were equivalent challenges
with Wifi networks as protocols such as Wired Equivalency Privacy (WEP) were bro-
ken [50], and there are new attacks on protocols such as Bluetooth Low Energy (BLE)
(also known as Bluetooth 4.0). For example, while BLE utilises Advanced Encryption
Standard (AES) encryption which has a known security profile, a new key exchange
protocol was created, which turns out to be flawed, allowing any attacker present
during key exchange to intercept all future communications [228]. One significant
challenge for IoT is the length of time it takes for vulnerabilities to be addressed when
hardware assets are involved. While the BLE key exchange issues are addressed in the
latest revision of BLE, it is expected it to take a very long time for the devices that en-
code the flawed version in hardware to be replaced, due to the very large number of
devices and the lack of updates for many devices. By analogy, many years after the
WEP issues were uncovered, in 2011 a study showed that 25% of wifi networks were

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 16

still at risk [44].

Even without concerning the confidentiality of the data, there is one further confi-
dentiality issue around IoT devices in the network and that is confidentiality of the
metadata. Many IoT systems rely on radio transmission and in many cases they can
be fingerprinted or identified by the radio signature. For example, Bluetooth and Wifi
systems use unique identifiers called MAC address (Media Access Control). These
can be identified by scanning, and there have been a number of systems deployed to
do that, including in airports and in cities [281]. These systems effectively can follow
users geographically around. If the user then connects to a system, that fingerprint can
be associated with the user and the previously collected location information can be
correlated with that user. In a similar attack, security researchers recently found [237]
that they could fingerprint cars based on transmissions from tyre pressure monitors,
and in addition that they could drive behind a car and from up to 40 feet away they
could signal to the driver that the tyre pressure was dangerously low when in fact it
wasn’t. Such an attack could easily be used to get a driver to stop and leave their car.

In [211] a theoretical model of traceability of IoT devices and particularly RFID sys-
tems is proposed in order to prevent unauthorised data being accessible. A protocol
that preserves the concept of untraceability is proposed.

Many of the same references and issues apply to section B2 where the use of digital
signatures with low power devices is examined.

2.4 C1. Cloud Confidentiality

In the main, the issues around Cloud confidentiality are the same as the issues in non-
IoT systems. There are however, some key concerns over privacy that are unique to
the Internet of Things. For example, the company Fitbit [90] made data about users
sexual activity available and easily searchable online [297] by default. There are
social and policy issues regarding the ownership of data created by IoT devices [216,
182]. These issues are addressed in more detail in the cell C5which looks at the access
control of IoT data and systems in the cloud and on the server-side.

A second concern that is exacerbated by the Internet of Things are concerns with
correlation of data and metadata, especially around de-anonymisation. In [185] it
was shown that anonymous metadata could be de-anonymized by correlating it with
other publicly available social metadata. This is a significant concern with IoT data.
This is also closely related to the fingerprinting of sensors within devices as discussed
in cell A1. An important model for addressing these issues in the cloud are systems
that filter, summarise and use stream-processing technologies to the data coming from
IoT devices before this data is more widely published. For example, if a system only

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 17

publishes a summarised co-ordinate rather than the raw accelerometer data then it
can potentially avoid fingerprinting de-anonymisation attacks.

In addition, an important concern has been raised in the recent past with the details
of the government sponsored attacks from the US National Security Agency (NSA)
and UK Government Communications Headquarters (GCHQ) that have been revealed
by Edward Snowden [52]. These bring up three specific concerns on IoT privacy and
confidentiality.

The first concern is the revelations that many of the encryption and security systems
have had deliberate backdoor attacks added to them so as to make them less se-
cure [153]. The second concern is the revelation that many providers of cloud hosting
systems have been forced to hand over encryption keys to the security services [159].
The third major concern is the revelations on the extent to which metadata is utilised
by the security services to build up a detailed picture of individual users [29].

The implications of these three concerns when considered in the light of the Internet
of Things is clear: a significantly deeper and larger amount of data and metadata
will be available to security services and to other attackers who can utilize the same
weaknesses that the security services compromise.

2.5 A2: Integrity & Hardware/Device

The concept of integrity refers to maintaining the accuracy and consistency of data.
In this cell of the matrix, the challenges are in maintaining the device’s code and
stored data so that it can be trusted over the lifecycle of that device. In particular the
integrity of the code is vital if one is to trust the data that comes from the device or the
data that is sent to the device. The challenges here are viruses, firmware attacks and
specific manipulation of hardware. For example, [115] describes a worm attack on
router and IoT firmware, where each compromised system then compromises further
systems, leaving behind a slew of untrustworthy systems.

The traditional solution to such problems is attestation [229, 46, 241]. Attestation
is important in two ways. Firstly, attestation can be used by a remote system to en-
sure that the firmware is unmodified and therefore the data coming from the device
is accurate. Secondly, attestation is used in conjunction with hardware-based secure
storage (Hardware Security Managers, as described in [70]) to ensure that authenti-
cation keys are not misused. The model is as follows.

In order to preserve the security of authentication keys in a machine where human
interaction is involved, the user is required to authenticate. Often the keys are them-
selves encrypted using the human’s password or a derivative of the identification pa-

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 18

rameters. However, in an unattended system, there is no human interaction. There-
fore the authentication keys need to be protected in some other way. Encryption on
its own is no help, because the encryption key is then needed and this becomes a cir-
cular problem. The solution to this is to store the authentication key in a dedicated
hardware storage. However, if the firmware of the device is modified, then the mod-
ified firmware can read the authentication key, and offer it to a hacker or misuse it
directly. The solution to this is for an attestation process to validate the firmware is
unmodified before allowing the keys to be used. Then the keys must also be encrypted
before sending them over any network.

These attestationmodels are promoted by groups such the Trusted Computing Group [262],
and Samsung Knox [233]. These rely on specialized hardware chips such as the At-
mel AT97SC3204 [20] which implement the concept of a Trusted Platform Module
(TPM) [177]. There is research into running these for Smart Grid devices [200].
However, whilst there is considerable discussion of using these techniques with IoT,
during this literature review no evidence was found of any real-world devices apart
from those based on mobile-phone platforms (e.g. phones and tablets) that imple-
mented trusted computing and attestation.

2.6 B2: Network Integrity

Maintaining integrity over a network is managed as part of the public-key encryption
models by the use of digital signatures. The challenges for IoT are exactly those that
are already identified in the cell B1 above where the challenges of using encryption
from low-power IoT devices are described.

However, there is a further concern with IoT known as the Sybil Attack [76]. A Sybil
attack4 is where a peer-to-peer network is taken over when an attacker creates a suf-
ficiently large number of fake identities to persuade the real systems of false data.
A Sybil attack may be carried out by introducing new IoT devices into a locality or
by suborning existing devices. For example, it is expected that autonomous cars may
need to form local ephemeral peer-to-peer networks based on the geography of the
road system. A significant threat could be provided if a Sybil attack provided those
cars with incorrect data about traffic flows.

4Named after a character in a book who exhibits multiple personality disorder

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 19

2.7 C2: Cloud Integrity

The biggest concern in this area is the lack of common concepts and approaches for
device identity. Integrity relies on identity - without knowing who or what created
data, one cannot trust that data. This is addressed in cells A4, B4 and C4. One spe-
cific aspect of trust in cloud for IoT scenarios is where the device lacks the power to
participate in trust and must therefore trust the cloud server. One key example of this
is where a blockchain [184] is being used in respect of IoT devices. Blockchains are
cryptographically secure ledgers that typically require a significant amount of mem-
ory, disk space and processor power to work [41]. These requirements go beyond
typical IoT devices and even beyond more powerful systems in IoT networks such as
hubs. One option to address this is to use remote attestation, but as yet there is little
or no work in this space.

2.8 A3: Hardware Availability

One of the significant models used by attackers is to challenge the availability of a
system, usually through a Denial of Service (DoS) or Distributed Denial of Service
(DDoS) attack. DoS attacks and availability attacks are used in several ways by at-
tackers. Firstly, there may be some pure malicious or destructive urge (e.g. revenge,
commercial harm, share price manipulation) in bringing down a system. Secondly,
availability attacks are often used as a pre-cursor to an authentication or spoofing
attack.

IoT devices have some different attack vectors for availability attacks. These include
resource consumption attacks (overloading restricted devices), physical attacks on
devices. A simple availability attack on an IoT device might be to force it to use
more power (e.g. by initiating multiple key exchanges over Bluetooth) and thereby
draining the battery. Another even more obvious availability challenge would be to
simply physically destroy a device if it is left in a public or unprotected area.

2.9 B3. Network Availability

There are clearlymany aspects of this that are the same as existing network challenges.
However, there are some issues that particularly affect IoT. In particular, there are a
number of attacks on local radio networks that are possible. Many IoT devices use
radio networking (Bluetooth, Wifi, 3G, General Packet Radio Service (GPRS), LoRa
and others) and these can be susceptible to radio jamming. In [180] there is a survey
of jamming attacks and countermeasures in Wireless Sensor Network (WSN). Another

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 20

clear area of attack is simply physical access. For example, even wired networks are
much more susceptible to physical attacks when the devices are spread widely over
large areas.

2.10 C3: Cloud Availability

The challenges here are not new: DoS attacks and DDoS attacks have been already
discussed. The biggest challenge here is the use of IoT devices themselves to create
the DDoS attack on the server, as in the Mirai botnet.

2.11 A4: Device Authentication

Authentication of the device to the rest of the world is considered in cells B5 and
C5. In this cell of the matrix one must consider the challenges of how users or other
devices can securely authenticate to the device itself. These are however related: a
user may bypass or fake the authentication to the device and thereby cause the device
to incorrectly identify itself over the network to other parts of the Internet.

Some attacks are very simple: many devices come with default passwords which are
never changed by owners. In a well-publicised example [125], a security researcher
gained access to full controls of a number of “smart homes”. As discussed above, the
Mirai attack took control of devices that used default or easily guessed passwords.

Similarly many home routers are at risk through insecure authentication [14]. Such
vulnerabilities can then spread to other devices on the same network as attackers take
control of the local area network.

A key issue here is the initial registration of the device. A major issue with hardware
is when the same credential, key, or password is stored on many devices. Devices
are susceptible to hardware attacks (as discussed above) and the result is that the
loss of a single device may compromise many or all devices. In order to prevent this,
devices must either be pre-programmed with unique identifiers and credentials at
manufacturing time, or must go through a registration process at setup time. In both
cases this adds complexity and expense, and may compromise usability. The use of the
OAuth2 Dynamic Client Registration process is presented in Chapter 5 (as published
in [101]) to create unique keys/credentials for each device. A significant part of the
work described in Chapter 6 is a well-defined and secure process for device and user
registration that allows users to take control of devices in scenarios where the device
itself offers no User Interface (UI) or a very basic UI.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 21

2.12 B4: Network Authentication

Unlike browsers or laptops where a human has the opportunity to provide authentica-
tion information such as a userid and password, IoT devices normally run unattended
and need to be able to power-cycle and reboot without human interaction. This means
that any identifier for the device needs to be stored in the program memory (usually
SRAM), ROM or storage of the device. This brings two distinct challenges:

• The device may validly authenticate, but the program code may have been
changed, and therefore it may behave incorrectly.

• Another device may steal the authentication identifier and may spoof the device.

In the Sybil attack [188] a single node or nodes may impersonate a large number of
different nodes thereby taking over a whole network of sensors. In all cases, attesta-
tion is a key defence against these attacks.

Another defence is the use of reputation and reputational models to associate a trust
value to devices on the network. Reputation is a general concept widely used in all
aspects of knowledge ranging from humanities, arts and social sciences to digital sci-
ences. In computing systems, reputation is considered as a measure of how trustwor-
thy a system is. There are two approaches to trust in computer networks: the first
involves a “black and white” approach based on security certificates, policies, etc. For
example, SPINS [205], develops a trusted network. The second approach is proba-
bilistic in nature, where trust is based on reputation, which is defined as a probability
that an agent is trustworthy. In fact, reputation is often seen as one measure by which
trust or distrust can be built based on good or bad past experiences and observations
(direct trust) [137] or based on collected referral information (indirect trust) [1].

In recent years, the concept of reputation has shown itself to be useful in many areas
of research in computer science, particularly in the context of distributed and collab-
orative systems, where interesting issues of trust and security manifest themselves.
Therefore, one encounters several definitions, models and systems of reputation in
distributed computing research (e.g. [105, 137, 249]).

There is considerable work into reputation and trust for wireless sensor networks,
much of which is directly relevant to IoT trust and reputation. The Hermes and E-
Hermes [302, 301] systems utilise Bayesian statistical methods to calculate reputa-
tion based on how effectively nodes in a mesh network propogate messages including
the reputation messages. Similarly, [57] evaluates reputation based on the packet-
forwarding trustworthiness of nodes, in this case using fuzzy logic to provide the eval-
uation framework. Another similar work is [173] which again looks at the packet
forwarding reputation of nodes. In IoT, [27] utilizes the concept of a Utility Function
to create a reputational model for IoT systems using the MQTT protocol.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 22

2.13 C4: Cloud Authentication

The IETF has published a draft guidance on security considerations for IoT [193]. This
draft does discuss both the bootstrapping of identity and the issues of privacy-aware
identification. One key aspect is that of bootstrapping a secure conversation between
the IoT device and other systems, which includes the challenge of setting-up an en-
crypted and/or authenticated channel such as those using TLS, Host Identity Protocol
(HIP) or Diet HIP. HIP [179] is a protocol designed to provide a cryptographically se-
cured endpoint to replace the use of IP addresses, which solves a significant problem
– IP-address spoofing – in the Internet. Diet HIP [178] is a lighter-weight rendition
of the same model designed specifically for IoT and Machine to Machine (M2M) in-
teractions. While HIP and Diet HIP solve difficult problems, they have significant
disadvantages to adoption. Secure device identity models that work at higher levels
in the network stack, such as token-based approaches, can sit side by side with exist-
ing IP-based protocols and require no changes at lower levels of the stack. By contrast,
HIP and Diet HIP require low-level changes within the IP stack to implement. As they
replace traditional IP addressing they require many systems to change before a new
device using HIP can successfully work. In addition, neither HIP nor Diet HIP address
the issues of federated authorisation and delegation.

In [96, 103], which is also covered in Chapter 5, I proposed using federated identity
protocols such as OAuth2 [117] with IoT devices, especially around the MQTT proto-
col [32]. The IOT-OAS [59] work similarly addresses the use of OAuth2 with CoAP.
Other related works include the work of Augusto et al. [23] have built a secure mobile
digital wallet by using OAuth together with the XMPP protocol [230]. In [101], (also
covered in Chapter 5) I extended the usage of OAuth2 for IoT devices to include the
use of Dynamic Client Registration [232] which allows each device to have its own
unique identity, which was discussed as an important point in Cell A1.

A contradictory aspect of IoT Authentication is the proposal to use secure Pseudonyms.
A pseudonym is also sometimes referred to as an Anonymous Identity. Effectively, a
secure pseudonym is a way of a user securely interacting with a system without giving
away their real identity. This overlaps with Cell C5 where access control for cloud
systems was examined. It has been seen from well-publicised cases that systems may
be compromised and offer personal information, even years after that information was
originally stored [294]. In one case, two suicides have been attributed to an attack
that compromised personal identities [35]. Pseudonyms are an approach that can be
considered to treat the sharing of meta-data as important as sharing of data. Also see
Section 2.20 where another model of privacy is presented.

In [226] a capability-based access system is described that allows anonymous identi-
ties to be used. [38] provides an Architecture Reference Model for an approach that

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 23

supports anonymous identities. Neither of these systems separate the provision of
anonymous identities from the data-sharing middleware. A concept called Zooko’s
Triangle [194] proposed that it is only possible to support two out of the follow-
ing three capabilities in a system: human-readable names; decentralised infrastruc-
ture; and security. Recent papers, such as [11], claim that the blockchain construct
proves Zooko’s hypothesis wrong. In [120] the concept of anonymous identities for
blockchains is explored, which will have significant impact as blockchains become
more prevalent in IoT. I have published a proposal for extending the current work to
suppport blockchains in IoT in [100], and this is further discussed in Section 11.4.

2.14 A5: Device Access Control

There are two challenges to access control at the device level. Firstly, devices are
often physically distributed and so an attacker is likely to be able to gain physical
access to the device. The challenges here (hardware attacks, NAND mirroring, etc)
were already discussed in Cell A1.

However, there is a further challenge: access control almost always requires a concept
of identity. One cannot restrict or allow access except in the most basic ways with-
out some form of authentication to the device. As discussed in the review of Cell A4,
this is a significant challenge. To give a real life example, certain mobile phones have
recently started encrypting data based on the user’s own lock-screen Personal Identi-
fication Number (PIN) code [236]. This guarantees the data cannot be read without
the user’s PIN code. However, using NAND Mirroring, it has been demonstrated that
the controls that stop repeated attempts at PIN codes can be overcome [251], with
the result that a 4 digit PIN can easily be broken within a reasonable amount of time.

Systems such as Webinos [72] have proposed using policy-based access control mech-
anisms such as XML Access Control Markup Language (XACML) [113] for IoT devices.
However, XACML is relatively heavyweight and expensive to implement [273], espe-
cially in the context of low power devices. To address this, Webinos has developed
an engine which can calculate the subset of the policy that is relevant to a particu-
lar device. Despite this innovation, the storage, transmission and processing costs of
XACML are still high for an IoT device. Another approach based around a standard
called UMA is covered in Cell C5.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 24

2.15 B5: Network Access Control

There are a number of researchers looking at how to create new lightweight protocols
for access control in IoT scenarios. [168] describe a new protocol for IoT authentica-
tion and access control is proposed based on ECC with a lightweight handshake mech-
anism to provide an effective approach for IoT, especially in mobility cases. [124]
propose a non-centralised approach for access control that uses ECC once again and
supports capability tokens in the CoAP protocol.

2.16 C5: Cloud Access Control

The biggest challenge for privacy is ensuring access control at the server or cloud
environment of data collected from the IoT. There is some significant overlap with the
area of confidentiality of data in the cloud as well (Cell C1).

I argued strongly in [103] that existing hierarchical models of access control are not
appropriate for the scale and scope of the IoT. There are two main approaches to ad-
dress this. The first is policy-based security models where roles and groups are replaces
by more generic policies that capture real-world requirements such as “A doctor may
view a patient’s record if they are treating that patient in the emergency room”. The
second approach to support the scale of IoT is user-directed security controls, other-
wise known as consent. This is the approach taken in this thesis. In [272] a strong
case is made for ensuring that users can control access to their own resources and to
the data produced by the IoT that relates to those users. In [272], an approach for
using UMA together with OAuth2 is proposed for constrained devices. This approach
also addresses Cell A5. While this approach has a lot of capabilities and power, there
is a slow uptake of UMA in real-world services and even less in IoT. The complexity
of this approach is a significant factor in the lack of widespread adoption.

[284] argues that contextual approaches must be taken to ensure privacy with the
IoT. Many modern security systems use context and reputation to establish trust and
to prevent data leaks. Context-based security [176] defines this approach which is
now implemented by major Web systems including Google and Facebook. This is
closely related to reputation-based models which was discussed above.

2.17 A6: Device Non-Repudiation

The biggest challenge in the non-repudiation network with IoT devices is the challenge
of using attestation for small devices. Attestation is discussed in detail in Cell A2.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 25

Without attestation, one cannot trust that the device system has not been modified
and therefore it is not possible to trust any non-repudiation data from the device.

2.18 B6: Network Non-Repudiation

The same challenges apply here as discussed in cells B2, B3. Non-repudiation on the
wire requires cryptography techniques and these are often hindered by resource re-
strictions on small devices. In [198] a non-repudiation protocol for restricted devices
is proposed.

2.19 C6: Cloud Non-Repudiation

This area is unchanged by the IoT, so it is not discussed any further.

In the previous eighteen sections a significant number of threats and challenges have
been identified, and this matrix has been used to assess the most relevant current
work in each space. Before summarising this work, an orthogonal model is presented
that more closely focusses on user privacy.

2.20 Privacy

One area that crosses most or all of the cells in the matrix is the need for a holistic
and studied approach to enabling privacy in the IoT. As discussed in a number of
cells, there are significant challenges to privacy with the increased data and metadata
that are being made available by IoT-connected devices. An approach that has been
proposed to address this is Privacy by Design [54]. This approach suggests that systems
should be designed from the ground up with the concept of privacy built into the heart
of each system. Many systems have added security or privacy controls as “add-ons”,
with the result that unforeseen attacks can occur.

Privacy can be inherently contradictory to security. For example, non-repudiation im-
plies that a user can be proved to have done something. A contrary privacy require-
ment is plausible deniability. For example, a user may wish to have non-repudiation
for their e-commerce activities, but may desire plausible deniability for their secret
cosplay hobby.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 26

2.20.1 Privacy Properties

There are a set of core privacy properties identified in [71]. This model is named
LINDDUN after the threats identified against these properties. The privacy properties
and corresponding threats identified in the paper are:

• Unlinkability—refers to hiding the link between two ormore actions, identities
or pieces of information. The corresponding threat is linkability.

• Anonymity and Pseudonymity — Anonymity is unlinkability between identity
and other properties. Pseudonymity is the idea that you can use a anonymous
identity. In addition, many pseudonymous systems allow you to use different
identities for different purposes, thereby allowing unlinkability between differ-
ent pseudonyms. The corresponding threat is Identifiability.

• Plausible Deniability — is the ability to deny that an action took place. The
threat is non-repudiation.

• Undetectability and unobservability — is the ability to act without the action
being known. For example, to be able to be in a particular place without being
observed. The threat is Detectability.

• Confidentiality— is as defined above: hiding data or controlling the release of
data. The threat is Disclosure.

• Content Awareness — is the ability for users to understand the data that is
being shared by that user. For example, the fact that users were unaware that
Fitbit was collecting information about their sexual activity is an example. The
threat is content Unawareness.

• Policy and Consent compliance— refers to the ability of the system to inform
users of privacy policies, offer consent-based systems, and behave according to
the policies and consents. The threat is policy and consent Non-compliance.

In the paper they identify that the latter two properties capture soft privacy properties,
while the other properties form hard properties. This distinction comes from [65].
Broadly speaking, soft privacy is based on the assumption that data is given away
and there is the use of policies, regulations and consent to manage it. Hard privacy
is the aim of directly controlling data before it is given away. The paper makes this
interesting comment:

Hard privacy technologies are active in research but poor in deployment,
due to cost and technical evolvement restrictions (such as cryptography).
Soft privacy technologies are state-of-art and have fewer research activi-
ties.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 27

Spiekermann and Cranor [255] offer a model for looking at user privacy. In their
model, they identify three spheres: the User Sphere, the Joint Sphere and the Recipient
Sphere. The User Sphere is completely in the control of the user (e.g. a laptop). The
Joint Sphere refers to areas that may seem to be in the user’s control, but may have
some significant control by a third-party. For example, a cloud email account may
seem like the user can delete emails, but the cloud provider may in fact back these up
and keep a copy. Finally, once data has been transferred to a third-party, it is assumed
to be in the Recipient Sphere, where the only controls are legal and contractual.

In the model, a device that offers the user full control is firmly in the User Sphere.
However, it can be argued that many current devices are actually in the Joint Sphere:
this is where the device appears to be in the control of the user but in fact is in the
control of a third-party. To give an example, the Google Nest device offers users the
opportunity to apply smart heating controls to their house. While a number of user-
centred controls give the user the impression that it is in the User Sphere, there are
two key reasons to counter this: firstly, the data logged by the device is extensive and
cannot be controlled by the user; secondly, the device auto-updates itself based on
commands from Google rather than based on user input [187]. Applying the concepts
of hard and soft privacy, it can be seen that hard privacy can apply in the User Sphere,
soft privacy in the Recipient Sphere and some combination may apply in the Joint
Sphere, although this will mainly be soft privacy.

Using this model, a set of clear approaches that strengthen each of the privacy and se-
curity controls available in each sphere are proposed. Figure 2.1 provides an overview
of this model, and its applicability to the IoT domain.

2.20.2 User Sphere

Moving privacy and security controls back to the users inherently strengthens the
User Sphere and provides greater choice, thereby allowing more secure approaches
to flourish.

As discussed above, devices need to have secure identities, and currently these are
either not provided, or provided by the device manufacturer.

A second, related issue, is the ownership of devices. The Mirai botnet spread because
dictionary attacks allowed attackers to take ownership of devices. Some systems of-
fer models of taking ownership securely (e.g. Bluetooth, Near Field Communication
(NFC)). In Chapter 6.2, a model where a QR code is used in conjunction with a Web-
based system is proposed.

A third issue within the User Sphere is updating the device firmware. A number of
attacks have originated in lack of updates. One issue is that device manufacturers

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 28

User	Sphere:	
	
Device	Iden*ty	
Device	Ownership	
	and	Registra*on	
Device	Updates	
	

Joint	Sphere:	
	

Consent	Management	
Policies	

	
	

Recipient	Sphere:	
	

Consent	Tracking	
Policy	Enforcement	

Data	Revoca*on	
	
	

Figure 2.1: Three Layer Privacy Model Applied to IoT

are incentivised to create new products but not to update old products. In [268],
a model is proposed whereby devices can pay for updates using a blockchain-based
cryptocurrency such as Bitcoin. The model presented in Chapter 6 offers an approach
whereby devices can be updated based on secure identity and consent approaches.

2.20.3 Joint Sphere

Recall that the Joint Sphere is the parts of the system where the user has some form of
control over their data and systems, but the provider also shares control. For example,
a health-monitoring devicemay upload data to an Internet-based system and thenmay
offer users controls on how they share data. A major change in legislation around
this is the European Union’s General Data Protection Regulation (GDPR) [276] which
requires much stronger consent controls. Many systems offer forms of user consent for
sharing data with third parties, but these lack significant requirements. For example,
many users are not aware of how to revoke consent. Similarly, there is no clear place a
user can identify all the consents they have approved across different devices. Consent
is not just about privacy. IoT devices often include actuators that can act based on
Commands, and the security of a device includes ensuring that only authorised systems
can issue commands to devices.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 29

A related area is that of policies. In this meaning a policy is a computer-readable ex-
pression of rights and obligations. For example, a consent approval may refer to a pol-
icy: the user might approve sharing of data to a website based on the fact that the web-
site promises not to share the data to any other body. Languages such as XACML [113]
allow complex access control policies to be encoded in XML or JavaScript Object No-
tation (JSON). This is discussed in Cell C5.

2.20.4 Recipient Sphere

The Recipient Sphere is the area where the user’s data is now out of their control.
Ultimately, the user must rely on legislation or legal contracts in order to maintain
control of this data. Of course, it is hard to police this recipient sphere: it is possi-
ble that the third-party website will share data following policies. In addition, many
organisations have such complex and poorly worded policies that users are unaware
of the rights they are giving up to their data. Spotting illicit data shares can possibly
be done using a concept of a Trap Street. This is the habit that map-makers have of
including incorrect data to see if others copy it. Similarly, IoT devices could deliber-
ately share incorrect data to specific parties to see if it leaks out against the agreed
policy.

2.21 Summary Of The Review Of Security Issues

In this chapter a widened ontology has been proposed for evaluating the security
issues surrounding the Internet of Things. The existing literature and research in
each of the cells of the expanded matrix has been examined. These issues have been
incorporated into Spiekermann and Cranor’s Three Layer Privacy Model. This is an
important basis for the next section where the provisions around security and privacy
that are available in available middleware for the Internet of Things are examined.

In reviewing these areas, a list of security properties and capabilities that are important
for the security and privacy of IoT were collected. This list will be used in Chapter 3
to evaluate a set of middleware systems on their provision of these capabilities.

• REQ1 - Integrity and Confidentiality The requirement to provide integrity and
confidentiality is an important aspect in any network and as discussed in cells
A1-B2 there are a number of challenges in this space for IoT.

• REQ2 - Access Control Maintaining access control to data that is personal or
can be used to extract personal data is a key aspect of privacy. In addition, it
is of prime importance that actuators are not allowed unauthorised access to
control aspects of the world.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 30

– REQ2.1 - Consent As described in cells A5-C5, traditional hierarchical
models of access control are ineffective for personal data and IoT systems.
Consent approaches – such as OAuth2 and UMA – are a key requirement.

– REQ2.2 - Policy-Based Access Control As discussed in cells A5-C5, policy-
based access control models such as XACML enable privacy considerations
and rules to be implemented effectively in IoT scenarios, although in many
cases models such as XACML are too heavyweight to deploy into devices.

• REQ3 - Authentication As discussed in numerous of the cells, IoT systems need
a concept of authentication in order to enable integrity, confidentiality, and ac-
cess control amongst other requirements.

– REQ3.1 - Federated Identity As argued in cells A4-C4, there is a clear
motivation for the use of federated models of identity for authentication in
IoT networks.

– REQ3.2 - Secure Device IdentityManaging the security of devices requires
unique credentials to be embedded into each device and secure registration
processes as discussed in cell A4.

– REQ3.3 Anonymous Identities In order to guard against de-anonymisation
and other leakages of personally identifiable information, anonymous iden-
tities/pseudonyms can offer individuals clearer consent as to when they
wish to actively share their identity, as discussed in A4.

• REQ4 - Attestation Attestation is an important technique to prevent tampering
with physical devices (as discussed in cells in column A) and hence issues with
integrity of data as well as confidentiality in IoT.

• REQ5 - Summarisation and Filtering The need to prevent de-anonymisation
is a clear driver for systems to provide summarisation and filtering technologies
such as stream processing.

• REQ6 - Context-Based Security and Reputation Many modern security mod-
els adapt the security based on a number of factors, including location, time
of day, previous history of systems, and other aspects known as context. An-
other related model is that of the reputation of systems, whereby systems that
have unusual or less-than-ideal behaviour can be trusted less using probabilistic
models. In both cases there are clear application to IoT privacy as discussed
above.

While Privacy By Design (PBD) is considered an important aspect, it can be argued
that it is a meta-requirement: it effectively covers the need to implement the major
security and privacy requirements from the initial design outwards.

CHAPTER 2. SECURITY AND PRIVACY THREATS FOR IOT 31

There are of course many other aspects to IoT security and privacy as have been
demonstrated in the matrix table and accompanying description of each cell. How-
ever, these specific aspects form an effective set of criteria by which to analyse differ-
ent systems, as shown below in the next Chapter.

Chapter 3

Secure Middleware for the
Internet of Things

3.1 Introduction

Middleware has been defined as computer software that has an intermediary func-
tion between the various applications of a computer and its operating system [119].
Middleware that is specifically designed or adapted to provide capabilities for IoT
networks is explored here.

There are a number of existing surveys of IoT middleware. Bandyopadhyay et al. [30,
31] review a number of middleware systems designed for IoT systems. While they look
at security in passing, there is no detailed analysis of the security of each middleware
system. [56] calls out the need for security, but no analysis of the approaches or
existing capabilities is provided. [21] is a very broad survey paper that addresses
IoT middleware loosely. [215] is another wide-ranging survey of IoT middleware
that provides a simple analysis of whether the surveyed systems have any support for
security or privacy, but does not address detailed requirements.

It is clear then, that a detailed evaluation of security in IoT middleware is a useful
contribution to the literature. Therefore a set of middleware systems to study were
identified using a structured methodology.

3.2 Review Methodology

This set was identified through a combination of the existing literature reviews on IoT
middleware [30, 56, 215] together with a new search for middleware systems that
explicitly target IoT scenarios. Some of the systems that were included in these papers

32

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 33

were excluded from the list on the basis that they were not middleware. For example,
[56] lists TinyREST [166] as a middleware, but in fact this paper defines a standard
protocol rather than a middleware and was therefore excluded.

The search strategy was to use a search for the terms (”IoT” OR ”Internet of Things”)
AND ”Middleware”. Only the subject terms were searched and the search was re-
stricted to academic papers written in English. The search was carried out by the
Portsmouth University Discovery system which is a metasearch engine. The list of
databases that are searched is available at [277]. The search was originally issued on
June 6th, 2015, identifying 152 papers. It was repeated on December 1st, 2016, and
213 papers were identified, showing a significant growth in IoT middleware papers
over the intervening period.

The abstracts of the 213 papers were then reviewed to identify a list of functioning
middleware systems as opposed to papers that describe other aspects of IoT without
describing a middleware system. This produced a list of 55 middleware systems.

In this study, the security and privacy requirements listed in section 2.21 were looked
for. It was also identified if the middleware had a clearly defined security model
and/or security implementation. Out of the 55 middleware systems identified, it was
found that 34 had no published discussion or architecture for security, or such a mini-
mal description that it was not possible to identify any support for the selected security
requirements. These are labelled as non-secured systems.

3.3 Non-Secured Systems

A brief description of each of the non-secure middleware systems follows:

ASIP The Arduino Service Interface Programming model (ASIP) [36] is a middleware
for Arduino hardware.

ASPIRE ASPIRE Project (Advanced Sensors and lightweight Programmable middle-
ware for Innovative Rfid Enterprise applications) [209] is a EU-funded project
that created an open, royalty-free middleware for RFID-based applications.

Autonomic QoS Management [33] offers a middleware that autonomically man-
ages Quality of Service (QoS) in IoT scenarios. While this does address some
aspects related to security (i.e. accuracy and availability), there is no discussion
of how security is handled.

CASCOM In [202] a semantically-driven configuration model is built on top of exist-
ing middleware systems such as GSN [2]. The authors state their intention of
addressing privacy in future work.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 34

CIRUS CIRUS [207] is a cloud-based middleware for ubiquitous analytics of IoT data.

Cloud-based Car Parking Middleware In [135] the authors describe an OSGi-based
middleware for smart cities enabling IoT-based car parking.

Context Aware Gateway [13] provides a reference architecture for using context-
awareness in IoT scenarios. The middleware itself does not address security or
privacy and the authors plan to address this in further work.

DAMP In [8] there is a middleware – Distributed Applications Management Platform
– that can configure systems based on Quality of Service characteristics (QoS).
These characteristics can include security, but the system itself does not offer
any security model.

Dioptase Dioptase [39] is a RESTful stream-processing middleware for IoT. Dioptase
does address one useful aspect for privacy: intermediate stream processing of
data, summarisation and filtering. However, there is no detailed security ar-
chitecture and description and the security model is left as an item of future
work.

EDBO [83] describes the Emergent Distributed Bio-Organization: a biologically-inspired
platform for self-organising IoT systems.

EDSOA An Event-driven Service-oriented Architecture for the Internet of Things Ser-
vice Execution [150] describes an approach that utilizes an event-driven SOA.

EMMA The Environmental Monitoring and Management Agent (EMMA) is a pro-
posed middleware based on CoAP [78]. It does not offer any security archi-
tecture.

GSN The GSN framework [2] (Global Sensor Networks) defines a middleware for
the Internet of Things that requires little or no programming. The security ar-
chitecture of the system is not described in any detail: there are diagrams of
the container architecture which point to proposed places for access control and
integrity checks, but unfortunately there is not sufficient discussion to be able
to categorize or evaluate the approach taken.

Hi-Speed USB middleware [24] offers a middleware based on USB.

Hitch Hiker Hitch Hiker 2.0 [214] is a prototype middleware environment built on
Contiki OS.

LMTS In [172] a middleware system for asset tracking (Laptop Management and
Tracking System) is described.

Middleware for Environmental Monitoring and Control [292] defines amiddleware
for environmental monitoring and control.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 35

Middleware for Industrial IoT [275] describes amiddleware for Industrial IoT based
on OpenDDS, which is a middleware that implements the Data Distributions
Services (DDS) protocol. At the time of writing the DDS security model was in
development and hence the architecture does not address security.

MIFIM Middleware for Future Internet Models (MIFIM) [28] is a Web Service-based
architecture that uses Aspect-Orientation to allow for simpler reconfiguration.

MOSDEN MOSDEN (Mobile Sensor Data Processing Engine) [203] is an extension
of the GSN approach (see above) which is explicitly targeted at opportunistic
sensing from restricted devices.

M-Hub [261] describes a middleware for Mobile IoT applications built on top of an-
other middleware (Scalable Data Distribution Layer). In [114] this work is en-
hanced to create a middleware for Ambient Assisted Living. In [278] there is
another middleware based onM-Hub. There is no support for security or privacy
described.

PalCom Palcom [258] is a middleware designed for pervasive computing, including
IoT systems. It supports ad-hoc composition of services. There is no discussion
of security beyond a statement that traditional security models may be added in
future.

POBICOS Platform for Opportunistic Behaviour in Incompletely Specified, Heteroge-
neous Object Communities (POBICOS) [274] is a device middleware designed
to run on small devices. In [260] there is a description of migrating aspects of
the middleware to a proxy to enable support for smaller devices.

PROtEUS PROtEUS is a process manager designed to support Cyber-Physical Sys-
tems [239]. It describes a middleware for complex self-healing processes.

RemoteU¡ [53] offers a middleware for Remote user interfaces.

SBIOTCM In A SOA Based IOT Communication Middleware [299] is a middleware
based on SOAP and WS. There is no security model described.

