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Abstract Plastic size effects in single crystals are investi-
gated by using finite strain and small strain discrete dislo-
cation plasticity to analyse the response of cantilever beam
specimens. Crystals with both one and two active slip sys-
tems are analysed, as well as specimens with different beam
aspect ratios. Over the range of specimen sizes analysed here,
the bending stress versus applied tip displacement response
has a strong hardening plastic component. This hardening
rate increases with decreasing specimen size. The hardening
rates are slightly lower when the finite strain discrete disloca-
tion plasticity (DDP) formulation is employed as curving of
the slip planes is accounted for in the finite strain formulation.
This relaxes the back-stresses in the dislocation pile-ups and
thereby reduces the hardening rate. Our calculations show
that in line with the pure bending case, the bending stress in
cantilever bending displays a plastic size dependence. How-
ever, unlike pure bending, the bending flow strength of the
larger aspect ratio cantilever beams is appreciably smaller.
This is attributed to the fact that for the same applied bend-
ing stress, longer beams have lower shear forces acting upon
them and this results in a lower density of statistically stored
dislocations.
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1 Introduction

Over the past years, computational solid mechanics has
become an integral part of theoretical materials science.
Significant attention has been focused on mesoscale con-
tinuum mechanics where material properties and structural
dimensions are important. Such formulations are intermedi-
ate between a direct atomistic simulation and an unstructured
continuum description of the deformation processes. A vari-
ety of theoretical frameworks are emerging to describe
inelastic deformation at the mesoscale: in this study we
shall focus on one of these methods viz. discrete dislocation
plasticity (DDP). In discrete dislocation plasticity, the dis-
locations are treated as line singularities in an elastic solid.
A many-body interaction problem involving the discrete dis-
locations needs to be solved together with a complimentary
more conventional elasticity boundary value problem.

Effect of structural size on the nominal material strength
has been observed in many experimental investigations and
backed by theoretical predictions. Sources of plastic size
effects in crystalline materials include:

(1) Geometrically necessary dislocations (GNDs). This has
been the focus of phenomenological higher order plas-
ticity theories [1,2] and is used to explain size effects in
bending, indentation, etc.

(2) Constrained dislocation glide by internal interfaces such
as grain boundaries. This is typically the main reason for
size effects in phenomena such as theHall-Petch effect [3,
4].
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(3) Source limited plasticity. Continuum plasticity assumes
that at any point where a flow condition is met, plastic
deformation will take place. Nevertheless, this does not
need to be the case at very small sizes such as frictional
asperity contact [5].

(4) Dislocation starvation. The size effects in micro-pillar
compression have been primarily associated with this
effect [6–8] where dislocations exit the specimen at a
rate faster than they are nucleated, and thus there is no
build-up of dislocations within the specimen.

Following the pioneering work of Van der Giessen and
Needleman [9], the DDP method has been shown to suc-
cessfully predict numerous observations of plasticity size
effects due to the above mentioned phenomena at the micron
and sub-micron length scale. These include size effects in
composites [10], bending [11], indentation [12], uniaxial
compression [13], and under constrained shear [14]. The
framework has also been used to investigate crack growth
under monotonic [15] and fatigue loading [16]. Numeri-
cal methods to extend the framework to three-dimensional
(3D) problems [17] and quasi-3D or the so-called 2.5D [18]
have also been developed. In their study, Yasin et al. [19]
and Vattré et al. [20] have presented a framework coupling
continuum elasticity with 3D discrete dislocation dynamics.
This 3D framework has been used to investigate a range of
problems including the analysis of micro-cracks behaviour
in high-cycle fatigue conditions [21] and the behaviour
of micro-pillars under uniaxial compression [22]. The 3D
framework has also been applied in more complex set-
tings such as the modelling of polycrystalline materials [23],
indentation [24], radiation hardening [25], and fatigue crack
propagation [26]. All these studies have been conducted in a
small strain context wherein finite deformation effects such
as lattice rotations and changes in the geometry of the body
are not accounted for.

Bending of specimens has been extensively used to inves-
tigate size effects in crystalline plasticity since the early work
of Stölken and Evans [27]. These experiments attempted to
impose a pure bending stress field on the specimens, but did
not directly measure the moment-curvature relation. More
recently, small scale bending experiments were conducted by
first using focussed ion beam (FIB) to cut cantilever beams
from single crystals and then applying tip loads using nano-
indentation instruments [28,29]. These experiments enable
the direct measurement of load versus displacement relations
and are used to infer plasticity size effects. All bending exper-
iments involve significant lattice rotations and changes in the
specimen geometry. Discrete dislocation plasticity investi-
gations of such experiments [11,30,31] have neglected these
finite strain effects and usually attributed size effects in bend-
ing to GNDs.

The primary question addressed in this study is whether
lattice rotations and the associated curving of the slip planes

affect the influence of GNDs in governing plasticity size
effects in bending. To address this question we shall employ
the recently developed finite strain DDP formulation of Irani
et al. [32]. The outline of the paper is as follows: First, the
small strain and finite strain DDP formulations are briefly
described. Next, the finite strain and small strain DDP pre-
dictions of the cantilever bending problem are presented for
geometrically self-similar beams. These predictions are then
used to rationalise size effects in cantilever bending experi-
ments.

2 Formulation of the problem

Thebending/tensile response of single crystals is investigated
here using both small and finite strain discrete dislocation
plasticity in a two-dimensional (2D) setting. The crystals are
taken to be elastically isotropic with Young’s modulus E and
Poisson’s ratio ν. Plane strain conditions are assumed with
deformations restricted to the X1−X2 plane.Here,we briefly
summarise both the small and finite strain formulations. For
more details see the references cited.

