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Abstract 
Predictive coding is arguably the currently dominant theoretical framework for the study of 
perception. It has been employed to explain important auditory perceptual phenomena, and it has 
inspired theoretical, experimental, and computational modelling efforts aimed at describing how the 
auditory system parses the complex sound input into meaningful units (auditory scene analysis). 
These efforts have uncovered some vital questions, addressing which could help to further specify 
predictive coding and clarify some of its basic assumptions. The goal of the current review is to 
motivate these questions, and show how unresolved issues in explaining some auditory phenomena 
lead to general questions of the theoretical framework. We focus on experimental and 
computational modelling issues related to sequential grouping in auditory scene analysis (auditory 
pattern detection and bistable perception), as we believe that this is the research topic where 
predictive coding has the highest potential for advancing our understanding. In addition to specific 
questions, our analysis led us to identify three more general questions that require further 
clarification: 1) What exactly is meant by prediction in predictive coding? 2)What governs which 
generative models make the predictions? and, 3) What (if it exists) is the correlate of perceptual 
experience within the predictive coding framework? 

 

Introduction 
Perception seems so simple. I look out of the window to see houses, trees, people walking past, the 
sky above, the grass below. I hear birds in the trees, cars going past, the distant sound of an alarm, a 
symphony playing on the radio. The world is full of objects that make their presence known to me 
through my senses – what could be more simple? Yet the apparent simplicity and efficacy of 
perceptual experience hides a host of difficulties and questions for which we do not yet have the 
answers. The problem is that the information reaching our senses is generally incomplete, 
ambiguous, distributed in space and time and not neatly sorted according to its source ; but see 
(Gibson, 1979). It is clear that to support effective interactions with the world and the objects in it, 
one of the key functions of our perceptual systems is to discover the likely sources of our sensations 
(Brunswik, 1956). This points towards the need for creating and maintaining representations that 
can partition (or segregate) incoming information and integrate source-related information 
appropriately through time and across modalities, while allowing us to infer details that may not 
have been detected. Indeed, we typically maintain a sense of a relatively stable environment within 
which discrete objects have some persistence even when we are not currently sensing them. 

This view of perception also resonates with that of Gestalt psychology (Köhler, 1947), i.e. that the 
whole (Gestalt), formed through integration of component parts, is primary in perception, and 
influences the processing and perception of the parts. In terms of auditory perception, the Gestalt of 
the melody or utterance we perceive relies upon integrating discrete sound events often separated 
by relatively long intervals (in terms of neural processing time constants). In becoming aware of the 
Gestalt, subjectively, we usually experience a sense of expectation for what might come next. 
Functionally, the proposal is that our representations generate predictions that guide the integration 
of component parts. That is, predictions, whether for the continuation of the object in time or its 
(currently) hidden parts, are integral to object perception. This notion led to the proposal that object 
perception is a process akin to the generation of scientific hypotheses (Gregory, 1980). The 
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predictive view of perception has been computationally formalised in the predictive coding 
framework, e.g., (Mumford, 1992; Dayan et al., 1995; Rao & Ballard, 1999; Friston, 2005; Hohwy, 
2007; Bastos et al., 2012) 

In this paper, our aim is to review some of the key principles of predictive coding in relation to the 
evidence base in auditory perception, and to highlight what we believe are important challenges and 
unresolved questions. Our intention is to complement the more extensive review of the 
neuroscientific evidence for predictive coding in auditory cortex (Heilbron & Chait, 2017) and 
neuroscientific critiques of predictive coding; e.g. (Kogo & Trengove, 2015). 

Predictive coding has actually been applied to auditory signal processing since the 1960's in the form 
of linear predictive coding (Atal & Hanaver, 1971) and the method became a mainstay of artificial 
speech recognition systems for some time (Rabiner & Gold, 1975). However, here we use the term in 
a somewhat different sense. Rather than predicting the signal on a sample by sample basis as a 
linear function of previous samples, with offline training devoted to minimising residual error and 
function coefficients being used to represent components of interest, here, in considering predictive 
coding as a model of neural processing, we are interested in an online version in which residual 
errors become important signals of new information (Spratling, 2017b). In this version, which aims at 
capturing the processing principles of the biological systems underlying perception, representations 
are continuously formed and maintained as a combination of previous experience and current 
context. They are considered to act as generative models that signal expectations of future events 
and are refined through comparisons between actual and predicted input; in essence, these 
representations instantiate inferences regarding the causes of the sensory input.  

