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Abstract

The performance of binocular stereo reconstruction is highly dependent on the quality of the stereo matching
result. In order to evaluate the performance of different stereo matchers, several quality metrics have been
developed based on quantifying error statistics with respect to a set of independent measurements usually
referred to as ground truth data. However, such data are frequently not available, particularly in practical
applications or planetary data processing. To address this, we propose a ground truth independent evaluation
protocol based on manual measurements. A stereo visualization tool has been specifically developed to
evaluate the quality of the computed correspondences. We compare the quality of disparity maps calculated
from three stereo matching algorithms, developed based on a variation of GOTCHA, which has been used
in planetary robotic rover image reconstruction at UCL-MSSL (Otto and Chau, 1989). From our evaluation
tests with the images pairs from Mars Exploration Rover (MER) Pancam and the field data collected
in PRoViScout 2012, it has been found that all three processing pipelines used in our test (NASA-JPL,
JR, UCL-MSSL) trade off matching accuracy and completeness differently. NASA-JPL’s stereo pipeline
produces the most accurate but less complete disparity map, whilst JR’s pipeline performs best in terms of
the reconstruction completeness.

Keywords: Stereo matching, Stereoscopic visualization, Rover image processing, 3D reconstruction, Stereo
matching evaluation

1. Introduction

Stereo matching has long been a fundamental and challenging research topic in computer vision. A large
number of fully automated stereo matching algorithms have been developed since the earliest approach
made by Hannah (Hannah, 1974) and further variations of local algorithms, which rely on the computation
of correlations of local patches, developed in the 1990s. Follow-on optimisation and statistical machine
learning techniques including dynamic programming (Birchfield and Tomasi, 1998), Markov random field
(Geman, 1984), graph cuts (Boykov, 2001), belief propagation (Sun et al., 2003), semi-global matching
(Hirschmuller, 2008), and seed-growing algorithms (Lhuillier and Quan, 2002), have been shown to be able
to produce high quality disparity maps, but it is getting difficult to evaluate various matching algorithms
developed for different purposes.

To our best knowledge, the Middlebury test is the most influential work on recent stereo evaluation
(Scharstein and Szeliski, 2002). In this test, the authors propose a new taxonomy of comprehensive stereo
algorithms and a C++ test bed for the quantitative evaluation of dense two-frame stereo correspondence
algorithms. The Middlebury test basically performs an evaluation based on the error metrics computed from
sparse “ground truth” point pairs or by synthesizing a warped image from pre-computed dense disparity
maps. Therefore, the reference data plays an important role in the evaluation process.
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When the algorithms were not strong enough to process complicated scenes, the 3D geometry of reference
data does not need to be complex, but it needs to be dense enough to evaluate a sparse set of point
correspondences produced by test algorithms. For this reason, Scharstein et al. configured a test scene with
a set of slanted 2D planes. Since a 2D homography of a planar object can be easily defined by 4 point
correspondences, this approach can produce a virtually complete disparity map of two images from a few
manual correspondences (Scharstein et al., 2001). However, as stereo algorithms evolve, a simple geometry
is no longer able to differentiate advanced algorithms and people need more complex geometry at higher
pixel resolution.

Synthetic images can be an option to improve the scene complexity (Morales and Klette, 2011) but
they are generally insufficient to synthesize practical scenes affected by a range of noise and various lighting
conditions. Alternatively, an active 3D sensor can be used to produce reference data. For example, a special
structured light system was developed in the 2003 Middlebury test, where one or two projectors are used
with a translating camera to create a dense reference disparity map for a stereo pair (Scharstein and Szeliski,
2003). This approach is particularly useful as we can have control over the spatial resolution of a disparity
map with higher depth accuracy. However, a structured light is more suitable for capturing small objects
in a controlled indoor environment. Geiger et. al. also pointed out this limitation, mentioning that higher
ranking algorithms from the Middlebury reference data can go below average when it is tested against the
images from outside the laboratory (Geiger et al., 2012).

Creating reference data for multiview stereo algorithms could be even more challenging. In addition to
classic stereo matching, estimating external transforms between image pairs and locating the position of a
camera in a previously reconstructed scene are other imperative features of a multiview stereo algorithm (e.g.
visual odometry or SLAM). Therefore, the reference data should be registered with correct positional infor-
mation. This normally requires combining multiple heterogeneous sensors and more complicated calibration
steps.

