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Abstract This paper focuses on a three-dimensional model that combines two differ-
ent types of spatial interaction effects, i.e. endogenous interaction effects via a spatial
lag on the dependent variable and interaction effects among the disturbances via a
spatial moving average (SMA) nested random effects errors. A three-stage procedure
is proposed to estimate the parameters. In a first stage, the spatial lag panel data model
is estimated using an instrumental variable (IV) estimator. In a second stage, a gener-
alized moments (GM) approach is developed to estimate the SMA parameter and the
variance components of the disturbance process using I'V residuals from the first stage.
In a third stage, to purge the equation of the specific structure of the disturbances a
Cochrane—Orcutt-type transformation is applied combined with the I'V principle. This
leads to the GM spatial IV estimator and the regression parameter estimates. Monte
Carlo simulations show that our estimators are not very different in terms of root mean
square error from those produced by maximum likelihood. The approach is applied to
European Union regional employment data for regions nested within countries.
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1 Introduction

Recently, Fingleton et al. (2016) introduced a generalization of the Kapoor et al.
(2007) (hereafter KKP) generalized moments (GM) procedure to multidimensional
panel data models assuming that the disturbances follow a first-order spatial autore-
gressive (SAR) process, which includes a nested random effects structure, namely
SAR-NRE. They refer to this specification as a panel data model with spatially nested
random effects disturbances. They derive a spatial feasible generalized least squares
(S-FGLS) estimator for the model’s regression parameters which uses the GM param-
eter estimates of the SAR parameter and the variance components of the disturbance
process, namely GM-S-FGLS. This estimator is based on a spatial counterpart to the
Cochrane—Orcutt transformation, as well as on transformations which are used in the
estimation of classical error component models.

In this paper, we consider a more general multidimensional panel data model which
includes a spatial lag and where the disturbances are assumed to follow a spatial moving
average (SMA) process (local spatial spillover effects) in the spirit of Fingleton (2008).
This structure constitutes an alternative to incorporating spatial lags on the explanatory
variables. In the cross-sectional case, when the model contains a spatial lag dependent
variable, Kelejian and Prucha (1998, 1999) suggest a 2SLS procedure. They propose
that the instrument set should be kept to a low order to avoid linear dependence
and retain full column rank for the matrix of instruments, and thus recommend that
(X, W X) should be used, if the number of regressors is large. Inclusion of spatial lags
of the explanatory variables could have a major impact on the performance of the
estimation procedures if one were to keep to this recommendation. Pace et al. (2012)
show that instrumental variable estimation suffers greatly in situations where spatial
lags of the explanatory variables (W X) are included in the model specification. The
reason is that this requires the use of (W2X L W3X, .. .) as instruments, in place of
the conventional instruments that rely on WX, and this appears to result in a weak
instrument problem. Our motivation for the adoption of a SMA specification of the
error process, which has been largely neglected in spatial econometrics, is that it
mitigates against the problem for instrumental variable estimation identified by Pace
et al. (2012). Naturally the choice of this specification should be predicated on the
applied researcher, at a preliminary stage, examining the nature of local spillovers in
order to establish its appropriateness for the empirical application at hand.

We propose a three-stage procedure to estimate the parameters. In a first stage, the
spatial lag panel data model is estimated using an instrumental variable (IV) estimator.
In a second stage, a GM approach is developed to estimate the SMA parameter and the
variance components of the disturbance process using I'V residuals from the first stage.
In a third stage, to purge the equation of the specific structure of the disturbances,
a Cochrane—Orcutt-type transformation combined with the IV principle is applied.
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This leads to the GM spatial IV estimator and the regression parameter estimates of
the spatial lag model. Monte Carlo simulations show that our estimates are not very
different in terms of root mean square error compared to those produced by maximum
likelihood (ML).

The outline of the paper is as follows: Sect. 2 presents the spatial lag panel data
model with spatial moving average nested random effects errors, and Sect. 3 focuses
on estimation methods. This section introduces a spatial GM instrumental variable
approach to estimate the parameters of the model. Section 4 presents the Monte Carlo
design and describes the Monte Carlo results. Section 5 illustrates our approach using
an application to EU regional employment data for regions nested within countries.
The last section concludes.

2 The spatial model

Our point of departure is a three-dimensional model that combines two different types
of spatial interaction effects, i.e. endogenous interaction effects via a spatial lag on the
dependent variable and interaction effects among the disturbances via a spatial moving
average (SMA) process on the error term. The notation is as follows: the dependent
variable y;;; is observed along three indices, withi =1,..., N, j=1,..., M; and
t =1,...,T. N denotes the number of groups. M; denotes the number of individuals
in group i, so in total there are § = ZIN= | M; individuals. Since this model allows for
an unequal number of individuals across the N groups, it is therefore unbalanced in
the spatial dimension, although it is balanced in the time dimension. Hence, the model
describes a hierarchical structure with the index j pertaining to individuals that are
nested within the N groups. Assuming that spatial autocorrelation only takes place at
the individual level and that the slope coefficients are homogenous, the model can be

written as:
N M,

Yijt =,022wij,ghyghz+xijz/3+8ijz, (1
g=1h=1

where y;j, is the dependent variable; x;;, is a (1 x K) vector of explanatory exogenous
variables; B represents a (K x 1) vector of parameters to be estimated; and ¢;;, is the
disturbance, the properties of which will be discussed below.