2.1 Small strain discrete dislocation plasticity

The small strain DDP framework is well-established (see for
example Ref. [11]) and here, we only summarise some of
the salient points. In the DDP formulation plastic deforma-
tion and flow, is described by the nucleation and glide of
discrete edge dislocations. Consider a 2D body under plane
strain conditions such that at time t , the body contains N
edge dislocations, with the dislocations being represented as
line singularities in an elastic medium, with Burgers vector
b. In this method, in order to obtain the solution, the problem
is decomposed in two additive parts and the field quantities
are computed using superposition. First, the singular (˜) field
associated with the N dislocations are calculated analyti-
cally. Typically, solutions of dislocations fields in an infinite
mediumare used to represent the (˜)field, but it is equally pos-
sible to use other solutions such as those for dislocations in a
half-space. Next, the complete solution is obtained by adding
an image (ˆ) field that ensures the boundary conditions are
satisfied. Thus, the displacements, strains, and stresses are
expressed as

ui = ûi + ũi , εi j = ε̂i j + ε̃i j , σi j = σ̂i j + σ̃i j , (1)

respectively, where the (˜) field is the sum of the fields of
the individual dislocations (labelled by 1 ≤ I ≤ N ) in their
current positions, i.e.

ũi ≡
N∑

I=1

ũ(I )i , ε̃i j ≡
N∑

I=1

ε̃
(I )
i j , σ̃i j ≡

N∑

I=1

σ̃
(I )
i j . (2)
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The image (ˆ) field in the other hand is obtained by solving
a small strain elasticity boundary value problem [9].

In this method, at the beginning of a calculation the crystal
is stress- and dislocation-free. The long-range interactions of
the dislocations are accounted for through their elastic fields
and for the short-range interactions constitutive rules are pre-
scribed. New dislocation pairs are generated by simulating
Frank-Read sources. In two dimensions, this is mimicked
by discrete point sources randomly distributed on discrete
slip planes. These sources generate a dislocation dipole with
their Burgers vectors aligned with the slip plane direction.
This occurs when the magnitude of the Peach-Koehler force
f (I ) on source I exceeds a critical value τnucb during a time
period tnuc. The sign of the dipole is determined by the sign
of the resolved shear stress along the slip plane. Further-
more, the distance between the two nucleated dislocations,
Lnuc, is taken such that the attractive stress field, which the
dislocations exert on each other is equilibrated by a shear
stress of magnitude τnuc. Annihilation of two opposite signed
dislocations on a slip plane occurs when they are within
a material-dependent critical annihilation distance, Le. The
magnitude of the glide velocity v(I ) along the slip direction
of dislocation I is taken to be linearly related to the Peach-
Koehler force f (I ) through the drag relation

v(I ) = 1
B

f (I ), (3)

where B is the drag coefficient. Obstacles to dislocation
motion are modelled as points associated with a slip plane.
The dislocations gliding on the slip plane of an obstacle, get
pinned as they try to pass through this obstacle. Moreover,
obstacles release the pinned dislocations when the Peach-
Koehler force on the obstacle exceeds τobsb.

2.2 Finite strain discrete dislocation plasticity

The small strain DDP framework neglects lattice rotations,
as well as the changes in the geometry of specimens due to
deformation. These effects can be significant in the bending
of relatively small specimens. Thus, we also investigate the
bending of single crystals using the finite strain discrete dislo-
cation plasticity framework [32,33]. Analogous to the small
strainDDPmethod, the finite strainDDP framework assumes
that (1) lattice strains remain small away from the disloca-
tion cores, and (2) the elastic properties are unaffected by
slip. However, in contrast to the small strain calculations, the
finite strain framework accounts for: (1) finite deformation-
induced lattice rotations, and (2) the effect of shape changes
due to slip on the momentum balance. Compared to the
small strain formulation, the finite strain DDP formulation
is less established, and thus we present this method more
elaborately; nevertheless, readers are referred to Ref. [32]
for further details.

Given the nonlinearity of the finite strain formulation, the
total displacement rate is written as the superposition of the
analytically known (˜) field of dislocations and the (ˆ) field
that enforces the boundary conditions, i.e.

u̇i (X j , t) = ˙̂ui (X j , t)+ ˙̃ui (X j , t), (4)

where X j denotes the position of a material point in the ini-
tial configuration. The material u̇mi, j and lattice u̇ei, j velocity
gradients are then calculated as

u̇mi, j = ˙̂ui, j + ˙̃udi, j , (5)

and

u̇ei, j = ˙̂ui, j + ˙̃ui, j , (6)

respectively, where ( ),i denotes the spatial gradients with
respect to the initial configuration, ∂( )/∂Xi . The gradient
˙̃udi, j is calculated by numerically differentiating the velocity
field ˙̃ui with respect to X j using thefinite element shape func-
tions in the initial configuration and thereby including the
contributions from the deformations due to slip. On the other
hand, ˙̃ui, j is calculated by analytically differentiating ˙̃ui with
respect to X j and thus does not include slip contributions.
Hence, ˙̃ui, j are the lattice velocity gradients. Analogously,
the Cauchy stress field σi j is written as

σi j = σ̂i j + σ̃i j , (7)

where σ̃i j is the sum of the stresses due to all dislocations
in the body analogous to Eq. (2) while the stress field σ̂i j
corrects for the boundary conditions. It then follows that
the weak form of the equilibrium equation over the current
domain Ω∗ is

∫

Ω∗
σ̂i j η̂i; j dΩ =

∫

S∗
T

(T ∗
i − T̃ ∗

i ) η̂i dS, (8)

where T ∗
i = σi j n∗

j are the tractions specified on the bound-
ary S∗

T with outward normal n∗
j in the current configuration

and T̃i = σ̃i j n∗
j . In addition, the displacements are specified

on the boundary S∗
U and enter the solution through bound-

ary conditions. Here, ( );i ≡ ∂( )/∂xi , i.e. spatial gradients
with respect to the current configuration and η̂i are a set of
continuous and arbitrary trial displacement fields. With the
deformation gradient given by Fi j = δi j + umi, j , the 2nd
Piola-Kirchhoff stress Si j is related to σi j via

