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Abstract 

The intensive use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in 

serious environmental problems due to its high solubility, volatility and recalcitrance. The 

feasibility of permeable reactive barriers (PRBs) with ZSM-5 type zeolite as a reactive 

medium was explored for MTBE contaminated groundwater remediation. Batch adsorption 

studies showed that the MTBE adsorption onto ZSM-5 follows the Langmuir model and 

obeys the pseudo-second-order model with an adsorption capacity of 53.55 mg·g
-1

. The 

adsorption process reached equilibrium within 24 h, and MTBE was barely desorbed with 

initial MTBE concentration of 300 mg·L
-1

. The mass transfer process is found to be primarily 

controlled by pore diffusion for MTBE concentrations from 100 to 600 mg·L
-1

. pH has little 

effect on the maximum adsorption capacity in the pH range of 2-10, while the presence of 

nickel reduces the capacity with Ni concentrations of 2.5-25 mg·L
-1

. In fixed-bed column 

tests, the Dose-Response model fits the breakthrough curve well, showing a saturation time 

of ~320 min and a removal capacity of ~18.71 mg·g
-1

 under the conditions of this study. 

Therefore, ZSM-5 is an extremely effective adsorbent for MTBE removal and has a huge 

potential to be used as a reactive medium in PRBs. 

Key words: MTBE, ZSM-5 zeolite, batch adsorption, mass transfer mechanism, fixed-bed 

column test 
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1. Introduction 

Methyl tert-butyl ether (MTBE) was a widely used gasoline additive. Although it has been 

banned in some countries, the residual contamination exists due to fugitive emissions from 

petrol refineries and petrol filling stations, emissions from vehicles, petrol spills and leaking 

storage tanks [1]. The last report of UST (Underground Storage Tank) performance measures 

indicated that approximately 13.6% of UST releases remained to be cleaned up in the year of 

2015 [2]. In addition, it is reported that tanks did not pass the leakage tests in some regions [3] 

and probably affected the aquifers or groundwater where the remediation has always been 

considered to be difficult, expensive and slow [4]. Considering that groundwater is an 

important source of water supply worldwide, especially for where there is a shortage of 

surface water or lakes, groundwater remediation is of great significance for water supply and 

human health worldwide. 

 

MTBE has an unpleasant odour and harmful effects on the respiratory and nerve systems of 

living things although its carcinogenesis remains unclear [5]. MTBE pollution in the 

environment mainly exists in groundwater and aquifers rather than in surface water and soil 

due to its high solubility, volatility and recalcitrance and has received increasing attention 

worldwide [6].  

 

MTBE is found to be resistant to chemical and biological degradations [7] and therefore 

immobilisation may be a more suitable treatment. In-situ technologies have attracted 

increased attention in terms of groundwater and aquifer remediation of MTBE ascribed to 

their low costs and simple operation over conventional technologies such as pump and treat. 

Permeable reactive barriers (PRBs) are one of the most promising in-situ treatments [8]. 

Barriers filled with reactive materials are constructed across the flow path of a contaminant 
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plume [9]. As the fluid moves through the PRBs, contaminants are degraded or trapped by 

reactive materials through physical, chemical and/or biological processes.  

 

The reactive medium is the key component of PRBs and its selection is dependent on the 

nature of the target contaminants and hydro-geological site conditions. ZSM-5, a high-silica 

MFI type zeolite, has been found to be effective for MTBE adsorption due to its 

hydrophobicity and suitable pore size [10,11]. Although the use of natural or modified 

zeolites has been extensively studied [12,13] due to their good adsorptivity, stability and 

renewability, research on the use of ZSM-5 as the reactive material in PRBs is limited. 

Vignola et al. [14,15] utilised ZSM-5 for in-situ PRBs located close to a coastal refinery to 

remediate MTBE and hydrocarbons contaminated groundwater and the results showed that 

MTBE was reduced to under 10 μg/L for about 100 days. Faisal and Hmood [16] used ZSM-

5 in laboratory-scale PRBs to remove cadmium from a contaminated shallow aquifer and the 

PRBs started to saturate after ~120 h under conditions tested. For the design of PRBs, it is 

crucial to figure out the detailed adsorption process of MTBE onto ZSM-5, which 

necessitates an understanding of kinetics, isotherms, the rate-limiting step, influencing factors 

and the desorption behaviour [17]. However, to date, most studies have focused on the 

relationship between the properties of ZSM-5 and its adsorption capacities for MTBE, and 

there is a lack of research on the detailed adsorption and desorption features.  

 

This work aims to explore the detailed mass transfer mechanisms, adsorption and desorption 

features of ZSM-5 and to examine its feasibility in PRBs for MTBE removal. Adsorption 

kinetics, isotherms and desorption kinetics are presented and the diffusion parameters were 

modelled to assess the rate-limiting step of the entire batch adsorption process. Due to the 

fact that the real groundwater conditions, such as pH and the existence of heavy metals, are 
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complex and may have an effect on MTBE adsorption, different influencing factors, such as 

initial solution pH, solid/liquid ratio and the presence of nickel ions, are explored in this 

study. In addition, fixed-bed column experiments are performed to evaluate the effectiveness 

of ZSM-5 as a reactive medium in PRBs. 

 

2. Materials and methods 

2.1 Materials 

MTBE and ZSM-5 were purchased from Fisher Scientific and Acros Organics, respectively. 

The physicochemical properties of ZSM-5 were obtained from the supplier and are given in 

Table 1. Figure 1 was adapted [18] and presented the molecular structure and dimensions of 

ZSM-5. There are two pore systems in ZSM-5, one consisting of zig-zag channels of the 

near-circular cross-section and another consisting of straight channels of the elliptical shape. 

