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Abstract: We numerically construct asymptotically anti-de Sitter (AdS) black holes in

four dimensions that contain only a single Killing vector field. These solutions, which

we coin black resonators, link the superradiant instability of Kerr-AdS to the nonlinear

weakly turbulent instability of AdS by connecting the onset of the superradiance instabil-

ity to smooth, horizonless geometries called geons. Furthermore, they demonstrate non-

uniqueness of Kerr-AdS by sharing asymptotic charges. Where black resonators coexist

with Kerr-AdS, we find that the black resonators have higher entropy. Nevertheless, we

show that black resonators are unstable and comment on the implications for the endpoint

of the superradiant instability.
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Introduction. As the simplest of gravitating objects, black holes (BHs) play a fundamen-

tal role in our understanding of general relativity. Indeed, four-dimensional, asymptotically

flat BHs are stable and uniquely specified by their asymptotic charges [1]. However, there

are circumstances where stability and uniqueness can be violated, such as those in higher

dimensions [2–11]. We will argue that this can also be accomplished in four dimensions

with asymptotically anti-de Sitter (AdS) BHs.

Unlike Minkowski or de Sitter space, AdS contains a timelike boundary at conformal

infinity where reflecting (energy and angular momentum conserving) boundary conditions

are typically imposed to render the initial value problem well posed [12]. The presence of

this boundary has drastic consequences for the stability of solutions in AdS. For example,

rotating BHs may contain an ergoregion from which energy can be extracted by the Penrose

process [13]. For waves, this phenomenon is called superradiance [14–16] (see [17] for a

review). In AdS, these waves return after scattering from the boundary and extract more

energy. The process continues until the waves contain enough energy to backreact on the

geometry, causing the so-called superradiant instability [18–20].

The reflecting boundary also has implications for the stability of AdS itself. A nonlinear

instability may occur if an excitation with arbitrarily small, but finite energy around AdS

continues to reflect off the boundary and eventually forms a BH. There is numerical evidence

in support of this instability with a spherically symmetric scalar field [21–23]. There is

additionally a proposed perturbative explanation for this instability [21] which applies to

pure gravity and beyond spherical symmetry [24]. At linear order in perturbation theory,

AdS contains an infinite tower of evenly-spaced normal modes. At higher orders, resonances

between modes cause higher modes to be excited that grow linearly in time. In the generic

case, this leads to a breakdown of perturbation theory, and is interpreted as the beginnings

of a nonlinear instability. This instability is called weakly turbulent due to this energy shift

from longer to shorter length scales.

Though there is a breakdown of perturbation theory for generic initial data, pertur-

bation theory survives to arbitrarily high orders when only a single mode is excited. This

leads to a family of horizonless time-periodic solutions called oscillons (boson stars) for a

real (complex) scalar field [21, 22] and geons for pure gravity [24, 25]. These geons can be

thought of as nonlinear normal modes of AdS and are solutions that contain only a single

Killing field. Any gravitational radiation emitted by the geon is balanced by absorption of

waves reflected from the AdS boundary. Since perturbation theory breaks down for two-

mode initial data, geons can be thought of as a basis for the nonlinear instability [24, 25].

We will construct a new family of BHs that joins the onset of the superradiant in-

stability of Kerr-AdS [19, 20]1 to the geons. Since these BHs are time-periodic and single

out a particular frequency, we call them black resonators. One limit of black resonators

corresponds to the onset of the superradiant instability.

Black resonators are thus the BHs predicted by [26] and alluded to in [20, 24, 27]. The

opposite, zero-size limit of black resonators corresponds to the geons where this frequency

is given by a nonlinear normal mode of AdS [24, 25]. Like the geons, black resonators

are time-periodic and have only one Killing field. The Killing field is also the horizon

1Also known as the Carter solution.
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generator, so black resonators have bifurcate Killing horizons and globally well-defined

horizon temperatures.