For example, the Middlebury test images for multiview stereo algorithms were obtained using a robotic
arm that can move on the surface of one-metre radius sphere with high precision (Seitz, 2006). In addition, to
improve the accuracy of a 3D model, the initial point cloud from multiple images was registered with a more
refined laser scanning result using an ICP method. Jensen et. al. recently published a data set containing
80 scenes for large scale multiview stereo evaluation using a similar approach but with a structured light
(Jensen et al., 2014). For outdoor scenes, Strecha et. al. proposed a method that can combine multiple
Lidar scans with images based on physical markers placed on a test scene (Strecha et al., 2008). Later,
Geiger et al. proposed more automated method which combines Lidar and two video cameras with accurate
localisation systems (e.g., GPS and IMU) to cover a wider area from a long-distance drive (39.2 km) (Geiger
et al., 2012).

It is possible to produce a good quality of reference data for outdoor scene by registering active sensors
to stereo cameras as mentioned above, and in fact it is widely used in the orbital sensor calibration process
in many remote sensing applications. For example, the performance of the SIMBIO-SYS imagining suite
employed in ESA BepoColombo mission was assessed during a pre-flight calibration process, where laser
scans of a small target object are used to validate a stereo reconstruction result of the sensor (Simioni
et al., 2014). Also, the high-resolution stereo camera (HRSC) on Mars Express was validated based on
various outdoor scenes captured during on-ground and airborne test (Jaumann et al., 2007). However, this
approach is not always available, especially, when performing planetary 3D reconstruction using robotic
vision systems. Also, creating reference data using multiple sensors would be a very expensive process in
terms of computation complexity and labour, even though a new set of test data is frequently required to
evaluate advanced algorithms. To address this, we introduce a new accuracy evaluation method to assess
stereo matching results when there is no prior knowledge about the depth of points within a scene. This
“ground truth” independent evaluation criteria were inspired by the use of manual measurements in stereo
photogrammetry, originally performed using film media and optic mechanical instrumentation but since the
early 2000s using so-called softcopy stereo workstations based on stereoscopic displays. An early example
of the use of these manual photogrammetric measurements using an analytical stereoplotter is discussed by
Day and Muller, 1989. A recent paper also showed that the use of 3D stereoscopic display can improve
human performance in locating objects and inferring depths of surfaces within a scene (Mcintire, 2014), so
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Figure 1: Example of stereoscopic visualisation: (a) a passive stereo display where images from upper and lower displays are
reflected on a polarised beamspliter in the middle; (b) an active stereo display uses a high refreshing LCD screen (120 HZ)
with synchronised NVIDA shutter glasses.

that this approach is not only more effective than the manual point selection used by the computer vision
community in early days (Nakamura et al., 1996), but also closely related to the local cross-correlation
process inspired by a biological vision system (Fleet et al. 1996).

In this work, a Java-based stereo workstation has been developed based on work performed at JPL
on being able to display stereo data on different stereo displays (Pariser and Deen, 2009). We trained
a group of research participants to make repeat measurements of the three-dimensional position of fixed
points in the same scenes using a stereo cursor on a stereo workstation display (Azari et al., 2009; Shin
et al. 2011). A stereo display is afforded either using anaglyptic fusion of stereo-pairs on a colour display
or by using different specialist stereo display devices [Fig. 1(a) and (b)] of increasing sophistication and
cost. These tie-points are then used to compute error metrics of different stereo matching algorithms by
comparing the computed disparity map with the corresponding manual measurements under three different
manual selection scenarios. A 2D Gaussian function based scoring metrics have also been introduced for a
quantitative evaluation.

The proposed evaluation method can be used to complement the Middlebury test when we need new
test images from more complex scene at higher image resolution. More importantly, it can complement the
missing evaluation work of stereo matching of rover imagery from planetary robotic missions, such as the
NASA Mars Exploration Rover (MER) or Mars Science Laboratory (MSL), where obviously we do not have
either any “ground truth” 3D data nor any prior knowledge of the scene.

This evaluation method was proposed within the EU FP-7 Planetary Robotics Vision Ground Pro-
cessing (PRoVisG: EU FP-7 PRoVisG project, http://provisg.eu/), and has been applied to evaluate
the accuracy of disparity maps computed from stereo pairs in the PRoVisG Mars 3D challenge campaign
(http://cmp.felk.cvut.cz/mars/) as well as additional stereo-pairs captured in the ExoMars Pancam test
campaign at Clarach Bay in Aberystwyth (ExoMars test campaign: https://www.youtube.com/watch?v=
6gRo8QSXX5c), using state-of-art planetary stereo technologies from NASA-JPL (USA), Joanneum Research
Institute (Austria) and UCL-MSSL (UK).

We explain more details of the proposed evaluation protocol in the following section. Based on which,
we present the evaluation results of a couple of disparity maps produced by JPL, JR, and UCL in Sec. 3,
followed by our discussion in Sec. 4.

