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Abstract—This article presents two new electrical power terms
called effective active (Pef ) power term and effective reactive
(Qef ) power term. These two terms, can approve the orthogonality
relationship between fundamental and distorted components.

At the same time, these terms are necessary to complete the form
of the right-angled power triangle which is compulsory condition to
calculate the total apparent (St) in the non-sinusoidal systems.

This paper also, offers a new definition for the total apparent
power St or can be called effective apparent power (Sef ) in non-
sinusoidal situation in order to avoid the misconception of the old
definitions. Moreover, it shows a new power diagram represents
all power components in one diagram consists of six right-angled
triangles called the right-angled triangle (RAT) diagram.

Keywords - Harmonic distortion power, Power components
definition, Power theory.

I. INTRODUCTION

Power electronics researchers are conversant with the descrip-
tion of apparent (S), active (P) and reactive (Q) power and
power factor (PF) in a single phase sinusoidal circuits and in
balanced three phase circuits. Unfortunately, the generalization of
this description into other types of circuits (e.g. nonlinear loads
or non-sinusoidal systems) can lead to a misinterpretation of the
understanding the physical meaning of these components.

A long dispute around the meaning of these power components
in the non-sinusoidal conditions has been had along the electrical
engineers since at least 1916 [1] when Steinmetz, discussed the
problem of power components in sinusoidal and non-sinusoidal
conditions. With the inescapable wide spread of power electronics
devices, in the practical life of power engineering, and the
problems which have been produced in a result of the harmonics,
a new debate has been revived in the last 40 years [2] because
of the efforts have been made in order to find new definitions for
the power components with the increasing of frequency and new
terms have been invented (e.g. nonactive power (N)).

According to [3], apparent power (S) is not a vector, but it is
the product of the magnitude of two vectors : S =|i||v| = I V .

So, when i and v are sinusoidal waveforms and the load is
linear, it is possible to directly associate the real and reactive
components of the current with those of the apparent power,
namely real (active) power (P) and reactive power (Q). However,
if i or v are non-sinusoidal or/and the load is nonlinear, a new
term will present called the distortion power (Ph) or (D) [3]. This
distortion power consists of active (watt) and nonactive (VAr)
parts.

Some researchers have dedicated their entire academic lives to
this purpose, even a number of schools of diverse elucidations
have been launched for decades. The supporters of these schools
abide to them frequently with a type of religious enthusiasm more
than scientific evidences [4].

Generally, the author of every new definition shows the con-
tradictions and limitations of other definitions, and claim that his
proposal is finally right and will solve all the troubles related to
the power components definitions in non-sinusoidal condition.

Unfortunately, there is still no consensus in the power com-
munity between the engineers on an interpretation of power
phenomena of circuits with non-sinusoidal voltages and currents,
in spite of this controversy has been continued for decades.

This article is a new attempt to describe the relationship
between power components in non-sinusoidal system depending
on the idea of orthogonality law and applying the geometric sum
on all power categories, also suggests two new power terms called
(Pef ) and (Qef ).

This article has multiple contributions which can be summa-
rized as follow:

• It proves the validity of right-angled triangle (RAT) power
theory for all power components (total, fundamental, and
distortion) and all power categories (S, P & Q) for non-
sinusoidal systems.

• It refutes Budeanu’s power theory and its three dimensional
power diagram.

• Proves the ability to apply the orthogonality law on all power
components in non-sinusoidal.

• suggests a new simple two dimensional power diagram can
include all the power categories and components for non-
sinusoidal system.

• presents two new power terms called (Pef ) and (Qef ).
• Submit a new comprehensive definition for apparent power

in non-sinusoidal system.