The predictive coding framework is attractive as it describes a system, capable in principle of 
autonomously controlling its own learning in a continuous manner. Predictive coding has been 
implemented in a number of qualitatively different ways, primarily in relation to visual processing 
e.g., (Rao & Ballard, 1999; Spratling, 2008; 2017a), but also for other modalities, e.g., (Kilner et al., 
2007; Kiebel et al., 2009; Friston & Frith, 2015; Rubin et al., 2016). However, there are key features 
common to all (Heilbron & Chait, 2017). These are the existence of separate units (neural 
populations) that signal predictions and prediction errors, embedded within a hierarchical structure. 
For example, in one of the earliest models of predictive coding, used to account for 'non-classical' 
responses in primary visual cortex (Rao & Ballard, 1999), signals from higher order visual areas to 
lower order areas were interpreted as predictions and forward signals from lower to higher areas as 
prediction errors, calculated as the difference between the top-down predictions and incoming 
signals from the sensor. It had been shown that cells in primary visual cortex that respond to a short 
bar of preferred orientation show a reduced response as the bar is lengthened to extend beyond 
their 'classical' receptive fields, a phenomenon known as end-stopping (Hubel & Wiesel, 1968). In 
the model, forward responses (prediction errors) are reduced as a result of predictive accuracy 
increasing with bar length. The reason is that the receptive fields in both levels of the model reflect 
the statistics of the natural scenes used for training; prediction neurons in the higher level generate 
more accurate predictions of stimuli that more closely resemble their prior experience, in this case 
long rather than short line segments. This early model also highlights a number of questions that we 
will revisit later in the paper: Although there is a clearly documented hierarchical organisation in 
sensory cortices, what evidence do we have from auditory perception for the operational necessity 
for a hierarchy of generative processes; i.e., do higher order statistics influence auditory perception? 
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What exactly is meant by prediction? What governs which generative models make the predictions? 
What (if it exists) is the correlate of perceptual experience within the predictive coding framework? 

The idea that predictability influences auditory perception is often assumed; e.g., many accounts of 
music perception hold that expectancies and their violation are intrinsic to music appreciation 
(Meyer, 1956; 1967; Huron, 2006; Rohrmeier & Koelsch, 2012). Indeed, neural activity continues 
when a musical piece is abruptly silenced (even when the listener is not familiar with it), suggesting 
that the brain considers the likely continuation of the melody (Kraemer et al., 2005). Similarly, in 
speech processing predictability arising from semantic and syntactic cues; e.g., (Kutas & Hillyard, 
1984; Kamide et al., 2003), has been studied for some time, and has been argued to underlie 
observed native language benefits (Kutas, 2011). However, clear evidence of a role for predictability 
in auditory perceptual organisation, termed auditory scene analysis by Bregman (1990), is less easy 
to find (Bendixen, 2014), although there are some studies we discuss below that address this issue. It 
should also be noted that demonstrating predictability influences or facilitates perception does not 
in itself provide sufficient evidence for predictive processing, as it is possible that predictability is 
inferred post hoc, rather than involving the generation of signals in anticipation of a predicted event; 
few studies actually allow this differentiation to be probed.  

Nevertheless, there are several paradigms that have been used to investigate processing in the 
auditory system for which the measured responses have been interpreted in terms of predictions 
and prediction errors. For example, in the phenomenon known as stimulus specific adaptation (SSA) 
(Ulanovsky et al., 2003), neural responses are found to increase as an inverse function of stimulus 
probability, i.e. the less predictable (more surprising) a stimulus is, the larger the measured response 
(larger prediction error). A similar interpretation has also been adopted to explain the differential 
electroencephalogram (EEG) signal, known as the mismatch negativity (MMN) (Näätänen et al., 
2011; Winkler & Czigler, 2012). In this case, large scale brain responses (rather than individual 
neuron activity) tend to increase in response to an unexpected (less predictable) stimulus. Even 
though extensive, the MMN literature cannot resolve the issue of prediction versus post hoc 
predictability. Although much of this literature is compatible with a hierarchical predictive coding 
framework, the effects of explicit knowledge are equivocal. For example, Sussman et al. (2002) 
found that explicit knowledge about upcoming deviants can eliminate MMN (i.e., knowing about the 
higher-order structure of a sequence allows one to predict violations of local regularities), whereas 
others, such Rinne et al. (2001) and Horvath et al. (2011) found that prior knowledge had no effect 
on the MMN. Similarly, music-related expectancy violations (regular versus irregular chord 
progressions) elicit an early right anterior negativity, and continue to do so even when individuals 
are informed that a specific violation is about to occur (Guo & Koelsch, 2016).   

Somewhat stronger support for predictions per se comes from the phenomenon known as the 
omission response; when a sound is unexpectedly omitted from a predictable sequence, there is a 
response to the missing sound (Joutsiniemi & Hari, 1989). This response, it has been argued, 
provides clear evidence for a role of predictability in auditory processing as it is elicited in the 
absence of a stimulus and thus indicates that the auditory system must be generating some form of 
prediction in order to elicit the signal of prediction error, i.e. the difference between the expected 
event and the actual null input. Indeed, perhaps the strongest evidence for prediction comes from 
the study of Bendixen et al. (2009), who showed that the EEG signal in response to the first 50ms of 
a predictable omitted tone is indistinguishable from the response to the tone itself. A similar claim, 
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regarding prediction, is made for the closely related offset response (Hillyard & Picton, 1978). 
However, there are some caveats; omission responses to a pure tone sequence are only elicited 
when the inter-onset interval is less than ca. 170 milliseconds (Yabe et al., 1998), and the offset 
response is strongly affected by the isochrony of the sequence (Andreou et al., 2011). Neither of 
these limitations is easily explained by predictive coding, but we do not explore them further here. 