The weight w;; g = wy ; is the (k = ij; [ = gh) element of the spatial matrix Wy
withij denoting individual j within group i, and similarly for gh. Thus,k, I =1,..., S
and Wg is a (S x §) matrix of known spatial weights which has zero on the leading
diagonal and is usually row-normalized so that for row &, Zi,v:l Z}ijl We,gh = 1,
although as we will illustrate in the empirical example other normalizations are per-
missible. We maintain the standard assumption concerning the weight matrix, i.e. Wg
is assumed non-stochastic, and its row and column sums are required to be uniformly
bounded in absolute value. p is the spatial lag parameter to be estimated. This coef-
ficient is bounded numerically to ensure spatial stationarity, i.e. er;iln < p < 1 where
€min 1S the minimum real characteristic root of W.
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In this paper, we consider the case of disturbances ¢;, that are contemporaneously
correlated through a moving average process at the individual level:

N M,
Eijr = Ujjr — A Z Z Mij ghUght- (2)

g=1h=1

The weight m;; 5 is an element of the spatial matrix Mg which satisfies the same
assumptions as for Wg. For simplicity in the following, we assume that Mg = Ws.
A is the spatial moving average parameter to be estimated. u;;; is assumed to be
1.1.d.(0, cr,f). Spatial heterogeneity is captured through a random effects structure for
the errors u; j;: it contains an unobserved permanent unit-specific error component o,
a nested permanent unit-specific error component (;; together with a remainder error
component v;;;. Hence, we envisage a time-invariant group effect applying equally to
all individuals nested within a group, time-invariant individual group-specific effects
and transient effects that vary at random across groups, individuals and time. More
formally:

Wijr = + [Lij + Vijs, 3)

in which «; is the unobservable group-specific time-invariant effect which is assumed
tobeiid. N (0, 05); wij is the nested effect of individual j within the ith group which
is assumed to be i.i.d. N (O, Uﬁ) and v; j; is the remainder term which is also assumed to
beiid N (O, 03). The ;’s, 11;;’s and v;j;’s are independent of each other and among
themselves.

In contrast to the classical literature on panel data, grouping the data by periods
rather than units is more convenient when we consider spatial autocorrelation. For a
cross section ¢, Egs. (1), (2) and (3) can be written as:

e = pWsyr +x:8 + &, “4)
where y; is of dimension (S x 1) and x; is an (§ x K) matrix of explanatory variables

that are assumed to be exogenous and non-stochastic and have elements uniformly
bounded in absolute value. The first-order moving average error process ¢; is given by

& = uy — AWsuy, (5)
with
u; = diag (i) & + 11 + vy, (6)
where u; is (S x 1), o is the vector of group effects of dimension (N x 1),
wl = (,uir ...,u;), a vector of dimension (1 x §), u;r = (,u“, ...,,u,'M,.), a
vector of dimension (1 x M;), ¢, is a vector of ones of dimension (M; x 1). By
diag (tp7,), we mean diag (tpr, . - . ., tary ). Finally v; is of dimension (S x 1).

Stacking the T cross sections gives

v=Z5+e, ™
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and
e=u—AWu, ()

with Z = [Wy, X] and 8§ = [p,B]". y and X are the vector and matrix of the
dependent and explanatory variables (covariates), respectively, of size (T'S x 1) and
(TS x K); B is the vector of the slope parameters of size (K x 1); and finally ¢ is the
vector of the disturbance terms of dimension (7S x 1). Given that I7 is an identity
matrix of dimension (7 x T), then W = (It ® Wy) is of size (T'S x TS). Finally,
for the full (T'S x 1) vector u, we have:

= (LT ® diag (LMi))Ol—‘r(LT QIs) i +v. )

In order to compute the GM-S-IV estimator of §, which is described in Sect. 3.2,
we need to obtain the inverse of the covariance matrix of u, which is Q;l. This is
achieved by means of the spectral decomposition. Following Baltagi et al. (2014), the
covariance matrix of u; is:

E [u] | = olding () + (o +072) Is. (10)

where I (= diag (Iy;)) is an identity matrix of dimension S. Jy;, = (t MJL’) isa
matrix of ones of dimension (M; x M;). The covariance matrix of # corresponds to:

Q, = o2 (z ZT) +o? (ZMZT) + ol (Ir ® Is)

= 02 (4 @ diag () + (027 + o21r) @ I, (i

where Z, = 17 ® diag (ta,), Zy = tr ® Is and Jr = (i7t7) is a matrix of ones of
dimension (7" x T). Replace Jr by its idempotent counterpart TJ 7, Jm; by M I u;
with JT Jr/T and JM = Ju;/M;. Also, define Er = Iy — Jr, and Ey, =
I, — J m;, and replace Iy by (ET +J71), In; by (Em; + J u;)- Collecting terms
with the same matrices, one gets the spectral decomposition of €2,,:

Qu =06101+ 6202 + (It ® diag (63 1y1,)) 03, (12)
with
91—0 92—TU +U 931—MT(I +TO’ —|—0’ (13)

These equalities occur because of the definitions! of Q1, Q> and Q3. It turns out that
Q) relates to within transformation. Q> and Q3 relate, respectively, to between and
mean transformation matrices. More formally,

Q1 =Er®Is, 0» = Jr ®@diag (E;,) (14)
03 = Jr ®@diag (J ;) - (15)

' To save space, details are available upon request from the authors.
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The operators Q1, Q> and Q3 are symmetric and idempotent, with their rank equal
to their trace. Moreover, they are pairwise orthogonal and sum to the identity matrix.
From (12), we can easily obtain Qu_l as:

Q' =07101+6;" 02+ (Ir @ diag (651, ) ) 0s. (16)
For the full (TS x 1) vector &, we then have:
e=u—AIr ® Ws)u, 17

or

e =[Irs —AIr @ Wo)lu = (It ® Gs)u, (18)

where Gg = Is — AWs. The corresponding (7'S x T'S) covariance matrix is given
by:

Q. = AQAT, (19)

where A is a block diagonal matrix equal to (/7 ® Gs). Following the properties of
the matrices 2, and A, we obtain the inverse covariance matrix of & defined as:

o '=(a) " tan (20)

3 Estimation methods
The estimation methods of multidimensional spatial panel models are direct extensions
of the ones that have been created for the standard spatial panel data econometrics.