2. Method

2.1. Stereo Workstation

Most stereo matching algorithms used in the remote sensing community employ an automated workflow
that has been built based on different mathematical definitions of image features (e.g. corners and edges)
and/or matching (dis-)similarity of corresponding points on a stereo pair. However, this often neglects the
impact of different detection errors from various imaging conditions such as image noise, viewing angle,
resolution, and scale difference. In addition, there is normally no proper visual validation of the detected
point pairs.
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Figure 2: Example of a stereo anaglyph showing a stereo cursor: (a) the offset of a stereo cursor is automatically set according
to the supplied disparity map; (b) triangulated 3D position of a corresponding pair is also displayed when there is calibration
data based on the use of the CAHVOR calibration model employed by NASA for MER and MSL cameras (Di and Li, 2004).

To address these issues, we developed a Stereo WorkStation (StereoWS) under the PRoVisG project.
The proposed system is capable of visualizing tie-points on a stereo pair in a hardware-independent manner,
e.g. with a conventional colour display, it will automatically switch the rendering mode to stereo anaglyphs
[see Fig. 2(a)].

We also developed intuitive user interfaces to facilitate the tie-point validation and selection process. For
example, provided there is no pre-existing disparity map, users can make measurements using a floating 3D
cursor, or fix the cursor in the left image at a pre-defined point and only allow the right image cursor to
move in 3D (i.e. by changing the disparity of the stereo cursor) in order to be able to place the 3D cursor
onto a visually perceived surface. When there is an initial disparity map available, however, the offset of
the stereo cursor will be automatically adjusted to speed up the tie-point selection process.

Information on each collected tie-point such as tie-point ID, coordinates, can also be displayed in a
separate window [see Fig. 2(b)], so that a user can easily edit the incorrect tie-point as well as monitor
progress. To assist a user to select a tie-point more efficiently, a range of basic image processing tools
are also included, and our in-house stereo matching algorithm, i.e. Adaptive Least Squares Correlation
(ALSC) (Gruen, 1985) and Region growing (GOTCHA) (Otto and Chau, 1989) have been integrated into
the software to produce a denser disparity map from the collected manual tie-points, if required.

2.2. Selection of tie-points

In this work, we define three types of tie-points and employ slightly different selection procedures to
prepare a sub-pixel reference tie-points:

(a) Feature based: Irregularly distributed tie-points.

(b) Regular grid: Regularly distributed tie-points.

(c) Discontinuities: Tie-points around depth discontinuities.

Type (a) (i.e. feature-based) tie-points are collected to generate highly detectable reference tie-points
from standard feature matching algorithms. Since many detectable image features are found around highly
textured areas, we can easily select feature-based tie-points from visual identification. The selection proce-
dure initially defines a number of ?interesting? points from the left image using generic feature extraction
algorithms, and then ask participants to identify the corresponding right point by adjusting the offset of
a stereo cursor. Corresponding tie-points in the right image are, therefore, defined at integer resolution
initially. However, an average is taken of a set of manual selections that result in sub-pixel selection.
Alternatively, ALSC can be applied to the right tie-point to refine the pixel position.

Type (b) (i.e. regular grid) tie-points are proposed to collect regularly distributed reference tie-points
across the whole image. This will improve the chance of getting reference tie-points from small depth
discontinuity or from less-textured areas. Unlike the feature based selection, it will be a bit more challenging
to pick a correct tie-point from visual identification. Therefore, participants are asked to collect tie-point
from visual validation, i.e. an initial guess for a right tie-point is given at the beginning. To provide
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Figure 3: Example of a pair of tie-points around object boundary, e.g. t4 and t5 are a pair of left tie-points collected from
background and foreground to evaluate rewarding score.

good starting points to participants, a dense disparity map is generated using an in-house stereo processing
pipeline and sampled at regular grid points. These initial tie-points are then visually inspected, e.g. moving
the stereo cursor around the grid points and check if there is any abnormality, or adjusting the disparity offset
of a stereo cursor at the point to check whether the estimation appears to be the best solution, and/or do
both with 1.5 or 2 times scaled-up images, which will increase the chance of getting correct correspondences
(Chan et al., 2003). Finally, collect the resulting tie-points that pass the validation test.