Si j = F−1
im σmn F−1

jn J, (9)
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s(α)

m(α)

s(α)

m(α)

Fe

F = Fe · Fp

Fp

m∗(α)

s∗(α)

Intermediate configurationUndeformed configuration

Current configuration

Fig. 1 Deformation of the crystal envisioned as slip in which the crystal lattice is unaffected, followed by the rotation and stretching of the material.
For simplicity of representation, only one slip system is illustrated

where δi j is the Kronecker delta and J ≡ det(Fi j ). The
superposition (7) implies that

Ŝi j = F−1
im σ̂mn F−1

jn J, (10a)

and

S̃i j = F−1
im σ̃mn F

−1
jn J, (10b)

such that Si j = Ŝi j + S̃i j . Using Eqs. (5) and (10a), the
weak form of the equilibrium statement (8) is written in the
undeformed configuration as

∫

Ω

(
Ŝi j η̂i, j + Ŝi j ûk,i η̂k, j

)
dΩ

=
∫

S∗
T

(T ∗
i − T̃ ∗

i ) η̂i dS −
∫

Ω

(
Ŝi j ũdk,i η̂k, j

)
dΩ, (11)

where Ω denotes the domain in the undeformed configu-
ration. This weak form of the equilibrium statement with
traction boundary conditions on S∗

T and displacement bound-
ary conditions on S∗

U is amenable to solution for the (ˆ)
field by a conventional finite element technique. Unlike the
small strain formulation, this complimentary problem for the
(ˆ) field is nonlinear and needs to be solved iteratively as
explained in Ref. [32].

With lattice strain assumed to be small, the stresses are
assumed to be related to strains via the linear elastic Hooke’s
law. However, in the finite strain setting this requires special
care which is described here in some detail. Here, analo-
gous to conventional crystal plasticity, the total deformation
gradient Fi j = Fe

im F
p
mj is decomposed into two sequen-

tial operations as shown schematically in Fig. 1. First, the
material slips on the currently active slip planes. These slips
do not affect the orientation or the structure of the crys-
tal lattice. The deformation at this stage is described by
a deformation gradient F p

i j . Second, the lattice and mate-
rial deform together and the elastic response of the lattice
and any rigid body rotations are realised via the deforma-
tion gradient Fe

i j ≡ δi j + uei, j . The constitutive relation for
lattice elasticity is, therefore, written in terms of a mate-
rial stress )i j in the intermediate configuration of Fig. 1 as

)i j = Fe−1
im σmn Fe−1

jn J e = )̂i j + )̃i j , (12a)

where J e ≡ det(Fe
i j ) and Eq. (7) then gives

)̂i j = Fe−1
im σ̂mn Fe−1

jn J e, and )̃i j = Fe−1
im σ̃mn Fe−1

jn J e. (12b)

With lattice strain assumed to be small, the stress )i j in the
intermediate configuration is assumed to be related to the lat-
tice Green-Lagrange strain Ei j via the linear elastic Hooke’s
law
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)i j = Li jkl Ekl , (13a)

with

Ei j =
1
2

(
Fe
mi F

e
mj − δi j

)
. (13b)

Combining Eqs. (12) and (13) it follows that

)̂i j = Li jkl Ekl − Fe−1
im σ̃mn Fe−1

jn J e. (14)

Subsequently, by using Eqs. (10a), (12b), (14) as well as the
fact that Fi j = Fe

im F
p
mj , the 2nd Piola-Kirchhoff stress Ŝi j

follows as

Ŝi j = F p−1
im

(
LmnqpEqp − Fe−1

mp σ̃pq Fe−1
nq J e

)
F p−1
jn J p, (15)

where J p ≡ det(F p
i j ).

2.2.1 Finite strain discrete dislocation plasticity
constitutive rules

We now summarise the plane strain short-range constitutive
rules, highlighting the differences between the small strain
and finite strain formulations. In the finite strain model the
dislocations are no longer confined to a fixed slip plane
due to both finite lattice rotations and slip on intersect-
ing slip systems. Thus, the basic entity is a slip system
(i.e. the orientation of the slip plane normal and the slip
direction) rather than a slip plane. Moreover, because of
lattice rotations, the orientation of a nucleated dislocation
dipole (the two dimensional analogue of a nucleated loop)
varies with position. The local lattice rotation is given by

ϕ = sin−1(R21), (16)

where the rotation tensor Ri j is written in terms of the right
stretch tensor Ui j as Ri j = Fe

ik U
−1
k j . Thus, the orientation

of a dislocation on a slip system oriented at φ(α) in the
undeformed configuration is φ(α) + ϕ in the current con-
figuration.

At time t there are N dislocations in the body and
the Peach-Koehler force f (I ) on dislocation I is given by

f (I ) =

⎛

⎝ σ̂i j +
∑

J ̸=I

σ̃
(J )
i j

⎞

⎠ b∗(I )
j m∗(α)

i , (17)

where σ̃
(J )
i j is the stress field of dislocation J at the posi-

tion of dislocation I while m∗(α) is the unit vector normal
to slip plane α and b∗(I )

j the Burgers vector of disloca-
tion I in the current configuration. The Peach-Koehler force
includes the long-range interactions with all other disloca-

tions in the material. This force determines the evolution of
the dislocation structure, accounting for glide, generation,
annihilation, pinning at and releasing from the obstacles.
Similar to the small strain case, the magnitude of the
glide velocity along the current slip direction of disloca-
tion I is taken to be linearly related to the Peach-Koehler
force such that the velocity v

(I )
i of dislocation I is given

as

v
(I )
i = 1

B
f (I )s∗(α)

i , (18)

where B is the drag coefficient and s∗(α)
i is the unit vec-

tor along the slip direction of slip system α in the current
configuration. Here, it is assumed that the drag coeffi-
cient B is constant throughout the body. We also do not
account for any changes in the resistance to dislocation
motion near a free surface associated with the energy
required to create a new free surface when the dislocation
exits.