Service Oriented access for Wireless Sensor Networks [104] provides a service-oriented
middleware for IoT and Wireless Sensor Network data.

Smart Object Middleware [123] describes a Smart Objectmiddleware based on Java.

symbIoTe In [254] a roadmap is laid out for a new EU funded project to allow ver-
tical IoT platforms to interoperate and federate. There is no plan for security
presented.

Thingsonomy Thingsonomy [121] is an event-based publish-subscribe based approach
that applies semantic technology and semantic matching to the events published

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 36

within the system.

UBIROAD TheUBIROADmiddleware [263] is a specialisation of the UBIWARE project
specifically targeting traffic, road management, transport management and re-
lated use-cases.

UBISOAP ubiSOAP [51] is a Service-Oriented Architecture (SOA) approach that builds
a middleware for Ubiquitous Computing and IoT based on the Web Services
(WS) standards and the SOAP protocol.

VEoT [10] describes a Virtual Environment of Things which is a middleware for Vir-
tual Reality engagement with the Internet of Things.

WHEREX WhereX [110] is an event-based middleware for the IoT.

3.4 Secured Systems

20 middleware systems were identified that implement or describe sufficient security
architecture that they could be evaluated against the requirements that were identified
in section 2.21. These systems are described as secured. In addition to the require-
ments identified above in Section 2.21, it is also identified whether the systems had
explicit support or adaptation for IoT specific protocols: MQTT, CoAP, DDS, Bluetooth
or Zigbee. As discussed above, in Section 2.1, these protocols have been specifically
designed for low-power devices. This requirement is labeled as REQ7. Table 3.1
shows the summary of this analysis.

For each of the secured middleware system the core published papers were reviewed,
but in addition any further available documentation was explored. Below are the
specific details of each middleware system.

3.4.1 &Cube

In [296] they describe a middleware, &Cube, that is designed to offer RESTful APIs as
well as MQTT connections to integrate with IoT devices. The system offers a security
manager providing encryption, authentication and access control. No further details
are available on the techniques used.

3.4.2 Device Cloud

In [217] there is a blueprint for a middleware that applies Cloud Computing concepts
to IoT device middleware. A more detailed exposition is given in [144]. The approach

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 37

RE
Q
1	
-In

te
gr
ity

	a
nd

	

Co
nf
id
en

tia
lit
y

RE

Q
2	
-A
cc
es
s	
Co

nt
ro
l

RE

Q
2.
1	
-C
on

se
nt

RE
Q
2.
2	
-P
ol
ic
y-
ba

se
d	

se
cu
rit
y

RE
Q
3	
-

Au

th
en

tic
at
io
n

RE
Q
3.
1	
-F
ed

er
at
ed

	

Id
en

tit
y

RE
Q
3.
2	
-S
ec
ur
e	

D
ev
ic
e	
Id
en

tit
y

RE
Q
3.
3	
-A
no

ny
m
ou

s	

Id
en

tit
ie
s

RE

Q
4	
-A
tt
es
ta
tio

n

RE
Q
5	
-

Su
m
m
ar
is
at
io
n	
an

d	

Fi
lte

rin
g

RE
Q
6	
-C
on

te
xt
-b
as
ed

	
se
cu
rit
y/
Re

pu
ta
tio

n

RE
Q
7	
-Io

T-
sp
ec
ifi
c	

Pr
ot
oc
ol
	S
up

po
rt

 &Cube	 Y Y

 Y

 Y
 Device	Cloud Y Y Y

 Y Y

 Y

 DREMS Y Y

 Y

 Y
 DropLock

 Y Y

 Y Y

 Y
 FIWARE Y Y Y Y Y Y

 Y

 Hydra/Linksmart Y Y

 Y

 Y
 Income Y Y

 Y Y

 Y

 IoT-MP Y

 Y
 NAPS Y Y

 Y

 NERD Y

 Y

 Y
 NOS Y Y

 Y

 Y Y

 OpenIoT
 Y Y

 SensorAct
 Y

 Y

 SIRENA	 Y

 Y
 SMEPP	 Y Y

 Y

 SOCRADES Y Y

 Y
 UBIWARE

 Y
 WEBINOS Y Y

 Y Y Y Y

 XMPP Y Y

 Y Y
 VIRTUS Y Y

 Y Y

 	

Table 3.1: Summary of Reviewed Middleware Systems and Major Properties

supports OAuth2.0 to provide tokens to devices. It also supports encryption and access
control. There is no support for summarisation, filtering, or consent-based access
control described in the publications.

3.4.3 DREMS

Distributed RealTime Managed Systems (DREMS) [158] is a combination of software
tooling and a middleware runtime for IoT. It includes Linux Operating System ex-
tensions as well. DREMS is based on an actor [7] model has a well-defined security
model that extends to the operating system. The security model includes the concept
of multi-level security (MLS) for communications between a device and the actor.
The MLS model is based on labelled communications. This ensures that data can only
flow to systems that have a higher clearance than the data being transmitted. This is
a very powerful security model for government and military use-cases. However, this
approach does not address needs-based access control. For example, someone with
Top Secret clearance may read data that is categorised as Secret even if they have no
business reason to utilise that data. The weaknesses of this model have been shown
with situations such as the Snowden revelations.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 38

3.4.4 DropLock

In [154] the authors describe amiddleware specifically built for IoT systems and Smart
Cities. The DropLock system is designed to enable secure smartphone access to a
smart locker, allowing delivery personnel secure access to drop off packages. The
system uses secure tokens to allow access to devices. The tokens are passed to the
secure locker using Bluetooth.

3.4.5 FIWARE

FIWARE [112] is a middleware designed to be the basis of a Future Internet, spon-
sored by the European Union under the FP7 programme. FIWARE is one of the few
systems that claim to have used PBD as a basis for design [279]. FIWARE has a con-
cept of plugins, known as Generic Enablers (GE). The security model is implemented
through GEs including the Identity Management (IdM GE), the Authorisation Policy
Decision Point (PDP) GE, and the Policy Enforcement Point (PEP) Proxy. The standard
approach within FIWARE is based on OAuth2 and XACML. It also supports interopera-
ble standards for exchanging identities with other systems. The overall security design
of FIWARE fits into modern authentication and authorisation models. However, there
is no significant adaption of this architecture to the specifics of IoT systems in the core
descriptions of the security architecture. IoT devices are catered for in the FIWARE
Architecture through a gateway model. The IoT devices connect to the gateway us-
ing IoT specific protocols. The gateway is part of the IoT Edge. This communicates
via the standard FIWARE protocols into an IoT Backend where there are components
supporting Device Management and Discovery. The FIWARE documentation does not
describe any specific adaptation of security or support for security between devices
and the gateway.

3.4.6 Hydra / Linksmart

Hydra [82] was a European Union funded project which has since been extended
and renamed as LinkSmart [149]. The Hydra team published a detailed theoretical
model of a policy-based security approach [4]. This model is based on using lattices
to define the flow of information through a system. This model provides a language-
based approach to security modelling. However, whilst this paper is published as part
of the Hydra funded project, there is no clear implementation of this in the context
of IoT or description of how this work can benefit the IoT world. Hoever, because
Hydra / Linksmart is an Open Source project with documentation beyond the scientific
papers, it is possible to understand the security model in greater detail by review of
this project.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 39

The Hydra and LinkSmart architectures are both based on the Web Services (WS)
specifications, building on the SOAP protocol [253], which in turn builds on the XML
Language [290]. The security model is described in some detail in the LinkSmart
documentation [161]. The model utilises XML Security [77]. There are significant
challenges in using this model in the IoT world, as discussed above in section 2.1. The
Hydra/Linksmart approach also uses symmetric keys for security which is a challenge
for IoT because each key must be uniquely created, distributed and updated upon
expiry into each device creating a major key management issue.

Hydra / Linksmart offers a service called the TrustManager. This is a system that
uses the cryptographic capabilities to support a trusted identity for IoT devices. This
works with a Public Key Infrastructure (PKI) and certificates to ensure trust. Once
again there are challenges in the distribution and management of the certificates to
the devices which are not addressed in this middleware.

The Hydra middleware does not offer any policy based access control for IoT data,
and does not address the secure storage of data for users, nor offer any user-controlled
models of access control to user’s data.

In [199] there is a specific instantiation of LinkSmart applied to energy efficiency in
buildings. There is no further extension to the security model.

3.4.7 INCOME

INCOME [15] is a framework for multi-scale context management for the IoT, funded
by the French National Research Agency. The aim of INCOME is to fuse together
context data from multiple levels to provide a high-level set of context data from IoT
systems that can be applied to decision making, including trust, privacy and security
decisions. MuDebs andMuContext [160] are frameworks built on top of INCOME that
add Attribute Based Access Control (ABAC) and Quality of Context (QoC) processing.
MuDebs utilises XACML policies to implement ABAC. MuContext validates QoC and
enables privacy filtering.

3.4.8 IoT-MP

The IoT Management Platform (IoT-MP) is a middleware system described in [84].
IoT-MP offers a securitymodule that implements attribute-based access control (ABAC)
against systems. IoT-MP has a model whereby an Agent is registered for each class of
Things, creating the concept of a Managed Thing. Agents have unique secure identi-
ties. The IoT-MP does not define how devices are identified to agents.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 40

3.4.9 NAPS

The Naming, Addressing and Profile Server (NAPS) [162] describes a heterogeneous
middleware for IoT based on unifying data streams from multiple IoT approaches.
Based on RESTful APIs, the NAPS approach includes a key component handling Au-
thentication, Authorisation, and Accounting (AAA). The design is based on the Net-
work Security Capability model defined in the ETSI M2M architecture [86]. However,
the main details of the security architecture have not yet been implemented and have
been left for future work. There is no consideration of federated identity or policy
based access control.

3.4.10 NERD

No Effort Rapid Development (NERD) [63] is a middleware designed for human IoT
interfaces, especially around Bluetooth LE systems and iBeacon discovery. It does not
add any new security measures but uses the existing security models in Bluetooth and
HTTP.

3.4.11 NOS

NetwOrked Smart objects (NOS) [247, 248] takes an interesting approach to security
where the aim is to provide each item of data with a reputational score based on
a quality analyser and a security analyser. A machine learning algorithm is used to
learn the behaviour of systems in the network and adjust the scores based on the
potential attacks and the applied countermeasures. The system incorporates keys and
key-based authentication, encryption and complex passwords.

3.4.12 OpenIoT

OpenIoT is an open cloud-based middleware for the Internet of Things, funded by the
European Union FP7 programme. It also extends the GSN framework. The Security
Module uses OAuth2 as the main authentication and authorisation model for web-
based systems. No details are given of how sensors are authenticated or authorised.

3.4.13 SensorAct

SensorAct [17] is an IoT middleware specifically aimed at providing support for Build-
ing Management Systems (BMS). It supports fine-grained access control through the

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 41

use of a rules engine to implement access control policies. No details are provided of
the authentication models at the device level or the web interface.

3.4.14 SIRENA

SIRENA (Service Infrastructure for Real-time Embedded Networked Devices) [42] is
a SOAP/WS-based middleware for IoT and embedded devices. While there is little
description of the security framework in SIRENA, it does show the use of the WS-
Security specification. As previously discussed, this approach is very heavyweight,
has issues with key distribution, federated identity and access control.

3.4.15 SMEPP

Secure Middleware for P2P (SMEPP) [37] is an IoT middleware explicitly designed
to be secure, especially dealing with challenges in the peer-to-peer model. SMEPP
security is based around the concept of a group. When a peer attempts to join a group,
the system relies on challenge-response security to implement mutual authentication.
At this point the newly joined peer is issues a shared session key which is shared by
all members of the group. SMEPP utilizes elliptic key cryptography to reduce the
burden of the security encryption onto smaller devices. Overall SMEPP has addressed
security effectively for peer-to-peer groups, but assumes a wider PKI infrastructure for
managing the key model used within each group. In addition, there is no discussion
of access control or federated identity models, which are important for IoT scenarios.
The model is that any member of the group can read data published to the group
using the shared session key.

3.4.16 SOCRADES

SOCRADES [69] is a middleware specifically designed for manufacturing shop floors
and other industrial environments. Based on SOAP and the WS stack it utilizes the
security models of the WS stack, in particular the WS-Security standard for encryption
and message integrity. There is no special support for federation, tokens or policy-
based access control (instead relying on role-based access control). The resulting
XML approach is very heavyweight for IoT devices and costly in terms of network and
power [79]. In addition, the lack of explicit support for tokens and federated security
and identity models creates a significant challenge in key distributions and centralized
identity for this approach.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 42

3.4.17 UBIWARE

TheUBIWARE project is a smart semanticmiddleware for Ubiquitous Computing [238].
The security model for UBIWARE is not clearly described in the original paper, but an
additional paper describes a model called Smart Ubiquitous Resource Privacy and Se-
curity (SURPAS) [186], which provides a security model for UBIWARE. UBIWARE is
designed to utilize the semantic Web constructs, and SURPAS utilises the same model
of semantic Web as the basis for the abstract and concrete security architectures that
it proposes. The model is highly driven by policies and these can be stored and man-
aged by external parties. In particular the SURPAS architecture is highly dynamic,
allowing devices to take on board new roles or functions at runtime. While the SUR-
PAS model describes a theoretical solution to the approach, there are few details on
the concrete instantiation. For example, while the model defines a policy-based ap-
proach to access control, there are no clearly defined policy languages chosen. There
is no clear model of identity or federation, and there is no clear guidance on how to
ensure that federated policies that are stored on external servers are protected and
maintain integrity. The model does not address any edge computing approaches or fil-
tering/summarisation of IoT data. However, the overall approach of using ontologies
and basing policies on those ontologies is very powerful.

3.4.18 WEBINOS

The Webinos [72] system has a well-thought through security architecture. The doc-
umentation explicitly discussed PBD. The Webinos system is based around the core
concept of devices being in the personal control of users and therefore having each
user having a “personal zone” to protect. This is a more advanced concept but in the
same vein as the protected sub-domains in VIRTUS. In the Webinos model, each user
has a cloud instance - known as the Personal Zone Hub (PZH) that supports their
devices. The Personal Zone Hub acts as a service to collect and offer access to data
and capabilities of the user’s devices. The PZH acts as a certificate authority, issuing
certificates to the devices that are used for mutual authentication using TLS. User’s
authenticate to the PZH using the OpenID protocol. On the device, a communications
module known as the Personal Zone Proxy (PZP) handles all communications with
the PZH.

The idea of the Personal Zone may have significant issues however, when a single
device is used by many different people (for example, the in-car system in a taxi as
opposed to a personal vehicle). These issues are not addressed in Webinos, though
they are called out in the lessons learnt.

Webinos utilizes policy-based access control modelled in the XACML [113] language.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 43

The system pushes XACML policies out to devices to limit the spread of personal and
contextual data.

Webinos addresses the issue of software modification using an attestation API, which
can report whether the software running is the correct level. This requires the device
to be utilising Trusted Platform Module (TPM) hardware that can return attestation
data.

Webinos also addresses the issue of using secure storage on devices where the device
has such storage.

While the Webinos project does address many of the privacy concerns of users through
the use of the Personal Zone Hub, there is clearly further work that could be done.
In particular the ability for users to define what data they share with other users or
other systems using a protocol such as OAuth2 [117], and the ability to install filters
or other anonymising or data reduction aggregators into the PZH are lacking. One
other aspect of Webinos that is worth drawing attention to is the reliance on a certain
size of device: the PZP that is needed on the device is based on the node.js framework
and therefore the device needs to be of a certain size (e.g. a 32-bit processor running
a Linux derivative or similar) to participate in Webinos.

3.4.19 VIRTUS

The VIRTUS middleware [60] utilizes the core security features of the XMPP protocol
to ensure security. This includes tunnelling communications over TLS, authentica-
tion via SASL, and access control via XMPP’s built-in mechanisms. SASL is a flexi-
ble mechanism for authentication which supports a number of different systems in-
cluding token-based approaches such as OAuth2 or Kerberos, username/password,
or X.509 certificates. For client-to-server based communications, it is not clear from
the description which of these methods is actually implemented within VIRTUS. For
server-to-server communications there is specified the use of SASL to ensure full server
federation.

While the VIRTUS model does not describe the challenges of implementing a per-
sonal instance of middleware for single users or devices, there is a concept of edge
computing described, where some interactions may happen within an edge domain
(e.g. within a house) and lower security is required within that domain while higher
security is expected when sharing that data outside. This model is fairly briefly de-
scribed but provides an interesting approach. One challenge is that there are multiple
assumptions to this: firstly, that security within the limited domain needs less security,
when there may be attackers within that perimeter. Secondly, that the open channel
to the wider Internet cannot be misused to attack the edge network. The ability to

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 44

calculate, summarise and/or filter data from the edge network before sharing it is also
not discussed except in very granular terms (e.g. some data are available, other data
are not).

3.4.20 XMPP

The paper [131] describes how the XMPP architecture can be applied to the challenges
of M2M and hence the IoT, together with a proof-of-concept approach. The system
relies on the set of XMPP extensions around publish/subscribe and the related XMPP
security models to implement security. This includes TLS for encryption, and access
control models around publish-subscribe. There is also a discussion about leakage
of information such as presence from devices. The proof-of-concept model did not
include any federated identity models, but did utilize a One-Time Password (OTP)
model on top of XMPP to address the concepts such as temporary loans of devices.

3.5 Summary Of IoT Middleware Security

In reviewing both the security and privacy challenges of the wider IoT and a structured
review of more than fifty middleware platforms, key categories that can be applied
across these areas have been identified.

The first set is the majority of the identified systems that did not address security,
left it for further work, or did not describe the security approach in any meaningful
detail were identified. There were other systems (such as UBIWARE and NAPS) that
offer theoretical models but did not demonstrate any real-world implementation or
concrete approach.

The next clear category are those middlewares that apply the SOAP/Web Services
model of security. This includes SOCRADES, SIRENA, and Hydra/Linksmart. As
has been discussed in the previous sections there are significant challenges in perfor-
mance, memory footprint, processor power and usability of these approaches when
used with the IoT.

Two of the approaches delegate the model to the XMPP standards: VIRTUS and
XMPP [60, 131]. XMPP also has the complexity of XML, but avoids the major per-
formance overheads by using TLS instead of XML Encryption and XML Security. In
addition, recent work on XMPP using EXI makes this approach more effective for IoT.

This finally leaves a few unique approaches, each of which brings their own unique
benefits.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 45

DREMS is the only system to provide Multi-level security based on the concept of
security clearances. While this model is attractive to government and military circles
(because of the classification systems used in those circles), it can be argued that it
fails in many regards for IoT. In particular there are no personal controls, no concept
of federated identity and no policy based access controls in this model.

SMEPP offers a model based on public key infrastructures and shared session keys.
It can be argued that this approach has a number of challenges scaling to the re-
quirements of the IoT. Firstly, there are significant issues in key distribution and key
revocation. Secondly, this model creates a new form of perimeter - based on the con-
cept of a shared session key. That means that if one device is compromised then the
data and control of all the devices in that group are also compromised.

Only Dioptase supports the concept of stream processing in the cloud, which is a
serious requirement for the IoT. The requirement is to be able to filter, summarise and
process streams of data from devices to support anonymisation and reduction of data
leakage.

FIWARE has a powerful and extensible model for authentication and access control,
including support for federated identity and policy-based access control.

Finally, the most advanced approach identified is that proposed by Webinos. Webinos
utilizes some key technologies to provide a security and privacy model. Firstly, this
uses policy-based access control (XACML). The model does not however support user-
guided access control mechanisms such as OAuth2 or UMA.

Webinos does support the use of Federated Identity tokens (OpenID), but only from
users to the cloud, as opposed to devices to the cloud. I and others have proposed the
model of using federated identity tokens from the device to the cloud in [103, 101,
59].

The contribution of the Webinos work with the largest potential impact is the concept
of Personal Zone Hub, which is a cloud service dedicated to a single user to handle the
security and privacy requirements of that user. There is, however, further research
around this area: the PZH model from Webinos does not examine many of the chal-
lenges of how to implement the PZH in real life. For example, user registration, cloud
hosting, and many other aspects need to be defined in more detail before the Webi-
nos PZH model is practicable for real world projects. In addition there are challenges
using the PZH model with smaller devices, because of the requirement to use the PZP.

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 46

3.5.1 Overall Gaps In The Security Of Middleware

When the requirements for security and privacy of the Internet of Things are examined
there are some gaps that are not provided by any of the reviewed middleware systems.

• Only two of the middleware systems explicitly applied the concept of PBD in de-
signing a middleware directly to support privacy, although Webinos did exhibit
many of the characteristics of a system that used this approach.

• Only two of the systems applied any concepts of context-based security or rep-
utation to IoT devices.

• User consent was only supported in three of the systems.

• None of the systems supported anonymous identities or attestation.

• None of the systems satisfied all the requirements identified.

3.6 Discussion

In this literature review a two-phase approach to reviewing the available literature
around the security and privacy of IoT devices has been taken.

In the first part a matrix of security challenges was created that applied the existing
CIA+model to three distinct areas: device, network and cloud. This newmodel forms
a clear contribution to the literature. In each of the cells of the matrix were identi-
fied threats, challenges and/or approaches, exacerbated by the IoT, or unchanged.
Further, Spiekerman and Cranor’s three-layer privacy model was used to analyse the
privacy requirements of IoT. This overall analysis was used to identify seven major
requirements and five subsidiary requirements.

In the second part, a structured search approach was used to identity 55 specific IoT
middleware frameworks and then the security models of each of those was analysed.
The twelve requirements from the first phase were used to validate the capabilities
of each system. While there are existing surveys of IoT middleware, none of them
focussed on a detailed analysis of the security of the surveyed systems and therefore
this has a clear contribution to the literature.

In this survey, clear gaps in the literature and practice have been identified. Over half
the surveyed systems had either no security or no substantive discussion of security.
Out of 55 surveyed systems very few address a significant proportion of the major
challenges that are identified in the first section. Some aspects are not addressed by
any of the surveyed systems.

This creates an opportunity for research that is the basis of the rest of this thesis:

CHAPTER 3. SECURE MIDDLEWARE FOR THE INTERNET OF THINGS 47

• First, to define a model and architecture for IoT middleware that is designed
from the start to enable privacy and security (Privacy by Design).

• Secondly, to bring together the best practice into a single middleware that in-
cludes: federated identity (for users and devices), policy-based access control,
user managed access to data, summarisation and filtering, and other require-
ments.

• Thirdly, there is considerable work to be done to define a better model around
the implementation challenges for the concept of a personal cloud service (e.g
the Webinos PZH). This includes the hosting model, bootstrapping, discovery
and usage for smaller devices.

Chapter 4

Core Technologies

The model and architecture proposed in this thesis is heavily based on the OAuth2
specification. In addition, the prototype is built on the MQTT protocol. In this chapter
there is a short introduction to each of these as well as looking at existing work in each
case.

4.1 OAuth2

The OAuth 1.0 Protocol [80], and its successor, the OAuth 2.0 Framework [81], are
protocols designed to solve the privacy and access control issues related to large scale
Internet-connected applications. The original OAuth protocol emerged in response
to requirements to allow users to enable third-party websites to post tweets on their
behalf using APIs [118], and OAuth2 was developed at the IETF as a replacement.
OAuth and OAuth2 allows users to delegate access to specified function to third-party
websites. It also allows users to share identification across websites without sharing
their credentials across those websites.

A typical use-case for OAuth2 is as follows. Social networking websites often used
to ask users for access to their email contact lists in order to bootstrap or extend the
user’s social network. In order to implement this, the social network would as the user
for the username and password to their email provider (such as Hotmail, Google Mail,
or Yahoo). Then, using an undocumented Application Programming Interface (API)
or via HTML screen-scraping, the social network website would login as the user and
access the contact list. This approach had significant concerns:

• There was no fine-grained access control: once the social network had access
to the username and password they could do anything – for example, posting
emails or spam – and not just the task in hand (accessing the contact list).

48

CHAPTER 4. CORE TECHNOLOGIES 49

• There was no time limitation: unless the user then changed the password then
the social network could store this data and re-use it later. It is assumed that
most users do not change their passwords after this step.

• This breaks the normal terms and conditions of websites that do not allow shar-
ing of credentials.

The OAuth 1.0 Protocol and OAuth 2.0 Authorisation1 Framework are designed to
solve these problems. OAuth2 has been available for a number of years now and is
widely used, including by major websites like Facebook, Github, Twitter, Google and
Yahoo.

In OAuth2, there are typically four roles:

• Resource Owner — this is the person who owns the resource that is going to
be accessed. In this work the alternative User will be used for the same concept.

• Authorisation Server (AS)—this server issues the tokens and handles user con-
sent flows. This component is sometimes co-located with the Resource Server.

• Resource Server — the server that controls access to a resource owned by the
User.

• Client — the client is the system that wishes to access the user’s resource. In
many cases the client is itself an application running in a web server. The client
is uniquely identified by a ClientID. The most common authentication uses this
in conjunction with a ClientSecret.

In the social networking example: the Resource Owner is the user; the Resource Server
hosts the contact list; the Authorisation Server is the identity system managing the
users credentials for the contact list; and the Client is the social networking site.

Before anything happens, the two sites (the Client and the Authorisation Server) must
communicate, and the Client is issued with a Client ID and Client Secret. These are
used by the Client to authenticate to the Authorisation Server.

The user is browsing the social network and the opportunity to expand their network
is offered. The social networking site (Client), makes a request to the Resource Owner
to access their contact list. In most cases, this is actually done indirectly via the Au-
thorisation Server - what will happen is that the user’s browser will have an HTTP
redirect to the Authorisation Server. The Authorisation Server asks the user to login
(with the same credentials that they use for their email site). An important point is
that they only share their credentials with the site that owns them. In many cases, if

1For consistency across this document, the UK English “authorisation” is used. However, the original
spelling by the IETF uses the US English “authorization”

CHAPTER 4. CORE TECHNOLOGIES 50

they are already logged into that email site in another window or with a cookie, this
step will be automatic.

Once they are logged into their email site, the Authorisation Server asks if they would
like to permit the Client (the social network) access to their contact list. There are two
important aspects to this: firstly, there is a scope associated with this, and secondly
there is a time limit. For example, in this case, the scope would be a URI that indicates
access to just the contact list. The user might be asked ”Do you want to authorise this
just once or always”, which would allow them to specify how long the authorisation
should last for.

At this point the Client is issued an Authorisation Grant or code. The Client then
uses their Secret together with the Authorisation code to request a token. This token
identifies the application making the request (the Client or social networking site)
together with the user. The token can then be used to access the Resource Server (the
API that allows access to the contact list).

The important features of this model are:

• The user only shares their email credentials with the email site (or its associated
Authorisation Server).

• The Client only has access to a specific scope – in this case the contact list.

• The token identifies both the Client and the User: this is not a general token
allowing any system access to the contact list, but a very specific authorisation
of a specific application or site to access a particular scope.

• The token has a time limit, and the authorisation itself has a time limit as well.
In the case where the token expires, but the authorisation still continues, the
client may refresh the token using a further process.

• As a further point, the authorisation grant is dynamic – the user authorises access
and within seconds their social network is enlarged.

• The model is completely federated – the Client may interact with multiple Au-
thorisation Servers, and vice-versa, and each identity is trusted as needed by
other sites within a trust framework.

This particular flow describes one of several options that the OAuth specifications
allow, and these different flows are known as Authorisation Grant Types:

• Authorisation Code— in this flow, the AS acts as an intermediary between the
client and the user. The client redirects the user to the AS, who then issues an
Authorisation Code (AuthCode) to the client (once the user has authorised or
consented to the access). The client must then present its credentials together
with the AuthCode to the AS and is then issued with a token. This flow is the

CHAPTER 4. CORE TECHNOLOGIES 51

only flow that is used throughout this work. It is shown in a sequence diagram
in Figure 4.1. This is sometimes known as a “three-legged” flow.

• Implicit— this flow is designed for clients such as client-side JavaScript clients.
In this flow, the client does not authenticate using ClientID and ClientSecret.

• Resource Owner Password Credentials — This is a model where the client is
trusted enough that the user shares their password directly with the client.

• Client Credentials — This is a model sometimes known as “two-legged”. In
this model, the client is typically the resource owner, and therefore the client’s
credentials are valid to issue a token.

User

User

Client

Client

AS

AS

Resource Owner

Resource Owner

define app

clientID and clientSecret

start flow requiring client to access resource

Redirect to AS Authorization URL

Browse AuthorizeURL including required scope

Login Request

Login

Do you consent to Client accessing Resource?

Yes

Redirect to Client Callback URL with AuthCode

Browser Callback URL with AuthCode

HTTP API call to Token API
with Authcode, ClientId, ClientSecret

Bearer Token, Refresh Code

Ok

API call with BearerToken

Resource Access

Figure 4.1: Authorisation Code flow

4.1.1 Related Standards

The OAuth2 framework has a number of related standards and proposals for standards
in the Internet Engineering Task Force (IETF) and elsewhere. In Table 4.1, the main
related protocols are shown that will be used or discussed throughout this work.

The User Managed Access (UMA) from the Kantara Initiative enhances the OAuth
specification to provide a rich environment for users to select their own data sharing

CHAPTER 4. CORE TECHNOLOGIES 52

Name Description Citation
OAuth 2.0

Authorisation
Framework

This is the main OAuth2 protocol
as described above [81]

OAuth2
Introspection

This protocol standardises the connection
between the Resource Server and the
Authorisation Server, allowing the

Resource Server to interrogate the AS for
information about a token

[219]

Dynamic
Client

Registration

This protocol standardises an
API for registering a new client

with an AS.
[222]

User
Managed

Access (UMA)

UMA is a protocol that allows
users to tune the permissions that

the client is granted, instead
of simply being able to deny or

authorise a given scope

[140]

Proof of
Posession (PoP)

This standard allows a client
to prove that is holds a key

thereby removing security issues
around replay of bearer tokens.

[129]

Table 4.1: OAuth2 and Related Protocols

preferences [140]. It can be argued strongly that this overall concept of user-directed
access control to IoT data is one of the most important approaches to ensuring pri-
vacy. However, despite the availability of this standard, very few systems implement
it compared to the less complex approach defined in OAuth2. In [272], an approach
for using UMA together with OAuth2 is proposed for constrained devices.

IOT-OAS [59] addresses the use of OAuth2 with the CoAP protocol. In [192] there is
a demonstration of the OAuth1 protocol with MQTT, favouring OAuth1 over OAuth2
for IoT devices. The reasons for choosing the older OAuth protocol are obviated by
the mapping of the refresh flow which OAuthing offers. In [212] and in [85] there
are platforms that support OAuth2 for IoT devices that communicate via HTTP and
WebSockets. None of these works address automated registration processes, and none
provide the privacy controls of anonymous identifiers or isolated personal cloud in-
stances.

OAuth2 has some analysis of security. OAuth2 has had a formal analysis in ProVerif [34],
which identified specific threats to OAuth2. Another work is Pai et al [196] which
utilized the Alloy Framework [133] to analyse the security constraints of the OAuth
protocol. In [164] there is a threat model for OAuth2., many of which are appli-
cable to this work as well. While these threats show that OAuth2 security has its
concerns, overall the widespread use of OAuth in many of the world’s busiest web
systems including Google, Twitter and Facebook shows that it can be effectively se-

CHAPTER 4. CORE TECHNOLOGIES 53

cured. In [103], I addressed the use of OAuth2 with MQTT, and this is covered in
significant detail below in Section 5.2. In IOT-OAS [59], Cirani et al. address the use
of OAuth2 with CoAP, an alternative IoT protocol based on RESTful principles [244].
The mapping of the OAuth2 Token API to support IoT devices using the CoAP pro-
tocol is being formalised in Authentication and Authorisation for Constrained Envi-
ronments (ACE) [130], and is described in [271]. In addition, there is early work
mapping ACE to MQTT [240], which explicitly references the work presented in
Chapter 5.

I chose to experiment with OAuth 2.0 as the basis for IoT federation because:

• OAuth is a widely implemented standard and is well understood.

• OAuth is used in many cases to control access to personal information.

• OAuth permits users the ability to direct the access control of their own infor-
mation.

• OAuth is specifically designed for machine-to-machine and Web API based sce-
narios where humans are involved in the initial setup, but beyond that all inter-
actions are based on tokens.

4.2 MQTT

The MQTT protocol was originally devised by Andy Stanford-Clark of IBM and Arlen
Nipper of Arcom Systems [181] as a protocol for telemetry over constrained networks.
Othermessaging systems, such as IBMMQSeries [109], assumed high speed networks
with low-costs per byte transmission. In many M2M, IoT and Telemetry examples, the
networks are constrained (including GPRS and satellite communications) with high
costs per byte. Therefore the MQTT specification was designed to have a very low
message overhead, with as little as two bytes extra per message.

MQTT has been donated to the OASIS standards organisation, and standardized by
the OASIS MQTT Technical Committee. The initial aim of the technical committee
was to clarify any semantics but to preserve wire-level compatibility. The commit-
tee has now moved on to updating the standard with new wire-level features, and
this will be published as MQTT 5.0 when this work is complete. MQTT is used in
many IoT scenarios, and there are libraries for microcontrollers-based systems such
as Arduino [16] that make it easy to utilize.

MQTT is based around a publish and subscribe model [87], often known as pub/sub.
In this model, there are one or more central servers, known as brokers, that clients
connect to. A client may publish information to the broker, subscribe to receive infor-

CHAPTER 4. CORE TECHNOLOGIES 54

mation, or both. The publishers are unaware of the subscribers, and vice-versa. Each
publication and subscription is tied to a topic. The topic is a named virtual resource
that is used to decouple publishers and subscribers.

As well as decoupling publishers and subscribers from knowing about each other,
the pub/sub model also decouples them in time, because all interactions are asyn-
chronous.

Most pub/sub systems utilize a tree-based model for topics, where there is a hierarchy
and wildcard-based matching, which allows subscribers to subscribe to all topics in
a branch of the tree, and MQTT also follows this model. For example, a subscriber
can subscribe to the topic string “devices/uk/#” which would match topics including
“devices/uk/hampshire/emsworth” as well as “devices/uk/sussex”. The “#” identifies
a wildcard that matches any number of levels within the hierarchy. The “+” character
identifies matching only a single level.

Publishers cannot publish to a wildcard - they must publish to a fully-qualified topic
name.

MQTT has a very simple security model. For authentication, it currently only allows
the use of a username and/or password. Some implementations also support the use
of a Pre-Shared Key (PSK) which can be used for authentication as well as encryp-
tion. This requires the client and server to have an agreed private key, which imposes
a large burden on setup and configuration, especially with small, cheap IoT clients.
For encryption and transport-level security, the Transport Layer Security (TLS) stan-
dard is recommended, although this is not always suitable for small devices. The
specification does not describe or recommend any authorisation models, but certain
implementations support access control lists on specific topics.

Perez [204] has modelled and analysed the performance of MQTT, and Lee et at [156]
have analyzed message loss in MQTT networks and the correlation to the level of
Quality of Service (QOS) requested. Mengusoglu and Pickering [170] have created an
Autonomic Management system utilizing MQTT as the messaging protocol, whereas
Stanford-Clark andWightwick [256] have demonstrated the applicability of MQTT for
environmental monitoring and control systems. Recently, a formal analysis of MQTT’s
quality of service semantics also has been undertaken [25], which demonstrated some
ambiguities related to those semantics.

There has been little research into the security of MQTT. The OASIS Technical Com-
mittee has offered a document analysing MQTT security and offering some best prac-
tices [47].

Facebook Messenger has said that it uses MQTT on mobile devices [48] and Facebook
is also a user of OAuth [89], but there is no published information on whether they

CHAPTER 4. CORE TECHNOLOGIES 55

utilize the OAuth tokens for MQTT authentication and authorisation.

MQTT was chosen as the basis of this work for the following reasons:

• MQTT is a standard protocol used by a variety of IoT and M2M systems.

• There are several open source implementations, making it easy to work with.

• The central broker model creates an easy place to implement authorisation and
access control measures.

• The topic model is highly flexible and offers scope for authorisation control.

Part II

Part II - Preliminary Investigations

56

Chapter 5

Investigations into Federated
Identity and Access Management
for IoT

5.1 Summary

In this chapter, two preliminary investigations into the use of Federated Identity and
Access Management (FIAM) for IoT are presented. The first investigation, Federation
of IoT (FIOT), was initially published in [103, 96] and was the first published work
that looked at using federated tokens with IoT devices. The second work— Intelligent
Gateway for Networked Internet of Things Environments (IGNITE) — addressed the
wider issue of API management in the context of IoT devices, and was published
in [101].

5.1.1 Motivation For Federated Identity And Access Management In IoT

The traditional approach to access control is based on the concept of roles, and is
typically managed in a hierarchical, top-down approach [234]. This approach has
distinct drawbacks for the Internet of Things. Firstly, it was designed without millions
or billions of devices in mind. That would not be an issue, if every device has the same
access requirements. However, a fundamental tenet of privacy is that users can decide
(and understand)who can share their data. Consumers demand, for example, to allow
a specific application access to only certain data. A user might allow their weight-loss
club access to a rolling 7-day average but not to individual days weight values. This
argues towards a highly controllable model where users can specify authorisation for
specific devices and/or applications.