 

Are predictions necessary to explain auditory perceptual experience?    

Theoretical perspectives 

Are auditory object representations necessarily predictive? While the concept of an object, and its 
key role as the unit of attention (Duncan, 1984) and prediction (Zhao et al., 2013), is firmly 
established in the visual domain, the same is not true for auditory perception. The term object is 
sometimes used to refer to single sound events, such as individual tones or even sub-components of 
speech like phonemes, e.g. (Kral, 2013), and sometimes to sequences of sound events, such as a 
melody (Wightman & Jenison, 1995). Another distinction can be made between the sound source 
(concrete object) and the pattern of sounds emitted by it (abstract object), as representations of 
either of these possess the main attributes expected for object representations (e.g. a violin and the 
tune played by the violin both have object properties in that they can enter into various cognitive 
processes and are invariant to many transformations). (Kubovy & van Valkenburg, 2001). Recent 
definitions of the term also adopt different views on the necessity for prediction. Griffiths and 
Warren (2004), describe auditory object processing as the separation of information relating to a 
thing (sound source) in the world from the rest of the world, and the abstraction of that information 
across different occurrences of the same object and across modalities. In contrast, Winkler et al. 
(2009), more inclined towards the Gregory (1980) notion of perception, conceive of an auditory 
object as a persistent representation of a putative thing in the world that is derived from patterns 
(or regularities) in the sensory input and generates predictions of parts of the object not yet 
available. In this definition, object representations are mental constructions of inferred sound 
sources that provide the means for predicting parts of the 'whole', while Griffiths and Warren's 
discussion of objects focusses more on discrete events and their boundaries and makes no mention 
of inference or prediction; see also (Kubovy & van Valkenburg, 2001). The terms pattern and 
regularity are often used interchangeably, but here we use pattern to refer to a short recurrent 
temporal sequence and regularity to refer to more general statistical predictability; e.g., the overall 
timbre or smooth changes in the pitch of a talker's voice.  

This lack of consensus regarding auditory objects is reflected in current models of auditory scene 
analysis. While grouping of simultaneously present components, based on harmonicity, common 
onsets (and offsets), and directionality has been extensively modelled (e.g., see (Wang & Brown, 
2006) for a range of work in this area), grouping of object components separated in time has 
suffered from a lack of clarity regarding whether the result of such grouping should be considered a 
stream (Bregman, 1990), a figure versus ground (Teki et al., 2011), or an object (Winkler et al., 2009; 
Winkler & Schröger, 2015).  
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Auditory streaming has long been a favoured experimental paradigm for exploring sequential 
grouping in auditory scene analysis (Bregman, 1990) because it allows one to investigate the cues as 
well as the temporal dynamics of grouping. The two-tone auditory streaming stimulus most 
commonly used consists of a sequence of pure tones with alternating high (H) and low (L) frequency, 
arranged either as a simple alternating sequence, HLHLHL…, or as  series of triplets separated by a 
silent interval (_), HLH_HLH_HLH_ …(van Noorden, 1975). Due to the ambiguous nature of this 
stimulus, listeners generally experience perceptual bi- or multistabilty (Schwartz et al., 2012). That is, 
listening to long segments of the stimulus leads to perception switching back and forth between 
alternative sound organizations (Anstis & Saida, 1985; Denham & Winkler, 2006; Pressnitzer & Hupe, 
2006). The possibility for alternative interpretations provides a good testbed for exploring influences 
of predictability on perceptual organisation. 

 

Disagreement over the need for predictions to account for auditory streaming has a long history. 
Bregman (1990) did not include it in his theoretical framework; see also (French-St George & 
Bregman, 1989; Rogers & Bregman, 1993). In contrast, in her dynamic attending theory (Jones, 1976; 
Jones & Boltz, 1989), Jones suggests that temporal predictions determine sound grouping through 
dynamic modulation of attention (Demany & Semal, 2002; Devergie et al., 2010). Some more recent 
accounts, e.g., (Winkler & Schröger, 2015), argue that the 'old+new' strategy (i.e., that the auditory 
system first assigns parts of the input to previously discovered streams and treats the residue as a 
new one), described by Bregman as an essential principle of auditory scene analysis, relies on 
predictive processing in order to achieve sound segregation and the formation/maintenance of 
auditory object representations in a single pass. Although situated within a different literature, the 
'old+new' strategy is essentially a restatement of the 'explaining away' principle that is at the core of 
many predictive coding systems. 