This means that two main approaches are used to estimate these models: one based
on ML principle and the other one linked to method of moments procedures.

3.1 Maximum likelihood estimation

Upton and Fingleton (1985), Anselin (1988), LeSage and Pace (2009) and Elhorst
(2014) provide the general framework for ML estimation of spatial models. Under
normality of the disturbances, the log-likelihood function is

TS 1
InL = —7111(27'[)_ §1n|Qg| +T1n|DS|
1 _
=5 (Dy = Xp)' "(Dy — XB)., 1)

where Dg = (Is —pWs) and D = (I ® Dg). For a SMA process for the disturbances
¢, and after some mathematical manipulations, we obtain
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TS 1
InL = —71n(27r) — §1n|9u| —Th|Gs|+ TIn|Dgs|

1
— 5 (Dy = Xp) Q' (Dy - XB). (22)

Lety) = 02/ol, yo = aﬁ /o2 and Q, = 02X, then the log-likelihood function (22)

can be written as 2

N
TS TS 1
InL =—=—=InQr) - 711103 — EZln(T (Miyi +v2) + 1)

i=1

1 N
— 32 (M= DIn(Ty+1)

i=1

N M; N M;
—TY > In(1—wia) +TY > In(1—nijp)
i=1j=1 i=1j=1

— 5.3 (Dy = XBY =Dy - XB). (23)

The first-order conditions for the parameters in (22) and (23) are intertwined which
means that they are nonlinear, i.e. the equations cannot be solved analytically. There-
fore, a numerical solution by means of an iterative procedure is needed in the spirit of
Anselin (1988).

3.2 GM and instrumental variables

There are several issues with ML procedures. First, they call for explicit distributional
assumptions, which may be difficult to satisfy, although quasi-ML (QML) approaches
may to some extent allay this problem. Second, specifying and maximizing likelihood
functions appropriate to extensions to more complex models may be problematic, espe-
cially if there are endogenous variables other than the spatial lag, as ML estimation
is not possible when endogeneity is in implicit form. Finally, there are very computa-
tionally intensive. In view of the desirability of estimation approaches that avoid some
of these challenges posed by ML, Kelejian and Prucha (1998, 1999) suggested an
alternative instrumental variable estimation procedure for the cross-sectional spatial
lag model also including a SAR process for the disturbances. This approach is based
on a GM estimator of the parameter in the SAR process. The procedures suggested
in Kelejian and Prucha (1998, 1999) are computationally feasible even for very large
sample sizes. In a panel data context with a spatial error autoregressive process, KKP
(2007) derive a GM estimator, which is computationally feasible even for large sample
size, while Fingleton et al. (2016) extend this procedure to capture spatial autoregres-

2 See Baltagi et al. (2001) who give the expression of the log-likelihood function for the multidimensional
panel data model with nested random effects errors but without considering any spatial effects.
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sive nested random effects errors. We follow this and adapt the moments conditions
in order to consider SMA nested random effects errors.

3.2.1 Moments conditions

We follow Fingleton et al. (2016) to develop a GM approach leading to estima-

tors of A, 62, 62, o2, or equivalently of A, a(f, 6 (: To/i ~|—O'U2) and avz, relies

o w> v
.. _ =T _ _
on moments conditions related to E[uTQ,-u], E[uTQiu], Elu Qjul, E[uTQl-u],

E [ﬁT Qiul, E [ﬁT Qiﬁ], i =1, 2, 3. For notational convenience, we have

t=Ur @ Wy)e, 24)
g = (Ir ® Wy)&, (25)
u=Ur® Ws)u, (26)
U= (It ® W) u. (27)
Following (17), we have
eE=u—A\u, (28)
T =1 — AL (29)

First, we compute the quadratic moments with respect to Q1:

e'Qie = (u—Am)' Q(u— Al

=u' Quu+2*u" Qi —2xu" Qiu, (30)
g1 Q16 = @ — ) Qi(u— Aw)

=ETQlu+A2ﬁTQ1E—A[ETQ1ﬁ+ﬁTQ1u], 31)
g1 018 =@ —u) Qi@ — Al

— 7 Qi+ 22 0\ — 207 017 (32)

Then, the expectations of the quadratic moments (30), (31), (32) depend on the

moments E[u’ Qyul, E[@" Q1ul, E[@’ Q&l, E@ Qi7), Eli Qi#l, Ela Quul.
After some computations,’ these latter expectations are given by:

Elu" Q] =02S(T —1), (33)
E[a' Qiu] =0, (34)
E[@' Qii] = 02 (T — l)tr(WSTW5> , (35)
Ef@ Qi) = o (T = D (W{ Wy Ws), (36)
E[i 017 = 02 (T — 1)tr(W;rWSTWSWS) , (37)

3 To save space, all the proofs in the following are available upon request from the authors.
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E[@ Quul=02(T - Dt (WSTWST> .
Substituting (33) to (38) into (30), (31) and (32) gives:
Ele" Qie]l = 02S(T — 1)
+3202 (T = D (W ws),
E[F' Qre] = 3202 (T — l)tr(WSTWSTWS)
— 302 (T — 1)tr(WSTWs+ WSTWST),
E[F' Q18] = 02 (T — Dtr (WSTW5>
+3202 (T = Dy (WS Wi wsws)

—3022(T — Dtr (W;FWSTWS) .