Next section emerges the justification points which prove the
(RAT) theory. The third section describes the orthogonality law
and new power terms in non-sinusoidal system. The fourth section
presents a new definition of the apparent power (S) in non-
sinusoidal condition. The fifth section explains the new (RAT)
power diagram. The sixth section shows the mathematical proof
of the RAT’s equations. The seventh section provides examples
to examine the new power diagram and theory.
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II. JUSTIFICATION OF THE ORTHOGONALITY RELATIONSHIP
BETWEEN POWER COMPONENTS

In the following, some important points which are either
support the idea of geometric sum for all power components or
deny the conventional (arithmetic sum) power theory, and these
points are sufficient to justify the orthogonality law and the new
power terms:

1) Budeanu’s theory for non-sinusoidal condition [5] which is
defining the reactive power Qt as the arithmetic sum of Qh

Qt =
∑
h=1

VhIh sin θh

was strongly rejected by lots of researchers throughout 90
years of researches as mentioned in the following:

a. Fryze in 1931 [6], objected Budeanu’s theory and he
described the necessity to the voltage and current harmonic
decomposition before the reactive power could be calcu-
lated and relied on the time domain approach.

b. Shepherd and Zakikhani in 1972 [2], assured that the
Budeanu reactive power (QB) is not a real physical quantity
and they suggested another quantity to be chosen as a
reactive power.

c. Czarnecki in 1987 [7], objected strongly Budeanu’s
theory and proved that this theory does not possess the
attributes which could be related to the power phenomena
in the circuit and does not express any distinct energy
phenomenon.
Moreover, Budeanu’s values do not provide any information
necessary for the design of compensating circuits. Also, the
value of distortion power (D) is not related to the waveform
distortion.
Also (D) is not equal to zero when the current and voltage
waveforms are identical but shifted in time. However, D
can be equal to zero even when the voltage and current
waveforms are not identical.
In additioin, the author in 1997 [8], has concluded that, the
distortion power (D) in single phase nonlinear circuits has
nothing in common with waveform distortion, similarly as
Budeanu’s reactive power equation has nothing in common
with energy oscillation. Thus, Budeanu’s power theory
misinterprets power phenomena in electrical circuits.

d. Budeanu’s definitions has been refused by Slonim in
1988 [9]. The author has confirmed that QB is just an
arbitrary mathematical implication and it has no physical
interpretation.

e. Filipski in 1993 [10], approved that Budeanu’s definitions
of reactive and deformation powers, do not reflect properly
the energetic relation in non-sinusoidal conditions. Also,
the author in [11] has proved with illustrated examples that
Budeanu’s definition of reactive power in non-sinusoidal
system has many shortcomings.
Filipski proved that the calculated reactive power according
to Budeanu’s definition, may be zero even though there is a

reciprocating energy flow between the source and the load
at different frequencies.
Also, he showed that one can still completely compensate
a reactive load to unity power factor even when Budeanu’s
reactive power is zero.
Moreover, Reactive power as defined according to Budeanu
(arithmetic sum of Q) has no physical significance in non-
sinusoidal circuits.
The use of QB in non-sinusoidal situations is misleading,
because merely reducing Q to zero does not generally result
in optimum power factor compensation. Hence, compensa-
tion of the reactive power as defined according to Budeanu
alone may be useless for power factor improvement.

2) Reactive power definition proposed by Fryze [6] in 1931 is
based on the division of the current into two terms as the
active current (Ia) and the reactive current (Ir), considering
that these terms are orthogonal, then:
1
T

∫ T
0
iairdt = 0 (as the inner product is zero).

Similarly, (Pavg) for different frequencies is zero due to
orthogonality (P13, P15 or P35....etc.), as:

P35 = 1
T

∫ T
0
V3I5dt = 0

Consequently, harmonic currents and voltages of different
frequencies are all orthogonal with each other and effective
active power can be expressed as following:

P 2
ef = P 2

11 + P 2
33 + P 2

55 + P 2
77+.......etc.

∴ P 2
ef = P 2

11 +
∑
h=3

P 2
hh

3) Depenbrock in [12] [13], has supported Fryze’s model
which says: (I = Ia + Ib), and claimed that the total
current is consisting of fundamental and harmonic parts:
(i = i1 + ih).

Therefore, when Ia1 = I1 cos θ1 , Iah = Ih cos θh :

∴ Ia =
√
I2a1 + I2ah = I cos θ

∵ P = V Ia = V
√
I2a1 + I2ah

∴ P 2
ef = P 2

a1 + P 2
ah = P 2

fundamental + P 2
harmonics

Notice that this allegation supports the idea of geometric
sum of power components for the active power.

