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Abstract

The primary focus of this article is the provision of tests for the validity of a set of conditional
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GMM and generalized empirical likelihood test statistics are suggested. The asymptotic properties
of the statistics are described under both null hypothesis and a suitable sequence of local alterna-
tives. An extensive set of simulation experiments explores the practical efficacy of the various test
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1 Introduction

The primary focus of this article is the provision of tests relevant for independent cross-sectional data
for the validity of a set of conditional moment constraints in addition to those defining the maintained
hypothesis when a finite dimensional parameter vector is the object of inferential interest. Examples in-
clude moment conditional homoskedasticity and instrument validity.! The main point of departure and
principal contribution of the paper is the explicit incorporation of the maintained conditional moment
information in the formulation of the test statistics. Thus, our approach mirrors that of the classi-
cal parametric likelihood setting by defining restricted tests for these additional conditional moments in
contradistinction to unrestricted tests that partially or completely fail to incorporate the maintained mo-
ment condition information in their design with the advantage that the former dominate the latter tests
in terms of asymptotic local power, cf. Aitchison (1962). Newey (1985), pp.242-244, and Eichenbaum et
al. (1988), Appendix C, pp.74-76, formulate GMM tests of additional unconditional moment constraints
fully utilising maintained moment information gaining a similar local asymptotic power advantage over
tests that fail to do so. The framework adopted in this paper is quite general allowing the parameters
defining the additional and maintained conditional moment restrictions to differ and permitting the
conditioning variates to differ likewise. The paper also contributes a number of new theoretical results
required to address the null and local alternative asymptotic distributions of the test statistics.

The approach taken in the paper exploits an equivalence between conditional moment constraints
and a countably infinite number of unconditional restrictions noted elsewhere; see Chamberlain (1987).
Test statistics are consequently defined in terms of an appropriate set of additional infinite unconditional
moment conditions. These tests adapt and generalise those of Donald et al. (2003) which approximates
conditional moments by an appropriate finite set of unconditional moments. Tests for a finite number
of unconditional moment restrictions, cf. inter alia Newey (1985), Eichenbaum et al. (1988) and Ruud
(2000) for GMM, Hansen (1982), and Smith (1997, 2011) for generalized empirical likelihood (GEL),
see also Kitamura and Stutzer (1997), Imbens et al. (1998) and Newey and Smith (2004), are well-
known to be inconsistent against all alternatives implied by conditional moment conditions; see, e.g.,
Bierens (1990). GMM and GEL test statistics defined in Donald et al. (2003) circumvent this difficulty
by allowing the number of unconditional moments to grow with sample size at an appropriate rate.?
Likewise here both maintained and null hypothesis conditional moment constraints are approximated
by corresponding sets of unconditional moment restrictions with the former a subset of the latter, both

of whose dimensions grow with sample size at appropriate rates. Restricted GMM- and GEL-based

Hnstrument validity tests are the concern of the application in section 6 to a parametric specification of an Engel curve
relationship discussed elsewhere in, e.g., Muellbauer (1976), Banks et al. (1997) and, more recently, Blundell and Horowitz
(2007). See fn. 15 below.

2Consistent tests of goodness of fit in regression models have received substantial attention in the literature. See, e.g.,
Eubank and Spiegelman (1990) for the nonlinear regression context. See also inter alia De Jong and Bierens (1994), Hong
and White (1995) and Jayasuriya (1996).



test statistics for additional conditional moment restrictions, after location and scale standardization,
are asymptotically equivalent and converge in distribution to a standard normal variate under the null
hypothesis. Intuitively this result reflects the implicit infinite number of unconditional moments under
test since standardised chi-square distributed statistics are asymptotically standard normally distributed
when the statistic degrees of freedom diverges to infinity. A similar result is obtained for unrestricted
statistics that partially or completely neglect the maintained conditional moment information although
the limit standard normal variate differs.® Interestingly, unlike finite dimensional test statistics, efficient
parameter estimation is no longer required for test implementation. Under a suitable sequence of local
alternatives, restricted and unrestricted test statistics are asymptotically non-central standard normally
distributed. The non-centrality parameter of the restricted statistics exceeds those of unrestricted sta-
tistics thereby demonstrating the deficiency of these latter tests mirroring the results for restricted tests
in the classical parametric likelihood, Aitchison (1962), and unconditional moment condition, Newey
(1985) and Eichenbaum et al. (1988), settings. The asymptotic local power results also indicate that
one-sided tests of the additional conditional moment restrictions are apposite.

The paper is organized as follows. Section 2 provides some initial definitions, details the test problem
and describes moment conditional homoskedasticity and instrument validity examples that are used
throughout the paper. GMM and GEL restricted test statistics are then specified in section 3; an
initial discussion presents the equivalence between conditional moment restrictions and an appropriately
defined infinite set of unconditional moment constraints together with the assumptions that underpin
the analysis in the paper. Section 4 provides the limiting distributions of these and unrestricted statistics
under the null hypothesis of the additional conditional moment validity; the large sample independence
of the restricted test statistics and GMM and GEL test statistics for the maintained hypothesis is
shown which thus permits the overall test size of a sequential test of the maintained and then additional
conditional moment restrictions to be controlled. Section 5 considers the local asymptotic behaviour
of the restricted and unrestricted test statistics demonstrating the one-sided nature of the tests and
the relative deficiency of the latter tests. Section 6 presents a set of simulation results on the size and
power of the test statistics based on an application to a parametric specification of an Engel curve
relationship. Section 7 concludes. Proofs of the results in the text and certain subsidiary lemmata are
given in Appendix A and the Supplement to the paper.

The paper uses the generic subscript notation “m” and “a” to denote quantities associated with
the maintained hypothesis and additional moment constraints. Conditional moment indicator vectors
are denoted by u(-, ) of generic dimension J, with parameter vector 8 of dimension p and associated

parameter space B; instrument vectors are denoted as s with dimension d. The abbreviations a.s.,

3 Alternative unrestricted tests could also be based inter alia on the approaches of Bierens (1982, 1990), Wooldridge
(1992), Yatchew (1992), Hardle and Mammen (1993), Fan and Li (1996), Zheng (1996, 1998), Lavergne and Vuong (2000),
Ellison and Ellison (2000) and Dominguez and Lobato (2004). The continuum of moment conditions method suggested in
Carrasco and Florens (2000) offers another possible approach; see also Hsu and Kuan (2011).
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frr., n.s. and p.d. indicate “almost surely”, “full row rank”, “nonsingular” and “positive definite”
respectively. [-] is the integer part of -. Statistics are “asymptotically equivalent” if they differ by an

op(1) term.

2 Some Preliminaries

2.1 Definitions

The maintained hypothesis is defined in terms of the moment indicator vector u,,(z, 8,,) which is a
Jm-vector of known functions of the d,-vector of data observables z and the p,,-vector of parameters
Bm- In many cases u,,(z, 8;n) may be interpreted as an error vector. It is assumed that there exists an

observable d,,-vector of instruments s,, such that

Elum(z, Bmo)|sm] = 0 a.s. sm, (2.1)

for some unknown value (,,0 € B,, of the parameter vector (3, where B,, denotes the corresponding
parameter space.
The central interest of the paper is the provision of tests of the additional conditional moment

restrictions
Eluq(z, Ba0)|8a] =0 a.s. sq (2.2)

for some (8,9 € B,. Here the moment indicator vector u,(z, 3,) denotes a J,-vector of known functions
of z and the unknown p,-vector of parameters 3, with B, the corresponding parameter space and s, an
observable d,-vector of instruments. Together the parameter vectors 3,0 and (40 constitute the objects
of inferential interest. Note that 8, may or may not be coincident with the maintained hypothesis para-
meter vector 3,,. Likewise, the notation s, for the instrument vector defining the additional conditional
moment constraints (2.2) explicitly permits circumstances in which the maintained instruments s, may

or may not be strictly included in the additional instruments s, or vice-versa.?

2.2 Test Problem

The maintained hypothesis is given by the conditional moment constraint Elum, (2, Bmo)|sm] = 0 (2.1)
and is assumed to hold throughout. The null hypothesis Hy of interest is consequently defined in terms

of the validity of the additional conditional moment constraints (2.2), i.e.,
Hy : E[ua(2, Ba0)|Sa] = 0 a.s. sq and Efum (2, Bmo)|sm] = 0 a.s. sm, (2.3)
with the corresponding alternative hypothesis H; given by

Hy : Eluq(z,84)|84] # 0 all B, € By, 8 € Sa, and Elum (2, Bmo)|sm] =0 a.s. sm (2.4)

4Nonparametric components are excluded from the moment indicator vector definitions. The theoretical analysis of the
paper could in principle be extended to deal with such models; see, e.g., Chen and Pouzo (2009, 2012).
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for some S, with non-zero probability content.

2.3 Examples

EXAMPLE 2.1 (CONDITIONAL HOMOSKEDASTICITY). This example concerns the conditional homoskedas-
ticity of the maintained conditional moment indicator vector u,, (z, 8, ); hence the maintained hypothesis
and additional instrument vectors are identical, i.e., s,, = s,. The additional conditional moment indi-
cator is defined by

Uq(2, Ba) = vech(Um (2, Bm)tm (2, Bm) — )

where vech(-) denotes the vectorised upper triangle of -. Thus J, = Jp,(J,,+1)/2 and B, = (8], vech(X))
includes the maintained parameter vector §,,. Let Xo(sm) = Elum (2, Bmo)um (2, Bmo)’|sm] and Xy =

Elum (2, Bimo)um (2, Bmo)’]- Therefore the null hypothesis may be expressed as
Hy : Xo(sm) = Yo and Elum (2, Bmo)|sm] = 0 a.s. s,

with alternative hypothesis Hy : Xo(sm) # 2 all p.d. X, s, € Sy, where S, has non-zero probability

mass, and Elunm (2, Bmo)|sm] = 0 a.8. Sp,.

REMARK 2.1. The standard instrumental variable (IV) linear regression model defines (2, 8m) =
y — Bmax, with J,, = 1 and thus J, = 1. With maintained unconditional moment indicator vector
SmUm (2, Bm) = Sm(y — Bma), continuous updating estimation (CUE) of ,,, Hansen et al. (1996),
uses the inverse of the sample moment matrix Y. | $mish,;(Yi — Bmxi)?/n as metric whereas, un-

der conditional homoskedasticity, the LIML metric, i.e., the inverse of 02(B,,) Y i} SmiSh,:/n, where

02(Bm) = >oi i (yi — Bmz;)?/n, is apposite.

EXAMPLE 2.2 (INSTRUMENT VALIDITY). In this example both maintained and additional conditional
moment indicators coincide, i.e., U, (2, Bm) = ua(z, Ba) with B, = B, and, thus, J, = J,,. The issue

here is the validity of the additional instrument vector s,. The null hypothesis is therefore defined by
HO : E[um(zvﬁmO)‘sa] = O au Sa7E[um(zyﬂmO)|5m} = O au Smy
with alternative hypothesis Hy : Efum(z, Bm)|sa] # 0 all B, € By, sa € Sa, where S, has non-zero

probability content, and E[u,(z, 80)|$m] = 0 all s,,.

