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1 Introduction

The primary focus of this article is the provision of tests relevant for independent cross-sectional data

for the validity of a set of conditional moment constraints in addition to those defining the maintained

hypothesis when a finite dimensional parameter vector is the object of inferential interest. Examples in-

clude moment conditional homoskedasticity and instrument validity.1 The main point of departure and

principal contribution of the paper is the explicit incorporation of the maintained conditional moment

information in the formulation of the test statistics. Thus, our approach mirrors that of the classi-

cal parametric likelihood setting by defining restricted tests for these additional conditional moments in

contradistinction to unrestricted tests that partially or completely fail to incorporate the maintained mo-

ment condition information in their design with the advantage that the former dominate the latter tests

in terms of asymptotic local power, cf. Aitchison (1962). Newey (1985), pp.242-244, and Eichenbaum et

al. (1988), Appendix C, pp.74-76, formulate GMM tests of additional unconditional moment constraints

fully utilising maintained moment information gaining a similar local asymptotic power advantage over

tests that fail to do so. The framework adopted in this paper is quite general allowing the parameters

defining the additional and maintained conditional moment restrictions to differ and permitting the

conditioning variates to differ likewise. The paper also contributes a number of new theoretical results

required to address the null and local alternative asymptotic distributions of the test statistics.

The approach taken in the paper exploits an equivalence between conditional moment constraints

and a countably infinite number of unconditional restrictions noted elsewhere; see Chamberlain (1987).

Test statistics are consequently defined in terms of an appropriate set of additional infinite unconditional

moment conditions. These tests adapt and generalise those of Donald et al. (2003) which approximates

conditional moments by an appropriate finite set of unconditional moments. Tests for a finite number

of unconditional moment restrictions, cf. inter alia Newey (1985), Eichenbaum et al. (1988) and Ruud

(2000) for GMM, Hansen (1982), and Smith (1997, 2011) for generalized empirical likelihood (GEL),

see also Kitamura and Stutzer (1997), Imbens et al. (1998) and Newey and Smith (2004), are well-

known to be inconsistent against all alternatives implied by conditional moment conditions; see, e.g.,

Bierens (1990). GMM and GEL test statistics defined in Donald et al. (2003) circumvent this difficulty

by allowing the number of unconditional moments to grow with sample size at an appropriate rate.2

Likewise here both maintained and null hypothesis conditional moment constraints are approximated

by corresponding sets of unconditional moment restrictions with the former a subset of the latter, both

of whose dimensions grow with sample size at appropriate rates. Restricted GMM- and GEL-based

1Instrument validity tests are the concern of the application in section 6 to a parametric specification of an Engel curve
relationship discussed elsewhere in, e.g., Muellbauer (1976), Banks et al. (1997) and, more recently, Blundell and Horowitz
(2007). See fn. 15 below.

2Consistent tests of goodness of fit in regression models have received substantial attention in the literature. See, e.g.,
Eubank and Spiegelman (1990) for the nonlinear regression context. See also inter alia De Jong and Bierens (1994), Hong
and White (1995) and Jayasuriya (1996).
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test statistics for additional conditional moment restrictions, after location and scale standardization,

are asymptotically equivalent and converge in distribution to a standard normal variate under the null

hypothesis. Intuitively this result reflects the implicit infinite number of unconditional moments under

test since standardised chi-square distributed statistics are asymptotically standard normally distributed

when the statistic degrees of freedom diverges to infinity. A similar result is obtained for unrestricted

statistics that partially or completely neglect the maintained conditional moment information although

the limit standard normal variate differs.3 Interestingly, unlike finite dimensional test statistics, efficient

parameter estimation is no longer required for test implementation. Under a suitable sequence of local

alternatives, restricted and unrestricted test statistics are asymptotically non-central standard normally

distributed. The non-centrality parameter of the restricted statistics exceeds those of unrestricted sta-

tistics thereby demonstrating the deficiency of these latter tests mirroring the results for restricted tests

in the classical parametric likelihood, Aitchison (1962), and unconditional moment condition, Newey

(1985) and Eichenbaum et al. (1988), settings. The asymptotic local power results also indicate that

one-sided tests of the additional conditional moment restrictions are apposite.

The paper is organized as follows. Section 2 provides some initial definitions, details the test problem

and describes moment conditional homoskedasticity and instrument validity examples that are used

throughout the paper. GMM and GEL restricted test statistics are then specified in section 3; an

initial discussion presents the equivalence between conditional moment restrictions and an appropriately

defined infinite set of unconditional moment constraints together with the assumptions that underpin

the analysis in the paper. Section 4 provides the limiting distributions of these and unrestricted statistics

under the null hypothesis of the additional conditional moment validity; the large sample independence

of the restricted test statistics and GMM and GEL test statistics for the maintained hypothesis is

shown which thus permits the overall test size of a sequential test of the maintained and then additional

conditional moment restrictions to be controlled. Section 5 considers the local asymptotic behaviour

of the restricted and unrestricted test statistics demonstrating the one-sided nature of the tests and

the relative deficiency of the latter tests. Section 6 presents a set of simulation results on the size and

power of the test statistics based on an application to a parametric specification of an Engel curve

relationship. Section 7 concludes. Proofs of the results in the text and certain subsidiary lemmata are

given in Appendix A and the Supplement to the paper.

The paper uses the generic subscript notation “m” and “a” to denote quantities associated with

the maintained hypothesis and additional moment constraints. Conditional moment indicator vectors

are denoted by u(·, β) of generic dimension J , with parameter vector β of dimension p and associated

parameter space B; instrument vectors are denoted as s with dimension d. The abbreviations a.s.,

3Alternative unrestricted tests could also be based inter alia on the approaches of Bierens (1982, 1990), Wooldridge
(1992), Yatchew (1992), Härdle and Mammen (1993), Fan and Li (1996), Zheng (1996, 1998), Lavergne and Vuong (2000),
Ellison and Ellison (2000) and Domı́nguez and Lobato (2004). The continuum of moment conditions method suggested in
Carrasco and Florens (2000) offers another possible approach; see also Hsu and Kuan (2011).
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f.r.r., n.s. and p.d. indicate “almost surely”, “full row rank”, “nonsingular” and “positive definite”

respectively. [·] is the integer part of ·. Statistics are “asymptotically equivalent” if they differ by an

op(1) term.

2 Some Preliminaries

2.1 Definitions

The maintained hypothesis is defined in terms of the moment indicator vector um(z, βm) which is a

Jm-vector of known functions of the dz-vector of data observables z and the pm-vector of parameters

βm. In many cases um(z, βm) may be interpreted as an error vector. It is assumed that there exists an

observable dm-vector of instruments sm such that

E[um(z, βm0)|sm] = 0 a.s. sm (2.1)

for some unknown value βm0 ∈ Bm of the parameter vector βm where Bm denotes the corresponding

parameter space.

The central interest of the paper is the provision of tests of the additional conditional moment

restrictions

E[ua(z, βa0)|sa] = 0 a.s. sa (2.2)

for some βa0 ∈ Ba. Here the moment indicator vector ua(z, βa) denotes a Ja-vector of known functions

of z and the unknown pa-vector of parameters βa with Ba the corresponding parameter space and sa an

observable da-vector of instruments. Together the parameter vectors βm0 and βa0 constitute the objects

of inferential interest. Note that βa may or may not be coincident with the maintained hypothesis para-

meter vector βm. Likewise, the notation sa for the instrument vector defining the additional conditional

moment constraints (2.2) explicitly permits circumstances in which the maintained instruments sm may

or may not be strictly included in the additional instruments sa or vice-versa.4

2.2 Test Problem

The maintained hypothesis is given by the conditional moment constraint E[um(z, βm0)|sm] = 0 (2.1)

and is assumed to hold throughout. The null hypothesis H0 of interest is consequently defined in terms

of the validity of the additional conditional moment constraints (2.2), i.e.,

H0 : E[ua(z, βa0)|sa] = 0 a.s. sa and E[um(z, βm0)|sm] = 0 a.s. sm (2.3)

with the corresponding alternative hypothesis H1 given by

H1 : E[ua(z, βa)|sa] 6= 0 all βa ∈ Ba, sa ∈ Sa, and E[um(z, βm0)|sm] = 0 a.s. sm (2.4)

4Nonparametric components are excluded from the moment indicator vector definitions. The theoretical analysis of the
paper could in principle be extended to deal with such models; see, e.g., Chen and Pouzo (2009, 2012).
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for some Sa with non-zero probability content.

2.3 Examples

Example 2.1 (Conditional Homoskedasticity). This example concerns the conditional homoskedas-

ticity of the maintained conditional moment indicator vector um(z, βm); hence the maintained hypothesis

and additional instrument vectors are identical, i.e., sm = sa. The additional conditional moment indi-

cator is defined by

ua(z, βa) = vech(um(z, βm)um(z, βm)′ − Σ)

where vech(·) denotes the vectorised upper triangle of ·. Thus Ja = Jm(Jm+1)/2 and βa = (β′m, vech(Σ)′)′

includes the maintained parameter vector βm. Let Σ0(sm) = E[um(z, βm0)um(z, βm0)′|sm] and Σ0 =

E[um(z, βm0)um(z, βm0)′]. Therefore the null hypothesis may be expressed as

H0 : Σ0(sm) = Σ0 and E[um(z, βm0)|sm] = 0 a.s. sm,

with alternative hypothesis H1 : Σ0(sm) 6= Σ all p.d. Σ, sm ∈ Sm, where Sm has non-zero probability

mass, and E[um(z, βm0)|sm] = 0 a.s. sm.

Remark 2.1. The standard instrumental variable (IV) linear regression model defines um(z, βm) =

y − βmx, with Jm = 1 and thus Ja = 1. With maintained unconditional moment indicator vector

smum(z, βm) = sm(y − βmx), continuous updating estimation (CUE) of βm, Hansen et al. (1996),

uses the inverse of the sample moment matrix
∑n
i=1 smis

′
mi(yi − βmxi)

2/n as metric whereas, un-

der conditional homoskedasticity, the LIML metric, i.e., the inverse of σ2
n(βm)

∑n
i=1 smis

′
mi/n, where

σ2
n(βm) =

∑n
i=1(yi − βmxi)2/n, is apposite.

Example 2.2 (Instrument Validity). In this example both maintained and additional conditional

moment indicators coincide, i.e., um(z, βm) = ua(z, βa) with βm = βa and, thus, Ja = Jm. The issue

here is the validity of the additional instrument vector sa. The null hypothesis is therefore defined by

H0 : E[um(z, βm0)|sa] = 0 all sa, E[um(z, βm0)|sm] = 0 all sm,

with alternative hypothesis H1 : E[um(z, βm)|sa] 6= 0 all βm ∈ Bm, sa ∈ Sa, where Sa has non-zero

probability content, and E[um(z, β0)|sm] = 0 all sm.

Remark 2.2. Blundell and Horowitz (2007) define an exogeneity hypothesis E[um|x] = 0, i.e., E[y|x] =

g(x), for the nonparametric regression model y = g (x) + um when the unknown structural function

g(·) is of primary inferential interest and importance, with x a vector of covariates, maintaining the

identifying conditional moment restriction E[um|sm] = 0. As a consequence, the structural function
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g(·) may be consistently estimated by nonparametric least squares (LS) thus avoiding the difficulties

associated with nonparametric IV estimation. Given that x but not sm is included in sa, this hypothesis

might be considered a marginal form of exogeneity hypothesis (ME). In general, under ME, the structural

function g(x) will vary with sm since E[y|x] 6= E[y|x, sm]. Thus, if elements of the maintained instrument

vector sm are also of some economic significance, the regression function E[y|x, sm] rather than E[y|x]

may then be of primary interest. In such circumstances, the alternative form of exogeneity hypothesis

E[um|x, sm] = 0, i.e., E[y|x, sm] = g(x) or y conditionally mean independent of sm given x, would be

of empirical relevance; in this case, the maintained instruments sm are regarded as potentially omitted

variables from the regression function of interest. Cf. Blundell and Horowitz (2007) section 2.3, p.1040.

The inclusion of both sm and x in sa constitutes a joint form of exogeneity (JE) and is more stringent

than ME.5 For linear regression, see Remark 2.1 above, if E[y − βm0x|sa] = 0, i.e., E[y|sa] = βm0x, LS

estimation of βm0 is consistent but inefficient in the presence of conditional heteroskedasticity, Cragg

(1983), with IV estimation incorporating the additional E[y − βm0x|sa] = 0 and maintained E[y −

βm0x|sm] = 0 conditional moments efficient.

