
Depletion of Intense Fields

S. S. Bulanov1,a), D. Seipt2, T. Heinzl3 and M. Marklund4

1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Helmholtz-Institut Jena, Frobelstieg 3, 07743 Jena, Germany

3School of Computing, Electronics and Mathematics, Plymouth University, Plymouth PL4 8AA, UK
4Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

a)Corresponding author: sbulanov@lbl.gov

Abstract. The problem of backreaction of quantum processes on the properties of the background field still remains on the list of
outstanding questions of the high intensity particle physics. Usually the photon emission by an electron or positron, photon decay
into electron-positron pair in strong electromagnetic fields, or electron positron pair production by such fields are described in the
framework of external field approximation. It is assumed that the external field has infinite energy and is not affected by these
processes. However the above mentioned processes have a multi-photon nature, i.e., they occur with absorption of a significant
number of field photons. As a result an interaction of intense electromagnetic field with either a highly charged electron bunch or
a fast growing population of electrons, positrons, and gamma photons (as in the case of an electromagnetic cascade) may lead to a
depletion of the field energy, thus making the external field approximation invalid. Taking the multi-photon Compton process as an
example, we estimate the threshold of depletion and find it to become significant at field strengths (a0 ∼ 103) and electron bunch
charge of about tens of nC.

Introduction.

Recently there were a lot of interest in the study charged particle interactions with ultra-intense electromagnetic (EM)
pulses due to the fact that many laser facilities able to deliver such pulses are either being planned, built, or just
became operational. These processes are a part of high intensity particle physics, a new branch of physics, born out of
quantum electrodynamics (QED) and the theory of strong EM background fields. Typical QED processes, modified
by the presence of strong classical fields, demonstrate the effects not encountered in perturbative quantum field theory
[1, 2, 3, 4, 5, 6]. Two crucial components necessary for such studies are laser facilities, able to generate EM fields
of sufficiently high intensity [2], and particle accelerators, able to produce high energy charged particle beams. The
development of compact multi-GeV laser electron accelerators [1, 2, 7, 8] allows for the two components necessary
to study the effects of high intensity particle physics to be handled by the same technology.

As we mentioned above the the strong EM field is provided by an ultra-intense laser pulses, the main source
for ultra-strong EM fields under laboratory conditions. The laser pulse is usually characterized by the wave vector
k, central frequency ω = 2π/λ and electric field amplitude E. The interaction of charged particles and photons with
strong EM fields in classical and quantum regimes is parametrized in terms of1 dimensionless amplitude of the EM
vector potential, a0 = eE/ωm, the QED critical field, ES = m2/e [9], and two parameters accounting for the energy
and momentum of charged particles: χ2

e = −e2(Fµνpν)2/m6
e and χ2

γ = −e2(Fµνk′ν)2/m6
e [6]. Here, e and me are electron

charge and mass respectively. The tensor Fµν is the EM field tensor, while pν and k′ν stand for the 4-momenta of
electron and photon respectively. The nonlinearity of the particle interaction with EM field in the classical regime
is governed by the parameter a0, which is the energy gain of an electron (in units of its rest energy) over a reduced
wavelength, ! = 1/ω, of the field. For a0 > 1 the electron/positron motion becomes relativistic. The quantum nature of
the interaction is revealed through the ability to produce new particles. In QED, the field strength, which characterize
this ability, is ES [9]. For example, χe is the EM field strength in the electron rest frame in units of ES . Quantum
effects reach their optimal value at E ≈ ES or χe,γ ∼ 1.

1We set ! = c = 1 throughout the paper
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As it was shown in early papers on QED processes in strong fields, for a0 ≫ 1 the interaction of charged particles
and photons with strong EM fields is clearly multi-photon, i.e., involves the absorption of a significant number of
photons from the background fields. Due the use of the external field approximation this energy loss by background
fields is not taken into account. And possible depletion of background field energy is neglected. Though for a single
process ti can be quite small, the interaction of a highly charged particle bunch may result in a significant effect.
Looking at the results on multi-photon Compton and Breit-Wheeler processes [5, 6, 10], we determine that there is
indeed a parameter range, for which depletion of the laser becomes substantial. These processes recently received a lot
of attention [11, 12] since their experimental study seems to be a near term goal of some laser facilities [2]. However
this attention was drawn mainly to the final states (a frequency shifted photon or electron positron pairs).

In this letter we aim our investigation at the effect the nonlinear Compton scattering on the laser EM field,
which is best characterized by the number of laser photons absorbed. The requirement of this number to be small
compared to the number of photons in the pulse will allow us to establish a threshold for the validity of the external
field approximation and discuss some immediate consequences. They should be taken into account when studying
the QED backreaction [13] and EM avalanches2 [14, 15, 16], since background depletion will significantly alter the
energy partitioning of these processes.