57

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 58

The second concern with the traditional model is that it utilizes a centralized model
of identity and authentication. When there are many devices manufactured by many
different organisations and operating in many environments, this is an unrealistic
requirement. There are also significant scaling issues with centralized identity models,
which are obviated by using a federated model.

A third important concern that is not answered by traditional role-based security mod-
els is that of a mechanism for delegation of authority. In many IoT scenarios, there
are machines that are operating on behalf of a user, and also scenarios where a device
may operate on a third-party’s behalf for a specific period of time. For example, the
owner of a smart lock may authorise a friend’s mobile phone to unlock that door for
the next week so that the friend may feed the owner’s cat. This argues for a model
where the user can delegate certain permissions to specific resources to a machine for
a limited time.

For this to happen, users must have effective controls over their own data and the
ability to specify how this data is shared. This is a major motivation for the use of
FIAM for IoT.

In particular there are significant challenges around privacy with IoT. Many IoT de-
vices are collecting personal data: including human activity, sleep patterns, health
information, home automation usage, geographic locations, etc. The result is that
access to that data or ability to manipulate those devices may infringe on privacy. As
a real example, in 2011, it was publicized that the sexual activity of users of the FitBit
activity tracker was public by default [297]. A key concern here was that many users
were unaware that the data collected by Fitbit could be used to identify sexual activ-
ity. Similarly, concerns have been raised around the data that a Google Nest device
collects [136], and whether consumers are aware of the implications of how that data
can be analysed to understand their lives.

5.1.2 Research Questions And Contributions

The work in this preliminary research addresses some key questions for the use of
FIAM and IoT:

• What is the importance of FIAM in the IoT space?

• Can one adapt existing Web-based FIAM technologies to IoT and in particular
to lower power binary IoT protocols?

• What are the challenges of using FIAM in the IoT context and what changes
need to be made to support its use?

• What architectures can support FIAM with IoT?

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 59

In addition, this work addressed the new problem of adapting the principles and tech-
nologies of Web API management to the landscape of the IoT, which poses challenges
stemming from the great numbers and low power of IoT devices, compared to typical
full-fledged clients for Web APIs. The problems addressed can be clearly stated:

• What is the impact of the Internet of Things onto Web APIs and Web API Man-
agement?

• How do IoT devices identify themselves to Web APIs over IoT protocols?

• How can one add IoT protocol support to existing Web API Management sys-
tems?

• What is the impact of adding identity, usage control and analytics to existing IoT
protocol interactions?

The preliminary work presented in this chapter provides a number of contributions.

• This work provided the first published implementation of an FIAM protocol with
IoT devices.

• Challenges were identified around using existing Web-based protocols (particu-
larly OAuth2) with IoT devices as well as IoT servers.

• Prototype systems were created that implemented these approaches, demon-
strating that this approach can work in running systems.

• Through the analysis of the first prototype and the development of the second
work, significant challenges were identified for using FIAM with IoT, especially
with regard to potential hardware attacks on devices, and these are addressed
through the inclusion of an additional component (Dynamic Client Registra-
tion). This was the first published work to explicitly address this requirement
in IoT devices to the knowledge of the author.

• A performance analysis of the IGNITE system was presented and this showed
that FIAM technologies can be implemented in an effective way for IoT that
performs within acceptable ranges.

5.1.3 Outline Of The Chapter

The remainder of this chapter is structured as follows. In Section 5.2 it is presented
how to use OAuth2 and FIAM with IoT systems, including a first prototype - FIOT -
that provides a framework for analysing how FIAM and IoT intersect. In Section 5.3
the model of the first prototype is improved into a second model - IGNITE - that also
explores how FIAM and IoT intersect with the concepts and architecture of Web API

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 60

Management. In Section 5.4 performance analysis of the IGNITE prototype is pre-
sented and the impact of this performance on real world systems is analysed. In Sec-
tion 5.5 the work is reviewed, conclusions are drawn, and further work is proposed.

5.2 Federated Identity And Access Management For IoT

This section describes the work done to create a system called FIOT which utilizes
the OAuth2 protocol to provide authentication and access control for IoT devices and
networks that use the MQTT protocol.

5.2.1 Research Questions Of The FIOT Work

The main research aim is to explore whether it is feasible and effective to use OAuth2
as part of the MQTT protocol flow and within an MQTT broker to make federated,
user-directed access control decisions. This aim translates in terms of a number of
research questions that include:

• Identifying whether there are any significant issues to using OAuth2 with MQTT.

• Identifying parts of the OAuth2 specification that are amenable to be used with
MQTT and whether there are any mismatches or areas where existing specifica-
tions need to be modified or enhanced to support the new model.

• Understanding which message formats could work and how could the OAuth2
tokens can be used in the flow, what the overall flow itself would look like and
generally whether there are improvements to the implementation systems that
would help support the aims.

• Understanding if there are any wider impacts or lessons to be learnt when ap-
plying Federated Identity and Access Management to IoT.

The approach taken for using OAuth2 tokens with MQTT in FIOT is as follows. Firstly,
the Bearer and Refresh tokens are created using a normal HTTP flow. These are then
embedded into the flash memory of the device, and then passed to the broker at the
MQTT CONNECT in the userid/password field. At publish or subscribe, the broker
uses the OAuth2 introspection API on the Authorisation Server to evaluate if the scopes
supported by the token allowed the requested action, and if the token is valid.

5.2.2 FIOT Implementation

In order to implement the system, several existing open source projects were used
that provided a set of building blocks. This allowed focus on the core concerns of

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 61

Authorization Server

(WSO2 Identity Server)

ESB

MQTT broker

(Mosquitto)

Web Authorization Tool

HTTPHTTP SOAP

AuthorizationAccessToken OAuthIntrospection

HTTP

MQTT Mosquitto

mosquitto_pyauth

mqtt_auth_oauth2CMD

AuthorizationApp

Arduino

Developer

Figure 5.1: Component Diagram of FIOT

authorisation and security without spending too much time on implementing aspects
that were already understood. There are some areas where the choice of existing
technologies provided limitations, and those areas are called out in the results section
below.

The overall system consists of five major components:

• the MQTT broker: based on the open source Mosquitto project [12], together
with extensions created for this work

• the Authorisation Server, based on the open sourceWSO2 Identity Server [288].

• the Web Authorisation Tool, a system created to enable developers to initiate
tokens.

• the Device, based on an 8-bit Arduino open hardware device [16].

• the Message Viewer, an MQTT client populated with a valid bearer token sub-
scribing to data from the device.

Figure 5.1 shows the major components of the system and the major interactions
between them.

In order to capture authorisation scopes that a token is given access to, a JSON [138]

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 62

encoding was created. The following example shows a scope that encodes a client
who can write to any subtree of /topic/paul and read/write to /scratch:

[{rw:"w", topic:"/topic/paul/#"},
{rw:"rw", topic:"/scratch"}]

This model uses the same syntax for wildcards as the MQTT specification, which is
the logical and most effective approach. Because the scope list in OAuth2 is space-
delimited, this JSON cannot be used as-is to form the authorisation scopes. To solve
this, a Base64-encoding was added to create simple strings that are used as scopes.
There are other solutions that could have been used, but this was expedient as it made
parsing the scopes simple for the broker.

The Base64-encoded scopes were not humanly-readable. This meant it was harder for
the user to validate the meaning of the scope request. However, in a real consumer
facing system, the scopes should be human-readable names with proper descriptions
which would be mapped by the broker into the topic hierarchy.

The Web Authorisation Tool (WAT) allows developers to request tokens for a given
scope against the Authorisation Server. This tool generates a textual version of the
token, suitable for cutting and pasting into other systems; and generates C code for the
Arduino, which can be cut and pasted into the Arduino tooling to update the Arduino.
In a real environment as opposed to this prototype, this tool could potentially be
extended to write this directly into the persistent flash memory of a connected device.

The device utilizes a 9-axis inertial measurement unit (IMU) that provides accelera-
tion, rotation and compass data – each in 3 dimensions, to track the movement of the
device. Such devices, when attached to a person, provide significant data on the users
position, activity and exercise levels. Such data exemplifies the problem space here:
users wish to share this kind of data, but only in precisely controlled ways, and each
user may have radically different approaches and concerns about both data sharing
and privacy.

One important point to note is that there is no implementation of any TLS or encryp-
tion from the device to the MQTT broker. This was because of space requirements
in the Arduino device. However, this issue is orthogonal to the other concerns as
OAuth2 and MQTT layer cleanly sits over TLS, without requiring any modification to
the flows.

The MQTT broker was extended with an authorisation plugin, which validates the
OAuth2 bearer token which the client passes over. The plugin sends this OAuth token
to the OAuth Introspection Service, that validates the token and returns a set of autho-
rised scopes for this token. The authentication/authorisation plugin then validates if
the requested action (reading or writing to a topic) is valid against this scope.

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 63

Figure 5.2: FIOT Arduino Device Prototype with 9-axis IMU

A picture of the prototype is shown in Figure 5.2, where the device is connected to a
Mosquitto broker running on Raspberry Pi hardware. Two sequence diagrams show
the system interactions: Figure 5.3 shows the sequence diagram of interactions during
the bootstrap phase, and Figure 5.4 shows the sequence diagram of the interactions
during the use of the device and the Message Viewer.

5.2.3 Results Of The Prototyping Of The FIOT System

Overall the system worked as intended, and showed the following aspects:

• Both IoT and non-IoT clients were able to use OAuth tokens to authenticate to
the broker.

• The broker was able to connect using a RESTful interface to the OAuth Autho-
risation Server to validate tokens.

• The broker was able to introspect the token via the RESTful interface on the
Authorisation Server to retrieve a list of appropriate scopes.

• The broker was able to use the scopes to decide onwhether to authorise a publish
or subscribe operation.

• The Web Authorisation Tool was able to implement the OAuth 2.0 bootstrap
process to create Access Tokens, which were then embedded into the MQTT
clients.

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 64

Figure 5.3: UML Sequence Diagram of the Bootstrap in FIOT

Arduino

Arduino

Broker

Broker

mqtt_auth_oauth2

mqtt_auth_oauth2

Introspection

Introspection

Connect (username = Bearer Token)

unpwd_check(
username=Bearer Token,
password="ignorable")

introspect (Bearer Token)

{Valid: true,
scope="{RW}/topic/#"}

True

Connack

Publish /topic/tree, Message

acl_check(
clientid,
username = Bearer Token,
/topic/tree,
WRITE)

introspect (Bearer Token)

{Valid: true,
scope="{RW}/topic/#"}

Is /topic/tree in /topic/#?
is W in RW?

True

Publish message

Figure 5.4: UML Sequence Diagram of OAuth Access Control in FIOT

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 65

However, this work did identify several concerns with the overall model during im-
plementation. Those concerns are more fully documented in the original paper. The
most serious concern was with the modeling of Clients. In the FIOT approach, the
WAT was the OAuth2 Client, and each device had a token issued by that client. In
order to refresh the tokens, the ClientID and ClientSecret were deployed in a separate
server that was specifically designed to handle refresh flows on behalf of clients. After
the publication of the original paper, I identified a significant security flaw in the re-
fresh flow, based on the fact that the refresh flow was handled in MQTT. The MQTT
specification allows a new connection using the same MQTT client identifier to usurp
a previous connection, meaning that an attack could potentially usurp a refresh flow
and steal the updated bearer token. This led to the design in IGNITE and later work,
where each IoT device is treated as a separate OAuth2 client with its own ClientID
and ClientSecret.

5.2.4 Conclusions Of The First Phase

In this section, a standardized federated, dynamic, user-directed authentication and
authorisation model has been shown to be adapted from the Web for use in IoT de-
vices. It has been argued that this model is important for the concept of privacy with
respect to IoT devices and the data that they generate and use. A number of issues
have been identified, including both minor implementation issues as well as more fun-
damental issues further research is proposed This was the first such implementation
of OAuth2 with MQTT. One particularly concerning aspect was the issue around trust
in the refresh broker, and the fact that each device did not have its own Client ID and
Client Secret. This is a key area that is improved in the next iteration, the IGNITE
system (see Section5.3).

5.3 Exploration Of FIAM And API Management In IoT

In this section an improved approach is outlined to applying federated identity and
access control to MQTT and IoT devices. This is integrated into existing Web API
management systems to provide a wider context for understanding how IoT devices
communicate in the overall Web.

Web APIs are capabilities offered across the Web that are designed to be accessed by
software rather than people. Unlike traditional APIs, Web APIs are inherently public
or semi-public in that they are designed to be used over the public Internet and not
solely over private networks or VPNs. The public nature of Web APIs poses a number
of challenges addressed by the emerging area of Web API Management (WAM).

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 66

Inevitably the Internet of Things will need to engage with Web APIs. For now, most
IoT devices connect to services that are created by the provider of the hardware, and
so are using private APIs. Public APIs are an increasingly important factor. There
are a set of companies that are providing common cloud services and corresponding
APIs for IoT (such as Xively [289]), and there are emerging API standards for IoT
communication (such as HyperCat [155]). Much of the envisioned strength of the
IoT will emerge when data from multiple sources can be aggregated, analysed and
acted upon. This will increase the demand for IoT devices to communicate with open
Web APIs.

This section looks specifically at how WAM intersects with IoT.

5.3.1 Related Work On Web API Management

While there is a great deal of industrial effort and research on Web API management,
the academic literature is sparse. In the industrial sector, much of the literature is pro-
vided by vendors. However, the report by Forrester [122] provides a good overview.
In the academic literature, Raivio et al. [213] explore the business models around
Open APIs for the telecommunications industry. In [147], Kopecky, Boakes and I
discussed the challenges and approaches of managing Web APIs.

In the IoT space, there are a number of efforts around creating open APIs for IoT: for
instance, HyperCat [155] is a JSON-based catalogue format for exposing IoT infor-
mation over the Web, developed by a consortium of academic and industrial partners,
and ZettaJS [298] is an open source Web API for IoT devices.

There are a number of existing IoT gateways, including [300, 67, 58], that deal with
the problem of connecting wireless devices to the wider Internet. They typically bridge
multiple low-power devices in a house or factory into a traditional Internet connection.
However, the literature search did not identify any server-side gateways or reverse
proxies1 specifically designed for IoT.

As discussed above, a new approach was chosen where each device has a unique Clien-
tID and ClientSecret. It is impractical to think that these client keys will be issuedman-
ually to the IoT devices: this process must be automated. This is enabled by the ex-
tension to the OAuth2 specification called Dynamic Client Registration (DCR) [231].
DCR automates the process that a developer would go through on the API portal to
gain OAuth2 credentials on behalf of their API client. The second IGNITE prototype
was built to explore the use of DCR in IoT scenarios.

Looking at existing systems and literature, there was no identification of any API yet
in production where millions of devices each have their own API key, their own set

1A reverse proxy is a proxy that sits at the server-side and is transparent to the clients

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 67

of throttling measures, etc. It can therefore be seen that API management systems
will need to evolve to support very large numbers of clients, with millions or even
tens of millions of concurrently connected devices. In the later work described in
Chapter 8 the system was designed specifically to cope with very large numbers of
OAuth2 Clients without performance issues.

In summary, this work is addressing how to adapt the existing Web API management
capabilities to support:

• Large numbers of clients, each with their own credential.

• Devices communicating with public APIs via binary and low-energy protocols
such as MQTT and CoAP.

• Usage control, access control, throttling and other API management techniques
applied to IoT scenarios.

• Federated Identity and Access Management for IoT devices.

• How to apply these capabilities orthogonally to existing systems.

5.3.2 IGNITE - An API Gateway For IoT Protocols

To solve these issues a system was prototyped that allows using the capabilities of
existing API management solutions with IoT protocols. The system is called IGNITE
(Intelligent Gateway for Network IoT Events)2. The initial work focuses on the MQTT
protocol, but it could be extended to CoAP.

For the proof-of-concept prototype, three existing open source projects were used:

• The WSO2 API Manager [287] project provides the main capabilities for Web
API Management including a developer portal, subscription management sys-
tem, key server, API gateway, access control, throttling, monitoring and analyt-
ics system;

• TheMITREid-Connect project implements of OAuth2 andOpenID Connect [221]
and includes new capabilities such as Dynamic Client Registation and Token In-
trospection.

• The Mosquitto MQTT broker provides an open source messaging broker for the
MQTT protocol.

IGNITE takes a different approach to FIOT for adding OAuth2 authorisation to IoT
device flows. Instead of extending the MQTT broker with authorisation logic, the
IGNITE approach is to add a new authorisation gateway between the client and the

2The source code is available at https://github.com/pzfreo/ignite

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 68

API Portal

HTTP
Gateway

IGNITE

Key Server

MQTT
Broker

Web Client

IoT
Client

HTTP Service

Monitoring

Existing Infrastructure
(above dashed line)

REST

MQTT

Developer Web
interaction

Newly added Infrastructure
(below dashed line)

Public Internet
(to left of dotted line)

Figure 5.5: IGNITE System Architecture

broker. This gateway follows a well-understood pattern — the reverse proxy. This sits
side-by-side with the existing API gateway and shares the same tokens. In a future
version this could be integrated into the HTTP-based API gateway.

A first prototype of this gateway was written in Python and there was some initial
work to port it to Java to improve performance. It will be seen in Chapter 8 that in
the end the decision was made to move this to JavaScript instead. Figure 5.5 shows
the overall architecture with the capabilities of the existing projects plus the added
capabilities of this work.

The IGNITE component implements the following logic: On a CONNECT packet arriv-
ing, it extracts the OAuth2 Bearer token from the username field in the packet. It then
invokes the Token Introspection service on the MITREid-Connect server to validate the
token. If the token is valid, the gateway replaces the token in the request with the
userid returned from the introspection call, and forwards the request on to the ex-
isting MQTT Broker, which may implement its own validation checks as well. If the
token is invalid or no longer active, the IGNITE responds to the client with a packet
that indicates that the credential was invalid (a CONNACK packet with ReturnCode=5).

5.4 Results

To test the system, the performance of this system was evaluated compared to a direct
call to the MQTT broker. In this case, the MQTT broker was not running any authen-
tication of its own, so the comparison is not completely like-for-like. Figure 5.6 shows

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 69

IGNITE	

MITRE-
Connect	
Key	Server	

Mosqui9o	
MQTT		
Broker	

Test	System	
Connect	

MQTT	
Subscriber	

Publish	

Figure 5.6: IGNITE Test Architecture

the architecture of the test set-up.

For the tests two flows were sampled: A CONNECT flow and a PUBLISH flow. For
PUBLISH all three levels of QoS were tested: fire-and-forget (QoS0), at least once
(QoS1) and exactly-once (QoS2). QoS1 and QoS2 involve multiple packets transfer-
ring between the client and the server.

The tests were all run on a single machine3 using the localhost networking. The
gateway tests include both the more functional Python prototype of IGNITE and an
early prototype of the Java version. The tests show the average result over 1,000
CONNECT/CONNACK messages and 10,000 PUBLISH messages, in both cases giving the
system time to warm up before capturing timing data. The QoS 1 and 2 tests inher-
ently capture the use of PUBACK, PUBREC, PUBREL, and PUBCOMPmessages. The focus on
connection was because the authentication step during connection is where the most
work takes place, and on publication because this is the most used flow in MQTT, as
subscriptions are infrequent compared to publications.

The CONNECT results are shown in Figure 5.7. The results show that the overhead of
using the Python IGNITE for CONNECT is around 7,700µs per request. Given that this
includes a HTTP REST call to the key server this is not unexpected. In the WSO2
API Manager this overhead has been reduced by implementing a binary key valida-
tion protocol instead of HTTP. However given that MQTT is a persistent connection
compared to existing Web API gateways and HTTP where each request needs to be
validated, this is a very effective result. There was no implementation of caching of
token introspection results which could improve this considerably.

The PUBLISH numbers (Fig. 5.8) show amuch lower overhead. For QoS0 the overhead
of going through the IGNITE is around 11µs. The QoS2 case has a significant higher
overhead due to considerably more complex message flow. Even in this case the
overhead is less than 1500µs and the preliminary data from the Java implementation

3Mac OS/X 10.10 running on a 3Ghz Intel Core i7 with 16Gb RAM and SSD storage

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 70

Figure 5.7: CONNECT Performance Test with IGNITE

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 71

Figure 5.8: PUBLISH Performance Test with IGNITE

shows an overhead of less than 60µs. Note that at this stage there is no implementa-
tion of usage control and monitoring into the PUBLISH flow so these numbers do not
yet reflect the full workload required.

To put these numbers into perspective, the typical overhead of such a gateway in
the HTTP world is around 500µs without implementing any OAuth2 token introspec-
tion [286]. In addition, these numbers are all likely to be dwarfed by average Internet
latencies. For example, the speed of light requires a minimum latency of 40,000µs be-
tween the East and West Coasts of the USA, and typical real-world latencies are twice
this. Even with prototype code and no optimisation, these numbers are respectable
and would fit into the tolerance of many existing IoT projects. Therefore it can be
concluded that this approach is eminently practicable.

5.5 Discussion

In this chapter two key aspects have been addressed. Firstly, the concepts and reali-
ties of Federated Identity and Access Management for IoT were examined. Secondly,
two approaches for implementing this using OAuth2 and MQTT were presented. The
second approach offers a significant improvement in the model and security of the

CHAPTER 5. INVESTIGATIONS INTO FIAM FOR IOT 72

system via the use of Dynamic Client Registration.

As a result of this work, there are several recommendations that are proposed. These
include the need for clear standardisation of where to put the token as well as limit-
ing the OAuth2 token size to some reasonable limit - at least for IoT use. Also there
is a need to define a clear MQTT flow for refresh. Thirdly there is a requirement to
support DCR to ensure that each device has unique credentials. This ensures that a
compromise to a single device does not compromise other devices. A concern was
identified with the refresh token being transmitted unreliably, and therefore it is rec-
ommended that refresh tokens are not updated unless there is a reliability mechanism
in place for the refresh flow.

While there were some issues with implementing FIAM for IoT using OAuth2 with
MQTT, the benefits of building on existing widely implemented and deployed proto-
cols are significant. Many years of work and review have gone into the security of
OAuth2, and from this work it can be stated that it is possible to re-use this work with
IoT devices and new protocols.

In addition, a promising approach was identified to unify IoT devices and MQTT into
existing Web API Management technologies and architecture. This model demon-
strates enhancing existing Web API management systems with a new gateway — IG-
NITE — that focuses on IoT protocols and demonstrates how protocols such as MQTT
can be integrated into existing API Management models with some success, in a com-
pletely orthogonal manner. In addition, the model of the server-side IoT gateway that
is introduced with IGNITE offers a considerable number of possibilities for managing
usage control, access control, monitoring, etc.

Preliminary data on performance which shows that the overheads of such approaches
are reasonable, even before optimisation, caching and other techniques are intro-
duced.

Part III

Part III - Main Research

73

Chapter 6

Model

In this chapter, the model and architecture developed for this work is presented and
examined. The model and architecture are aiming to satisfy the requirements that
were identified from the literature review in Chapter 2. This model is an iterative
development of the two approaches outlined in Chapter 5. In particular, those ap-
proaches did not address device registration and bootstrap, and they did not attempt
to deal with pseudonymity. In addition, this model includes the use of Personal Cloud
Middleware.

6.1 Introduction

The model is normatively defined in CSP algebra. CSP is a process algebra with
strongly defined denotational and trace semantics [126]. In addition to the CSP there
is an introduction presented with the aid of UML. UML offers a graphical modelling
approach that is more familiar to software developers, architects and engineers, which
complements the more formal approach used in CSP.

The aim of producing this model is threefold. Firstly, the CSP allows one to reason
about the model and therefore understand the attributes of the model, and in this way
identify if the proposed approach offers improvements to the security and privacy of
IoT networks. In particular, through both mathematical proof and the CSP technique
of trace refinement, it can be proved that the model has specific properties. Secondly,
the model provides a clear and unambiguous presentation of the approach for evalu-
ators and implementors of this approach. The algrebraic approach provides the most
clarity and the least ambiguity and is therefore the normative model. However, UML is
more widely used and the graphical representation can help communicate the model
more effectively, and therefore this work adds in a set of UML diagrams that cap-
ture aspects of the model. These UML models were created through a combination of

74

CHAPTER 6. MODEL 75

manually inspecting the CSP model, together with documenting machine-generated
traces of the CSP model. The UMLmodels are designed to communicate aspects of the
approach rather than be the definitive model and therefore they are non-normative.
Finally, the aim of this model is to encourage implementation of the approach. The
implementation of a prototype is described in Chapter 8.

One of the benefits of CSP is that it provides a powerful refinement checker— Failures
Divergences Refinement (FDR) [108], that can validate models against specifications.
This work uses a combination of mathematical proof using the laws of CSP, and the
model checker to prove a set of assertions about data sharing in the system. These
assertions are used to create a matrix of data propagation. This matrix, together with
the model, are then used as input to a threat modelling exercise, in Chapter 7, where
the threats against this system will be explored.

The rest of this chapter is laid out as follows. In Section 6.2 there is a short, informal
overview of the model designed to give a high-level understanding. In Section 6.3
there is an introduction to CSP process algebra as well as a discussion of why CSP
was chosen. In Section 6.4 the model is defined in an algrebraic format using the
CSP language. In Section 6.5 there are a set of trace-refinement proofs that prove
properties of the CSP model. In Section 6.6 the chapter is summarised.

6.2 Informal Description Of The Model

While the CSP description of the model provides a rigorous and clear description
of the system and allows one to reason about properties of the system, it is easy to
become buried in the detail. Therefore this chapter starts with a high-level informal
description of the model, aided by a few chosen UML diagrams.

6.2.1 Assumptions And Boundaries

In this model, and the subsequent prototype, the concept of device is restricted to
systems that can directly contact the Internet. For example, the prototype uses a Wifi
connected chip, which allows direct connection to Internet systems. This excludes
systems that connect via Bluetooth or other non-IP networking. It is possible to think
of such Bluetooth connected systems as sensors or actuators connected wirelessly to a
“device” (such as a mobile phone), that does participate in this model. For example, a
connected car might be seen as a “device” in the terms of this model, and some sensors
or actuators might be wirelessly connected over various non-IP protocols to the central
processing unit of the car. In addition, this model assumes that devices have at least
intermittent connections to the Internet, whereby tokens can be refreshed. Both of

CHAPTER 6. MODEL 76

these areas could potentially be supported by extending this work, and this is left for
further work.

6.2.2 Participants

Figure 6.1 shows the current situation for many IoT systems, where there is no fed-
eration and the device talks to a single service that manages identity, stores data,
provides a user web interface, etc.

Cloud Service

Device

1

many

Figure 6.1: Existing Model

By comparison, the federated model presented in Figure 6.2 allows different feder-
ated parties to provide different services that work together. This approach is called
OAuthing.

The participants of the OAuthing model are:

• The User Identity Provider (UIdP): this is an existing login system where Users
present their credentials (e.g. Google, Facebook, Github, Twitter, or any OIDC
login).

• The User: A User may own one or more Devices. A User must have at least one
identity with a UIdP.

• The Device Identity Provider (DIdP): this is an Identity Broker that first authen-
ticates a User with a UIdP using existing federated identity protocols including
OAuth2, OpenID Connect (OIDC), or SAML2. Once the identity is validated it
then creates a secure random anonymous identity which is used in all further
processing. This anonymous identity is not shared except with the Intelligent
Gateway. Devices and Cloud Services are issued with random tokens that give
permission to perform certain actions but do not identify users in any way. Cur-
rently, each instance of OAuthing has a single DIdP.

CHAPTER 6. MODEL 77

User IdP
(UIdP)

Device IdP
(DIdP)

Intelligent Gateway
(IG)

Personal Cloud Middleware
(PCM)

Device Third Party App
(TPA)

User

Manufacturer

*

1

1

1

1

*

* 1

1

*

* *

1

*

1

1

* 1

1

*

Figure 6.2: Proposed Model

• Personal Cloud Middleware (PCM): this is an isolated broker that shares data
between devices and Third Party Applications (TPAs) on behalf of the user. The
PCM talks to the Devices and the TPAs. Within the remit of a single OAuthing
instance there is one PCM per user. A cloud environment is used to dynamically
launch PCM instances on behalf of users as needed.

• Intelligent Gateway (IG): The IG interfaces with the DIdP to validate identities
and access authorisation policies and to the cloud infrastructure to instantiate
new PCMs. Devices and CSs connect to the IG, and it routes requests to each
user’s PCM.

• Third Party Application (TPA): A device is an IoT device if and only if it shares
or receives data and commands with an Internet service. Users control which
TPAs can access their sensor data or control their actuators by explicitly consent-

CHAPTER 6. MODEL 78

ing to authorise a TPA. Any third party can provide a TPA. If no TPA is authorised
by the user then a Device’s data is neither shared nor stored.

• The Device: The device consists of one or more sensors and actuators together
with a controller. The device is issued with a Client ID at manufacturing time.
Once the device is registered with a user, it stores a token that identifies the user,
the Client ID and the scopes of access that the user has authorised.

• The Manufacturer: The Manufacturer is the logical organisation that creates
and markets the Device, irrespective of whether they actually outsource any part
of the physical manufacturing to a third party. In this model, the Manufacturer
configures each device with a single DIdP.

Figure 6.3 shows the UML sequence diagram of a runtime interaction between a device
and a third-party application.

Device

Device

Device IdP

Device IdP

Intelligent Gateway

Intelligent Gateway

Personal Cloud Middleware

Personal Cloud Middleware

Third Party App

Third Party App

CONNECT with Access Token over WebSocket

introspect token

token validity and scopes

initiate PCM if not exists

route CONNECT to correct PCM

SUBSCRIBE /d/#

validate scope for SUBSCRIBE

route SUBSCRIBE to correct PCM

CONNECT with Access Token

introspect token

token validity and scopes

route CONNECT to correct PCM

PUBLISH /d/sensor1 {data:1}

validate scope for PUBLISH

route PUBLISH to correct PCM

PUBLISH to CS

PUBLISH /d/sensor1 {data:1}

Figure 6.3: Device Publishing Data to App

This model utilises the OAuth2 model as a basis for the identity and ownership of
devices. One concern with IoT is that hardware devices can be compromised and
secrets read from them. It is therefore important that each device has its own creden-
tials. Each device is to be a unique OAuth2 Client, and the system uses the OAuth2

CHAPTER 6. MODEL 79

Client ID as a secure device ID that is only ever shared with the DIdP. Ownership of
a device is defined by the user authorising the issuance a security token to the device
giving it permission to act on the user’s behalf.

6.2.3 Lifecycle

The UML lifecycle diagram is shown in Figure 6.4.

Once the device is initially flashed it is connected to a manufacturing server. The
manufacturer then uses the DCR API into the DIdP to request a Client ID and Secret.
These are configured into the device by the manufacturing server. At the same time,
the DIdP returns a unique User Registration URI (URU), that is printed onto the device
(usually as a Quick Response (QR) code) by the manufacturer.

When the user buys the device, they scan the QR code or otherwise access the URU.
This directs the user to the DIdP which presents a choice of UIdPs to the user. Once
the user is authorised with their existing UIdP, they are asked in turn to authorise
the device. The resulting OAuth2 refresh token is then stored on the device, and
represents the logical ownership of the device.

If at some future point the user sells the device they can revoke the OAuth2 token -
either by resetting the device back to its initial state or by using a web interface at the
DIdP.

6.2.4 Personal Cloud Middleware

A key part of the model is the concept of a personal hub: where each user’s data is
routed to its’ own hub, protecting the data from multi-tenant attacks. Each hub is run
in its own virtualised Cloud environment. When a request comes in from a device or
CS, the pseudonym associated with the bearer token is used to route the request to an
instance that is specific to that user. If there is no cloud server available, the routing
system makes a call to the cloud management system to instantiate a new PCM “on-
demand”, and then waits until the instance is running before routing the request to
the PCM. In the model the PCM supports routing, distribution of data and commands,
as well as summarisation and filtering of data. These capabilities have an important
role in protecting users privacy: firstly, the runtime does not inherently share data
such as IP addresses or MAC addresses that can be used to identify devices or users.
Secondly, by filtering or summarising data, the PCM can avoid many fingerprinting
attacks on devices [146]. The PCM can also provide protocol mapping and device
shadow capabilities, meaning that it is simpler for TPAs to connect to devices.

CHAPTER 6. MODEL 80

Manufacture

The device is created

Device Registration

The manufacturer embeds secure random credentials in the device

Physical Distribution

The owner gains physical access to the device

Claim

The owner scans the QR code attached to the device

Presence

The device is present and connected to the DIdP

Consent

The user consents to the device acting on their behalf

Owned Device

The device now has a token identifying its ownership

Use

The device is now publishing data and
acting on user commands

revoke ownership token

Figure 6.4: Lifecycle of a Device

6.2.5 Scopes

The DIdP implements consent-based authorisation policies called scopes. The concept
of scopes comes from the OAuth2 specification. Each scope controls access to a set of
APIs. These APIs may be implemented in multiple protocols. Users may consent to a
third-party to have access to a specific scope, which is captured in a token.

CHAPTER 6. MODEL 81

One of the outcomes of defining scopes as part of this model is that there is a clean
mapping between the different roles in the system and the scopes which each role
requires access to, which is shown in Table 6.1.

Role Scopes Description of roles and scopes

UIdP N/A This IdP is the primary source of identity to the Device IdP
and does not have any OAuth2 scope permissions

DIdP openid
(or UIdP
Specific)

The Device IdP is the “source” of scopes to the other roles. It
requires access to the third-party IdPs, which may define their
own scopes.

Manu-
facturer

dcr Dynamic Client Registration (DCR): allows caller to create
new ClientIDs using the DCR API

Intelligent
Gateway

intro Introspection: allows the IG to ask the DIdP for the
pseudonym and scopes for a given Bearer Token

TPA Rd, Pc Read/Subscribe to Data (Rd) and Publish Commands (Rc)
The TPA may be allowed one or other or both

Device Pd, Rc Publish Data (Pd). Read/Subscribe to Commands (Rc).

Table 6.1: Mapping of Scopes to Participants

6.3 Formal Modelling

Since the system is fundamentally a distributed, federated system of communicat-
ing processes, CSP offers a clear and unambiguous approach for describing these, as
well as a powerful refinement checking tool, FDR. CSP offers a mathematical and
set-theoretic approach to defining processes and how they interact. In CSP processes
communicate through message passing and not through shared state, which is how
distributed and federated systems also work, thereby making this a good fit for a
modelling approach in this case. CSP dates back to the initial paper in 1978 from
Hoare [128]. Recently, the popularity of the Go1 programming language has renewed
interest in CSP, as Go relies heavily on CSP for its parallelism model. The FDR tool
uses trace refinement modelling to validate that a defined process behaves as a spec-
ification. This is accomplished by defining two different processes, and showing that
the finite traces of one process are a subset of the finite traces of the other. While this
does not handle infinite traces, in many cases the finite model checking is sufficient.

1https://golang.org

CHAPTER 6. MODEL 82

In this way it is possible to validate that the model meets specifications. In Figure 6.5
there is a screenshot of the FDR system showing a counterexample, where the screen
is zoomed into part of the flow. FDR supports both graphical and command-line op-
eration.

Figure 6.5: FDR in Use

6.3.1 Alternatives To CSP

There are several alternative formalisms that could be used for this work, and some
were evaluated, including Z [285] and Event-B [3]. Out of these two, Z lacks clear
support for events and inter-process communications and therefore would entail sig-
nificant complexity to capture these aspects. The π-calculus [175] is an alternative
process algebra that has significant usage. The π-calculus emerged out of Commu-
nicating Concurrent Systems (CCS), which was contemporaneously developed with
CSP. The advantage of the π-calculus over CCS is the support for mobile processes
whereby work can move around a network. One aspect of the OAuthing model where
that would help is in modelling HTTP redirects, such as in OpenID Connect (OIDC)
where the login server is chosen by the user, and the login process can be seen as mov-
ing across the network. In CSP, Roscoe has led work to model mobility [224]. Event-B,
the π-calculus and CSP all offer useful and clear process algebra with well-defined se-
mantics. In [235], there is a derivation of Event-B refinement in CSP, demonstrating
the equivalence of both approaches. In [225] there is work to show that the π-calculus
can be represented in CSP and therefore have its semantics defined in terms of CSP.
Event-B supports both state-based and symbolic tooling. The π-calculus tooling is

CHAPTER 6. MODEL 83

based on symbolic theorem provers. There have been attempts to build symbolic
provers around CSP [132, 49], but the productivity of the FDR tool has meant that it
remains the leading tool for CSP analysis.

In truth, any of these three systems are good candidates for the modelling approach.
The author had personal experience of both CSP and Event-B and in the end CSP was
chosen for the expressivity and concinnity of the algebra, together with the productiv-
ity of FDR. Because of the aforementioned works that demonstrate that the semantics
of Event-B and π-calculus are both derivable in CSP, it can be inferred that any model
that could have been produced in those systems can also be modelled in CSP.