New dislocation pairs are generated by simulating Frank-
Read sources. In two dimensions, this is mimicked by
discrete point sources on a slip system which generate a
dislocation dipole with their Burgers vectors aligned with
s∗(α)
i . This occurs when the magnitude of the Peach-Koehler
force at that source exceeds a critical value τnucb during a
time period tnuc. The sign of the dipole is determined by
the sign of the resolved shear stress along the current slip
direction. The distance between the twodislocations at nucle-
ation, Lnuc, is taken such that the attractive stress field that
the dislocations exert on each other is equilibrated by a shear
stress of magnitude τnuc. Annihilation of two opposite signed
dislocations on slip system α occurs when they are suffi-
ciently close together. This is modelled by eliminating the
two dislocations when they are within a material-dependent
critical annihilation distance Le. Unlike in the small strain
formulation where only opposite signed dislocations on a
given slip plane can annihilate each other, in the finite strain
context opposite signed dislocations on a given slip system
can annihilate each other. Thus, annihilation of two oppo-
site signed dislocations on a particular slip system occurs
when they are within a distance equal to Le, irrespective
of their current slip planes. Obstacles to dislocation motion
are modelled as points associated with a slip system. Dis-
locations on the slip system of an obstacle, get pinned as
they try to pass through that point. Again, unlike the small
strain case, dislocations and obstacles are associated with a
slip system rather than a slip plane. Thus, dislocations that
glide on the slip system of an obstacle and are within a dis-
tance equal to Le from it, get pinned to that obstacle. Pinned
dislocations can only pass through an obstacle when their
Peach-Koehler force exceeds an obstacle dependent value
τobsb.
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2.3 Specification of the cantilever beam bending
boundary value problem

The cantilever beam analysed is sketched in Fig. 2 and
comprises a “half dog-bone” type geometry similar to the
specimens in experiments in which the cantilever is cut out
from a large single crystal [28]. The length of the entire spec-
imen is LR+awith a gauge section of length a, widthW , and
a root ofwidthWR .We fix the origin of the coordinate system
at the cantilever root such that X1-axis coincideswith the axis
of symmetry of the specimen and the loading is applied at the
cantilever tip at (X1, X2) = (LR + a,W/2). The boundary
conditions imposed to simulate cantilever bending are

u̇2 = −δ̇, Ṫ1 = 0, on (X1, X2) = (LR + a,W/2),
(19a)

along with traction-free boundary conditions on all surfaces
other than the cantilever root where a built-in boundary con-
dition is specified as

u̇1 = u̇2 = 0, on X1 = 0. (19b)

The traction-free boundary conditions also imply that dislo-
cations can exit the specimen from all edges other than the
edge at X1 = 0 where the zero-displacement constraints are
specified. The work conjugate force P to the applied dis-
placement imposes a bending moment M ≡ Pa at the root
of the gauge section of the cantilever beam and a loading rate
|δ̇|/a = 500/s is employed.

Two specimen geometries are analysed in this study.

(1) Short beams. These beams have dimensions with ratios
a/W = 3, WR/W = 3, and LR/W = 5.6. The taper
angle as defined in Fig. 2 is then α = 20◦. The three
geometrically self-similar specimens that are analysed
are specified by the widths W = 0.5, 1.0, 1.5 µm.

(2) Long beams. The only difference in this case is that the
gauge section aspect ratio is increased to a/W = 6 with
the beam root dimension ratios kept fixed at the same val-
ues, i.e. WR/W = 3 and LR/W = 5.6, such that again
α = 20◦. For this case we also analyse three geometri-
cally self-similar specimens withW = 0.5, 1.0, 1.5 µm.

We use a conventional finite element method to solve the
complementary problem for the (ˆ) fields. Thus, interior
material points do not become boundary points and trac-
tion free boundary conditions and the displacements are
prescribed on the same material points throughout the defor-
mation history. In all calculations a uniform finite element
grid with constant strain triangles with minimum side length
e = 0.05 µm is used and time step of ∆t = 0.5 ns is
employed to resolve the dislocation dynamics. It is worth

emphasising that the finite strain calculations are consider-
ably limited by the distortion of the finite element mesh as
the deformations are typically highly localised to a limited
number of slip planes. Thus, large global deformations are
not realisable in these calculations. In addition, calculations
are conducted for three realisations of obstacle and source
distributions and the reported results are averages over these
three realisations.

2.4 Reference properties

The following set of material properties is used in both the
small strain and finite strain DDP simulations. The crystal
is assumed to be elastically isotropic with Young’s mod-
ulus E = 70 GPa and Poisson’s ratio ν = 0.33, which
are representative values for aluminium. In the undeformed
configuration, the slip planes are spaced 100b apart, where
b = 0.25 nm is the magnitude of the Burgers vector. Simu-
lations are reported for two crystallographic configurations
of the crystal: (1) in the crystal oriented for single slip there
is a single slip system oriented at φ1 = 30◦ with respect to
the X1-axis in the undeformed configuration and (2) in the
crystal orientated for symmetric double slip, there are two
slip systems at φ1 = 30◦ and φ2 = −30◦ with respect to the
X1-axis in the undeformed configuration.

In all calculations, the specimen is initially dislocation-
free, but dislocations are generated from discrete sources
placed on the slip planes within the crystal. The sources are
taken to have a Gaussian strength distribution with a mean
source strength τ̄nuc = 50 MPa and a standard deviation of
10 MPa with a nucleation time tnuc = 10 ns. These Frank-
Read sources are randomly distributed on the slip planes with
a density ρsrc ≈ 30 µm−2. Similarly, obstacles are also dis-
tributed over the slip planes with a density ρobs ≈ 60 µm−2.
These obstacles pin dislocations as long as the shear stress on
the obstacle is below the obstacle strength τobs = 150 MPa.
The drag coefficient for glide is B = 104 Pa · s, a repre-
sentative value for several FCC crystals [34] and the critical
distance for annihilation is Le = 6b.