3 GMM and GEL Test Statistics

3.1 Approximating Conditional Moment Restrictions

Conditional moment constraints of the form (2.1) and (2.2) are equivalent to a countable number of

unconditional moment restrictions under certain regularity conditions; see Chamberlain (1987). The

following assumption, Assumption 1, p.58, of Donald et al. (2003), henceforth DIN, provides precise

conditions. The discussion is initially framed for a generic vector of instruments s and moment indicator

vector u(z, β).

For each positive integer K, let qK(s) = (q1K(s), ..., qKK(s))′ denote a K-vector of approximating

functions.

Assumption 3.1. For all K, E[qK(s)′qK(s)] is finite and for any a(s) with E[a(s)2] < ∞ there are

K-vectors γK such that as K →∞,

E[(a(s)− qK(s)′γK)2]→ 0.

Possible approximating functions which satisfy Assumption 3.1 are splines, power series and Fourier

series. See inter alia DIN, Newey (1997) and Powell (1981) for further discussion.

The next result, DIN Lemma 2.1, p.58, establishes a formal equivalence between conditional moment

restrictions of the type (2.1) and (2.2) and a sequence of unconditional moment restrictions.

5JE rather than ME has been a central concern in the literature on classical likelihood-based tests for (weak) exogeneity;
see inter alia Durbin (1954), Wu (1973), Hausman (1978), Engle (1982), Engle et al. (1983) and Smith (1994).

[5]



Lemma 3.1. Suppose that Assumption 3.1 is satisfied and E[u(z, β0)′u(z, β0)] is finite. If E[u(z, β0)|s] =

0, then E[u(z, β0)⊗qK(s)] = 0 for all K. Furthermore, if E [u(z, β0)|s] 6= 0, then E[u(z, β0)⊗qK(s)] 6= 0

for all K large enough.

DIN defines the unconditional moment indicator vector as u(z, β) ⊗ qK(s). By considering the mo-

ment conditions E[u(z, β0) ⊗ qK(s)] = 0, if K approaches infinity at an appropriate rate, dependent

on the sample size n and the estimation method, EL, IV, GMM or GEL, DIN demonstrates that un-

der certain conditions these estimators are consistent and achieve the semi-parametric efficiency lower

bound. To do so, however, requires the imposition of a normalization condition on the approximating

functions, DIN Assumption 2, p.59, which now follows. Let S denote the support of the random vector s.

Assumption 3.2. For each K there is a constant scalar ζ(K) and matrix BK such that q̃K(s) =

BKq
K(s) for all s ∈ S, sups∈S

∥∥q̃K(s)
∥∥ ≤ ζ(K), E[q̃K(s)q̃K(s)′] has smallest eigenvalue bounded away

from zero uniformly in K and
√
K ≤ ζ (K).

Hence to formulate a test statistic appropriate for the null hypothesis (2.3) requires that its con-

stituent conditional moment constraints, E[um(z, βm0)|sm] = 0 (2.1) and E[ua(z, βa0)|sa] = 0 (2.2), are

re-interpreted as suitably defined sequences of unconditional moment restrictions based on Assumptions

3.1 and 3.2. The maintained conditional moment restrictions (2.1) are re-expressed as the sequence of

JmK unconditional moment restrictions

E[um(z, βm0)⊗ qKm(sm)] = 0,K →∞, (3.1)

for approximating functions qKm(sm) satisfying Assumptions 3.1 and 3.2. Likewise let qMK
a (sa) be a MK-

vector of approximating functions that depends on sa and that also satisfies Assumptions 3.1 and 3.2,

where for ease of exposition M is a positive integer. Thus the additional conditional moment restrictions

(2.2) are rewritten as the sequence of JaMK unconditional moment restrictions

E[ua(z, βa0)⊗ qMK
a (sa)] = 0,K →∞. (3.2)

The null hypothesis (2.3) is then formally equivalent to the sequence of (Jm + JaM)K unconditional

[6]



moments6

E[um(z, βm0)⊗ qKm(sm)] = 0, E[ua(z, βa0)⊗ qMK
a (sa)] = 0,K →∞. (3.3)

Remark 3.1. Strictly speaking, the succeeding theoretical analysis requires the dimension of qMK
a (·),

the integer dqa(K) say, should satisfy limK→∞ dqa (K) /K = M , M a positive constant, e.g., dqa (K) =

[MK], i.e., the same order as that of qKm(·). The multiplicative choice MK with M a positive integer is

adopted for simplicity and for ease of implementation and exposition. Restricted test statistics for (2.3)

defined in section 3.3 below are expressed as (or are asymptotically equivalent to) the difference of an

unrestricted statistic and a statistic apposite for testing the maintained conditional moment restrictions

(2.1); see section 4. Their respective large sample behaviours are determined by the relative number of

approximating functions used to express the null and maintained hypotheses in unconditional form. If

the dimension of qMK
a (·) diverges at a rate different from that of qKm(·), the limit theory used in sections 4

and 5 to establish the asymptotic behaviour of the unrestricted statistic under null and local alternative

hypotheses no longer applies.

Example 2.1 (Conditional Homoskedasticity Cont.). Recall that ua(z, βa) = vech(um(z, βm)um(z, βm)′−

Σ) with βa = (β′m, vech(Σ)′)′. In this case sa = sm and thus the additional approximating functions

are defined as qMK
a (sa) = qKm(sm). Therefore M = 1. Hence, the null hypothesis H0 : Σ0(sm) = Σ0,

E[um(z, βm0)|sm] = 0 is re-expressed in unconditional form as

E[ua(z, βa0)⊗ qKm(sm)] = 0, E[um(z, βm0)⊗ qKm(sm)] = 0,K →∞.

Example 2.2 (Instrument Validity Cont.). Recall that ua(z, βa) = um(z, βm) with Jm = Ja and

βa = βm. The vector of additional approximating functions is qMK
a (sa) with dimension MK. Thus, the

null hypothesis H0 : E[um(z, βm0)|sa] = 0, E[um(z, βm0)|sm] = 0 is re-expressed in unconditional form

as

E[um(z, βm0)⊗ qMK
a (sa)] = 0, E[um(z, βm0)⊗ qKm(sm)] = 0,K →∞.

Remark 3.2. For regression the special cases ME sa = x with qMK
a (sa) functions of x only and JE

sa = (sm, x) with qMK
a (sa) additional functions of sm and x are of particular interest.

6To illustrate the construction of qKm(sm) and qMK
a (sa) for polynomial approximating functions suppose sm and sa

have dam elements in common. Let the approximating functions vector qKm(sm) for the maintained conditional moment

restrictions (2.1) be a polynomial of order km − 1 which yields K = kdmm . Thus km could be chosen as [K1/dm ] + 1 for
given K. Similarly let the components of the vector of approximating functions qMK

a (sa) for the additional conditional
moment restrictions (2.2) corresponding to the dam elements in common between sm and sa be formed from a polynomial
of order ka − 1. Also suppose a polynomial of order ka excluding the constant term is used for those components
corresponding to the da − dam unique elements in sa. Then the dimension of the vector of approximating functions
qMK
a (sa) is kdama ((ka + 1)da−dam − 1). Therefore the order of the dimension of qMK

a (sa) is kdaa . Examples: (a) ME:

dam = 0; thus MK = (ka + 1)da − 1, e.g., da = 1, MK = ka. (b) JE: dam = dm; thus MK = kdma ((ka + 1)da−dm − 1),
e.g., dm = 1, da = 2, MK = k2a. For the general case this suggests choosing ka = [(MK)1/da ] + 1.

[7]



3.2 Basic Assumptions and Notation

Let β denote the distinct elements of βm and βa with β0 and the composite parameter space B defined

similarly with p the number of parameters comprising β. The vector s collects the distinct elements

of the maintained and additional instrument vectors sm and sa. Also let u(z, β) and qK(s) denote the

non-redundant elements of um(z, βm) and ua(z, βa) and qKm(sm) and qMK
a (sa) respectively. It will be

helpful to define a number of f.r.r. selection matrices Sum, Sua and Sqm, Sqa; viz., Sumu(z, β) = um(z, βm),

Suau(z, β) = ua(z, βa) and Sqmq
K(s) = qKm(sm), Sqaq

K(s) = qMK
a (sa).7 Correspondingly Sm = Sum ⊗ Sqm

and Sa = Sua ⊗ Sqa are both f.r.r. selection matrices. Importantly for the theoretical analysis under-

pinning the results in the paper, the unconditional forms of moment indicator vectors corresponding to

the maintained and null hypotheses, cf. (3.1) and (3.3), may be expressed as Sm(u(z, β) ⊗ qK(s)) and

S(u(z, β) ⊗ qK(s)) respectively where S = (S′m, S
′
a)′. Necessarily S is n.s. otherwise either u(z, β) or

qK(s) would contain redundant elements.

Example 2.1 (Conditional Homoskedasticity Cont.). Here u(z, β) = (um(z, βm)′, ua(z, βa)′)′

and qK(s) = qKm(sm). Hence Sqm = Sqa = IK and Sum = (IJm , 0(Jm×Ja)), S
u
a = (0(Ja×Jm), IJa). The

unconditional form of the moment indicator vector corresponding to the null hypothesis H0 : Σ0(sm) =

Σ0, E[u(z, β0)|sm] = 0 is then

S(u(z, β)⊗ qK(s)) =

(
um(z, βm)
ua(z, βa)

)
⊗ qKm(sm),K →∞,

with that for the maintained hypothesis expressed as Sm(u(z, β)⊗qK(s)) = um(z, βm)⊗qKm(sm), K →∞.

Example 2.2 (Instrument Validity Cont.). Here u(z, β) = ua(z, βa) = um(z, βm) with Jm =

Ja and β = βa = βm. Thus Sum = Sua = IJm and Sqm = (IK , 0(K×MK)), S
q
a = (0(MK×K), IMK).

The unconditional moment indicator vector um(z, βm)⊗ (qKm(sm)′, qMK
a (sa)′)′ corresponding to the null

hypothesis H0 : E[um(z, βm0)|sa] = 0, E[um(z, βm0)|sm] = 0 may equivalently be re-arranged as

S(u(z, β)⊗ qK(s)) =

(
um(z, βm)⊗ qKm(sm)
um(z, βm)⊗ qMK

a (sa)

)
,K →∞,

with that for the maintained hypothesis given by Sm(u(z, β)⊗ qK(s)) = um(z, βm)⊗ qKm(sm), K →∞,

as above.

Standard conditions are imposed to derive the limiting distributions of the test statistics discussed

below; viz.

7The row and column dimensions of the selection matrices Sqm and Sqa depend on K but to avoid a burdensome notation
this dependence is not made explicit.
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Assumption 3.3. (a) The data are i.i.d.; (b) there exists β0 ∈ int(B) such that E[um(z, βm0)|sm] = 0

and E[ua(z, βa0)|sa] = 0; (c)
√
n(β̂ − β0) = Op(1); (d) E[supβ∈B ‖u(z, β)‖2 |s] is bounded.

Unlike DIN Assumption 6(b), p.67, it is unnecessary to impose E[supβ∈B ‖u (z, β)‖γ ] < ∞ for some

γ > 2 for GEL; see Guggenberger and Smith (2005).8

Remark 3.3. Assumption 3.3(c) requires only a root-n consistent rather than an efficient estimator β̂

of β0. Global identification of β0 and thus root-n consistency of GMM and GEL are not necessarily

guaranteed if based on an arbitrary finite set of unconditional moments derived from the conditional

moment restrictions; see, e.g., Domı́nguez and Lobato (2004) and Hsu and Kuan (2011). If β0 ∈ B

uniquely satisfies E[u(z, β)|s] = 0 a.s., β ∈ B, Lemma 3.1 guarantees global identification of β0 for

sufficiently large K and root-n consistency of GMM and GEL follows with the imposition of the addi-

tional assumptions described in DIN section 5, pp.64-67, if Assumptions 3.1 and 3.2 on the vector of

approximating functions qK(s) are satisfied. See also Kitamura et al. (2004). Domı́nguez and Lobato

(2004) and Hsu and Kuan (2011) also propose root-n consistent GMM-type methods based on particular

classes of unconditional moment constraints.