Depletion Estimate

Classical Depletion. The external field approximation is valid when the energy absorbed from the field is negligible
with respect to the total field energy. This can be reformulated in terms of photon numbers: the number of photons
absorbed from the laser, ∆NA, should be much smaller than the number of photons in the pulse, NL. Of course the
laser field should be macroscopic with number of photons much larger than unity, NL ≫ 1. For simplicity we assume
that the laser pulse is focused in a volume equal to laser wavelength cubed, V = λ3. Then the threshold for depletion
can be set as ∆NA = NL (NL ≈ (2π/α)(!2/!2

e)a2
0 ≈ 2 × 1014a2

0). Here α = e2/4π ≃ 1/137 is the fine structure constant.
The number of absorbed photons can be written as ∆NA ≃ (PradT/!ω)NT , where NT is the number of electrons in the
bunch, Prad is the power radiated by electrons per laser period T , which can be estimated classically by making an
analogy with synchrotron radiation [18]. This would allow us to determine the number of absorbed photons from the
field, the characteristic energy of an emitted photon, and the angle of emission, which means the full characterization
of the processes. In order to carry out the estimate we make a Lorentz transformation to a boosted frame, where the
electron is on average at rest. For circularly polarized laser pulse the electron demonstrates circular motion like in a
synchrotron, and we can use Larmor’s formula,

Prad = −(2/3)αu̇2 = (2/3)α ω̄2 a2
0(1 + a2

0) . (1)

Here u is the electron 4-velocity, ω̄ = ωγe(1 + βe) (1 + a2
0)−1/2 denotes the laser frequency ‘seen’ in the average rest

frame (ARF) by an electron, which, in the lab, has relativistic parameters βe and γe. In the ARF the radiation is emitted
in the plane of electron motion, being perpendicular to the laser axis. In the lab frame this transforms into an emission
angle:

tan θ = 2[(1 + a2
0)1/2m/p−e ]/[1 − (a0m/p−e )2], (2)

which is written in terms of the lightfront momentum 3. The number of absorbed photons per laser period T̄ = 2π/ω̄
is then ∆NA = (4π/3)α a2

0(1 + a2
0) NT . As the characteristic frequency of the radiation emitted by an electron in the

ARF is ω̄m ≈ 0.3 ω̄a3
0 [21], the number of photons emitted per laser period becomes ∆NE ≈ 4παa0NT . Thus, for the

electron to emit one high frequency photon, it needs to absorb s ∼ ∆NA/∆NE ≈ (1/3) a0(1+ a2
0) photons from the EM

field, and we obtain the important result that the number s of absorbed photons scales as s ∼ a3
0 for large a0. Equating

∆NA = NL, we see that depletion requires
a2

0NT ∼ 6.5 × 1015. (3)

Thus in the case of an 1 nC electron bunch interaction with a laser pulse, having a0 ≈ 103, the external field approx-
imation is no longer valid. Also such value of a0 means the emitted photons energy (ωm) is of the order of electron
energy gain per laser period, and the emission angle (2) significantly deviates from ∼ 1/γe. Therefore, one expects

2An avalanche is formed when Compton and Breit-Wheeler processes occur subsequently in an EM field of sufficiently high intensity, resulting
in an exponential growth of the number of emitted particles.

3If ℓ is an arbitrary four-vector its scalar product with the laser momentum can be written as k ·ℓ = ω(ℓ0−ℓz) ≡ ωℓ−, which defines the light-front
component ℓ− [19]. For a0 ≪ 1 the emission angle is ∼ 1/γe, and for a0 ≫ 1 it shows a significant emission in the perpendicular direction.
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not just significant radiation reaction with ensuing changes of the particle trajectories [22] but also strong recoil of
electron momentum, which calls for the quantum description.