 

Modelling perspectives 

The implementation of theoretical models in computational form raises questions of its own 
regarding the complexity of the representations needed to explain the target phenomena and the 
necessity for explicit predictions. By 'explicit' predictions here we mean that there is neural activity 
that can be interpreted as conveying predictive information in anticipation of unobserved events or 
parts of an object. In contrast, the current intrinsic state of the system can be interpreted as 
embodying 'implicit' predictions without any overt activity. 

Two computational models of auditory streaming can be used to illustrate contrasting views on the 
need for explicit predictions and the nature of the representations necessary for explaining the 
perceptual phenomenon. In the auditory streaming model of Barniv and Nelken (2015), incoming 
sound events are assigned to one of two classes and perceptual decisions are expressed in term of 
streams (Bregman, 1990). The perceptual decision is determined by which sounds are assigned to 
the currently dominant class: if both high and low tones are assigned to the dominant class then the 
'perceptual' decision is one stream, and if they are assigned to different classes the decision is two 
streams. The model works through evidence accumulation in favour of the non-dominant class, and 
perceptual switching is determined by the dynamics of the class centroids and the strength of the 
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evidence for each class. Predictions in this model are implicit, manifesting in the accumulated 
probability distributions, which represent the featural expectations for future events explained by 
each class. However, the model does not make explicit temporal predictions nor does it represent 
information about event timing or ordering.  

In contrast, (relative) timing, ordering, and featural information are all retained in the model of Mill 
et al. (2013). In this model, representations of repeating (periodic) patterns discovered in the 
incoming sound sequence are extracted on a continuous basis. The set of representations is dynamic 
and in principle unlimited; as a result, many representations, each containing information about a 
repeating embedded pattern, may be held in parallel. Each representation (termed a proto-object) 
makes an explicit prediction of the next event it expects together with its timing. The dynamics and 
contents of perceptual experience are represented by the changes in dominance (through 
bifurcation) of one or more proto-objects. Prediction is fundamental to the model and plays three 
key roles: 1) competition between proto-objects that predict the same event leads to the emergence 
of the perceptual organisations reported by listeners, 2) predictions guide decisions about event 
ownership, determining the likelihood that an event was generated by a known source (object), and 
3) predictions are used to verify representations, which are deleted if their predictions fail.  

Whereas both models attempt to simulate perceptual decisions in auditory streaming, only the 
proto-object model (Mill et al., 2013) integrates auditory stream segregation with auditory object 
formation. The models also differ in the nature of the sequence memory they maintain. In the 
evidence accumulation model (Barniv & Nelken, 2015), the focus is on feature distributions, and 
temporal patterns affect the class representations only indirectly. The model of Mill et al. (2013) 
assumes a very detailed memory of the features and timing of sound events and explicit 
representation of patterns detected in the incoming sequence. However, both models build and 
maintain alternative (non-dominant) representations in parallel, consistent with electrophysiological 
results that suggest that representations of alternative sound organizations are maintained in the 
brain (Sussman et al., 2014).  

 

A similar lack of consensus regarding the need for explicit temporal predictions is found in the 
literature on mismatch negativity (MMN). For many years there has been disagreement between 
those favouring a predictive account of MMN, e.g., (Winkler, 2007), and those favouring an 
explanation based on memory traces (Näätänen, 1990) or adaptation (May & Tiitinen, 2010). This 
has given rise to numerous experiments seeking to demonstrate the validity of particular theoretical 
positions, and to the development of competing computational models. However, while some 
models and experiments, e.g. (Garrido et al., 2008; Wacongne et al., 2012), clearly favour an explicit 
predictive account, it has been surprisingly difficult to dismiss the adaptive memory trace MMN 
model (May & Tiitinen, 2010) that simulates many key MMN results without explicit predictions.  

 

The modelling literature on stimulus specific adaptation (SSA) is also in disagreement (in SSA, 
deviant responses are investigated at the microscopic level rather than macroscopic level targeted 
by MMN, using very similar paradigms). On the one hand, a wide range of SSA phenomena, including 
sensitivity to context and the distinction between novelty and rarity, can be replicated by the model 
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of Mill et al. (2011) without explicit predictions (memory of the recent past, and hence implicit 
expectations of future activity, are contained the synaptic state of the network, similar to the 
adaptive trace MMN model). On the other hand, Rubin et al. (2016) argue that responses measured 
in primary auditory cortex in the SSA paradigm should be understood as prediction errors and 
proposed a model that generates predictions and prediction errors as a probabilistic function of 
recent context. They derived a large number of candidate models and showed that the 
representations that best matched the neural data tended to have rather long memory spans but 
coarse featural resolution; challenging assumptions of both the Mill et al. (2013) streaming model 
and predictive coding explanations regarding the correlates of perception that we will come to later.  