There are several works that are used to define the underlying semantics of UML
using CSP [64, 190, 291]. There is some early work on automatically generating
UML diagrams from CSP [189], but the UML diagrams in this work are generated
manually from inspecting the CSP traces produced by the FDR tool.

6.3.2 A Brief Introduction To CSP

CSP is an algebraic approach for reasoning about components that communicate via
messages. In CSP, components are called processes, although this does not necessar-
ily map to the operating system concept of a process. CSP allows reasoning about
individual processes and also communicating groups of processes. Each process com-
municates using events. Now follows a short introduction to CSP. For more in-depth
details, [127, 224] both offer detailed introductions.

In CSP the messages between components are called events. For example, the process
P accepts an event e, and then (→) stops (accepts no further events):

P = e → STOP

The process STOP is the well-defined process that accepts no events. STOP effectively
captures deadlock, so to distinguish successful termination, the event ✓, (pronounced
“success”) identifies successful termination. The process SKIP is defined as a process
that does nothing but terminate successfully.

The process Q accepts event e and then continues as Q, showing recursion. In effect,
Q can accept any number of events e:

Q = e → Q

CHAPTER 6. MODEL 84

A process can be parameterised, leading to a set of processes:

Q(d) = e.d → Q(d)

In this process, e.d indicates that event e transfers data d.

In addition, CSP supports pattern matching, which is a common approach in functional
programming languages. For example, the following three lines of CSP syntax define
the function f(x) for all values of x:

f(0) = True

f(1) = False

f() = Error

An equivalent definition of the same function as a bijection would be:

f =
{
(0, T rue), (1, False), (x,Error)

∣∣∣ ∀x /∈ {0, 1}
}

Pattern matching is also applicable to processes:

P (0) = e.A → P (1)

P (1) = e.B → P (0)

P () = e.C → P (0)

This defines a set of interlinked processes. For an example of where pattern matching
is used in the model, see Definition 6.4.31.

An event can have associated data. Previously, e.d was defined as event e parame-
terised with data d. In addition it is possible to indicate sending or receiving data with
events: sending data is written e!d, receiving data as e?d. e$d indicates that d may be
any arbitrary non-deterministic choice of data from the range of allowed values of d.
This range can be restricted: if D is a set, then e.d : D allows e.d where d ∈ D. The
same is applicable with e$d : D and e!d : D as well.

If P,Q are processes, P 2 Q is the choice between P and Q where the environment
chooses which process continues based on the initial event that is received. This is
called external choice. For example, (a → P) 2 (b → Q) will behave as P after an
event a, or Q after an event b. Informally it could be said that the “incoming event”
chooses the path that the process takes.

CHAPTER 6. MODEL 85

CSP also supports general external choice across a set of processes:

2
x∈S Px

is equivalent to
Pa 2 Pb 2 . . . 2 Pm

where a, b, . . . ,m ∈ S.

P ||| Q is the process where P and Q interleave: that is, they operate independently
with no synchronisation of events.

P ∥ Q is the process formed by running P and Q in parallel, synchronising on all events.
In other words, they must both accept the same event at the same time.

The ∥-step law captures this most clearly:

(?x : A → P) ∥ (?y : B → Q) =?z : A ∩B → (P ∥ Q)

One can say that P and Q only synchronise on events in set E using the following
construct:

P ∥
E

Q

In many cases there is the need to define the combination of two processes that each
offer certain events, whilst synchronising on yet others. The construct:

P X∥Y Q

indicates that P handles events in X except those in Y (notated X \ Y), Q handles
events in Y \ X and the processes synchronise on events in X ∩ Y .

In some cases, one needs to rename events:

Q = P [[to/from]]

to indicate that the process Q acts like P with event from renamed to event to.

CSP also allows the hiding of events. For example:

(P ∥
E

Q) \ E

is the process where P and Q synchronise on events E, but only events that are not in
set E are visible outside the process.

CHAPTER 6. MODEL 86

The opposite of hiding is projection:

P |̀ E

is the process P where only the events in E are visible.

Hiding events is the most obvious cause of non-determinism. For example, if there is
a process:

(a → b → P 2 c → d → Q) \ {a, c}

then the external observer is not aware of whether internal (i.e., hidden) events are
taking the process down the a path or the c path. This gives rise to the concept of Inter-
nal choice (R ⊓ S), where there is non-deterministical choice between the processes
R and S.

Therefore
(a → b → P 2 c → d → Q) \ {a, c} = b → P ⊓ d → Q

The concept of linked parallel processes encapsulates renaming, hiding and parallel
processes into a single concise definition.

R = P [c ↔ d, e ↔ f]Q

indicates that the process R behaves like P interleaved with Q, except that event c
from P is renamed as d for Q and vice-versa. Similarly, P sees event f from Q as e and
vice-versa. The overall process synchronises on these events (c/d, e/f) and they are
hidden in R.

Effectively, if f is a fresh unused name:

P [c ↔ d]Q = (P [[f/c]] ∥
f

Q[[f/d]]) \ {f}

Another useful notation is:
R = P ΘE Q

which indicates that R behaves like P until an exception event from the set of events
E occurs, after which it behaves like Q.

6.3.3 Refinement

CSP defines the concept of refinement (⊑), based on traces. The traces are the possible
patterns of visible events that a process will accept. One can say that P is trace-refined

CHAPTER 6. MODEL 87

by Q (written P ⊑T Q) means that every finite trace of Q is also a finite trace of P :

P ⊑T Q ⇔ traces(P) ⊇ traces(Q)

This model offers an operational semantics for CSP based on the concept of Labelled
Transition Systems [269]. The CSP tool FDR [108] allows one to evaluate these trace
refinements. The trace refinement model does not however, fully show that the im-
plementation process properly implements the specification. To say that all the traces
of the implementation are also traces of the specification is not enough. One also
needs to show that the implementation has the same failures as the specification (i.e.,
that it refuses the same events that the specification does). The failures of a process
P are formally defined as the set of pairs (s,X), such that the process can follow the
sequence of events s (written P/s) and then refuse event X:

failures(P) = {(s,X)
∣∣∣ s ∈ traces(P) ∧ X ∈ refusals(P/s)}

P ⊑F Q ⇔ failures(P) ⊇ failures(Q) ∧ traces(P) ⊇ traces(Q)

There is one more assertion one can make. A process can diverge if it follows a finite
trace and then ends up in a state where it can perform an infinite number of internal
events. As well as the visible events of a process, it may have internal events that are
hidden from the external world. In CSP, these events all have the same name τ . They
have the same name since they are indistinguishable from each other. A process P is
failures-divergence refined by Q (P ⊑FD Q) if the failures and divergences of Q are also
failures and divergences of P.

Refinement can be used in two slightly different ways. Firstly, one can define a higher-
level model that is refined into a more detailed model. This allows one to show an
abstraction away from the details and ensure that the system meets that abstraction.
For example, this work defines a device abstractly and then shows that the more com-
plex device lifecycle is a refinement of the simpler concept. Secondly, one can specifi-
cally define behaviours that either the model implements or does not implement. The
FDR trace refinement analysis can prove that the model either refines or doesn’t re-
fine these behaviour specifications. Note that there is a fine line between these two
approaches and some of the analyses in this work may straddle that line.

6.4 The Model In CSP

Each of the different participants — Device, Manufacturer, Device Identity Provider,
Gateway, Personal Cloud Middleware, User, and Application — are modeled in CSP.

CHAPTER 6. MODEL 88

The whole system is modeled as a composition of these components.

In addition to themodel presented here, there is amachine readable version of the CSP
definition, which was used to prove theorems of the system using FDR. The following
resources are considered supplementary resources to this work:

• The machine readable model:
https://freo.me/oauthing-model

• The logs of running the FDR assertions:
https://freo.me/oauthing-model-logs

6.4.1 Assumptions And Boundaries Of The Model

It is assumed that all distributed communications channels are encrypted. This is dis-
cussed in more detail in the threat model in Section 7.1. In this model this applies
to all the process interactions except the PCM-to-PCM communications (see Defini-
tion 6.4.31) where the model treats a PCM as CSP processes that communicate inter-
nally. Since this PCM-to-PCM communications is internal, it is not encrypted.

The model does not address discovery of the DIdP, UIdP or IG. These could be ad-
dressed as further work. Similarly, there is no modeling of change of ownership of a
device, which could also be addressed in further work.

6.4.2 Devices

A sensor is a system that can emit an event containing data about the world. A sensor
can be defined as a process that senses the world and then emits sensor data events.
Once it has done this is can once again sense.

Definition 6.4.1. Sensor

SENSOR = sense$d → sd!d → SENSOR

The notation sense$d indicates that this processmay internally choose (i.e. non-deterministically)
between all values of data. The notation sd!d indicates that the event sd sends the value
d. Non-deterministic choice correctly models a sensor since the real-world events that
prompt the sensor data are hidden from the model, and therefore come “internally”
within the sensor.

Similarly, an actuator is defined as a system that receives a command and then acts
upon it.

CHAPTER 6. MODEL 89

Definition 6.4.2. Actuator

ACTUATOR = rc?c → act!c → ACTUATOR

The notation command?c indicates that this event is receiving the value c. The sensor
and actuator have no need to synchronise and can operate without recourse to each
other and therefore are interleaved. A device is modeled as follows.

Definition 6.4.3. Device

DEVICE = SENSOR ||| ACTUATOR

From a set theoretic viewpoint, of course there can be multiple sensors and/or actu-
ators per device. The CSP view of the device only defines that it can produce data or
consume commands. In this model, each sensor or actuator belongs to exactly one
device. This is modeled as a function device that maps from sensors and actuators to
the device they belong to:

∀ s ∈ Sensors, ∃ d ∈ Devices : device(s) = d

∀ a ∈ Actuators,∃ d ∈ Devices : device(a) = d

The function device is a surjection:

∀ d ∈ Devices, ∃x ∈ Sensors ∪ Actuators
∣∣∣ device(x) = d

and the domain of the function device is equal to all devices:

dom(device) = Devices

In other words, a device must have at least one sensor or actuator.

This is expressed in UML in Figure 6.6.

The model will be built up in stages. As will be seen, this creates a natural lifecycle for
a device. This lifecycle is also shown in UML in Figure 6.4 above. At the high level,
the device lifecycle is:

claim → consent → connect → DEVICE

In other words, a device is claimed by a user, who consents to its operating on their

CHAPTER 6. MODEL 90

Device

Sensor Actuator

1

*

1

*

Figure 6.6: UML for a Device

behalf. The device then connects to a data-sharing system and then shares data and
accepts commands. In this model, the specifics of the OAuth2 claim, login and con-
sent flows, as well as the data sharing model are deliberately modeled in detail. This
refinement is important because the specifics of the device lifecycle, and the usabil-
ity of the system when devices have no user interface or input mechanism are key
requirements of the model and system.

A device is initially a fresh device (FD). This means that it has just been manufactured
and does not have a well-defined identity. This model does not rely on any implicit
identity such as a Media Access Control (MAC) address: instead the system injects
an identity and credential into the device at manufacturing time. A Registered De-
vice (RD) is a device that has a credential injected into it during the manufacturing
process. Because aspects of this model are closely based on existing OAuth2 work,
OAuth2 ClientIDs and ClientSecrets are explicitly modeled as the credentials. Each
device is modeled as a unique OAuth2 Client. As discussed above, this mapping of
OAuth2 to the IoT device world was chosen because it is important that every device
has a unique credential. This is called out in the requirements in Chapter 2 and also in
the IGNITE work above in Chapter 5. This removes a significant security flaw which
was present in FIOT, which was identified during the creation of this model.

Definition 6.4.4. Device Registration

FD = manufacture → updatedevice?cid.cs → RD(cid, cs)

A registered device must then be “owned”. This process consists of a User consenting
to allow the device to publish data and/or receive commands on the user’s behalf.
In this system, the OAuth2 approach is extended to support this. The extension is
based on the requirement to support devices with almost no user interface. The only
hard requirement on a UI that this system must have is the ability for a user to see if

CHAPTER 6. MODEL 91

the device is switched on. When the device is switched on, it notifies the DIdP that
it is present. The user then initiates a claim process for the device. This involves the
ClientID of the device. For example, in the prototype, the device has a QR code printed
onto it, which embeds the ClientID into a URL. When the QR code is scanned, it takes
the user to a claim page specific to that device.

The specific OAuth2 flow that is used for this work is the Authorisation Code flow.
This is a two-part flow whereby the client is first issued an Authorisation Code (Au-
thCode), which is then “swapped” for a Refresh Token and Bearer Token. The second
step is used to ensure that the client authenticates. As discussed in Chapter 4 this is
known as a three-legged flow as the user and the client both authenticate to the DIdP.

Definition 6.4.5. Ownership

RD(cid, cs) = presence!cid → authcode?ac → RDA(cid, cs, ac)

RDA(cid, cs, ac) = token ac req!cid.cs.ac → token ac resp?r.a → OD(cid, cs, r)

This produces an Owned Device. Every device is either owned or unowned. In other
words, there is a function owns, such that:

∀ d ∈ OwnedDevices, ∃u ∈ Users : owns(d) = u

∀ d ∈ UnownedDevices, ̸ ∃u ∈ Users : owns(d) = u

Devices = UnownedDevices ∪ OwnedDevices

Fresh devices and registered devices are not owned:

FreshDevices ⊆ UnownedDevices

RegisteredDevices ⊆ UnownedDevices

This definition of ownership is very high-level. In the model, a user must claim a
device. In the implementation, claiming is done by being the first person to scan a
QR code attached to the device, but it could also be done by an NFC chip or simply
typing a URL or code into a browser. The claiming process requires the device to be
switched on and connected, and therefore present. Once the user initiates the claim,
they must login and then consent to the device acting for them.

As a simplification of the model (and, in fact, the prototype as well), the device only
needs to remember the Refresh Token. In the OAuth2 specification, a client has both
a refresh token and a bearer token. The bearer token is inherently insecure as anyone

CHAPTER 6. MODEL 92

who has a copy of it can act as the client. Therefore, it expires regularly and once it
has expired, the client must refresh it, which requires the client to present its creden-
tials to the OAuth2 server.

Definition 6.4.6. Refresh Flow

OD(cid, cs, r) =
token refresh req.cid.cs.r →

token refresh resp?b → SD(b, cid, cs, r)

When a device was modeled above, there was nothing that addressed whether a de-
vice can publish events without those events being accepted by the Gateway. In the
prototype, the MQTT protocol, supports queueing at the Gateway and backpressure
on the client. Modeling queueing adds an unnecessary complexity to the model, as
well as being specific to a protocol. On the other hand, if there is nothing addressing
queueing or backpressure, the model also becomes unmanageable because of state
explosion. Therefore, this model uses the simplest approach, which is that the Device
must wait for an acknowledgement before publishing further data. This is a simple
form of backpressure. This corresponds to protocols like TCP, where the server ac-
knowledges the client messages, etc.

Therefore, the refined definition of a device is:

Definition 6.4.7. Acknowledging Device

SENS = sense$d → sd!d → dackd → SENS

ACT = rc?c → act!c → dackc → ACT

DV = SENS ||| ACT

Finally a Secure Device is one that connects using the bearer token and then publishes
and subscribes:

Definition 6.4.8. Secure Device

SD(bearer, cid, cs, r) = connect!bearer → connected → DV

CHAPTER 6. MODEL 93

6.4.3 Manufacturer

In order to register a device there needs to be an interface that will create a ClientID
and ClientSecret. This API is defined by the OAuth2 Dynamic Client Registration
(DCR) API [231]. The details of the actual API are abstracted in the model. The
manufacturer indicates that a device has been manufactured and requests a ClientID
and ClientSecret which are stored in the device.

The device itself does not connect to the DCR API. Instead, there is a manufacturer
that requests the credential and updates the device. The reason for this is that in or-
der to call the DCR API on the DIdP, the requestor needs its own credential. Adding
this credential to every device would be a significant security issue. In the model, the
trust relationship between the Manufacturer and the DIdP is not explicitly modeled
but assumed. In an implementation, this is enabled by a specific token for the manu-
facturer with scope allowing DCR access.

Definition 6.4.9. Manufacturer

MAN = manufacture → dcrrequest
→ credential?cid.cs → updatedevice!cid.cs → ✓

This is the only process involving the manufacturer.

6.4.4 User Identity Provider

The modelling of federated login into the User Identity Provider (UIdP) is purposely
minimal. The only requirement is that the UIdP validates the user and provides a
unique identifier for the user. In addition, it needs to be clear in the model that the
User’s credentials are only shared with the UIdP. In the prototype, multiple approaches
for UIdP login are supported, mainly based around OAuth2. As in other aspects of the
model, it would be possible to refine this further to cover those alternative approaches.
However, unlike the device authentication and authorisation flows, these flows take
place in a normal browser and are well understood, so there is no benefit in further
refinement of the model in this area.

The login process starts with a request for login (login). The user is either successful
in which case a user identifier (lu.u) is returned, or it fails (failure).

Definition 6.4.10. Login

LOGIN(u) = login → (success → lu.u → SKIP 2 failure → STOP)

CHAPTER 6. MODEL 94

This is refined to include a federated login (fedlogin), which takes a credential (fc).

Definition 6.4.11. User Identity Provider

UIDP =

login → fedlogin?fc → (success → lu.u → SKIP 2 failure → STOP)

The credential is unimportant. The requirement is that there is a bijective function
from federated credentials to users:

fu ∈ Fedcred× Users ∧ dom fu = Users ∧ fu(c1) = fu(c2) ⇔ c1 = c2

6.4.5 Device Identity Provider

The Device Identity Provider (DIdP) implements all the identity and policy model for
the device. It defers user logins to the User Identity Provider (UIdP), using a pattern
known as the Identity Broker pattern. The DIdP is modeled as a collection of stateful
processes that evolve, based on their interactions with existing devices, manufactur-
ers and users. These processes start with the issuance of a credential.

Definition 6.4.12. Device Registration API

DCR(cid, cs) = dcrrequest → credential.cid.cs → UR(cid, cs)

Once a credential is issued, the system must support User Registration. User registra-
tion for a device (URD) is as follows:

Definition 6.4.13. User Registration of Devices

URD(cid, cs) = presence.cid → claim.cid → login → URDA(cid, cs)

URDA(cid, cs) =
success → lu?u → URDB(cid, cs, u) 2 failure → error → STOP

URDB(cid, cs,u) =
devconsent → authcode$ac → TOKEN AC(p(u), cid, cs, ac, PdRc)

2 noconsent → error → STOP

CHAPTER 6. MODEL 95

Firstly, the device must be present. There must be a claim by a user, which initiates
a user login, which either succeeds or fails. If it fails then the process ends with an
error. Otherwise, the federated login returns a user identifier. Then there must be user
consent for a device. This consent is by definition consent for the device to use scope
PdRc, which means the device can publish data and receive commands. If the consent
is granted, the device receives an AuthCode. At this stage the DIdP is now ready to
handle the second half of the authorisation code flow (swapping the AuthCode for the
Refresh Token).

The scopes defined in this model are deliberately simple. In the previous approach
described in Chapter 5 an extensible model of scopes coded in JSON was proposed.
This resulted in complexity for the user. This approach therefore simplifies that con-
siderably:

Definition 6.4.14. Scopes

Scope = PdRc | RdPc | Pd | Rc | Rd | Pc

The meanings of these are described in Table 6.2.

Pd Publish Data
Pc Publish Commands
Rd Receive Data
Rc Receive Commands
PdRc Publish Data and Receive Commands
RdPc Read Data and Publish Commands

Table 6.2: Scopes and their Meanings

Note that there are other scopes in the overall system (e.g. a dcr scope which allows
manufacturers to call the DCR system, and an introspection scope that allows a gate-
way to call the introspection API. These are not formally modeled as they don’t affect
the core model or the proofs of data sharing.

At this stage, the DIdP applies a pseudonymisation function p(u), which replaces the
username with a random pseudonym. Note that the definition of pseudonymisation
in this work is somewhat different to other privacy-enhancing systems. In many sys-
tems, the user may choose to use multiple pseudonyms and these are shared with
third-parties to reduce identifiability. In this system, the pseudonym is automatically
generated and remains hidden from third-parties. It is used to make the attack tree
more complex by requiring an attacker to attack two different systems to identify a
user.

CHAPTER 6. MODEL 96

Definition 6.4.15. Pseudonymisation

∀u ∈ Users, p(u) ∈ Pseud

∀u1, u2 ∈ Users, p(u1) = p(u2) ⇔ u1 = u2

Before continuing with the device flow of the DIdP, it is useful to examine the ap-
plication approval process. A user must also authorise an application to be able to
interact with the system. In this case, an application is expected to have the scope
RdPc, which allows it to receive data and publish commands. A further refinement of
the model could support apps that only send commands, or only receive data. Sim-
ilarly the model can support devices that can only act and not sense. However, this
refinement is not required to demonstrate the core properties of the model.

Definition 6.4.16. User Approval of Applications

URA(cid, cs) = useraccess → login → URAA(cid, cs)

URAA(cid, cs) = success → lu?u → URAB(cid, cs, u)

2 failure → error → STOP

URAB(cid, cs, u) =
appconsent → authcode$ac → TOKEN AC(p(u), cid, cs, ac,RdPc)

2 noconsent → error → STOP

This definition is analogous to the device consent flow, except for two differences.
Firstly, that instead of a claim and presence event, there is simply an event useraccess.
This event signifies that a user has requested access to an application. Secondly, the
user offers appconsent which gives the app the RdPc scope.

The overall user approval process is the combination of these two processes:

Definition 6.4.17. User Approval support in the DIdP

UR(cid, cs) = URD(cid, cs) 2 URA(cid, cs)

This ties back to Definition 6.4.12.

The DIdP supports a Token interface (part of the OAuth2 specification) which sup-
ports the AuthCode flow and the Refresh flow.

CHAPTER 6. MODEL 97

Definition 6.4.18. Token Response to AuthCode

TOKEN AC(p, cid, cs, ac, scope) =
token ac req.cid.cs.ac → token ac respra

→ TOKEN REF(p, cid, cs, r, scope)

The refresh flow allows a client to send a valid refresh token, together with the client’s
credentials, and receive a fresh, active bearer token. Once this is done, the DIdP can
then support introspection of the bearer token.

Definition 6.4.19. Token Refresh Flow at the DIdP

TOKEN REF(p, cid, cs, r, s) =
token refresh req.cid.cs.r →

token refresh resp$bearer → INTRO(bearer, p, s)

This introspection is defined by the OAuth2 Introspection API [220]. Effectively, the
introspection looks at a bearer token and returns the validity, user and scope of the
token. In the model, introspection only returns the pseudonym instead of the actual
user information.

Definition 6.4.20. Introspection

INTRO(b, p, s) =
introspect.b → valid!p!s → INTRO(b, p, s)

2 introspect?x :
{
x
∣∣∣ x ∈ Bearer, x ̸= b

}
→ invalid → INTRO(b, p, s)

This definition says that the specific process that has previously initialised the client
with a bearer b, pseudonym p, and scope s will respond to events “querying” a bearer
token. If the bearer token queries matches, the scope and pseudonymwill be returned,
otherwise it will return invalid.

Note that a further refinement of this is possible using Timed CSP [68] which allows
one to model time. This refinement would include the timing-out of bearer tokens,
forcing a refresh. While this would be a nice enhancement to the model, it would not
aid in proving any of the fundamental properties of the model and therefore it is left
for further work.

The DIdP that supports a given credential is now defined, and this can be generalised:

CHAPTER 6. MODEL 98

Definition 6.4.21. Device Identity Provider

DIDP =2cid∈ClientID,cs∈ClientSecretDCR(cid, cs)

6.4.6 Third Party Application

The DIdP and the Device, are now defined, so it is a good time to look at the system
that interacts at the other end. This is called a Third Party Application (TPA) or simply
an App. The reason that this is called a third-party application is that the model en-
forces that no system is inherently trusted to look at device data. Therefore, every app
that wishes to access data from a device or send commands to a device must register
with the DIdP and gain consent, just as a third-party would in any OAuth2 flow.

The data consumer (DC) is a component that receives data (rd), and then logs that
data.

Definition 6.4.22. Data Consumer

DC = rd?d → logdata.d → DC

A command publisher first demands an action in the form of a command, and then
sends that command (sc):

Definition 6.4.23. Command Publisher

CP = demand$c → sc!c → CP

An application can support data consumption and command publication concurrently:

Definition 6.4.24. Application

APP = DC ||| CP

Once again there is a refinement of this that supports acknowledgements.

Definition 6.4.25. Acknowledging Application

DCack = rd?d → logdata!d → aackd → DCack

CPack = demand$c → sc!c → aackc → CPack

CHAPTER 6. MODEL 99

APPack = DCack ||| CPack

The logic of an application is very similar to the logic of a device. Given the similarity,
the logic can be presented more concisely before discussing the differences.

Definition 6.4.26. Application

APPCREATE = dcrrequest → credential?cid?cs → RA(cid, cs)

RA(cid, cs) = useraccess → authcode?ac → RAA(cid, cs, ac)

RAA(cid, cs, ac) = token ac req!cid.cs.ac → token ac resp?r.b → SA(cid, cs, r)

SA(cid, cs, r) = token refresh req!cid.cs.r →
token refresh resp?bearer → TA(bearer, cid, cs, r)

TA(b, cid, cs, r) = connect!b → connected → APPack

The difference is minor: the application needs a user to request access (useraccess).
Other than that, the consent flow is analogous as far as the app is concerned. However,
the user sees a different flow, explored next.

6.4.7 User

The only roles that the users play in this (which are key roles admittedly) are:

• to login,

• to claim devices,

• to request access to apps, and

• to provide consent to the devices and applications.

The user participates in two flows, consenting to devices and applications.

The user can claim a device. In this, the User u specifically claims a device with iden-
tity cid. The user must login successfully and consent to the device, or the login may
fail, or the user may not agree to the scope of sharing requested.

CHAPTER 6. MODEL 100

Definition 6.4.27. User Registration of a Device

USERCLAIM(fc, cid) = claim.cid → login →

(fedlogin!fc → (success → lu!u →

(devconsent → SKIP 2 noconsent → STOP)
2 failure → STOP))

A given user u may potentially claim any device:

UC(fc) =2
cid∈ClientID

USERCLAIM(fc, cid)

The second user flow is similar, where the user consents to an application seeing their
data and sending commands to their devices.

Definition 6.4.28. User Approval of an Application

USERAPPROVE(fc) = useraccess → login →

(fedlogin!fc → (success → lu!u →

(appconsent → SKIP 2 noconsent → STOP))
2 failure → STOP)

A user is simply the combination of these two processes:

Definition 6.4.29. User

USER(fc) = UC(fc) ||| USERAPPROVE(fc)

An important aspect of a user’s capability is the opportunity to revoke tokens and
remove access. This applies to both devices and applications. A device that has a token
revoked needs to be informed of token revocation by the DIdP. This is managed by an
appropriate return code from the DIdP to the device on the TOKEN REF interaction.
This then changes the device from the OD stage back to the RD stage where it can
then be claimed by the same user or another user.

Similarly an App that has been revoked will lose all access and will need to be re-
authorised by a user.

Currently there is no modeling of token revocation. This has been identified as an
area for further work, but is not expected to provide major insights as this is a well
understood area.

CHAPTER 6. MODEL 101

6.4.8 Intelligent Gateway (IG)

The role of the IG is to validate the bearer token of either the device or the app using
the introspection defined in 6.4.20. This returns a pseudonym and a scope. The IG
should not share this pseudonym, and the DIdP permissions do not allow other parties
to access introspection. Once the IG has a valid response, it passes the message to the
Personal Cloud Middleware (PCM), which implements the scope sharing.

Definition 6.4.30. Gateway

IG = connect?b → introspect!b →

(valid?p?s → connected → PCM(p, s) 2 invalid → error → STOP)

6.4.9 Personal Cloud Middleware (PCM)

Each user has their own instance of PCM. If u is a user, then PCM(u) is the user’s PCM.

∀u ∈ Users ∃ p ∈ PCM, p = PCM(u)

The PCM is modeled in two halves: a sending component and a receiving component.
This way, it can be ensured that a device that has permission to publish data is allowed
to publish and an app that is allowed to recieve data can correctly subscribe. In order
to model the PCM properly, once again there is need to support simple acknowledge-
ments to prevent state explosion in the model. The acknowledgements are in two
parts. Firstly, the PCM acknowledges that it has received or sent messages to the de-
vice or app (these acknowledgements were seen in Definition 6.4.7). The second type
of acknowledgement (pcmacksd, pcmackrd, pcmacksc, pcmackrc) allows the two halves
of the PCM to acknowledge delivery. For example, if the device is correctly connected
to the PCM, but there is no authorised application, the PCMwill not acknowledge that
messages have been delivered.

The connection between the two halves is modeled using the linked parallel construct
described above. For example, the “device half” of the PCM will senddata.p!d which
will be renamed to be received by the “app half” of the PCM as recdata.p?d. Notice
that these messages are synchronised on the pseudonym. This models the privacy
of the PCM: each user’s PCM can only communicate with its other half. The PCM is
defined using pattern matching on the different scopes:

Definition 6.4.31. Personal Cloud Middleware

CHAPTER 6. MODEL 102

The “device half” is defined:

PCM(p, Pd) = sd?d → senddata.p!d → pcmacksd → dackd → PCM(p, Pd)

PCM(p,Rc) = reccom.p?c → rc!c → pcmackrc → dackc → PCM(p,Rc)

PCM(p, PdRc) = PCM(p, Pd) ||| PCM(p,Rc)

The “app half” is defined:

PCM(p, Pc) = sc?c → sendcom.p!c → pcmacksc → aackc → PCM(p, Pc)

PCM(p,Rd) = recdata.p?d → rd!d → pcmackrd → aackd → PCM(p,Rd)

PCM(p,RdPc) = PCM(p,Rd) ||| PCM(p, Pc)

One of the concepts that is important in the PCM is that of summarisation and filtering.
These were not modeled in the PCM for the following reasons. One of the aims of
the CSP model is to prove specific properties of the model, such as end-to-end data
flow. In the case where there is summarisation and filtering these proofs will become
intractable. In addition, the complexity of the model increases making it much harder
to analyse using FDR.

A summarisation or filtering is a function defined on a stream of data or commands:

stream =< d1, d2, d3, d4, . . . dn . . . >

f(stream) =< d′1, d
′
2, . . . d

′
m . . . >

where the number of output data elements can be the same, fewer or even more than
the number of input data points.

Summarisation and filtering are — as identified in the literature review — key tech-
nologies to fight against fingerprinting. In addition, during the creation of this model I
identified the possibility of filtering commands, which did not emerge in the literature
review.

Filtering commands may initially seem counter-intuitive: if a device user wishes to
turn off a light, that user does not want the light turned off “on average”. However,
take the example of a connected car. Command filtering could be seen as an example
of an application-level firewall for device commands. For example, the filtermay allow
commands to remotely switch on the engine when the device is parked, but disallow
any events that effect the speed or direction of the car. A more complex filtering
rule might allow a command to switch off the engine when the speed is zero and the
parking brake is applied, but filter out any other attempts to switch off the engine.

CHAPTER 6. MODEL 103

While there are examples of specific firewalls, e.g, for cars, in the literature, there was
no evidence of a more general filtering and summarising approach to commands.

That completes the definition of the individual components of the architecture. The
next step is to combine the components into a full architecture and to demonstrate
specific properties of the system.

6.4.10 Event Sharing Across The Overall System

Here is modeled a system in which one device is connected to one application. In this
modelling, the credentials of the users who authorise each of these components are
parameterised to allow testing with different users. This section builds up the com-
position of individual components and analyses the events that are shared between
those components.

The first part is to connect a device to the manufacturer, DIdP, user and gateway.
Definition 6.4.32. System with Connected Device

Connecting the manufacturer and the DIdP:

DSYS1 = MAN me∥didpe DIDP

where me is the set of events that the manufacturer interacts on, and didpe is the set
of events that the DIdP interacts on.

me = {manufacture, dcrrequest,
credential.cid.cs, updatedevice.cid.cs

∣∣∣ cid ∈ ClientID, cs ∈ ClientSecret}

The set of events that the DIdP interacts with is quite extensive. Firstly, the events
between the device and the DIdP:

didp2d = {presence.cid, authcode.ac,
token ac req.cid.cs.ac, token ac resp.r.b,

token refresh req.cid.cs.r, token refresh resp.b
∣∣∣

cid ∈ ClientID, cs ∈ ClientSecret, ac ∈ AuthCode,
r ∈ Refresh, b ∈ Bearer}

CHAPTER 6. MODEL 104

The events between the manufacturer and the DIdP:

didp2m = {dcrrequest, credential.cid.cs
∣∣∣

cid ∈ ClientID, cs ∈ ClientSecret}

The events between the DIdP and the application creator are the same:

didp2ac = {dcrrequest, credential.cid.cs
∣∣∣

cid ∈ ClientID, cs ∈ ClientSecret}

The events between the DIdP and the Gateway:

didp2gw = {introspect.b, valid.p.s, invalid
∣∣∣

b ∈ Bearer, p ∈ Pseud, s ∈ Scope}

The events between the DIdP and the User:

didp2u = {lu.u, claim.cid, useraccess,
devconsent, appconsent,noconsent

login, success, failure
∣∣∣

cid ∈ ClientID, u ∈ User}

The error event:
didperr = {error}

All DIdP events:

didpe = didp2d ∪ didp2m ∪ didp2ac ∪ didp2gw ∪ didp2u ∪ didperr

As discussed in the introduction to CSP above, the alphabetised parallel operator (A∥B)
has the following rule:

Law 6.4.1. Alphabetised Parallel

P A∥B Q = (P ∥
Σ\A

STOP) ∥
A∩B

(Q ∥
Σ\B

STOP)

where Σ is the set of all events in the system.

CHAPTER 6. MODEL 105

In other words, when the alphabetised parallel operator P A∥B Q is used, all possible
events that communicate between P and Q can be defined as the intersection A∩B.

One of the key aspects of this system is where there are multiple parties conjoined
using alphabetised parallel. Alphabetised parallel has both symmetry and associative
laws.
Law 6.4.2. Alphabetised Parallel Symmetry

P A∥B Q = Q B∥A P

Law 6.4.3. Alphabetised Parallel Associativity

(P A∥B Q) A∪B∥C R = P A∥B∪C (Q B∥C R)

This gives the following theorem:

Theorem 6.4.1. Manufacturer to DIdP Events As this is the only place where the DIdP
interacts with the manufacturer, it can be asserted that the Manufacturer only sees the
events didpe ∩me:

{dcrrequest, credential.cid.cs
∣∣∣ cid ∈ ClientID, cs ∈ ClientSecret}

The proof is an obvious instantiation of Law 6.4.1. In addition, this can be derived
using the probe capabilities of FDR that allow this combined process to be explored.

Of course the manufacturer also interacts with the device, but in this case the device is
simply receiving data that the manufacturer provides to the device. One thing to note
is that the manufacturer can retain the ClientID and ClientSecret. A possible improve-
ment to the model would be to enable a flow whereby the device directly contacts the
DIdP to update the ClientSecret, which would ensure that the manufacturer is not in
possession of the device credentials. This increases security at the cost of making it
harder for the manufacturer to provide support. This is left for further work.

The next stage of constructing the system is to conjoin this with a fresh device:

DSYS2 = FD deve∥didpe∪me DSYS1 \ me

where deve is the set of events that the device communicates on. Note that the overall
set of events that a device interacts on are specified here individually, but later the
actual events that two parties interact on is formally derived using laws of CSP and
the use of FDR.

CHAPTER 6. MODEL 106

The device to manufacturer events:

dme = {manufacture, updatedevice.cid.cs
∣∣∣ cid ∈ ClientID, cs ∈ ClientSecret}

The device to DIdP events:

dde = {presence.cid, authcode.ac,
token ac req.cid.cs.ac, token ac resp.r.b,

token refresh req.cid.cs.r, token refresh resp.b
∣∣∣

cid ∈ ClientID, cs ∈ ClientSecret, ac ∈ AuthCode,
r ∈ Refresh, b ∈ Bearer}

Note that dde = didp2d.

The device to gateway events:

dge = {connect.b, connected, sd.d, rc.c, dackd, dackc∣∣∣ b ∈ Bearer, d ∈ Data, c ∈ Command}

The devices own events:

hde = {act.c, sense.d
∣∣∣ d ∈ Data, c ∈ Command}

All device events are the union of these:

deve = dme ∪ dde ∪ dge ∪ hde

The device is conjoined with both the DIdP and the Manufacturer. Once this happens,
the the manufacturer’s events are no longer visible, and therefore are hidden.

Theorem 6.4.2. Device to Manufacturer Events

The device to manufacturer events are deve ∩me. The intersection is calculated by
FDR.