Quantum Depletion. In the quantum regime the average number of absorbed photons, s, still follows the classi-
cal scaling law s ∼ a3

0 for a0 ≫ 1 [6], but the classical expression for ∆NA is no longer valid and should be replaced
by a new one, which takes into account the discrete nature of photon emission in multi-photon Compton process:
∆NA = a3

0NT (λ/LC) . Here, we assume that the electron emits λ/LC photons per laser wavelength, and LC is the
radiation length of the electron in a strong EM field [6], i.e., or the mean free path of an electron in strong field with
respect to radiation. For χe ≫ 1, the radiation length is LC = 0.43λγ1/3

e a−2/3
0 [6]. Thus the threshold of depletion is

given by the following expression
a5/3

0 γ
−1/3
e NT ∼ 1014 . (4)

Again, an 1nC electron beam interacting with a a0 ≈ 103 laser mark the applicability threshold for the external field
approximation. The threshold field strength, a0, depends weakly on the initial electron energy (∼ γ1/5

e ). Thus, taking
quantum effects into account increases the threshold value of a0 needed to deplete the laser pulse for a given value of
initial electron momentum. Thus we showed that when a sufficiently charged electron bunch collides with an intense
laser pulse, depletion of the laser pulse can become significant, with the originally strong EM field turning weak. The
required number of electrons is quite typical for an EM avalanche [15], where an intense laser produces a copious
amount of high energy photons and subsequently electron-positron pairs.

Multi-Photon Compton Process

Let us calculate the dependence of the multi-photon Compton process probability, dPγ,e/ds, on the number of absorbed
photons in order to have a more accurate estimate of the depletion threshold. The average amount of energy < E >
drawn from the laser field in a single photon emission or pair production is then < E >= !ω < s >, with the average
number of absorbed laser photons given by the expectation value < s >e,γ= Z−1

∫
ds s (dPe,γ/ds) with normalization

integral Z =
∫

ds dPe,γ.
In a monochromatic plane wave laser field, taken to be circularly polarized for simplicity, the variable s is

discrete and describes the emission of higher harmonics due to absorption of s laser photons, e+ sγL → e′+γ. Energy
momentum conservation implies χe = χe′ + χγ with χe = a0k · p/m2 and χγ = a0k · k′/m2. The partial probabilities or
rates (i.e. events per time) are [6, 10]

Pe
s =

4αωs
1 + a2

0

∫ 1

0

dt
(1 + su1t)2

⎧⎪⎨
⎪⎩−J2

s (sζ) + a2
0

⎛
⎜⎜⎜⎜⎝1 +

s2u2
1t2

2(1 + su1t)

⎞
⎟⎟⎟⎟⎠
[
(ζ−2(t) − 1)J2

s (sζ) + J′s(sζ)2
]⎫⎪⎬
⎪⎭ , (5)

where the various arguments are u = (k′ · k)/(p′ · k), t = u/(su1), u1 = 2(k · p)/m2
∗ and ζ(t) = 2a0(m/m∗)[t(1 − t)]1/2,

with m2
∗ = m2(1 + a2

0), the effective mass squared [20]. The total probability for Compton photon emission is the sum
over all harmonics: Pe =

∑∞
s=1 Pe

s. For large values of a0, the number of harmonics contributing grows like s ∼ a3
0 such

that the sum may be replaced an integral over s. In this regime the formation length of the Compton process scales
like 1/a0 [6], and the laser field can be approximated as a locally constant crossed field. Formally, this is achieved by
employing the Watson representation of the Bessel functions: Js(sζ) ≈ (2/s)1/3Φ (η(s, t)), η(s, t) = (2/s)2/3

[
1 − ζ2(t)

]
.

Asymptotically, when a0 ≫ 1, the probability to absorb s photons from the laser while emitting a single high-
frequency photon of momentum k′, is found to be

dPe

ds
=

4αωs
1 + a2

0

(
2
s

)2/3 1∫

0

dt
(1 + su1t)2

⎧⎪⎪⎨
⎪⎪⎩−Φ

2(η) + a2
0

(
2
s

)2/3 ⎛
⎜⎜⎜⎜⎝1 +

s2u2
1t2

2(1 + su1t)

⎞
⎟⎟⎟⎟⎠
[
ηΦ2(η) + Φ′(η)2

]
⎫⎪⎪⎬
⎪⎪⎭ , (6)

where u1 = 4ωγe/m(1 + a2
0). Using this result we can calculate the number of electrons needed to deplete the laser

pulse, NT = 1014a4/3
0 γ

1/3
e / < s >e. For a0 = 103 it gives NT ≈ 1011−12, which is larger than NT ≈ 1010 predicted by

the simple estimate (4), but still within reach of EM avalanches [15].
The probabilities dPe/ds determine the number distribution of absorbed photons. However, we are also interested

in the spectral distribution dPe/dχγ of the scattered photon longitudinal momentum (recall χγ ∼ k · k′). The two
distributions are obviously related via the chain rule, dPe/dχγ = (ds(χγ)/dχγ)(dPe/ds) , but we do not know the



functional relation s = s(χγ). An approximate way to determine the latter is as follows. From the t-integral in (6) we see
that the integrand is sharply peaked at t = 1/2. Using energy momentum conservation we can solve t = u/(su1) = 1/2
for s with the result

s(χγ) =
a3

0

χe

χγ
χe − χγ

, (7)

valid for a0 ≫ 1. Thus, when a Compton photon with a certain value of χγ is emitted, the number of laser photons
drawn from the laser field approximately equals s(χγ) as given by (7). We use this result to examine how the most
probable emission angle depends on the longitudinal photon momentum in the case of electrons colliding head-on
with a laser pulse. To this end, we follow [6] and assume quasi momentum conservation, q + sk = q′ + k′ with quasi
momentum q = p + (m2a2