Define uβ(z, β) = ∂u(z, β)/∂β′, D(s) = E[uβ(z, β)|s] and uββj(z, β) = ∂2uj(z, β)/∂β∂β′, j = 1, ..., J ,

where J denotes the dimension of u(z, β).9 Also let N denote a neighbourhood of β0.

Assumption 3.4. (a) u(z, β) is twice continuously differentiable in N , E[supβ∈N ‖uβ(z, β)‖2 |s] and

E[‖uββj(z, β0)‖2 |s], (j = 1, ..., J), are bounded; (b) Σ (s) = E[u(z, β0)u(z, β0)′|s] has smallest eigenvalue

bounded away from zero; (c) E[supβ∈N ‖u(z, β)‖4 |s] is bounded; (d) for all β ∈ N , ‖u(z, β)− u(z, β0)‖ ≤

δ(z) ‖β − β0‖ and E[δ(z)2|s] is bounded; (e) E[D(s)′D(s)] is nonsingular.

3.3 Test Statistics

Let gmi(βm) = Sm(u(zi, β) ⊗ qK(si)) = um(zi, βm) ⊗ qKm(smi), gai(βa) = Sa(u(zi, β) ⊗ qK(si)) =

ua(zi, β)⊗ qMK
a (sai) and gi(β) = S(u(zi, β)⊗ qK(si)), (i = 1, ..., n). Write ĝm(βm) =

∑n
i=1 gmi(βm)/n

and ĝ(β) =
∑n
i=1 gi(β)/n.

GMM statistics appropriate for tests of maintained and null hypotheses expressed unconditionally in

(3.1) and (3.3) take the standard forms

T gmGMM = nĝm(β̂m)′Ω̂−1
m ĝm(β̂m) (3.4)

8Supplement Lemma S.1 may be substituted for DIN Lemma A.10, p.82, rendering γ = 2 sufficient for the succeeding
DIN lemmas and theorems concerned with GEL.

9Nonsmooth moment indicators could be accommodated by appropriately modifying the theoretical analysis. See, e.g.,
Chen and Pouzo (2009, 2012) and Parente and Smith (2011).
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and

T gGMM = nĝ(β̂)′Ω̂−1ĝ(β̂), (3.5)

where β̂m denotes the subvector of β̂ corresponding to βm, Ω̂m =
∑n
i=1 gmi(β̂m)gmi(β̂m)′/n and Ω̂ =∑n

i=1 gi(β̂)gi(β̂)′/n. Cf., for example, DIN section 4, pp.63-64.

In the remainder of the paper tests that fully incorporate the information contained in the maintained

hypothesis (2.1), or (3.1), in their formulation are referred to as restricted tests whereas those that

partially or completely fail to do so are termed unrestricted tests.

A restricted GMM statistic appropriate for testing the null hypothesis (2.3) against the maintained

hypothesis (2.4) may be based on the difference of GMM criterion function statistics (3.5) and (3.4) for

the respective revised hypotheses (3.3) and (3.1), cf. Eichenbaum et al. (1988), Appendix C, pp.74-76,

in particular, (C.1), p.75; viz.

J r =
T gGMM − T

gm
GMM − (JaMK − (p− pm))√

2(JaMK − (p− pm))
, (3.6)

where p− pm is the number of additional parameters in βa defining the additional conditional moment

conditions (2.2) as compared with the maintained hypothesis (2.1) parameters βm.

Remark 3.4. For fixed and finite K, under suitable conditions, GMM, Newey (1985) and Eichenbaum et

al. (1988), and GEL, Smith (2011), test statistics for the validity of additional moment restrictions, e.g.,

T gGMM − T
gm
GMM , are asymptotically chi-square distributed with JaMK − (p − pm) degrees of freedom.

The mean location JaMK − (p− pm) and standard deviation scale
√

2(JaMK − (p− pm)) standardis-

ations of T gGMM −T
gm
GMM in J r (3.6) mimic those introduced to render chi-square random variates with

large degrees of freedom approximately standard normally distributed.

A number of alternative test statistics to GMM-based procedures for a finite number of additional

moment restrictions using GEL, Newey and Smith (2004) and Smith (1997, 2011), may be adapted for

the framework considered here. As in DIN and Newey and Smith (2004) let ρ(v) denote a function of a

scalar v that is concave on its domain, an open interval V containing zero. Define the respective GEL

criteria under null and alternative hypotheses as

P̂ gρ (β, λ) =
∑n

i=1
[ρ(λ′gi(β))− ρ0]/n,

P̂ gmρ (βm, λm) =
∑n

i=1
[ρ(λ′mgmi(βm))− ρ0]/n, (3.7)

where λ and λm = Smλ are the corresponding (Jm + JaM)K- and JmK-vectors of Lagrange multipliers

associated with the unconditional moment constraints (3.1) and (3.3). Let ρj(v) = ∂jρ(v)/∂vj and ρj =

ρj(0), (j = 0, 1, 2, ...) where, without loss of generality, the normalisation ρ1 = ρ2 = −1 is imposed.10

10EL is GEL with ρ(v) = log(1 − v), Imbens (1997), Qin and Lawless (1994) and Smith (2000). ET is also GEL with
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Let Λ̂gmn (βm) = {λm : λ′mgmi(βm) ∈ V, i = 1, ..., n} and Λ̂gn(β) = {λ : λ′gi(β) ∈ V, i = 1, ..., n}.

Given β, the respective Lagrange multiplier estimators for λm and λ are defined by

λ̂m(βm) = arg max
λm∈Λ̂gm

n (βm)
P̂ gmρ (βm, λm), λ̂(β) = arg max

λ∈Λ̂g
n(β)

P̂ gρ (β, λ).

The corresponding respective Lagrange multiplier estimators for λm and λ are then defined as λ̂m =

λ̂m(β̂m) and λ̂ = λ̂(β̂), cf. Assumption 3.3(c),

Similarly to the restricted GMM statistic J r (3.6), a restricted form of GEL likelihood ratio (LR)

statistic for testing the null hypothesis (2.3) against the maintained hypothesis (2.4) may be based on

the difference of GEL criterion function (3.7) statistics; viz.

LRr =
2n(P̂ gρ (β̂, λ̂)− P̂ gmρ (β̂m, λ̂m))− (JaMK − (p− pm))√

2(JaMK − (p− pm))
. (3.8)

Restricted Lagrange multiplier, score and Wald-type statistics are defined respectively as11

LMr =
n(λ̂− S′mλ̂m)′Ω̂(λ̂− S′mλ̂m)− (JaMK − (p− pm))√

2(JaMK − (p− pm))
, (3.9)

Sr =

∑n
i=1 ρ1(λ̂′mgmi(β̂m))gai(β̂a)′SaΩ̂−1S′a

∑n
i=1 ρ1(λ̂′mgmi(β̂m))gai(β̂a)/n− (JaMK − (p− pm))√

2(JaMK − (p− pm)) (3.10)

and

Wr =
nλ̂′S′a(SaΩ̂−1S′a)−1Saλ̂− (JaMK − (p− pm))√

2(JaMK − (p− pm))
. (3.11)

An additional assumption on the GEL function ρ(·) is required for statistics based on GEL as in DIN

Assumption 6, p.67.

Assumption 3.5. ρ(·) is a twice continuously differentiable concave function with Lipschitz second

derivative in a neighborhood of 0.

ρ(v) = − exp(v), Imbens et al. (1998), Kitamura and Stutzer (1997), as is CUE if ρ(·) is quadratic, Hansen et al. Yaron
(1996); see Theorem 2.1, p.223, of Newey and Smith (2004). More generally, members of the Cressie-Read (1984) power
divergence family of discrepancies discussed by Imbens et al. (2008) are GEL with ρ(v) = −(1 + γv)(γ+1)/γ/(γ + 1); see
Newey and Smith (2004), Section 2.1, pp.223-224.
11Alternative restricted score and Wald statistics robust to estimation effects may be defined; viz.

S̄r =

∑n

i=1
ρ1(λ̂′mgmi(β̂m))gi(β̂)′(Ω̂−1 − Ω̂−1Ĝ(Ĝ′Ω̂−1Ĝ)−1Ĝ′Ω̂−1)

∑n

i=1
ρ1(λ̂′mgmi(β̂m))gi(β̂)/n− (JaMK − (p− pm))√

2(JaMK − (p− pm))

W̄r =
nλ̂′a(Sa(Ω̂−1 − Ω̂−1Ĝ(Ĝ′Ω̂−1Ĝ)−1Ĝ′Ω̂−1)S′a)−1λ̂a − (JaMK − (p− pm))√

2(JaMK − (p− pm))
.

See Smith (1997, section II.2, pp.511-514) and Smith (2011, section 5, pp.1209-1213).
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4 Asymptotic Null Distribution

The following theorem provides a statement of the limiting distribution of the restricted GMM statistic

J r (3.6) under the null hypothesis H0 (2.3).

Theorem 4.1. If Assumptions 3.1-3.4 hold and if K →∞ and ζ (K)
2
K2/n→ 0, then J r d→ N(0, 1).

The next result details the limiting properties of the restricted GEL-based statistics for the null

hypothesis (2.3) and their relationship to that of the GMM statistic J r (3.6).

Theorem 4.2. Let Assumptions 3.1-3.5 hold and suppose in addition K → ∞ and ζ(K)2K3/n → 0.

Then LRr, LMr, Sr and Wr converge in distribution to a standard normal random variate. Moreover

all of these statistics are asymptotically equivalent to J r.

Remark 4.1. The large sample analysis in section 5 of the local alternative behaviour of restricted

and unrestricted statistics discussed below indicates that one-sided tests of the null hypothesis H0

(2.3) are appropriate. E.g., the critical region {J r ≥ zα} for the standardised GMM statistic J r

(3.6) has asymptotic size α where P{N(0, 1) ≥ zα} = α. Alternatively, valid critical regions based

on non-standardised statistics may also be defined. E.g., for T gGMM − T
gm
GMM , the critical region

{T gGMM −T
gm
GMM ≥ χ2

JaMK−(p−pm)(α)} where χ2
k(α) is the α-level critical value of the chi-square distri-

bution with k degrees of freedom.12 Note that p − pm is negligible in the large K, large n asymptotic

analysis of Theorems 4.1 and 4.2.

Unrestricted statistics fail to take into account some or all of the information contained in the main-

tained hypothesis (2.1) in their formulation. The standard forms of unrestricted GEL-based statistic,

cf. Aitchison (1962), do not incorporate the component of the restricted statistic corresponding to the

12To see this let the statistic Sn(k) be such that Sn(k)
d→ χ2

d(k)
, n→∞, for fixed k where d(k) is the associated degrees

of freedom. Define

Zn(k) =
Sn(k)− d(k)√

2d(k)
and zk(α) =

χ2
d(k)

(α)− d(k)√
2d(k)

.

Assume that there exists a sequence kn → ∞ such that Zn(kn)
d→ N(0, 1), n → ∞. Consider the critical region

{Sn(kn) ≥ χ2
d(kn)

(α)}. Since limn→∞ Pn{Zn(kn) ≥ zα} = α,

lim
n→∞

Pn{Sn(kn) ≥ χ2d(kn)(α)} = lim
n→∞

Pn{Zn(kn) ≥ zkn (α)}

= lim
n→∞

Pn{Zn(kn) ≥ zα} = α.

The second equality follows from Zn(kn)
d→ N(0, 1), the absolute continuity of the N(0, 1) distribution function and

limn→∞ zkn (α) = zα.

[12]



maintained hypothesis (2.1), cf. LRr (3.8), LMr (3.9) and Sr (3.10); i.e.,

LRu =
2nP̂ gn(β̂, λ̂)− ((JaMK + JmK)− p)√

2((JaMK + JmK)− p)
, (4.1)

LMu =
nλ̂′Ω̂λ̂− ((JaMK + JmK)− p)√

2((JaMK + JmK)− p)
(4.2)

with the score form based on T gGMM (3.5)

Su =
nĝ(β̂)′Ω̂−1ĝ(β̂)− ((JaMK + JmK)− p)√

2((JaMK + JmK)− p)
. (4.3)

By a similar analysis to that used to establish Theorems 4.1 and 4.2 the statistics LRu, LMu and Su

converge in distribution to a standard normal random variate and are mutually asymptotically equiva-

lent but not to the restricted statistics above.13

Remark 4.2. Other forms of unrestricted statistics may also be defined that incorporate the maintained

information (2.1) to a lesser extent than restricted statistics, e.g., a GMM statistic solely based on the

additional conditional moment restrictions (2.2); viz.