{manufacture, updatedevice.cid.cs
∣∣∣ cid ∈ ClientID, cs ∈ ClientSecret}

This can be proven using FDR or by applying the alphabetised parallel rule twice.

Theorem 6.4.3. Device to DIdP Events The device to DIdP events are didpe ∩ deve.

CHAPTER 6. MODEL 107

The intersection is calculated by FDR.

{presence.cid, authcode.ac,
token ac req.cid.cs.ac, token ac resp.r.b,

token refresh req.cid.cs.r, token refresh resp.b
∣∣∣

cid ∈ ClientID, cs ∈ ClientSecret, ac ∈ AuthCode,
r ∈ Refresh, b ∈ Bearer}

In order to authorise the system, the user must connect to the UIdP. Firstly, the events
that the UIdP interacts on:

fedevents = {fedlogin.fc, login, lu.u, success, failure
∣∣∣ u ∈ User, fc ∈ Fedcred}

The set of events that the federated user interacts on are:

fue = {claim.cid, useraccess, fedlogin.fc, lu.u
login, success, failure,

appconsent, devconsent,noconsent∣∣∣ cid ∈ ClientID, fc ∈ Fedcred, u ∈ User}

Once the federated user is combined with the UIdP, this communicates with the DIdP
on a set of events due:

due = {claim.cid, useraccess, lu.u, login, success, failure
appconsent, devconsent,noconsent∣∣∣ cid ∈ ClientID, u ∈ User}

A user claiming a device:

FUSER(fc) = UC(fc) fue∥fedevents UIDP |̀ due

Theorem 6.4.4. User to UIdP Events By application of the alphabetised parallel law2,
it can be ascertained that the user to UIdP events are fue ∩ fedevents. These are calcu-
lated by FDR.

{login, lu.u, success, failure, fedlogin.fc
∣∣∣ u ∈ User, fc ∈ FedCred}

2Note that the user is also present in the app approval process below. The law is applied to both
conditions, but the theorem is presented here for reasons of explication.

CHAPTER 6. MODEL 108

Now this user can be conjoined with the existing system, hiding the login and lu events
from the rest of the system. DSYS3(fc) indicates the user with credentials fc approving
a fresh device (with the associated DIdP, UIdP and manufacturer).

DSYS3(fc) = DSYS2 didpe∪deve∥due FUSER(fc) \ {login, lu.u
∣∣∣ u ∈ User}

Theorem 6.4.5. UIdP to DIdP Events Using the Associative Law 6.4.3 it can be show
that the DIdP to UIdP events are (didpe ∪ deve) ∩ fedevents, which (using FDR) evalu-
ates to: {

login, lu.u, success, failure
∣∣∣ u ∈ User

}

Theorem 6.4.6. User to DIdP Events The user to DIdP events are (didpe ∪ deve) ∩ ue.
These are calculated by FDR.

{devconsent, appconsent,noconsent, login,
lu.u, success, failure, claim.cid,useraccess∣∣∣ u ∈ User, cid ∈ ClientID}

Definition 6.4.33. Device System

This is now joined with the Gateway (IG):

DSYS(fc) = IG gwe∪pcme∥didpe∪gwe∪hde DSYS3(fc)

where gwe are the events that the gateway interacts on, and pcme are the events that
the two halves of the PCM interact on:

gwe = {connect.b, connected, introspect.b, valid.p.s, invalid,
dackd, dackc, aackd, aackc, rd.d, sd.d, rc.c, sc.c∣∣∣ b ∈ Bearer, p ∈ Pseud, d ∈ Data, c ∈ Command, s ∈ Scope}

pcme = {senddata.p.d, sendcom.p.c, recdata.p.d, reccom.p.c,
pcmackrd, pcmacksd, pcmacksc, pcmackrc∣∣∣ d ∈ Data, c ∈ Command, p ∈ Pseud}

This process (DSYS(fc)) indicates a user with credential fc approving a device that is
now fully connected to the rest of the system (IG, DIdP, UIdP, Manufacturer and User).

CHAPTER 6. MODEL 109

Theorem 6.4.7. Device to Gateway Events

Once again the associative law can be used to calculate all events that the device can
communicate with the gateway on, which is (gwe ∪ pcme) ∩ deve:

{sd.d, rc.c, connect.b, connected, dackd, dackc∣∣∣ d ∈ Data, c ∈ Command, b ∈ Bearer}

Theorem 6.4.8. Gateway to DIdP Events The events shared between the DIdP and
the IG are derived to be (gwe ∪ pcme) ∩ (didpe ∪ hde), which evaluates to:

{introspect.b, valid.p.s, invalid
∣∣∣ b ∈ Bearer, p ∈ Pseud, s ∈ Scope}

Theorem 6.4.9. The Gateway Shares no Events with the UIdP, the User and the Man-
ufacturer

By similar calculations of the alphabetised parallel laws, it is shown that the set of
events shared between the gateway and the manufacturer, user, and UIdP are all
empty.

The creation of the App half of the system is analagous, and therefore is presented
without discussion.
Definition 6.4.34. Application Connected to the DIdP, UIdP, User and IG

FUA(fc) = USERAPPROVE(fc) fue∥fedevents UIDP |̀ due

All the events an app can participate in are defined as ae, and the set of events that
the DIdP communicates with apps as appdidpe. The user to App events are uae.

ASYS1 = DIDP appdidpe∥ae APPCREATE

ASYS2(fc) = (ASYS1 didpe∪ae∥uae FUA(fc)) \ {login, lu.u
∣∣∣ u ∈ User}

ASYS(fc) = IG gwe∪pcme∥appdidpe∪gwe∪hae ASYS2(fc)

The process ASYS(fc) indicates an app that has been approved by user with credential
fc that is connected to the DIdP, UIdP, User, and IG.

6.4.11 The Complete System

Finally, these two systems (DSYS and ASYS) are connected together. They synchronise
only at the PCM using the PCM events. This is modeled using the linked parallel

CHAPTER 6. MODEL 110

approach described above. The parameterisation of the users’ credentials is retained
so that the system can be tested with different users (with one credential being used
to authorise the device and the other to authorise the app).
Definition 6.4.35. The Complete System

SYS(fc1, fc2) =

DSYS(fc1)


reccom ↔ sendcom

pcmacksd ↔ pcmackrd

pcmackrc ↔ pcmacksc

senddata ↔ recdata

ASYS(fc2)

Θ{error}STOP

Theorem 6.4.10. Application Events The same logic as above can be applied to cal-
culate the events that the App shares with different components. The proofs can be
derived by the use of the Associative Law, or more effectively through probing the
model with FDR.

These are summarised in Table 6.3.
User ∅
UIdP ∅
Device ∅
Manufacturer ∅

DIdP

{presence.cid, authcode.ac,
token ac req.cid.cs.ac, token ac resp.r.b,

token refresh req.cid.cs.r, token refresh resp.b
∣∣∣

cid ∈ ClientID, cs ∈ ClientSecret, ac ∈ AuthCode,
r ∈ Refresh, b ∈ Bearer}

Gateway
{rd.d, sc.c, connect.b, connected, aackd, aackc∣∣∣ d ∈ Data, c ∈ Command, b ∈ Bearer}

Table 6.3: Events Shared Between the App and Other Components

6.5 Properties Of The System

Two sets of properties of the system are derived from the model: end-to-end proper-
ties, and data sharing properties.

6.5.1 End-To-End Analysis

The definition of the complete system allows reasoning about the whole system and
not just the components. To do this, specifications can be defined in CSP that are
either expected to pass or fail.

CHAPTER 6. MODEL 111

Theorem 6.5.1. Consent Cannot Follow Failed Login In order to demonstrate that
consent must follow successful login, an “anti-specification” can be disproved:

LSPEC = failure → appconsent → STOP 2 failure → devconsent → STOP

The specification suggests that the model will support appconsent or devconsent after
a failure. This must be disproven. The specification will only be evaluated on these
events:

lspecevents = {error, appconsent, devconsent, success, failure}

Because this is an anti-specification, disproving means proving that the traces of this
are not a subset of the traces of the system.

Therefore FDR is used to evaluate whether or not:

SYS(FC.0, FC.0) |̀ lspecevents ⊑T LSPEC

where FC.0 is a valid credential in the system.

FDR shows that this is not true with the following trace of events:

Counterexample (Trace Counterexample)
Specification Debug:

Trace: <failure>
Available Events: {error, success}

Implementation Debug:
LSPEC (Trace Behaviour):

Trace: <failure>
Error Event: devconsent

In other words, the system does not accept devconsent after failure.

A positive specification is that when the system is properly consented on both halves,
by the same user, then data that is sensed in the device will be logged in the app, and
commands that are demanded in the app, will be acted on in the device.
Definition 6.5.1. Normal System Specification (NS)

This outlines the possibilities for consent. Either there are both consents (in either
order), or consent on one side followed by an error, or an error. Internal choice prop-
erly identifies the specification because it does not consider whether the consent failed
because of failed login, or the user refused to grant consent, and therefore there are

CHAPTER 6. MODEL 112

non-deterministic choices of how these event patterns emerge.

NSSUCC = appconsent → devconsent → NS2 ⊓

devconsent → appconsent → NS2 ⊓

error → STOP ⊓

appconsent → error → STOP ⊓

devconsent → error → STOP

A successful operation is defined as:

NS2 = sense$d → logdata.d → NS2 2 demand$c → act.c → NS2

This specification only considers the following events:

specevents = {error, appconsent, devconsent, logdata.d, act.c∣∣∣ d ∈ Data, c ∈ Command}

The overall specification is then:

NS = NSSUCCΘ{error} STOP |̀ specevents

The system is now evaluated using FDR’s refinement checker.

Theorem 6.5.2. The System Meets the Specification if the Same User Authorises De-
vice and App

NS ⊑T SYS(FC.0, FC.0) |̀ specevents ∧
NS ⊑F SYS(FC.0, FC.0) |̀ specevents ∧

NS ⊑FD SYS(FC.0, FC.0) |̀ specevents

This is proved by FDR:

NS [T= SYS(FC.0, FC.0) |\ specevents:
Log:

Result: Passed
Visited States: 1,461,364
Visited Transitions: 7,440,420
Visited Plys: 68
Estimated Total Storage: 268MB

CHAPTER 6. MODEL 113

NS [F= SYS(FC.0, FC.0) |\ specevents:
Log:

Result: Passed
Visited States: 1,461,364
Visited Transitions: 7,440,420
Visited Plys: 68
Estimated Total Storage: 268MB

NS [FD= SYS(FC.0, FC.0) |\ specevents:
Log:

Result: Passed
Visited States: 1,461,364
Visited Transitions: 7,440,420
Visited Plys: 68
Estimated Total Storage: 268MB

Theorem 6.5.3. The System Fails the Specification if Different Users Authorise Device
and App

If user with credential FC.0 authorises the device and user with credential FC.1 au-
thorises the app then there are no data or commands transferred:

SYS(FC.0, FC.1) |̀ specevents ⊑T NS

In other words, this tests whether the correct traces are a subset of the traces of the
incorrect system, and it is desired that this is not the case. This is once again proved
by FDR, which postulates the following counter-example:

SYS(FC.0, FC.1) |\ specevents [T= NS:
Log:

Result: Failed
Visited States: 27
Visited Transitions: 42
Visited Plys: 8
Estimated Total Storage: 0B
Counterexample (Trace Counterexample)

Specification Debug:
Trace: <appconsent, devconsent>
Available Events: {}

Implementation Debug:
NS (Trace Behaviour):

Trace: <�, �, �, �, appconsent, devconsent, �, �>
Error Event: logdata.D.0

CHAPTER 6. MODEL 114

This shows that even though appconsent and devconsent occur, no data is transferred
as the logdata event cannot occur in the system where different users consent.

6.5.2 Data Flow Between Components

In the analysis of the model above, the messages that flow between systems are iden-
tified. Those findings are tabulated in Table 6.4, which captures all the data elements
that are transferred in messages between each component. For example, in Theo-
rem 6.4.8 it was identified that the events passed are:

{introspect.b, valid.p.s, invalid
∣∣∣ b ∈ Bearer, p ∈ Pseud, s ∈ Scope}

From this, it can be identified that the data passed is a bearer token, pseudonym and
scope.

Man Dev User UIdP DIdP GW/PCM App
Man — {ClientID,

ClientSec} ∅ ∅ {ClientID,
ClientSec} ∅ ∅

Device {ClientID,
ClientSec} — ∅ ∅

{ClientID,
ClientSec,
AuthCode,
Bearer}

{Bearer,
Data,

Command}
∅

User ∅ ∅ — {FedCred,
User}

{User,
ClientID} ∅ ∅

UIdP ∅ ∅ {FedCred,
User} — {User} ∅ ∅

DIdP {ClientID,
ClientSec}

{ClientID,
ClientSec,
AuthCode,
Bearer}

{User,
ClientID} {User} —

{Bearer,
Pseud,
Scope}

{ClientID,
ClientSec,
AuthCode,
Bearer}

GW/PCM ∅
{Bearer,
Data,

Command}
∅ ∅

{Bearer,
Pseud,
Scope}

—
{Bearer,
Data,

Command}

App ∅ ∅ ∅ ∅

{ClientID,
ClientSec,
AuthCode,
Bearer}

{Bearer,
Data,

Command}
—

Table 6.4: Component Data Sharing Matrix

This data sharing matrix captures a key property of the system. The distribution and
sharing of data between components can be used to analyse the security and privacy
properties of the system. This is done by threat modeling. Threat modeling allows
the analysis of different attacks on the system. This matrix is directly used as the
input to the threat modeling exercise in Chapter 7, where it is used to demonstrate
enhancements to security and privacy.

CHAPTER 6. MODEL 115

6.6 Conclusions Of The Formal Modelling

This concludes the formal analysis of the system using CSP and FDR. In summary,
the formal model of the system has shown that the system cannot transfer messages
unless:

• A user has successfully logged in to consent

• The user has granted consent for applications to read data and publish com-
mands

• The user has granted consent for devices to publish data and read commands

• The same user has granted consent for both the application and device

In addition, the model was used to derive the set of messages with which each compo-
nent interacts with the other components. These findings form the basis of the threat
modelling, which comes next.

In this chapter, both an informal and formal description of the model have been out-
lined. Using the formal model specific properties of the system have been proved,
including data sharing properties and end-to-end properties. There is a clear proof
that data is shared between devices and apps if and only if the same user has con-
sented to both systems being authorised to do so. This analysis will be used in the
next chapter to produce a threat model.

Chapter 7

Threat Modelling

This chapter proceeds as follows. In Section 7.1, the overall threat modeling ap-
proach is discussed; the proven properties from Chapter 6 are evaluated to create
an threat model; and the assets of the system as identified in the model are evalu-
ated. In Section 7.2, specific threats against security are evaluated. In Section 7.3,
privacy properties are evaluated to understand threats against privacy. In Section 7.4
those properties and the threat model are compared to the requirements identified in
Chapter 2, and then the overall results of threat modeling are discussed.

7.1 Threat Modeling

Threatmodels have emerged as a key approach to ensure the security of systems [259].
The approach taken to threat modeling is broadly based on [183], with further input
from [246] and [71]. In these papers there is a high-level three step process:

• characterising the system,

• identifying assets and access points, and

• identifying threats.

The first two steps are the same for both privacy and security. For the third step
— identifying the threats — two different sets of threats will be proposed, treating
security and privacy separately.

In [246], a set of threats based on security properties is proposed, named STRIDE.
In [71] a set of threats based on privacy properties is proposed, named LINDDUN.
The LINDDUN properties were discussed in Section 2.20.1. The STRIDE properties
are outlined in Section 7.2.

116

CHAPTER 7. THREAT MODELLING 117

The usual approach in threat modeling is to use Data Flow Diagrams [152] to charac-
terise the flows in a system. In this work, there is already a detailed model providing
a characterisation of the system. In particular, there is a full characterisation of all the
data flows throughout the network, which provides a strong basis for threat modeling.
The fundamental input to the threat modeling is the Data Sharing Matrix presented
in Table 6.4 in Chapter 6. This will be used instead of data flow diagrams.

As a consequence of this approach, it is clear that this threat modeling is not aimed
to be comprehensive. A full deployment of this architecture would require further
threat modeling to assess the risks inherent in such a deployment. Instead, this threat
modeling aims to address the inherent risks of this model, as it is modeled in Chapter 6,
and using the output of that model as the basis.

7.1.1 Assets And Access Points

The assets can also be extracted from the model, and these are summarised in Ta-
ble 7.1. The access points of the system are well characterised by the components
and associated process flows identified in the CSP model.

User information
Federated credential,

User identifier,
Pseudonym

Device Information

IP address,
Sensor fingerprints,

Bearer Token,
Refresh Token,

ClientID,
ClientSecret

Data Data
Command

Temporary identifiers AuthCode
Table 7.1: Assets of the System

Note that IP Address and Sensor fingerprints are not part of the formal model. One of
the major concerns identified in the literature review is the possibilities of fingerprint-
ing devices based on metadata or sensor anomalies. Therefore these are considered
in the threat model.

It is assumed that the User Identity Provider is secure, as it is out of the control of
this model. In addition, one of the key benefits of the architecture is choice: users can
select a more secure UIdP over a less secure one. The federated credentials cannot be
stolen except in cases where the UIdP is compromised as they are only passed between
User and UIdP. Note that attacks where the user is persuaded to choose an insecure
UIdP are ignored, as once again this is out of the control of the system.

CHAPTER 7. THREAT MODELLING 118

Before assessing potential attacks and access points, let us address the potential value
of each of the assets to an attacker.

• Federated Credential: as discussed, this is not considered this to be accessible
as part of this analysis.

• User Identifier: in the system, the user identifier is an id sent back from the
UIdP. Typically in federated web systems, this is an internal identifier used in the
UIdP’s system. For example, in Github, the login flow returns the userid (e.g.,
pzfreo) as well as a unique number (e.g., 2341892233). In some cases, the UIdP
returns more information than the DIdP needs due to the OAuth2 login models
of some systems, and in this case the DIdP must discard this data immediately.
Obviously one of the aims of the system is to protect metadata and therefore any
attack that identifies users of the system may harm privacy. However, leakage
of the userid itself does not, in most cases, inherently harm the user, unless this
is also tied to devices, apps, data or pseudonyms. However, ee can imagine a
system that was very restricted (e.g., if this model was applied to diabetic disease
management devices), where the fact of using the system inherently ties the user
to a specific type of device and or disease.

• Pseudonym: The pseudonym is a randomly generated identifier for a user. If
the attacker only knows the pseudonym then there is little benefit. However, if
the pseudonym can be tied to data and devices that increases the risk of privacy
infringement. If the pseudonym is also tied to userid then the attacker has full
visibility.

• IP address: If an attacker identifies the IP address of a device they can find an
approximate geo-location of the device, as well as identifying the ISP. In addition,
it is possible that they can fingerprint the IP address to a given user through other
shared devices using the same network.

• Sensor fingerprint: If an attacker can collect enough raw data from multiple
devices, they can fingerprint those devices and potentially tie them to users.

• Bearer Token: The bearer token is a powerful token in the OAuth2 flow and
anyone stealing it can spoof the device or app that it belongs to. This is a well-
known issue with the OAuth2 specification and there are possible approaches
such as Proof of Possession (PoP) tokens [129] that address this. However, the
use of those token approaches is inherently costly both in device bootstrap and
in runtime code. This is examined in more detail below. Bearer tokens expire
and this limits the exposure.

• Refresh Token: The refresh token is even more important. An attacker stealing
a refresh token can permanently emulate a device or app, if they also have the

CHAPTER 7. THREAT MODELLING 119

ClientID and ClientSecret. Without those, the Refresh Token is valueless.

• ClientID: The ClientID of the device is a random string that uniquely identifies
the device. On its’ own, this information has no specific value. An attacker
needs to have a ClientID together with some other data (e.g., a User id, a Client
Secret, or data/commands) to make use of the ClientID.

• ClientSecret: the ClientSecret is a random string that is designed to be unsus-
ceptible to dictionary attacks. On its own, this has no value. The combination of
ClientID and ClientSecret can be used before a device has been claimed to spoof
that device and therefore potentially persuade a user they have claimed a device
when in fact a different device is claimed. If a device is already claimed, then
the claim flow will fail. If an attacker gains the ClientID, the Client Secret and
the Refresh token, then they can spoof the device.

• Data and Commands: an attacker stealing data or commands may be able to
fingerprint the device or may be able to tie the device to the user through aspects
inherent in the data. For example, if the data contains GPS co-ordinates, then
the attacker may be able to identify the driver of a car. However, inherently the
data and commands are less valuable without tying them to a specific device or
user.

• AuthCode: the AuthCode is valueless without a corresponding ClientID and
ClientSecret.

The model has two categories of threat. There are threats against specific aspects of
the system, such as the use of TLS, OAuth2 flows, etc. Secondly there are threats
against the overall system. The threats against the overall system can be divided into
security threats and privacy threats.

As discussed in Section 4.1 there is a published threat model for OAuth2, which makes
recommendations for securing OAuth2. These are broadly applicable to this model,
and specific issues are examined below. In addition, it is assumed that threats against
TLS apply broadly to Internet systems and therefore these threats are not addressed
in this work.

7.2 Security Threats

A common approach to identifying threats in threat modeling is the STRIDE sys-
tem [246], which characterises the following threats:

• Spoofing — Using someone else’s credentials to gain access to otherwise inac-
cessible assets.

CHAPTER 7. THREAT MODELLING 120

• Tampering — Changing data to mount an attack.

• Repudiation Occurs when a user denies performing an action, but the target of
the action has no way to prove otherwise.

• Information disclosure — The disclosure of information to a user who does not
have permission to see it.

• Denial of service — Reducing the ability of valid users to access resources.

• Elevation of privilege—Occurs when an unprivileged user gains privileged status

The STRIDE approach will be used to identify threats. An important aspect with secu-
rity and privacy is that there is always a cost/benefit analysis. For example, naturally a
non-Internet connected device can infringe less on privacy than an IoT device. Hence,
security and privacy must be enhanced at a reasonable cost to the user, manufacturer
and service provider.

7.2.1 Spoofing

There are several systems that could be spoofed. Each of these is analysed in turn.

The device is protected from spoofing using the ClientID and ClientSecret. An attacker
cannot create a new ClientID or ClientSecret as the DCR API is protected and only
authorised manufacturers can call it. One possible attack is a physical attack on the
device to retrieve the credentials. The benefit of this is restricted to certain attack
cases (e.g., where the attacker wished to send bad data or acknowledge acting on
commands which it did not act upon), because if the attacker has the specific device
then they can perform other attacks on it. This could be mitigated by using a TPM
and code attestation on the device, but as discussed this adds cost and complexity
that most IoT manufacturers are unwilling to bear. A system stealing the bearer token
can spoof the device for a given amount of time (until the bearer times out). This
is protected against: the device receives the bearer over TLS from the DIdP and the
device only sends the bearer over TLS to the gateway.

As discussed above, a device with stolen credentials (ClientID and ClientSecret) could
be spoofed during the claim process. This can be protected against by having a positive
confirmation of successful claim on the device (e.g., a distinct pattern of LED flashes).

The manufacturer uses a credential to call the DCR API. The connection between the
manufacturer and the device is protected from spoofing using the manufacturers own
process. In the prototype this was implemented using a private network and physical
scanning presence.

The DIdP is protected from spoofing by the use of server-side TLS certificates. The

CHAPTER 7. THREAT MODELLING 121

manufacturer and gateway use full certificate chains and are coded to validate the
server name. The device can use the same approach or can have a TLS certificate
fingerprint programmed in at manufacture time (which is the approach taken in the
prototype).

The gateway is protected from spoofing in two ways. As a server, the gateway has a
server-side TLS certificate. This can be coded into the device, or can be returned as
metadata in the Refresh flow. As a client, the gateway uses a token of its own that
gives it scope permission to call the introspection API on the DIdP.

The app is protected from spoofing by its ClientID and ClientSecret.

All the systems are protected from man-in-the-middle attacks by the use of TLS on all
distributed links.

One overall aspect about spoofing where this model is potentially more risky than
existing models is the complexity and number of connected systems. This is a balance
between federation and the benefits of separation of data and concerns. The above
mentioned authentication and authorisation measures protect against this, but there
is inherently a risk to this approach. One question for this work is whether this risk
is outweighed by the benefits. To answer that would require further validation of this
system, especially with industrial partners, and this is called out in the further work
in Chapter 11.

7.2.2 Tampering

Tampering attacks in the system would equate to either sending incorrect data or
incorrect commands. This is protected against by the encryption and authentication
of systems. Physical tampering of a device is a specific risk of any cyber-physical
system. The protection against physical tampering is that every device has different
credentials (preventing the stealing of one credential affecting other devices) and that
affected devices and credentials can be remotely revoked through token revocation.

7.2.3 Repudiation

Repudiation is one area where this model potentially offers a worse option than a
standard system. In a standard system, the raw metadata and raw data are available
directly from the device to the service that consumes that data, and therefore it is
harder for a repudiation to occur. In this model, devices are pseudonymously linked
to service providers and therefore repudiation is actually easier. A protection against
this can be proposed, which is not yet implemented, but forms a potential further

CHAPTER 7. THREAT MODELLING 122

work. This approach involves running PCM systems under SCONE [18] or another
system that supports remote attestation. This is discussed in Section 11.4.5.

7.2.4 Information Disclosure

The main aim of this system is to prevent information disclosure. The encryption
model of the system provides general protection against attackers listening. Further
avenues of information disclosure are based on the potential attacks to each of the
systems and analysis of what information each system has available to it. Table 6.4
provides a key reference in assessing these possibilities of information disclosure.

An attacker of an IoT system might reasonably expect to target the data and com-
mands of a particular device or the devices of a particular user. In order to do that,
the attacker must identify the device or the user. To identify the device, an attacker
must either tie it to a user or to a specific place or identity. The system and model do
not use any inherent identity of the device such as a MAC address. An attacker who
compromised a gateway or PCM would have the IP address of the device and could
potentially use that, but would not have the user of the device, only the pseudonym.
The attacker who compromises the DIdP has the users identity and their pseudonym
but not any of the data or commands. Obviously, the controls against these are proper
protections for the DIdP and Gateway, including normal secure development, opera-
tions and infrastructure processes.

An attacker who compromises a manufacturer only has access to the ClientID and
ClientSecrets. They may be able to spoof unclaimed devices. To disable this one
could implement a process for devices to update the ClientSecret immediately after
manufacture.

An attacker who compromises a third-party application only has a subset of the data
and neither the pseudonym nor the user identity.

An attacker who compromises a device does not have access to the userid or the
pseudonym.

Specifically, this model provides significant protections against information disclosure.
Firstly, by limiting data sharing to consented parties, and enabling summarisation and
filtering, the model prevents a single party logging and storing all data by default,
as is the case in many existing IoT systems. Secondly, by using pseudonyms and
an intermediary that acts on behalf of the user, the system protects against sharing
metadata and fingerprinting by default. Thirdly, by separating user identity, device
identity and data/commands, an attacker must compromise multiple systems in order
to compromise a user and their data.

CHAPTER 7. THREAT MODELLING 123

7.2.5 Denial Of Service

All the communications are protected by encryption and authentication, therebymean-
ing that denial of service attacks can be minimised. In addition, any device or appli-
cation that starts to misbehave can have its access revoked.

7.2.6 Elevation Of Privilege

There are no elevation of privilege attacks that were identified.

7.3 Privacy Threats

In Chapter 2, there was a summary of the LINDDUN model of privacy threats. The
same approach as STRIDE can be taken to use the flow modeling of data across the
system derived from the CSP model to analyse privacy threats.

7.3.1 Linkability

OAuthing allows users to share data without linking the specific user to a given device.
However, OAuthing does allow the app to identify that multiple interactions come
from the same user, since a user authorises the app with a given token. On the other
hand, the app has only a random token. While it is possible to allow amore unlinkable
approach, there would be a major usability challenge, requiring users to re-consent
numerous times. The model does allow multiple devices to each be connected to the
same app with different tokens, reducing linkability across a user’s devices. Currently
this is possible if the user separately authorises each device with the app. In addition,
the hiding of the device’s IP address, MAC address and other core properties is a useful
addition in this space.

7.3.2 Identifiability

The model does not provide inherent identifiability as previously discussed. One po-
tential improvement to OAuthing would be to offer different pseudonyms for the same
user. However, it is not clear what advantage this would bring. Since the pseudonym
is only shared with the Gateway, this logically only protects against attacks on the
Gateway or initiated in the Gateway. In the OAuthing model, in order for sharing
to occur, the device and app must share a PCM, which is based on the pseudonym.

CHAPTER 7. THREAT MODELLING 124

One possibility is that the DIdP could wait until all tokens are expired (or potentially
deliberately expire them) and then issue a new pseudonym.

7.3.3 Plausible Deniability

There is a wonderful tension between plausible deniability and non-repudiation. By
allowing users to configure summarisation and filtering rules, and defining policies at
the PCM, a user may genuinely gain plausible deniability by either refusing to share
data, maintaining anonymity, or by hiding specific data. On the other hand, a user
may genuinely wish to share data and the app may need guarantees about the data.
This is discussed in Section 11.4.5.

7.3.4 Undetectability And Unobservability

The model addresses this through the ability to filter data, or to not share it in the
first place.

7.3.5 Confidentiality

The model addresses this as discussed above via encryption of all external data chan-
nels. In addition, the PCM does not store data, except temporarily for summarisation
and filtering. Therefore data is not held “at rest” in the system, making attacks on
data harder.

7.3.6 Content Awareness

OAuthing does not inherently help with this aspect. The real challenge in this area
is around creating user interfaces that offer users a clear view of the data — and the
implications of that data — that they are sharing. However, it is certainly conceivable
that OAuthing could offer an environment in which to offer such a UI. For example,
the consent screen could utilise metadata about device types to show the implications
of the data collected. The device type is captured by the DIdP as part of the DCR API,
although this is currently not used.

7.3.7 Policy And Consent Noncompliance

This is an area where OAuthing offers a strong answer. Firstly, the system is de-
signed to offer a consent management option independent of manufacturers and app

CHAPTER 7. THREAT MODELLING 125

providers. Secondly, the system where each user has their own PCM implementing
consent policies, summarisation and filtering policies offers an effective model for
enforcing policies and consent management.

7.4 Comparing The Model Against The Requirements

In Chapter 2, a set of requirements for secure, private IoT middleware was identified.
Here is a summary of how this model addresses or does not address those require-
ments.

• REQ1 - Integrity and Confidentiality
This model provides a clear approach for integrity and confidentiality, through
the use of encryption.

• REQ2 - Access Control
The model ensures that all data and commands are protected with access con-
trol.

• REQ2.1 - Consent
The model uses consent as the primary mechanism for access control, and it has
been demonstrated formally that data or commands only flow between devices
and apps when both systems have appropriate consent.

• REQ2.2 - Policy-based access control The policies in this model are deliber-
ately simple. Extending these to a more powerful policy model is an area of
further work. In doing this, it is clear that the content-awareness principle from
LINDDUN will play an important role.

• REQ3 - Authentication
The model requires authentication for all flows.

• REQ3.1 - Federated Identity
The model supports federated identity, both for devices and users. In particular,
the use of the identity broker pattern allows users to choose their own identity
provider.

• REQ3.2 - Secure Device Identity
The model uses OAuth2 ClientID and ClientSecret as secure device identities,
and ensures these are only ever communicated with the DIdP after manufactur-
ing is complete. In addition, an OAuth2 refresh token provides a secure identity
that ties the device to the user.

• REQ3.3 Anonymous Identities
The model supports pseudonymous identities, ensuring that the users identity

CHAPTER 7. THREAT MODELLING 126

is only ever known by the DIdP, and the pseudonym is only shared with the
gateway and PCM.

• REQ4 - Attestation
The model does not support attestation at this point. This is an area for further
work.

• REQ5 - Summarisation and Filtering
The model supports summarisation and filtering through the use of the PCM.
However, this has yet to be implemented and therefore implementation of this
is seen as a significant area of further work.

• REQ6 - Context-based security and Reputation
The model does not support context-based security or reputation at this point.
This is an area for further work.

7.5 Conclusions Of The Threat Modeling

In this chapter, the properties and data flows derived in Chapter 6 were used to cre-
ate a threat model. The threat model used the STRIDE and LINDDUN approaches
to analyse the threats. In particular, the model provides clear benefits in a number
of the security and privacy properties identified through the requirements analysis
and threat modeling. The separation of concerns outlined in the data sharing ma-
trix makes it harder for attackers to identify users, steal data, fingerprint devices, and
forge commands.

Chapter 8

Implementation of a Prototype

8.1 Implementation

In order to validate the model, a prototype of the system was created. This was done
to answer the following research questions:

• Is the proposed model implementable?

• Do any specific issues emerge during implementation?

• Does the implementation demonstrate workability: that this works in a cost-
effective approach that could be used in practice?

• What performance does the prototype provide - in terms of memory usage, la-
tency, transaction rates and cost per transaction?

• How does this performance compare to existing systems?

• What difference in power and energy consumption does this model create for
the device?

The system was implemented primarily in the Node.js® [267] framework. This is a
high-performance asynchronous runtime based on the JavaScript language. This was
chosen because of previous experience coding in JavaScript, as well as the availability
of a number of libraries that sped up development, including:

• Oauth2orize — a framework for implementing OAuth2 flows and APIs.

• Dockerode — a library for controlling Docker.

• Aedes — a lightweight implementation of an MQTT server.

• Mqtt — a library for interacting with MQTT packets.

• Passport — a library for working with third-party identity providers.

127

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 128

• Express — a Web framework for building dynamic web systems.

In addition to Node.js, a number of other open source technologies were used:

• Docker—a lightweight virtualisation solution for running systems in the cloud.

• Cassandra — a highly scalable multi-master NoSQL database.

• Python — for coding the registration server.

• RSMB — a lightweight MQTT server.

• ArduinoIDE — a coding system for IoT devices.

Docker [171] is a system that allows lightweight virtualised services (known as con-
tainers) to be built, stored, instantiated and managed in automated approaches. In
particular, Docker containers have a significantly lower memory footprint than tra-
ditional Virtual Machine (VM) systems, allowing hundreds of Docker containers to
run on a single machine. In addition, the automation of the Docker system allowed
the whole prototype to be instantiated quickly and effectively as a network of co-
operating systems in a cloud environment. The prototype uses a Microservices archi-
tecture [265], which has a strong fit with Docker. Docker Compose [75] is an approach
for creating compositions of Docker containers that are interdependent, and the use
of Docker Compose significantly simplified the configuration and setup of the system.

In particular, the PCM model is implemented as Docker containers. Each user has
their own Docker container running a broker that works on their behalf, as discussed
below.

The registration server (which is the code that the Manufacturer runs) was written
to run on a Raspberry Pi small form factor computer. Using a specific distribution —
Hypriot — even this was configure as a Docker system.

Figure 8.1 shows the overall prototyped system. The code for the prototype is Open
Source under the Apache License and is available at https://github.com/pzfreo/
oauthing.

A short video showing the prototype in action and the registration and data sharing
process is available at http://freo.me/oauthing-video.

8.1.1 Protocol Mapping

The model has been designed to work independently of specific protocols. However,
in order to implement a prototype there was a need to make specific choices on pro-
tocols. In particular, the aim was to enable a device to communicate using only one,
IoT-optimised protocol. MQTT was chosen for this. In order to do make this work, it

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 129

!
Device IdP!

node.js!
OAuthing!

!

DIdP
Database:!

!
Cassandra!

Gateway!
node.js!
IGNITE!

Docker!
Controller:!

 !
dproxy!

Personal!
RSMB!
Brokers!
Personal!
RSMB!
Brokers!
Personal!
RSMB!
Brokers!
Personal!
RSMB!
Brokers!
Personal!
RSMB!
Brokers!
Personal!
RSMB!
Brokers!

Personal!
Zone Hub:!

!
RSMB!

Registration Server!
Python!

DIdP	
Cloud	instance	

Gateway	and	PCM	
Cloud	instance	

Third	Party	App	
Cloud	instance	

App!
node.js!
and !

Client-side!
JavaScript!

Raspberry	Pi	+	Label	Printer	
(running	Docker)	

Device Firmware!
Processing!

ESP8266	hardware	

Figure 8.1: Prototype of the OAuthing System

was necessary to map certain parts of the OAuth2 specification into the MQTT pro-
tocol. In particular, the registration process normally requires the OAuth2 “client” to
be an HTTP server. Figure 8.2 shows the HTTP flow and then Figure 8.3 shows the
corresponding MQTT flow that was developed to support IoT devices.

HTTP Token Flow

User

User

Client

Client

Authorization Server

Authorization Server

access

redirect to Auth Server

Request Access

login form

login (credentials)

Consent?

Consent

redirect to Client (Authcode)

Authcode

Token request (Authcode, ClientID, ClientSecret)

Refresh Token

Figure 8.2: HTTP flow to Create OAuth2 Refresh Token

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 130
MQTT Token Flow

User

User

Device

Device

DIdP

DIdP

UIdP

UIdP

switch on

presence (ClientID)

subscribe to device-specific topic

claim (ClientID)

login (redirect to UIDP)

login

redirect back to DIdP with token

login (token)

Consent?