0/2k · p)k and analogously for q′, such that q2 = q′2 = m2
∗. Let us write the scattered photon

momentum as k′ = (ω′, k′⊥, k′z) where k′2 = 0. We can then find k′⊥ from quasi-momentum conservation. Assuming a
head-on collision of electrons and laser (p⊥ = 0) the following answer is obtained:

k′2⊥ = 2sk · k′ −
(

k · k′
k · p

)2 (
m2
∗ + 2sk · p

)
. (8)

It defines an ellipse in the (k′z, k′⊥) plane for given values of γe, s and a0. However, the differential probability dP/dsdt
has a sharp maximum at s defined by (7). Thus, only one point from the ellipse (8) effectively contributes to the
probability. It can be obtained by rewriting (7) as s = m2a2

0 (k · k′)/[(k · p) (k · p − k · k′)]. Plugging this into (8) yields
the surprisingly simple result k′2⊥ = m2 (k · k′/k · p)2 a2

0 , when a0 ≫ 1, which implies that the transverse scattered
momentum, k′⊥, grows linearly with the light-front component4 k′− = k · k′/ω. The scattering or emission angle can
be defined as θ = tan−1 k′⊥/k′z. Denoting by θ0 the emission angle corresponding to the condition t(θ0) = 1/2 [12]
we get for θ0 the same expression as for the classical emission angle (2), which is consistent with the results of [12]:
if γe ≫ a0, the photons are predominantly emitted in the forward direction, with θ0 ∼ a0/γe ≪ 1. However, as a0
increases, significant photon emission takes place in the perpendicular direction. This can be understood classically, in
particular in the ARF where p− = m∗ (a0 ≃ 2γe ≫ 1) so that θ0 = π/2 as it must be for circular (synchrotron) motion
in the transverse plane. One can show that this emission angle can be obtained classically through tan θ0 = (π⊥/πz)rms,
the appropriate ratio of the rms values of the classical electron momentum components in the laser field A, πµ =
pµ−eAµ+(ep·A−e2A2/2) kµ/k·p. In other words the photon is emitted along the direction of the instantaneous electron
momentum. However the recoil changes not only the electron total energy, but also the direction of its momentum.
This is usually not taken into account in PIC codes with QED modules. The inclusion of this effect might lead to
significant changes in final particle distributions, since the cascade development is very sensitive to the changes in
electron trajectories.

Conclusion.

We have reconsidered the multi-photon Compton process in strong EM fields from the point of view of laser energy
loss due to absorption. If a significant amount of laser energy is absorbed, then the external field approximation,
usually utilized for studying QED processes in strong fields, is no longer valid. We found that the threshold of this
approximation applicability is reached at sufficiently high values of laser field strength (a0 ∼ 103), when the laser
interacts with electron beam containing a charge of the order of tens of nC. In order to have actual depletion, a
lower bound for the number of electrons in a volume of a laser wavelength cubed needs to be exceeded, namely
NT > 1014γ1/3

e a−5/3
0 . Based on the previous results, we expect that this threshold will be overcome in the case of EM

avalanches. We have further analyzed the photon emission rates differential in multi-photon number s and discovered
that they strongly peak near the value s = (a3

0/χe)[χγ/(χe−χγ)]. This value of s determines the direction of the photon
emission relative to the initial electron momentum direction in terms of an emission or scattering angle, θ0, which
ranges between θ0 ≪ 1 (forward scattering, a0 ≪ γe) and θ0 ≈ π (back scattering, a0 ≫ γe). The latter will dominate
in the EM avalanche regime, i.e. in colliding laser pulses or during interactions of laser pulses with solid density foils
or plasmas of near-critical density. The classical interpretation of the emission angle θ0 in terms of averages over
trajectories should yield a new test of the PIC codes currently in use.

4If ℓ is an arbitrary four-vector its scalar product with the laser momentum can be written as k · ℓ = ω(ℓ0 − ℓz) ≡ ωℓ−, which defines the
light-front component ℓ− [19].
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