Other chemicals used (HCl, NaOH, NiSO4∙6H2O) were obtained from Fisher Scientific with 

A.R. grade.  

 

Table 1 The physicochemical properties of ZSM-5 

Surface area 

(m
2
·g

-1
) 

Pore size (Å) 
Particle size 

(μm) 
SiO2/Al2O3  pH CEC (cmol·kg

-1
) 

400  5.3x5.6; 5.1x5.5  2-8  469 4.14 1.808  
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Figure 1 Molecular structure and dimensions of ZSM-5 [18] 

 

2.2 Batch adsorption studies 

2.2.1 Kinetic study 

Batch kinetic studies were carried out by adding 0.1 g of ZSM-5 into 60 mL small air-tight 

glass bottles with minimum headspace containing 20 mL MTBE solutions with different 

concentrations (100, 150, 300 or 600 mg·L
-1

) to avoid the evaporative loss of MTBE [19]. 

The agitation speed was kept constant at 200 rpm in a shaker for a pre-determined time 

before filtration using a 0.45 μm glass fiber filter. The shaking time was set at 5 min, 10 min, 

20 min, 30 min, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h.  

 

2.2.2 Equilibrium study 

To study the adsorption isotherm of MTBE onto ZSM-5, 0.1 g of ZSM-5 was added to 20 mL 

solutions containing different MTBE concentrations (20, 60, 100, 150, 300, 600 and 800 

mg·L
-1

). From the kinetic study, it was found that 24 h was required to reach equilibrium. 

The following influencing factors were considered: 

 

(1) The effect of solution pH was examined by varying the initial pH of the solutions from 

pH 2 to 10. The pH was adjusted using 0.1 M HCl or 0.1 M NaOH. The initial MTBE 

concentration was fixed at 300 mg·L
-1

 with ZSM-5 dosage of 0.1 g/20 mL. 

(2) The effect of solid/liquid ratio was evaluated by adding different amounts of ZSM-5 (0.02, 

0.05, 0.08, 0.1, 0.2 and 0.3 g) to 20 mL of 300 mg·L
-1

 MTBE solutions. 

(3) The effect of the existence of nickel ions was examined by mixing 0.1 g ZSM-5 with 300 

mg·L
-1

 MTBE solutions containing various concentrations of Ni (0, 2.5 and 25 mg·L
-1

) at 

pH = 7.  

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7 

 

In addition, after the batch adsorption experiments for 24 h (with initial MTBE concentration 

of 300 mg·L
-1

 and ZSM-5 dosage of 0.1 g). The samples were centrifuged and the 

supernatant was decanted. Desorption kinetic experiments were performed by the addition of 

20 mL deionized water with a stirring speed of 200 rpm for various time periods (same with 

those of adsorption kinetic tests). 

 

2.3 Fixed-bed column tests 

Fixed-bed column tests were conducted on a laboratory scale to simulate the application of 

ZSM-5 in PRBs for MTBE removal. The tests were performed using 2 cm inner diameter and 

10 cm high Pyrex glass columns. Columns were packed with a mixture of ZSM-5 (5%) and 

model sandy soil. Model soil samples were made by mixing 92% sand with 3% clay and 5% 

slit represented by kaolin and silica flour, respectively. This model soil is classified as sand 

[20]. The water content is 10% and the density is about 2 g·cm
-3

. The porosities of model soil 

and the mixture are 32.41% and 31.63%, respectively. The total bed length is 9 cm and initial 

MTBE concentration is 300 mg·L
-1

. The flow rate is kept constant at 2 mL·min
-1

. Aqueous 

samples were collected at regular intervals and analysed for MTBE concentrations 

throughout the test period. From a practical point of view, the saturation time, ts, is 

established when the concentration in the effluent is higher than 90% of the inlet 

concentration [21]. The breakthrough time here, tb, is established when the MTBE 

concentration in the effluent reaches 50% of the inlet concentration.  

 

2.4 Analytical methods 

MTBE was analyzed using a gas chromatograph (Agilent 6850 Series) with a flame 

ionisation detector (GC-FID) by an ambient headspace technique at 20°C as used in our 

previous study [22]. Each headspace sample was measured in triplicate. Blank experiments 

were carried out under identical conditions with adsorption experiments for all the MTBE 
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concentrations and showed negligible influence of the MTBE volatility on the test results. 

The concentration of Ni
2+

 was measured by inductively coupled plasma-optical emission 

spectrometry (ICP-OES) (Perkin-Elmer, 7000DV) after dilution and acidification. OriginPro 

8.5 software was used to perform data fitting and modelling and output fitting values, 

standard errors, correlation coefficient (R
2
) and Akaike information criterion (AIC) values. 

The AIC and R
2
values were used in this study to compare predictions with the experimental 

data and find out the best fitting model. AIC is an estimator of the relative quality 

of statistical models for a given set of data and provides a means for model selection. The 

model with higher R
2
 and lower AIC values is preferred. 

 

3. Results and discussion 

3.1 Adsorption kinetics 

The pseudo-first-order and pseudo-second-order models were used to describe the kinetics of 

MTBE adsorption onto ZSM-5. The fitting of the experimental kinetics data is presented in 

Figure 2 and Table 2. Where qe and qt are the amount of adsorbate adsorbed at equilibrium 

and time t (mg·g
-1

), respectively, k1 and k2 are the rate constants of pseudo-first-order 

adsorption (h
-1

) and pseudo-second-order adsorption (g·mg
-1

·s
-1

), respectively. 