Consent

publish authcode

Token request (Authcode, ClientID, ClientSecret)

Refresh Token

Figure 8.3: OAuthing MQTT flow to Create OAuth2 Refresh Token

8.1.2 Handling Refresh Flows In OAuthing

As well as the registration flow, it was necessary to map the refresh flow into MQTT.
This ensures that the device does not need to implement multiple wire protocols.
While the next version of MQTT is planned to support request-response flows [61],
the current model does not inherently support request-response. In the previous pro-
totypes, this was handled by using a subscription based on the MQTT client identifier
and an access control rule based on that, which is supported by the Mosquitto bro-
ker. This is described in Chapter 5. However, after the creation of the prototype, I
identified a significant security issue with this model. In MQTT, there is a rule that
if a second connection is initiated with the same MQTT client identifier, the broker
must disconnect the first connection and replace it with the second. This means that if
an attacker can guess the MQTT client identifier of the device, they could potentially
steal the refresh token.

In this OAuthing prototype, this was addressedwith two aspects. Firstly, theMosquitto
broker was removed and the system used a new approach based on an embedded
broker. Secondly, the OAuth2 ClientID was used as the basis for the subscription

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 131

instead of the MQTT client identifier.

The embedded broker pattern is where the MQTT broker used for the OAuth2 flows
is embedded into another server, in this case the DIdP. A diagram comparing the
embedded broker pattern to the FIOT prototype is shown in Figure 8.4.

!
HTTP

endpoint!
Express.js!

!

DIdP	
Process	

!
Embedded

Broker!
Aedes!
!

OAuth2 logic!

!
MQTT !
Broker!

Mosquitto!
!

FIOT	
MQTT	Broker	

Authorization !
Plugin!
!

!
HTTP

endpoint!
WSO2 Identity

Server!
!

FIOT	OAuth2	
Server	

	

OAuth2 logic!
WSO2

Identity Server!
!

Embedded	Broker		
Pa=ern	 Previous	Pa=ern	

Figure 8.4: Comparing the Embedded Broker to the FIOT Approach

The embedded broker is only used for security flows, including device registration and
token refresh. There are two main benefits to using the embedded broker for security
flows. Firstly, the refresh token is only ever seen by the DIdP and the Device. In the
previous pattern it was passed over the intermediate Mosquitto broker. Secondly, the
broker can use the OAuth2 ClientID and ClientSecret as credentials and ensure that
responses are only sent to clients that have those credentials. Effectively, although
the system is using the MQTT protocol, the publish/subscribe approach is not used,
ensuring that only the device that made the request can receive the response. This
tight coupling between the MQTT handling and the authorisation code ensures that
the security hole identified in FIOT is not present in OAuthing.

8.1.3 Data And Command Protocol

To support interoperability of devices and CSs, a minimalist API for communicating
data and commands, was defined based on MQTT. This could be extended in future,
with protocols such as HTTP and CoAP [244]. In the previous work in Chapter 5,
there was an authorisation policy model that permitted complex rules. While this was
more powerful, it was not easy to present users with a clear consent choice. In this
model, there is a simplified approach that is based on a simple topic model:

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 132

• /d/#: any messages sent to the /d topic or subtopics thereof are considered data
published by sensor devices.

• /c/#: any messages sent to the /c topic or subtopics therof are considered com-
mands published to device actuators.

It is also specified in this system that all messages should be published in the SenML [9]
format.

One view of the system is to consider it from the perspective of its APIs. Table 8.1
shows the various APIs and the protocols that each of the systems offers. It also shows
the OAuth2 scopes that are required for each API.

API Client Provider Scope Proto Description

Dynamic Client
Registration

Manu-
facturer

DIdP dcr HTTP This allows the creation of OAuth2
clients.

OAuth2 Token
API

Device
CS

DIdP NA HTTP
MQTT

This API is defined by the OAuth2
specification.

Introspection IG DIdP intro HTTP IG to DIdP to introspect bearer
tokens

Publish Data Device IG Pd MQTT Publish Data from a device sensor

Read/Subscribe
to Data

CS IG Rd MQTT CS subscribing to Data from a sensor

Publish
Commands

CS IG Pc MQTT CS sending commands to an actuator

Read/Subscribe
to Commands

Device IG Rc MQTT Actuator subscribing to commands
from a CS

Table 8.1: APIs and their Associated Scopes

8.2 Components

The following sections outline the components that were implemented to demonstrate
the system.

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 133

8.2.1 The OAuthing DIdP

The prototype DIdP is called the OAuthing DIdP. Although there were a number of
capabilities already in the OAuth2orize framework, there were several capabilities
that were needed or desirable that were not implemented. These included:

• The identity broker pattern where users are allowed to utilize their existing iden-
tities with UIdPs and broker newOAuth2 tokens based on the tokens passed from
third-party systems;

• an implementation of the Dynamic Client Registration API [222];

• an implementation of the OAuth2 Introspection API [219];

• a Cassandra persistence layer; and

• an embeddedMQTT broker that supports the mapping of the OAuth2 Token API
into the MQTT protocol.

These were all implemented as part of this work.

The prototype supports a choice of UIdP from the following providers:

• Google

• Twitter

• Github

• Facebook

All of these are based on variants of OAuth2 flows, but the system can easily be ex-
tended to support other federated systems such as Shibboleth, OpenID Connect and
SAML2.

The OAuthing DIdP is implemented as a set of containers running in the Docker con-
tainer system, allowing it to be efficiently deployed and tested in a cloud environment.
In this system the users profile information is not stored. Instead each user is issued
with a new secure random pseudonym identifier. In order to associate this identity to
the UIdP’s identity, the name of the UIdP and the UIdPs unique identifier are hashed
together and stored against the secure random pseudonym identifier.

8.2.2 IGNITE

The prototype of the gatewat is called IGNITE. This is a significant rewriting of the
system described in Chapter 5. This version of IGNITE runs in a Docker cloud con-
tainer environment and has access to control this Docker environment, using the
Node.js dockerode library. When a device or TPA initiates an MQTT connection with

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 134

the CONNECT packet, IGNITE first validates the Bearer Token by calling the DIdP’s in-
trospection API. This either returns a random anonymous ID together with a set of
scopes; or informs IGNITE that the token is invalid. IGNITE is then responsible for
launching a new cloud instance to act as the PCM on behalf of the user, or routing the
request to the existing PCM. IGNITE also implements the security policies defined in
scopes by the DIdP, enforcing them before routing requests to the PCM.

8.2.3 Personal Cloud Middleware

The PCM was implemented using the open source RSMB MQTT broker [195]. This
broker has a very low memory overhead, and enabled the system to run a significant
number of PCM containers on standard hardware. This version of the prototype has
not yet implemented summarisation and filtering on the PCM, which will potentially
enlarge the memory footprint. At the same time, there was no attempt to optimise
the Docker runtime of the PCMs or the underlying Operating System, and therefore
there is some opportunity that the addition cost of summarisation and filtering logic
can be offset by improved configuration and Docker tuning.

8.2.4 Device Hardware

Building a very simple device provides a baseline evaluation of whether the model
is implementable on very small footprint devices. The commonly available ESP8266
platform was chosen for the reference device. This chip provides an embedded 32-bit
processor, Wifi connectivity and a number of digital inputs and outputs for less than
US$2.50 each (at the time of writing).

The device was coded using the ArduinoIDE which offers a C-like language— Process-
ing — to support coding the device. The device code is available at https://github.
com/pzfreo/oauthing/blob/master/device/secure_thing/secure_thing.ino. A picture
of the sample device is shown in Figure 8.5.

The ESP8266 coded under ArduinoIDE supports TLS without full certificate authority
chains1. Instead, it uses fingerprints of SSL certificates to validate the server cer-
tificate. Given the footprint requirements, this is a much more memory and storage
efficient approach. The device is configured with the DIdP TLS fingerprint at man-
ufacturing time and then the IG TLS fingerprint at User Registration time (using the
DIdP as the trusted source for the IG TLS fingerprint).

1Since building the prototype there is now early support for certificate chains in the latest ESP8266
Arduino support

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 135

Figure 8.5: Sample Device

8.2.5 Manufacturing Process

Once the device is operational, it contacts a local manufacturing server via MQTT.
The server may also have a physical means of identifying the device (e.g. scanning
a bar code on the device). The manufacturing server calls the DCR API on the DIdP
to register the device, and then sends the Client ID and Secret to the device over
MQTT, where they are stored in EEPROM. As discussed in Chapter 6, this is because
the DCR API needs to be secured, and it would be a problem for the device to have
the credentials for the DCR API, as they might then be stolen by attacking the device.
In the prototype, the device claiming is handled by creating a User Registration URL.
This is a URL that takes the user to the DIdP and initiates the registration process for
a given ClientID (the ClientID is encoded in the URL). This URL can be typed into a
browser, but in this case it is encoded as a QR code. The QR Code is then printed and
attached to the device. When this QR code is scanned, the DIdP first checks that the
device is switched on (present) and connected to the DIdP. It then prompts the user to
login via a UIdP (e.g. redirecting to Google’s authentication). Once the user is logged

CHAPTER 8. IMPLEMENTATION OF A PROTOTYPE 136

on the user is asked to authorise the device. This initiates a modified OAuth2 flow
with the device, resulting in the refresh token being stored in the device’s EEPROM.
The device is now ready for use.

8.2.6 Sample Third Party Application

In order to demonstrate this system a simple web-based cloud service was also cre-
ated. This first connects to the OAuthing DIdP using a standard OAuth2 HTTP flow
to request access to IGNITE. The user logs in using the same UIdP that they registered
their device with. After the user authorises the Sample TPA to access IGNITE the sam-
ple app is loaded. This uses MQTT over WebSockets to communicate, and presents a
simple UI allowing users to interact with the device.

8.3 Conclusions And Further Work

The aim of building this prototype was not to create a full production quality version
of the OAuthing model. In particular, a number of key aspects were not implemented:

• Summarisation and Filtering

• Device revocation

• Listing devices, apps and consents

• Clustering

• Docker memory optimisation

However, at the same time there was an aim to build a system that had reasonable
performance and used effective, scalable technologies such as Node.js and Cassandra.

One technology approach that offers a significant potential improvement over Docker
for the PCM is that of unikernels [45]. Unikernels use low-level hypervisors to run
dedicated VMs that only include the code needed to run a single service. Based on ex-
isting data comparing unikernels and Docker [167], it is plausible that rebuilding the
prototype around a unikernel model of PCMs would allow significantly more PCMs to
be run on a given hardware system than using Docker, and potentially reduce initial-
isation time as well.

In conclusion, a working instantiation of the main flows of the OAuthing model was
built. The prototype demonstrates that the system is implementable, and the next
chapter will explore the performance and costs of this model.

Chapter 9

Test framework, methodology and
results

In this chapter, the experimental testing of the prototype system will be presented.
The test methodology and test harnesses will be explored in Section 9.1. The results
of the tests will be presented in Section 9.2. Finally, the significance of these results
will be examined in Section 9.3.

9.1 Test Methodology And Frameworks

The test methodology was influenced by both academic papers on middleware per-
formance testing [163, 134] as well as commercial testing [5, 62].

9.1.1 Measures

Four key measures were identified for evaluating the prototype.

• Transactions per second
The total number of transactions per second (TPS) that a system can handle is
the most common measurement of distributed systems. The maximum TPS of a
system can provide a cost analysis by analysing the cost per transaction. Mea-
surement of TPS under varying workloads (e.g. number of concurrent clients)
can provide insight into how a system copes under load, and provide evidence
of thread-contention or other inefficiencies. Measurement of how TPS increases
as a system is scaled up onto nodes in a cluster provides a measure of scalability
known as the Karp-Flatt metric [210]. Since this system is only a prototype,

137

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 138

there was no evaluation of scalability across multiple nodes. However, there
are measures of the maximum TPS and TPS under varying workloads.

• Latency
The latency of a system measures how quickly the system reacts. For example,
the latency of a web-based system measures the time taken for a server to re-
spond to the client with a web page. In publish-subscribe messaging systems,
there is no “response” to a message. A commonly accepted measure of latency
in such systems is the end-to-end latency. This is the time taken from the start of
a publication process on the publisher to the time that the message is received
at the subscriber. The latency of a system is a key measure for users, because it
captures the responsiveness of a system: as an example, the time taken between
a switch being pressed in a smart home and the corresponding light switching
on. In a well-designed distributed system, one sees a clear relationship between
latency and load [210]. The latency of the system starts out at a baseline, when
the system is less than fully loaded, as each new client can be accommodated
in spare CPU and network capacity. Once either the network or CPU becomes
fully loaded, each new client should be allocated a fair share of these contended
resources and, as a result, there should be a linear relationship between the
number of concurrent clients and the latency each client observes. Two mea-
sures are used: the end-to-end latency of data publication, and the latency of a
newly registered device connecting. In addition the latency of web-based APIs
(such as manufacturing and introspection) under load is tested.

• Device Memory
Devices often have constrained memory, and therefore a key measure identified
was to understand the memory requirements of the created firmware and there-
fore the remainingmemory available to device designers to implement their own
logic. Many IoT devices operate under the Harvard Architecture, where instruc-
tion memory and variable memory are separated. The ESP8266 device used for
the prototype uses this model. The impact of the prototype firmware on both
instruction and variable memory was therefore examined.

• Power Consumption and Energy Usage
A key aspect for IoT devices is power consumption. Many IoT devices (includ-
ing the prototype system) run off of a battery with a limited capacity and there-
fore rely on using low power. In particular, this was a common request for
enhancement from other researchers when the initial results of this work were
presented at conferences. Therefore a test harness was created to accurately
measure power usage and energy consumed by the sample device. Further de-
tails of the power measurement system are described below.

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 139

9.1.2 Testing Across Multiple Clients

There are some commercial and Open Source test tools for MQTT, but none of them
met the requirements:

• The ability to simulate the OAuth2 token process in order to populate the bearer
token.

• The ability to simulate multiple clients, each with their own unique credentials

• The ability to measure end-to-end latency from publication to delivery.

As a result of this it was necessary to create a new test framework for simulating IoT
devices communicating over MQTT.

In order to simulate multiple clients for the latency and TPS tests a test harness was
created that was designed to run across multiple cloud servers. The test harness is, like
the prototype, based on the Docker container system. A key aim in testing approaches
is to have repeatable results. The use of Docker and Docker Compose for both the
testing system and the tested systemmeant that it was simple and repeatable to launch
the infrastructure in a cloud environment, spin up test systems, scale up the test, and
record the results.

The test harness consists of multiple Test Load Drivers (TLDs). Each TLD can simu-
late one or more clients, emulating the network behaviour of the IoT device. In the
system the TLD runs each client as a separate process, with each TLD running up to
50 procesesses.

The TLDs then report the performance and latency data to a Test Manager, using a
separate MQTT system from the system under test. The Test Manager subscribes to
the results from multiple TLDs and accumulates the overall results from across all the
TLDs and all the virtual IoT clients. All the test systems were written in Node.js. There
was no attempt to simulate the actual timing of devices over the network or low-level
TCP behaviour of clients. This could potentially form a further work, although it is
not clear if this would provide any further insight.

Figure 9.1 shows a simplified diagram of the test environment, which is running in a
public cloud environment.

The Test Manager is running on a separate instance, and this service collates the re-
sults. The TLDs implemented three different workloads:

• One Second Client
The One Second Client emulates a device that sends one message per second.
This is designed to test the system under moderate load.

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 140

Figure 9.1: Test Environment

• Stress Client
The Stress Client emulates a device that sends messages continuously. This is
designed to test the system under heavy load.

• Connection Time
The Connection Time test first populates a brand new user at the DIdP, ensuring
that when the test connects, the IG will need to create a new PCM instance. The
test then disconnects and reconnects, timing the time it takes to connect when
a PCM already exists for that user.

In all the tests described, it was ensured that the systems were warmed up and running
and that all the results were repeatable across multiple tests. In addition a baseline
system was created for comparison. The baseline system does not use the OAuthing
backend, but instead uses the commonly used Mosquitto MQTT server. The baseline
system does not implement OAuth flows or PCM, and it does not implement authori-
sation or authentication on the Mosquitto server. Therefore it is to be expected that
the comparison will underestimate the costs of a comparable system, and therefore
overestimate the additional cost of OAuthing.

All the tests were carried out using standard cloud server instances with fixed sizes
from the Digital Ocean cloud provider 1.

1https://www.digitalocean.com

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 141

9.1.3 Energy And Power Measurement

In order to test the additional power burden of using the OAuthing approach, a power
measurement harness was created to evaluate the power usage of the system. Tradi-
tional power measurement systems are not optimised for measuring sub-watt power
usage. No effective ready-built system for measuring low power usage was identified
and therefore it was not possible to use an “off-the-shelf” system. Figure 9.2 shows a
logical diagram of the power management test system that was created.

Arduino	Leonardo	
(running		

powermeasurement.pde)	

Personal	Computer	
(for	display	of	data)	

USB	Serial	

ADS1115	ADC	

I2C	Bus	
Device		

under	measurement	

μCurrent	Gold	
Ammeter	

3.3v	Regulator	

5V	Power	Supply	

A0	input	

A1	input	
GND	

Figure 9.2: Power Management Test System

Simple physics defines that:

P = IV

where P is power, I is current, and V is voltage.

Furthermore
E =

∫
P dt

where E is energy and t is time.

The created system measures milliwatt power usage with better than 1% accuracy.
The power management test system is based on an Arduino, together with a high-
resolution analogue-to-digital converter (ADC) for measuring voltages (based on the

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 142

TI ADS1115 chip2). This device has typical accuracy of ±0.2% according to the data
sheet. In the circuit used in this test, it was configured so full scale was 4.096V, giving
a maximum precision of 0.125mV per bit. To measure the current flowing through the
sample device a high-accuracy low-burden ammeter3 was used. This device acts as a
current-to-voltage converter with stated accuracy better than ±0.1%. The ADC was
used to measure both the input voltage to the device and the current flowing through
the device. Given that the ammeter converts 1mA to 1mV, the maximum precision of
current reading is 0.125mA.

The maximum current of the measured device is under 300mA. Given the range of
accuracy of the ADC converter, the overall accuracy of this power measurement is
better than ±1%.

A short program4 was written to capture the power data and integrate it over time
to provide energy usage. This runs on a separate Arduino Leonardo system and is
therefore completely independent of the ESP8266. The power measurement harness
takes 313 samples per second, giving a sample approximately every 3ms.

Two different scenarios were measured, comparing the OAuthing device to the same
device configured to talk to the baseline system without using the OAuthing model

• The first scenario was measuring the total energy usage from initial power-on
until the first message is sent to the server. This measures the bootstrap power
phase, especially capturing the overhead of the refresh flow and the credential
based MQTT CONNECT message. This is measured in milliwatt-hours. Each
test was run 20 times.

• The second scenario was the on-going power usage over the next 15 minutes
after startup. To ensure both systems were comparable, the test waited until
the device was fully warmed up and then took 900 seconds of samples (approx-
imately 280,000 samples).

Once again it was desirable to compare the OAuthing usage to the baseline system. In
this case, a version of the device firmware was created that connects to the baseline
system instead of OAuthing. This device firmware did not use a refresh flow or any
credentials. However, it did use TLS to encrypt the communication.

2http://www.ti.com/lit/ds/symlink/ads1115.pdf
3http://alternatezone.com/electronics/ucurrent/uCurrentArticle.pdf
4Available at https://freo.me/powercode

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 143

9.2 Test Results

Figure 9.3 shows the latency comparison of IGNITE compared to the baseline system
(Mosquitto) using the one second client. Figure 9.4 shows the mean, 95% and 99%
percentiles for the IGNITE latency responses in the same test. The graph demonstrates
that IGNITE shows consistently low latencies across all workloads: the additional
latency added to message interactions compared to Mosquitto was around 1ms. The
percentiles show that 99% of requests had latency of less than 11ms even when the
system was loaded with 400 test clients, and 95% of requests had latency less than
6ms.

The next data point collected was the maximum number of PCMs that could be run
on a single cloud server. The tests were run on a server with 2Gb of memory and no
swap configured, costing US$20/month. This environment was able support at least
400 PCM instances, with the server running out of memory beyond 415 containers.
Simply adding swap will increase this number at the cost of some latency, but this has
not yet been evaluated.

Figure 9.5 shows the average connect time for three different scenarios. The fastest
is the Mosquitto broker, with an average connect time of 24.5ms. The slowest is the
IGNITEwhen the user has not previously connected. In this scenario, the system needs
to introspect the token and then wait until the new container is launched and ready.
This takes on average 1294ms (1.3 seconds).

The third scenario is the connect time when there is already a user container run-
ning. The average time here was 35.9ms. The extra latency compared with Mosquitto
(35.9ms vs 24.5ms) is well within acceptable ranges.

Figure 9.6 shows the performance of the IGNITE system under stress. This shows that
the server was handling more than 4500 TPS at all levels and the average latency rose
to 83.3ms when the system had 400 concurrent clients. This test demonstrates that
the system as deployed in the test environment can support each user owning 600
devices each interacting once a minute, even when the system is fully loaded with
400 concurrent PCM containers. The latency line shows that as new clients are added
the latency increases in direct proportion, demonstrating fair allocation of resources.

Figure 9.7 shows the performance of the OAuthing IdP while issuing new Client IDs
duringmanufacturing. This is the least well-performing part of the system because the
system uses a secure hashing algorithm (PBKDF2 [139]) to ensure that the password
database is resistant to dictionary attacks. The result is that adding a client incurs
considerable CPU time. In fact, the use of this system is mostly unnecessary, as the
“passwords” that are hashed are in fact the ClientSecrets. These are 30-byte random
identifiers that are created by the system and therefore not susceptible to dictionary

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 144

Figure 9.3: One Second Client IGNITE vs Mosquitto

Figure 9.4: One Second Client IGNITE Percentiles

attacks in reasonable time.

Performance tests measuring the latency and throughput of the DIdP under intro-
spection were performed. This test the performance when the IGNITE gateway asks

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 145

Figure 9.5: Device Connect Latency

0.8	
5.6	

11.6	
18.6	

28.0	

38.9	

63.9	

83.3	
5927	

5504	5360	 5347	 5143	

4676	

4806	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

80.0	

90.0	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	

M
es
sa
ge
s	s

en
t/
se
co
nd

	

M
ea
n	
La
nt
en

cy
	in
	M

ill
is
ec
on

ds
	

Concurrent	clients	

Mean	Latency	 Messages	/	Sec	

Figure 9.6: Stress Client IGNITE Performance

the DIdP for the anonymous identity and authorisation policies. This is presented in
Figure 9.8.

9.2.1 Device Memory Usage

The Arduino development environment that was used to create the device firmware
provides statistics on the program and variable memory usage. Figure 9.9 shows the
program and variable memory usage of the ESP8266 when loaded with the OAuthing
sample device loader code. The graph captures the usage of different components
of the loader. Each column includes the previous column. The largest component is

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 146

3.1	3.1	
2.8	2.7	2.8	 2.7	 2.7	 2.7	

623	622	
1008	
1453	1777	

2560	

3586	

7203	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

0	 5	 10	 15	 20	 25	

La
te
nc
y	
in
	M

ill
is
ec
on

ds
	

N
um

be
r	o

f	r
eq

ue
st
s/
se
c	

Number	of	Concurrent	Clients	
	

Sent/Sec	 Mean	Latency	

Figure 9.7: Dynamic Client Registration Latency and Throughput

12.4	

12.8	

18.9	

34.3	

68.3	

129.2	

76.8	

148.8	

206.7	
227.0	 227.1	

242.5	

0.0	

50.0	

100.0	

150.0	

200.0	

250.0	

300.0	

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

0	 5	 10	 15	 20	 25	 30	 35	

Re
qu

es
ts
/S
ec
on

d	

M
ea
n	
La
te
nc
y	
in
	M

ill
is
ec
on

ds
	

Number	of	Concurrent	Clients	

Mean	Latency	 Requests/sec	

Figure 9.8: Throughput and Latency of the Introspection API on the DIdP

the base C libraries needed by the Arduino system, which take up 40% of variable
memory and 24% of program memory. The next largest aspect is the TLS support
which incrementally takes 5.5% of the program memory and 7.7% of the variable
memory. Overall, the loader leaves over 38k of variable memory and over 700k of
program memory for the developers of any device sensor and actuator logic, which is
sufficient to build complex device applications and support a variety of sensors and
actuators. There was no code optimisation after the working prototype was created,

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 147

and therefore there may be room for improvement.

Figure 9.9: ESP8266 Memory Utilisation

9.2.2 Power And Energy Measurement

Figure 9.10 shows the time-to-first-message results. The data shows that the OAuthing
device took 0.68s (5.7%) longer to send its first message, using 7.5% more energy
(0.195mWH) than when connecting to Mosquitto. This incorporates the extra time
and energy required to connect to the DIdP to refresh the token before connecting to
the IG.

12.03	

2.60	

12.71	

2.80	

0	

2	

4	

6	

8	

10	

12	

14	

Time	(secs)	 Energy	(mWh)	

MQTT	

OAuthing	

Figure 9.10: Time and Energy to Bootstrap

Figure 9.11 shows the on-going power requirement is 26mW higher for the OAuthing
device, using 11.5% more power than the device connecting to Mosquitto.

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 148

227.4	
253.5	

0.0	

50.0	

100.0	

150.0	

200.0	

250.0	

300.0	

MQTT	 OAuthing	

Po
w
er
	U
sa
ge
	(m

W
)	

Figure 9.11: Power Usage

9.3 Analysis Of Results

There is a high degree of confidence in the overall accuracy of these results. The tests
involved multiple iterations and broadly similar results were observed with each run.
There are small discrepancies in latencies as one increases the number of simulated
devices (for example between 50 and 100 clients on the “one second” client where
there is a small drop in latency as one adds users). However, these are well within the
normal experimental errors in testing distributed systems. The coefficient of variation
(CV)5 of the power and energy usage numbers was calculated, and this found that the
CV for the boot energy usage was less than 6%, which indicates a very low variability
of results. The CV for the long running power usage tests was less than 23%, showing
a greater variability but not excessively so.

The analysis of what these results mean in practice is more difficult. Unsurprisingly,
the increased federation and use of tokens, together with the extra network and logical
hops introduced by the PCM model adds time and cost to the system compared to a
system that has a single central user model and shared middleware. The question
of whether the increased data separation, pseudonymity, consent and federation are
worth the extra costs is the challenge here.

In order to evaluate these results the additional time, cost and usage will be compared
to industry norms in each case.

The additional latency of the system compared to Mosquitto is one measure where
it can be definitively stated that the extra cost of the system is negligible. The most
obvious comparison point here is the round trip time of a message on the Internet.

5The standard deviation divided by the mean

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 149

Given that average round trip ping times over the Internet are in the 20-80ms range,
these results demonstrate that the overhead of the proposed approach is insignificant
to users. Even when the system is heavily loaded with hundreds of users, the ad-
ditional latency is under 100ms, and for many IoT scenarios this is acceptable. An
example might be switching on a light, where a delay of 1

10 is acceptable. In addition,
many IoT use cases involve logging data (e.g. fitness, health, pollution, etc) where
this additional latency is irrelevant.

When comparing the additional latency in the first connect time, one might compare
with the standard time taken by an IoT device to register with its Wifi hub, which
is in the range 1-10 seconds. The additional latency in the first connect time (1.3
seconds) is therefore not a serious concern. If there was a significant issue, this could
be ameliorated by pre-loading unused containers and associating them with users at
connect time. The actual additional time taken by the device to perform a token
refresh, and then connect to the server and publish when it was already registered
and the PCM is running was on average 0.68s, which is again of no consideration in
most use cases.

The DIdP results show that the introspection service can successfully scale to support
many IGs. Given that CSs and Devices only connect intermittently (due to the persis-
tent TCP session model of MQTT), even a single DIdP server could handle significant
numbers of devices and third-party clients. The throughput of the DIdP in handling
introspection demonstrates supporting up to 30 gateways per DIdP, handling more
than 200 introspections per second. If the bearer token timeout of a device is 30 min-
utes, then assuming the devices timeouts occur with an even distribution throughout
the time, a single DIdP could handle more than 300,000 devices each refreshing every
30 minutes.

The device creation performance is less attractive and a better balance between hash-
ing and performance would need to be achieved to support the system in production.

The costs of running a PCM for each user are harder to evaluate. As a cost per user, this
is a low amount compared to the cost of an annual mobile or fixed-line data package.
On the other hand, if this cost was absorbed into the device cost there is a wide variety
of device costs, ranging from $5 for an Amazon Dash button to hundreds of dollars
or more for high-end connected medical devices. Re-implementing the system using
unikernels might offer an order of magnitude more users per server and therefore
bring down the cost per user by a factor of ten, which would make the ongoing cost
of a PCM achievable for almost any type of device.

The final aspect to analyse is the extra power and energy consumption. The additional
energy cost (0.195mWH) for boot up can be considered reasonable. For example, an
average rechargeable AAA battery has around 1000mWH capacity, so the extra energy

CHAPTER 9. TEST FRAMEWORK, METHODOLOGY AND RESULTS 150

usage for a boot up is less than 0.02% of that.

However, the additional power usage during operation of 26.5mWh is unexpected and
requires further investigation. As a percentage, an 11% drop in battery life would be
considered a problem in almost any IoT use case where battery lifetime is a considera-
tion. The ESP8266 offers three different low-power modes that offer improved battery
life over normal usage. None of these three were implemented, and therefore one can
expect the magnitude of this power usage to be reduced in a production device.

Overall, the additional costs of OAuthing are within the bounds of reasonableness.
Given that the system is a prototype that has not yet been optimised, it can be asserted
that the results of this testing show that there is considerable scope for this model in
real environments.

9.4 Conclusions

This chapter has covered the test methodology, the creation of two test harnesses,
the results of the tests and an analysis of the test results. The test methodology was
designed to measure a set of measures that was derived from looking at other middle-
ware and IoT studies. On these measures the extra costs of using the system compared
to a baseline were identifed. These extra costs were then compared against the normal
costs of IoT systems (both in time, power and money).

Part IV

Part IV - Conclusions

151

Chapter 10

Comparison with related work

In this chapter, the OAuthing approach is compared to related work.

10.1 Comparison With FIOT And IGNITE

First, the model presented in Chapter 6.2 is compared with the preliminary investi-
gations, presented in Chapter 5. The initial work — FIOT — on using OAuth2 tokens
with IoT devices had three main concerns:

• A potential security flaw in the refresh flow, whereby a device that spoofed the
MQTT client identifier could use a timing attack to steal a bearer token.

• No use or demonstration of TLS or encryption.

• Lack of unique credentials per device apart from the refresh token, resulting
from treating the broker as the OAuth2 client instead of the device.

• No defined device and user registration processes — the device needed to be
coded with the token manually.

In the second preliminary work, IGNITE, the concern of individual identifiers for de-
vices was addressed. This was addressed by treating each device as a unique OAuth2
client and populating the client identifiers using the DCR API.

In both previous works, identifiers needed to be manually added to the device, which
is unrealistic in manufacturing processes. Existing public IoT middleware such as IBM
Watson IoT and AWS IoT also currently have this concern.

The OAuthing model and prototype address these issues:

• By treating each device as an OAuth2 client, it is ensured that stealing a single
device only compromises that single device. There is no requirement to trust

152

CHAPTER 10. COMPARISON WITH RELATED WORK 153

any other party apart from the DIdP with client identifiers or secrets.

• As each device has a ClientID and ClientSecret, the refresh flow can be secured.
In addition, the use of the embedded broker approach, described in Chapter 8,
resolves wider concerns about using MQTT for request-reply semantics with au-
thentication flows.

• By taking advantage of improvements in available IoT hardware, it was possible
to use a device that supports TLS, while remaining at a similar cost level to the
previous prototype.

• The device and user registration flows outlined in Chapter 6 and coded in Chap-
ter 8 demonstrate that there is a usable approach to configuring devices with
secure tokens.

In addition, the OAuthing model also defines the use of PCM and pseudonyms. This
extends the privacy and security controls beyond those in the previous two systems.

10.2 Comparison With Others

IOT-OAS [59] addresses the use of OAuth2 for IoT devices with the CoAP protocol.
Compared to OAuthing, IOT-OAS lacks well-defined processes around device and user
registration. Because IOT-OAS is simply an authorisation service it doesn’t offer the
additional benefits of the PCM model, such as device masking, summarisation and
filtering. In addition, there is no pseudonymisation.

The mapping of the OAuth2 Token API to support IoT devices using the CoAP protocol
is being formalised in ACE [130], and is described in [271]. ACE is a draft protocol
and set of associated protocols that are currently an active work in progress. Unlike
OAuthing, which uses simple bearer tokens, ACE requires the use of PoP tokens. PoP
tokens are more secure than bearer tokens, but there is an additional burden on the
IoT developer to support them. For example, it was not possible at the time of writing
to identify any available code to support PoP tokens in an Arduino environment. In
general, the mapping of OAuth2 into CoAP is simpler than into MQTT, because CoAP
has semantics based on HTTP. However, while ACE does map the Client to AS flows
into CoAP, there is no well-defined user or device registration process that compares
to the OAuthing device and user registration processes, especially when it comes to
supporting devices with no UI. There is an even newer working paper on supporting
ACE with MQTT [240], which does not, as yet, address the mapping of client to AS
flows into MQTT.

In [192] there is a demonstration of the OAuth1 protocol with MQTT, favouring
OAuth1 over OAuth2 for IoT devices. This is based around concerns with the security

CHAPTER 10. COMPARISON WITH RELATED WORK 154

of bearer tokens. The reasons for choosing the older OAuth protocol are obviated by
the mapping of the refresh flow into MQTT which OAuthing offers. While this model
also uses the concept of OAuth2 Client ID for each device, the work does not define
any clear device registration flow, requiring those identifiers to be manually inserted
onto devices (as in the FIOT model). In addition, every device must support HTTP
and MQTT, which is a significant burden on development.

In [212] and in [85] there are platforms that support OAuth2 for IoT devices that
communicate via HTTP and WebSockets. None of these works address automated
registration processes, and none provide the privacy controls of anonymous identifiers
or isolated personal cloud instances.

In [226] a capability-based access system is described that allows anonymous identi-
ties to be used. [38] provides an Architecture Reference Model for an approach that
supports anonymous identities. Neither of these systems separate the provision of
anonymous identities from the data-sharing middleware.

The concept of a Personal Zone Hub (PZH) is described in the Webinos [72] system:
this has similarites to the PCM, in that both aim to be a central place where a user’s
devices and data sharing can be in the control of the user. The difference between
PCM model and PZH model is that the PZH model is primarily seen as a local, non-
cloud based system that manages devices and communications on behalf of a user. In
Webinos users must instantiate the PZH themselves. While this is an attractive con-
cept, Webinos does not address many of the configuration challenges of that model.
By comparison, the PCM model in OAuthing is a system that is based in the cloud, but
created automatically upon registration of a user into the system. In addition, this
work provides a cost model for PCMs that addresses the additional cost of providing
the per-user infrastructure. Webinos does not address federated device identities and
does not provide a registration process.

Chapter 11

Discussion, Further Work and
Conclusions

In this chapter, the work is assessed against the requirements identified in Chapter 2,
the gaps identified in Chapter 3, as well as the research questions in Chapter 1. The
strengths and weaknesses of this work are reflected upon and further areas for re-
search are identified.

11.1 Addressing The Research Questions

In Chapter 1, three major research questions were proposed:

RQ1
What are the privacy and security requirements, especially those on identity and
access control, for the Internet of Things? How do they differ from the existing
requirements on the classical Internet.

RQ2
What is a model and architecture for IoT systems that can meet the requirements
identified in RQ1? What are the threats and risks of this compared to the risks
and threats identified in RQ1.

RQ3
Is there a practical instantiation of this architecture, and if so, what are the
increased costs in complexity, performance, latency and resources compared to
existing systems.

155

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 156

11.1.1 Research Question 1

This question is fundamentally answered in Chapters 2 and 3, where a a set of re-
quirements, gaps and challenges for IoT were identified. An improved ontology for
addressing threats and challenges for IoT — the matrix model — was presented to
elucidate the differences in security and privacy challenges compared to classical In-
ternet systems. This identified a number of issues that are specific to IoT systems,
especially around low-power, constrained environments; hardware attacks; secure
identities and registration processes; fingerprinting; and others.

In Chapter 3, a structured search strategy identified a number of existing middleware
systems targeting IoT scenarions. Overall this approach identified 55 middleware
systems of which 20 systems demonstrated a security architecture that was detailed
enough to be considered for review. In a literature review of these 20 systems, a
significant set of gaps was identified, which are documented in Chapter 3.