Type (c) tie-points (i.e. discontinuities) aims to collect reference tie-points from the places that general
automated matchers may fail (so-called pathological cases). These areas are normally resulted from occlu-
sions, insufficient texture, and strong depth discontinuities, i.e. pixels whose neighbouring disparities differ
by more than a threshold (refer to the Middlebury stereo evaluation (Scharstein et al., 2001)). Amongst
these, we are particularly interested in matching performance around depth discontinuity, since some algo-
rithms deliberately enforce the local smoothness around depth discontinuities in order to densify a disparity
map. We manually select two pairs of tie-points around this area, i.e. one tie-point from background and
another one from foreground and evaluate how correctly an algorithm can handle the scene occlusions (see
Fig. 3 and Sec. 2.4). The scene occlusion is a well-known issue in classic stereo matching, therefore it
might be interesting to see if it is possible to design an automated pipeline for populating type (c) tie-points
(i.e. discontinuities) with conventional feature detectors. However, without knowing true foreground and
background segmentation, we found this would be difficult to make it fully automated.

To select type (c) tie-points, an expert manually chooses a set of challenging tie-points around a typical
problematic area, and participants are asked to validate them. The validation process is quite similar to the
regular grid selection, except that this time no clues are given around tentative tie-points.

2.3. Error metrics

The next step is to estimate the error bounds according to the statistics recorded in the three types of
manual tie-point selection process. Suppose that T k is a set of left tie-points from type (k) dataset, i.e.
T k = {tk0 , · · · , tkM}, where k ∈ {a, b, c} and M is the number of left tie-point defined in type (k). Similarly,
we can define a set of right tie-points corresponding to tki from manual selections as Ski = {sk0i, · · · , skNi},
where N is the number of participants performing manual measurement.

Although it is not always true that some of the measurements in Ski happen to be identical to ground
truth, it is highly likely that a true correspondence of tki can be found within a cluster of selected points.
Thus, our scoring method basically defines a local cluster of Ski based on the mean mk

i and the standard
deviation σki and evaluates final matching score.

When estimating the statistics from manual measurements, it should be considered that not everyone
is good at fusing a stereo pair and few people are not even capable of perceiving depth difference from the
stereo fusion. Therefore, the outliers need to be identified and removed before evaluating statistics of the
tie-point positions from a large group of manual selections.

To identify outliers, we define a simple error function using a pre-computed disparity map D. For
example, a selection error of a tie-point (tki , s

k
mi), can be defined as the pixel difference between the manual
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measurement and computed disparity map for a point, i.e.

e(tki , s
k
mi : D) = d(tki , s

k
mi)− d(tki , D(tki )), (1)

where d(tki , s
k
i ) = ski − tki and D(tki ) = s̃ki is a corresponding point of tki defined by a pre-computed disparity

map D.
With this error metric (1), we can define an inlier set Ŝki containing all reliable right tie-points,

Ŝki = {skmi|skmi ∈ Ski , skmi ∈ Ckm, ||e(tki , skli : D)|| < δ, ∀skli ∈ Ckm}, (2)

where δ is an error threshold which is normally set to around 10 pixels, and Ckm is a set of right tie-points
collected by the m-th participant. Thus, an error bound of tki (denoted by bki in this paper) can be defined
as

bki =

[
mk
i

σki

]
=

1

|Ŝki |

[ ∑
i s

k
mi√∑

i(s
k
mi−mk

i )
2
.

]
(3)

As a general quality metric of a set of stereo measurements, we can also define a total measurement error
as

etot(T
k, Sk : D) =

1

MN

M∑
i

N∑
i

||d(D(tki ), skji)||, (4)

where Sk represents all measurements, i.e. Sk = ∪iSki . Similarly, we can also define a measurement error

of an inlier set and an outlier set, i.e. ein(T k, Ŝk : D) and eout(T
k, Sk − Ŝk : D), respectively.

2.4. Assessment criteria

The proposed evaluation method basically assesses a disparity map in terms of matching score (M) and
rewarding score (R). A matching score is similar to the classic quality metric used in stereo evaluation but
the main difference is that our method evaluates it based on a set of error bounds rather than ground truth.
The proposed method also introduced a rewarding score. The main purpose of this is to award more scores
when an algorithm can cope well with challenging matching problem defined in the discontinuous point
selection.

In order to compute matching score, we define a 2D Gaussian function from an error bound. For
example, a scoring function for s̃ki (i.e. the right pixel position of tki obtained from an input disparity map
for evaluation) is

g(̃ski ,b
k
i ) = exp

{
−(̃ski −mk

i )T

2

[
σ2
xi 0
0 βσ2

xi

]−1
(̃ski −mk

i )

}
, (5)

where bki is the error bound of tki , σ2
xi is the variance of the x values of the i-th tie-points in type (k) data

set, and 0 < β < 1.
This means that we give a higher matching score when an input disparity is closer to the mean of inlier

measurements. If a stereo selection is not confident (i.e. σx is high), then we penalise less even if a tie-point
is further away from the mean. Another thing to note is that the covariance matrix in (5) is defined by a
horizontal standard variance only, i.e. σxi. This is because σyi of manual measurements is nil as we rectify
an input stereo pair for stereo measurement. However, to allow a little variation in y direction as some
algorithms do refine vertical positions even if an input stereo pair is rectified, we have used σyi = 0.2σxi
in our test. Please note that this weighting value was selected empirically based on our ALSC refinement
results of the manual measurements.