 

Experimental perspectives 

Pattern detection 

A first step towards establishing a role for prediction in auditory perception is to show that listeners 
are sensitive to acoustic regularities or patterns in sound sequences as such knowledge would in 
principle provide a basis for predicting upcoming sounds. As previously noted, demonstrating that 
predictability influences perception is not sufficient to show that predictions are generated, but it 
does provide some support in this direction. The literature on MMN provides a great deal of 
evidence for a role for predictability; e.g., (Winkler & Schröger, 1995). Another source of evidence 
comes from the experiments of Chait and colleagues (Chait et al., 2012; Jaunmahomed & Chait, 
2012; Barascud et al., 2016; Southwell et al., 2017) in which rapid sequences of tones characterised 
by different pitches are arranged randomly or as repeating patterns. Listeners easily detect 
transitions between random and patterned sections. Pattern detection is also very rapid; listeners 
can detect repeating tone patterns as rapidly as an ideal observer, taking only roughly 1.5 repeats of 
the pattern to do so (Barascud et al., 2016). The detection of pattern termination is also very rapid, 
and is marked by an offset response. However, while the offset response can be interpreted as a sign 
of prediction error in response to failed predictions of the repeating pattern, this data pose an 
explanatory challenge. Contrary to expectations based on the classical predictive coding framework, 
it was found that magnetoencephalogram (MEG) activation increased as a function of the 
predictability of the acoustic signal; see figure 3 (Barascud et al., 2016). For similar findings, see 
(Sohoglu & Chait, 2016; Southwell et al., 2017). This is also the reverse of what was expected based 
on evidence from MMN and SSA neurophysiology and models. The problems posed for the 
predictive coding framework are immediately apparent; in the MEG signal, the offset response, 
interpreted as indicating prediction error (increasing surprise) is superimposed on a sustained 
response that increases with predictability (decreasing surprise). Of course, not all signals 
measurable from the brain necessarily represent prediction errors, and the authors suggested that 
the increase in predictability-related sustained activity might indicate precision-weighting of 
prediction errors (i.e. predictions made with higher confidence give rise to larger error signals than 
those made with lower confidence). It may also be a more general example of the so-called 
repetition positivity (Haenschel et al., 2005; Baldeweg, 2006), which increases with increasing 
repetitions of the same tone. However, interpretation in terms of (precision-weighted) prediction 
error is difficult to reconcile with near optimal pattern detection performance; why is there any 
prediction error at all in response to precisely predictable sequences?  
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Another issue that comes from this study relates to the saliency of the sequences. Increased 
magnitude of brain responses is generally interpreted in terms of higher perceptual saliency and, 
consistent with this idea, it has been shown that task irrelevant regularities attract attention, both in 
vision (Zhao et al., 2013) and in audition (Levänen & Sams, 1997). Therefore, a natural hypothesis is 
that more predictable tone sequences should be more salient, and hence more distracting, if task 
irrelevant. However, this is not the case (Southwell et al., 2017); random sequences are far more 
potent distractors than regular ones (Jones et al., 1999; Macken et al., 1999), and a stream can be 
easier to segregate when the other stream is regular than when it is random (Bendixen et al., 2010; 
Andreou et al., 2011; Rimmele et al., 2012). 

 

Do patterns play a role in auditory streaming?  

The role of patterns in auditory perception has also been explored in the context of auditory 
streaming (Bendixen et al., 2010). The question in this case was not whether patterns could be 
detected, but whether their presence, and the associated increase in predictability of the stimulus, 
influenced perceptual organisation. This was addressed by jittering the pitch and loudness of the 
high and low tones using the triplet version of an auditory streaming sequence and the phenomenon 
of multistability to assess the influence of patterns on perception. In various conditions, the 
predictability of the pitch and loudness features was manipulated (see (Bendixen et al., 2010) Figure 
1) and their influence on the probability and mean phase durations of reporting different perceptual 
organisations was measured according to four categories: integration, segregation, the more 
complex 'both' response, or none of these (Denham et al., 2014). It was found that the presence of 
repeating patterns (precisely predictable pitch and loudness features), which were detectable only 
while the segregated state occurred, served to increase the probability of segregation and reduce 
that of integration, relative to the control condition in which the same features that made up the 
patterns were randomly ordered (see (Bendixen et al., 2010) Figure 2). This change was brought 
about through a significant increase in segregated phase durations with no significant effect on 
integrated phase durations, leading to the suggestion that patterns stabilise but do not trigger 
segregation; for similar results, see also (Bendixen et al., 2013).  