11.1.2 Research Question 2

This question is fundamentally answered in Chapter 6, where a model is outlined that
addresses a significant proportion of these requirements. In Section 7.4 the match
between the model and the requirements is documented. In summary, the model
addresses many of the key requirements, but there is further work to do on summari-
sation and filtering, attestation and context-based security. These gaps are addressed
in the discussion on further work in Section 11.4. A threat model for the system is
presented, identifying the ways in which this model protects against attacks, enhances
privacy and implements the above requirements.

11.1.3 Research Question 3

This question is answered in Chapters 8 and 9, where a prototype is demonstrated
that implements the model defined in Chapter 6. The prototype system, while not an
optimised or production system, demonstrates that the additional costs of the system
work are reasonable. In answering RQ3, two test harnesses were created for measur-
ing the prototype both with a simulated client and directly understanding the power
consumption of the sample device.

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 157

11.2 Contributions And Impact

11.2.1 Contributions

The main contributions of this work are as follows.

• In Chapter 2, two approaches to evaluating threats and challenges for IoT: firstly,
a matrix ontology extending the CIA+ ontology, and secondly, a mapping of IoT
privacy threats into Spiekermann and Cranor’s three-layer privacy model.

• In Chapter 3, there is a structured literature review of secure middleware for IoT,
that provides the most detailed available analysis of security in IoT middleware
systems.

• Early published work into the use of Federated Identity and Access Management
in IoT that has had impact on other academic and industrial systems, described
in Chapter 5.

• A novel model for IoT middleware in Chapter 6, that provides:

– A clear mapping of user and device registration into the OAuth2 specifi-
cation, providing a model that does not require any UI on the device to
successfully register and take ownership of devices.

– An approach that decouples different roles and components, that ensures
consent for all data and command sharing, and inherently reduces identi-
fiability and linkability of devices and device data.

– An extension of the concept of a PZH into a cloud environment to create
Personal Cloud Middleware, that provides users with a single central point
of control for devices and device interactions in the cloud that prevents
fingerprinting and identification. The PCM model includes an approach
for instantiating and managing these runtimes on behalf of users.

– A formal model of the approach that proves end-to-end properties of the
system and data flows (in Chapter 6).

– A threat model — based on the STRIDE and LINDDUN threat modeling
techniques — that demonstrates the enhancement of privacy and security
in this model (in Chapter 7).

• A cloud-based prototype of the model (in Chapter 8)

• A test harness and methodology designed to produce repeatable test results (in
Chapter 9).

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 158

• Experimental results, including performance, capacity and latency measures of
the DIdP, Gateway and PCM, together with power and energy consumption of
the device. These results are compared to a baseline approach to demonstrate
the workability of the model, and identify an upper bound for the extra costs of
the system.

11.2.2 Impact

The impact of this work is evolving.

• The early work on OAuth2 with MQTT published in [103] has 19 existing cita-
tions excluding self-citations, which demonstrates some impact upon literature
and other research.

• A pre-print of the literature review presented in Chapters 2 and 3 has 9 existing
citations excluding self-citation.

• OAuth2 support in MQTT has been incorporated into a commercial product —
WSO2 IoT Server — and the product approach was inspired by this work.

• The paper [103] has directly influenced the IETFwork onMQTTwith ACE [240],
as evidenced by citation in the first draft.

11.3 Strengths And Limitation

The strengths of this work are:

• A clear logical thesis from structured review, requirements identification, mod-
eling, prototype through to results.

• Clear structured approaches to literature review, including the threat matrix,
and the application of Spiekermann and Cranor’s three-layer privacy model.

• Robustness of the model based on formal proof of properties.

• Use of well-defined threat modeling methodologies.

• A repeatable test methodology and test harnesses.

• Peer-reviewed publication of the results and incorporation of the feedback into
the ongoing research.

The limitations of this work are:

• The work does not address attestation of devices, middleware or third-party
applications.

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 159

• The technical nature of this work fails to address many of the important human
aspects. For example, there is no usability study of the system.

• There has been dissemination of this work at academic and industry confer-
ences, as well as some limited presentation to industrial partners. However, a
more structured approach to gaining feedback from industrial partners has not
been attempted.

• The policy model for consent scopes is deliberately simple and therefore only
addresses the most basic scenarios.

• There is no proof of concept around summarisation and filtering.

• The prototype does not implement device or application revocation.

• There needs to be an approach to allowing users to choose which DIdP they use
and which cloud provider for the PCMs, allowing full choice.

These limitations are addressed in the proposed future work.

11.4 Further Work

There remain a number of unexplored aspects of this model.

11.4.1 Provider Choice

One significant aspect is ability to allow users to choose the DIdP and cloud provider
for the system. There are two ways in which this could happen.

The first is to enhance the existing model to support DIdP migration. In this approach
the model would be extended to allow users to request a migration between DIdPs
and provide a mechanism to transfer devices and apps from one DIdP to another.
As a secondary aspect it is also easily conceivable to allow the DIdP to enable cloud
provider choice. This can be done by passing the IG address, or even the PCM address
directly, and TLS fingerprint back in an extended response with the bearer token in
the refresh flow.

11.4.2 Distributed Ledger Design

The other approach to allowing users to choose the DIdP is to have a shared gover-
nance model across multiple instances of DIdPs. This can be acheived by using an Dis-
tributed Ledger or Blockchain model. I explored this concept in [100], which lays out
a proposed approach of further work whereby the OAuthing model could be backed

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 160

by a distributed ledger. This does create a concern on how constrained IoT devices
are to trust a given DIdP to correctly represent the state of the ledger, which is also
addressed by a proposal in that paper. Overall, this is probably the most important
area of further research arising out of this work. The OAuthing model and proto-
type provide an excellent basis for further research on how blockchains can improve
the privacy and security of IoT systems, because they provide a clearly defined and
well modeled identity interface for the device, which could be extended to support a
blockchain as the back-end.

11.4.3 Improved Scopes, Summarisation And Filtering

A clear area of further research is to find common ways that IoT data can be sum-
marised and filtered. This would require a technical ontology of the data that would
allow the correct summarisation of data types. For example, understanding that an
average of blood sugar levels is useful whereas an average of alerts is not. It also
requires a policy model that can be usefully understood by users. For example, the
user needs to understand the implications of consenting to raw data sharing versus
summarised data sharing, and there needs to be a usable approach to allowing that.
Finally, there is considerable interesting work to be done on filtering and even sum-
marising commands. Once again an ontology and intelligent approach is required.
For example, certain types of commands are more amenable to filtering than others,
as discussed in the work. The creation of standard filters and summarisers needs a
corresponding improvement in the policy language of scopes. For example, a user
needs an effective and usable way to consent to share a rolling average of blood sugar
over a day and to understand the outcomes of that.

11.4.4 Device And Application Revocation

A more detailed model and prototype could model revocation of tokens, allowing
users to shut down devices and apps remotely and at any time. This is unlikely to
uncover any major new research, but would make a more complete model and pro-
totype.

11.4.5 Attestation Of PCMs

One aspect of this model is that it shifts the control point and trust from a direct
connection to an intermediated system with the PCM as the main intermediary. This
has a number of benefits as discussed above. However, there is a clear challenge that
both parties need to trust the PCM. For example, the device owner and device need

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 161

to trust that the PCM correctly handles data and commands. Similarly the third-party
application must trust that the PCM is correctly representing the device, especially if
summarisation or filtering is happening. As an example, suppose a driver is sharing
data from their car to an insurance company, and is lawfully using summarisation
to only share certain aggregate data. The insurance company needs to know that
this data has been correctly summarised. A solution to this can be proposed based on
using attestation and secure enclave technology such as Intel Secure Guard Extensions
(SGX). This would enable the PCM to run in an enclave, which assures that the code
runs as intended and can be remotely attested, validating that a particular codebase
is running. For example, SCONE [18] is a system that can run Docker containers on
SGX and this is an area where further research could be profitable.

11.4.6 Unikernel Approach For PCMs

Although the cost per user is not unreasonable, the overall footprint of running the
PCM system (RSMB) in Docker is still significant. RSMB can be run in just 200k of
memory. Tuning of Docker will likely improve the number of containers, but another
option would be to explore unikernel technology [45] to improve this, which would
also potentially improve security concerns around Docker for the PCM.

11.4.7 Validation With Commercial And Other Organisations

One clear area for further study would be to assess the response of industrial, com-
mercial and other organisations to this model. The approach has been informally
presented to Daimler-Benz and Zühlke Engineering in October 2016, providing use-
ful feedback and some expression of interest from Zühlke. A clear concern is that the
business models of many IoT device manufacturers are actually based on harvesting
data, so there may be push back on this approach which minimises the manufacturer’s
access to data. However, there are certainly domains such as health informatics where
manufacturers are aware of the dangers of collecting user data. One other potential
use case raised in discussions with industrial parties is in factory and manufacturing
environments, which could involve further research. In addition, the introduction of
the European Union’s General Data Protection Regulations (GDPR) may also change
the attitude of manufacturers and service providers.

11.5 Discussion

The OAuthing model provides enhanced security and privacy, as shown by the results
of the threat modeling. Compared to both the previous prototypes FIOT and IGNITE

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 162

as well as others work, OAuthing provides a strong foundation for IoT privacy and
security, that extends beyond the initial work on federated identity for IoT into a
wider model of middleware for IoT. Data and identity are not shared without consent,
and data can be shared anonymously. Device and user registration are automated, and
the PCMmodel can prevent fingerprinting and sharing of IP addresses, protecting user
and device identity. Formal proofs of the properties of OAuthing provide a strong basis
for threat modeling as well as proving the end-to-end properties that are requured
from the work. A prototype implementation provides experimental performance, cost
and energy usage data to demonstrate that the system is workable.

One interesting way of looking at OAuthing is through the lens of the three-layer pri-
vacy model from Spiekermann and Cranor. The federated identity model of OAuthing
aims to enhance the controls within the User Sphere and Joint Sphere, by enabling
users to have clear ownership models for devices, removing the control and access
that manufacturers have, and by enabling strong consent for all data sharing and
commands. The PCM approach aims to move data sharing from the Recipient Sphere
back into the Joint Sphere, so that users have more control and more visibility over
the system that enforces policies. Finally, the consent model of OAuthing and sum-
marisation and filtering aim to reduce the impact of the Recipient Sphere by enabling
users to reduce the data that is shared to third-parties.

A key concern around the PCM model is that the cost per user might be too high. The
prototype demonstrates that PCMs can be automatically deployed on behalf of the user
with acceptable times. The experimental results demonstrate that a US$20/month
cloud server can support 400 users, resulting in a cost per user of just $0.05 per month.
Further optimisation could reduce this cost.

The OAuthing model and prototype demonstrate that devices can be connected to
TPAs without inherently leaking the user’s identity to either system. User’s may choose
to provide TPAs with their identity, but that becomes a positive consent of the user
rather than the default. In addition users can bring pre-existing identities to the system
rather than being required to create new credentials, which reduces the chances of
password theft and gives users a choice of identity provider.

The work involved in this thesis is wide ranging. It encompasses literature research,
modeling, implementation and testing approaches, including server-side, client-side
and device programming, as well as some electronics. This work starts from address-
ing one very constrained problem— the identity of devices — and then used a variety
of approaches, iteration, modeling and prototyping, to address that issue. The benefit
of this wide approach is that it gives a more holistic view of the problem, and helps
assess the overall strengths and weaknesses of the approach.

The original aim of this research was to examine security and privacy of IoT systems,

CHAPTER 11. DISCUSSION, FURTHER WORK AND CONCLUSIONS 163

which, even 4 years ago when this research started, seemed to have concerns. In the
meantime, an increasing number of attacks have been seen that use IoT systems as
both the target and as an attack vector. This work is more relevant now than ever. The
studies into identity of IoT devices and preliminary research have taken this research
into the direction of creating a secure, private, federated middleware for IoT, with a
foundation based on token-based, federated identity systems.

No single solution is going to address the security and privacy concerns of IoT, and
there is much work to be done in this area — not just in technical approaches, but in
economic, social, education and policy. This work is a stepping-stone in that direction,
providing technical contributions into a far-reaching area.

Bibliography

[1] A. Abdul-Rahman and S. Hailes. “Supporting Trust in Virtual Communities”.
In: HICSS ’00: Proceedings of the 33rd Hawaii International Conference on Sys-
tem Sciences-Volume 6. Washington, DC, USA: IEEE Computer Society, 2000.
ISBN: 0-7695-0493-0.

[2] Karl Aberer, Manfred Hauswirth, and Ali Salehi. “Middleware support for
the Internet of Things”. In: Proceedings of 5. GI/ITG KuVS Fachgespraech—
Drahtlose Sensornetze (2006), pp. 15–19.

[3] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[4] Adedayo O. Adetoye and Atta Badii. “Foundations and Applications of Security
Analysis”. In: ed. by Pierpaolo Degano and Luca Viganò. Berlin, Heidelberg:
Springer-Verlag, 2009. Chap. A Policy Model for Secure Information Flow,
pp. 1–17. ISBN: 978-3-642-03458-9. DOI: 10.1007/978-3-642-03459-6_1.
URL: http://dx.doi.org/10.1007/978-3-642-03459-6_1.

[5] AdroitLogic. ESB Performance. http : / / esbperformance . org/. (Accessed on
03/20/2017). 2016.

[7] Gul A Agha. Actors: A model of concurrent computation in distributed systems.
Tech. rep. Massachusetts Institute of Technology Cambridge Artificial Intelli-
gence Lab, 1985.

[8] Aitor Agirre et al. “QoS Aware Middleware Support for Dynamically Reconfig-
urable Component Based IoT Applications”. In: International Journal of Dis-
tributed Sensor Networks 12.4 (2016). DOI: 10.1155/2016/2702789. URL: http:
//dx.doi.org/10.1155/2016/2702789.

[9] Jennings et al. draft-jennings-core-senml-06 - Media Types for Sensor Markup
Language (SenML). https://tools.ietf.org/html/draft- jennings- core-
senml-06. (Accessed on 30th August 2016).

[10] M Alessi et al. “A web based virtual environment as a connection platform
between people and IoT”. In: Computer and Energy Science (SpliTech), Inter-
national Multidisciplinary Conference on. IEEE. 2016, pp. 1–6.

164

BIBLIOGRAPHY 165

[11] Muneeb Ali et al. “Blockstack: A global naming and storage system secured
by blockchains”. In: 2016 USENIX Annual Technical Conference (USENIX ATC
16). USENIX Association. 2016, pp. 181–194.

[12] An Open Source MQTT v3.1 Broker. (Visited on 11/13/2013). URL: http://
mosquitto.org/.

[13] Prateek Anand. “Enabling Context-Aware Computing in Internet of Things
Using M2M”. In: Nanoelectronic and Information Systems (iNIS), 2015 IEEE
International Symposium on. IEEE. 2015, pp. 219–224.

[14] Kim Andersson and Patryck Szewczyk. “Insecurity by obscurity continues: are
ADSL router manuals putting end-users at risk”. In: Proceedings of the 9th
Australian Information Security Management Conference (2011).

[15] Jean-Paul Arcangeli et al. “INCOME–multi-scale context management for the
internet of things”. In: International Joint Conference on Ambient Intelligence.
Springer. 2012, pp. 338–347.

[16] Arduino. Arduino. http://arduino.cc/. 2015.
[17] Pandarasamy Arjunan et al. “SensorAct: A Decentralized and Scriptable Mid-

dleware for Smart Energy Buildings”. In: Ubiquitous Intelligence and Comput-
ing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and
2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on. IEEE.
2015, pp. 11–19.

[18] Sergei Arnautov et al. “SCONE: Secure linux containers with Intel SGX”. In:
12th USENIX Symp. Operating Systems Design and Implementation. 2016.

[19] Kevin Ashton. “That ‘Internet of Things’ Thing”. In: RFiD Journal 22 (2009),
pp. 97–114.

[20] Atmel. Atmel AT97SC3204 Datasheet. http://www.atmel.com/devices/AT97SC3204.aspx.
2015.

[21] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The internet of things: A
survey”. In: Computer networks 54.15 (2010), pp. 2787–2805.

[22] Francois Audet and Cullen Jennings. Network address translation (NAT) be-
havioral requirements for unicast UDP. Tech. rep. IETF, 2007.

[23] Alexandre B Augusto and Manuel E Correia. “An xmpp messaging infrastruc-
ture for a mobile held security identity wallet of personal and private dynamic
identity attributes”. In: Proceedings of the XATA (2011).

BIBLIOGRAPHY 166

[24] Jacek Augustyn, PawełMaślanka, and Grzegorz Hamuda. “Hi-Speed USB Based
Middleware for Integration of Real-Time Systems with the Cloud”. In: Inter-
national Journal of Distributed Sensor Networks 12.3 (2016). DOI: 10.1155/
2016/2415016. URL: http://dx.doi.org/10.1155/2016/2415016.

[25] Benjamin Aziz. “A Formal Model and Analysis of the MQ Telemetry Trans-
port Protocol”. In: 9th International Conference on Availability, Reliability and
Security (ARES 2014). IEEE. 2014.

[26] Benjamin Aziz, Paul Fremantle, and Alvaro Arenas. “A reputation model for
the Internet of Things”. In: Engineering Secure Internet of Things Systems. IET,
2016. Chap. 10.

[27] Benjamin Aziz et al. “A utility-based reputation model for the Internet of
Things”. In: IFIP International Information Security and Privacy Conference.
Springer. 2016, pp. 261–275.

[28] Senthil Murugan Balakrishnan and Arun Kumar Sangaiah. “MIFIM—Middle-
ware solution for service centric anomaly in future internet models”. In: Fu-
ture Generation Computer Systems (Aug. 2016). ISSN: 0167-739X. DOI: http:
//doi.org/10.1016/j.future.2016.08.006.

[29] James Ball. NSA stores metadata of millions of web users for up to a year, secret
files show. http://www.theguardian.com/world/2013/sep/30/nsa-americans-
metadata-year-documents. (Visited on 06/08/2015). 2013.

[30] Soma Bandyopadhyay et al. “A Survey of Middleware for Internet of Things”.
In: Recent Trends in Wireless and Mobile Networks: Third International Con-
ferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 288–
296. ISBN: 978-3-642-21937-5. DOI: 10.1007/978-3-642-21937-5_27. URL:
http://dx.doi.org/10.1007/978-3-642-21937-5_27.

[31] Soma Bandyopadhyay et al. “Role of middleware for internet of things: A
study”. In: International Journal of Computer Science & Engineering Survey
(IJCSES) 2.3 (2011), pp. 94–105.

[32] Andrew Banks and Rahul Gupta. “MQTT Version 3.1.1”. In: OASIS standard
(2014).

[33] Yassine Banouar et al. “Monitoring solution for autonomic Middleware-level
QoS management within IoT systems”. In: Computer Systems and Applications
(AICCSA), 2015 IEEE/ACS 12th International Conference of. IEEE. 2015, pp. 1–
8.

[34] Chetan Bansal et al. “Discovering concrete attacks on website authorization
by formal analysis1”. In: Journal of Computer Security 22.4 (2014), pp. 601–
657.

BIBLIOGRAPHY 167

[35] Chris Baraniuk. Ashley Madison:‘Suicides’ over website hack. http://www.bbc.
co.uk/news/technology-34044506. (Accessed on 04/21/2017). Aug. 2015.

[36] Gianluca Barbon et al. “Taking Arduino to the Internet of Things: the ASIP
programmingmodel”. In: Computer Communications 89 (2016), pp. 128–140.

[37] Rafael J CARO BENITO et al. “Smepp: A secure middleware for embedded
p2p”. In: Proceedings of ICT-MobileSummit 9 (2009).

[38] Jorge Bernal Bernabe et al. “Privacy-preserving security framework for a social-
aware internet of things”. In: International Conference on Ubiquitous Comput-
ing and Ambient Intelligence. Springer. 2014, pp. 408–415.

[39] Benjamin Billet and Valérie Issarny. “Dioptase: a distributed data streaming
middleware for the future web of things”. In: Journal of Internet Services and
Applications 5.1 (2014), pp. 1–19.

[40] Manuel Binna. Feasibility and Performance Evaluation of Canonical XML. http:
/ / www . w3 . org / 2008 / xmlsec / papers / C14N2 \ _Performance \ _Evaluation \
_Thesis.pdf. (Visited on 06/09/2015). Oct. 2010.

[41] Bitcoin. System Requirements. https : / / bitcoin . org / en / bitcoin - core /
features/requirements. (Accessed on 02/26/2017). Jan. 2017.

[42] Hendrik Bohn, Andreas Bobek, and Frank Golatowski. “SIRENA-Service In-
frastructure for Real-time Embedded Networked Devices: A service oriented
framework for different domains”. In: Networking, International Conference on
Systems and International Conference on Mobile Communications and Learning
Technologies, 2006. ICN/ICONS/MCL 2006. International Conference on. IEEE.
2006, pp. 43–43.

[43] Hristo Bojinov et al. “Mobile device identification via sensor fingerprinting”.
In: arXiv preprint arXiv:1408.1416 (2014).

[44] Bogdan Botezatu. 25 Percent of Wireless Networks are Highly Vulnerable to
Hacking Attacks, Wi-Fi Security Survey Reveals | HOTforSecurity. http://www.
hotforsecurity.com/blog/25-percent-of-wireless-networks-are-highly-
vulnerable- to- hacking- attacks- wi- fi- security- survey- reveals- 1174.
html. (Visited on 07/14/2015). 2011.

[45] Alfred Bratterud et al. “IncludeOS: A minimal, resource efficient unikernel
for cloud services”. In: Cloud Computing Technology and Science (CloudCom),
2015 IEEE 7th International Conference on. IEEE. 2015, pp. 250–257.

[46] Ernie Brickell, Jan Camenisch, and Liqun Chen. “Direct anonymous attesta-
tion”. In: Proceedings of the 11th ACM conference on Computer and communi-
cations security. ACM. 2004, pp. 132–145.

[47] Geoff Brown. MQTT and the NIST Cybersecurity Framework Version 1.0. Tech.
rep. OASIS, May 2014.

BIBLIOGRAPHY 168

[48] Building FacebookMessenger. URL: https://www.facebook.com/notes/facebook-
engineering/building-facebook-messenger.

[49] Albert John Camilleri. “Reasoning in CSP via the HOL Theorem Prover”. In: In-
formation Technology, 1990.’Next Decade in Information Technology’, Proceed-
ings of the 5th Jerusalem Conference on (Cat. No. 90TH0326-9). IEEE. 1990,
pp. 173–183.

[50] Nancy Cam-Winget et al. “Security flaws in 802.11 data link protocols”. In:
Communications of the ACM 46.5 (2003), pp. 35–39.

[51] Mauro Caporuscio, Pierre-Guillaume Raverdy, and Valerie Issarny. “ubiSOAP:
A service-oriented middleware for ubiquitous networking”. In: Services Com-
puting, IEEE Transactions on 5.1 (2012), pp. 86–98.

[52] Jon Card. Anonymity is the internet’s next big battleground. http : / / www .
theguardian.com/media-network/2015/jun/22/anonymity-internet-battleground-
data-advertisers-marketers. (Visited on 07/13/2015). 2015.

[53] Miguel Almeida Carvalho and João Nuno Silva. “Poster: Unified remoteu¡ for
mobile environments”. In: Proceedings of the 21st Annual International Con-
ference on Mobile Computing and Networking. ACM. 2015, pp. 245–247.

[54] Ann Cavoukian. “Privacy in the clouds”. In: Identity in the Information Society
1.1 (2008), pp. 89–108.

[55] Rajiv Chakravorty, Joel Cartwright, and Ian Pratt. “Practical experience with
TCP over GPRS”. In: Global Telecommunications Conference, 2002. GLOBE-
COM’02. IEEE. Vol. 2. IEEE. 2002, pp. 1678–1682.

[56] Moumena Chaqfeh and Nader Mohamed. “Challenges in middleware solu-
tions for the internet of things”. In: Collaboration Technologies and Systems
(CTS), 2012 International Conference on. IEEE. 2012, pp. 21–26.

[57] Dong Chen et al. “TRM-IoT: A trust management model based on fuzzy rep-
utation for internet of things”. In: Computer Science and Information Systems
8.4 (2011), pp. 1207–1228.

[58] Hao Chen, Xueqin Jia, and Heng Li. “A brief introduction to IoT gateway”.
In: IET International Conference on Communication Technology and Application
(ICCTA 2011). 2011, pp. 610–613.

[59] Simone Cirani et al. “Iot-oas: An oauth-based authorization service architec-
ture for secure services in iot scenarios”. In: IEEE sensors journal 15.2 (2015),
pp. 1224–1234.

[60] Davide Conzon et al. “The virtus middleware: An xmpp based architecture
for secure iot communications”. In: Computer Communications and Networks
(ICCCN), 2012 21st International Conference on. IEEE. 2012, pp. 1–6.

BIBLIOGRAPHY 169

[61] R Coppen and B Raymor. MQTT Version 5.0. https : / / www . oasis - open .
org/committees/download.php/59482/mqtt- v5.0- wd09.pdf. (Accessed on
05/23/2017). Nov. 2016.

[62] Transaction Processing Performance Council. TPC. http : / / www . tpc . org/.
(Accessed on 03/27/2017). 2017.

[63] Thaddeus Czauski et al. “NERD – middleware for IoT human machine inter-
faces”. In: Annals of Telecommunications 71.3-4 (2016), pp. 109–119.

[64] Li Dan and Li Danning. “An approach to formalize uml sequence diagrams in
csp”. In: proceedings of 2010 3rd International Conference on Computer and
Electrical Engineering (ICCEE 2010 no. 2). 2012.

[65] George Danezis. Introduction to Privacy Technology. http://www0.cs.ucl.ac.
uk/staff/G.Danezis/talks/Privacy_Technology_cosic.pdf. (Accessed on
05/29/2017). July 2011.

[66] National Vulnerabilities Database. CVE-2014-9222. https://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2014-9222. (Accessed on 02/02/2017).
Dec. 2014.

[67] Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. “An IoT gateway
centric architecture to provide novel M2M services”. In: Internet of Things
(WF-IoT), 2014 IEEE World Forum on. IEEE. 2014, pp. 514–519.

[68] Jim Davies and Steve Schneider. “A brief history of Timed CSP”. In: Theoretical
Computer Science 138.2 (1995), pp. 243–271.

[69] Luciana Moreira Sá De Souza et al. “Socrades: A web service based shop floor
integration infrastructure”. In: The internet of things (2008), pp. 50–67.

[70] Harvey M Deitel. An introduction to operating systems. Vol. 3. Addison-Wesley
Reading, Massachusetts, 1984.

[71] Mina Deng et al. “A privacy threat analysis framework: supporting the elici-
tation and fulfillment of privacy requirements”. In: Requirements Engineering
16.1 (2011), pp. 3–32.

[72] Heiko Desruelle et al. “On the challenges of building a web-based ubiquitous
application platform”. In: Proceedings of the 2012 ACM Conference on Ubiqui-
tous Computing. ACM. 2012, pp. 733–736.

[73] Oxford English Dictionary. Oxford English Dictionary Online. Dec. 2017.
[74] Tim Dierks. The transport layer security (TLS) protocol version 1.2. Tech. rep.

IETF, 2008.
[75] Docker. Docker Compose - Docker Documentation. https://docs.docker.com/

compose/. (Accessed on 05/19/2017). May 2017.

BIBLIOGRAPHY 170

[76] John R Douceur. “The sybil attack”. In: International Workshop on Peer-to-Peer
Systems. Springer. 2002, pp. 251–260.

[77] Blake Dournaee and Blake Dournee. XML security. Mcgraw-hill, 2002.
[78] Clément Duhart, Pierre Sauvage, and Cyrille Bertelle. “A resource oriented

framework for service choreography over wireless sensor and actor networks”.
In: International Journal ofWireless Information Networks 23.3 (2016), pp. 173–
186.

[79] Adam Dunkels and Dogan Yazar. “Efficient application integration in IP-based
sensor networks”. In: Proceedings of the First ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings. ACM. 2009, pp. 43–48.

[80] Ed. E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849. Available at http:
//tools.ietf.org/html/rfc5849. IETF, Apr. 2010.

[81] D. Hardt (ed). The OAuth 2.0 Authorization Framework. RFC 6749. Available
at http://www.rfc-editor.org/rfc/rfc6749.txt. IETF, Oct. 2012.

[82] Markus Eisenhauer, Peter Rosengren, and Pablo Antolin. “A development plat-
form for integrating wireless devices and sensors into ambient intelligence
systems”. In: Sensor, Mesh and Ad Hoc Communications and Networks Work-
shops, 2009. SECON Workshops’ 09. 6th Annual IEEE Communications Society
Conference on. IEEE. 2009, pp. 1–3.

[83] George Eleftherakis et al. “Architecting the IoT paradigm: a middleware for
autonomous distributed sensor networks”. In: International Journal of Dis-
tributed Sensor Networks 11.12 (2015), p. 139735.

[84] Mahmoud Elkhodr, Seyed Shahrestani, and Hon Cheung. “A middleware for
the Internet of Things”. In: arXiv preprint arXiv:1604.04823 (2016).

[85] Shamini Emerson et al. “An OAuth based authentication mechanism for IoT
networks”. In: Information and Communication Technology Convergence (ICTC),
2015 International Conference on. IEEE. 2015, pp. 1072–1074.

[86] ETSI. ETSI - M2M. http://www.etsi.org/technologies-clusters/technologies/
m2m. (Visited on 07/08/2015). 2015.

[87] Patrick Th Eugster et al. “The many faces of publish/subscribe”. In: ACM Com-
puting Surveys (CSUR) 35.2 (2003), pp. 114–131.

[88] Dave Evans. “The internet of things”. In: How the Next Evolution of the Internet
is Changing Everything, Whitepaper, Cisco Internet Business Solutions Group
(IBSG) (2011).

[89] Facebook Login. URL: https://developers.facebook.com/docs/facebook-
login/.

BIBLIOGRAPHY 171

[90] Fitbit. Fitbit Official Site for Activity Trackers & More. http://www.fitbit.com/.
(Visited on 07/09/2015). 2015.

[91] P. Fremantle and B. Aziz. “OAuthing: Privacy-enhancing federation for the
Internet of Things”. In: 2016 Cloudification of the Internet of Things (CIoT).
Nov. 2016, pp. 1–6. DOI: 10.1109/CIOT.2016.7872911.

[92] Paul Fremantle. A Reference Architecture for the Internet of Things. Tech. rep.
WSO2, 2014.

[96] Paul Fremantle. Using OAuth 2.0 with MQTT. http://pzf.fremantle.org/
2013/11/using-oauth-20-with-mqtt.html. (Accessed on 02/13/2017). Nov.
2013.

[97] Paul Fremantle and Benjamin Aziz. “OAuthing: privacy-enhancing federation
for the Internet of Things”. In: Proceedings of the 2nd International Conference
on the Cloudification of the Internet of Things. IEEE, 2016.

[99] Paul Fremantle, Benjamin Aziz, and Tom Kirkham. “Enhancing IoT Security
and Privacy with Distributed Ledgers - A Position Paper”. In: Proceedings of
the 2nd International Conference on Internet of Things, Big Data and Security -
Volume 1: IoTBDS, INSTICC. ScitePress, 2017, pp. 344–349. ISBN: 978-989-
758-245-5. DOI: 10.5220/0006353903440349.

[100] Paul Fremantle, Benjamin Aziz, and Tom Kirkham. “Enhancing IoT Security
and Privacy with Distributed Ledgers — a Position Paper”. In: IoTBDS 2017:
2nd International Conference on Internet of Things, Big Data and Security. SCITEPRESS–
Science and Technology Publications. 2017.

[101] Paul Fremantle, Jacek Kopecký, and Benjamin Aziz. “Web API Management
Meets the Internet of Things”. In: The Semantic Web: ESWC 2015 Satellite
Events: ESWC 2015 Satellite Events, Portorož, Slovenia, May 31 – June 4, 2015,
Revised Selected Papers. Ed. by Fabien Gandon et al. Cham: Springer Interna-
tional Publishing, 2015, pp. 367–375. ISBN: 978-3-319-25639-9. DOI: 10.
1007/978-3-319-25639-9_49. URL: http://dx.doi.org/10.1007/978-3-319-
25639-9_49.

[102] Paul Fremantle and Philip Scott. “A survey of secure middleware for the In-
ternet of Things”. In: PeerJ Computer Science 3 (2017), e114.

[103] Paul Fremantle et al. “Federated Identity and Access Management for the In-
ternet of Things”. In: 3rd International Workshop on the Secure IoT. 2014.

[104] Theodoros Fronimos et al. “Unified Service-Oriented Access for WSNs and Dy-
namically Deployed Application Tasks”. In: Internet-of-Things Design and Im-
plementation (IoTDI), 2016 IEEE First International Conference on. IEEE. 2016,
pp. 247–252.

BIBLIOGRAPHY 172

[105] K. Fullam and K.S. Barber. “Learning trust strategies in reputation exchange
networks”. In: AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems. Hakodate, Japan: ACM Press,
2006, pp. 1241–1248. ISBN: 1-59593-303-4.

[106] Steve B Furber. ARM system Architecture. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1996. ISBN: 0201403528.

[107] Flavio D Garcia et al. “Dismantling MIFARE classic”. In: European Symposium
on Research in Computer Security. Springer. 2008, pp. 97–114.

[108] T Gibson-Robinson et al. “FDR3 — A Modern Refinement Checker for CSP”.
In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Erika Ábrahám and Klaus Havelund. Vol. 8413. Lecture Notes in Computer
Science. 2014, pp. 187–201.

[109] Len Gilman and Richard Schreiber. Distributed computing with IBM MQSeries.
John Wiley & Sons, Inc., 1996.

[110] Daniel Giusto et al. The internet of things: 20th Tyrrhenian workshop on digital
communications. Springer Science & Business Media, 2010.

[111] Nenad Gligorić, Igor Dejanović, and Srđan Krčo. “Performance evaluation of
compact binary XML representation for constrained devices”. In: Distributed
Computing in Sensor Systems and Workshops (DCOSS), 2011 International
Conference on. IEEE. 2011, pp. 1–5.

[112] Alex Glikson. “Fi-ware: Core platform for future internet applications”. In:
Proceedings of the 4th Annual International Conference on Systems and Storage.
2011.

[113] Simon Godik et al.OASIS eXtensible access control 2 markup language (XACML)
3. Tech. rep. Tech. rep., OASIS, 2002.

[114] Berto Gomes et al. “A comprehensive cloud-based IoT software infrastructure
for ambient assisted living”. In: Cloud Technologies and Applications (CloudTech),
2015 International Conference on. IEEE. 2015, pp. 1–8.

[115] D Goodin. New linux worm targets routers, cameras, internet of things devices.
2013.

[116] Nils Gura et al. “Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs”. In: Cryptographic Hardware and Embedded Systems - CHES 2004. Ed. by
Marc Joye and Jean-Jacques Quisquater. Vol. 3156. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2004, pp. 119–132. ISBN: 978-3-540-
22666-6. DOI: 10.1007/978-3-540-28632-5_9. URL: http://dx.doi.org/10.
1007/978-3-540-28632-5_9.

[117] DE Hammer-Lahav and D Hardt. The OAuth2.0 authorization protocol. 2011.
Tech. rep. IETF Internet Draft, 2011.

BIBLIOGRAPHY 173

[118] Eran Hammer-Lahav. Hueniverse: Explaining OAuth. https://web.archive.
org/web/20071020052421/http://www.hueniverse.com:80/hueniverse/2007/
09/explaining-oaut.html. (Accessed on 05/19/2017). Sept. 2007.

[119] Patrick Hanks. “Collins dictionary of the English language”. In: London: Collins,|
c1986, 2nd ed., edited by Hanks, Patrick 1 (1986).

[120] Thomas Hardjono, Ned Smith, and Alex Sandy Pentland. Anonymous Identities
for Permissioned Blockchains. Tech. rep. MIT, 2014.

[121] Souleiman Hasan and Edward Curry. “Thingsonomy: Tackling Variety in In-
ternet of Things Events”. In: Internet Computing, IEEE 19.2 (2015), pp. 10–
18.

[122] RandyHeffner. “The ForresterWaveTM: APIManagement Solutions, Q3 2014”.
In: (2014).

[123] Marco E Pérez Hernández and Stephan Reiff-Marganiec. “Autonomous and
self controlling smart objects for the future internet”. In: Future Internet of
Things and Cloud (FiCloud), 2015 3rd International Conference on. IEEE. 2015,
pp. 301–308.

[124] José L Hernández-Ramos et al. “Distributed capability-based access control for
the internet of things”. In: Journal of Internet Services and Information Security
(JISIS) 3.3/4 (2013), pp. 1–16.

[125] Kashmir Hill.When ’Smart Homes’ Get Hacked: I Haunted A Complete Stranger’s
House Via The Internet - Forbes. http://www.forbes.com/sites/kashmirhill/
2013/07/26/smart-homes-hack/. (Visited on 07/09/2015). 2013.

[126] C.A.R. Hoare. “Communicating sequential processes”. In: Commun. ACM 21.8
(1978), pp. 666–677. ISSN: 0001-0782. DOI: http://doi.acm.org/10.1145/
359576.359585.