3 Comparison of finite strain and small strain DDP
predictions

Pure bending of crystals using discrete dislocation plasticity
has been investigated by a number of authors initiated by
the pioneering work of Cleveringa et al. [11]. However, most
small-scale experiments are unable to generate pure bending
loading with experiments typically carried out in a cantilever
beam setting [28]. In cantilever beam bending, stress gradi-
ents exist along both the beam axis and width. Moreover, in
this setting the imposed loads also generate shear stresses. In
their study, Tarleton et al. [31] performed small strain DDP
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X2

a

δ̇

φ1

W

φ2

LR

X1
WR

α

Fig. 2 Sketch of the boundary value problem of the tip loading of the cantilever beam. The sketch shows the crystal in the double slip configuration
and includes the coordinate system employed and labels of the critical dimensions

X2

a
U̇

U̇

W φ1

φ2

LR

X1
WR

α

Lt

Fig. 3 Sketch of uniaxial tension/compression of the dog-bone specimen. The coordinate system employed and critical dimensions are included
in this figure where the crystal is shown in the double slip configuration

calculations of cantilever beam bending and argued that the
GND structure formed in cantilever beam bending differed
from that observed in pure bending. Finite strain effects such
as lattice rotations can have a significant influence on the
GND structures in bending and in this section, we aim to
quantify these effects.

3.1 Uniaxial tensile/compressive response of the crystal

Before proceeding to discuss the bending response of the
specimens, it is instructive to set a baseline by describing
the response of the crystals under uniaxial tension and com-
pression. To realise this aim, dog-bone specimens with a
geometry very similar to those used in the cantilever beam
bending simulations are employed. This specimen geometry
is sketched in Fig. 3 and is identical to the “short beam” spec-
imens expect for the fact that a complete dog-bone is used.
In these samples theWR wide grip sections exist at both ends
of the gauge section with dimensions a × W , such that the
total length of the specimen is Lt = 2LR + a. Using the
coordinate system sketched in Fig. 3, tension/compression
loading is imposed by applying boundary conditions

u̇1 = U̇ , Ṫ2 = 0, on X1 = Lt , (20a)

u̇1 = −U̇ , Ṫ2 = 0, on X1 = 0, (20b)

in addition to traction-free boundary conditions on all other
surfaces of the specimen. Rigid body motion is constrained
by specifying displacement u2 = 0 on one additional mate-
rial point in the specimen. A loading rate |U̇ |/a = 500/s
is employed and we report results for the tension and com-
pression of two geometrically self-similar specimens with
W = 0.5 and 1.0 µm. The results are reported in terms of
the applied nominal stress σnom calculated as

σnom = 1
W

∣∣∣∣

∫

SR
T1ds

∣∣∣∣ . (21)

Here, the integration is performed along the boundary SR that
lies along X1 = Lt as a function of a measure of nominal
strain defined as εnom ≡ 2|U |/a. Calculations are conducted
for three realisations of obstacle and source distributions and
the tension/compression curves presented are averages over
these three realisations.

The finite strain DDP tension and compression responses
of the W = 0.5 and 1.0 µm crystals oriented for single
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Fig. 4 Finite strain DDP predictions of the variation of the uniaxial
tension and compression response of the W = 0.5 and 1.0 µm crystals
in the a single slip and b double slip configuration. The results are shown
in terms of the magnitude of applied nominal stress σnom versus the
nominal strain εnom. Here, solid and dashed lines represent the results
obtained for uniaxial tension and compression, respectively

and double slip are plotted in Fig. 4a, b, respectively. The
corresponding small strain DDP predictions are included in
Fig. 5. The following four key features emerge from these
results:

(1) The small strain DDP results are nearly identical to the
finite strain predictions, except for the single slip W =
0.5 µm specimen where the small strain results show a
larger hardening regime.

(2) There is negligible tension/compression asymmetry due
to any finite strain effect for both the single and double
slip cases.

(3) The crystals oriented for single slip display an ini-
tial elastic response followed by a mildly harden-
ing plastic behaviour. By contrast, in the double slip
configuration the crystals display nearly no plastic
hardening.

(4) The crystals oriented for single slip have a small plas-
tic size effect with the strength of the W = 1.0 µm
specimens slightly lower compared to the W = 0.5 µm
specimens. No discernible size effect is observed for the
crystals oriented in double slip.
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Fig. 5 Small strain DDP predictions of the variation of the uniaxial
tension and compression response of the W = 0.5 and 1.0 µm crystals
in the a single slip and b double slip configuration. The results are
shown in terms of the magnitude of applied nominal stress σnom versus
the nominal strain εnom

The absence of a clear specimen size effect on the ten-
sion/compression response is in contrast to the results
previously reported by Deshpande et al. [13] and Balint et
al. [35]. This difference is rationalised as follows. The ten-
sion/compression size effect is primarily due to the so-called
dislocation starvation effect that requires dislocations to exit
the specimens faster than the nucleation rate of dislocations.
Thus, dislocation starvation is only present at a low obstacle
density so that newly nucleated dislocations are not held-up
at obstacles and can exit the specimens from the free sur-
faces rapidly. Here, a rather high obstacle density equal to
twice the source density is employed,which implies that even
the smallest specimens are not in the dislocation starvation
regime.