REMARK 2.2. Blundell and Horowitz (2007) define an exogeneity hypothesis Efu,,|z] = 0, i.e., E[y|z] =
g(x), for the nonparametric regression model y = g (x) + 4, when the unknown structural function
g(+) is of primary inferential interest and importance, with x a vector of covariates, maintaining the

identifying conditional moment restriction E[um,|sm] = 0. As a consequence, the structural function

[4]



g(+) may be consistently estimated by nonparametric least squares (LS) thus avoiding the difficulties
associated with nonparametric IV estimation. Given that = but not s,, is included in s,, this hypothesis
might be considered a marginal form of exogeneity hypothesis (ME). In general, under ME, the structural
function g(x) will vary with s,, since E[y|z] # Ely|x, s»,]. Thus, if elements of the maintained instrument
vector s, are also of some economic significance, the regression function E[y|z, s,,] rather than E[y|x]
may then be of primary interest. In such circumstances, the alternative form of exogeneity hypothesis
Elupm|z, sm) = 0, ie., Elylz, s$;m] = g(x) or y conditionally mean independent of s, given x, would be
of empirical relevance; in this case, the maintained instruments s, are regarded as potentially omitted
variables from the regression function of interest. Cf. Blundell and Horowitz (2007) section 2.3, p.1040.
The inclusion of both s,, and z in s, constitutes a joint form of exogeneity (JE) and is more stringent
than ME.® For linear regression, see Remark 2.1 above, if E[y — Bm0z|s4] = 0, i.e., E[y|sa] = Bmoz, LS
estimation of (3,9 is consistent but inefficient in the presence of conditional heteroskedasticity, Cragg
(1983), with IV estimation incorporating the additional E[y — Bmox|se] = 0 and maintained Ely —

Bmox|sm] = 0 conditional moments efficient.

3 GMM and GEL Test Statistics
3.1 Approximating Conditional Moment Restrictions

Conditional moment constraints of the form (2.1) and (2.2) are equivalent to a countable number of
unconditional moment restrictions under certain regularity conditions; see Chamberlain (1987). The
following assumption, Assumption 1, p.58, of Donald et al. (2003), henceforth DIN, provides precise
conditions. The discussion is initially framed for a generic vector of instruments s and moment indicator
vector u(z, ).

For each positive integer K, let ¢"(s) = (q1x(5), ..., qxx (s)) denote a K-vector of approximating

functions.

AsSUMPTION 3.1. For all K, E[¢¥(s)q¢®(s)] is finite and for any a(s) with Ela(s)?] < oo there are

K-vectors yi such that as K — oo,
El(a(s) = ¢" (s)"vx)?] = 0.

Possible approximating functions which satisfy Assumption 3.1 are splines, power series and Fourier
series. See inter alia DIN, Newey (1997) and Powell (1981) for further discussion.
The next result, DIN Lemma 2.1, p.58, establishes a formal equivalence between conditional moment

restrictions of the type (2.1) and (2.2) and a sequence of unconditional moment restrictions.

5JE rather than ME has been a central concern in the literature on classical likelihood-based tests for (weak) exogeneity;
see inter alia Durbin (1954), Wu (1973), Hausman (1978), Engle (1982), Engle et al. (1983) and Smith (1994).

[5]



LEMMA 3.1. Suppose that Assumption 3.1 is satisfied and Elu(z, Bo) u(z, Bo)] is finite. If E[u(z, Bo)|s] =
0, then Elu(z, Bo)®¢% (s)] = 0 for all K. Furthermore, if E [u(z, 30)|s] # 0, then E[u(z, Bo)®@q¥ (s)] # 0
for all K large enough.

DIN defines the unconditional moment indicator vector as u(z,3) ® ¢%(s). By considering the mo-
ment conditions Efu(z, 8y) ® ¢¥(s)] = 0, if K approaches infinity at an appropriate rate, dependent
on the sample size n and the estimation method, EL, IV, GMM or GEL, DIN demonstrates that un-
der certain conditions these estimators are consistent and achieve the semi-parametric efficiency lower
bound. To do so, however, requires the imposition of a normalization condition on the approximating

functions, DIN Assumption 2, p.59, which now follows. Let S denote the support of the random vector s.

ASSUMPTION 3.2. For each K there is a constant scalar ((K) and matriz Br such that ¢ (s) =
BiqX(s) for all s € S, sup,cs |5 (s)|| < C(K), E[G%(s)§% (s)'] has smallest eigenvalue bounded away
from zero uniformly in K and VK < ¢ (K).

Hence to formulate a test statistic appropriate for the null hypothesis (2.3) requires that its con-
stituent conditional moment constraints, E[um, (2, Bmo)|sm] = 0 (2.1) and Elus(2, Bao)|sa] = 0 (2.2), are
re-interpreted as suitably defined sequences of unconditional moment restrictions based on Assumptions
3.1 and 3.2. The maintained conditional moment restrictions (2.1) are re-expressed as the sequence of

Jm K unconditional moment restrictions
E[Um(%ﬁmo) & Qﬁ(sm)] =0,K — oo, (31)

for approximating functions g% (s,,) satisfying Assumptions 3.1 and 3.2. Likewise let ¢} *(s,) be a M K-
vector of approximating functions that depends on s, and that also satisfies Assumptions 3.1 and 3.2,
where for ease of exposition M is a positive integer. Thus the additional conditional moment restrictions

(2.2) are rewritten as the sequence of J,M K unconditional moment restrictions
Elua(z, Bao) @ @2 (s4)] = 0, K — oo. (3.2)

The null hypothesis (2.3) is then formally equivalent to the sequence of (J,, + J,M)K unconditional



moments®
Elum (2, Bmo) ® qﬁf(sm)] =0, E[uq(2, Bao) ® qul\/[K(sa)] =0,K — oo. (3.3)

REMARK 3.1. Strictly speaking, the succeeding theoretical analysis requires the dimension of ¢ (.),
the integer d,, (K) say, should satisfy limg .o dg, (K) /K = M, M a positive constant, e.g., dg, (K) =
[M K], i.e., the same order as that of ¢ (-). The multiplicative choice M K with M a positive integer is
adopted for simplicity and for ease of implementation and exposition. Restricted test statistics for (2.3)
defined in section 3.3 below are expressed as (or are asymptotically equivalent to) the difference of an
unrestricted statistic and a statistic apposite for testing the maintained conditional moment restrictions
(2.1); see section 4. Their respective large sample behaviours are determined by the relative number of
approximating functions used to express the null and maintained hypotheses in unconditional form. If
the dimension of g™ (.) diverges at a rate different from that of ¢ (-), the limit theory used in sections 4
and 5 to establish the asymptotic behaviour of the unrestricted statistic under null and local alternative

hypotheses no longer applies.

EXAMPLE 2.1 (CONDITIONAL HOMOSKEDASTICITY CONT.). Recall that us(z, 8,) = vech(um (2, Bm)tm (2, Bm) —
Y) with 8, = (B},,vech(X)")’. In this case s, = sy, and thus the additional approximating functions
are defined as ¢M% (s,) = ¢%(s,,). Therefore M = 1. Hence, the null hypothesis Hy : $o(s,,) = 2o,

Elum (2, Bmo)|sm] = 0 is re-expressed in unconditional form as
E[ua(zv ﬁa()) ® qg(sm)] =0, E[um(zv ﬂmO) ® qnfg(sm)] =0,K — oo.

EXAMPLE 2.2 (INSTRUMENT VALIDITY CONT.). Recall that u.(z, 8,) = um(z, Bm) with J,,, = J, and
Ba = Bm- The vector of additional approximating functions is ¢ (s,) with dimension M K. Thus, the
null hypothesis Hy : E[um (2, Bmo)|Sa] = 0, Eltm (2, Bmo)|sm] = 0 is re-expressed in unconditional form
as

Elum(z, Bmo) ® qu(sa)} =0, E[um(2, Bmo) ® qg(sm)] =0,K — oo.

REMARK 3.2. For regression the special cases ME s, = = with ¢¥(s,) functions of = only and JE

Sa = (8m,x) with ¢M¥(s,) additional functions of s,, and x are of particular interest.

8To illustrate the construction of ¢ (s,n,) and ¢M¥ (s,) for polynomial approximating functions suppose s;, and sq
have dgm elements in common. Let the approximating functions vector qﬁ(sm) for the maintained conditional moment
restrictions (2.1) be a polynomial of order k,, — 1 which yields K = k% . Thus kn could be chosen as [K1/dm] + 1 for
given K. Similarly let the components of the vector of approximating functions ¢M* (s,) for the additional conditional
moment restrictions (2.2) corresponding to the dgm elements in common between s, and s, be formed from a polynomial
of order ko, — 1. Also suppose a polynomial of order k, excluding the constant term is used for those components
corresponding to the dg — dgm unique elements in s,. Then the dimension of the vector of %pproximating functions
MK (s,) is kdam ((kq + 1)%a=dam — 1), Therefore the order of the dimension of ¢M X (s,) is k2. Examples: (a) ME:
dam = 0; thus MK = (ko + 1)% — 1, e.g., do = 1, MK = ka. (b) JE: dam = dm; thus MK = k3™ ((kq + 1)da=dm — 1),
e.g., dm =1, dq =2, MK = k2. For the general case this suggests choosing k, = [(MK)1/da] + 1.



3.2 Basic Assumptions and Notation

Let 8 denote the distinct elements of 3, and £, with 5y and the composite parameter space 53 defined
similarly with p the number of parameters comprising 8. The vector s collects the distinct elements
of the maintained and additional instrument vectors s, and s,. Also let u(z,3) and ¢ (s) denote the
non-redundant elements of wu,,(z, B,,) and u,(2, 3.) and ¢X (s,,) and ¢M¥ (s,) respectively. It will be
helpful to define a number of f.r.r. selection matrices S, S% and S%,, S%; viz.,, S“u(z, 8) = um(z, Bm),
SUu(z, B) = ua(2, Ba) and S9,q% (s) = ¢ (sn), Siq¥ (s) = ¢M % (s,).” Correspondingly S,, = S% ® S,
and S, = S ® S¢ are both fr.r. selection matrices. Importantly for the theoretical analysis under-
pinning the results in the paper, the unconditional forms of moment indicator vectors corresponding to
the maintained and null hypotheses, cf. (3.1) and (3.3), may be expressed as S, (u(z, ) ® ¢’ (s)) and
S(u(z, B) ® ¢%(s)) respectively where S = (5!, 5")". Necessarily S is n.s. otherwise either u(z, 3) or

¢ (s) would contain redundant elements.

EXAMPLE 2.1 (CONDITIONAL HOMOSKEDASTICITY CONT.). Here u(z,8) = (um (2, Bm)s ta(z, Ba)")
and qK(S) = qnlg(sm). Hence S,qn = Sg = IK and SﬁL = (IJm’O(JmXJa))v Sau = (O(JaXJm)7IJa)' The
unconditional form of the moment indicator vector corresponding to the null hypothesis Hy : 3¢ (s,,) =

Yo, Elu(z,Bo)|sm] = 0 is then

S(u(z, B) @ ¢%(s)) = ( zmgjgmf ) D gl (sm), K — o0,

with that for the maintained hypothesis expressed as S, (u(z, 8)®¢% (s)) = um (2, Bm)@¢E (8m), K — oo.