(38)

(39)

(40)

(41)

We proceed in a similar fashion as a result of replacing Q1 in (30), (31) and (32)
by Q5 and by Q3. The moments of E[u' Q;u], E[u' Q;ul, E[u' Q;u), Eli 07,

E[7 0,7, E[E Qiul,i =2, 3, are:
E[u" Qul = 6> (S —N),
E[@" Qaul = Ootr (W'T) ,
E[@" Q] = botr (WS'TWS) + Totr (FW§TWS>
Efi 0x) = b5t (W3"TW3) + Tou (TW3*TW3).
E[i' 0qii] = 6otr (W"T W") + Toltr (FW"TW“)
Bl Qaul = e (W)
and
E[u' Q3u]l = N6, + STo?2,
Eli! Qsu] = 6ot <W§T) + Tt (FWST ) ,
Efa" Q5] = 6atr (W3TW3) + Todu (TWTW5),

E[i Q3] = botr (vv;‘*T Wg*) + Toltr (r wrT W;‘) ,

E[@ Qsi] = bstr (W;‘*T W§*> + Totr (Fw;*T W§*) ,

El@ Qsu] = botr (W**T) :

Then, the use of these moments leads to:

(42)
(43)

(44)
(45)
(46)

(47)

(48)
(49)

(50)
(D
(52)

(53)
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E[e" Q2¢] = 6, (S— N)
e [92“ (WS.T Wg) + Toltr (r ws' Ws')]
— A0 2tr (W_;T) )

EETQﬁ]=9ﬂ(W?0

+32 a1 (W3 W3 ) + Tolu (Tws*Tws) |

(54)

o [oatr (wsTws + witT) 4 T (rwsTws) | 55)

E[ET 0281 = otr (W3 W3) + Tolu (TW3TW3)
+22 [tar (WS“T W§'> + Totr (F weeT WS>]

=2 |02t (W T W) + Tolow (TwseTws) .
where I' = diag(Jy;), Wg = diag(Ep;) Ws, Wg* = diag(E ;) Ws Wy and

E [ETQ38] — N +02ST

32 a1 (WTW5) + Tour (03T W)
— w022 (W3T) + To22u (TW ) .

ElET 0sel = otr (W) + Tour (1w )
32 (a1 (W5 TWE) + Tolu (W Tws)
—2 [92tr (W;“T W+ W;*T)
+ Todu (TWTWs +TWiw{)],

EIET 037 = botr (W5 TW3) + Togar (TW5Twy)
32 (a1 (W T W) + Tou (T3 Twi) |

=3 [oa2r (Wi W) + T2 (T T wg) |

(56)

(57)

(58)

(59)

(60)

where W¢ = diag(jM,. YWsand W™ = diag(jM,. )WsWs. Overall, we obtain a system

of nine equations involving the second moments of ¢, €:

AY —y =0,

@ Springer
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where

K1Kkp Kot 0 0 0 0 0 0 0

0 Koty Kkat3 00 0 0 0 0

Koty Koty 2kt O O 0 0 0 0

0 0 0 w3 1 218 0 K4t 0

A = 0 0 0 te 1 tg 0 Kkaly  kats |, (62)

0 0 0 17 17° 207 kats Kkat$® 2kaly

0 0 0 K5 t;k Ztg K1K4 IC4t§k 2K4110

0 0 0 tg 381 lék K410 K4t$ K4112

0 0 0 ff 17 201 katd  katst 2k4ty

and
oy EleT Qié]
2o E[s" Q¢
1ol E[e707]
6 E:STQQS:
T=| 26 |.r=|E[s" 0] |, (63)

—6> E[z7 0.7]
05 E[eT Q¢
2202 E [ Qs¢]
—107 E[g' 0]

withky = S, 60 =T —1,k3 =S — N, x4 = T,k5 = N, f
n o= w(WJWJWs), 3 = (Wi Ws+WJ{WJ), s = tr(WJ WJ WsWs),
1 =tw(WTWe), 1f = w(WiTWE), 10 = (WS TWe*), 1 = w (W T W),
12 = w(TwWeTwe), & = w(TWITwE), 2* = uw(TWe'wee),
12 = w(TWHFTWE), 18 = au(We'), i = «(WiT), 7 = w(WeTwy),
g =t (WeTWe+WeT), 5 =t (WETWE+ WgT), 13 =t (TWTWS), 15 =
tr (CWEFTWE), 1o =t (TW{ ), 11y = tr (WE*TW§) and 112 = 13 + tr (TW Wy).

In practice, to obtain the GM estimators of )»;VUO%, 6> and 03, we have to use the
sample counterparts of the terms in Eq. (61), i.e. A and Y. Nevertheless, to estimate A
and crvz, it is possible to use only the moments from (33) to (38). Then, the estimates
of 6, and a(f follow from the moments (42) and (48). This estimator is called the
unweighted GM estimator. In other words, the GM estimators of A and JUZ are obtained
from the reduced system

AT —y* =0, (64)
where
K1Ky Kpl 0
A® = 0  kp k213 |, (65)

Kot1 Koty 2Kkpt
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and
avz E [sTle]
T =| 202 |y =|E[e'Qie] |. (66)
—Ao? E[z7 Q7]

Then, from Egs. (42) and (48) we obtain, respectively:

b= — 1 (é—lé)T 0,67 1% (67)
(§—N) '
and
1 ~ T ~ N -
2 1A —15
i= o5 (G s) 03678 — b, (68)

where G~ = [1T®(§El] with ég = Ig—/):WS.

The above approach relates to unweighted GM. Nevertheless, the literature on gen-
eralized method of moments estimators indicates that it is optimal to use the inverse
of the variance—covariance matrix of the sample moments at the true parameter val-
ues as a weighting matrix in order to obtain asymptotic efficiency. In the following,
our Monte Carlo simulations show that our results are not very different from those
produced by ML, especially when our three-stage procedure is iterated. We therefore
leave the weighted GM method for further research.