A matching score of a set of right points from a disparity map is then defined as a weighted sum of (5),
i.e.

M(D,B) =
1

L

∑
k

|Tk|∑
i

wig(̃ski ,b
k
i ), (6)
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Figure 4: Test datasets from PRoVisG Mars 3D Challenge and ExoMars PanCam Test Campaign, showing left-eye images
randomly picked from each test dataset; (a) C33 (b) 65246 (c) 70000.

where L = |T a| + |T b| + |T c|, Bk is a set of all error bounds, D is a disparity map for evaluation which
defines s̃ki , and wi = 1− σxi

2max(σx0,··· ,σxk)
, i.e. a higher weight is given to a more confident measurement.

The proposed rewarding score is defined for the tie-points at discontinuities (i.e. type (c)). As briefly
explained earlier in Sec. 2.2. we have defined a pair of tie-points around object boundary. Supposing that Pi
is the i-th pair of the discontinuous tie-points obtained around object boundary, we can define the i-th pair
Pi =

{
(tc2i, s̃

c
2i), (t

c
2i+1, s

c
2i+1)

}
and an example of a pair can be found in Fig. 3. In this case, our rewarding

function is defined as an averaged sum of sigmoid function values, i.e.

R(D,B,P ) =
1

|P |

|P |∑
i=0

γ(−|d(tc2i+1, t
c
2i)− d(̃sc2i+1, s̃

c
2i, )|), (7)

where γ(x) is a sigmoid function, 2/ exp(−x) , and P is a set of all pairs of tie-points, P = ∪iPi. Thus,
(7) gives additional scores when a disparity map can give a similar estimation to the average of manual
measurements around a depth discontinuity.

Finally, a total score (TS) is defined as a weighted sum of the matching score and the rewarding score,
i.e.

TS(D,B,P ) = (1− α)M(D,B) + αR(D,B,P ), (8)

where 0 < α < 1. The weighting coefficient in (8) can be set up differently depending on applications, e.g.
a higher weight (e.g. 0.5 < α) could be given to put the matching score ahead over the rewarding score of
a disparity map.

3. Experiment results

The evaluation work described in this paper is based on the stereo matching results from UCL-MSSL,
NASA-JPL, and the Joanneum Research Institute (JR hereafter) with respect to the datasets from the
PRoVisG Mars 3D challenge and the ExoMars PanCam test campaigns. The PRoVisG Mars 3D challenge
2011, aimed at testing and improving the state of the art algorithms of visual odometry and 3D terrain
reconstruction in planetary exploration.

The task of the PRoVisG Mars 3D challenge was to reconstruct depth, camera trajectory and 3D maps of
Mars landscapes observed by MER. The ExoMars PanCam test campaign also focused on the 3D processing
results, as they are an essential component of mission planning and scientific data analysis for the ESA’s
ExoMars Rover mission, planned for launch in 2020.

We demonstrate the evaluation with 3 test sequences, taken from one of the PRoVisG Mars 3D challenge
I datasets (sets C33) and the ExoMars PanCam test campaign (“65246” and “70000”). Examples of the
images from each of these 3 test sequences are shown in Fig. 4. The evaluation work demonstrated in this
paper was achieved through a workshop hosted at UCL-MSSL with 15 participants including 9 students and
6 trainers.
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Figure 5: Example of left tie-points used in the stereo workshop: (a), (d), and (g) show 20 feature based tie-points defined on
the test images shown in Fig. 4(a), (b), and (c), respectively; (b), (e), and (h) show 16 regular grid tie-points for the same test
images; (c), (f), and (i) are for 20 tie-points around discontinuities.

3.1. Test datasets

During this stereo matching evaluation workshop, the students were trained on how to use the StereoWS
tool including the stereo display, manual measurements, and statistical analysis procedure. In this workshop,
we have collected manual measurements, which were selected by different members of the workshop.

During the manual measurement process, each participant was asked to collect 20 feature based points,
16 regular grid points, and 10 discontinuity tie-points for each pair of test images shown in Fig. 4. Figure
5 illustrates an example of left tie-points of some of the test images (i.e. C33, 65246, 7000) prepared for
measurement.