In a follow up experiment, evidence for the influence of predictability in the opposite direction (i.e. 
favouring the integrated perceptual state) was also found (Bendixen et al., 2014). In this case, 
featural regularities (pitch, spatial direction, relative onset time) which favoured integration (tones 
in a triplet shared the same perturbation, while perturbations from one triplet to the next were 
unpredictable) resulted in a larger proportion of integrated responses, while regularities which 
favoured segregation (perturbations changed smoothly, but independently, in the high and low 
streams) resulted in a larger proportion of segregated responses (see (Bendixen et al., 2014) Figures 
1 and 2). Moreover, the effect of predictability was rather large in comparison with the effect of 
differences in the acoustic features generally manipulated in streaming experiments (i.e. difference 
in pitch between the high and low tones, and presentation rate). However, in this experiment the 
influence of predictability was found to be symmetrical (i.e. increased integrated phase durations 
were associated with decreased segregated phase durations, and vice versa), contradicting the 
conclusion from the 2010 experiment; for similar results, see (Szalárdy et al., 2014).  
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Given the demonstration that the presence of predictable patterns influences perceptual 
organisation, a follow-up series of experiments (unpublished) was designed to investigate the speed 
with which patterns might be discovered and exert their influence on perceptual organisation. In 
these experiments, which used the same pitch and loudness manipulations reported in (Bendixen et 
al., 2010), a wider range of patterns was used and in some conditions, 30 second patterned and 
random segments were interleaved; see Figure 1. However, in contrast to the previous studies, 
described above, no consistent effect of predictability on auditory perception was found; i.e., the 
presence of within stream patterns did not always result in an increase of segregation. Rather, slow 
fluctuations in the probability of segregation, which are not aligned with the temporal schedule of 
the predictability manipulation, can be observed. 

 

In sum, evidence from these experiments regarding the influence of predictability on auditory 
perceptual organisation is not unequivocal, raising the possibility that the larger context within 
which the sequences are encountered may modulate the effects of predictability on auditory stream 
segregation. 

In contrast, evidence obtained using a different stimulus paradigm is compatible with the notion that 
predictable sequences do help listeners to form more effective representations of the auditory 
environment. Sohoglu and Chait (2016) presented listeners with complex soundscapes, comprising 
multiple parallel sequences of identical tone pips, differing from each other in pitch, tone duration 
and inter-tone interval. The temporal schedule of all tone sequences was either isochronous (regular 
context) or jittered (random context). Listeners were faster and more accurate in detecting the 
emergence of an additional tone sequence within the regular than in the random context, 
suggesting that the regular context allowed them to quickly identify tones that did not conform to 
any of the previously encountered sequences. These results were then extended in a separate series 
of experiments (Aman et al., in press) to different numbers of parallel sequences, appearance and 
termination of a target sequence, and non-isochronous regularities. Further, the results suggest that 
listeners don’t need to be aware of the presence of the regularities for utilizing their advantages in 
detecting changes in the sequences. Lacking the relevant measures, this study does not provide 
information regarding whether the predictability of the sequences that make up the context aids in 
their segregation. However, it does provide strong evidence that regularities are utilized in the 
context of auditory scene analysis. 

Overall, the picture emerging about the role of predictable patterns in sound processing is that 1) 
the human auditory system is sensitive to patterns and statistical regularities in sequences of 
sounds, 2) detecting regularities does not require attention to be focused on the sounds (Sussman, 
2007) and listeners are not necessarily aware of the detected regularities, e.g., (van Zuijen et al., 
2006; Paavilainen et al., 2007; Aman et al., in press), and 3) the utilization of regularities varies with 
context and experimental details in ways that have yet to be fully understood. Taken together, what 
these studies show is that the influence of predictability on perceptual organisation is not 
mandatory. While an influence of higher order statistics might be expected from investigations of 
hierarchical structures in language (Federmeier, 2007; Fitch & Martins, 2014) and music (Rohrmeier 
& Koelsch, 2012), it is not clear to what extent novel hierarchical structures (here, the presence of 
recurrent embedded patterns) influence auditory perceptual organisation in general. Perhaps an 
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answer to the puzzle raised by these studies may lie in the contradictory findings that predictable 
sequences attract attention while also being easier to suppress; the presence of both tendencies 
may allow the influence of predictability to be easily modulated according to intrinsic preferences, 
attentional set and task demands.  

 

Perceptual change without prediction error? 

An explanation for perceptual bistability has been proposed within the predictive coding framework, 
e.g., the model of binocular rivalry by Dayan et al. (1995), and the theoretical analysis by Hohwy et 
al. (2008). In these accounts, it is suggested that there is no direct competition between alternative 
interpretations of the stimulus or between low-level features, rather bistability results from the 
presence of a residual error that is not explained away by the currently dominant percept. This 
evidence for the presence of “something else” in the scene causes instability that leads to 
perceptual switching, and if the scene does not change then the instability and perceptual switching 
persist. However, while this explanation works for the case of binocular rivalry, it cannot account for 
perceptual bistability in the auditory streaming paradigm. The problem is that the percept known as 
integration accounts for everything in the scene. Therefore, there is no residual error to drive 
switching. So, the perceptual flexibility, that is evidenced by the demonstrable exploration of viable 
alternative interpretations in the face of an unchanging scene, requires a different explanation at 
least in the case of auditory streaming. 

In conclusion, neither the theoretical nor the computational modelling nor the experimental 
literature is conclusive with regard to the need for explicit predictions or persistent detailed memory 
representations to explain the decomposition of the acoustic scene into auditory object 
representations.  