J a =
T gaGMM − (JaMK − pa)√

2(JaMK − pa)
, (4.4)

where T gaGMM = nĝa(β̂a)′Ω̂−1
a ĝa(β̂a) with β̂a the subvector of β̂ corresponding to βa, ĝa(βa) =

∑n
i=1

gai(βa)/n and Ω̂a =
∑n
i=1 gai(β̂a)gai(β̂a)′/n. GEL forms LRa, LMa and Sa follow similarly; cf. (4.1),

(4.2) and (4.3) respectively. The proofs of Theorems 4.1 and 4.2 may be adapted to demonstrate

that these statistics each converge in distribution to a standard normal random variate and are mutually

asymptotically equivalent but not to the restricted statistics or the unrestricted GEL class defined above.

This section concludes with an asymptotic independence result between the restricted GMM statistic

J r for testing (2.3) and the corresponding statistic for testing the maintained hypothesis (2.1); viz.

Jm =
T gmGMM − (JmK − pm)√

2(JmK − pm)
. (4.5)

Theorem 4.3. If Assumptions 3.1-3.4 hold and if K → ∞ and ζ (K)
2
K2/n → 0, then (a) Jm d→

N(0, 1) and (b) J r is asymptotically independent of Jm.

A similar result holds for the associated restricted GEL statistics LRr, LMr, Sr and Wr and their

counterparts for testing (2.1) if the additional assumption ζ(K)2K3/n→ 0 is imposed.

13These unrestricted statistics are apposite for a joint test of the additional (2.2) and maintained (2.1) conditional
moment restrictions. The statistics LRu and Su are forms of GMM and GEL statistics suggested in DIN section 6,
pp.67-71, adapted for testing the null hypothesis (2.3).
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Remark 4.3. The practical import of Theorem 4.3 is that the overall asymptotic size of the test se-

quence for (2.1) and (2.2) may be controlled, e.g., (a) test (2.1) using Jm; (b) given (2.1), test (2.2)

using J r, with overall asymptotic test size 1 − (1 − αm)(1 − αa), where αm and αa are the respective

asymptotic sizes of the individual tests in (a) and (b).

Remark 4.4. The asymptotic independence of J r and Jm mirrors that of classical and unconditional

moment GMM and GEL tests for a sequence of parametric restrictions; see Newey (1985) and Smith

(2011). Indeed the unrestricted statistic J u is the sum of suitably rescaled restricted J r and maintained

hypothesis Jm statistics; cf. the decomposition of standard unrestricted classical or GMM and GEL

statistics for parametric restrictions.

5 Asymptotic Local Power

This section considers the asymptotic distribution of the statistics of the previous sections under a

suitable sequence of local alternatives. Critically, this discussion demonstrates the deficiency in terms of

asymptotic local power of unrestricted tests which fail to fully incorporate the maintained conditional

information (2.1) and thereby the superiority of restricted tests.

The set-up is similar to that in Eubank and Spielgeman (1990) and Hong and White (1995), see also

Tripathi and Kitamura (2003), utilising local alternatives to the null hypothesis (2.3) of the form

H1n : E[u(z, βn,0)|s] =
4
√
JaMK√
n

ξ(s), (5.1)

where βn,0 ∈ B is a non-stochastic sequence such that βn,0 → β0. It is assumed that E[ξm(s)|sm] = 0,

where ξm(s) = Sumξ(s), thus ensuring that the maintained hypothesis E[um(z, βm0)|sm] = 0 (2.1) is not

violated.

Remark 5.1. The sequence of local alternatives (5.1) is particularly apposite for the instrumental

validity Example 2.2 in which u(z, β) = um(z, βm) = ua(z, βa) with β = βm = βa. If the maintained

instruments sm are a subvector of sa, i.e., s = sa, E[ξ(s)|sm] = 0. Similarly, when sm is not a subvector of

sa, the relevant sequence of local alternatives to E[u(z, β0)|sm] = 0 is the expectation of (5.1) conditional

on sa, i.e.,

E[u(z, βn,0)|sa] =
4
√
JaMK√
n

E[ξ(s)|sa].

The asymptotic local alternative distributions of the statistics described above are obtained under

the following assumption.

Assumption 5.1. (a) βn,0 is a non-stochastic sequence such that (5.1) holds and βn,0 → β0; (b)
√
n(β̂−

βn,0) = Op(1); (c) for all β ∈ N , Σ(s;β) = E[u(z, β)u(z, β)′|s] and Σm(sm;βm) = E[um(z, βm)um(z, βm)′|sm]
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each have smallest eigenvalue bounded away from zero; (d) ‖ξ(s)‖ is bounded; (e) Σ(s;β), Σm(sm;βm)

and D(s;β) = E[uβ(z, β)|s], Dm(sm;βm) = E[umβ(z, βm)|sm] are continuous functions on a compact

closure of N .

The next result summarises the limiting distribution of the restricted statistics J r, LRr, LMr, Sr

and Wr under the sequence of local alternatives (5.1). Let Σ(s) = Σ(s;β0).

Theorem 5.1. Let Assumptions 3.1-3.4 and 5.1 hold, K →∞ and ζ(K)2K2/n→ 0. Then J r converges

in distribution to a N(µr/
√

2, 1) random variate, where

µr = E[ξ(s)′Σ(s)−1ξ(s)].

If additionally Assumption 3.5 is satisfied and ζ(K)2K3/n → 0, then LRr, LMr, Sr and Wr are as-

ymptotically equivalent to J r.

Remark 5.2. Since µr ≥ 0 tests of the null hypothesis H0 (2.3) based on these statistics should be

one-sided. Although not discussed here, a similar analysis to that underpinning DIN Lemma 6.5, p.71,

demonstrates the consistency of tests based on the statistics J r, LRr, LMr, Sr and Wr.

The following corollary to Theorem 5.1 details the limiting distribution of the standard forms of

unrestricted statistics LRu (4.1), LMu (4.2) and Su (4.3) under the same local alternative sequence

(5.1).

Corollary 5.1. Let Assumptions 3.1-3.4 and 5.1 hold and ζ(K)2K2/n → 0. Then Su converges in

distribution to a N(µu/
√

2, 1) random variate, where

µu =

√
JaM

JaM + Jm
µr.

If additionally Assumption 3.5 is satisfied and ζ(K)2K3/n → 0, then LRu, LMu are asymptotically

equivalent to Su.

Remark 5.3. Since µr > µu Corollary 5.1 demonstrates that for fixed M restricted tests dominate

the standard unrestricted tests in terms of asymptotic local power. Other unrestricted tests that par-

tially or completely fail to incorporate the maintained conditional moment information (2.1) in their

formulation are likewise relatively deficient. For example, using a similar analysis to that for Theorem

5.1, the GMM statistic J a (4.4) and associated GEL statistics LRa, LMa and Sa may be shown to

converge in distribution under the local alternatives sequence (5.1) to a N(µa/
√

2, 1) random variable,
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where µa = E[ξ(s)′Su′a (SuaΣ(s)Su′a )−1Sua ξ(s)]. Hence µr − µa ≥ 0. Therefore, tests based on these and

other unrestricted statistics are asymptotically less powerful relative to restricted tests.

Remark 5.4. Corollary 5.1 also shows that the difference in local asymptotic power between restricted

and unrestricted tests declines with increasing M since the noncentrality parameter µu would differ little

from µr with consequential similar discriminatory power for both standard unrestricted and restricted

tests for local departures from the null hypothesis H0 (2.3).

Remark 5.5. Theorem 5.1 and Corollary 5.1 provide no guidance for the choice of M . The effect

of M on power for given sample size n and K will depend on the specific alternative hypothesis and

correspondingly the relevance of any additional unconditional moment functions included by increasing

M . More precisely, the efficacy in terms of power of including extra elements in qMK
a (sa), i.e., increasing

M , for given n and K, will depend on the correlation between these extra elements and the conditional

expectation E[u(z, β0)|s]. If this correlation is zero or weak then, although not strictly speaking ap-

plicable here, an asymptotic local power analysis for the unconditional moment context would indicate

that power should be expected to be diminished since test chi-square degrees of freedom will increase

with M but the noncentrality parameter will remain relatively unaltered. Cf. Newey (1985) section 3,

pp.238-244, in particular, the discussion following Proposition 6, p.242. If this correlation is strong there

will be a trade-off between increases in both degrees of freedom and noncentrality parameter with power

potentially enhanced. Simulation evidence reported next in section 6 suggests that for a given sample

size n and fixed value of K the correspondence between empirical and nominal test size deteriorates with

increasing M ; a similar deterioration is also observed for size-corrected empirical power but it should be

emphasised against specific sets of alternatives.

6 Simulation Evidence

This section reports the results from a simulation study to assess the performance of some of the tests

for ME and JE forms of instrument validity in the linear regression model, see Example 2.2, based on the

GMM and GEL statistics developed in previous sections. To provide a realistic setting, the investigation

is based on an application to a dataset where the issue of instrument validity is of some interest and

importance.

Overall these experiments revealed that nominal size is approximated relatively more closely by

the empirical size of (a) the non-standardised tests, see Remark 4.1, and (b) tests based on efficient

estimators, cf. Tripathi and Kitamura (2003), although Assumption 3.3(c) only requires
√
n-consistent

estimation. Consequently, only results for these forms of statistics are presented. The Wald test statistic

Wr (3.11) and score test statistic Sr (3.10) are also excluded for similar reasons. Likewise, only the
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results for restricted tests are reported as they dominate the unrestricted forms in terms of empirical

power reflecting their theoretical superiority; see Corollary 5.1.14

All experiments concern a parametric specification for the Engel curve relationship between the

expenditure share of leisure services y and the logarithm of total expenditures x and employ the same

data as those in Blundell and Horowitz (2007). These data correspond to a subsample of the household-

level observations from the British Family Expenditure Survey and consist of a sample of 1518 married

couples with one or two children and an employed head of household. Since many parametric Engel

curve specifications are often linear or quadratic in x, see, e.g., Muellbauer (1976) and Banks et al.

(1997), the experimental basis here is the linear regression model

y = β0 + β1x+ β2x
2 + u. (6.1)

The maintained instrument sm is the annual income from wages and salaries of the head of household.

Thus β = βm = βa = (β0, β1, β2)′, Ja = Jm = 1 and u(z, β) = um(z, βm) = ua(z, βa) where u(z, β) =

y − β0 − β1x− β2x
2; see Example 2.2. Cf. Blundell and Horowitz (2007) section 5, p.1051.

The regression design incorporates both ME and JE forms of additional conditional constraint restric-

tions (2.2); see Remark 2.2. Therefore the hypotheses of interest are as follows. First, the maintained

hypothesis (2.1) E[u|sm] = 0. Secondly, the additional conditional moment constraints (2.2): ME

E[u|x] = 0, i.e., sa = x, and JE E[u|sm, x] = 0, i.e., sa = (sm, x).

6.1 Experimental Design

The parameter vector β is estimated using the full data set by efficient two step (2S) GMM, with weight

matrix computed using two stage least squares with the single instrument sm, see DIN section 4, pp.63-

65, based on the maintained conditional moment restriction E[u(z, β)|sm] = 0. The maintained 2SGMM

vector of approximating functions is qKm(sm) with K = 25.15 2SGMM estimates are denoted as βe0 , βe1

and βe2 with 2SGMM residual ue = y − βe0 − βe1x− βe2x2.

The structure of the data generating process underpinning the design is similar to that in Blundell and

Horowitz (2007) section 4, pp.1049-1051. To ensure that the maintained hypothesis E[u(z, β)|sm] = 0

holds in the sample consider the residual from a nonparametric series regression of ue on sm for the full

14The full set of simulation results is available from the authors upon request.
15Efficient 2SGMM estimates are

ŷ = − 1.29
(0.662)

+ 0.629
(0.268)

x− 0.0609
(0.0269)

x2.