The high obstacle density also results in the mildly hard-
ening response seen for the crystals oriented for single slip.
Recall that the same source and obstacle densities are used
in both the single and double slip configurations. Thus, the
number of obstacles per slip plane is larger in the single slip
configuration case. The consequence of this is seen in Fig. 6.
In Fig. 6b, c, we include the dislocation distributions in the
single and double slip cases, respectively, at an applied tensile
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a
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σ11/MPa
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b c

Fig. 6 Sketch of the W = 1.0 µm tensile specimen with the window over which the dislocation distributions are shown in b and c. Finite strain
DDP predictions of the dislocation and σ11 distributions in the W = 1.0 µm specimen at εnom = 0.008 for the b single slip and c double slip
configuration. These distributions are shown over the central section illustrated in a

strain of εnom = 0.008 for the W = 1.0 µm specimens. The
corresponding distributions of the stress σ11 is also presented
in these figures. These distributions, as shown in Fig. 6a, are
plotted over a central section of length L0 = 4a/3 = 4 µm.
In the single slip configuration, the high obstacle density
employed blocks the nucleated dislocations. This results in
dislocation pile-ups as seen in Fig. 6b while no such pile-ups
occur in the crystals oriented for double slip as observed in
Fig. 6c. Eventually, these pile-ups lead to the mildly hard-
ening responses observed in the stress-strain curves of the
single slip case.

3.2 Cantilever beam bending

The uniaxial tension/compression responses of the spec-
imens presented above suggest that the crystals in both
their configurations are approximately elastic-perfectly plas-
tic and display negligible size dependence under uniaxial
loading over the range of specimen sizes considered here.
In conventional continuum plasticity the uniaxial response is
sufficient to characterise the bending response of the crystal.
Employing this assumption, we expect the plastic collapse
moment M f for the cantilever beams of Fig. 2 to be given by

M f =
σ f W 2

4
, (22)

where σ f is the plastic flow strength of the crystal in uniaxial
tension/compression as deduced from Fig. 4. In DDP simu-

lations, the plastic flow strengths under bending and uniaxial
loading are not necessarily the same. Thus, in order to obtain
a measure of the differences between the conventional con-
tinuum plasticity predictions and those obtained from DDP,
we define a bending stress measure

σb ≡ 4M
W 2 , (23)

where M ≡ Pa is the imposed bending moment at the root
of the gauge section of the specimen due to the applied tip
load P . In the following, we present the results by describ-
ing the evolution of the bending stress σb as a function of a
measure of beam rotation θ ≡ |δ|/a. In this section, we will
focus on understanding the impact of finite deformations on
the bending response of the material, and this aim will be
achieved by comparing the predictions of finite strain and
small strain DDP formulations for σb.

Predictions of σb versus θ are presented in Fig. 7a, b for
the single and double slip configurations, respectively, of
the short beams. These figures show that after an initially
elastic response, there is a knee in the σb versus θ curve
corresponding to the onset of dislocation activity and the ini-
tiation of plastic deformation. However, unlike the uniaxial
loading case, the bending stress displays a hardening plastic
response.Moreover, the bending stress in the plastic regime is
size dependent with the smaller specimens exhibiting a larger
bending stress. This is consistent with a wide body of both
experimental [27,28] and computational [11,30,31] investi-

123



772 N. Irani, et al.

a

Finite strain DDP

Small strain DDP

W = 1.5 µm

0.5 µm
1.0 µm

0

100

200

300

400

0 0.01 0.02 0.03 0.04

σ
b/

M
P
a

θ

b

Finite strain DDP

Small strain DDP

W = 1.5 µm

0.5 µm

1.0 µm

0

100

200

300

400

0 0.01 0.02 0.03 0.04

σ
b/

M
P
a

θ

Fig. 7 Comparison between finite and small strain DDP predictions
of the evolution of the bending stress σb with the measure of rotation θ
for crystals in a single slip and b double slip configurations. Results are
shown for three selected specimen sizes W of the short beams. Here,
solid and dashed lines represent the results obtained by small strain and
finite strain DDP calculations, respectively

gations that suggest that the bending stress is size dependent
in the micron size regime.We shall explore the origins of this
size effect in more details in Sect. 4. Very briefly, the size
effect is primarily a manifestation of the so-called GNDs. As
will be seen subsequently, in these simulations the GNDs are
primarily dislocation pile-ups that cause back-stresses and
thereby plastic hardening. These dislocation pile-ups and
their associated back-stresses lead to the size effects seen
here. Moreover, the plastic hardening is more pronounced in
the crystals in the single slip configuration (Fig. 7a) compared
to the double slip case (Fig. 7b). In order to rationalise this
observation we plot the dislocation structures in theW = 0.5
and 1.5 µm specimens at θ = 0.045 in Fig. 8a, b, respec-
tively, for the crystals oriented in the single slip configuration.
The corresponding plots for crystals oriented in the double
slip configuration are included in Fig. 8c, d, respectively. In
Fig. 8 contours of the lattice rotation ϕ are also included.
Longer dislocation pile-ups are observed in the specimens
with only one active slip system and we attribute the stronger
plastic hardening to these longer pile-ups. This higher hard-
ening rate is also consistent with the fact that plasticity is
more constrained when only one active slip system is present

compared to the double slip case and also that under uniaxial
loading the single slip configuration exhibited a higher plastic
hardening rate compared to the double slip case (Fig. 4).

In Fig. 7, predictions of the small strain DDP formula-
tion are included along with the finite strain predictions.
While the small strain DDP predictions are very similar to
their finite strain counterparts, the small strain predictions are
slightly stronger in all cases. These differences can be under-
stood by noting the lattice rotation distributions plotted in
Fig. 8. These lattice rotations tend to curve the dislocation slip
planes as shown schematically in Fig. 9 where some selected
slip planes are shown in both the undeformed and deformed
configurations for the double slip case. The curving of the slip
planes tends to relax the back-stresses created by dislocation
pile-ups and hence reduce the plastic hardening. The effect of
lattice rotations and curving of the dislocation slip planes is
only included in the finite strain DDP formulation and hence
the small strain predictions are slightly stronger compared
to the corresponding finite strain predictions. However, as
mentioned in Sect. 2.3, the finite strain computations pre-
sented here are limited by mesh distortion effects such that
the lattice rotations obtained for the maximum applied can-
tilever tip displacements were less than 3◦ (i.e. |ϕ| ≤ 0.05).
Over this limited range of lattice rotations, the predicted finite
strain effects are small, but we anticipate these effects to
become significant if computations could be conducted for
larger cantilever tip displacements. We emphasise here that
the observed differences between the small strain and finite
strain DDP formulations are primarily due to finite strain
discrete dislocation plasticity effects rather than finite strain
elastic effects: a comparison between finite strain and small
strain elastic bendingof the specimen is shown in “Appendix”
section to emphasise this point.