3.2.2 The GM spatial IV estimator

To obtain the GM-S-IV estimator of § (: [o, ,B]T) , one first calculates the unweighted
GM estimates of A, avz, 6> and 03, following a three-stage procedure:

e in the first stage, the model (7) is estimated using an IV approach based on the

matrix of instruments H which is given by (X , WX, wW2x e ) Thus, the IV
estimator of § is defined as:

A —1
Sy = (ZTPHZ> 7T Puy, (69)

where Py = H (HTH)_l HT:

e in the second stage, the parameters X, avz, 6> and 03 are estimated using the GM
approach from Sect. 3.2 based on IV residuals,i.e.£ = y—Z Stv. The GM estimates
are obtained from the sample counterpart of the reduced system (64) which is:

Aeye—5o—¢ (x, o,f) , (70)
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where & (k, 03) is a vector of residuals. The unweighted GM estimators of A and

o2 are the nonlinear least squares estimators based on (70):

(X, 83) = arg min {5 (A, 03>T§ (x, 03)} . (71)

Then, the estimated parameters of 6, and cro% are obtained using, respectively (67)
and (68);

e in the third stage, we need the estimated variance—covariance matrix ﬁu obtained
using the first stage estimates of 52, ’0\3, G2. In order to obtain an equation in
terms of u, from which spatial autocorrelation is absent, rather than in terms of
¢ in which it is present, we can purge the equation of spatial dependence by
pre-multiplication by G~!. This can be seen to be a type of Cochrane—Orcutt
transformation appropriate to spatially dependent data. Hence, pre-multiplication

of the model (7) by G! yields:
v =Z*5+u, (72)

where Z* = G~'Z, y* = é_ly. If we are guided by the classical panel data
random effects literature (see Baltagi 2013), and transform the model in (72) by
pre-multiplying it by ﬁu_l/ 2, then applying the IV principle gives the GM-S-1V
estimator SG M—s—r1v Which corresponds to:

_~ —1
Som—s-1v = (27T Pyez) " 27T Ppeey™, (73)

~_ ~_

where Z** = Q7% y* = Q% B = Q,'*H*, H* = G'H,
Py = H* (H*T H**) ™" {7

This three-stage procedure can be iterated. After the first iteration, i.e. the application
of the procedure describes above, the GM-S-1V residuals are computed. Then, they are
used to compute new sets of unweighted GM estimates. Last, these latter are used to
obtain new GM-S-1V parameter estimates of the multidimensional spatial lag model
and so on.

4 A Monte Carlo study

The idea here is to demonstrate the comparative performance of the various estimators
described thus far, namely ML and the GM-S-1V approach. For this purpose, we gen-
erate data using a model with known parameters and see how accurately the different
estimators recover the true parameter values. Our data generating process is the spatial
lag regression model:

yi = Dg " [Botr + Brx: + & r=1,...,T, (74)
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where y; is of dimension (S x 1) as is the exogenous variable x;. Likewise, ¢; is a
vector of ones of dimension (S x 1). Dg = Is — pWg where Wy is the spatial matrix
of size (S x §). Weretain the spatial structure proposed by Kelejian and Prucha (1999),
which are referred to as “J ahead and J behind”, with the nonzero elements equal to
1/2J. Note that, as J increase, the value of nonzero elements 1/2J decreases and this
is turn may reduce the amount of spatial correlation. Here, we consider J = 2, 6 and
10. The error term &; has a SMA structure

Et = U — )LWSMt, (75)
and u, has a nested random components structure given by
u; = diag (LMi)(X—i-/L—}-v;, (76)

where u; is (S x 1), o is the vector of group effects of dimension (N x 1),
w' = (,uir ...,u;), a vector of dimension (1 x ), u;r = (,u“, ...,,u,'M,.), a
vector of dimension (1 x M;), ty; is a vector of ones of dimension (M; x 1). v; is of
dimension (S x 1).

Throughout the experiment, the parameters of (74) and (75) were set at By = 5,
B1=2and p =0.3,0.6 and A = — 0.2, — 0.5, — 0.9, i.e. positive dependence. The
explanatory variable x;;; is generated by a similar method to that of Nerlove (1971),
Antweiler (2001) and Baltagi et al. (2001). More precisely, we have:

Xijt = 0.3t + 0.8)61],_1 + wijs, 77

wherei = 1,...,N, j =1,..., M;, and w;j; is a random variable uniformly dis-
tributed on the interval [— 0.5, 0.5] and x;j0 = 60 + 30w; jo. Observations over the
first 10 periods are discarded to minimize the effect of initial values. For the data gen-
erating process for the errors, we assume o; ~ iid.N (0,02), pij ~ iid.N (0, ai)
and v;j; ~ iid.N (0, avz). We fix 02 = o2 +oﬁ +02 =2 and define y| = 02/0? and
VY = 05/0,42. These two ratios vary over the set (0.2, 0.4, 0.6) such that (1 — y; — y2)
is always positive. For all experiments, we have 20 groups observed over 5 peri-
ods, hence (N, T) = (20, 5), and we have S = 100 individuals, so the sample size
(i.e. T'S) isfixed at 500. We consider the 3 unbalanced patterns proposed by Fingleton
et al. (2016) denoted by Py, P> and P3, with individuals nested within the N groups
with differing frequencies (M, ..., Mpp). More precisely, considering N = 20, P,
is characterized by M; = 5,i = 1,...,20. b, M; = 3,i = 1,...,12, M; = 4,
i=13,...,16and M; =12,i = 17,...,20.For P3,wehave M; =2,i =1, ...,8,
M;=3,i=9,...,12,M; =4,i =13,..., 18 and M; =24,i = 19, 20.