Estimated standard errors are in parentheses. Tests for ME E[u|x] = 0, i.e., sa = x, and JE E[u|sm, x] = 0, i.e.,
sa = (sm, x), discussed in section 6.1.3 were conducted on the full data set using the value K = 8 indicated by the rule
in section 6.2 below. All ME tests rejected the null hypothesis at nominal levels 0.01, 0.05 and 0.10 for M = 1 and at
levels 0.05 and 0.10 when M = 2 providing further support for the results reported in section 5, p.1051, of Blundell and
Horowitz (2007). At nominal level 0.01 for M = 2 tests based on the GEL LR-type, LM-type and Wald statistics failed
to reject the ME null hypothesis whereas those based on the statistics J m, LRMcue and LRM

cue(gel)
evaluated at EL and

ET estimators, L̃M
m

and score statistics did reject at the 0.01 level. These latter tests are precisely those that displayed
a close correspondence between empirical and nominal size in the experiments reported below. All tests for the JE null
hypothesis E[u|sm, x] = 0 rejected at nominal levels 0.01, 0.05 and 0.1 for both M = 1 and 2.

[17]



data set, i.e., ue⊥sm = ue−q25
m (sm)′ (Q25(sm)′Q25(sm))

−
Q25(sm)′ue, where − denotes a generalised inverse

and Q25(sm) = (q25
m (sm1), ..., q25

m (sm1518))′ with the vector q25
m (sm) defined below in section 6.1.1 for n =

1518. Hence E[ue⊥sm |sm] = 0 approximately; see, e.g., Newey (1994) section 3, pp.6-8. To impose the JE

hypothesis E[u(z, β)|sa] = 0, where sa = (sm, x), the error term ue⊥smx is obtained as the residual from the

nonparametric series regression of ue on sm and x, i.e., ue⊥smx = ue − q25(s)′ (Q25(s)′Q25(s))
−
Q25(s)′ue,

where Q25(s) = (q25(s1), ..., q25(s1518))′ with q25(s) = (q25
m (sm)′, q25

a (sa)′)′, and then generating the

dependent variable as ymc = βe0 + βe1x + βe2x
2 + ue⊥smx. Then E[ue⊥smx|sm] = 0 and E[ue⊥smx|sm, x] = 0

approximately. Deviations from the JE null hypothesis are formulated as in ymc = βe0+βe1x+βe2x
2+uesmx,

where uesmx = ssmx(ue⊥smx + ρ(ue⊥sm − u
e⊥
smx))/ssmxρ with ssmx and ssmxρ the standard deviations of ue⊥smx

and ue⊥smx + ρ(ue⊥sm − u
e⊥
smx) respectively.

Experimental data are generated as random samples of size n from (smi, xi, y
mc
i ) , (i = 1, ..., 1518);

simulation random samples are denoted by zi = (smi, xi, y
mc
i ) , (i = 1, ..., n), below. Empirical test size

is examined for sample sizes n = 200, 500, 1000 and 1500 with nominal sizes 0.01, 0.05 and 0.10. Sample

sizes of n = 200 and 500 only are considered in those experiments concerned with empirical power. All

experiments employ 5000 replications and were programmed using MATLAB.

6.1.1 Approximating Functions

Legendre polynomials are used to form the approximating functions in the simulations because of their

good collinearity properties, see Belloni et al. (2015) Example 3.1, p.8, and are defined as

P0(v) = 1,P1(v) = v,

Pr+1 (v) =
(2r + 1)vPr (v)− rPr−1 (v)

r + 1
, r = 1, 2, 3, ...

where v ∈ [−1, 1]; see Abramowitz and Stegun (1970) eq. 8.5.3, p.334.16 Since neither sm nor x

has support [−1, 1] the transformations s̃m = 2Φ
(
sm−s̄m
ssm

)
− 1 and x̃ = 2Φ

(
x−x̄
sx

)
− 1 are employed

where Φ (·) is the N(0, 1) cumulative distribution function; for a given replication of sample size n,

s̄m =
∑n
i=1 smi/n, ssm =

∑n
i=1 (smi − s̄m)

2
/n and x̄ =

∑n
i=1 xi/n, sx =

∑n
i=1 (xi − x̄)

2
/n.17

The maintained conditional moment E[u(z, β)|sm], cf. (2.1), is approximated using the vector of

functions qKm(sm) with elements Pj(s̃m), (j = 0, ...,K − 1). For ME E[u(z, β)|x] is approximated

using a polynomial of order MK in x, i.e., qMK
a (sa) has elements Pk(x̃), (k = 1, ...,MK). The JE

case E[u(z, β)|sa], sa = (sm, x), uses the [(MK)1/2]2-vector of approximating functions qMK
a (sa) with

elements Pj(s̃m)Pk(x̃), (k = 0, ..., [(MK)1/2] − 1, l = 1, ..., [(MK)1/2]) resulting in the null hypothesis

vector of approximating functions qK(s) = (qKm(sm)′, qMK
a (sa)′)′. See fn. 6.

16Lorenz (1986) Theorem 8, p.90, establishes the requisite uniform convergence for polynomial approximating functions;
cf. Assumption 3.1.
17We are grateful to V. Chernozhukov for this suggestion.
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6.1.2 Estimators

Efficient estimation methods examined include 2SGMM (gmm) with weight matrix computed as above,

continuous updating (cue), empirical likelihood (el) and exponential tilting (et). The subscripts ma,

me and je indicate estimation incorporating maintained, ME and JE restrictions respectively.

gmm, cue and et are computed using the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm of

MATLAB. EL is more problematic because in some samples for particular BFGS EL estimates β̂EL the con-

vex hull condition
∥∥∥∑n

i=1 π̂
EL
i g(zi, β̂EL)

∥∥∥ < 10−4 may not be satisfied where the EL implied probabilities

π̂ELi = 1/n(1 + λ̂′ELg(zi, β̂EL)), (i = 1, ..., n), and the EL Lagrange multiplier λ̂EL = −Ω̂−1
π ĝ(β̂EL) with

Ω̂π =
∑n
i=1 π̂

EL
i g(zi, β̂EL)g(zi, β̂EL)′ and ĝ(β) =

∑n
i=1 g(zi, β)/n; see Newey and Smith (2004) Theorem

2.3, p.224. Hence el is computed using the matElike MATLAB package with the optional Zipsolver pack-

age; see Zedlewski (2008).18 In the case of non-convergence, el is computed employing BFGS applied to

the EL dual problem with the Lagrange multiplier obtained using MATLAB code based on Owen (2001)

eq. (12.3), p.235.19 EL estimates obtained via this procedure are only considered to be valid solutions if

the convex hull condition is satisfied, otherwise no solution in the convex hull is reported. Note, however,

that in the test size and power results reported in sections 6.3 and 6.4 the EL estimates satisfied the

convex hull condition in all replications.20

6.1.3 Test Statistics

Restricted tests for ME E[u|x] = 0 and JE E[u|sm, x] = 0 adopt the following notation. The superscripts

m and j refer respectively to the ME or JE hypothesis under test with the subscripts cue, el, et referring

to which GEL criterion is used to construct the test and, as above, denoting the efficient estimator(s)

employed. E.g., the non-standardised restricted GEL LR-type statistic for JE based on EL criteria

and estimators is denoted as LRjel = 2n(P̂ gel(β̂elj , λ̂elj) − P̂
gm
el (β̂elma , λ̂elma)), cf. (3.8). LR-type CUE

statistics evaluated at null and the maintained hypothesis EL and ET estimators are also computed

using the subscript cue(gel) to denote the use of the CUE criterion and GEL estimators, e.g., for JE,

LRjcue(gel) = 2n(P̂ gcue(β̂gelj , λ̂gelj)− P̂
gm
cue(β̂gelma , λ̂gelma)). The non-standardised robustified score S̄ and

Wald W̄ statistics, see fn. 11, evaluated at the corresponding efficient ma estimator are also examined.

Restricted ME and JE non-standardised test statistics are calibrated against chi-square distributions

with MK and [(MK)1/2]2 degrees of freedom respectively.21

18matElike, rather than solving the dual EL problem, solves the primal EL problem directly and is chosen as the default
algorithm because it is faster on average than BFGS. Both BFGS and matElike solutions are identical if each converges
to a solution in the convex hull.
19el computation requires some care since the EL criterion involves the logarithm function which is undefined

for negative arguments. This difficulty is avoided by replacing logarithms with a function that is logarithmic for
arguments larger than a small positive constant and quadratic below that threshold. The code is available at
http://www-stat.stanford.edu/~owen/empirical/
20In a preliminary study the convex hull condition was found to be violated for values of K and M larger than those

considered here. The adjusted EL estimator of Chen et al. (2008) offers an alternative to EL in such circumstances.
21A number of asymptotically equivalent test statistics for the maintained hypothesis (2.1) were also investigated. The

Durbin (1954)-Wu (1973)-Hausman (1978) test based on an auxiliary regression as described in Davidson and Mackinnon
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GEL LM, score and Wald ME and JE test statistics require estimators of the variance matrix Ω =

E[g(z, β0g(z, β0)′] and Jacobian G = E[∂g(z, β0)/∂β′]. The estimators considered for Ω and G are

Ω̂ = n−1
∑n
i=1 g(zi, β̂gel)g(zi, β̂gel)

′ and Ĝ = n−1
∑n
i=1 ∂g(zi, β̂gel)/∂β

′ where β̂gel is the null hypothesis

GEL estimator. Additional results are also presented for ME and JE LM tests based on the consistent

estimator Ω̃k = Ω̂kΩ̂−1Ω̂k for Ω, see where 22

Ω̂k =
∑n

i=1
k̂ig(zi, β̂gel)g(zi, β̂gel)

′, k̂i = −ρ1(λ̂′gelg(zi, β̂gel)) + 1

nλ̂′gelg(zi, β̂gel)
, (i = 1, ..., n).

LM statistics based on Ω̃k are denoted L̃M.

6.2 Choice of the Number of Instruments

Implementation of the above tests requires a choice of K to employ under the maintained hypothesis.

Because the Donald et al. (2009) method and selection criteria such as SBC predominantly indicated

choices of K that varied relatively little with sample size, following DIN Table 1, p. 71, K was chosen

to satisfy K5/n → 0 according to the rule K = [Cn0.19] with C = 2 resulting in K = 5, 6, 7 and 8

corresponding to sample sizes n = 200, 500, 1000 and 1500 respectively. To explore the effect of increased

M on test size and power the values M = 1 and 2 were examined.

6.3 Empirical Size

The results on empirical size reported here correspond to a nominal asymptotic level of 0.05; those

results for nominal levels 0.01 and 0.10 are qualitatively similar and are therefore omitted.

6.3.1 ME

Table B.1 presents the empirical rejection frequencies for M = 1 and 2 for non-standardised restricted

tests of the ME hypothesis E[u(z, β0)|x] = 0 incorporating the maintained hypothesis moment restric-

tions E[u(z, β0)|sm] = 0.

In general, the empirical size of tests based on the Lagrange multiplier statistics LMm
el, LMm

et and

Wald statistics W̄m
el, W̄m

et and to a lesser extent LRmel, LRmet tests suffer from size distortions for moderate

sample sizes n = 200 and 500 with a serious deterioration in performance as M increases from 1 to 2,

i.e., as the number of unconditional moments under test increases. Of those remaining, the LR-type

statistics LRmcue, LRmcue(el), LRmcue(et), the LM-type statistics L̃M
m

el, L̃M
m

et and the ET robust score

statistic S̄met have good size properties. The 2SGMM criterion J m statistic tends to be undersized and

the EL robust score S̄mel statistic somewhat oversized except for the larger sample sizes.23 Generally

(1993) section 7.9, p.237, see also Wooldridge (2002) section 6.2.1, p.118, was also considered. Results are available on
request from the authors.
22Adapting Newey and Smith (2004) Theorem 2.3, p.224, the LM statistic for overidentifying moment conditions based

on Ω̃k is identical to the score statistic based on Ω̂, i.e., nλ̂′gelΩ̃kλ̂gel = nĝ(β̂gel)′Ω̂−1ĝ(β̂gel).
23Matsushita and Otsu (2013) obtained similar results for EL LR-type tests for overidentifying conditions to those

reported here.
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speaking, for a given sample size n and thus fixed K there is a deterioration in performance to a lesser

or greater degree for larger M , a finding also mirrored in other experiments by increasing K with fixed

sample size.