4 Size effects in cantilever beam bending

Over the range of the cantilever tip displacements inves-
tigated here, finite strain effects were shown not to be
significant. We thus proceed to investigate the underlying
plasticity mechanisms for cantilever beam bending using the
small strain DDP formulation. We first restrict our attention
to the short beam specimens and then continue with explor-
ing the effect of the beam aspect ratio a/W .

Predictions of σb versus θ are included in Fig. 7a, b,
respectively, for specimen sizes W = 0.5, 1.0, 1.5 µm. As
wasmentioned in Sect. 3, these results indicate that the bend-
ing stress is strongly hardening in the plastic regime, and the
single slip configuration is stronger compared to the double
slip case. Moreover, a plastic size effect exists with the bend-
ing stress in the plastic regime being larger for the smaller
specimens.

In order to clarify these trends we define a flow bending
stress σ f as the value of σb at θ = 0.045. Predictions of
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Fig. 8 Finite strain DDP predictions of the dislocation structure and lattice rotation ϕ in the short beam specimens at an applied θ = 0.045 in the
current configuration. Results are shown for the single slip case specimens of size a W = 0.5 µm and b W = 1.5 µm while the double slip case
with specimen sizes W = 0.5 and 1.5 µm are shown in c and d, respectively

Slip planes

Fig. 9 Sketch of the curving of the slip planes in the end loaded can-
tilever beam due to lattice rotations. The sketch shows the specimen in
the double slip configuration in both the undeformed (dashed lines) and
deformed (solid lines) states

the variation of σ f withW for the geometrically self-similar
short beams is plotted in Fig. 10. The error bars in Fig. 10
indicate the scatter in the results based on the different real-
isations of the source and obstacle distributions computed
here. The variation of the bending flow stress with W is rea-
sonably well described by a relation of the form

σ f = σ0

(
W
W0

)−n

, (24)

where σ0 is the flow stress of a specimen of width W = W0,
i.e. σ f increases with decreasingW . This curve is included in
Fig. 10 andwithW0 = 1.0 µmandn ≈ 0.3, it is seen tofit the
datawith reasonable accuracy for both the slip configurations
of the short beam specimens.

The distributions of dislocations and contours of the stress
component σ11 are plotted in Fig. 11 at an applied rota-
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Fig. 10 Summary of the small strain DDP predictions of the variation
of the bending flow strength σ f with specimen size. Predictions are
included for both the single and double slip configurations and the short
and long beam specimens. The error bars indicate the variation in the
results between the different realisations of the source and obstacle
distributions computed here. The lines are fit to the data using Eq. (24).
Here, solid and dashed lines represent the results obtained for short and
long beams, respectively

tion θ = 0.045. The results shown in Fig. 11a, b are for
the W = 0.5 and 1.5 µm short beam specimens, respec-
tively, with the crystals oriented for single slip. These figures
demonstrate that in the cantilever beams the dislocation activ-
ity is concentrated around the root of the gauge section of
the specimen. The vast majority of these dislocations have
the same sign as their oppositely signed counterparts have
exited the specimen through the free surfaces. This implies
that in these specimens there is a significant net Burgers vec-
tor due to the dislocations and hence a large GND density in
Nye’s terminology [36]. These GNDs are dislocation pile-

123



774 N. Irani, et al.

σ11/MPa

0 240120-120-240

a b

c

d

Fig. 11 Small strain DDP predictions of the dislocation structure and stress σ11 at an applied θ = 0.045 in the single slip case. Results are shown
for the short beam specimens of size a W = 0.5 µm and bW = 1.5 µmwhile the corresponding distributions in the long beam specimens of sizes
W = 0.5 and 1.5 µm are shown in c and d, respectively

up structures and result in back-stresses on the dislocation
sources counteracting their further operation. The size effect
is largely associated with these GNDs as argued extensively
in Ref. [1,27].

4.1 Effect of cantilever aspect ratio

Consider the cantilever beam sketched in Fig. 2. The beam
can either collapse by plastic bending with the formation of
a plastic hinge at the root of the gauge section at X1 = LR
or by shear collapse of the gauge section. To illustrate this
competition, consider the continuum isotropic plastic limit
where the beam material has a uniaxial strength σY and a
shear strength τY for shearing in the X1 − X2 plane. Then
the ratio of the shear collapse load Ps to the bending collapse
load Pb is given as

Ps
Pb

= 4
τY

σY

( a
W

)
, (25)

i.e. as the aspect ratio a/W increases, the shear collapse load
increaseswith respect to the bending collapse load and hence,
the deformation of the beam will become increasingly bend-
ing dominated. This basic notion holds irrespective of the
details of the assumed plastic constitutive properties of the
beam material. Thus, in order to investigate the contribution

of the shear force on the plastic properties reported above,
we proceed to investigate the bending response of the long
beamswith a gauge section aspect ratioa/W = 6 (as detailed
in Sect. 2.3).