For each experiment, we focus on the estimates of the parameters p, By , B1, A, a(f,
oﬁ and avz. Following KKP (2007), we adopt a measure of dispersion which is closely
related to the standard measure of RMSE defined as follows:

1/2
10\?
RMSE = | bias® + | — , 78

[las‘ +<1.35>} (78)
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where bias corresponds to the difference between the median and the true value of the
parameter, while /Q is the interquantile range defined as g — g2 where ¢ is the 0.75
quantile and g7 is the 0.25 quantile.

In the tables below, three sets of RMSE parameters are reported. They are
the outcomes of ML, unweighted GM-S-IV and iterated unweighted GM-S-IV

estimators. More precisely, A, 3, Az, Az) and A6, Az(l) Az(l) Az(l)) denote

the unweighted and iterated unwelghted GM estlmates respecnvely, whereas
():ML, 83’M L &5’M L 81,2’M L) denote the ML estimates. These estimates are based
on IV residuals. Subsequently, the GM-S-IV estimates of p, fo and f; are com-
puted,i.e. (0, 30 ﬁl)and (pD, 3(()]), ﬁl(l)),respectively. The ML estimates are denoted
(oML, ,BML ,B{VIL). The results of 1, 000 replications for P; (balanced subgroups pat-
tern, M; = 5,Vi = 1,...,N)and p = 0.3 are given in Table 1, whereas Tables 2
and 3 give results for the unbalanced patterns P, and Ps.

From Table 1, itis apparent that while ML is the most efficient for all parameters, the
iterated GM-S-IV is almost equally as good for almost all parameters. For example, on
average, the RMSE of both GM-S-1V estimators of the spatial autoregressive parameter
pis approximately only 2% larger than the ML estimate pM". The differences for S,
Bi, o a are also very small between ML and iterated GM-S-IV and never larger
than 4% ThlS is important because the parameters By, 81 are of particular interest in
applied economics. It also means that the computational benefits associated with the
use of the GM approach do not seem to have much cost in terms of efficiency. For Sy,
B, 0, 2 2 , the differences between ML and the simple (i.e. not iterated GM-S-IV) are

a bit larger (up to 5% for B, a o and 28% for fBp). While iterating the GM-S-IV
estimator is likely to achieve marglnally more efficient estimates, this is definitely not
the case for A, especially when A is near the upper end of its range. Indeed, it appears
that the RMSE of the iterated GM-S-IV estimator (! is 32% larger on average than the
RMSE of AME. Looking in more details, the difference is especially high forA = — 0.9
(up to 100%), while it remains acceptable for smaller values (in absolute value) of A
(for instance: 17% for A = — 0.2). Hence, caution is in order as the absolute value of
A tends to unity.

Tables 2 and 3 concern two unbalanced patterns P, and P3. More precisely, the
distribution of individuals over the twenty subgroups changes but the sample size
remain fixed at 7S = 5 x 100 = 500. In Table 2, based on the least unbalanced of the
two, the results are qualitatively similar to those of Table 1. In terms of averages, the
RMSE of both the simple and iterated GM-S-IV estimator for the spatial autoregressive
parameter p is approximately 0.73% larger than that produced by ML estimator. The
differences for the regression parameters By, 81 are very small (1% for By and even
—0.58% for B1). Conversely, the differences between ML and iterated GM-S-IV for
the variances cr(f, ai are a bit larger than in the balanced case and up to 35% for a(f.
These values are even higher for the simple GM-S-IV estimator, highlighting the less
efficient estimates of GM compared with ML estimation, and the need to consider this
in relation to the advantages provided by GM. With respect to A, we find again that the
RMSE for the iterated GM-S-IV estimator is larger than under ML, with an average
difference of 35% produced by an assumption that the true value of A is — 0.9. With
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smaller A, the difference is less stark. For example, when A = —0.2, the difference is
equal to approximately 16%.

In Table 3, the RMSE:s are affected differently because of the way we have treated
unbalancedness in P3. Focusing especially on the differences between ML and iterated
GM-S-1V, we note that the regression parameters are estimated efficiently in both cases
as is p. As for the variances, the differences between ML and iterated GM-S-IV are
higher for P3 than was the case P> when one consider 65 (28% for P3 compared to
12% for P>). Conversely, the differences are smaller for aﬁ (0.74% for P3 compared
to 2.86% for P,) and O'UZ (4.38% for P3 compared to 8.49% for P,). The estimates
of the spatial error parameter are affected in a similar way under Pz as was the case
for P, : the RMSE of A1) is 33% higher than the RMSE of AML with especially high
differences for . = 0.9.

We have also performed the simulations with p = 0.6 considering the same patterns
P1, P, and P3. The results are provided in an online appendix and the conclusions
remain identical to those described above.

5 Empirical application

In this section, we consider the relationship between log employment (In E ), log output
(In Q) and an indicator of (log) capital investment (In K) across S = ZINZI M; =
255 NUTS2 regions nested within N = 25 countries of the EU. In Q is measured
by gross value added, or GVA, and In K is gross fixed capital formation, or GFCF.
These annual regional data series are based on Cambridge Econometrics’ European
Regional Economic Data Base. As an illustration, Fig. 1 shows the distribution of log
employment in the year 2010 across the 255 regions. Similar maps but with varying
regional employment levels covering the period 1999-2010 constitute the dependent
variable. Our model endeavours to explain the spatio-temporal variation in In E as a
function of In Q and In K organized on the same basis as Fig. 1, and also as an outcome
of unobservable region-specific random effects nested within country-specific random
effects. Accordingly, the model specification is