[127] Charles Antony Richard Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[128] Charles Antony Richard Hoare. “Communicating sequential processes”. In:
The origin of concurrent programming. Springer, 1978, pp. 413–443.

[129] P Hunt et al. OAuth 2.0 Proof-of-Possession (PoP) Security Architecture. Tech.
rep. IETF, Jan. 2017.

[130] IETF. Authentication and Authorization for Constrained Environments (ace) -
Documents. https://datatracker.ietf.org/wg/ace/documents/. (Accessed on
30th August 2016).

[131] Antti Iivari et al. “Harnessing XMPP for Machine-to-Machine Communications
& Pervasive Applications.” In: Journal of Communications Software & Systems
10.3 (2014).

BIBLIOGRAPHY 174

[132] Yoshinao Isobe and Markus Roggenbach. “A generic theorem prover of CSP
refinement”. In: International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer. 2005, pp. 108–123.

[133] Daniel Jackson. “Alloy 3.0 referencemanual”. In: Software Design Group (2004).
[134] KR Jayaram, Patrick Eugster, and Chamikara Jayalath. “Parametric content-

based publish/subscribe”. In: ACM Transactions on Computer Systems (TOCS)
31.2 (2013), p. 4.

[135] Zhanlin Ji et al. “A cloud-based car parking middleware for IoT-based smart
cities: design and implementation”. In: Sensors 14.12 (2014), pp. 22372–
22393.

[136] Casey Johnston. What Google can really do with Nest, or really, Nest’s data.
https://arstechnica.com/business/2014/01/what-google-can-really-do-
with-nest-or-really-nests-data/. (Accessed on 05/28/2017). Jan. 2014.

[137] A. Jøsang, R. Ismail, and C. Boyd. “A Survey of Trust and Reputation Systems
for Online Service Provision”. In: Decision Support Systems 43.2 (Mar. 2007),
pp. 618–644.

[138] The application/json Media Type for JavaScript Object Notation (JSON). RFC
4627. Available at http://www.rfc-editor.org/rfc/rfc4627.txt. IETF, July
2006.

[139] Burt Kaliski. RFC 2898; PKCS# 5: Password-Based Cryptography Specification
Version 2.0. 2000.

[140] Kantara Initiative. User managed access (UMA). https://kantarainitiative.
org/confluence/display/uma/Home. 2013.

[141] S Keoh, S Kumar, and O Garcia-Morchon. Securing the IP-based Internet of
Things with DTLS. Tech. rep. draft-keoh-lwig-dtls-iot-02. Fremont, CA, USA:
IETF, 2013.

[142] Himanshu Khurana et al. “Smart-grid security issues”. In: Security & Privacy,
IEEE 8.1 (2010), pp. 81–85.

[144] Andreas Kliem. “Cooperative Device Cloud”. PhD thesis. Technischen Univer-
sitat Berlin, 2015.

[145] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209.

[146] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. “Remote physical de-
vice fingerprinting”. In: IEEE Transactions on Dependable and Secure Comput-
ing 2.2 (2005), pp. 93–108.

[147] Jacek Kopecký, Paul Fremantle, and Rich Boakes. “A history and future of Web
APIs”. In: Information Technology (2014).

BIBLIOGRAPHY 175

[148] Manuel Koschuch, Matthias Hudler, and Michael Krüger. “Performance eval-
uation of the TLS handshake in the context of embedded devices”. In: Data
Communication Networking (DCNET), Proceedings of the 2010 International
Conference on. IEEE. 2010, pp. 1–10.

[149] Peter Kostelnik, Martin Sarnovsk, and Karol Furdik. “The semantic middle-
ware for networked embedded systems applied in the Internet of Things and
Services domain”. In: Scalable Computing: Practice and Experience 12.3 (2011).

[150] Lina Lan et al. “An Event-driven Service-oriented Architecture for Internet
of Things Service Execution”. In: International Journal of Online Engineering
(iJOE) 11.2 (2015), pp–4.

[151] Davy Landman. DavyLandman/AESLib. https://github.com/DavyLandman/
AESLib. (Visited on 07/09/2015). 2015.

[152] Peter Gorm Larsen, Nico Plat, and Hans Toetenel. “A formal semantics of data
flow diagrams”. In: Formal aspects of Computing 6.6 (1994), pp. 586–606.

[153] Jeff Larson, Nicole Perlroth, and Scott Shane. The NSA’s Secret Campaign to
Crack, Undermine Internet Encryption - ProPublica. http://www.propublica.
org/article/the- nsas- secret- campaign- to- crack- undermine- internet-
encryption. (Visited on 06/08/2015). 2013.

[154] Thinh Le Vinh et al. “Middleware to integrate mobile devices, sensors and
cloud computing”. In: Procedia Computer Science 52 (2015), pp. 234–243.

[155] Rodger Lea. “HyperCat: an IoT interoperability specification”. In: (2013).
[156] Shinho Lee et al. “Correlation analysis of MQTT loss and delay according to

QoS level”. In: Information Networking (ICOIN), 2013 International Conference
on. IEEE. 2013, pp. 714–717.

[157] Tapio Levä, OleksiyMazhelis, andHenna Suomi. “Comparing the cost-efficiency
of CoAP and HTTP in Web of Things applications”. In: Decision Support Sys-
tems 63 (2014), pp. 23–38.

[158] Tihamer Levendovszky et al. “Distributed real-timemanaged systems: Amodel-
driven distributed secure information architecture platform for managed em-
bedded systems”. In: Software, IEEE 31.2 (2014), pp. 62–69.

[159] Ladar Levinson. Secrets, lies and Snowden’s email: why I was forced to shut down
Lavabit. http://www.theguardian.com/commentisfree/2014/may/20/why-did-
lavabit-shut-down-snowden-email. (Visited on 06/08/2015). 2014.

[160] Léon Lim et al. “Enhancing context data distribution for the internet of things
using qoc-awareness and attribute-based access control”. In: Annals of Telecom-
munications 71.3-4 (2016), pp. 121–132.

BIBLIOGRAPHY 176

[161] Linksmart. LinkSmart Open SourceMiddleware. https://linksmart.eu/redmine/
projects/linksmart-opensource/wiki/. (Visited on 06/09/2015). 2015.

[162] Chi Harold Liu, Bo Yang, and Tiancheng Liu. “Efficient naming, addressing
and profile services in Internet-of-Things sensory environments”. In: Ad Hoc
Networks 18 (2014), pp. 85–101.

[163] Yan Liu et al. “Designing a test suite for empirically-based middleware perfor-
mance prediction”. In: Proceedings of the Fortieth International Conference on
Tools Pacific: Objects for internet, mobile and embedded applications. Australian
Computer Society, Inc. 2002, pp. 123–130.

[164] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. “OAuth 2.0 threat model
and security considerations”. In: (2013).

[165] Victor Lomne et al. “Side Channel Attacks”. In: Security Trends for FPGAS.
Springer, 2011, pp. 47–72.

[166] Thomas Luckenbach et al. “TinyREST-a protocol for integrating sensor net-
works into the internet”. In: Proceedings of the First REALWSN 2005 Workshop
on Real-World Wireless Sensor Networks. Stockholm, Sweden, 2005, pp. 101–
105.

[167] Anil Madhavapeddy et al. “Jitsu: Just-In-Time Summoning of Unikernels.” In:
NSDI. 2015, pp. 559–573.

[168] Parikshit N Mahalle et al. “Identity establishment and capability based access
control (IECAC) scheme for Internet of Things”. In:Wireless Personal Multime-
dia Communications (WPMC), 2012 15th International Symposium on. IEEE.
2012, pp. 187–191.

[169] Patrick McDaniel and Stephen McLaughlin. “Security and privacy challenges
in the smart grid”. In: Security & Privacy, IEEE 7.3 (2009), pp. 75–77.

[170] Erhan Mengusoglu and Brian Pickering. “Automated management and ser-
vice provisioning model for distributed devices”. In: Proceedings of the 2007
workshop on Automating service quality: Held at the International Conference
on Automated Software Engineering (ASE). ACM. 2007, pp. 38–41.

[171] DirkMerkel. “Docker: lightweight linux containers for consistent development
and deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[172] AdmireMhlaba andMuthoni Masinde. “Implementation of middleware for In-
ternet of Things in asset tracking applications: In-lining approach”. In: Indus-
trial Informatics (INDIN), 2015 IEEE 13th International Conference on. IEEE.
2015, pp. 460–469.

BIBLIOGRAPHY 177

[173] Pietro Michiardi and Refik Molva. “Core: a collaborative reputation mecha-
nism to enforce node cooperation in mobile ad hoc networks”. In: Advanced
Communications and Multimedia Security. New York, NY, USA: Springer, 2002,
pp. 107–121.

[174] Victor SMiller. “Use of elliptic curves in cryptography”. In: Advances in Cryptology—
CRYPTO’85 Proceedings. Springer. 1986, pp. 417–426.

[175] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge
University Press, 1999.

[176] Rebecca Montanari, Alessandra Toninelli, and Jeffrey M Bradshaw. “Context-
based security management for multi-agent systems”. In:Multi-Agent Security
and Survivability, 2005 IEEE 2nd Symposium on. IEEE. 2005, pp. 75–84.

[177] Thomas Morris. “Trusted platform module”. In: Encyclopedia of Cryptography
and Security. New York, NY, USA: Springer, 2011, pp. 1332–1335.

[178] Robert Moskowitz. HIP Diet EXchange (DEX). Tech. rep. draft-ietf-hip-dex-05.
Fremont, CA, USA: IETF, 2012.

[179] Robert Moskowitz. Host identity protocol architecture. Tech. rep. RFC 5201.
Fremont, CA, USA: IETF, 2012.

[180] Aristides Mpitziopoulos et al. “A survey on jamming attacks and countermea-
sures in WSNs”. In: IEEE Communications Surveys & Tutorials 11.4 (2009).

[181] MQTT History. URL: http://mqtt.org/wiki/doku.php/history.
[182] Chris Murphy. Internet Of Things: Who Gets The Data? - InformationWeek.

http : / / www . informationweek . com / strategic - cio / executive - insights -
and-innovation/internet-of-things-who-gets-the-data/a/d-id/1252701.
(Visited on 06/08/2015). 2014.

[183] Suvda Myagmar, Adam J Lee, and William Yurcik. “Threat modeling as a ba-
sis for security requirements”. In: Symposium on requirements engineering for
information security (SREIS). Vol. 2005. Citeseer. 2005, pp. 1–8.

[184] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system, 2008”. In:
URL: http://www. bitcoin. org/bitcoin.pdf (2012).

[185] Arvind Narayanan and Vitaly Shmatikov. “Robust de-anonymization of large
sparse datasets”. In: Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE. 2008, pp. 111–125.

[186] Anton Naumenko, Artem Katasonov, and Vagan Terziyan. “A security frame-
work for smart ubiquitous industrial resources”. In: Enterprise Interoperability
II. New York, NY, USA: Springer, 2007, pp. 183–194.

BIBLIOGRAPHY 178

[187] Google Nest.How to keep your Nest products and the Nest app up to date. https:
//nest.com/support/article/How-to-keep-your-Nest-products-and-the-
Nest-app-up-to-date. (Accessed on 02/13/2017). Feb. 2017.

[188] James Newsome et al. “The sybil attack in sensor networks: analysis & de-
fenses”. In: Proceedings of the 3rd international symposium on Information pro-
cessing in sensor networks. ACM. 2004, pp. 259–268.

[189] Muan Yong Ng and Michael Butler. “Tool support for visualizing CSP in UML”.
In: International Conference on Formal Engineering Methods. Springer. 2002,
pp. 287–298.

[190] Muan Yong Ng and Michael Butler. “Towards formalizing UML state diagrams
in CSP”. In: Software Engineering and Formal Methods, 2003. Proceedings. First
International Conference on. IEEE. 2003, pp. 138–147.

[191] S Nicholas. Power Profiling: HTTPS Long Polling vs. MQTT with SSL on Android
(2012). http://stephendnicholas.com/posts/power- profiling- mqtt- vs-
https. 2012.

[192] Aimaschana Niruntasukrat et al. “Authorization mechanism for MQTT-based
Internet of Things”. In: 2016 IEEE International Conference on Communications
Workshops (ICC). IEEE. 2016, pp. 290–295.

[193] et al O. Garcia-Morchon. Security Considerations in the IP-based Internet of
Things. Internet Draft. Available at http://tools.ietf.org/html/draft-
garcia-core-security-06. IETF, Sept. 2013.

[194] Zooko Wilcox O’Hearn. Names: Distributed, Secure, Human-Readable: Choose
Two. https://web.archive.org/web/20011020191610/http://zooko.com/
distnames.html. (Accessed on 02/13/2017). Oct. 2001.

[195] Nicholas O’Leary. Really Small Message Broker. https://github.com/mqtt/
mqtt.github.io/wiki/Really-Small-Message-Broker. (Accessed on 05/19/2017).
May 2017.

[196] Suhas Pai et al. “Formal verification of OAuth 2.0 using Alloy framework”. In:
Communication Systems and Network Technologies (CSNT), 2011 International
Conference on. IEEE. 2011, pp. 655–659.

[197] Namje Park and Namhi Kang. “Mutual Authentication Scheme in Secure Inter-
net of Things Technology for Comfortable Lifestyle”. In: Sensors 16.1 (2015).
ISSN: 1424-8220. URL: http://www.mdpi.com/1424-8220/16/1/20.

[198] Ki-Woong Park, Hyunchul Seok, and Kyu-Ho Park. “pKASSO: towards seam-
less authentication providing non-repudiation on resource-constrained de-
vices”. In: Advanced Information Networking and ApplicationsWorkshops, 2007,
AINAW’07. 21st International Conference on. Vol. 2. IEEE. 2007, pp. 105–112.

BIBLIOGRAPHY 179

[199] Edoardo Patti et al. “Event-driven user-centric middleware for energy-efficient
buildings and public spaces”. In: IEEE Systems Journal 10.3 (2016), pp. 1137–
1146.

[200] Andrew Paverd and Andrew Martin. “Hardware Security for Device Authen-
tication in the Smart Grid”. In: First Open EIT ICT Labs Workshop on Smart
Grid Security - SmartGridSec12. Berlin, Germany, 2012. URL: http://link.
springer.com/chapter/10.1007/978-3-642-38030-3_5.

[201] Vladislav Perelman and Mehmet Ersue. TLS with PSK for Constrained Devices.
Tech. rep. Citeseer, 2012.

[202] Charith Perera and Athanasios V Vasilakos. “A knowledge-based resource dis-
covery for Internet of Things”. In:Knowledge-Based Systems 109 (2016), pp. 122–
136.

[203] Charith Perera et al. “Mosden: An internet of things middleware for resource
constrained mobile devices”. In: System Sciences (HICSS), 2014 47th Hawaii
International Conference on. IEEE. 2014, pp. 1053–1062.

[204] Julio Perez. “MQTT Performance Analysis with OMNeT++”. In:Master’s The-
sis, September (2005).

[205] Adrian Perrig et al. “SPINS: Security protocols for sensor networks”. In:Wire-
less networks 8.5 (2002), pp. 521–534.

[206] Charles P Pfleeger and Shari Lawrence Pfleeger. Security in computing. Upper
Saddle River, NJ, USA: Prentice Hall Professional Technical Reference, 2002.

[207] Linh Manh Pham et al. “CIRUS: an elastic cloud-based framework for Ubilyt-
ics”. In: Annals of Telecommunications 71.3-4 (2016), pp. 133–140.

[208] Check Point. CPAI-2014-2294 Misfortune Cookie. https://www.checkpoint.
com/defense/advisories/public/2014/cpai-2014-2294.html. (Accessed on
02/13/2017). Dec. 2014.

[209] Neeli Prasad. Aspire Project. http : / / www . fp7 - aspire . eu/. (Accessed on
04/21/2017). 2008.

[210] MJ Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill
Education, 2004.

[211] Saša Radomirovic. “Towards a Model for Security and Privacy in the Internet
of Things”. In: Proc. First Int’l Workshop on Security of the Internet of Things.
2010.

[212] Dave Raggett. “COMPOSE: An Open Source Cloud-Based Scalable IoT Ser-
vices Platform”. In: ERCIM News 101 (2015), pp. 30–31.

BIBLIOGRAPHY 180

[213] Yrjö Raivio, Sakari Luukkainen, and Saku Seppala. “Towards Open Telco-
Business models of API management providers”. In: System Sciences (HICSS),
2011 44th Hawaii International Conference on. IEEE. 2011, pp. 1–11.

[214] Gowri Sankar Ramachandran et al. “Hitch hiker: A remote bindingmodel with
priority based data aggregation for wireless sensor networks”. In: Proceedings
of the 18th International ACM SIGSOFT Symposium on Component-Based Soft-
ware Engineering. ACM. 2015, pp. 43–48.

[215] Mohammad Abdur Razzaque et al. “Middleware for internet of things: a sur-
vey”. In: IEEE Internet of Things Journal 3.1 (2016), pp. 70–95.

[216] Adam Rendle. Who owns the data in the Internet of Things? http : / / www .
taylorwessing.com/download/article_data_lot.html. (Visited on 06/08/2015).
2014.

[217] Thomas Renner, Andreas Kliem, and Odej Kao. “The device cloud-applying
cloud computing concepts to the internet of things”. In: Ubiquitous Intelligence
and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and
Autonomic and Trusted Computing, and IEEE 14th Intl Conf on Scalable Com-
puting and Communications and Its AssociatedWorkshops (UTC-ATC-ScalCom).
IEEE. 2014, pp. 396–401.

[218] Eric Rescorla and Nagendra Modadugu. Datagram transport layer security.
Tech. rep. IETF, 2006.

[219] J Richer. OAuth 2.0 Token Introspection. Tech. rep. 2015.
[220] Justin Richer. “OAuth Token Introspection”. In: (2013).
[221] Justin Richer, Dazza Greenwood, and Bruce Bakis. “Componentization of Se-

curity Principles”. In: Symposium on Usable Privacy and Security (SOUPS).
2014.

[222] J Richer et al. OAuth 2.0 Dynamic Client Registration Protocol. Tech. rep. 2015.
[223] Ronald L Rivest, Adi Shamir, and Len Adleman. “A method for obtaining digi-

tal signatures and public-key cryptosystems”. In: Communications of the ACM
21.2 (1978), pp. 120–126.

[224] Andrew William Roscoe. Understanding concurrent systems. Springer Science
& Business Media, 2010.

[225] AW Roscoe. “CSP is expressive enough for π”. In: Reflections on the Work of
CAR Hoare. Springer, 2010, pp. 371–404.

[226] Domenico Rotondi, Cristoforo Seccia, and Salvatore Piccione. “Access control
& iot: Capability based authorization access control system”. In: 1st IoT Inter-
national Forum. Berlin, Germany, 2011.

BIBLIOGRAPHY 181

[227] James Rumbaugh, Ivar Jacobson, and Grady Booch.Unified modeling language
reference manual, the. Pearson Higher Education, 2004.

[228] Mike Ryan. “Bluetooth: With Low Energy Comes Low Security.” In: WOOT:
Proceedings of the 7th USENIX Workshop of Offensive Technologies. USENIX.
2013.

[229] Ahmad-Reza Sadeghi and Christian Stüble. “Property-based attestation for
computing platforms: caring about properties, not mechanisms”. In: Proceed-
ings of the 2004 workshop on New security paradigms. ACM. 2004, pp. 67–
77.

[230] Peter Saint-Andre. Extensible messaging and presence protocol (XMPP): Core.
Tech. rep. RFC 6120. Fremont, CA, USA: IETF, 2011.

[231] N Sakimura, J Bradley, and M Jones. Final: OpenID Connect Dynamic Client
Registration 1.0 incorporating errata set 1. 2015. URL: http://openid.net/
specs/openid-connect-registration-1_0.html (visited on 03/20/2015).

[232] N Sakimura, J Bradley, and M Jones. OpenID Connect Dynamic Client Regis-
tration 1.0-Draft 14. 2013.

[233] Samsung.Mobile Enterprise Security | Samsung KNOX. https://www.samsungknox.
com/en. (Visited on 03/24/2015). 2015.

[234] Ravi S Sandhu and Pierangela Samarati. “Access control: principle and prac-
tice”. In: Communications Magazine, IEEE 32.9 (1994), pp. 40–48.

[235] Steve Schneider, Helen Treharne, and Heike Wehrheim. “A CSP account of
Event-B refinement”. In: arXiv preprint arXiv:1106.4098 (2011).

[236] Bruce Schneier. “iPhone encryption and the return of the crypto wars”. In:
Schneier on Security 6 (2014), p. 2014.

[237] Bruce Schneier. Tracking Vehicles through Tire Pressure Monitors. https://www.
schneier.com/blog/archives/2008/04/tracking_vehicl.html. (Accessed on
02/13/2017). Apr. 2008.

[238] Vasile-Marian Scuturici et al. “UbiWare: Web-based dynamic data & service
management platform for AmI”. In: Proceedings of the Posters and Demo Track.
ACM. 2012, p. 11.

[239] Ronny Seiger, Steffen Huber, and Thomas Schlegel. “Toward an execution
system for self-healing workflows in cyber-physical systems”. In: Software &
Systems Modeling (2016), pp. 1–22.

[240] Sengul and Kirby. MQTT-TLS profile of ACE. https://datatracker.ietf.org/
doc/draft-sengul-ace-mqtt-tls-profile/. (Accessed on 02/13/2017). Jan.
2017.

BIBLIOGRAPHY 182

[241] Arvind Seshadri et al. “Swatt: Software-based attestation for embedded de-
vices”. In: Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on.
IEEE. 2004, pp. 272–282.

[242] Mohit Sethi. “Security in Smart Object Networks”. MA thesis. Aalto University,
School of Science, 2012.

[243] Mohit Sethi, Jari Arkko, and Ari Keranen. “End-to-end security for sleepy
smart object networks”. In: Local Computer Networks Workshops (LCN Work-
shops), 2012 IEEE 37th Conference on. IEEE. 2012, pp. 964–972.

[244] Zach Shelby, Klaus Hartke, and Carsten Bormann. Constrained Application
Protocol (CoAP) draft-ietf-core-coap-18. https://tools.ietf.org/html/draft-
ietf-core-coap-18. Accessed: 2015-03-13.

[245] Peter W Shor. “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–
332.

[246] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons,
2014.

[247] Sabrina Sicari et al. “A secure and quality-aware prototypical architecture for
the Internet of Things”. In: Information Systems 58 (2016), pp. 43–55.

[248] Sabrina Sicari et al. “Security policy enforcement for networked smart ob-
jects”. In: Computer Networks 108 (2016), pp. 133–147.

[249] Gheorghe Cosmin Silaghi, Alvaro Arenas, and Luis Moura Silva. Reputation-
based trust management systems and their applicability to grids. Tech. rep. TR-
0064. Institutes on Knowledge, Data Management, and System Architecture,
CoreGRID - Network of Excellence, Feb. 2007.

[250] Andrew Simmonds, Peter Sandilands, and Louis Van Ekert. “An ontology for
network security attacks”. In: Applied Computing. New York, NY, USA: Springer,
2004, pp. 317–323.

[251] Sergei Skorobogatov. “The bumpy road towards iPhone 5c NAND mirroring”.
In: arXiv preprint arXiv:1609.04327 (2016).

[252] Sergei Petrovich Skorobogatov. “Semi-invasive attacks: a new approach to
hardware security analysis”. PhD thesis. Citeseer, 2005.

[253] Martin et al Gudgin. SOAP Version 1.2 Part 1: Messaging Framework. Recom-
mendation. Available at http://www.w3.org/TR/2003/REC- soap12- part1-
20030624/. W3C, June 2003.

[254] Sergios Soursos et al. “Towards the cross-domain interoperability of IoT plat-
forms”. In: Networks and Communications (EuCNC), 2016 European Confer-
ence on. IEEE. 2016, pp. 398–402.

BIBLIOGRAPHY 183

[255] Sarah Spiekermann and Lorrie Faith Cranor. “Engineering privacy”. In: IEEE
Transactions on software engineering 35.1 (2009), pp. 67–82.

[256] Andy J Stanford-Clark andGlenn RWightwick. “The application of publish/subscribe
messaging to environmental, monitoring, and control systems”. In: IBM Jour-
nal of Research and Development 54.4 (2010), pp. 1–7.

[257] Michael Steil. “17 mistakes Microsoft made in the Xbox security system”. In:
Proceedings of the 22nd Chaos Communication Congress. Chaos Communica-
tion Club. 2005.

[258] David Svensson Fors et al. “Ad-hoc composition of pervasive services in the
PalCom architecture”. In: Proceedings of the 2009 international conference on
Pervasive services. ACM. 2009, pp. 83–92.

[259] Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press, 2004.
[260] Tomasz Tajmajer et al. “Node/Proxy portability: Designing for the two lives

of your next WSAN middleware”. In: Journal of Systems and Software 117
(2016), pp. 366–383.

[261] Luis E Talavera et al. “The mobile hub concept: Enabling applications for
the internet of mobile things”. In: Pervasive Computing and Communication
Workshops (PerCom Workshops), 2015 IEEE International Conference on. IEEE.
2015, pp. 123–128.

[262] TCG. Trusted Computing Group - Home. http://www.trustedcomputinggroup.
org/. (Visited on 06/08/2015). 2015.

[263] Vagan Terziyan, Olena Kaykova, and Dmytro Zhovtobryukh. “Ubiroad: Se-
mantic middleware for context-aware smart road environments”. In: Internet
and Web Applications and Services (ICIW), 2010 Fifth International Conference
on. IEEE. 2010, pp. 295–302.

[264] Dinesh Thangavel et al. “Performance evaluation of MQTT and CoAP via a
common middleware”. In: Intelligent Sensors, Sensor Networks and Informa-
tion Processing (ISSNIP), 2014 IEEE Ninth International Conference on. IEEE.
2014, pp. 1–6.

[265] Johannes Thönes. “Microservices”. In: IEEE Software 32.1 (2015), pp. 116–
116.

[266] Lynn Thorndike. “Copyists’ Final Jingles in Mediaeval Manuscripts”. In: Specu-
lum 12.2 (1937), pp. 268–268. DOI: 10.2307/2849582. eprint: http://dx.doi.
org/10.2307/2849582. URL: http://dx.doi.org/10.2307/2849582.

[267] Stefan Tilkov and Steve Vinoski. “Node. js: Using JavaScript to build high-
performance network programs”. In: IEEE Internet Computing 14.6 (2010),
pp. 80–83.

BIBLIOGRAPHY 184

[268] Ken Tindall.How Bitcoin might fix the broken Internet of Things. https://freo.
me/2jNZRBm. (Accessed on 01/20/2017). Mar. 2015.

[269] Jan Tretmans. “Model based testing with labelled transition systems”. In: For-
mal methods and testing (2008), pp. 1–38.

[270] H Tschofenig and T Fossati. A TLS/DTLS 1.2 Profile for the Internet of Things.
Tech. rep. RFC 7925. Fremont, CA, USA: IETF, 2016.

[271] Hannes Tschofenig. “Fixing User Authentication for the Internet of Things
(IoT)”. In: Datenschutz und Datensicherheit-DuD 40.4 (2016), pp. 222–224.

[272] H Tschofenig et al. Authentication and Authorization for Constrained Environ-
ments Using OAuth and UMA. Tech. rep. IETF, 2015.

[273] Fatih Turkmen and Bruno Crispo. “Performance evaluation of XACML PDP
implementations”. In: Proceedings of the 2008 ACM workshop on Secure web
services. ACM. 2008, pp. 37–44.

[274] Nikos Tziritas et al. “Middleware mechanisms for agent mobility in wireless
sensor and actuator networks”. In: International Conference on Sensor Systems
and Software. Springer. 2012, pp. 30–44.

[275] Ioan Ungurean, Nicoleta Cristina Gaitan, and Vasile Gheorghita Gaitan. “A
Middleware Based Architecture for the Industrial Internet of Things”. In: KSII
Transactions on Internet and Information Systems (TIIS) 10.7 (2016), pp. 2874–
2891.

[276] European Union. Reform of EU data protection rules - European Commission.
http://ec.europa.eu/justice/data-protection/reform/index_en.htm. Apr.
2016.

[277] University of Portsmouth Library. Discovery Service. http : / / www . port . ac .
uk/library/infores/discovery/filetodownload,170883,en.xls. (Visited on
07/14/2015). 2015.

[278] Rafael Oliveira Vasconcelos et al. “An adaptive middleware for opportunistic
mobile sensing”. In: Distributed Computing in Sensor Systems (DCOSS), 2015
International Conference on. IEEE. 2015, pp. 1–10.

[279] Antonio Garcı́a Vázquez et al. “FI-WARE security: future internet security
core”. In: European Conference on a Service-Based Internet. Springer. 2011,
pp. 144–152.

[280] Marcos Augusto M Vieira et al. “Survey on wireless sensor network devices”.
In: Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA’03.
IEEE Conference. Vol. 1. IEEE. 2003, pp. 537–544.

BIBLIOGRAPHY 185

[281] James Vincent. London’s bins are tracking your smartphone. http : / / www .
independent.co.uk/life-style/gadgets-and-tech/news/updated-londons-
bins-are-tracking-your-smartphone-8754924.html. (Accessed on 02/13/2017).
Aug. 2013.

[282] Ronald Watro et al. “TinyPK: securing sensor networks with public key tech-
nology”. In: Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks. ACM. 2004, pp. 59–64.

[283] Jialu Wei. DDoS on Internet of Things–a big alarm for the future. http://www.
cs.tufts.edu/comp/116/archive/fall2016/jwei.pdf. 2016.

[284] Jenifer S Winter. “Privacy and the emerging internet of things: using the
framework of contextual integrity to inform policy”. In: Pacific Telecommu-
nication Council Conference Proceedings 2012. 2012.

[285] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof.
Vol. 39. Prentice Hall Englewood Cliffs, 1996.

[286] WSO2.WSO2 ESB Performance Round 7.5. http://wso2.com/library/articles/
2014 / 02 / esb - performance - round - 7 . 5/. (Accessed on 02/13/2017). Feb.
2014.

[287] WSO2 API Manager - 100% Open Source API Management Platform | WSO2
Inc. URL: http://wso2.com/products/api-manager/ (visited on 03/20/2015).

[288] WSO2 Identity Server | WSO2 Inc. (Visited on 11/13/2013). URL: http://
wso2.com/products/identity-server/.

[289] Xively by LogMeIn – Business Solutions for the Internet of Things. URL: https:
//xively.com/ (visited on 03/20/2015).

[290] Tim et al Bray. Extensible Markup Language (XML) 1.0. Recommendation.
Available at http://www.w3.org/TR/REC-xml. W3C, Feb. 2004.

[291] Dong Xu et al. “Towards formalizing UML activity diagrams in CSP”. In: Com-
puter Science and Computational Technology, 2008. ISCSCT’08. International
Symposium on. Vol. 2. IEEE. 2008, pp. 450–453.

[292] Xiaobin Xu, Minbo Li, and Jia Liang. “A Middleware for Environmental Mon-
itoring and Control”. In: Services Computing (SCC), 2016 IEEE International
Conference on. IEEE. 2016, pp. 697–704.

[293] Song Y Yan. “Side-Channel Attacks”. In: Cryptanalytic Attacks on RSA. New
York, NY, USA: Springer, 2008, pp. 207–222.

[294] Jamie Yap. 450,000 user passwords leaked in Yahoo breach. 2012.
[295] Seung Yi and Robin Kravets. “Key management for heterogeneous ad hoc

wireless networks”. In: Network Protocols, 2002. Proceedings. 10th IEEE In-
ternational Conference on. IEEE. 2002, pp. 202–203.

BIBLIOGRAPHY 186

[296] Jaeseok Yun et al. “A device software platform for consumer electronics based
on the Internet of Things”. In: IEEE Transactions on Consumer Electronics 61.4
(2015), pp. 564–571.

[297] Zee. Fitbit users are unwittingly sharing details of their sex lives with the world.
(Visited on 06/04/2013). 2011. URL: http://thenextweb.com/insider/2011/
07/03/fitbit-users-are-inadvertently-sharing-details-of-their-sex-
lives-with-the-world/.

[298] Zetta - An API-First Internet of Things (IoT) Platform - Free and Open Source
Software. URL: http://www.zettajs.org/ (visited on 03/20/2015).

[299] Wang Zhiliang et al. “A SOA based IOT communication middleware”. In:
Mechatronic Science, Electric Engineering and Computer (MEC), 2011 Interna-
tional Conference on. IEEE. 2011, pp. 2555–2558.

[300] Qian Zhu et al. “IoT gateway: Bridging wireless sensor networks into internet
of things”. In: Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th
International Conference on. IEEE. 2010, pp. 347–352.

[301] Charikleia Zouridaki et al. “E-Hermes: A robust cooperative trust establish-
ment scheme for mobile ad hoc networks”. In: Ad Hoc Networks 7.6 (2009),
pp. 1156–1168.

[302] Charikleia Zouridaki et al. “Hermes: A quantitative trust establishment frame-
work for reliable data packet delivery in MANETs”. In: Journal of Computer
Security 15.1 (2007), pp. 3–38.

Explicit hoc totem, pro Christo
da mihi potem[266]

187

Appendix — Ethics Review Forms

UPR16 – August 2015

FORM UPR16
Research Ethics Review Checklist

Please include this completed form as an appendix to your thesis (see the
Postgraduate Research Student Handbook for more information

Postgraduate Research Student (PGRS) Information

Student ID:

29713831

PGRS Name:

Paul Zachary Fremantle

Department:

Computing

First Supervisor:

Dr. Benjamin Aziz

Start Date:
(or progression date for Prof Doc students)

October 2013

Study Mode and Route:

Part-time

Full-time

MPhil

PhD

MD

Professional Doctorate

Title of Thesis:

Thesis Word Count:
(excluding ancillary data)

46,548

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee
for advice. Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University,
academic or professional guidelines in the conduct of your study

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical
conduct of this work lies with the researcher(s).

UKRIO Finished Research Checklist:
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online
version of the full checklist at: http://www.ukrio.org/what-we-do/code-of-practice-for-research/)

a) Have all of your research and findings been reported accurately, honestly and
within a reasonable time frame?

YES
NO

b) Have all contributions to knowledge been acknowledged?

YES
NO

c) Have you complied with all agreements relating to intellectual property, publication
and authorship?

YES
NO

d) Has your research data been retained in a secure and accessible form and will it
remain so for the required duration?

YES
NO

e) Does your research comply with all legal, ethical, and contractual requirements?

YES
NO

Candidate Statement:

I have considered the ethical dimensions of the above named research project, and have successfully
obtained the necessary ethical approval(s)

Ethical review number(s) from Faculty Ethics Committee (or from
NRES/SCREC):

3BBD-77DF-5631-D442-
58A9-DB61-2699-8AAF

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of
questions a) to e), please explain below why this is so:

N/A

Signed (PGRS):

Date: 1/6/2017

An Approach to Enhancing Security and Privacy of the Internet of Things with
Federated Identity

Paul Zachary Fremantle

188

APPENDIX - ETHICS REVIEW FORMS 189

Certificate Code: 3BBD-77DF-5631-D442-58A9-DB61-2699-8AAF Page 1

Certificate of Ethics Review
Project Title: PhD thesis - a secure private middleware for IoT
User ID: 528399
Name: Paul Fremantle
Application Date: 19/01/2016 14:27:33

You must download your certificate, print a copy and keep it as a record of this review.

It is your responsibility to adhere to the University Ethics Policy and any
Department/School or professional guidelines in the conduct of your study including
relevant guidelines regarding health and safety of researchers and University Health and
Safety Policy.

It is also your responsibility to follow University guidance on Data Protection Policy:

• General guidance for all data protection issues
• University Data Protection Policy

You are reminded that as a University of Portsmouth Researcher you are bound by the
UKRIO Code of Practice for Research; any breach of this code could lead to action being
taken following the University's Procedure for the Investigation of Allegations of
Misconduct in Research.

Any changes in the answers to the questions reflecting the design, management or
conduct of the research over the course of the project must be notified to the Faculty
Ethics Committee. Any changes that affect the answers given in the
questionnaire, not reported to the Faculty Ethics Committee, will invalidate this
certificate.

This ethical review should not be used to infer any comment on the academic merits or
methodology of the project. If you have not already done so, you are advised to develop
a clear protocol/proposal and ensure that it is independently reviewed by peers or others
of appropriate standing. A favourable ethical opinion should not be perceived as
permission to proceed with the research; there might be other matters of governance
which require further consideration including the agreement of any organisation hosting
the research.

GovernanceChecklist
A1-BriefDescriptionOfProject: I am researching secure private middleware for the
Internet of Things. This involves creating abstract models of security and privacy
properties and ways to manage them.
A2-Faculty: Technology
A3-VoluntarilyReferToFEC: No
A5-AlreadyExternallyReviewed: No
B1-HumanParticipants: No
HumanParticipantsDefinition
B2-HumanParticipantsConfirmation: Yes