 

Some general challenges to the predictive coding framework 

What is meant by prediction? 

A precise definition of what is meant by prediction is needed. In the literature, the term has different 
meanings which are often conflated; e.g. correlation (a relationship between two variables such as 
one part of an object being said to 'predict' another simultaneously present part) versus inference (a 
perceptual decision regarding likely explanation or cause). Although the net result may be similar, 
computationally the two cases are different: the former involves testing relationships between 
subsets of the available information, whereas the latter involves extrapolating from the available 
information to something for which there is not (currently) full support. From the modelling 
literature, as discussed above, it is often unclear whether there is necessarily an explicit prediction 
signal, or whether the expectations implicit in the state of the system should also be considered to 
constitute predictions.  
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Another related question touches on what is predicted, specifically whether predictions convey 
information about expected timing. In auditory perception, this is particularly important as events 
occur (sometimes rather precisely) in time, e.g. consider the rhythmic patterns that characterise 
music. Indeed, this is the focal point of Jones’ (1976) rhythmic attention theory. One answer to this 
question may come from the work of Costa-Faidella et al. (2011) who showed that the auditory N1 
and P2 event-related responses were differently affected by the temporal regularity of repeating 
tones; N1 only exhibited repetition suppression when the tones were isochronous, while P2 showed 
repetition suppression for regular and randomly timed sequences, suggesting that information about 
the content (what) and timing (when) of predictions may be separately represented in audition. But 
if this is the case, what are the prerequisites for the two representations to be utilized in a conjoined 
or separate manner? Answering this question may lead to understanding the equivocal pattern of 
results obtained regarding the role of patterns in auditory stream segregation: perhaps when 
predictions refer to both content and timing, a pattern effect emerges, but when only the content is 
predicted, the presence of patterns is not effective. 

 

What is the correlate of perception? 

Is perceptual experience somehow related to the multiscale array of predictions produced by the 
hierarchy of generative models, or should it be understood more in terms of feedforward prediction 
errors that might also convey some sense of the perceptual saliency of the stimulus? If perception 
equates to the latter, then there is a problem in the limit as perfectly predicted events should 
become inaudible (or invisible). This is clearly not the case; while listening to a repeating two tone 
sequence for 10 minutes may be very boring, it remains clearly audible. It is also difficult to reconcile 
perception with the continued existence of prediction errors in response to very simple, precisely 
predictable sequences with near optimal pattern detection performance (Barascud et al., 2016). 

There are problems too when we try to equate predictions with perception, as is assumed in the free 
energy formulation of predictive coding; e.g. see (Friston et al., 2012). Subjectively, we are aware of 
very fine nuances in the sounds we hear; small variations in pitch can change the sense of an 
utterance (e.g. questions versus statements; meaning in tonal languages), and the fine structure of 
sounds (even meaningless noises) is recognisable and memorable; e.g., see (Kaernbach, 2004; Agus 
et al., 2010). This suggests that predictions need at some point to be very detailed indeed if they are 
to account for perceptual experience. However, the analysis of neural responses in primary auditory 
cortex by Rubin et al. (2016) showed that the generative models that best explained neural activity 
had rather coarse representations. Further, if the predictions of the generative models represent 
perceptual experience, then one might also expect the same perceptual fidelity from mental 
imagery; while this may be the case for some people, for the majority mental imagery is clearly less 
detailed than veridical experience. 

The proposed hierarchical generative structure doesn’t offer any solutions to this problem; e.g. 
simply moving the correlate of perception up the hierarchy raises questions about readout; the 
'Cartesian theatre' problem  (Dennett, 1991). Proposals from outside of the predictive coding 
literature regarding the neural correlates of awareness include "ignition" (Dehaene & Changeux, 
2011), and "information integration" (Tononi & Koch, 2015). However, neither of these maps easily 
onto the predictive coding hierarchical generative architecture, and large scale brain connectivity 
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has been shown to exhibit small world properties (Sporns & Honey, 2006) rather than a strictly 
hierarchical organisation.  

Related to this issue is also the question of what determines the contents of perception. In the 
predictive coding framework, it is proposed that the hypothesis with highest posterior probability 
determines perceptual content (Hohwy et al., 2008), where posterior probability is calculated as 
likelihood (how well the hypothesis predicts the input) multiplied by the prior probability of the 
hypothesis. However, this is not really computable within the predictive coding framework as 
currently formulated, e.g. see (Friston et al., 2012); evaluating the likelihood of a hypothesis at one 
level of the perceptual hierarchy changes activity at the lower level, thus only one hypothesis can be 
evaluated. How then is the hypothesis with highest posterior probability determined? This becomes 
even more complicated if one leaves the laboratory and enters a natural environment in which 
multiple objects are simultaneously present; what determines which hypotheses can co-exist and 
which compete for dominance? In the model of Mill et al. (2013) it was proposed that competition 
and co-existence should be mediated through prediction (representations that predict the same 
event compete, while representations that  predict different events do not). In the predictive coding 
framework, even if the posterior probability of multiple models were to be computable, it is not 
clear how compatibility (versus competition) between hypotheses might be determined.    