InE, = pWsln E; + Bot; + f1In Oy + BoIn Ky + &, (79)

in which In E; is an (S x 1) vector of levels of (log) employment at time ¢, with
exogenous variables In Q; and In K;, and ¢, is a vector of ones of dimension (S x 1).
The compound errors ¢, are an (S x 1) vector of spatially dependent unobservables
comprising time-invariant national effects, one for each of N countries and denoted
by «;,i = 1,..., N, together with time-invariant regional effects with the region j
effect, where j is nested within country i, denoted by u;; = ux,k = 1,..., 5. In
addition, there are remainders of dimension S which vary across regions and time, and
the remainder effect for region j within country i at time ¢ is denoted by v;;;. Thus,
repeating for convenience Egs. (5) and (6) in vector and matrix notation, we have

Er = Uy — )\.MSM;, (80)
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Log vl employment (thousands)

8.6999
7.7873
7.2334
6.7762

Fig. 1 Distribution of log employment in the year 2010

and
Uy =diag(LMl.)oz+u+vt. (81)

So, the estimation procedure takes into account two different spatial interaction
processes: one for the endogenous spatial lag and the other for the errors. For the spatial
lag at time ¢, Wg In E;, the matrix Wy is based on interregional trade flows between
the 255 EU regions in the year 2000. The method of estimating these trade flows has
been discussed elsewhere, for example by Polasek et al. (2010), Vidoli and Mazziotta
(2010) and Fingleton et al. (2015), so here we simply note that the method employed
bases interregional trade on data for international trade using a spatial version of the
method for the construction of quarterly time series from annual series introduced by
Chow and Lin (1971). The resulting matrix of bilateral interregional trade flows W¢
is scaled following the approach of Ord (1975), so that

Ws = DOSwi D03, (82)

in which D is a diagonal matrix with each cell on the leading diagonal containing the
corresponding row total from W¢. This normalization means that the most positive
real eigenvalue of Wy is equal to max(eig) = 1.0, and the continuous range for which
(Is — pWy) is non-singular is 1/ min(eig) < p < 1. Thus, we require estimated p to
occur within this range to ensure stationarity.

@ Springer
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For GM-S-1V, the assumption is that the compound errors are interrelated according
to an SMA process (80). In this case, the spatial matrix My is based on a contiguity
matrix of dimension (S x §) with 1 in cell (m, n) indicating that regions m and n share
a common border and 0 indicating otherwise, although for nine isolated regions it has
been necessary to create artificial, contiguous neighbours. The resulting contiguity
matrix has been subsequently standardized to give Mg in which the rows sumto 1. This
means that stationary region for A is also given by 1/ min(eig) < A < 1/ max(eig) =
1. The key feature of an SMA process is that shocks to the unobservables have local
rather than global effects. Note that all components of the compound errors are assumed
to be subject to this same spatial error dependence processes.

Table 4 gives the resulting non-iterated estimates. The ratios of El and ,32 to their
respective standard errors indicate thatIn Q and In K are significantly positively related
to In E, and there is also a significant positive effect due to the endogenous spatial lag,
since p > 0 with ¢ ratio equal to 34.2374. The significant positive effect due to the
endogenous spatial lag means that we should interpret the effects of these variables
via the true derivatives, following LeSage and Pace (2009) and Elhorst (2014). These
show that, allowing for both the direct and indirect effects of spatial interaction across
regions, the total effect of a 1% change in Q is associated with a 0.3795% change
in employment. The total effect of 1% change in K leads to 0.0459% change in
employment.

We find that the null hypothesis that A = 0 is rejected in favour of positive residual
spatial dependence (which is indicated by a negative estimate of A). The distribution
of Anul, which is A under a null hypothesis of no spatial dependence among the
errors, is based on the residuals from the nested error model assuming no spatial error
dependence, but which includes a spatial lag (as described in Baltagi et al. (2014)). We
refer to this by the acronym NRE-IV. The residuals on which the null distribution is
based have the same moments as the NRE-IV residuals, and are assumed to be normally
distributed, but they are randomly assigned to regions in order to eliminate spatial
dependence. Given randomly assigned residuals, the same GM estimation method
used to obtain A is applied to obtain Ay, and this estimation is repeated 100 times to
obtain 100 estimates of Any. We find that the estimate 2 is not a typical member of
this Apy distribution, since

o~ =

A —08641 —(-0002D) _ ., )
 WNVarGoa) 0.0252 - o

in which Ay is the mean of the empirical null distribution, and var(inuy) is the
variance.

The estimated variance 3(3 = 0.0577 of unobserved country effects is larger than
estimated regional effects variance, which is 6\5 = 0.0483, and both of these are

large relative to the remainder variance 33 = 0.0008. In the generation of the Any
distributiop, We a'lso generate null distributions of o(inu”, aﬁﬁnun an.d oi ull- Because
the null distributions are based on a random pattern of errors, this also breaks up
any effects due to country or region. This is evident from the means of the resulting

distribution, hence Eignun =0.0131, and Ei’nuu = 0.0118. In contrast, the remainder

null variance is comparatively large, hence E%,null = 0.1719. Using also the standard
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deviations of the null distributions, the resulting ¢-ratios given in Table 4 indicate that
33 and 85 are significantly greater than expected under the null hypothesis, suggesting

significant effects due to countries and regions. In contrast is 8,,2 significantly below
the null mean indicating that unexplained remainder effects varying across regions
and across time are much less than one would expect were the errors distributed
at random. Note that these interpretations are informal because generally the null
distributions may be asymmetrical. The 7-ratios give the distance from the mean of
the null distributions is units of standard error, and the ratios given in Table 4 are far
outside the range of outcomes observed in the null distributions.