4) Since the nonlinear load is always polluted, then the active
part of the distortion power (D) which consists of P33,
P55 and P77 are negative values some times (depending
on the load nature). However, the total Phh should be
positive because, an amount of energy is being dissipated.
Accordingly, the total result will be positive always when
the geometric sum is using instead of the arithmetic sum.

thus: Phh =
√
P 2
33 + P 2

55 + P 2
77 + .....etc.

5) Slonim, concluded in 1988 [9] that there is no accepted,
clear definition of reactive and distortion power.



Also, he confirmed that there is no physical interpretation
for reactive, distortion and apparent power.
Accordingly, he claimed that:

S2
t =

∞∑
k=0

P 2
k +

∞∑
k 6=n

P 2
kn +

∞∑
n=0

Q2
k +

∞∑
k 6=n

Q2
kn

∴ S2 =

∞∑
n=1

P 2
n +

∞∑
n=1

Q2
n

Obviously, this equation confirms the idea of geometric sum
because, (P 2∑) and (Q2∑) are the geometric sum of active
and reactive power components, respectively.

6) Czarnecki in [4], has presented a new power theory.
His method was meant to improve on the limitation of
Fryze’s model. He has a collective reactive power, Unlike
Budeanu’s reactive power:

Qr = V Ir = V
√∑

(BhVh)2.

This allegation supports the idea of geometric sum to be
used for the total reactive power calculation because:

Qt =
√∑

Q2
n.

This type of summation has the attribute of getting a
positive result always (bigger than zero) and that’s math-
ematically and practically truthful to the actual oscillation
of energy.

7) Each of the current harmonics Ih can be decomposed into
two orthogonal component (Ih cos θh & Ih sin θh), since
all current harmonics are mutually orthogonal. Thus, the
square of the rms current (geometric sum) is:∑

n=1

I2n = I21 +
∑
h=2

I2h

∑
n=1

I2n =
[
I21 cos

2 θ1 + I21 sin
2 θ1

]
+
[∑
h=2

I2h cos
2 θh +

∑
h=2

I2h sin
2 θh

]
Therefore, if there is a reciprocating energy transmission
between the source and the load then the term

∑
Q2
n (but

not
∑
Qn) is responsible for the source apparent power’s

increase [14].

8) According to Shepherd and Zand in [14], the equation:

Q =
∑
h=1

VhIh sin θh

does not correctly define the reactive power in non-
sinusoidal system. Because, in non-sinusoidal supply situa-
tion, the fluctuations of the stored capacitive and inductive
energies are not synchronous such that the pulsating power
to be delivered by the source does not correspond to the
difference of both energy components.

Consequently, there is no justification for simply adding
(arithmetic sum) the reactive powers corresponding to dif-
ferent frequencies as its done in Budeanu’s reactive power
concept[14].

9) In mathematical laws, quantities x(t) and y(t) are orthogonal
if one of three cases has been applied, and one of these
cases is when x & y are harmonics in different orders:
x = xr sin(rw1t− α) , y = ys sin(sw1t− θ)
(when r 6= s), and that’s including all the harmonics
components, thus:
I2t = I21 + I23 + I25 + ..............+ I2n
V 2
t = V 2

1 + V 2
3 + V 2

5 + ..........+ V 2
n

S2
t = S2

1 + S2
3 + S2

5 + ............+ S2
n

P 2
t = P 2

1 + P 2
3 + P 2

5 + ...........+ P 2
n

Q2
t = Q2

1 +Q2
3 +Q2

5 + ...........+Q2
n

Which basically means the geometrical sum of power
components

10) According to the orthogonality law, two components are
orthogonal if the inner product of them is equal to zero.
In order to prove the geometric sum of active power, the
orthogonality of (P1) with (Ph) should be tested when,
P1 = V1I1 cos θ1 and Ph = VhIh cos θh:

The inner product = 1
2π

∫ 2π

0
P1Phdwt

= 1
2π

∫ 2π

0
I1V1 coswt . IhVh cos(hwt− θh)dwt

= I1V1IhVh

2π

∫ 2π

0
1
2

[
cos(wt− hwt+ θh) + cos(wt+ hwt−

θh)
]
dwt

= I1V1IhVh

4π

[
sin(wt(1−h)+ θh)+ sin(wt(1+h)− θh)

]∣∣∣2π
0

= I1V1IhVh

4π

[
sin(2π(1− h) + θh) + sin(2π(1 + h)− θh)−

sin(0(1− h) + θh)− sin(0(1 + h)− θh)
]
= Zero

Therefore (P1) & (Ph) are orthogonal components and the
geometric should be used in order to calculate the total
active power.