 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_model
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Figure 2 The fitting of pseudo-first-order and pseudo-second-order models for MTBE 

adsorption onto ZSM-5 at different initial concentrations 

 

Table 2 Kinetics model parameters for MTBE adsorption onto ZSM-5 at different MTBE 

concentrations 

Models Equations Parameters 
Initial MTBE concentration (mg·L

-1
) 

100 150 300 600 

Pseudo-first-

order 

 
qe (mg·g

-1
) 

21.35±0.

10 

32.40±0.

20 

49.55±2.

94 

67.29±2.4

0 

k1 (h
-1

) 
5.57±0.7

4 

2.35±0.8

0 

1.59±0.1

1 
1.40±0.38 

AIC 43.59 51.04 50.95 29.98 

R
2
 0.94 0.84 0.95 0.92 

Pseudo-

second-order  

 

 

qe (mg·g
-1

) 
21.44±0.

07 

32.68±0.

09 

52.19±1.

56 

69.64±1.6

8 

k2 (g·mg
-1

·h
-

1
) 

0.38±0.0

4 

0.067±0.

01 

0.03±0.0

0 

0.021±0.0

0 

t1/2 (s) 437.23 1644.07 2090.22 2461.75 

AIC 34.44 31.41 35.91 20.22 

R
2
 0.97 0.97 0.99 0.97 
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It was shown in Figure 2 that the adsorption of MTBE onto ZSM-5 was found to be rapid at 

the initial period and then plateaued with the increasing contact time. It was found that 24 h 

was deemed sufficient to ensure equilibrium for all the concentrations, and the equilibrium 

time increased with the increase of the initial MTBE concentration. From Table 2, it was 

found that the pseudo-second-order model was the best at all concentrations for MTBE 

adsorption onto ZSM-5, indicating chemisorption [23]. The amount of adsorbed MTBE 

increased from 21.44 mg·g
-1

 to 69.64 mg·g
-1

 by increasing the initial MTBE concentration 

from 100 mg·L
-1

 to 600 mg·L
-1

.  

 

In addition, as shown in Table 2, the half-adsorption time (t1/2) [24] was applied to further 

describe the adsorption equilibrium time of MTBE onto ZSM-5. t1/2, the time required for the 

ZSM-5 to uptake half of the amount adsorbed at equilibrium, is typically considered as a 

measure of the rate of adsorption. The increase of t1/2 values (from 437.23 s
-1

 to 2461.75 s
-1

) 

indicated the increase of adsorption rate with the increase of MTBE concentration from 100 

mg·L
-1

 to 600 mg·L
-1

. 

 

3.2 Adsorption isotherms 

As shown in Figure 3, the experimental data were fitted with the widely used isotherm 

models for solid-liquid adsorption by nonlinear regression, i.e. Langmuir, Freundlich, 

modified form of BET [25], Sips, Dubinin-Radushkevich and Temkin models [26]. The 

isotherm equations, regression analysis and model parameters are given in Table 3. For the 

Langmuir model, Q0 is the maximum adsorption capacity (mg·g
-1

), b is the rate of adsorption 

(L·mg
-1

); Ce is the MTBE equilibrium concentration (mg·L
-1

), RL is the equilibrium 

parameter to describe the essential characteristics of Langmuir isotherm, C0 is the initial 

MTBE concentration (mg·L
-1

). For the Freundlich model, KF is the adsorption capacity of the 
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adsorbent (mg·g
-1

); 1/n ranging between 0 and 1 is a measure of adsorption intensity or 

surface heterogeneity, and the surface of the adsorbent is more heterogeneous if its value is 

closer to zero. For the BET model, KB and KL are the equilibrium constants of adsorption for 

the first and upper layers (L·mg
-1

), respectively, qm is the theoretical isotherm saturation 

capacity (mg·g
-1

). For the Sips model, Ks is the equilibrium constant (L·mg
-1

). For the 

Dubinin-Radushkevich model, KD is the mean free energy of sorption per molecule of the 

sorbate when it is transferred to the surface of the solid from infinity in the solution (mol
2
·kJ

-

2
), R (8.314 J·mol

-1
·K

-1
) is the universal gas constant and T (K) is the solution temperature. 

For the Temkin model, RT/bT=B (J·mol
-1

), which is the Temkin constant related to the heat 

of sorption, AT is the equilibrium binding constant corresponding to the maximum binding 

energy (L·g
-1

). 

0 100 200 300 400 500

0

10

20

30

40

50

60

 

 

Experimental

 Langmuir

 Freundlich

 Multilayer Langmuir

 Temkin

 BET

 Dubinin-Radushkevich

 Sips

q
e
 (

m
g

/g
)

C
e
 (mg/L)

 

Figure 3 Isotherm plots for MTBE adsorption onto ZSM-5 

 

Table 3 Isotherm model parameters for MTBE adsorption on ZSM-5 

Models Equations Parameters  

Langmuir 

 

 

Q0 (mg·g
-1

) 53.55±4.07 

b (L·mg
-1

) 0.62±0.20 

RL 0.002 

AIC 38.34 
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R
2
 0.90 

Freundlich 

 

KF (mg·g
-1

) 19.60±4.91 

1/n 0.18±0.65 

AIC 44.53 

R
2
 0.76 

BET 

 

qm (mg·g
-1

) 53.42±8.61 

KL (L·mg
-1

) 8.35×10
-6

±4.66×10
-4

 

KB (L·mg
-1

) 0.62±0.27 

AIC 52.34 

R
2
 0.87 

Sips 

 

KS (L·mg
-1

) 2.57±1.48 

Q0 (mg·g
-1

) 52.39±2.62 

N 0.21±0.07 

AIC 45.27 

R
2
 0.95 

Dubinin-

Radushkevic

h 
 

qm (mg·g
-1

) 53.64±11.38 

KD (mol
2
·kJ

-2
) 1.28×10

-5
±6.92×10

-5
 

AIC 50.42 

R
2
 0.43 

Temkin 

 

bT (J·mol
-1

) 380.98±69.24 

AT (L·g
-1

) 18.65±19.11 

AIC 41.91 

R
2
 0.83 

 