Perhaps in the end predictive coding (at least in its current state of development) does not model 
(subjective) perceptual experience but rather provides a functionalist model of perceptual decision 
making. In other words, predictive coding may provide a principled account of the mechanisms 
needed to react to the world, and in its more recent (sensorimotor, social communication) advances, 
even to interact with the world. In this sense, being enslaved to the need to make faithful 
predictions may not matter so much. As Brunswik (1956) suggests, an organism happily sacrifices 
perceptual precision in perceptual decisions, as it is far more important to quickly detect the 
presence of a dangerous predator than to form a detailed representation of its exact shape and 
colouring. Studies showing that human perceptual decisions can be modelled on the basis of 
Bayesian inference rules, e.g. (Barascud et al., 2016) and that similar rules apply to action decisions 
(Friston et al., 2011), provide some of the best examples of the utility of the predictive coding 
theory.  

However, even if we restrict our considerations to perceptual decision making, further difficult 
questions of relevance to auditory scene analysis remain, including the following: How are the 
generative models created? What determines which generative models are active at any given point 
in time? How is dominance determined? How is 'effective' competition between alternative models 
mediated? Where (at what level of the hierarchy) does this 'competition’ occur? If competition 
occurs throughout the hierarchy, how is consistency between levels ensured?  

 

Summary 
Predictive coding can be viewed as a milestone in the study of perception, because it is the first 
general theory that aims to explain psychological and neural aspects of perception by the same 
principles (thus answering both to behavioural and neurophysiological evidence), expressing them 
using mathematical formulae and computational models, thereby allowing direct falsification. As a 
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result, predictive coding is arguably the currently dominant theory of perception. In writing this 
review our purpose was not to dismiss predictive coding, rather we have tried to explore specific 
questions raised by considering some phenomena of auditory scene analysis from a predictive 
coding point of view. We think that at this point, predictive coding should be regarded as a 
conceptually attractive framework which is far from being sufficiently specified for formal proof or 
falsification. Our aim has been to point out issues that require consideration and which, if addressed, 
would allow for more stringent tests of and refinements to the theory. 

It is clear from this review that there is a lack of consensus in the field regarding the role of 
predictions in auditory perception; a) from a basic theoretical perspective there is no agreement on 
the need for object representations to be predictive; b) models of sequence processing (sequential 
auditory stream segregation, MMN, and SSA) differ in their implementation specifically with regard 
to the need for explicit versus implicit predictions; and c) behavioural experiments demonstrate 
sensitivity to patterns, but evidence regarding their role in decomposing the auditory scene is 
inconclusive. While there are many studies and models, which have been interpreted in terms of 
predictability, there are few studies that provide direct evidence for prediction, and what we have 
tried to show is that the extant evidence is somewhat equivocal. 

The above mentioned experimental and modelling issues raise three general questions, answering 
which would provide better theoretical clarity to the predictive coding framework. The first question 
asks what precisely is meant by prediction. The second concerns the issues of what governs which 
generative models make the predictions and how their (in)compatibility is determined. The third 
important question is to more fully consider what within the predictive framework is proposed to 
correlate with perceptual experience. However, if predictive coding is restricted to explaining 
perceptual decision making, rather than trying to account for perception per se, then we are once 
again faced with the enormous problem of explaining where subjective perceptual experience 
comes from and trying to figure out some escape from the resulting dualism. 
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Figures 

Figure Captions 

Figure 1. The influence of higher order structure on auditory perceptual organisation in response to 
the triplet version of a 'two-tone' auditory streaming sequence. a) Tone sequences were constructed 
with nominal streams of high and low tones separated by a mean of 7 semitones. The pitches of the 
tones within each of the streams were drawn from 5 pitch levels within the range +/- 0.7 semitones 
of the mean pitch. The mean frequency of the low tones was 400 Hz, and of the high tones, 599 Hz 
(+ 7 semitones), tone duration was 100ms with onset to onset interval, 150ms. In the random 
segments, pitches were chosen randomly from the 5 levels with equal probability, while in the 
patterned segments repeating three and four tone patterns were used, in the high and low pitch 
streams, respectively. Pattern 1 was the pattern used by (Bendixen et al., 2010). Loudness took one 
of two levels, normal, and loud (+6 dB), with the probability of loud sounds being 33% and 25% in 
the high and low pitch streams, respectively. b) 30 second random and patterned segments were 
concatenated to make up a 180 second trial. The same pattern was used throughout a single trial. c) 
The probability of reporting segregation across 30 participants is plotted as a function of time. The 
mean probability of segregation for each 30s segment is indicated by a horizontal bar for each 
random (dotted) and patterned (dash-dotted) segment.   
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