Predictions of σ f for the long beam specimens are
included in Fig. 10 along with the short beam results. It can
be observed that the overall trends are very similar with σ f
decreasing with increasingW and the double slip case being
slightly weaker compared to the single slip configuration.
However, as it is shown in Fig. 10 the bending flow strength
of the long beam specimens is appreciably smaller compared
to the equivalent short beam samples. This is rationalised by
noting that the long beams also have a lower dislocation den-
sity compared to the short beam case. We attribute this to
the fact that for the same applied bending stress, the longer
beams have lower shear forces (and stresses) acting upon
them and this results in a lower density of statistically stored
dislocations (SSDs). To clarify this, we plot in Fig. 11c, d
the dislocation structure and the stress distributions in the
W = 0.5 and 1.5 µm long beam specimens, respectively,
at θ = 0.045. The dislocation structures in the long beam
specimens are almost exclusively comprised of same-signed
dislocations while there are relatively more opposite signed
dislocations in the short beamspecimens; seeFig. 11a, b. This
confirms that the long beam specimens have a lower density
of SSDs compared to the short beam case. Consequently, the
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lower dislocation density accounts for the lower bending flow
strength in the long beam specimens, as dislocation motion
is less inhibited by a dense dislocation structure.

The results for the long beam specimens demonstrate that
the reduction in the SSD density does not change the trend of
the variation of σ f withW .Moreover, the bending flow stress
is reasonably well described by Eq. (24) with W0 = 1.0 µm
and n ≈ 0.3. Thus, these results suggest that although the
value of σ0 in Eq. (24) depends on the specimen aspect ratio,
the value of σ f /σ0 only depends on specimen width W .

5 Discussion

Initiated by the pioneering work of Stölken and Evans [27],
numerous studies have confirmed that the bending strength
of crystalline materials increases with decreasing specimen
size; see for example Ref. [28]. This so-called size effect
has traditionally been attributed to the fact that the GND
density, which is associated with the imposed curvature in
bending, increases with decreasing specimen size. The vast
majority of models employed to capture this size effect are
the so-called strain gradient plasticity models (see for exam-
ple Ref. [37]), which explicitly include the contribution of
GNDs to the strength and thereby capture the observed size
effect. These continuum models thus have an in-built length
scale as an additional parameter, which is calibrated either
via experiments or lower length scale models. Another class
of closely relatedmodels uses the concept of theNye [36] dis-
location density tensor to estimate the GND density, which
enhances the physical basis of these higher order plasticity
theories [38].

The drive to improve the mechanistic basis of the higher
order plasticity theories has led to the development of what
is now known as continuum dislocation plasticity (CDP)
with the aim of describing the behaviour of the ensembles
of dislocations via continuum field equations. For example,
Sandfeld et al. [39] presented a numerical implementation of
such a theory and applied it to the plane-strainmicro-bending
problem. Later, Le and Nguyen [40] (also see Refs. [41,42])
proposed analytical descriptions for bending of single crystal
beams within the CDP setting. In their work, in addition to
the usual GND size effects, they also included the effect of
specimen size dependent dislocation nucleation.

In the current study we employ discrete dislocation plas-
ticity wherein the dislocation structures and the associated
stresses are generated as a natural outcome of the boundary
value problem. Themain difference between the discrete dis-
location plasticity and continuum models discussed above,
is that in the discrete setting, GNDs and SSDs cannot be dif-
ferentiated without including an artificial averaging length
scale. Moreover, in the cantilever bending problem analysed
here the lattice curvature varies over the length of the beam.
Thus, it is not possible to quantify the GND density in a

sensible manner from these discrete dislocation plasticity
calculations. Therefore, making direct comparisons between
the discrete dislocation plasticity and continuum plasticity
descriptions is not instructive. Nevertheless, there is an excel-
lent agreement between the discrete dislocation plasticity
predictions and measurements of the size effects besides a
good qualitative agreement with the above mentioned con-
tinuum plasticity predictions.

6 Concluding remarks

Cantilever beam configurations are commonly used to anal-
yse the bending response ofmicro-sized specimens. Here, we
have analysed the bending of tip loaded single crystal can-
tilever beam specimens with one and two active slip systems
using DDP. Both finite strain and small strain DDP formu-
lations are employed to investigate the influence of lattice
rotations and changes in specimen geometry on the bending
response of the specimens.

Over the range of specimen sizes analysed here, the bend-
ing stress versus applied tip displacement response has a
strong plastic hardening component. This hardening rate
increases with decreasing specimen size, and thus the bend-
ing flow strength is size dependent. The hardening rates are
slightly lower when the finite strain DDP formulation is
employed as curving of the slip planes is accounted for in
the finite strain formulation. This curving relaxes the back-
stresses in the dislocation pile-ups that result due to the
bending stress field and thus reduces the hardening rate.How-
ever, over the range of applied tip displacements analysed
here the small strain DDP formulation is shown to capture
with excellent accuracy all the key features of the bending
response of end loaded cantilever beams.

The small strain DDP formulation is then used to anal-
yse size effects in these cantilever beam specimens. In line
with the well-known pure bending case, the bending stress
is shown to display a plastic size dependence. Moreover, the
bending flow strength of beams with a larger aspect ratio
is shown to be appreciably smaller compared to the equiv-
alent short beam samples. We attribute this to the fact that
for the same applied bending stress, the longer beams have
lower shear forces (and stresses) acting upon them, and this
results in a lower density of statistically stored dislocations:
this reduction in the dislocation density lowers the bending
strength.
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Fig. 12 Finite and small strain elastic predictions of the bending stress
σb versus θ for the short beam specimens

Appendix: Finite strain effects in elastic cantilever
beam bending

Finite and small strain elastic predictions of the bending
stress σb versus θ are shown in Fig. 12 for the short beam
specimen. The elastic results are size independent and hence
curves are not shown for different values of W . Over the
range of θ values investigated here there are negligible differ-
ences between the finite and small strain elastic predictions.
This confirms that the differences between the small strain
and finite strain DDP predictions seen in Sect. 3 are a result
of finite strain discrete dislocation plasticity effects such as
effects of lattice rotations and changes in the specimen geom-
etry due to dislocations motion.
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