In summary, tests for ME based on the statistics LRmcue and LRmcue(el), LRmcue(et) and L̃M
m

el, L̃M
m

et

and S̄met appear to be the most reliable in terms of empirical size.

6.3.2 JE

Table B.2 presents the rejection frequencies for M = 1 and 2 for non-standardised restricted tests of the

JE null hypothesis E[u(z, β0)|sm, x] = 0.

The general conclusions are quite similar to those for the ME tests. Overall performance worsens

substantially for the larger M for moderate sample sizes n = 200 and 500 for all test versions. The CUE

LR-type forms LRjcue, LRjcue(el), LRjcue(et) evaluated at CUE, EL and ET estimators, the GEL LM-

type statistics L̃M
j

el, L̃M
j

et and the robust score statistic S̄jet display the most satisfactory empirical

size at the nominal 0.05 level whereas as above the 2SGMM criterion J j and the EL robust score S̄jel
statistics are respectively undersized and oversized in the smaller sample sizes.

6.4 Empirical Power

Tables B.3 and B.4 present size-corrected (sc) and non size-corrected (nsc) empirical rejection frequen-

cies at the 0.05 level of tests for the ME and JE hypotheses.24 Given their poor size performance,

tests based on the Lagrange multiplier statistics LMel, LMet and Wald statistics W̄el, W̄et are not

considered in this section.

Typically both rejection frequencies increase substantially as sample size n increases from 200 to 500

but decline with increased M although there are some exceptions for n = 200 and small ρ. In general

the statistics that performed well in terms of empirical size yield similar rejection frequencies under the

alternatives considered here.

6.4.1 ME

Table B.3 presents empirical rejection frequencies for non-standardised restricted ME tests for values

M = 1 and 2 based on 0.05 level size-corrected and nominal non size-corrected critical values for

deviations ρ 6= 0 from the ME hypothesis E[u(z, β0)|x] = 0.

In general, both rejection frequencies increase with deviation ρ and sample size n and decline with

M with some exceptions at ρ = 0.2. Size-corrected empirical power differences between tests are less

at higher values for the deviations ρ and sample sizes n. Overall, tests based on the LR-type statistics

LRmel and LRmet using the nominal 0.05 chi-square critical value are most powerful but it is precisely

24Horowitz and Savin (2000) argue that empirical rejection frequencies based on nominal critical values are the most
relevant since size-correction is not realistically implementable in practice.
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these tests that display an unsatisfactory correspondence between empirical and nominal size. Empirical

power is relatively low at ρ = 0.2 for all tests employing size-corrected or non size-corrected critical

values. Generally speaking, empirical power for all tests employing size-corrected critical values, not

just those with reasonable empirical size characteristics, is rather similar for both the smaller n = 200

and larger n = 500 sample sizes.

6.4.2 JE

Table B.4 presents empirical rejection frequencies for non-standardised restricted JE tests for values

M = 1 and 2 based on 0.05 level size-corrected and nominal non size-corrected critical values for

deviations ρ 6= 0 from the JE hypothesis E[u(z, β0)|sm, x] = 0.

Similar general conclusions to those for the ME tests above broadly follow. Interestingly, given M ,

sample size n and thus K, rejection frequencies are higher than those obtained for the ME hypothesis.

6.5 Summary

The empirical size of non-standardised tests more closely approximates nominal size than that of stan-

dardised tests. The use of efficient rather than root-n consistent estimators is recommended for test

construction. Restricted dominate unrestricted tests in terms of empirical power. Empirical power

typically declines for increases in M for both ME and JE tests.

For both the ME E[u(z, β0)|x] = 0 and JE hypotheses E[u(z, β0)|sm, x] = 0 empirical sizes of

restricted tests based on the restricted CUE LR-type statistics LRcue, LRcue(el), LRcue(et), evaluated

at CUE, EL and ET estimates, and the LM-type statistics L̃Mel, L̃Met and the robust ET score versions

S̄et most closely approximate nominal size. The differences in empirical power with size-corrected critical

values between these tests are rather marginal.

7 Conclusions

The primary focus of this article has been concerned with the provision of tests for additional con-

ditional moment constraints in cross-section or short panel data contexts. The principal contribution

is the explicit incorporation of conditional moment restrictions defining the maintained hypothesis in

the formulation of the test statistics mirroring test construction in the classical parametric likelihood

setting. The approach reinterprets the respective conditional moment hypotheses as infinite numbers of

unconditional moment restrictions with the corresponding tests formulated as tests for additional sets of

infinite numbers of unconditional moment restrictions. The limiting distributions of these test statistics

are derived under the null hypothesis and suitable sequences of local alternatives. These results suggest

that restricted tests that fully incorporate maintained moment constraints in their construction should

dominate in terms of power unrestricted tests that fail to do so.
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The simulation experiments undertaken to explore the efficacy of the various tests proposed in the

paper indicate a number of restricted tests possess both sufficiently satisfactory empirical size and power

characteristics to allow their recommendation for econometric practice.

The methods proposed in this paper are also relevant for short panel data models with independent

cross sections and strictly exogenous instruments. The development of results pertinent for conditional

moment constraints involving different instruments in different time periods is the subject of current

research; cf. Holtz-Eakin et al. (1988), Arellano and Bond (1991) and Chamberlain (1992).

Appendix A: Proofs of Results

Throughout the Appendix, C will denote a generic positive constant that may be different in different

uses with CS, T and cr Cauchy-Schwarz, triangle and Loève cr, Davidson (1994), p.140, inequalities

respectively. Also we write w.p.a.1 for “with probability approaching 1”.

A.1 Asymptotic Null Distribution

Proof of Theorem 4.1. See Supplement Proof of Theorem 4.1.

Proof of Theorem 4.2. See Supplement Proof of Theorem 4.2.

Proof of Theorem 4.3. The proof uses the Cramér-Wold device. Consider the linear combination

J c = αrJ r + αmJm.

where αr and αm are arbitrary finite scalars such that α2
r + α2

m > 0. The desired result is obtained if

J c d→ N(0, α2
r + α2

m).

First, by DIN Lemma 6.1, p.69,

J r − nĝ(β0)′Ω−1ĝ(β0)− nĝm(βm0)′Ω−1
m ĝm(βm0)− JaMK√

2JaMK

p→ 0.

Likewise

Jm − nĝm(βm0)′Ω−1
m ĝm(βm0)− JmK√
2JmK

p→ 0.

Therefore,

J c − 1√
JaM

nĝ(β0)′Qĝ(β0)− (αrJaM + αmJm
√
JaM/Jm)K√

2K

p→ 0,

where Q = αrΩ
−1 − (αr − αm

√
JaM/Jm)SmΩ−1

m S′m.

To prove
√
JaMJ c

d→ N(0, v), where v = (α2
r +α2

m)JaM , the conditions Supplement Lemma S.3(a)-

(f) are verified below.

Condition (a): immediate.
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Condition (b):

tr(QΩ) = αrtr(I(Jm+JaM)K)− (αr − αm
√
JaM/Jm)tr(IJmK)

= αr(Jm + JaM)K − (αr − αm
√
JaM/Jm)JmK

= αr(JaM + αmJm
√
JaM/Jm)K = aK.

Condition (c): note that

(QΩ)2 = (αrI(Jm+JaM)K − (αr − αm
√
JaM/Jm)SmΩ−1

m S′mΩ)2

= α2
rI(Jm+JaM)K − (α2

r − α2
m(JaM/Jm))SmΩ−1

m S′mΩ.

Hence

tr[(QΩ)2] = (α2
r + α2

m)JaMK

= vK.

Condition (d):

(QΩ)4 = (α2
rI(Jm+JaM)K − (α2

r − α2
m(JaM/Jm))SmΩ−1

m S′mΩ)2

= α4
rI(Jm+JaM)K − (α4

r − α4
m(JaM/Jm)2)SmΩ−1

m S′mΩ.

Thus

tr[(QΩ)4] = (α4
r + α4

mJaMJm)JaMK

= o(K2).

Condition (e): from DIN Lemma A.6, p.78, 1/C ≤ λmin(Ξ) ≤ λmax(Ξ) ≤ C and 1/C ≤ λmin(Ω) ≤

λmax(Ω) ≤ C. Therefore, using Assumption 3.2

E[(g(z, β0)′(αrΩ
−1 − (αr − αm

√
JaM/Jm)SmΩ−1

m S′m)g(z, β0))2] ≤ Cζ(K)2K = o(nK)

since ζ(K)2K2/n→ 0.

Condition (f): by a similar reasoning to that for Condition (e)

E[(g(z, β0)′Ω−1g(z, β0))2] ≤ Cζ(K)2K.

Also

QΩQ = (αrΩ
−1 − (αr − αm

√
JaM/Jm)SmΩ−1

m S′m)Ω(αrΩ
−1 − (αr − αm

√
JaM/Jm)SmΩ−1

m S′m)

= α2
r(Ω
−1 − SmΩ−1

m S′m) + α2
m(JaM/Jm)SmΩ−1

m S′m.

Thus, cf. Condition (e),

E[(g(z, β0)′QΩQg(z, β0))2] ≤ Cζ(K)2K.

[24]



A.2 Asymptotic Local Alternative Distribution

Let ui(β) = u(zi, β), umi(βm) = Sumui(β) = um(zi, βm), gi(β) = S(ui(β)⊗ qi), gmi(β) = umi(βm)⊗ qmi,

where qi = qK(si) and qmi = qKm(smi), ĝi = gi(β̂), ĝmi = gmi(β̂m) and gi,n = gi(β0,n), gmi,n =

gmi(βm0,n), (i = 1, ..., n). Also let ui,n = ui(β0,n), umi,n = umi(βm0,n), Σi(β) = E[ui(β)ui(β)′|si],

Σmi(β) = E[umi(βm)umi(βm)′|smi], Σi,n = Σi(β0,n) = E[ui,nu
′
i,n|si], Σmi,n = Σmi(βm0,n) = E[umi,nu

′
mi,n|smi],

(i = 1, ..., n), together with

Ω̂ =
∑

i
ĝiĝ
′
i/n, Ω̃n =

∑
i
gi,ng

′
i,n/n,

Ω̄n = S(
∑

i
Σi,n ⊗ qiq′i)S′/n,Ωn = E[gi,ng

′
i,n].

and

Ω̂m =
∑

i
ĝmiĝ

′
mi/n, Ω̃mn =

∑
i
gmi,ng

′
mi,n/n,

Ω̄mn = (
∑

i
Σmi,n ⊗ qmiq′mi)/n,Ωmn = E[gmi,ng

′
mi,n].

Proof of Theorem 5.1. The result is established first for the GMM statistic J r.

Let ĝmn = ĝm(βmn,0) and ĝn = ĝ(βn,0). Note Ωmn = SmΩnS
′
m. Then, by Supplement Lemma S.8,

nĝ(β̂)′Ω̂−1ĝ(β̂)− nĝ′nΩ−1
n ĝn√

2JaMK

p→ 0,
nĝm(β̂m)′Ω̂−1

m ĝm(β̂m)− nĝ′mnΩ−1
mnĝmn√

2JaMK

p→ 0.

Hence J r − (nĝ′n(Ω−1
n − S′mΩ−1

mnSm)ĝn − JaMK)/
√

2JaMK
p→ 0.

It remains to prove that

nĝ′n(Ω−1
n − S′mΩ−1

mnSm)ĝn − JaMK√
2JaMK

d→ N(µr/
√

2, 1).

Let ḡi,n = E[gi,n|si] and g̃i,n = gi,n − ḡi,n, (i = 1, ..., n). Also let ḡn =
∑n
i=1 ḡi,n/n and g̃n =∑n

i=1 g̃i,n/n. Write Pn = Ω−1
n − S′mΩ−1

mnSm. Then,

ĝ′nPnĝn = g̃′nPng̃n + 2ḡ′nPng̃n + ḡ′nPnḡn.

The first step demonstrates

ḡ′nPnḡn =

√
JaMK

n
(µr + op(1)).