EXAMPLE 2.2 (INSTRUMENT VALIDITY CONT.). Here u(z,) = uq(2,8s) = tm(z, Bm) with J,, =
Jo and B = B, = Bp. Thus S}, = Sy = I, and S%, = (Ix,0xxmk)), S = (Omrxk), ImK)-
The unconditional moment indicator vector w, (2, Bm) @ (¢X (s,)", ¢ (s4)’)’ corresponding to the null

hypothesis Hy : E[tum(2, Bmo)|sa] =0, E[tum (2, Bmo)|sm] = 0 may equivalently be re-arranged as

K
Stule. )@ ) = (S ) K

with that for the maintained hypothesis given by Sy, (u(z, 8) ® ¢ (5)) = um (2, Bm) ® ¢ (5m), K — oo,

as above.

Standard conditions are imposed to derive the limiting distributions of the test statistics discussed

below; viz.

7The row and column dimensions of the selection matrices SZ, and S¢ depend on K but to avoid a burdensome notation
this dependence is not made explicit.



ASSUMPTION 3.3. (a) The data are i.i.d.; (b) there exists By € int(B) such that Elun (2, fmo)|sm] =0
and Efua(2, Bao)lsa] = 0; (€) vi(B — o) = Op(1); (d) Elsupsess (2 DI |s] is bounded

Unlike DIN Assumption 6(b), p.67, it is unnecessary to impose E[supgcg ||lu(z,)||"] < oo for some
v > 2 for GEL; see Guggenberger and Smith (2005).8

REMARK 3.3. Assumption 3.3(c) requires only a root-n consistent rather than an efficient estimator B
of By. Global identification of Sy and thus root-n consistency of GMM and GEL are not necessarily
guaranteed if based on an arbitrary finite set of unconditional moments derived from the conditional
moment restrictions; see, e.g., Dominguez and Lobato (2004) and Hsu and Kuan (2011). If 8y € B
uniquely satisfies E[u(z,S)|s] = 0 a.s., 8 € B, Lemma 3.1 guarantees global identification of 3y for
sufficiently large K and root-n consistency of GMM and GEL follows with the imposition of the addi-
tional assumptions described in DIN section 5, pp.64-67, if Assumptions 3.1 and 3.2 on the vector of
approximating functions ¢ (s) are satisfied. See also Kitamura et al. (2004). Dominguez and Lobato
(2004) and Hsu and Kuan (2011) also propose root-n consistent GMM-type methods based on particular

classes of unconditional moment constraints.

Define ug(z, 3) = du(z, 8)/0B', D(s) = Elug(z, 8)|s] and ugg;(z, 8) = 0%u;(z,8)/0B0p', j = 1,..., J,
where J denotes the dimension of u(z,3).? Also let A/ denote a neighbourhood of f3.

ASSUMPTION 3.4. (a) u(z,[3) is twice continuously differentiable in N, Elsupge lug(z,B8)|1%|s] and
Elllugs; (2 B)|I*Is], ( =1, ..., J), are bounded; (b) X (s) = Efu(z, Bo)u(z, Bo)'|s] has smallest eigenvalue
bounded away from zero; (c) E[supge [|u(z, B)||* |s] is bounded; (d) for all B € N, |Ju(z, B) — u(z, Bo)|| <
5(2) |8 = Boll and E[5(2)?|s] is bounded; (e) E[D(s) D(s)] is nonsingular.

3.3 Test Statistics

Let gmi(Bm) = Sm(u(zi; 8) @ ¢ (5i)) = wm(zi,Bm) @ @i (5mi)s gai(Ba) = Sa(u(zi, 8) © ¢%(si)) =
Ua(2i, B) @ g (s4:) and g;(8) = S(u(z, B) ® ¢%(s;)), (i = 1,...,n). Write §m(Bm) = Y i) Gmi(Bm)/n
and §(8) = 32, 9:(B)/n.

GMM statistics appropriate for tests of maintained and null hypotheses expressed unconditionally in

(3.1) and (3.3) take the standard forms

T&viar = 1dm (Bn) G (Bin) (3.4)

8Supplement Lemma, S.1 may be substituted for DIN Lemma A.10, p.82, rendering v = 2 sufficient for the succeeding
DIN lemmas and theorems concerned with GEL.

9Nonsmooth moment indicators could be accommodated by appropriately modifying the theoretical analysis. See, e.g.,
Chen and Pouzo (2009, 2012) and Parente and Smith (2011).

[9]



and

Ty = n9(B) Q" 0(8), (3.5)
where Bm denotes the subvector ofB corresponding to S, 0, = Dy gmi(Bm)gmi (Bm)’/n and Q) =
Dy 91(5)%(/3)//” Cf., for example, DIN section 4, pp.63-64.

In the remainder of the paper tests that fully incorporate the information contained in the maintained
hypothesis (2.1), or (3.1), in their formulation are referred to as restricted tests whereas those that
partially or completely fail to do so are termed unrestricted tests.

A restricted GMM statistic appropriate for testing the null hypothesis (2.3) against the maintained
hypothesis (2.4) may be based on the difference of GMM criterion function statistics (3.5) and (3.4) for
the respective revised hypotheses (3.3) and (3.1), cf. Eichenbaum et al. (1988), Appendix C, pp.74-76,
in particular, (C.1), p.75; viz.

I = TGgMM - TCE‘]}\Y;[M — (JoMK — (p — pm))
V2(JME = (p = pm))

where p — p;,, is the number of additional parameters in §, defining the additional conditional moment

: (3.6)

conditions (2.2) as compared with the maintained hypothesis (2.1) parameters (,,.

REMARK 3.4. For fixed and finite K, under suitable conditions, GMM, Newey (1985) and Eichenbaum et
al. (1988), and GEL, Smith (2011), test statistics for the validity of additional moment restrictions, e.g.,
TEvn — T8 are asymptotically chi-square distributed with J,MK — (p — py,) degrees of freedom.

The mean location J,M K — (p — py,) and standard deviation scale \/2(J,MK — (p — py,)) standardis-
ations of 79,,,; — 78w in J” (3.6) mimic those introduced to render chi-square random variates with

large degrees of freedom approximately standard normally distributed.

A number of alternative test statistics to GMM-based procedures for a finite number of additional
moment restrictions using GEL, Newey and Smith (2004) and Smith (1997, 2011), may be adapted for
the framework considered here. As in DIN and Newey and Smith (2004) let p(v) denote a function of a
scalar v that is concave on its domain, an open interval V containing zero. Define the respective GEL

criteria under null and alternative hypotheses as

PBA) = Y [pNgi(B) — pol/n,
A n
P B d) = 30 [0Woni () — ol (37)
where X\ and \,,, = S, A are the corresponding (J,,, + J,M) K- and J,,, K-vectors of Lagrange multipliers

associated with the unconditional moment constraints (3.1) and (3.3). Let p;(v) = & p(v)/0v? and p; =

p;(0), (j =0,1,2,...) where, without loss of generality, the normalisation p; = py = —1 is imposed. !0

10FEL is GEL with p(v) = log(1l — v), Imbens (1997), Qin and Lawless (1994) and Smith (2000). ET is also GEL with

[10]



Let A% (B) = {Am : Noygmi(Bm) € V, i = 1,...,n} and A9(B) = {\: Ngi(B) € V, i = 1,....n}.
Given S, the respective Lagrange multiplier estimators for A, and A are defined by

Am(Bm) =arg  max P9 (B, Am), A(B) = arg max PJ(B,N).
Am EAZ™ (Bm) AeAL(B)

The corresponding respective Lagrange multiplier estimators for A, and A are then defined as A =
Am(Bm) and A = A(f), cf. Assumption 3.3(c),

Similarly to the restricted GMM statistic J" (3.6), a restricted form of GEL likelihood ratio (LR)
statistic for testing the null hypothesis (2.3) against the maintained hypothesis (2.4) may be based on

the difference of GEL criterion function (3.7) statistics; viz.

- 2n(PY(B,A) =PI (Bins Am)) — (JaM K — (p —pm))_ (3.8)

\/Q(JaMK - (p - pm))

Restricted Lagrange multiplier, score and Wald-type statistics are defined respectively as'!

o (A= SL A QN = S8 A — (MK — (p—pi))

M V20K — (0 —pn)

: (3.9)

Yoy PL (N Gmi (Bm))ai (Ba) Sa 185 320 p1 (N gmi(Bm))gai (Ba) /1 = (JaM K — (p — pm))
V2(J.MK — (p — pm)) (3.10)

S =

and

nj‘/stlz(saﬂilstlz)ilsaj‘ B (JaMK - (p - pm))
\/2<JaMK - (p _pm)) .

An additional assumption on the GEL function p(-) is required for statistics based on GEL as in DIN

W=

(3.11)

Assumption 6, p.67.

ASSUMPTION 3.5. p(-) is a twice continuously differentiable concave function with Lipschitz second

derivative in a neighborhood of 0.

p(v) = —exp(v), Imbens et al. (1998), Kitamura and Stutzer (1997), as is CUE if p(-) is quadratic, Hansen et al. Yaron
(1996); see Theorem 2.1, p.223, of Newey and Smith (2004). More generally, members of the Cressie-Read (1984) power
divergence family of discrepancies discussed by Imbens et al. (2008) are GEL with p(v) = —(1 + yv) Y TD/7 /(5 + 1); see
Newey and Smith (2004), Section 2.1, pp.223-224.

11 Alternative restricted score and Wald statistics robust to estimation effects may be defined; viz.

o S (M gmi (Be))gi (B (71 — QIG(EQTIE) T ) T 1 (Vg (Bin)) i (B)/m — (JuME — (p — pm))

S" =
\/2(JaMK - (p 7pm))

Yy — MAa(Sa(Q71 = QGG QI TGOS T A = (JaME = (P = pm)).
\/2(JaMK - (p 7pm))

See Smith (1997, section II1.2, pp.511-514) and Smith (2011, section 5, pp.1209-1213).




4 Asymptotic Null Distribution

The following theorem provides a statement of the limiting distribution of the restricted GMM statistic
J" (3.6) under the null hypothesis Hy (2.3).

THEOREM 4.1. If Assumptions 3.1-3.4 hold and if K — oo and ¢ (K)* K2/n — 0, then J" <, N(0,1).

The next result details the limiting properties of the restricted GEL-based statistics for the null
hypothesis (2.3) and their relationship to that of the GMM statistic J" (3.6).

THEOREM 4.2. Let Assumptions 3.1-8.5 hold and suppose in addition K — oo and ((K)?K3/n — 0.
Then LR, LM", 8" and W™ converge in distribution to a standard normal random variate. Moreover

all of these statistics are asymptotically equivalent to J".