It is shown in Table 3 that the highest R
2
 value indicated that the adsorption isotherm of 

MTBE onto ZSM-5 fits the Sips model best which is a combination of the Langmuir and 

Freundlich isotherms. However, the Langmuir model has the lowest AIC value. In addition, 

the parameters of the Sips model generally depend on the operating conditions [27]. The Sips 

model reduces to Freundlich isotherm at low adsorbate concentrations, and predicts a 

monolayer adsorption capacity characteristic of Langmuir isotherm at high concentrations 

which is the condition of this study. Therefore, MTBE adsorption can be described best by 
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the Langmuir model, indicating a monolayer and homogeneous adsorption process. The 

maximum adsorption capacity is 53.55 mg·g
-1

, and the RL value showed that the adsorption 

process is favorable. 

 

According to the results obtained, ZSM-5 could be employed as an effective adsorbent for 

MTBE.  Table 4 gives a comparison of the adsorption capacities of MTBE on different 

adsorbents obtained from the literature. The adsorption kinetics of MTBE onto all these 

adsorbents followed the pseudo-second-order model. 

 

Table 4 Comparison of adsorption properties of MTBE with zeolites and other adsorbents 

Adsorbents Maximum adsorption 

capacity (mg·g
-1

) 

Isotherm 

model 

Reference 

nano-PFOALG 10.09 BET  [26] 

nano-PFOALB 10.41 BET [26] 

diatomite - Freundlich [28] 

mordenite 2.94 Freundlich [29] 

carbonaceous resin 

(Ambersorb 572) 

4.97 Freundlich [30] 

lignite 0.13 Freundlich [31] 

activated carbon 66.72 Freundlich [31] 

activated carbon 1.94 Freundlich [29] 

HDTMA-modified 

clinoptilolite 

91.60 Langmuir [32] 

Beta, Engelhard 25.06 Langmuir [33] 

ZSM-5 0.67 Langmuir [33] 

ZSM-5 95.00 Langmuir [34,35] 

ZSM-5 53.55 Langmuir This study 

nano-PFOAL: nano-perfluorooctyl alumina 
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3.3 Mass transfer mechanisms 

3.3.1 Transport progress in adsorption process 

The mass transfer process has an impact on the adsorption equilibrium time. The mass 

transfer of adsorbate from the solution to the adsorption sites within the adsorbent particles is 

constrained by mass transfer resistances [17]. The mass transfer process generally involves 

four steps [36]: transport from the bulk solution to the boundary layer, film (boundary layer) 

diffusion, intra-particle (pore and surface) diffusion and adsorption on the interior surface of 

adsorbents. It is generally accepted that the first and last steps are very fast and the overall 

adsorption process is controlled by film diffusion and/or intra-particle diffusion [37].  

 

3.3.2 Film diffusion 

Duo to that the film diffusion influences only the beginning of the adsorption process, film 

mass transfer coefficients, kf (cm·s
-1

), were determined from the initial part of the kinetic 

curve (t=0, c=c0, cs=0) [17] with the following equations: 

 

 

Where mA is the adsorbent mass, VL is the liquid volume, am is the total surface area related 

to the adsorbent mass,  is the density of adsorbent particles, rP is the radius of adsorbent 

particles, and the value of rP is 2.5×10
-4

 cm for ZSM-5 in this study, cs is the concentration of 

MTBE at the external particle surface.  can be read from the slope of the tangent in 

the kinetic curve by setting t=0. The calculated kf values decreased with the increasing 

MTBE concentrations (2.00×10
-5 

cm·s
-1 

for
 
100 mg/L, 1.34×10

-5 
cm·s

-1 
for

 
150 mg/L, 

7.20×10
-6

 cm·s
-1 

for
 
300 mg/L and 3.96×10

-6 
cm·s

-1 
for

 
600 mg/L).  
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3.3.3 Intra-particle diffusion  

3.3.3.1 Weber and Morris intra-particle diffusion model 

After the film diffusion process, the adsorbate species are transported to the solid phase 

through intra-particle diffusion/transport process.  
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Figure 4 Intra-particle diffusion plot for MTBE adsorption onto ZSM-5 at initial MTBE 

concentration of 100, 150, 300 and 600 mg·L
-1

 

 

Weber and Morris model was used to describe the process of intra-particle diffusion. The 

intra-particle diffusion rate constant, Ki (mg·g
-1

·s
0.5

), is defined by the following equation 

[38]: 

 

Where qt is the amount of MTBE adsorbed (mg·g
-1

) at time t, and c is the intercept, giving 

the information about the thickness of boundary layer.  

 

Figure 4 shows the intra-particle diffusion plot of MTBE adsorption on ZSM-5 and the 

piecewise linear regression results were presented in Table 5. From Figure 4, the plot of qt 

against t
0.5

 showed three linear portions, indicating three periods involved in the sorption 
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process [39,40]. The first, sharper region describes the film diffusion. In this initial stage, 

ZSM-5 particles are surrounded by the boundary layer and MTBE molecules have to 

overcome the boundary layer resistance [41]. When the external surface of ZSM-5 reached 

saturation, MTBE entered the inner pores of ZSM-5 and was adsorbed onto the internal 

adsorption sites, i.e. the second stage where intra-particle diffusion happens. The slope of the 

second linear portion has been defined to yield the intra-particle diffusion parameter K2 

(mg·g
-1

·s
-0.5

) [39]. As shown in Table 5, the values of Ki increased with the increase of 

MTBE concentrations, indicating that the intra-particle diffusion rate increased with higher 

initial MTBE concentrations. The third region is the final equilibrium stage (after 210 s
0.5

) 

where intra-particle diffusion starts to slow down due to the extremely low adsorbate 

concentrations left in the solution [42].  