Numerical approach. We will search for solutions to the Einstein equation with a

negative cosmological constant Λ = −3/L2. That is, we will solve

Rab +
3

L2
gab = 0 , (1)

where L is the AdS length scale, gab the metric and Rab the Ricci tensor. We wish to

find asymptotically global AdS solutions with a boundary metric conformal to the Einstein

static universe

ds2bdy = −dt2 + dθ2 + sin2 θdϕ2 . (2)

We use the DeTurck method [28] (see [29] for a recent review) which proceeds by

writing down any reference metric ḡ of our choice that shares the same causal structure

as the solution g we wish to find. Then, rather than solve the Einstein equation (1), we

instead solve the Einstein-DeTurck equation:

Rab +
3

L2
gab −∇(aξb) = 0 , (3)

with ξa = gcd[Γacd(g) − Γacd(ḡ)], where Γ(g) is the Christoffel symbol associated with a

metric g. Since we are solving different equations, we verify à posteriori that our solutions

to (3) satisfies ξa = 0 to machine precision, and hence is also a solution to the Einstein

equation (1). In some cases, it is possible to prove that all solutions of (3) must have

ξa = 0 [30], but we do not have such a proof for our case of interest. However, we have

verified à posteriori that (3) yields elliptic partial differential equations for which local

uniqueness theorems exist [31]. Thus, solutions with ξ 6= 0 cannot have ξ arbitrarily small

for all ranges of parameters, and are therefore distinguishable from solutions with ξ = 0.

Following the DeTurck method, we need an ansatz and a reference metric containing

a single (helical) Killing field,

K = ∂t + ΩH∂ϕ , (4)

where ΩH will be the horizon angular velocity. K is a Killing field, but ∂t and ∂ϕ are not.

Thus, the solution will neither be time independent nor axisymmetric, but is instead time-

periodic. We now perform the following change of variables: dτ = dt and dφ = dϕ+ΩHdt.

In these coordinates, K = ∂τ and the boundary metric is:

ds2bdy = −dτ2 + dθ2 + sin2 θ(dφ− ΩHdτ)2 . (5)

For a general ansatz containing a Killing horizon generated by K, we choose:

ds2 =
L2

(1− y2)2

[
− y2q1∆(y) (dτ + y q6dy)2 +

4y2+ q2dy
2

∆(y)

+
4y2+ q3
2− x2

(
dx+ yx

√
2− x2 q7dy + y2x

√
2− x2 q8dτ

)2
+(1− x2)2y2+q4

(
dφ− y2q5dτ +

x
√

2− x2q9dx
1− x2

+ y q10dy

)2 ]
, (6)
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with ∆(y) = (1 − y2)2 + y2+(3 − 3y2 + y4) and qi = qi(x, y, φ). As a reference metric, we

take (6) with q1 = q2 = q3 = q4 = 1, q5 = ΩH and qi = 0, for i ≥ 6.

If ΩH = 0, our reference metric is the Schwarzschild-AdS BH with entropy S = πy2+L
2

and temperature

T =
1 + 3y2+
4πy+L

. (7)

To recover more familiar coordinates, redefine r/L = y+/(1 − y2) and cos θ = x
√

2− x2.
We chose this reference metric rather than Kerr-AdS for tidiness.

We now further comment on the well-poseness of our boundary value problem. The

ansatz (6) accommodates the helical isometry generated by K = ∂τ . However, this Killing

field K = ∂τ is not a globally timelike vector in the outer domain of communication of

the black resonator. As described in detail in section IV.B.3 of the review [29], this means

that we cannot straightforwardly prove that the Einstein-DeTurck equation for the helical

ansatz (6) yields a manifestly elliptic system of equations. However, one can still solve the

Einstein-DeTurck equation, and à posteriori we verify that the equations of motion are

elliptic in a neighbourhood of the solution we find. Doing so, we confirm that we have

solved a well-posed boundary value problem and we can further rely on local uniqueness

to eliminate the possibility of a Ricci soliton [29].

Since black resonators branch from the onset of the superradiant instability of Kerr-

AdS [19, 20], let us now describe this instability in more detail. Perturbations of Kerr-AdS

are labeled by a type (scalar or vector) and polar and azimutal wavenumbers ` and m,

respectively. While all Kerr-AdS BHs with ΩHL > 1 are superradiant unstable, different

perturbative modes have onsets in difference places in parameter space. At these onsets

are zero modes which mark the appearance of a new family of solutions which will be the

black resonators.