Let ξi = ξ(si) and ξmi = ξm(si), (i = 1, ..., n). It follows by Supplement Lemma S.4 that

ḡ′nΩ̄−1
n ḡn =

√
JaMK

n

∑n

i,j=1
(ξi ⊗ qi)′S′Ω̄−1

n S(ξj ⊗ qj)/n2

=

√
JaMK

n
(E[ξ(s)′Σ(s)−1ξ(s)] + op(1)).
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Next, note Sm(ξi ⊗ qi) = ξmi ⊗ qmi, (i = 1, ..., n). Thus, again using Supplement Lemma S.4,

ḡ′nS
′
mΩ̄−1

mnSmḡn =

√
JaMK

n

∑n

i,j=1
(ξmi ⊗ qmi)′Ω̄−1

mn(ξmj ⊗ qmj)/n2

=

√
JaMK

n
(E[E[ξm(s)|sm]′Σm(sm)−1E[ξm(s)|sm]] + op(1))

=

√
JaMK

n
op(1),

since E[ξm(s)|sm] = 0 by hypothesis. It remains to show that

n√
2JaMK

ḡ′n(Ω−1
n − Ω̄−1

n )ḡn
p→ 0,

n√
2JaMK

ḡ′nS
′
m(Ω−1

mn − Ω̄−1
mn)Smḡn

p→ 0.

Similarly to DIN Proof of Lemma 6.1, pp.87-88, from Supplement Lemma S.6,

∣∣nḡ′n(Ω−1
n − Ω̄−1

n )ḡn
∣∣ /√2JaMK ≤ n

∥∥Ω−1
n ḡn

∥∥2
(
∥∥Ωn − Ω̄n

∥∥+ C
∥∥Ωn − Ω̄n

∥∥2
)/
√

2JaMK

= n
∥∥Ω−1

n ḡn
∥∥2
Op(ζ(K)

√
K/n)/

√
2JaMK = op(1)

since
∥∥Ω−1

n ḡn
∥∥2

= ḡ′nΩ−2
n ḡn ≤ Cḡ′nΩ−1

n ḡn = Op(
√
K/n). Likewise

∣∣nḡ′nS′m(Ω−1
mn − Ω̄−1

mn)Smḡn
∣∣ /√2JaMK =

op(1). Therefore,

ḡ′nPnḡn =

√
JaMK

n
(µr + op(1)).

Secondly, it is shown that

nḡ′nPng̃n/
√

2JaMK = op(1).

Noting ‖ξi‖2 bounded and Σi,n(si)
−1 bounded for n large enough, by cr

E[‖ui,n − E[ui,n|si]‖4] ≤ 8(E[‖ui,n‖4] + E[‖E[ui,n|si]‖4])

= 8(E[E[‖ui,n‖4 |si]) + E[
JaMK

n2
‖ξi‖4]]

≤ C

for n large enough as E[‖ui,n‖4 |si] ≤ C and K/n2 → 0. Hence, by Supplement Lemma S.5,

ḡ′nΩ̄−1
n g̃n =

4
√
JaMK

n

∑n

i,j=1
(ξi ⊗ qi)′S′Ω̄−1

n g̃j,n/n
√
n

= Op(
4
√
JaMK/n).

Next, by hypothesis,

∣∣nḡ′n(Ω−1
n − Ω̄−1

n )g̃n
∣∣ /√2JaMK ≤ n

∥∥Ω−1
n ḡn

∥∥∥∥Ω−1
n g̃n

∥∥ (
∥∥Ωn − Ω̄n

∥∥+ C
∥∥Ωn − Ω̄n

∥∥2
)/
√

2JaMK

= n
∥∥Ω−1

n ḡn
∥∥∥∥Ω−1

n g̃n
∥∥Op(ζ(K)

√
K/n)/

√
2JaMK = op(1)

since
∥∥Ω−1

n ḡn
∥∥2

= Op(
√
K/n) from above and

∥∥Ω−1
n g̃n

∥∥ ≤ ∥∥Ω−1
n ĝn

∥∥ +
∥∥Ω−1

n ḡn
∥∥ = Op(

√
K/n) +

Op(
4
√
K/n2). A similar analysis yields nḡ′nS

′
mΩ−1

mnSmg̃n/
√

2JaMK = op(1).
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Let ḡmi,n = E[gmi,n|si], g̃mi,n = gmi,n − ḡmi,n, (i = 1, ..., n).

Finally to prove
ng̃′nPng̃n − JaMK√

2JaMK

d→ N(0, 1)

it is first established that
ng̃′n(Pn − P ∗n)g̃n√

2JaMK
= op(1)

where P ∗n = Ω∗−1
n − S′m(Ω∗mn)−1Sm with Ω∗n = E[g̃i,ng̃

′
i,n] and Ω∗mn = E[g̃mi,ng̃

′
mi,n]. By T

|ng̃′n(Pn − P ∗n)g̃n| ≤
∣∣ng̃′n(Ω−1

n − (Ω∗n)−1)g̃′n
∣∣+
∣∣ng̃′n(S′mΩ−1

mnSm − S′m(Ω∗mn)−1Sm)g̃′n
∣∣

The first term ∣∣ng̃′n(Ω−1
n − (Ω∗n)−1)g̃′n

∣∣ ≤ n∥∥Ω−1
n g̃n

∥∥2
(‖Ωn − Ω∗n‖+ C ‖Ωn − Ω∗n‖

2
).

Therefore, noting Ω∗n = Ωn − E[ḡi,nḡ
′
i,n], from eq.(5.1)

‖Ωn − Ω∗n‖ =
4
√
JaMK√
n

E[‖ξi‖2 ‖qi‖2]1/2

= Op(
4
√
K3

√
n

).

Consequently, since
∥∥Ω−1

n g̃n
∥∥ = Op(

√
K/n) +Op(

4
√
K/n2),∣∣ng̃′n(Ω−1

n − Ω∗−1
n )g̃′n

∣∣
√

2JaMK
≤ Op(K) +Op(

√
K)√

2JaMK
(O(

4
√
K3

√
n

) +

√
K3

n
) = op(1).

Similarly ∣∣∣∣ng̃′nS′m(Ω−1
mn − (Ω∗mn)−1)Smg̃

′
n√

2JaMK

∣∣∣∣ = op(1).

Therefore

ng̃′n(Pn − P ∗n)g̃n√
2JaMK

= op(1)

Note that 1/C ≤ λmin (Ω∗n) ≤ λmax (Ω∗n) ≤ C because |λ (A)− λ (B)| ≤ ‖A−B‖, |λmin (Ω∗n)− λmin (Ωn)| =

o (1) and |λmax (Ω∗n)− λmax (Ωn)| = o (1). Similarly 1/C ≤ λmin (Ω∗mn) ≤ λmax (Ω∗mn) ≤ C.

Supplement Lemma S.2 is now invoked to prove

ng̃′nP
∗
n g̃n − JaMK√
2JaMK

d→ N(0, 1).

First, tr(Ω∗nP
∗
n) = JaMK. Secondly, to establish

E[(g̃′i,nP
∗
n g̃i,n)2] = op(K

√
n),

by cr

E[(g̃′i,nP
∗
n g̃i,n)2] ≤ 2E[(g̃′i,n(Ω∗n)−1g̃i,n)2] + 2E[(g̃′i,nS

′
m(Ω∗mn)−1Smg̃i,n)2].
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Again using cr

E[(g̃′i,n(Ω∗n)−1g̃i,n)2] ≤ 3E[(g′i,n(Ω∗n)−1gi,n)2] + 12E[(g′i,n(Ω∗n)−1ḡi,n)2] + 3E[(ḡ′i,n(Ω∗n)−1ḡi,n)2].

Now, for n large enough, E[(g′i,n(Ω∗n)−1gi,n)2] ≤ CE[‖gi,n‖4]. Since βn,0 ∈ N for n large enough, by

Assumption 3.4(c), similarly to DIN Proof of Theorem 6.3, pp.89-90,

E[‖gi,n‖4] ≤ E[‖qi‖4E[‖ui,n‖4 |si]] ≤ CE[‖qi‖4] ≤ Cζ(K)2K.

Next,

E[(g′i,n(Ω∗n)−1ḡi,n)2] ≤ C(
√
K/n)E[‖ξi‖2 ‖qi‖2] ≤ CK

√
K/n.

Lastly,

E[(ḡ′i,n(Ω∗n)−1ḡi,n)2] ≤ C(K/n2)E[‖ξi‖4 ‖qi‖4] ≤ Cζ(K)2K2/n2.

Hence, E[(g̃′i,n(Ω∗n)−1g̃i,n)2] = op(K
√
n) as required. Likewise, E[(g̃′i,nS

′
m(Ω∗mn)−1Smg̃i,n)2] = op(K

√
n).

Thirdly, P ∗nΩ∗nP
∗
n = P ∗n . Therefore,

ng̃′nPng̃n − JaMK√
2JaMK

d→ N(0, 1).

The conclusion of the theorem for J r then follows.

The proof structure for the restricted GEL statistics LRr, LMr, Sr and Wr is similar to that for

Theorem 4.2 demonstrating their mutual asymptotic equivalence to the GMM statistic J r under the

local alternatives (5.1). The proofs for LMr, Sr and Wr are omitted for brevity.

First apply the decomposition for LRr in Supplement eq. (S.3). A similar argument to that in Supple-

ment Proof of Theorem 4.2 establishes ‖ĝm − ĝm0‖ ≤ Op(
√
K/n). Thus, from T and Supplement Lemma

S.9, ‖ĝm‖ = Op(
√
K/n) and, therefore,

∥∥∥λ̂m∥∥∥ = Op(
√
K/n) by Supplement Lemma S.10. Consequently,

since λ̂m ∈ Λ̂mn (β̂m) and the first order conditions for λm are satisfied w.p.a.1, an expansion around

λm = 0 gives −ĝm(β̂m)− Ω̇mλ̂m = 0 where Ω̇m = −
∑n
i=1 ρ2(λ̇′mĝmi)ĝmiĝ

′
mi/n and λ̇m lies between λ̂m

and 0. Thus, w.p.a.1, λ̂m = −Ω̇−1
m ĝm(β̂m) and 2nP̂ gmρ (β̂m, λ̂m) = nĝm(β̂m)′(2Ω̇−1

m −Ω̇−1
m Ω̈mΩ̇−1

m )ĝm(β̂m)

where Ω̈m = −
∑n
i=1 ρ2(λ̈′mĝmi)ĝmiĝ

′
mi/n and λ̈m lies between λ̂m and 0. It remains to prove that 2Ω̇−1

m −

Ω̇−1
m Ω̈mΩ̇−1

m − Ω̂−1
m = op(1/

√
K). Now, by Supplement Lemmata S.1 and S.6,

∥∥∥Ω̂m − Ωmn

∥∥∥ = op(1/
√
K),∥∥∥Ω̇m − Ωmn

∥∥∥ = op(1/
√
K) and

∥∥∥Ω̈m − Ωmn

∥∥∥ = op(1/
√
K). Consequently,

∥∥∥2Ω̇m − Ω̈m − Ωmn

∥∥∥ p→

0 and λmax((2Ω̇m − Ω̈m)−1) ≤ C w.p.a.1. Thus, by T, as (2Ω̇−1
m − Ω̇−1

m Ω̈mΩ̇−1
m )−1 = Ω̇m(2Ω̇m −

Ω̈m)−1Ω̇m,
∥∥∥Ω̇m(2Ω̇m − Ω̈mn)−1Ω̇m − Ωmn(2Ω̇m − Ω̈m)−1Ωmn

∥∥∥ ≤ op(1/
√
K). Also, as λmax (Ωmn) ≤

C,
∥∥∥Ωmn(2Ω̇m − Ω̈m)−1Ωmn − Ωmn

∥∥∥ ≤ op(1/√K) yielding
∥∥∥Ω̇−1

m (2Ω̇m − Ω̈m)Ω̇−1
m − Ω−1

mn

∥∥∥ = op(1/
√
K).