 

Table 5 Piecewise linear regression parameters of intra-particle diffusion for MTBE onto 

ZSM-5 

Parameters 
Initial MTBE concentration (mg·L

-1
) 

100 150 300 600 

Intra-particle diffusion 

period 

3-6 h 3-12 h 0.5-12 h 0.5-12 h 

K2 (mg·g
-1

·s
-0.5

) 0.02 0.06±0.02 0.14±0.02 0.21±0.04 

c 18.21 19.43±2.79 15.69±2.52 21.81±5.91 

R
2
 1.00 0.85 0.95 0.89 

 

It was shown in Figure 4 that all the curved plots covering the initial phase passed through 

the origin, suggesting that intra-particle diffusion should be the rate-controlling step in the 

removal of the adsorbate [40]. That is, film diffusion may be very fast and could be ignored 

[43]. To further judge whether the pore diffusion or surface diffusion was more important, the 

pore and surface diffusion coefficients were calculated as follows. 
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3.3.3.2 Pore diffusion 

The pore diffusion coefficients largely depend on the surface properties of adsorbents. 

According to Bhattacharya and Venkobachar [44], the pore diffusion coefficient (Dp) can be 

calculated with the pseudo-first-order kinetic model. Although MTBE adsorption on ZSM-5 

followed the pseudo-second-order model, the R
2
 values (R

2
>0.85) of pseudo-first-order 

model were high enough. Therefore, this method is applicable to this study to estimate pore 

diffusion coefficients. The equation and obtained Dp values are shown in Table 6. The values 

of Dp for MTBE in the present study were found to be in the order of 10
-12

-10
-13

 cm
2
·s

-1
 and 

decreased with the increasing MTBE concentrations.  

 

3.3.3.3 Surface diffusion 

The linear driving force model (LDF model), a simplification of the surface diffusion model, 

was used to estimate the surface mass transfer coefficient (ks, cm·s
-1

) [45]. Furthermore, the 

values of Ds, the surface diffusion coefficient, are also calculated to compare with those of DP 

to assess the rate-limiting step of the adsorption process. The equations and obtained values 

of Ds and ks are shown in Table 6. Where As is the total external surface area of all adsorbent 

particles, qs is the adsorbed amount at external particle surface which can be calculated from 

the adsorption isotherm,  is the mean adsorbent loading. cs(t) at time t can be read from the 

kinetic curve by setting cs(t)=c(t) (fast film diffusion), and qs(t) related to cs(t) can be 

calculated by the isotherm equation. To find an average value for ks, the procedure was 

repeated for different pairs of values (c, t). 

 

The values of Ds for MTBE in the present study were found to be in the order of 10
-13

 cm
2
·s

-1
 

and increased with the increase of MTBE concentration from Table 6. This may be due to 

that the increasing MTBE concentration increased the surface loading, thereby leading to an 
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increase of adsorbate mobility and a decrease of the adsorption energy [17]. This fell well 

within the magnitudes for chemisorption system (10
-5

 to 10
-13

 cm
2
·s

-1
) [46]. Since surface 

diffusion and pore diffusion act in parallel and competitively, the faster process dominates 

and determines the total adsorption rate. As a result, pore diffusion was the rate-limiting step 

for MTBE adsorption on ZSM-5.  

 

In addition, Bangham’s equation was used for MTBE adsorption to test the role of diffusion 

[47]. 

  

Where C0 is the initial MTBE concentration (mg·L
-1

), Cs is the solid/liquid ratio (g·L
-1

), qt is 

the amount of MTBE at time t (mg·g
-1

), α and Kb are constants.  was plotted 

against log t in Figure 5. The fitted linearity indicated the applicability of Bangham’s model 

(R
2
>0.91), and showed that the diffusion of MTBE into the pores of ZSM-5 mainly 

controlled the adsorption process. 
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 Figure 5 Bangham plot for MTBE adsorption on ZSM-5 at different initial concentrations 
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Table 6 Mass transfer and diffusion coefficients for MTBE adsorption on ZSM-5 at different 

initial concentrations  

 
Initial MTBE concentration (mg·L

-1
) 

100 150 300 600 

 

(cm
2
·s

-1
)  

42.88×10
-

13
 

11.41×10
-

13
 

8.97×10
-

13
 

7.62×10
-

13
 

ks (s
-1

) 

 

 

 

5.15×10
-9

 6.27×10
-9

 
12.97×10

-

9
 

15.16×10
-

9
 

Ds (cm
2
·s

-

1
)  

2.57×10
-13

 3.13×10
-13

 
6.49×10

-

13
 

7.58×10
-

13
 

 

3.4 Effect of initial solution pH 
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Figure 6 The effect of initial solution pH on the percentage of MTBE removal (the 

equilibrium solution pH is also presented) 
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Solution pH controls the electrostatic interactions between the adsorbent and adsorbate. 

Therefore, it determines the adsorbent surface charge and the dissociation or protonation of 

organic weak electrolytes [48]. As shown in Figure 6, the pH at PZC (point of zero charge) of 

ZSM-5 was around 5.5. This means that when pH values were above 5.5, the surface of 

ZSM-5 was negatively charged, which was favourable for cation exchange. It was also shown 

that the removal percentage of MTBE onto ZSM-5 remained at ~90 % and was barely 

affected by the change of initial solution pH. The same phenomenon was reported for the 

adsorption of other organics [49,50]. This may be due to that ZSM-5 in this study has little 

potential for the ion exchange considering its high SiO2/Al2O3 ratio and low CEC (Cation 

Exchange Capacity) value as shown in Table 1. In addition, MTBE is a weakly polar 

molecule, and the protonation of the functional groups is not high enough to compete with the 

sorption of water molecules due to the still strong H-bonding abilities of these groups 

compared with their deprotonated counterparts [49], which leads to the weak electrostatic 

interaction between ZSM-5 and MTBE. 