For definitiveness and simplicity, we will focus on the scalar mode ` = m = 2, which

has an extra discrete symmetry under x → −x. The Kerr-AdS parameters corresponding

to the onset of the superradiant instability of this mode were obtained in [19, 20].2

Let us now discuss boundary conditions. At y = 0, we demand a regular bifurcate

Killing horizon generated by ∂τ with temperature (7). This amounts to q1(x, 0, φ) =

q2(x, 0, φ), with the remaining functions having Neumann conditions. The boundary (y =

1) must approach that of the reference metric, which is a Dirichlet condition. The discrete

symmetry x → −x requires that all of the qi’s have Neumann boundary conditions at

x = 0. At x = 1, regularity requires q7(1, y, φ) = q8(1, y, φ) = 0 and Neumann conditions

for the remaining functions. Finally, m = 2 requires that φ be periodic in φ ∈ (0, π].

With equations and boundary conditions, we can now solve the system of partial

differential equations by numerical methods. We use a standard Newton-Raphson al-

gorithm and discretise the Einstein-DeTurck equations using pseudospectral collocation

(Chebyshev-Gauss-Lobatto nodes along the x and y directions, and Fourier nodes along

the φ direction). The resulting algebraic linear systems are solved by LU decomposition.

2The onset of superradiant modes with oppositely signed amplitudes yield the same physical black

resonators.
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Figure 1. E vs. J phase diagram of AdS black holes with Kerr-AdS BHs (all regions above thick

solid black line), geons in [25] (bottom yellow dashed line), and black resonators (data points).

Also plotted are Kerr-AdS BHs with ΩHL ≤ 1 (dashed purple line and purple region above it),

extremal Kerr-AdS BHs (thick solid black line), and the onset of scalar m = ` = 2 mode in [20]

(thin blue line).

Our reference metric is not Kerr-AdS, so we must construct Kerr-AdS numerically.

We fix y+, assume independence in φ, and slowly increase ΩH from zero until we are at

the onset of the superradiant instability. Note that this is consistent with our boundary

conditions above.

From here, we have tried to obtain black resonators by varying ΩH and y+ using a

perturbed Kerr-AdS as a seed. This proved unsuccessful since Kerr-AdS is too strong an

attractor for Newton-Raphson. Instead, we used y+ and a wiggliness parameter ε defined as

ε ≡
∫ π

0
q9(1, 0, φ) sin(mφ)dφ . (8)

We add the defining equation (8) to our system of equations and ΩH as an extra unknown.

Any solution with ε 6= 0 has φ dependence and hence cannot be Kerr-AdS.

Results. Our main result is shown in figure 1, where the energy (E) versus angular

momentum (J) phase diagram of rotating BHs in AdS is presented in units of the AdS

radius L. Kerr-AdS BHs lie above the thick solid black line, which refers to extremal

(T = 0) Kerr-AdS BHs. Kerr-AdS BHs with ΩHL < 1 are likely linearly stable [20, 32]

and lie in upper-left region above the dashed purple line (the purple line itself refers to

ΩHL = 1). The onset of the superradiant instability for the scalar ` = m = 2 modes [20]

lie on the thin blue line. The geons from [25] lie on the bottom dashed line. The data

points refer to the black resonators we have constructed, with parameters indicated by the

plot markers.

From figure 1, we see that our solutions at small ε recover the onset curve of [20].

This is a strong consistency check since the onset curve was generated using the Teukolsky
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Figure 2. Comparison of numerical ε = 0.1 black resonators (blue disks) and the perturbative

result (9) (red diamonds).

equation in AdS, which only indirectly uses the metric [19]. All of our black resonators

also have ΩHL > 1, which indicates that no Killing vector can be found that is everywhere

timelike outside the horizon. We also see that some black resonators extend below the

extremal limit of Kerr-AdS BHs and are therefore the only known regular solutions with

these asymptotic charges.