REMARK 4.1. The large sample analysis in section 5 of the local alternative behaviour of restricted
and unrestricted statistics discussed below indicates that one-sided tests of the null hypothesis Hy
(2.3) are appropriate. E.g., the critical region {J" > z,} for the standardised GMM statistic J"
(3.6) has asymptotic size o where P{N(0,1) > z,} = «a. Alternatively, valid critical regions based
on non-standardised statistics may also be defined. E.g., for 75,,,, — 787, the critical region
{280 — T8 = X?IQMKf(pfpm)(a)} where 2 () is the a-level critical value of the chi-square distri-
bution with & degrees of freedom.'? Note that p — p,, is negligible in the large K, large n asymptotic
analysis of Theorems 4.1 and 4.2.

Unrestricted statistics fail to take into account some or all of the information contained in the main-
tained hypothesis (2.1) in their formulation. The standard forms of unrestricted GEL-based statistic,

cf. Aitchison (1962), do not incorporate the component of the restricted statistic corresponding to the

1270 see this let the statistic Sy, (k) be such that Sy, (k) 4 Xi(k)’ n — oo, for fixed k where d(k) is the associated degrees

of freedom. Define ) (@) )
_ b% a) —d(k
= Sn(k) — d(k) and z(a) = Zdk) T VY

2d(k) \/2d(k)

Assume that there exists a sequence k, — oo such that Z,(ky) A N(0,1), n — oo. Consider the critical region
{Sn(kn) > Xfl(kn)(a)}, Since limy — o0 Prn{Zn(kn) > za} = a,

Zn (k)

lim Pnp{Sn(kn) > Xi(kn)(a)} = nli_)moo PrAZn(kn) > 2k, (@)}

n—o0

= lim Pn{Z'n(kn) Z Z(!} =o.

n—

The second equality follows from Zj (kn) <, N(0,1), the absolute continuity of the N(0,1) distribution function and

limy, o0 2, (@) = 2a.

[12]



maintained hypothesis (2.1), c¢f. LR" (3.8), LM" (3.9) and S" (3.10); i.e.,
20Pg(B,A) — (JuMK + JnK) — p)

— 7 4.1
V2((JuMK + J,, K) — p) -y
g = YO = (JMEK + T K) — p) (4.2)
V2((JuMK + J,,K) — p)
with the score form based on 74,,,, (3.5)
g _ 10 O906) — (MK + 1K) ~p) 43

V2(JME + JK) —p)
By a similar analysis to that used to establish Theorems 4.1 and 4.2 the statistics LR", LM" and S*
converge in distribution to a standard normal random variate and are mutually asymptotically equiva-

lent but not to the restricted statistics above.!3

REMARK 4.2. Other forms of unrestricted statistics may also be defined that incorporate the maintained
information (2.1) to a lesser extent than restricted statistics, e.g., a GMM statistic solely based on the
additional conditional moment restrictions (2.2); wviz.

T = TC??WM — (JaMK — pa)
2(J,MK — p,)

: (4.4)

where 795, = nda(Ba)' Q2  9a(Ba) with B, the subvector of 3 corresponding to Ba, ja(Ba) = S
9ai(Ba)/n and Qu = 3°7" | 9ai(Ba)gai(Ba)’ /n. GEL forms LR, LM and S* follow similarly; cf. (4.1),
(4.2) and (4.3) respectively. The proofs of Theorems 4.1 and 4.2 may be adapted to demonstrate
that these statistics each converge in distribution to a standard normal random variate and are mutually

asymptotically equivalent but not to the restricted statistics or the unrestricted GEL class defined above.

This section concludes with an asymptotic independence result between the restricted GMM statistic

JT for testing (2.3) and the corresponding statistic for testing the maintained hypothesis (2.1); wviz.

T = TC%;IM - (JmK _pm)

2(JmK_pm) (45)

THEOREM 4.3. If Assumptions 3.1-3.4 hold and if K — oo and ¢ (K)* K2/n — 0, then (a) J™ <
N(0,1) and (b) J" is asymptotically independent of J™.

A similar result holds for the associated restricted GEL statistics LR", LM", 8" and W" and their

counterparts for testing (2.1) if the additional assumption ((K)?K3/n — 0 is imposed.

13These unrestricted statistics are apposite for a joint test of the additional (2.2) and maintained (2.1) conditional
moment restrictions. The statistics LR" and S* are forms of GMM and GEL statistics suggested in DIN section 6,
pp.67-71, adapted for testing the null hypothesis (2.3).
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REMARK 4.3. The practical import of Theorem 4.3 is that the overall asymptotic size of the test se-
quence for (2.1) and (2.2) may be controlled, e.g., (a) test (2.1) using J™; (b) given (2.1), test (2.2)
using J", with overall asymptotic test size 1 — (1 — o, )(1 — o), where «,,, and a, are the respective

asymptotic sizes of the individual tests in (a) and (b).

REMARK 4.4. The asymptotic independence of J" and J™ mirrors that of classical and unconditional
moment GMM and GEL tests for a sequence of parametric restrictions; see Newey (1985) and Smith
(2011). Indeed the unrestricted statistic J* is the sum of suitably rescaled restricted J" and maintained
hypothesis J™ statistics; cf. the decomposition of standard unrestricted classical or GMM and GEL

statistics for parametric restrictions.

5 Asymptotic Local Power

This section considers the asymptotic distribution of the statistics of the previous sections under a
suitable sequence of local alternatives. Critically, this discussion demonstrates the deficiency in terms of
asymptotic local power of unrestricted tests which fail to fully incorporate the maintained conditional
information (2.1) and thereby the superiority of restricted tests.
The set-up is similar to that in Eubank and Spielgeman (1990) and Hong and White (1995), see also
Tripathi and Kitamura (2003), utilising local alternatives to the null hypothesis (2.3) of the form
VI MK
Vn

where 5,0 € B is a non-stochastic sequence such that £, ¢ — fo. It is assumed that E[&,,(s)|sm] =0,

Hip : Elu(z, Bno)ls] = £(s), (5.1)

where &,,(s) = S™£(s), thus ensuring that the maintained hypothesis Flunm (2, Bmo)|sm] = 0 (2.1) is not

violated.

REMARK 5.1. The sequence of local alternatives (5.1) is particularly apposite for the instrumental
validity Example 2.2 in which u(z, 8) = um(z, Bm) = ua(z,Ba) with 8 = B, = B,. If the maintained
instruments s,, are a subvector of s, i.e., s = $4, E[£()|sm] = 0. Similarly, when s, is not a subvector of
Sq, the relevant sequence of local alternatives to Elu(z, 5o)|sm] = 0 is the expectation of (5.1) conditional
on Sg, i.e.,

VI MK

E[u(zv Bn,O) |5a] = TEE(S) |Sa]'

The asymptotic local alternative distributions of the statistics described above are obtained under

the following assumption.

ASSUMPTION 5.1. (@) Bn,0 s a non-stochastic sequence such that (5.1) holds and 5, 0 — Bo; (b) N
577,,0) = Op(]-); (C) Jorall B € N, E(S; 5) = E[u(zv ﬁ)u('Z? ﬁ)l|s] and Em(snﬁ Bm) = E[um(za ﬁm)um('za 5m)/|5m}
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each have smallest eigenvalue bounded away from zero; (d) ||€(s)| is bounded; (€) X(s;8), Zm(Sm; Bm)
and D(s; ) = Elug(z,08)|s], Dm(Sm;Bm) = Elumga(z, Bm)|sm] are continuous functions on a compact
closure of N.

The next result summarises the limiting distribution of the restricted statistics J", LR", LM", 8"
and W™ under the sequence of local alternatives (5.1). Let X(s) = X(s; 5p).-

THEOREM 5.1. Let Assumptions 3.1-3.4 and 5.1 hold, K — 0o and ((K)?K?/n — 0. Then J" converges
in distribution to a N(u"/v/2,1) random variate, where

"= E[g(s)3(s) 7 E(s)].

If additionally Assumption 3.5 is satisfied and ((K)*K3/n — 0, then LR", LM", 8" and W’ are as-
ymptotically equivalent to J".

REMARK 5.2. Since u” > 0 tests of the null hypothesis Hy (2.3) based on these statistics should be
one-sided. Although not discussed here, a similar analysis to that underpinning DIN Lemma 6.5, p.71,
demonstrates the consistency of tests based on the statistics J", LR", LM", 8" and W".

The following corollary to Theorem 5.1 details the limiting distribution of the standard forms of
unrestricted statistics LR" (4.1), LM" (4.2) and S* (4.3) under the same local alternative sequence
(5.1).

COROLLARY 5.1. Let Assumptions 3.1-3.4 and 5.1 hold and ((K)*K?/n — 0. Then S converges in
distribution to a N(u*/v/2,1) random variate, where

u JGM Id
R V3 B A

If additionally Assumption 3.5 is satisfied and ((K)?K3/n — 0, then LR", LM" are asymptotically

equivalent to S™.

REMARK 5.3. Since u" > p* Corollary 5.1 demonstrates that for fixed M restricted tests dominate
the standard unrestricted tests in terms of asymptotic local power. Other unrestricted tests that par-
tially or completely fail to incorporate the maintained conditional moment information (2.1) in their
formulation are likewise relatively deficient. For example, using a similar analysis to that for Theorem
5.1, the GMM statistic J¢ (4.4) and associated GEL statistics LR®, LM® and S* may be shown to

converge in distribution under the local alternatives sequence (5.1) to a N(u®/v/2,1) random variable,
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where p® = E[£(s)'SY(SuS(s)SY)~1S4£(s)]. Hence pu” — p® > 0. Therefore, tests based on these and

other unrestricted statistics are asymptotically less powerful relative to restricted tests.

REMARK 5.4. Corollary 5.1 also shows that the difference in local asymptotic power between restricted
and unrestricted tests declines with increasing M since the noncentrality parameter u* would differ little
from p" with consequential similar discriminatory power for both standard unrestricted and restricted

tests for local departures from the null hypothesis Hy (2.3).

REMARK 5.5. Theorem 5.1 and Corollary 5.1 provide no guidance for the choice of M. The effect
of M on power for given sample size n and K will depend on the specific alternative hypothesis and

correspondingly the relevance of any additional unconditional moment functions included by increasing

MK
a

M. More precisely, the efficacy in terms of power of including extra elements in ¢;** (s4), i.e., increasing
M, for given n and K, will depend on the correlation between these extra elements and the conditional
expectation Flu(z, By)|s]. If this correlation is zero or weak then, although not strictly speaking ap-
plicable here, an asymptotic local power analysis for the unconditional moment context would indicate
that power should be expected to be diminished since test chi-square degrees of freedom will increase
with M but the noncentrality parameter will remain relatively unaltered. Cf. Newey (1985) section 3,
pp-238-244, in particular, the discussion following Proposition 6, p.242. If this correlation is strong there
will be a trade-off between increases in both degrees of freedom and noncentrality parameter with power
potentially enhanced. Simulation evidence reported next in section 6 suggests that for a given sample
size n and fixed value of K the correspondence between empirical and nominal test size deteriorates with

increasing M ; a similar deterioration is also observed for size-corrected empirical power but it should be

emphasised against specific sets of alternatives.