 

3.5 Effect of solid to liquid ratio 
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Figure 7 The effect of solid/liquid ratio on MTBE adsorption onto ZSM-5 
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As shown in Figure 7, the percentage of MTBE removal increased significantly from 25.73% 

to 99.42% with the increase of ZSM-5 dosage from 1 g·L
-1

 to 10 g·L
-1

 and remained constant 

beyond 10 g·L
-1

. The amount of MTBE adsorbed per unit adsorbent mass at equilibrium 

decreased across the ZSM-5 dosage range of 1-15 g·L
-1

.  

 

3.6 Effect of the existence of Ni (II) 
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Figure 8 MTBE adsorption isotherms onto ZSM-5 with different concentrations of Ni (II) (0, 

2.5 and 25 mg·L
-1

) (pH=7) 

 

Effect of Ni(II) on the sorption of MTBE on ZSM-5 was evaluated in the presence of 

different concentrations of Ni
2+

. As shown in Figure 8, according to Langmuir model, the 

maximum adsorption capacities decreased with the increasing Ni
2+

 concentrations (57.36 

mg·g
-1

 for 0 mg·L
-1

 Ni
2+

, 50.22 mg·g
-1

 for 2.5 mg·L
-1

 Ni
2+

 and 41.63 mg·g
-1

 for 25 mg·L
-1

 

Ni
2+

, respectively). This indicated that the existence of Ni (II) had a suppression effect on 

MTBE adsorption onto ZSM-5. This may be attributed to both direct competition for sorption 

sites and pore blockage mechanism [49]. The surface complexation of hydrated Ni
2+

 may 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

 

perturb surface chemistry and/or pore structure of ZSM-5. Similarly, the surface 

complexation of Cu
2+

 was also reported to have a suppression effect on the sorption of 

organics to wood charcoal [49]. In addition, considering the ionic radii of Ni
2+

 (0.7 Å), 

hydrated Ni
2+

 and thermochemical radii of SO4
2-

 (2.58 Å), the addition of cations and anions 

and their hydrated products may lead to the increasing ionic strength and the occupation of 

the pores of ZSM-5. However, the detailed competitive adsorption mechanism between Ni
2+

 

(and other heavy metal contaminants) and MTBE is complex and warrants further studies. 

 

3.7 Desorption kinetics 

The desorption characteristics are an important factor to evaluate the effectiveness of an 

adsorbent. The results showed that MTBE was hardly desorbed (<2%) after 96 h with initial 

MTBE concentration of 300 mg·L
-1

. This means that the adsorption between ZSM-5 and 

MTBE is very strong and ZSM-5 is an effective and suitable adsorbent for MTBE.  

 

3.8 Fixed-bed column tests 

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

 sandy soil+ZSM-5

 sandy soil

 Dose and Response model

 Thomas model

 Yoon and Nelson model

 Adams-Bohart model

 

 

C
/C

0

t (min)

 

Figure 9 The experimental and predicted breakthrough curves for the adsorption of 

MTBE on sand and sand-ZSM-5 mixture at an inlet MTBE concentration of 300 mg·L
-1
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As the adsorption and desorption performance of ZSM-5 in batch adsorption studies was 

good for MTBE removal, ZSM-5 was used as a reactive medium in fixed-bed column tests to 

simulate its application in PRBs. Column tests were carried out with a total operational time 

of 350 min to reach saturation in this study.  

 

From the breakthrough curves in Figure 9, the saturation time was about 320 min while the 

control sample was saturated at the very beginning (within 10 minutes). This indicated that 

sandy soil had almost no adsorption ability for MTBE and the addition of 5% ZSM-5 can 

improve the removal performance significantly. The breakthrough time (C/C0=0.5) was about 

25 min in this study.  

 

Adams-Bohart model, Thomas model, Yoon-Nelson model and Dose-Response model were 

applied to predict the breakthrough curves and determine column kinetic parameters. The 

equations and calculated parameters are listed in Table 7. Where  is the linear flow rate 

(cm∙min
-1

), V is the volume of the effluent (L), Q is the flow rate which circulates through the 

column (mL∙min
-1

), N0 is the saturation concentration (mg∙L
-1

), C and Ci are the solute 

concentration and inlet metal concentration in the liquid phase (mg∙L
-1

), respectively, Z is the 

bed depth in the column (cm), kAB and KTh are the constants, m is the mass of sorbent (g), τ is 

the time required for 50% adsorbate breakthrough (min), q0 is the maximum concentration of 

the solute in the solid phase (mg∙g
-1

), a is the constant of the Dose-Response model, b is the 

concentration at which half of the maximum response occurs, and Y is the response. Among 

these models, Dose-Response model showed the best agreement with the experimental data 

(R
2
=0.95). From the integral Dose-Response fitting curve, the total quantity of MTBE 

removal is 52.37 mg, although 210 mg MTBE in total passed through the column. Therefore, 
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the removal capacity was ~18.71 mg·g
-1

 and ~25% MTBE was removed under the conditions 

of this study. 