For the feature based tie-points (see the first column of Fig. 5), participants only needed to identify
the corresponding right points using the stereo display. 20 left points are selected from the extracted Scale
Invariant Feature Transform (SIFT) key-points (Lowe, 2004) with the highest matching similarity values.
For the regular gird tie-points (see the second column of Fig. 5), we collected 16 left points from the dense
disparity map generated by our in-house GOTCHA matcher. Participants were then asked to validate their
matching correctness based on visual clues by moving the stereo 3D cursor around the grid points to check
if there were any abnormalities and adjusting the disparity offset of the stereo cursor at certain points
to seek for better solutions. Results in this case that passed the validation were collected and averaged.
For discontinuity tie-points (see the last column of Fig. 5), an expert user from the workshop manually
selected 10 pairs of left points around the object edge and other problematic areas. 9 pairs of discontinuity
tie-points are defined around an object boundary in C33, whilst the last two tie-points are selected from
a relatively smooth and less-textured area. [see Fig. 5(c)]. Other workshop participants then defined the
correspondences on the right image.

3.2. Evaluation of collected tie-points

The manual selection results from the 9 workshop participants are presented in Fig. 6, where input data
are shown in the first row, whilst the positions of measured right tie-points are presented in the second row.
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Figure 6: Example results of manual selection: (a) and (b) left and right input image of C33; (c) a disparity map of (a) produced
by UCL which was used to identify outliers in manual measurements; (d), (e), and (f) show all measured right tie-points for
type (a), (b), and (c), respectively (note: PID stands for Participant ID).

It appears that some of the workshop participants can perform good visual identification and visual
validation with all three types of tie-points. On the other hand, a few workshop participants were not good
at fusing the stereo images. For example, participant 1, participant 3, participant 5, participant 6 were
not able to select good right points for the feature based tie-points [see Fig. 7(a)], and the performance
of participant 5, participant 6, participant 8 was particularly worse with discontinuity tie-points [see Fig.
7(e)]. Their average measurement error (i.e. eout) is 16.65 pixels which is significantly above the error
bounds from a normal visual identification and validation results. Their performance was improved when a
pre-computed disparity map is given although two participants still cannot visualise the tie-points in 3D, i.e.
Participants 5 and 6 [see Fig. 7(c)]. These outliers were then removed before calculating the error bounds.

Figure 7(a), (c), and (e) summarise the errors from the inlier means d(tki ,m
k
i ) of all tie-points from 9

participants. It is observed that tie-points from the indistinctive textures are generally difficult to select, for
example, ta1 , ta4 , ta5 , ta7 , and ta9 in the feature based tie-points have larger measurement variation and more
outliers [see Fig. 7(b)]. This reconfirms our understanding that a stereo visualisation can help us detect
correct tie-points better around the object boundary than within plain/repetitive texture.

One interesting observation from the error graph is that the performance of participant 5, who consis-
tently produced a large measurement error regardless of the type of dataset, deteriorates when a tie-point
is closer to a camera (i.e. a larger x disparity). For example, the measurement errors for tb3, tb7, tb11, and
tb15 (which is the bottom row of the grid in Fig. 5(b)) are getting worse than the rest and we can see this
pattern in Fig. 7(c).

The error metrics of measurements are evaluated and summarised in table 1. Without the removal of
outliers, the total measurement error increases significantly. The maximum of etot was recorded with the
feature based tie-points (20.83), whereas the minimum (8.39) was obtained from the discontinuity tie-points.
However, after removing obvious outliers (i.e. δ > 10 in (2)), the measurement errors drop sharply to less
than 2 pixels with small standard variation (see ein and avg. σx in table 1). As mentioned earlier, we believe
this happens because of the outliers introduced by a few participants who fuse a stereo pair differently than
the rest.

The bar charts of the inlier measurements for 3 datasets are shown in the second column of Fig. 7.
Each bar chart summarises the differences between the inlier measurements and the mean of the inlier
measurements. Type (b) tie-point selection appears to be more difficult as participants are often required to
fuse the stereo cursor around textureless or smooth (i.e. small depth separation) areas. As a consequence,
the inlier measurements of regular grid tie-points are generally inconsistent (i.e. avg. σx = 1.71) compared
to the others [see Fig. 7(d)]. On the other hand, strong depth discontinuity around an object boundary
from type (c) tie-points improve the consistency of the measurements [see Fig. 7(f)]. We have found that
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Figure 7: Example evaluation results from the manual measurements of C33: (a), (c), and (e) the measurement errors from
all the collected tie-points for type (a)-(c); (b), (d), and (f) bar charts of the measurement errors of inlier tie-points for type
(a)-(c).