6 Simulation Evidence

This section reports the results from a simulation study to assess the performance of some of the tests
for ME and JE forms of instrument validity in the linear regression model, see Example 2.2, based on the
GMM and GEL statistics developed in previous sections. To provide a realistic setting, the investigation
is based on an application to a dataset where the issue of instrument validity is of some interest and
importance.

Overall these experiments revealed that nominal size is approximated relatively more closely by
the empirical size of (a) the non-standardised tests, see Remark 4.1, and (b) tests based on efficient
estimators, cf. Tripathi and Kitamura (2003), although Assumption 3.3(c) only requires /n-consistent
estimation. Consequently, only results for these forms of statistics are presented. The Wald test statistic

W™ (3.11) and score test statistic S” (3.10) are also excluded for similar reasons. Likewise, only the
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results for restricted tests are reported as they dominate the unrestricted forms in terms of empirical
power reflecting their theoretical superiority; see Corollary 5.1.14

All experiments concern a parametric specification for the Engel curve relationship between the
expenditure share of leisure services y and the logarithm of total expenditures x and employ the same
data as those in Blundell and Horowitz (2007). These data correspond to a subsample of the household-
level observations from the British Family Expenditure Survey and consist of a sample of 1518 married
couples with one or two children and an employed head of household. Since many parametric Engel
curve specifications are often linear or quadratic in x, see, e.g., Muellbauer (1976) and Banks et al.

(1997), the experimental basis here is the linear regression model
y = Bo + frx + Paz” + u. (6.1)

The maintained instrument s,, is the annual income from wages and salaries of the head of household.
Thus 8 = B = Ba = (Bos Brs Ba)'s Ja = Jun = 1 and w(z, 8) = thn (2, Bn) = ta(2, Ba) where u(z, B) =
y — Bo — Biw — B22?; see Example 2.2. Cf. Blundell and Horowitz (2007) section 5, p.1051.

The regression design incorporates both ME and JE forms of additional conditional constraint restric-
tions (2.2); see Remark 2.2. Therefore the hypotheses of interest are as follows. First, the maintained
hypothesis (2.1) Eluls,,] = 0. Secondly, the additional conditional moment constraints (2.2): ME

Elulz] =0, i.e., s, = z, and JE E[u|sy,,z] =0, i.e., g = (Sm, ).

6.1 Experimental Design

The parameter vector 3 is estimated using the full data set by efficient two step (2S) GMM, with weight
matrix computed using two stage least squares with the single instrument s,,, see DIN section 4, pp.63-
65, based on the maintained conditional moment restriction E[u(z, 5)|s,,] = 0. The maintained 2SGMM
vector of approximating functions is ¢Z (s,,) with K = 25.15 2SGMM estimates are denoted as 35, 3¢
and 35 with 2SGMM residual u® =y — 3§ — B¢z — 3522

The structure of the data generating process underpinning the design is similar to that in Blundell and
Horowitz (2007) section 4, pp.1049-1051. To ensure that the maintained hypothesis Efu(z, 8)|sm] = 0

holds in the sample consider the residual from a nonparametric series regression of u® on s,, for the full

14The full set of simulation results is available from the authors upon request.
15Efficient 23GMM estimates are

g=— 129 4+ 0.629x — 0.0609 2.
(0.662)  (0.268) (0.0269)
Estimated standard errors are in parentheses. Tests for ME Elu|z] = 0, i.e., s¢ = z, and JE Elu|sm,z] = 0, i.e.,

sa = (8m, ), discussed in section 6.1.3 were conducted on the full data set using the value K = 8 indicated by the rule
in section 6.2 below. All ME tests rejected the null hypothesis at nominal levels 0.01, 0.05 and 0.10 for M = 1 and at
levels 0.05 and 0.10 when M = 2 providing further support for the results reported in section 5, p.1051, of Blundell and
Horowitz (2007). At nominal level 0.01 for M = 2 tests based on the GEL LR-type, LM-type and Wald statistics failed

to reject the ME null hypothesis whereas those based on the statistics J™, LRM , and ll’RIgIUE( amL) evaluated at EL and

———M
ET estimators, LM and score statistics did reject at the 0.01 level. These latter tests are precisely those that displayed
a close correspondence between empirical and nominal size in the experiments reported below. All tests for the JE null
hypothesis E[u|sm,z] = 0 rejected at nominal levels 0.01, 0.05 and 0.1 for both M =1 and 2.
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1

m

data set, i.e., uét = u®—¢2>(s;) (Q25(5m) ' Q25(5m))”~ Qa5(8m) u’, where ~ denotes a generalised inverse
and Qa5(5m) = (€22 (Sm1); s G20 (Sm1s18))’ With the vector ¢2°(s,,) defined below in section 6.1.1 for n =

1518. Hence E[ut’|s,,] = 0 approximately; see, e.g., Newey (1994) section 3, pp.6-8. To impose the JE

hypothesis E[u(z, 8)|sq] = 0, where s, = (s, ), the error term u¢" is obtained as the residual from the
nonparametric series regression of u® on s, and z, i.e., ust, =u® — ¢*(s)' (Q25(s)'Q25(s))” Qa5(s) u’,

where Qa25(s) = (¢*°(s1), -, ¢*°(s1518))" with ¢%°(s) = (¢2°(sm)’,¢*°(s4)"), and then generating the

dependent variable as y™¢ = (3§ + B{z + B52* + uS,. Then E[ut |s,] = 0 and E[ut’,|sp, 2] = 0

approximately. Deviations from the JE null hypothesis are formulated as in y™¢ = ﬁS+ﬁfx+ﬁ§x2+u§mx,

where u¢ , = Ssz(ugiz + p(uii —ust ))/sym® with s%7% and s5m® the standard deviations of uﬁiz

mT Sm T

and ugim + p(ugi — ugim) respectively.

Experimental data are generated as random samples of size n from (S, z;, y1"¢), (i = 1,...,1518);
simulation random samples are denoted by z; = ($mi, i, y1"¢), (i = 1,...,n), below. Empirical test size
is examined for sample sizes n = 200, 500, 1000 and 1500 with nominal sizes 0.01, 0.05 and 0.10. Sample
sizes of n = 200 and 500 only are considered in those experiments concerned with empirical power. All

experiments employ 5000 replications and were programmed using MATLAB.

6.1.1 Approximating Functions

Legendre polynomials are used to form the approximating functions in the simulations because of their

good collinearity properties, see Belloni et al. (2015) Example 3.1, p.8, and are defined as

Po(v) = 1,P1(v) =,
2 1vP, —rP,_
Pyt (v) = (2r + Do r(i)l " 1(U),r:1,2,3,...

where v € [—1,1]; see Abramowitz and Stegun (1970) eq. 8.5.3, p.334.16 Since neither s,, nor z
has support [—1,1] the transformations §,, = 2® (Ssi) —1and z = 29 (‘S;"z) — 1 are employed

where @ (-) is the N(0,1) cumulative distribution function; for a given replication of sample size n,
S = S0 Smi /1 Ss, = oy (Smi — 5m)? /noand T =0 ai/n, sy = S0, (v — 2)* /01T

The maintained conditional moment FElu(z,)|sn], cf. (2.1), is approximated using the vector of
functions ¢~ (s,,) with elements P;(5,,), (j = 0,..,K —1). For ME Elu(z, 8)|z] is approximated
using a polynomial of order MK in z, i.e., ¢M%(s,) has elements P.(%), (k = 1,..., MK). The JE
case E[u(z,8)|54], 5a = (8m,x), uses the [(MK)'/?]2-vector of approximating functions ¢M* (s,) with
elements P;(3,,)Px(2), (k = 0,..,[(MK)'? — 1,1 = 1,...,[(MK)'/?]) resulting in the null hypothesis

vector of approximating functions ¢’ (s) = (¢& (sm)’, ¢2 ¥ (s4)")’. See fn. 6.

16T0renz (1986) Theorem 8, p.90, establishes the requisite uniform convergence for polynomial approximating functions;
cf. Assumption 3.1.
17"We are grateful to V. Chernozhukov for this suggestion.
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6.1.2 Estimators

Efficient estimation methods examined include 2SGMM (GMM) with weight matrix computed as above,
continuous updating (CUE), empirical likelihood (EL) and exponential tilting (ET). The subscripts MA,
ME and JE indicate estimation incorporating maintained, ME and JE restrictions respectively.

GMM, CUE and ET are computed using the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm of
MATLAB. EL is more problematic because in some samples for particular BFGS EL estimates BEL the con-
vex hull condition HZ:; #PLg(z;, Br) H < 10~* may not be satisfied where the EL implied probabilities
FEL = 1/n(1 + Ny g(zi, Ber)), (i = 1,...,n), and the EL Lagrange multiplier Ag;, = —Q1§(Bgr) with
Q=37 7% (24, Ber)g(zi, Ber) and §(8) = 21, g(zi, B)/n; see Newey and Smith (2004) Theorem
2.3, p.224. Hence EL is computed using the matElike MATLAB package with the optional Zipsolver pack-
age; see Zedlewski (2008).1® In the case of non-convergence, EL is computed employing BFGS applied to
the EL dual problem with the Lagrange multiplier obtained using MATLAB code based on Owen (2001)
eq. (12.3), p.235.1° EL estimates obtained via this procedure are only considered to be valid solutions if
the convex hull condition is satisfied, otherwise no solution in the convex hull is reported. Note, however,
that in the test size and power results reported in sections 6.3 and 6.4 the EL estimates satisfied the

convex hull condition in all replications.2°

6.1.3 Test Statistics

Restricted tests for ME Efu|x] = 0 and JE E|u|s,, z] = 0 adopt the following notation. The superscripts
M and J refer respectively to the ME or JE hypothesis under test with the subscripts CUE, EL, ET referring
to which GEL criterion is used to construct the test and, as above, denoting the efficient estimator(s)
employed. E.g., the non-standardised restricted GEL LR-type statistic for JE based on EL criteria
and estimators is denoted as LR}, = 2n(P% (Bew,> Aev,) — PI™ (Borss Aewy,))s of. (3.8). LR-type CUE
statistics evaluated at null and the maintained hypothesis EL and ET estimators are also computed
using the subscript CUE(GEL) to denote the use of the CUE criterion and GEL estimators, e.g., for JE,
LR (e = 20(Pys (Basr, > Marr, ) — P (Bapwy, » Aanwy, ))- The non-standardised robustified score S and
Wald W statistics, see fn. 11, evaluated at the corresponding efficient MA estimator are also examined.

Restricted ME and JE non-standardised test statistics are calibrated against chi-square distributions

with MK and [(MK)'/?]? degrees of freedom respectively.?!

18matElike, rather than solving the dual EL problem, solves the primal EL problem directly and is chosen as the default
algorithm because it is faster on average than BFGS. Both BFGS and matElike solutions are identical if each converges
to a solution in the convex hull.

9B computation requires some care since the EL criterion involves the logarithm function which is undefined
for negative arguments. This difficulty is avoided by replacing logarithms with a function that is logarithmic for
arguments larger than a small positive constant and quadratic below that threshold. The code is available at
http://www-stat.stanford.edu/~owen/empirical/

20In a preliminary study the convex hull condition was found to be violated for values of K and M larger than those
considered here. The adjusted EL estimator of Chen et al. (2008) offers an alternative to EL in such circumstances.