Therefore, as
∥∥∥Ω̂−1

m − Ω−1
mn

∥∥∥ = op(1/
√
K), the third term in the decomposition for LRr in Supplement

eq. (S.3) is op(1). Likewise, the second term in Supplement eq. (S.3) is op(1). Therefore, from the first

term in Supplement eq. (S.3), LRr d→ N(µr/
√

2, 1).
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Table B.1. ME Tests Null Hypothesis Empirical Rejection Frequencies

M n 200 500 1000 1500
J m 2.74 4.04 3.92 5.02
LRm

cue 4.32 4.92 4.62 5.46
LRm

el 9.48 7.10 5.78 6.42
LRm

cue(el) 4.94 5.06 4.64 5.50
LMm

el 15.68 8.66 6.18 6.52

1 L̃M
m

el 6.06 5.64 4.86 5.56
S̄mel 6.88 6.10 5.44 6.08
W̄m
el 13.62 7.80 5.86 6.00

LRm
et 8.54 7.08 5.90 6.64

LRm
cue(et) 4.56 5.02 4.62 5.50

LMm
et 16.94 10.90 7.86 8.46

L̃M
m

et 5.76 5.70 5.14 5.94
S̄met 5.66 5.46 5.06 5.88
W̄m
et 15.24 10.56 8.32 8.88

J m 2.64 3.22 4.06 4.14
LRm

cue 3.40 4.30 4.86 5.26
LRm

el 17.06 10.8 8.22 7.50
LRm

cue(el) 4.20 4.74 5.06 5.3
LMm

el 38.34 19.00 10.64 9.22

2 L̃M
m

el 5.74 5.54 5.56 5.76
S̄mel 6.64 6.14 5.92 6.16
W̄m
el 35.54 18.12 10.06 9.16

LRm
et 13.32 9.82 8.08 7.68

LRm
cue(et) 3.68 4.52 4.92 5.24

LMm
et 37.84 22.3 14.16 12.64

L̃M
m

et 4.82 5.52 5.64 5.9
S̄met 5.08 5.2 5.38 5.82
W̄m
et 35.78 21.42 13.92 13.12



Table B.2. JE Tests Null Hypothesis Empirical Rejection Frequencies

M n 200 500 1000 1500
J j 2.42 3.98 4.66 4.62

LRj
cue 4.22 5.00 4.94 4.86

LRj
el 8.64 6.50 5.86 5.66

LRj
cue(el) 4.56 5.24 5.02 4.90

LMj
el 14.3 7.86 5.98 5.66

1 L̃M
j

el 5.80 5.68 5.40 5.24
S̄jel 6.56 6.06 5.58 5.54
W̄j
el 12.36 7.26 5.66 5.28

LRj
et 7.82 6.62 5.9 5.72

LRj
cue(et) 4.40 5.10 4.94 4.88

LMj
et 15.52 9.32 7.00 6.66

L̃M
j

et 5.38 5.84 5.44 5.28
S̄jet 5.38 5.46 5.20 5.28
W̄j
et 15.08 9.70 7.06 6.56

J j 1.54 3.06 3.84 3.20
LRj

cue 2.88 4.48 4.86 4.44
LRj

el 14.22 9.12 6.82 7.66
LRj

cue(el) 3.94 5.02 4.96 4.66
LMj

el 34.58 15.40 8.76 11.10

2 L̃M
j

el 4.90 5.54 5.24 4.98
S̄jel 5.52 5.78 5.66 5.34
W̄j
el 33.38 14.82 8.28 10.96

LRj
et 10.82 8.70 6.98 7.82

LRj
cue(et) 3.26 4.82 4.90 4.60

LMj
et 33.38 17.22 11.1 14.66

L̃M
j

et 4.26 5.66 5.42 5.16
S̄jet 3.98 5.20 5.24 4.90
W̄j
et 33.46 18.14 11.62 19.18



Table B.3. ME Tests Alternative Hypothesis Empirical Rejection Frequencies

n M ρ J m LRm
cue LRm

el LRm
cue(el) L̃M

m

el S̄mel LRm
et LRm

cue(et) L̃M
m

et S̄met

0.2 7.26 6.58 6.14 6.60 6.74 6.44 6.30 6.60 6.46 6.30
0.4 11.92 11.38 11.00 11.38 11.26 10.64 11.02 11.60 11.06 10.60

1 0.6 15.76 15.88 16.10 15.90 16.14 15.18 16.22 15.96 15.80 15.06
0.8 18.66 19.48 20.26 19.54 19.68 18.62 20.20 19.68 19.26 18.68
1.0 21.16 21.50 24.42 21.78 22.30 21.64 23.26 21.80 21.58 21.30

sc
0.2 6.30 6.44 5.78 6.82 6.60 6.90 6.06 6.64 6.60 6.46
0.4 9.26 9.44 8.98 10.00 9.86 9.68 8.86 9.74 9.50 9.00

2 0.6 12.44 12.00 12.30 12.96 12.52 12.78 12.38 12.34 12.26 11.76
0.8 15.36 15.38 15.60 16.24 15.72 15.70 15.24 15.96 15.40 14.66
1.0 17.38 17.94 19.24 18.88 18.00 18.02 18.42 18.38 17.90 17.06

200

0.2 3.96 5.80 11.90 6.56 8.02 9.00 10.76 6.12 7.28 7.16
0.4 6.98 10.20 18.50 11.16 13.54 14.32 17.54 10.68 12.54 12.12

1 0.6 10.14 14.54 25.02 15.62 18.40 19.72 23.02 14.96 17.56 16.66
0.8 12.48 17.56 30.72 19.18 22.32 23.82 28.24 18.24 20.84 20.56
1.0 14.24 20.04 33.98 21.34 25.24 26.98 31.74 20.76 23.84 23.24

nsc
0.2 3.34 4.46 19.58 5.82 7.58 8.86 15.80 5.08 6.36 6.72
0.4 5.44 6.96 24.56 8.70 10.70 12.16 20.30 7.74 9.20 9.14

2 0.6 7.34 9.16 31.30 11.70 13.92 15.32 25.28 10.34 11.90 11.98
0.8 9.34 11.42 37.12 14.34 17.24 18.64 30.24 12.52 15.00 14.88
1.0 10.88 13.26 41.78 16.84 19.62 21.70 34.40 14.94 17.46 17.26

0.2 10.50 10.36 10.30 10.48 10.38 10.00 10.36 10.36 10.44 10.22
0.4 23.12 23.70 23.56 23.68 23.60 23.56 23.62 23.60 23.64 23.50

1 0.6 35.66 35.78 36.50 36.00 36.10 36.08 36.48 35.70 36.06 35.66
0.8 45.72 45.94 47.00 46.40 45.96 45.98 46.78 46.02 45.88 45.82
1.0 52.86 52.80 54.42 53.10 52.74 53.36 54.30 52.78 53.00 52.80

sc
0.2 9.16 8.62 7.96 8.50 8.44 8.84 7.96 8.40 8.60 8.64
0.4 19.54 18.42 17.82 18.54 18.30 18.86 17.26 18.34 18.40 18.32

2 0.6 30.22 30.02 29.62 30.36 30.08 30.68 28.74 29.72 29.64 29.64
0.8 39.32 38.88 39.34 39.28 39.18 39.66 38.72 38.62 38.92 38.70
1.0 45.74 45.06 46.50 45.34 45.80 46.20 45.90 44.74 45.10 44.98

500

0.2 8.64 10.24 13.70 10.50 11.38 12.00 13.60 10.36 11.44 10.92
0.4 20.40 23.46 28.56 23.82 25.30 26.12 28.34 23.64 25.28 24.94

1 0.6 31.46 35.62 43.42 36.04 37.94 39.64 43.10 35.70 37.72 37.48
0.8 40.98 45.62 54.20 46.48 48.36 50.24 53.76 46.02 48.44 48.06
1 48.10 52.50 61.28 53.14 55.32 57.58 60.80 52.80 55.32 55.02

nsc
0.2 6.40 7.66 14.98 8.24 9.24 10.04 14.06 7.84 9.02 8.80
0.4 14.14 16.78 29.08 17.86 19.84 20.84 27.32 17.38 19.50 18.76

2 0.6 23.38 27.44 43.12 29.34 31.84 33.10 41.52 28.32 30.84 30.26
0.8 31.62 36.30 53.96 38.52 40.92 42.50 51.84 37.08 40.20 39.52
1.0 37.76 42.58 60.82 44.46 47.30 49.06 59.28 43.26 46.24 45.54



Table B.4. JE Tests Alternative Hypothesis Empirical Rejection Frequencies

n M ρ J j LRj
cue LRj

el LRj
cue(el) L̃M

j

el S̄jel LRj
et LRj

cue(et) L̃M
j

et S̄jet

0.2 8.60 9.06 9.20 8.94 9.00 8.54 8.88 8.94 9.00 8.74
0.4 16.36 17.20 18.34 16.90 16.40 15.78 17.38 16.80 16.50 16.06

1 0.6 24.40 24.98 28.42 24.86 23.94 23.34 26.34 24.70 23.94 23.80
0.8 30.40 31.08 37.34 30.94 30.18 29.70 34.20 30.74 30.28 29.84
1 35.16 35.42 43.54 35.36 35.46 34.04 40.28 35.06 34.94 33.96

sc
0.2 8.68 8.20 9.64 8.68 8.66 8.98 8.94 8.14 8.10 8, 50
0.4 13.34 12.22 17.58 13.18 13.14 12.84 15.44 12.26 12.20 12, 78

2 0.6 18.56 16.48 26.76 17.74 17.36 17.42 22.34 16.38 16.34 16, 78
0.8 23.42 20.82 35.26 21.92 21.90 21.98 29.14 20.56 20.70 21, 36
1 27.38 24.32 41.54 25.54 25.54 25.42 34.46 23.72 23.98 24.70

200

0.2 4.32 8.00 13.68 8.50 9.86 10.76 12.70 8.14 9.32 9.26
0.4 10.40 15.08 24.94 16.14 18.32 19.16 23.46 15.18 17.22 16.92

1 0.6 16.12 21.98 36.88 23.62 26.32 27.96 34.04 22.54 24.80 24.84
0.8 21.12 27.86 45.84 29.82 32.76 34.24 42.30 28.44 31.20 31.06
1 25.00 31.92 51.52 33.88 37.98 39.74 48.54 32.58 35.94 35.36

nsc
0.2 3.08 5.02 22.46 6.74 8.48 9.58 17.96 5.76 6.96 7.08
0.4 5.32 8.32 35.22 10.62 12.82 14.04 27.16 9.14 10.82 10.82

2 0.6 7.88 10.92 46.66 14.26 17.00 18.74 36.50 12.12 14.36 14.52
0.8 10.70 13.84 55.60 18.24 21.66 23.40 43.94 15.38 18.42 18.22
1 13.34 16.68 62.12 21.06 25.18 27.22 49.84 18.18 21.56 21.28

0.2 15.74 15.56 14.94 15.52 15.58 15.42 15.04 15.38 14.92 15.50
0.4 40.18 39.26 39.70 39.20 38.94 38.84 39.46 39.08 38.06 38.84

1 0.6 62.08 61.26 62.38 61.08 61.20 60.50 62.02 60.96 59.96 60.54
0.8 74.22 72.82 73.98 72.74 72.82 72.52 74.06 72.60 71.90 72.58
1 80.80 79.80 80.74 79.72 79.96 79.46 81.40 79.50 78.70 79.44

sc
0.2 14.84 15.86 17.04 15.88 16.00 16.14 16.36 15.58 15.74 16.28
0.4 32.36 32.74 39.52 33.14 33.56 32.94 36.96 32.72 32.64 32.88

2 0.6 48.58 47.52 57.34 48.02 48.60 48.28 53.70 47.40 47.64 47.94
0.8 60.54 58.66 68.58 58.94 59.48 59.60 65.30 58.42 58.34 59.40
1 68.58 66.54 76.58 66.54 67.40 67.84 73.42 66.18 66.70 67.24

500

0.2 13.42 15.58 18.78 15.82 16.94 17.74 18.84 15.66 17.08 16.76
0.4 36.04 39.32 45.56 39.64 40.92 42.42 45.28 39.48 41.14 40.92

1 0.6 57.72 61.32 68.10 61.82 63.28 64.34 67.56 61.52 63.38 62.86
0.8 70.28 72.84 78.60 73.16 74.56 75.42 78.84 72.94 74.42 74.20
1 77.32 79.80 85.00 80.10 81.52 82.36 85.46 79.96 81.44 81.04

nsc
0.2 9.88 14.94 26.66 15.90 16.90 18.24 24.62 15.36 16.84 16.60
0.4 24.78 31.40 50.94 33.20 35.16 35.70 47.34 32.30 34.16 33.58

2 0.6 39.44 45.98 67.46 48.02 50.30 51.34 64.16 46.90 49.24 48.78
0.8 51.86 57.02 77.86 58.94 61.08 62.52 74.54 57.94 60.30 60.20
1 60.18 65.24 83.80 66.54 68.90 69.96 81.24 65.80 68.28 67.86