Table 1: Measurement errors of C33 (N.B. Type (a) results of participant 2 was excluded due to the incomplete of measure-
ments.)

Type etot ein eout avg. σx

a 20.83 1.61 40.04 0.92
b 10.83 1.10 22.98 1.71
c 8.39 1.78 16.65 0.93

avg. 13.35 1.50 26.56 1.19

the maximum standard deviation is 2.56 pixels, the minimum standard deviation is 0.37 pixels, and the
average is 0.93 pixels.

It is also interesting to see that SIFT keypoints performs the best for stereo fusion. Its average standard
deviation is 0.92 which is marginally better than the second best but the left tie-points of type (a) were
selected simply based on the texture information [see Fig. 7(b)]. We think that the distinctive gradient
information around a keypoint can improve the performance of stereo measurements.

3.3. Results of automated stereo matching

In our evaluation, we have collected two sets of processing results (i.e. a x and y disparity map) from
UCL, JPL, and JR. Fig. 8(a) and (b) respectively represent these disparity maps of dataset 65246 and
70000 from ExoMars PanCam Test Campaign, and each column of the figure represents the results from
different organisations. To our best knowledge all three algorithms have been developed based on a variation
of a correlation based stereo matching algorithm with an adaptive least square fitting technique (Deen and
Lorre, 2005; Otto and Chau, 1989), but all results seem to be slightly different in terms of the completeness
and the estimated values of a disparity map. All three results were able to produce a relatively denser
disparity map with dataset 65246. However, the results seem different with the other dataset, e.g. the JR
result shown in the last column of Fig. 8(b) looks overly smoothed and its density is more incomplete than
the other two (but this does not mean it is sparse). Please also note that both y disparity maps from JPL
(see the second column of Fig. 8) contains a few spikes which are removed for visualisation.

Given the error bounds calculated from the manual measurements, the matching scores and rewarding
scores of each tie-point are evaluated and the results are shown in Fig. 9. Matching scores of three algorithms
are generally similar when they can define a tie-point, but when it fails to define a tie-point no score was

10



UCL x disparity (65246) 

200 400 600 800 1000

100

200

300

400

500

600

700
-60

-40

-20

0

20

40

JPL x disparity (65246)

200 400 600 800 1000

100

200

300

400

500

600

700 -80

-60

-40

-20

0

20

JR x disparity (65246)

200 400 600 800 1000

100

200

300

400

500

600

700 -60

-40

-20

0

20

40

UCL y disparity (65246) 

200 400 600 800 1000

100

200

300

400

500

600

700

-0.5

0

0.5

1
JPL y disparity (65246)

200 400 600 800 1000

100

200

300

400

500

600

700
-1.5

-1

-0.5

0

0.5

1

1.5

JR y disparity (65246)

200 400 600 800 1000

100

200

300

400

500

600

700

-1

-0.5

0

0.5

1

(a)

UCL x disparity (70000) 

200 400 600 800 1000

100

200

300

400

500

600

700

-50

0

50

100

150

JPL x disparity (70000)

200 400 600 800 1000

100

200

300

400

500

600

700

-50

0

50

100

UCL y disparity (70000) 

200 400 600 800 1000

100

200

300

400

500

600

700
-1.5

-1

-0.5

0

0.5

1

1.5

2
JPL y disparity (70000)

200 400 600 800 1000

100

200

300

400

500

600

700
-1.5

-1

-0.5

0

0.5

1

1.5

JR y disparity (70000)

200 400 600 800 1000

100

200

300

400

500

600

700

-1

-0.5

0

0.5

1

JR x disparity (70000)

200 400 600 800 1000

100

200

300

400

500

600

700

-50

0

50

100

(b)

Figure 8: Example of disparity maps: (a) x and y disparity maps of dataset 65246; (b) and dataset 70000. UCL, JPL, and JR
results are shown in the first, the second and the last column.

awarded, e.g. see JPL matching scores of ID 23 and 49 in Fig. 9(a). The rewarding score of UCL’s disparity
map is generally lower than the other two with the dataset 65246 [see Fig. 9(c)]. However, it is improved
with the other dataset having more depth discontinuities.

The total scores were calculated using an equal weight of the matching scores and rewarding scores, and
the results are summarised in table 2, where the best scores for certain datasets are labelled in bold font.
We can observe that for dataset 65246 that JR’s stereo matching pipeline produced the best result for the
overall area. To understand this result clearly, it is worth mentioning that the total score (TS) shown in
(8) has been designed to award more scores if a disparity map defines all queried tie-points; in other words,
no score is given if there is no corresponding tie-point in a disparity map. Thus, this metric is generally
favoured for a dense and smooth disparity map, which we believe why JR’s results perform best on both
test datasets.