21 A number of asymptotically equivalent test statistics for the maintained hypothesis (2.1) were also investigated. The
Durbin (1954)-Wu (1973)-Hausman (1978) test based on an auxiliary regression as described in Davidson and Mackinnon
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GEL LM, score and Wald ME and JE test statistics require estimators of the variance matrix 2 =
Elg(z, Bog(z, Bo)'] and Jacobian G = E[dg(z,B0)/008’]. The estimators considered for Q and G are
Q=n! S 9(z, Benn)g(zis Bor) and G = n~? Yo 9g(zi, Bens)/ 0B where fgg is the null hypothesis
GEL estimator. Additional results are also presented for ME and JE LM tests based on the consistent

estimator €, = Q, Q1O for ©Q, see where 22

. nooa A - ~ pl(;\gELg(ziv BGEL)) +1
Q= kig(zi, Ben)9(2i, Boen)' s ki = — 3 3
Zz:l ant art n/\gELg(zi, BGEL)

,(i=1,...,n).
LM statistics based on Qk are denoted m

6.2 Choice of the Number of Instruments

Implementation of the above tests requires a choice of K to employ under the maintained hypothesis.
Because the Donald et al. (2009) method and selection criteria such as SBC predominantly indicated
choices of K that varied relatively little with sample size, following DIN Table 1, p. 71, K was chosen
to satisfy K°/n — 0 according to the rule K = [Cn®'9] with C' = 2 resulting in K = 5, 6, 7 and 8
corresponding to sample sizes n = 200, 500, 1000 and 1500 respectively. To explore the effect of increased

M on test size and power the values M = 1 and 2 were examined.

6.3 Empirical Size

The results on empirical size reported here correspond to a nominal asymptotic level of 0.05; those

results for nominal levels 0.01 and 0.10 are qualitatively similar and are therefore omitted.
6.3.1 ME

Table B.1 presents the empirical rejection frequencies for M = 1 and 2 for non-standardised restricted
tests of the ME hypothesis E[u(z, 8p)|z] = 0 incorporating the maintained hypothesis moment restric-
tions Elu(z, 5o)|sm] = 0.

In general, the empirical size of tests based on the Lagrange multiplier statistics LM}, LM}, and
Wald statistics WA WA and to a lesser extent LR}, LR, tests suffer from size distortions for moderate
sample sizes n = 200 and 500 with a serious deterioration in performance as M increases from 1 to 2,
i.e., as the number of unconditional moments under test increases. Of those remaining, the LR-type
statistics LR ym LReus(en)s LReus(er), the LM-type statistics /3.7/\/1:1, E/\/II:T and the ET robust score
statistic S¥. have good size properties. The 2SGMM criterion J™ statistic tends to be undersized and

the EL robust score SM statistic somewhat oversized except for the larger sample sizes.? Generally

(1993) section 7.9, p.237, see also Wooldridge (2002) section 6.2.1, p.118, was also considered. Results are available on
request from the authors.

22 Adapting Newey and Smith (2004) Theorem 2.3, p.224, the LM statistic for overidentifying moment conditions based
on Qy, is identical to the score statistic based on €1, i.e., n\.p QpAcer = 7§(Bep) Q@ 15(Ber).-

23Matsushita and Otsu (2013) obtained similar results for EL LR-type tests for overidentifying conditions to those
reported here.

[20]



speaking, for a given sample size n and thus fixed K there is a deterioration in performance to a lesser
or greater degree for larger M, a finding also mirrored in other experiments by increasing K with fixed
sample size.

In summary, tests for ME based on the statistics LRy and LR (er)s LRous(er) and Z.TMZIL, m;

and SM. appear to be the most reliable in terms of empirical size.

6.3.2 JE

Table B.2 presents the rejection frequencies for M = 1 and 2 for non-standardised restricted tests of the
JE null hypothesis Efu(z, 80)|$m,x] = 0.

The general conclusions are quite similar to those for the ME tests. Overall performance worsens
substantially for the larger M for moderate sample sizes n = 200 and 500 for all test versions. The CUE
LR-type forms LR, LR up(e)> LRouper) evaluated at CUE, EL and ET estimators, the GEL LM-
type statistics EM;L, E\/A;T and the robust score statistic S, display the most satisfactory empirical

size at the nominal 0.05 level whereas as above the 2SGMM criterion J’ and the EL robust score SZ;

statistics are respectively undersized and oversized in the smaller sample sizes.

6.4 Empirical Power

Tables B.3 and B.4 present size-corrected (SC) and non size-corrected (NSC) empirical rejection frequen-
cies at the 0.05 level of tests for the ME and JE hypotheses.?* Given their poor size performance,
tests based on the Lagrange multiplier statistics LMy, LMz and Wald statistics War, War are not
considered in this section.

Typically both rejection frequencies increase substantially as sample size n increases from 200 to 500
but decline with increased M although there are some exceptions for n = 200 and small p. In general
the statistics that performed well in terms of empirical size yield similar rejection frequencies under the

alternatives considered here.

6.4.1 ME

Table B.3 presents empirical rejection frequencies for non-standardised restricted ME tests for values
M = 1 and 2 based on 0.05 level size-corrected and nominal non size-corrected critical values for
deviations p # 0 from the ME hypothesis E[u(z, 8o)|z] = 0.

In general, both rejection frequencies increase with deviation p and sample size n and decline with
M with some exceptions at p = 0.2. Size-corrected empirical power differences between tests are less
at higher values for the deviations p and sample sizes n. Overall, tests based on the LR-type statistics

LRY and LR, using the nominal 0.05 chi-square critical value are most powerful but it is precisely

24Horowitz and Savin (2000) argue that empirical rejection frequencies based on nominal critical values are the most
relevant since size-correction is not realistically implementable in practice.
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these tests that display an unsatisfactory correspondence between empirical and nominal size. Empirical
power is relatively low at p = 0.2 for all tests employing size-corrected or non size-corrected critical
values. Generally speaking, empirical power for all tests employing size-corrected critical values, not
just those with reasonable empirical size characteristics, is rather similar for both the smaller n = 200

and larger n = 500 sample sizes.

6.4.2 JE

Table B.4 presents empirical rejection frequencies for non-standardised restricted JE tests for values
M = 1 and 2 based on 0.05 level size-corrected and nominal non size-corrected critical values for
deviations p # 0 from the JE hypothesis E[u(z, £0)|$m,x] = 0.

Similar general conclusions to those for the ME tests above broadly follow. Interestingly, given M,

sample size n and thus K, rejection frequencies are higher than those obtained for the ME hypothesis.

6.5 Summary

The empirical size of non-standardised tests more closely approximates nominal size than that of stan-
dardised tests. The use of efficient rather than root-n consistent estimators is recommended for test
construction. Restricted dominate unrestricted tests in terms of empirical power. Empirical power
typically declines for increases in M for both ME and JE tests.

For both the ME Elu(z,fo)|z] = 0 and JE hypotheses E[u(z, 5)|$m,x] = 0 empirical sizes of
restricted tests based on the restricted CUE LR-type statistics LRcup, LRcur(er)s LRcur(er), evaluated
at CUE, EL and ET estimates, and the LM-type statistics mEL, mm and the robust ET score versions
Spr most closely approximate nominal size. The differences in empirical power with size-corrected critical

values between these tests are rather marginal.

7 Conclusions

The primary focus of this article has been concerned with the provision of tests for additional con-
ditional moment constraints in cross-section or short panel data contexts. The principal contribution
is the explicit incorporation of conditional moment restrictions defining the maintained hypothesis in
the formulation of the test statistics mirroring test construction in the classical parametric likelihood
setting. The approach reinterprets the respective conditional moment hypotheses as infinite numbers of
unconditional moment restrictions with the corresponding tests formulated as tests for additional sets of
infinite numbers of unconditional moment restrictions. The limiting distributions of these test statistics
are derived under the null hypothesis and suitable sequences of local alternatives. These results suggest
that restricted tests that fully incorporate maintained moment constraints in their construction should

dominate in terms of power unrestricted tests that fail to do so.
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The simulation experiments undertaken to explore the efficacy of the various tests proposed in the
paper indicate a number of restricted tests possess both sufficiently satisfactory empirical size and power
characteristics to allow their recommendation for econometric practice.

The methods proposed in this paper are also relevant for short panel data models with independent
cross sections and strictly exogenous instruments. The development of results pertinent for conditional
moment constraints involving different instruments in different time periods is the subject of current

research; cf. Holtz-Eakin et al. (1988), Arellano and Bond (1991) and Chamberlain (1992).

Appendix A: Proofs of Results

Throughout the Appendix, C' will denote a generic positive constant that may be different in different
uses with CS, T and ¢, Cauchy-Schwarz, triangle and Loeve ¢,, Davidson (1994), p.140, inequalities

respectively. Also we write w.p.a.1l for “with probability approaching 1”.
A.1 Asymptotic Null Distribution
PROOF OF THEOREM 4.1. See Supplement Proof of Theorem 4.1. W

PRrROOF OF THEOREM 4.2. See Supplement Proof of Theorem 4.2. B

PrOOF OF THEOREM 4.3. The proof uses the Cramér-Wold device. Consider the linear combination
jc = o‘rjr +a7rij-

where «, and «,, are arbitrary finite scalars such that a2 + o2, > 0. The desired result is obtained if
T4 N0, 02+ a2).
First, by DIN Lemma 6.1, p.69,

ro_ ng(ﬂO)lgilg(ﬂO) B n@m(ﬂmo)/ﬁ;lﬁm(@no) - JaMK g

0.
J V2J. MK
Likewise
m ngnL(ﬂmO)/Q;ngm(ﬂmO) - JmK p
— 0.
J V2K -
Therefore,

1 ng(B0)'Qg(Bo) = (o JaM + Ot Jin /T M [T ) K p
JoM V2K

where Q = o, Q7! — (o — am/TaM /T ) S LS! .
To prove /J,M J* < N(0,v), where v = (a2 +a2,)J, M, the conditions Supplement Lemma S.3(a)-

T = 0,

(f) are verified below.

Condition (a): immediate.

[23]



Condition (b):

artr(I( g, + g, 0 K) = (Qr — am /T M/ Jp)tr(1,, k)
(T + Jo MK — (r — ctm/Ta M Jr) T K
 (JoM + T/ TaM JTm) K = aK.

tr(QNQ)

Condition (c¢): note that

Q) = (aIig,+7.0mKx — (Cr — A/ Ja M/ ) S50 Q)2
= O‘%I(Jm+JaM)K - (a? - a?n(JaM/Jm))SmQ;15;nQ~

Hence
trl(QQ)%] = (af +ap,)JuMK
= vK.
Condition (d):
Q) = (<l +iank — (@F — a2 (JaM ) J))Smt S0, Q)

= &l paonk — (@ = (JaM/J3)?) St S, 0.
Thus
tr[(QQ)Y] = (ap +ap, JaMJp)JoMK
= o(K?).
Condition (e): from DIN Lemma A.6, p.78, 1/C < A\pin(Z) < Amax(E) < C and 1/C < A\pin(Q) <
Amax () < C. Therefore, using Assumption 3.2
El(g(z,60) (™" = (ar = v/ Ja M/ J1n) S S1)9 (2, 60))?) < CC(K ) K = o(nK)
since ((K)%2K?/n — 0.
Condition (f): by a similar reasoning to that for Condition (e)
E[(g(2, 80)'Q " g(2, £0))?] < CC(K)*K.
Also

RQAQ = (' = (p — VI M/ TSm0 1S VU, Q7 — (o — g/ TaM ) T ) S0 1S! )
= O‘E(Qil - SmQ;Lls':n) + a?rL(JaM/Jm)S77L97181

m m*

Thus, cf. Condition (e),
El(9(z, B0)' QQQg(z, Bn))?] < C((K)*K.