For comparison, we also estimate the parameters of three different models which
also assume a nested error structure, but which differ in the way spatial dependence
is treated. The first estimator is the above-mentioned NRE-IV, which assumes that
there is a spatial lag but no spatial error dependence, hence A = 0. The second
estimator, referred to by the acronym GM-S-FGLS, in line with the published literature
(Fingleton et al. 2016), does assume spatial error dependence, but the dependence is
an autoregressive process not moving average. Also, it assumes there is no spatial
lag effect, hence p = 0. The third comparator introduces a SAR structure for the
disturbances instead of a SMA one, but is otherwise identical to GM-S-IV. We refer
to this as GM-S-IV*.

The resulting estimates are given in Table 4. It is evident that on the whole the
outcomes with regard to the effects of In Q and In K are similar to those produced by
GM-S-1IV. One difference, however, is that the effect of In Q under GM-S-FGLS is
larger than the effects reported under the other estimators (note that with p constrained
to zero the estimate 31 is directly comparable to the total effects under the other
estimators). The introduction of a SAR process under estimator GM-S-IV* moderates
the apparent effect of In Q, which is now quite similar to the outcomes from the other
estimators including a spatial lag. Elimination of spatial dependence among the errors,
due to the restriction A = 0, gives the NRE-IV estimates. The effect of this is to increase
33. This suggest that there is more intercountry heterogeneity than under the other
estimators. Using the same null reference distribution as for GM-S-1V, 85 is 50.84
standard errors above the mean of the null distribution, suggesting a significant country
effect. In contrast, 33 is very close to the mean of the null reference distribution for
region effects, suggesting that employment is not subject to a region effect. However,
these interpretations are not taking into account the presence of error dependence, due
to either a spatial moving average or a spatial autoregressive process.

Spatial error dependence is shown by the other estimators to be highly significant
and should be taken into account in interpreting the nested effects embodied in the
errors. It is noteworthy that smallest estimate occurs under the GM-S-IV estimator,
indicating that this model explains more of the overall variance using In Q, In K, the
spatial lag, the spatial moving average error process and the national and regional
effects in the errors. The other specifications leave more of overall the variance as
an unexplained remainder component. It is apparent that controlling for localized
spillovers via the spatial moving average process for the errors produces superior
outcomes to assuming spatially autoregressive errors, as under GM-S-FGLS and GM-
S-IV*, and provides a more appropriate interpretation of the magnitude of country
and regional effects than is given by the NRE-IV estimator.
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Table 4 Estimates for spatial panel models with nested random effects

GM-S-1V NRE-IV GM-S-FGLS GM-S-IV*
B1 0.3025 0.3074 0.5940 0.3338
s.e. 0.0096 0.0080 0.0111 0.0155
t-ratio 31.67 38.28 53.61 21.60
B2 0.0366 0.0277 0.0288 0.0270
s.e. 0.0031 0.0037 0.0051 0.0059
t-ratio 11.83 7.47 5.62 4.55
0 0.2256 0.2250 n.a. 0.2165
s.e. 0.0066 0.0048 n.a. 0.0085
t-ratio 34.24 46.44 n.a. 25.49
A —0.8641 n.a. 0.5223% 0.3826%
s.e. 0.0252 n.a. 0.0256 0.0272
t-ratio —34.24 n.a. 20.44 14.15
(rg 0.0577 0.1250 0.0411 0.0658
s.e. 0.0022 0.0022 0.0007 0.0065
t-ratio 20.63 50.84 54.60 2.84
aﬁ 0.0483 0.0138 0.0397 0.0310
s.e. 0.0037 0.0037 0.0008 0.0014
t-ratio 9.84 0.5522 47.52 21.57
03 0.0008 0.0009 0.0014 0.0020
s.e. 0.0179 0.0179 0.0211 0.0178
t-ratio —9.58 —9.55 —9.56 —9.55
Direct effect In Q 0.3033 0.3083 n.a. 0.3347
Total effect In Q 0.3795 0.3854 n.a. 0.4144
Direct effect In K 0.0367 0.0277 n.a. 0.0270
Total effect In K 0.0459 0.0347 n.a. 0.0335

AThis coefficient is related to the SAR error process

6 Conclusion

In this paper, we focus on estimation methods for a multidimensional spatial lag panel
data model with SMA nested random effects errors. The introduction of spatial effects
via the spatial lag and the errors is an extension of previously published work by
Fingleton et al. (2016) in which the spatial effects are only due to the SAR nested
random effects errors. The SMA structure constitutes an alternative to incorporating
spatial lags of the exogenous variables (X), and potentially avoids the weak instrument
problem related to the use of spatial lags of X, given that it embodies local spillovers
that one would otherwise control via the spatial lags.

We derived GM estimators for the SMA error coefficient and the variance com-
ponents of the error process. Using a spatial counterpart to the Cochrane-Orcutt
transformation, the regression parameters are estimated through a spatial IV esti-
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mator. Compared to the ML estimators, the GM-S-IV estimators are computationally
feasible even for large sample sizes, and are robust to deviation from distributional
assumptions (normality) typifying ML estimation. The Monte Carlo simulations show
that RMSE magnitudes of the ML and GM-S-1IV estimators of the regression coeffi-
cients are globally similar. This means that the benefits associated with the use of the
GM-S-1V approaches do not seem to have much cost in terms of efficiency, although
it seems that less efficient outcomes for A and 62 may be due to our reliance on
unweighted GM. It is also evident that there are benefits in terms of efficiency as a
result of iterated estimation. The results of the empirical example indicate that in the
context of EU regions nested within countries, the assumption of a SMA error pro-
cess with spatial dependence is preferable to assuming no spatial error dependence,
or SAR error dependence. This may reflect the fact that exogenous spatial lags are
comparatively unrepresented in the latter, whereas the SMA error process picks up
local spillovers explicitly. For future research, possibilities include the investigation of
the performance of the weighted GM approach, a study of formal large sample results
of the estimators, and the inclusion of dynamic effects in the model.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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