(a) (b) (c) (d)

Figure 9: (a) Individual matching scores of the processing results of two datasets; (b) Rewarding scores from 10 tie-point pairs
in two datasets.
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Table 2: Total score (TS) estimated from (8) with α = 0.5

dataset 65246 70000

UCL JPL JR UCL JPL JR

Matching Score 63.96 61.26 64.16 50.45 45.15 57.01
MFR (%) 0 3.5 0 16.10 26.8 10.7
Rewarding Score 50.11 61.87 67.15 43.07 31.05 44.64
MFR (%) 0 10 0 10 30 0

TS 55.65 61.63 65.95 46.02 36.69 49.59

Table 3: Total score B (TS-B) which is similar to TS but removes the effect of missing tie-points

dataset 65246 70000

UCL JPL JR UCL JPL JR

Matching Score 63.96 63.45 64.16 60.11 61.67 63.86
Rewarding Score 50.11 68.75 67.15 47.85 44.35 44.64

TS-B 55.65 66.63 65.95 52.75 51.28 52.33

To give more weight on the accuracy of an algorithm, we modified (8) not to penalise when they failed
to define a queried tie-point in a disparity map, and called this score, TS-B. The results of TS-B of both
datasets are also presented in table 3.

We also introduce a new term MFR representing the Matching Failure Rate. MFR can be used as an
indicator for either the incompleteness of a disparity map or how conservative the algorithm is. As shown in
table 2, JPL’s results have higher MFR, but without counting on the match failure area (i.e. using TS-B)
JPL’s pipeline produced the best result on the dataset 65246. For dataset 70000, JPL’s pipeline gets the
second best score whilst UCL’s processing pipeline has produced the best accuracy.

4. Discussion and Conclusions

In this paper, we introduced an accuracy evaluation method to assess the stereo matching results. The
main motivation of this work is to provide a straightforward method which can be applied to the stereo
matching evaluation work of planetary rover missions, where it is currently impossible to obtain ground
truth data.

We have demonstrated the use of a generic portable stereo workstation including a stereo cursor from
the open source StereoWS tool to produce visually correct tie-points of a stereo pair, i.e. manual tie-points,
with the help of a softcopy stereo display. The manual tie-points from stereo measurements are not identical
for all candidate tie-points, but our assumption is that the variation of multiple measurements can be used
to estimate the confidence of a tie-point and this confidence values can quantitatively evaluate the quality
of disparity maps from different algorithms. Based on this idea, we have defined useful evaluation metrics
using the statistics of multiple measurements (such as means and variance). We also define three types of
tie-points to test the performance at highly textured region, textureless region, and occluded region. The
performance of textureless region is quite interesting for DTM construction from orbital imagery but this is
left for the future work. Type (b) tie-points are related to the scene occlusion. At the moment, we populate
these points manually but it is also possible to design a semi-automatic pipeline to collect these points, e.g.
detect one tie-point by conventional feature detector and find adjacent feature from background manually.

It is worth noting that in these experiments, the number of tie-points, particularly for the discontinuities,
may not be sufficient in some cases. It would have been better to add more tie-points. However, we erred
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on the side of setting an experiment which could be accomplished with a group of ten “citizen scientists”
within a limited time period (a week). Other comparison results, e.g. disparity density or 3D accuracy,
could also be employed in future experiments to improve the final matching score.

During the evaluation work, we implemented an open source stereo workstation with an integrated stereo
matching method that is used to produce the UCL results shown in the evaluation. We have published the
Java code of the Stereo Workstation on SourceForge under a BSD license (available from SourceForge,
http://sourceforge.net/projects/stereows/) to encourage other stereo researchers to use and modify
our system for their own evaluation.

The experiments reported in this paper focused on planetary images. It would be straightforward to
apply this method and our StereoWS to any future stereo research projects when any quantitative evaluation
is required, wherever it is on Mars or the Earth or anywhere else for that matter. In the future, we hope our
efforts could also benefit the stereo correspondence evaluation work and include more datasets, in particular
the results from a wider variety of general stereo. Also, we expect that the same idea behind StereoWS
could be applied to develop a more intuitive and immersive stereo measurement system using recent virtual
reality technologies. In conjunction with the stereo measurement workshop held in 2011, we can provide the
possibility of evaluation of these stereo matching results including more methods from our collaborators.

As future work, it is also interesting to investigate the performance of manual measurements from different
lighting conditions (Kirk et. Al., 2016). We could measure the variation of human depth perception under
different illumination effects and reflect this on (5) to define more accurate metrics. However, this is currently
beyond our research scope and left for the future work.
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