A.2 Asymptotic Local Alternative Distribution

Let u;(8) = u(zi, B), umi(Bm) = Spui(B) = wm(2i; Bm); 9i(B) = S(uwi(B) @ ¢i), gmi(B) = tmi(Bm) @ Gmi,

where ¢; = ¢%(s;) and i = ¢ (smi), 9 = 9i(B), Gmi = gmi(Bm) and gin = 6i(Bon); Gmim =
Gmi(Bmon), (1 = 1,...,n). Also let wjn = ui(Bon), Umin = Umi(Bmon), Li(B) = Elui(B)ui(B) |si],
Emi(B) = Eltmi(Bm)tmi(Bm)[Sma], Zin = Zi(Bo,n) = Ewinti ,8i]; Bmin = Zmi(Bmon) = EltiminUn n|Smal,
(i =1,...,n), together with

Q = Zi glg:/na Qn = Zi gi,ng;‘,n/nv
Qn - S(Zl Zi,n & QZQ;)Sl/na Qn = E[gi,ng:m}

and

2
3
I

Zi szgjm/na Qo = ZL gmi,ng;m',n/nw
(D, Smiin ® Gmitini) /1 Qi = ElgminGims n]-

2
3
3

|

ProoOF OF THEOREM 5.1. The result is established first for the GMM statistic J 7.
Let Gmn = §m(Bmn,0) and g, = §(Bn,0). Note Qpp, = Sm$2,S),. Then, by Supplement Lemma S.8,

ng(B)/Q Q(B) B ngn gn ﬂ} ngm(ﬁm«)/ﬂgzlg?”n(ﬁ ) B nganmngWIn p

0, 2.
V2J.MK 2J MK
Hence J" — (ng, (' — S/ Q71 80 dn — JuMK) /\2T,ME 2 0.

It remains to prove that

ngAn( n S’Zn“mns ) Ja141< d T
— N(u 2,1).
\/ 2Ua ( /\/>7 )

Let Gin = Elginlsi]) and Gin = Gin — Gin, (1 = 1,...,n). Also let g, = > Gin/n and g, =
S Gin/n. Write P, = Q' — S/ Q1S Then,
GnPrudn = GnPndn + 29, Prgn + Gn Pngn-
The first step demonstrates
InPogn = ‘ﬁw+%m)
Let & = &(s;) and &y = Em(si), (i = 1,...,n). It follows by Supplement Lemma S.4 that

ro—1- V Zn

gnn n =

(& ®aq)s Q, 15(53 ®qj>/

= ————(E[5(s)'2(s) 7 E(s)] + 0p(1))-
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Next, note Sy, (& ® ¢;) = &mi ® @i, (i = 1,...,n). Thus, again using Supplement Lemma S.4,
J MK n _
S;annSmgn = - Zi,j:l(fmi & Qmi>/Qm11 (gmj ® qmj)/n2

m(8m) " Elemn(5)|sm]] + 0p(1))

I
W«,‘
3

=
2,
M

Il
’EQ
—

—
~—

n

"V2J.MK

Similarly to DIN Proof of Lemma 6.1, pp.87-88, from Supplement Lemma S.6,

Ing, (" = 0 )50| /V2IME < 0|20 (|00 — Q| + C |00 — 20 ]|P)/ V2T ME
1|92 0 |” Op (C(K)VE 1)/ /20 ME = 0,(1)

gnS; ( mn — Q:niz)smgn g 0.

IN

since HQ;lgnH = 3,9,%g, < Cq, 0,1, = O,(VK /n). Likewise 7G5 (Ut = Qb ) S| [V2I. MK =
0p(1). Therefore,

_ _ JMK
g;LPngn = T(N + Op(l))~

Secondly, it is shown that
NGy, Ppgn/\/ 2Ja MK = 0,(1)

Noting [|&|* bounded and ¥in(s;)7! bounded for n large enough, by ¢,

|4]+E[||E[uin ]H4D
Ju MK

4
E[”ui,n _E[ui,n|5i]” ] < S(E[”ui,n

= S(B[E||luinll* |si]) + B[
< C

€01

for n large enough as E[||um||4 |s;] < C and K/n? — 0. Hence, by Supplement Lemma S.5,
A1~ 1/ n
= Op(v/JuM /n .

52 ® QZ) S/Q gj n/n\f

Next, by hypothesis,

7 (2" = Q. 1)gn| /V2Ja MK

IN

107 5010775l (9 — 0]+ ]2 — 0,)/ VR ATE

n{|9, " Gn| 1|25 G Op (C(K)VE /1) //2Ja MK = 0,(1)

since Hlegnuz = 0,(VK/n) from above and 19 0n ]| < |97 00| + |2 90| = Op(vVE/n) +
O, (/K /n?). A similar analysis yields ngl, S\, Qb Smdn/vV2Ja MK = 0,(1).
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Let gmi,n = E[gmi,n|3i]7 Imin = Gmin — gmi,n; (Z = 1; ey n)

Finally to prove
ng;LPngn - JaMK d

N O

it is first established that
~/ Pn _ px Nn
ngn( w)n 0, (1)
2J, MK
where P = le—l - S;n(Q:nn)_lsm with Q7 = E[gi,ngg,n] and Q7 = E[gmz,ng;m,n] By T
The first term

342" = () 734] < 1|9 Gall” (1920 — 25l + C 120 — 951%).

Therefore, noting 2, = Q,, — E[gi »g; ,,], from eq.(5.1)

12, — 23] S Bl llaill*) 2

Consequently, since ||, 13, || = Op(v/K/n) + 0,({/K/n?),
192" = 2 VG0| _ Op(K) + O,(VE) , VEP  VED

O = 0,(1
V2T MK = ST\ (\/H)Jr n )=o)
Similarly
190,51 (R = () ") S, — 0,(1)
\/QJQMK oo
Therefore
1y, (Pn — P)gn
Ml Lalin _ )

V2T MK
Note that 1/C < Apin (£2%) < Amax (2F) < Cbecause | (A) — A (B)] < [|A — B[, [Amin (€25) — Amin (20)] =

0(1) and |Amax (£25) — Amax (2,)] = 0 (1). Similarly 1/C < Apin (27,,,) < Amax (25,,,) < C.

mn

Supplement Lemma S.2 is now invoked to prove

ngn, Pk g, — J MK d
V2J. M
First, tr(Q) PY) = J,M K. Secondly, to establish

N(0,1).

E(3i 0 Prin)®] = 0p(K/n),

by ¢,
E[(gz 71P>‘< NZ n) ] S 2E[(g:,n(92)_1g’b,n)2] + QE[(g;,nS;n(Q;n)_lsmgl,n)2]
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Again using c,
E(3 ()7 §i,0)?] < 3E[(9; 5 (20) ™ 9i,0) ] + 12E1(9. () 7 Gin )] + BB () Fin)?]-

Now, for n large enough, E[(g; (%) 'gin)?] < CE]|lgim||"]. Since B,0 € N for n large enough, by
Assumption 3.4(c), similarly to DIN Proof of Theorem 6.3, pp.89-90,

E[llginll"] < Ellal” Ellluinll" |si]] < CEllaill'] < C¢(K)*K.

Next,
Bl(6;,0(2) 7 5i.0)") < CVE /B[ ail|*) < CKVE /.
Lastly,
E[(g},,(25) " 5i.0)°] < CE/n*)E[|&]* ;1)) < CCK)* K /n?.
Hence, E[(7; ,,(%,) "' Gin)*] = 0,(K+/n) as required. Likewise, E[(; ,Sp, () ™" Smin)?] = 0p(Ky/n).
Thirdly, P*Q* P* — P*. Therefore,
ngn P ";’3;\4‘?‘4 K 4 no,1).

The conclusion of the theorem for J" then follows.

The proof structure for the restricted GEL statistics LR", LM", §” and W" is similar to that for
Theorem 4.2 demonstrating their mutual asymptotic equivalence to the GMM statistic J" under the
local alternatives (5.1). The proofs for LM", 8" and W" are omitted for brevity.

First apply the decomposition for LR" in Supplement eq. (S.3). A similar argument to that in Supple-
ment Proof of Theorem 4.2 establishes |Gy — Gmo|| < Op(y/K/n). Thus, from T and Supplement Lemma
8.9, lgm| = Op(v/K/n) and, therefore, ;\m“ = 0,(y/K/n) by Supplement Lemma S.10. Consequently,

since A, € /A\ZL(Bm) and the first order conditions for \,, are satisfied w.p.a.1, an expansion around

Am = 0 gives —gm(Bm) — QuAm = 0 where Q,, = — S pg(A;ngmi)gmig;m/n and A, lies between \,,
and 0. Thus, w.p.a.1, Ay = =19, (3m) and 2nﬁgm Brms M) = ndim (Brn)" (2901 = Q10,01 41 (B )

m

where Q,, = — S p2( N Gmi) Gmidim;/m and A lies between \,,, and 0. It remains to prove that 29;1 —

010,01 — Q1 = 0,(1/VK). Now, by Supplement Lemmata S.1 and S.6,||Qp, — Qn || = 0,(1/VK),
HQm — Qonll = op(l/\/f?) and HQm — Qonll = op(l/JI?). Consequently, ‘QQm—Qm—an LN

0 and Amax((2Qm — Q)™1) < C wop.al. Thus, by T, as (20" — Q210,071 = Q,,(2Q,, —
Qm)_lQ'my Q7rL(2Qm - an)_lQm - an(QQm - Q'm)_lgan S Op(l/\/?) AlSO, as )\max (an) S
O, [ (20m — ) i — Q|| < 0,(1/VE) yielding ] Q120 — )t — QL || = 0,(1/VE).

mn
Q. =Ll = 0,(1/VK), the third term in the decomposition for LR in Supplement

Therefore, as

eq. (S.3) is 0p(1). Likewise, the second term in Supplement eq. (S.3) is 0,(1). Therefore, from the first
term in Supplement eq. (S.3), LR" < N /v2,1). R
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Table B.1. ME Tests Null Hypothesis Empirical Rejection Frequencies