 

Table 7 Mathematic model parameters for the adsorption of MTBE onto ZSM-5 in fixed-bed 

column tests 

Models Equations Parameters  

Adams-

Bohart   

kAB (L∙mg
-1

∙min
-1

) 3.51×10
-5

±4.67×10
-6

 

N0 (mg∙L
-1

) 1902.84±150.59 

R
2
 0.74 

Thomas 

 

kTh (mL∙mg
-1

∙min
-1

) 0.035±0.005 

q0 (mg∙g
-1

) 9.00±2.54 

R
2
 0.74 

qtotal (mg) 25.2 

Yoon and 

Nelson  

kYN (min
-1

) 0.011±0.001 

τcal (min) 42.01±11.83 

τexp (min) 25 

R
2
 0.74 

Dose-

Response 
 

a 0.86±0.05 

b 0.062 

q0 (mg∙g
-1

) 6.69±0.56 

 

R
2
 0.95 

 

4. Conclusions               

The detailed mass transfer mechanisms, adsorption and desorption features of ZSM-5 for 

MTBE removal were systematically discussed in this study. The conclusions are as follows. 

(1) Kinetics and isotherm studies indicate that ZSM-5 can be effectively employed for MTBE 

adsorption in both batch and column tests.  

(2) The adsorption follows the Langmuir model and obeys the pseudo-second-order model, 

suggesting a monolayer and homogeneous chemisorption process. 24 h is required to 
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reach adsorption equilibrium.  MTBE is barely desorbed with the initial MTBE 

concentration of 300 mg∙L
-1

. 

(3) In terms of the mass transfer mechanisms, pore diffusion is the main rate-limiting step for 

the entire adsorption process, and film diffusion is very fast for MTBE concentrations 

from 100 to 600 mg/L.  

(4) The initial solution pH has little effect on the adsorption process in the pH range of 2-10, 

while the existence of nickel ions suppresses the adsorption of MTBE with Ni 

concentrations of 2.5-25 mg·L
-1

.  

(5) In the fixed-bed column tests, the breakthrough curve could be described by Dose-

Response model and the saturation time is 320 min under the conditions of this study. The 

removal capacity is ~18.71 mg∙g
-1

 with a flow rate of 2 mL∙min
-1

. Therefore, ZSM-5 is a 

potential and effective reactive medium for MTBE removal in PRBs and further study 

will be conducted to assess the effect of different operational conditions in column tests. 
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Table 1 The physicochemical properties of ZSM-5 

Surface area 

(m
2
·g

-1
) 

Pore size (Å) 
Particle size 

(μm) 
SiO2/Al2O3  pH CEC (cmol·kg

-1
) 

400  5.3x5.6; 5.1x5.5  2-8  469 4.14 1.808  

 

  

Table



Table 2 Kinetics model parameters for MTBE adsorption onto ZSM-5 at different MTBE 

concentrations 

Models Equations Parameters 
Initial MTBE concentration (mg·L

-1
) 

100 150 300 600 

Pseudo-first-

order 

  

       
      

qe (mg·g
-1

) 
21.35±0.

10 

32.40±0.

20 

49.55±2.

94 

67.29±2.4

0 

k1 (h
-1

) 
5.57±0.7

4 

2.35±0.8

0 

1.59±0.1

1 
1.40±0.38 

AIC 43.59 51.04 50.95 29.98 

R
2
 0.94 0.84 0.95 0.92 

Pseudo-

second-order 
   

  
    

       
 

  
 
 

 

    
 

 

qe (mg·g
-1

) 
21.44±0.

07 

32.68±0.

09 

52.19±1.

56 

69.64±1.6

8 

k2 (g·mg
-1

·h
-

1
) 

0.38±0.0

4 

0.067±0.

01 

0.03±0.0

0 

0.021±0.0

0 

t1/2 (s) 437.23 1644.07 2090.22 2461.75 

AIC 34.44 31.41 35.91 20.22 

R
2
 0.97 0.97 0.99 0.97 

 

  



Table 3 Isotherm model parameters for MTBE adsorption on ZSM-5 

Models Equations Parameters  

Langmuir 
   

     
     

 

   
 

     
 

Q0 (mg·g
-1

) 53.55±4.07 

b (L·mg
-1

) 0.62±0.20 

RL 0.002 

AIC 38.34 

R
2
 0.90 

Freundlich 
     

 
    

KF (mg·g
-1

) 19.60±4.91 

1/n 0.18±0.65 

AIC 44.53 

R
2
 0.76 

BET   

   
    

                     
 

qm (mg·g
-1

) 53.42±8.61 

KL (L·mg
-1

) 8.35×10
-6

±4.66×10
-4

 

KB (L·mg
-1

) 0.62±0.27 

AIC 52.34 

R
2
 0.87 

Sips 

     
    

 
 

      

 
 

 

KS (L·mg
-1

) 2.57±1.48 

Q0 (mg·g
-1

) 52.39±2.62 

N 0.21±0.07 

AIC 45.27 

R
2
 0.95 

Dubinin-

Radushkevic

h 

                   

 
 

  
  

 

  

qm (mg·g
-1

) 53.64±11.38 

KD (mol
2
·kJ

-2
) 1.28×10

-5
±6.92×10

-5
 

AIC 50.42 

R
2
 0.43 

Temkin 
   

  

         
 

bT (J·mol
-1

) 380.98±69.24 

AT (L·g
-1

) 18.65±19.11 

AIC 41.91 

R
2
 0.83 

 

  



Table 4 Comparison of adsorption properties of MTBE with zeolites and other adsorbents 

Adsorbents Maximum adsorption 

capacity (mg·g
-1

) 

Isotherm 

model 

Reference 

nano-PFOALG 10.09 BET  [26] 

nano-PFOALB 10.41 BET [26] 

diatomite - Freundlich [28] 

mordenite 2.94 Freundlich [29] 

carbonaceous resin 

(Ambersorb 572) 