Though we focused on the scalar ` = m = 2 mode, a perturbative expansion can

predict the entropy of small E and J black resonators for more general modes [20]. For

scalar modes with ` = m, the entropy is

S = 4πE2

[
1−

(
1 +

1

m

)
J

E L

]2
. (9)

For small black resonators, figure 2 shows good agreement between our numerical results

and the perturbative prediction of (9) with m = 2. Since (9) assumes that zero-size black

resonators merge with geons, this agreement can be taken as evidence that black resonators

connect to geons. Figure 1 shows black resonators approaching geons, but only down to

size y+ ∼ 0.07.

We note that if black resonators with arbitrary m are connected to geons, the minimum

E for fixed J that black resonators can have occurs when m → +∞ for an arbitrarily

small black resonator (i.e. a geon with m = +∞). This configuration saturates the BPS

bound E = J/L.

Another quantity of interest is the entropy of black resonators compared with that of

Kerr-AdS. At the same asymptotic charges E and J , we find that black resonators have

higher entropy than Kerr-AdS ( see for instance figure 3). These solutions merge at the

onset of superradiance through a second order phase transition.

We show the energy density on the S2 of the boundary metric (2) in figure 4 [33].

This figure represents an instant in time and should be imagined as rotating with angular

velocity ΩH (i.e. in a time-periodic way).

Outlook. We have constructed new BHs in AdS with a single Killing field which we call

black resonators.3 Black resonators are not ruled out by Hawking’s rigidity theorem [34–

3Similar black resonators may also exist inside Dirichlet walls with E and J conserving boundary con-

ditions.
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Figure 3. Entropy of rotating BHs in AdS versus their energy with Kerr-AdS BHs (solid blue line)

and black resonators (red triangles). The black resonators all have y+ = 0.16.
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Figure 4. Energy density in units of L at a moment in time of a black resonator with y+ = 0.16

and ε = 0.1.

37] since the single Killing field also generates the horizon. These BHs branch from the

onset of the superradiant instability in Kerr-AdS, and extend in their zero-size limit to

smooth horizonless geometries called geons [24, 25]. The existence of black resonators

proves that Kerr-AdS is non-unique, even in four dimensions. We focused on the scalar

progenitor mode m = ` = 2, but expect similar behaviour for other m and `. This would

mean a countably infinite violation of uniqueness for rotating BHs in AdS with ΩHL > 1

and E > J/L.

In retrospect, new BHs could have been anticipated from the AdS/CFT correspon-

dence. Since CFTs are expected to saturate the bound E ≥ J/L, but Kerr-AdS BHs do

not, another BH might fill the gap. Though, this argument does not suggest that these

BHs have a single Killing field or are connected to the superradiant onset.

The precise boundary CFT interpretation of these instabilities and the black resonators

remain mysterious. We note that superradiance is not particular to four dimensions, and

occurs also in AdS5. Furthermore, including the full AdS5×S5 bulk geometry, so that the

boundary field theory is specifically N = 4 super Yang-Mills, does not cure this instability.

Though these black resonators have more entropy than Kerr-AdS, we argue that they

are unstable, so they cannot be the endpoint of the superradiant instability. While black

resonators with progenitor modes ` = m = 2 should be stable to perturbations with

– 6 –
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m = ` = 2, they are unstable to higher m modes. The reason for this is that small black

resonators are well-approximated (as confirmed in (9) and figure 2) by a small Kerr-AdS

BH at the centre of a geon [20, 24], and small Kerr-AdS BHs are still unstable to higher

m modes. More precisely, the results of [38] mathematically prove that our solutions are

unstable, since no Killing vector field that is everywhere timelike can be found at the

conformal boundary.

Our results support the conjecture of [39] that there is no stationary endpoint to the

superradiant instability in AdS. Instead, modes with increasing m continue to be excited

and develop. It may be possible for additional small BHs to form as energy is deposited

into higher m modes. While such configurations should exist, they are themselves super-

radiantly unstable [40, 41]. While classical evolution may continue indefinitely, eventually

the increasingly high m modes will reach sub-Planckian length scales. This may be viewed

as a violation of the spirit of cosmic censorship in that initial data well-described classically

leads to a situation requiring quantum mechanics.
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