M n 200 500 1000 1500
T 274 404 392 5.02

LRY,. 432 492 462 546

948 710 578  6.42
LRy 494 506 464 550
LM~ 1568 866 6.18  6.52

1 LM, 6.06 564 486 5.56
S 688 610 544  6.08

W 1362 7.80 586  6.00
LR 854 7.08 590 6.64

LRY ey 456 502 462 5.50
LMY 1694 1090 7.86  8.46
LM, 576 570 514 594

Sy 566 546 506 588

W 1524 1056 832  8.88

J 264 322 406 4.14
LRY. 340 430 486 526
LRY 1706 108 822  7.50
420 474 506 5.3
LMY 3834 19.00 10.64  9.22

2 LM, 574 554 556  5.76
Sy 6.64 614 592  6.16
wi 35.54 18.12 10.06  9.16

13.32  9.82 8.08 7.68

LRYpery 368 452 492 524

LMY, 3784 223 14.16 12.64

4.82 552 564 5.9

Sy 508 52 538 5.82
WAL 35.78 2142 13.92 13.12




Table B.2. JE Tests Null Hypothesis Empirical Rejection Frequencies

M n 200 500 1000 1500
T 242 308 466 4.62

LR, 422 500 494 486

LR, 864 650 586 5.66
LRl 456 524 502 4.90
LM, 143 786 598 5.66

1 LM, 580 5.68 540 5.24
S 6.56 6.06 5.58 5.54

Wi, 1236 7.26 566 5.28

LR, 782 662 59 572
LRLper 440 510  4.94  4.88
LM~ 1552 932 7.00 6.66
LM, 538 584 544 528

S 538 546 520 5.28

Wi, 1508 9.70 7.06 6.56

J’ 1.54 3.06 3.84 320
LR 2.88  4.48 486 4.44
LR, 1422  9.12 6.82 7.66

LRy 394 502 496  4.66

M. 3458 1540 876 11.10

2 LM, 490 554 524  4.98

S 552  5.78  5.66  5.34

Wi, 33.38 14.82  8.28 10.96
10.82 870 6.98  7.82
LRlvpery 326 482 490  4.60
LM, 3338 1722 11.1 14.66
LM, 426 566 542  5.16

S, 398 520 524 4.90
Wi, 33.46 18.14 11.62 19.18




Table B.3. ME Tests Alternative Hypothesis Empirical Rejection Frequencies

— M

n M p T ‘CRI(\TIUE [:RI;:IL LRE‘,IUE(EL) ‘CMglL S]gIL ﬁRI;:IT ERI(\TIUE(ET) ‘CMET SQIT
0.2 7.26 6.58  6.14 6.60 6.74  6.44 6.30 6.60 6.46  6.30
0.4 11.92 11.38 11.00 11.38  11.26 10.64 11.02 11.60 11.06 10.60
1 0.6 15.76 15.88 16.10 1590 16.14 15.18 16.22 1596  15.80 15.06
0.8 18.66 19.48  20.26 19.54  19.68 18.62 20.20 19.68  19.26 18.68
1.0 21.16 21.50 24.42 21.78 2230 21.64 23.26 21.80  21.58 21.30

SC
0.2 6.30 6.44  5.78 6.82 6.60  6.90 6.06 6.64 6.60  6.46
0.4 9.26 9.44 898 10.00 9.86  9.68 8.86 9.74 9.50  9.00
2 06 1244 12.00 12.30 12.96 12,52 12.78 12.38 12.34 12.26 11.76
0.8 15.36 15.38 15.60 16.24  15.72 15.70 15.24 1596 1540 14.66
1.0 17.38 17.94 19.24 18.88  18.00 18.02 18.42 18.38  17.90 17.06

200

0.2 3.96 5.80 11.90 6.56 8.02  9.00 10.76 6.12 7.28  7.16
0.4 6.98 10.20 18.50 11.16  13.54 14.32 17.54 10.68 12.54  12.12
1 06 10.14 14.54 25.02 15.62 18.40 19.72 23.02 1496 17.56 16.66
0.8 1248 17.56  30.72 19.18  22.32 23.82 28.24 18.24  20.84 20.56
1.0 14.24 20.04 33.98 21.34 2524 26.98 31.74 20.76 23.84 23.24

NSC
0.2 3.34 4.46 19.58 5.82 7.58 886 15.80 5.08 6.36  6.72
0.4 5.44 6.96 24.56 8.70 10.70 12.16 20.30 7.74 9.20 9.14
2 06 734 9.16 31.30 11.70  13.92 1532 25.28 10.34  11.90 11.98
0.8 934 11.42  37.12 14.34 17.24 18.64 30.24 12,52 15.00 14.88
1.0 10.88 13.26  41.78 16.84 19.62 21.70 34.40 14.94 17.46 17.26
0.2 10.50 10.36  10.30 10.48 10.38 10.00 10.36 10.36  10.44 10.22
0.4 23.12 23.70  23.56 23.68  23.60 23.56 23.62 23.60  23.64 23.50
1 06 3566 3578 36.50 36.00 36.10 36.08 36.48 35.70  36.06 35.66
0.8 4572 4594 47.00 46.40 4596 4598 46.78 46.02  45.88 45.82
1.0 52.86 52.80 54.42 53.10  52.74 53.36 54.30 52.78  53.00 52.80

SC
0.2 9.16 8.62 7.96 8.50 8.44  8.84 7.96 8.40 8.60  8.64
0.4 19.54 18.42 17.82 1854  18.30 18.86 17.26 18.34 1840 18.32
2 06 3022 30.02  29.62 30.36  30.08 30.68 28.74 29.72  29.64 29.64
0.8 39.32  38.88 39.34 39.28  39.18 39.66 38.72 38.62  38.92 38.70
1.0 45.74  45.06 46.50 45.34 4580 46.20 45.90 44.74 4510 44.98

500

0.2 8.64 10.24  13.70 10.50  11.38 12.00 13.60 10.36 11.44 10.92
0.4 20.40 23.46  28.56 23.82 2530 26.12 28.34 23.64  25.28 2494
1 06 3146 3562 43.42 36.04 3794 39.64 43.10 35.70  37.72 37.48
0.8 4098  45.62 54.20 46.48  48.36 50.24 53.76 46.02  48.44 48.06
1 48.10 52.50 61.28 53.14  55.32 57.58 60.80 52.80  55.32 55.02

NSC
0.2 640 7.66 14.98 8.24 9.24 10.04 14.06 7.84 9.02  8.80
04 14.14 16.78  29.08 17.86 19.84 20.84 27.32 17.38  19.50 18.76
2 06 2338 2744 43.12 29.34 31.84 33.10 41.52 28.32  30.84 30.26
0.8 31.62 36.30 53.96 38.52  40.92 42.50 51.84 37.08  40.20 39.52
1.0 3776  42.58 60.82 44.46 4730 49.06 59.28 43.26  46.24 45.54




Table B.4. JE Tests Alternative Hypothesis Empirical Rejection Frequencies

—7 — —7 -
n M p J’ ‘CRQTUE ﬁRi:L LR;‘,UE(EL) ‘CMEL S];L ﬁRi:T ER%UE(ET) ‘CMET S}éT
0.2  8.60 9.06 9.20 8.94 9.00  8.54 8.88 8.94 9.00 8.74
0.4 16.36 17.20 18.34 16.90 16.40 15.78 17.38 16.80  16.50 16.06
1 06 24.40 2498 28.42 24.86 2394 2334 26.34 24.70 2394 23.80
0.8 3040  31.08 37.34 30.94  30.18 29.70 34.20 30.74  30.28 29.84
1 3516 3542 43.54 35.36 3546 34.04 40.28 35.06  34.94 33.96

SC
0.2  8.68 8.20  9.64 8.68 8.66  8.98 8.94 8.14 8.10 8,50
0.4 13.34 12.22  17.58 13.18  13.14 1284 15.44 12.26 1220 12,78
2 06 18.56 16.48  26.76 1774 1736 1742 2234 16.38  16.34 16,78
0.8 23.42 20.82  35.26 21.92 2190 21.98 29.14 20.56  20.70 21,36
1 27.38 24.32 41.54 25.54 2554 2542 34.46 23.72 2398 24.70

200

0.2 4.32 8.00 13.68 8.50 9.86 10.76 12.70 8.14 9.32 9.26
0.4 10.40 15.08 24.94 16.14  18.32 19.16 23.46 15.18 17.22  16.92
1 06 16.12 21.98 36.88 23.62  26.32 27.96 34.04 22.54 2480 24.84
0.8 21.12 27.86 45.84 29.82 3276 34.24 42.30 28.44  31.20 31.06
1 25.00 31.92 51.52 33.88 3798 39.74 48.54 32.58 3594 35.36

NSC
0.2  3.08 5.02  22.46 6.74 8.48  9.58 17.96 5.76 6.96 7.08
0.4 5.32 8.32 35.22 10.62 12.82  14.04 27.16 9.14 10.82 10.82
2 06 7.88 10.92  46.66 1426  17.00 18.74 36.50 12,12 14.36  14.52
0.8 10.70 13.84 55.60 18.24  21.66 23.40 43.94 15.38 1842 18.22
1 13.34 16.68 62.12 21.06  25.18 27.22 49.84 18.18 21.56  21.28
0.2 15.74 15.56 14.94 15.52  15.58 15.42 15.04 1538 1492 15.50
0.4 40.18 39.26 39.70 39.20 3894 38.84 39.46 39.08  38.06 38.84
1 06 62.08 6126 62.38 61.08 61.20 60.50 62.02 60.96  59.96 60.54
0.8 7422 72.82 7398 72.74 7282 7252 74.06 72.60 7190 72.58
1 8080 79.80 80.74 79.72  79.96 79.46 81.40 79.50  78.70 79.44

SC
0.2 14.84 15.86 17.04 1588 16.00 16.14 16.36 1558 15.74 16.28
0.4 3236 32.74 39.52 33.14 3356 3294 36.96 32.72  32.64 32.88
2 0.6 48.58 47.52 57.34 48.02  48.60 48.28 53.70 4740  47.64 4794
0.8 60.54 58.66 68.58 58.94  59.48 59.60 65.30 58.42  58.34 59.40
1 6858 66.54 76.58 66.54 67.40 67.84 73.42 66.18  66.70 67.24

500

0.2 13.42 15.58 18.78 15.82  16.94 17.74 18.84 15.66  17.08 16.76
0.4 36.04 39.32 45.56 39.64  40.92 42.42 45.28 39.48  41.14  40.92
1 06 5772 6132 68.10 61.82 63.28 64.34 67.56 61.52  63.38 62.86
0.8 70.28 72.84 78.60 73.16  74.56 75.42 78.84 72.94 7442 74.20
1 7732 79.80 85.00 80.10  81.52 82.36 85.46 79.96 8144 81.04

NSC
0.2 9.88 14.94  26.66 15.90 16.90 18.24 24.62 15.36  16.84 16.60
0.4 2478 3140 50.94 33.20 35.16 35.70 47.34 3230  34.16  33.58
2 06 3944 4598 67.46 48.02  50.30 51.34 64.16 46.90  49.24 48.78
0.8 51.86 57.02 77.86 58.94  61.08 62.52 74.54 57.94  60.30 60.20

1  60.18 65.24 83.80 66.54 68.90 69.96 81.24 65.80 68.28 67.86