4.97 Freundlich [30] 

lignite 0.13 Freundlich [31] 

activated carbon 66.72 Freundlich [31] 

activated carbon 1.94 Freundlich [29] 

HDTMA-modified 

clinoptilolite 

91.60 Langmuir [32] 

Beta, Engelhard 25.06 Langmuir [33] 

ZSM-5 0.67 Langmuir [33] 

ZSM-5 95.00 Langmuir [34,35] 

ZSM-5 53.55 Langmuir This study 

nano-PFOAL: nano-perfluorooctyl alumina 

 

  



Table 5 Piecewise linear regression parameters of intra-particle diffusion for MTBE onto 

ZSM-5 

Parameters 
Initial MTBE concentration (mg·L

-1
) 

100 150 300 600 

Intra-particle diffusion 

period 

3-6 h 3-12 h 0.5-12 h 0.5-12 h 

K2 (mg·g
-1

·s
-0.5

) 0.02 0.06±0.02 0.14±0.02 0.21±0.04 

c 18.21 19.43±2.79 15.69±2.52 21.81±5.91 

R
2
 1.00 0.85 0.95 0.89 

 

  



Table 6 Mass transfer and diffusion coefficients for MTBE adsorption on ZSM-5 at different 

initial concentrations  

 
Initial MTBE concentration (mg·L

-1
) 

100 150 300 600 

   (cm
2
·s

-

1
) 

  
 
 
      

 

  
 

42.88×10
-

13
 

11.41×10
-

13
 

8.97×10
-13

 7.62×10
-13

 

ks (s
-1

) 

    
  

  

            

             
 

     

      
  

      
 
  

  
   

        
   

    
 

5.15×10
-9

 6.27×10
-9

 
12.97×10

-

9
 

15.16×10
-9

 

Ds (cm
2
·s

-

1
) 

   
    
 

 2.57×10
-13

 3.13×10
-13

 6.49×10
-13

 7.58×10
-13

 

 

  



Table 7 Mathematic model parameters for the adsorption of MTBE onto ZSM-5 in fixed-bed 

column tests 

Models Equations Parameters  

Adams-

Bohart  

 

  
 

       

                     
 

kAB (L∙mg
-1
∙min

-1
) 3.51×10

-5
±4.67×10

-6
 

N0 (mg∙L
-1

) 1902.84±150.59 

R
2
 0.74 

Thomas  

  
 

 

   
   
 
         

 
kTh (mL∙mg

-1
∙min

-1
) 0.035±0.005 

q0 (mg∙g
-1

) 9.00±2.54 

R
2
 0.74 

qtotal (mg) 25.2 

Yoon and 

Nelson 

 

  
 

 

           
 

kYN (min
-1

) 0.011±0.001 

τcal (min) 42.01±11.83 

τexp (min) 25 

R
2
 0.74 

Dose-

Response 
  

 

  
   

 

   
   
   

  
 

a 0.86±0.05 

b 0.062 

q0 (mg∙g
-1

) 6.69±0.56 

         
   

  
 

R
2
 0.95 

 

 

 



 

Figure 1 Molecular structure and dimensions of ZSM-5 [18] 
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Figure 2 The fitting of pseudo-first-order and pseudo-second-order models for MTBE 

adsorption onto ZSM-5 at different initial concentrations 
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Figure 3 Isotherm plots for MTBE adsorption onto ZSM-5 
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Figure 4 Intra-particle diffusion plot for MTBE adsorption onto ZSM-5 at initial MTBE 

concentration of 100, 150, 300 and 600 mg·L
-1
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 Figure 5 Bangham plot for MTBE adsorption on ZSM-5 at different initial concentrations 
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Figure 6 The effect of initial solution pH on the percentage of MTBE removal (the 

equilibrium solution pH is also presented) 
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Figure 7 The effect of solid/liquid ratio on MTBE adsorption onto ZSM-5 

  



0 100 200 300 400 500 600

0

20

40

60

80

 

 

 0 mg/L

 2.5 mg/L

 25 mg/L

 Langmuir fitting

q
e
 (

m
g
/g

)

C
e
 (mg/L)

 

Figure 8 MTBE adsorption isotherms onto ZSM-5 with different concentrations of Ni (II) (0, 

2.5 and 25 mg·L
-1

) (pH=7) 
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Figure 9 The experimental and predicted breakthrough curves for the adsorption of 

MTBE on sand and sand-ZSM-5 mixture at an inlet MTBE concentration of 300 mg·L
-1

 

 



 

 

 

Highlights 

1. The adsorption process of MTBE on ZSM-5 was explored with batch and column 

tests. 

2. The adsorption follows the Langmuir model and obeys a pseudo-second-order 

model. 

3. Pore diffusion is the main rate-limiting step for the entire adsorption process.  

4. pH has little effect, while nickel ions suppress the adsorption process.  

5. The removal capacity is ~18.71 mg∙g
-1

 in fixed-bed column tests. 

Highlights (for review)



 

 

Novelty Statement 

ZSM-5 has significant potential as the reactive medium in PRBs for MTBE polluted 

groundwater remediation due to high and strong adsorption capacity. However, there 

is a lack of research into detailed mass transfer mechanisms and adsorption process, 

which is crucial for designing adsorption systems. This study explores the mass 

transfer and adsorption process in detail considering the effect of pH, co-existence of 

heavy metals, solid/liquid ratio and MTBE concentration. Additionally, the 

breakthrough curve of fixed-bed column tests was obtained and modelled. The results 

would offer considerable insights into the applicability of ZSM-5 in PRBs for 

environmental remediation. 

 

*Novelty Statement (maximum limit:100 words)