11) The advantage of using the geometric sum instead of the
arithmetic sum in active and reactive power calculation is
increasing the dependency on the fundamental component
and decreasing the effect of harmonics component, because
(mostly) the fundamental component is originally bigger
than the harmonics component, moreover, the squaring of
the values make the difference huge between the fundamen-
tal and the harmonic component.
According to the author in [15], the philosophy of separat-
ing the main (fundamental) component from the pollution
(non-fundamental) components and their cross terms is
successful because:
a. Utilities generate and distribute nearly perfect fundamen-
tal sinusoidal voltage.
b. The consumer expects fundamental sinusoidal voltage.
c. Generally, more than 99% of the total active power



flowing in the network is fundamental active power (P1).
The author in [12] concluded that, its better to separate (P1)
and (Q1) from the rest of the power components, because
the power apparent, active, and reactive components are
essential factors for the power system. A distribution system
cannot perform without reactive power and the useful fun-
damental magnetizing flux in transformers and AC motors
is separated by the fundamental current.

12) The author in 1987 [7], concludes that the phenomena of the
reciprocating energy transmission at harmonic frequencies
does not affect the source current RMS value and its
apparent power (S) in the manner suggested by Budeanu’s
model. Namely, each of the current harmonics (In) can be
decomposed into two orthogonal components:
I2n = I2n cos

2 θh + I2n sin
2 θh

Since all current harmonics are mutually orthogonal, thus
the square of the RMS value of the current is:

I2rms =
∑
n=1

I2n =
∑

(
Pn
Vn

)2 +
∑

(
Qn
Vn

)2

∴ S2
t =

∑
n=1

(Pn)
2 +

∑
n=1

(Qn)
2

Therefore, if there is a reciprocating energy transmission
between the source and the load, then the terms (

∑
P 2
n)

and (
∑
Q2
n) not (

∑
Pn)

2 and (
∑
Qn)

2 are responsible
for the source apparent power increase.

13) Emanuel in 1990 [16], has approved that the total reac-
tive power (Qt) is composed of four distinctive types of
elementary reactive powers: S2

t = P 2
t +Q2

t

Q2
t =

∑
h=1

Q2
Bh +

∑
h=1

Q2
Bmn +

∑
m 6=n

Q2
Dh +

∑
m 6=n

Q2
Dmn

∴ Q2
t = Q2

1 +
∑
h=1

Q2
h

From these equations, it is obvious that the author has
agreed indirectly with the idea of geometric sum for the
reactive power components.

14) The last update of IEEE-standards 2010 [17] has been
mentioned verbally in page (37) :”The fact that harmonic
reactive powers of different orders oscillate with different
frequencies reinforces the conclusion that the reactive pow-
ers should not be added arithmetically (as recommended by
Budeanu)”. However, the standards did not mention clearly
(through equations) the geometric sum of reactive power
components.

15) The idea of applying the geometric sum between the power
components has been presented in [18] for single phase
system. This theory has been proved mathematically and
practical electrical circuits has been investigated by using
the Matlab-simulink program. However, the author has
limited his theory to the sinusoidal system.

III. DESCRIPTION OF THE ORTHOGONALITY LAW AND NEW
POWER TERMS

Depending on the outcomes has been concluded from the pre-
viewed literature in the previous section, the power components
in different categories and frequencies are all orthogonal and
should be calculated using the geometric (not arithmetic) sum,
then a new power terms called effective active (Pef ) and reactive
(Qef ) power terms can be invented in order to understand the
characteristics and relations between different power components
and to calculate the total apparent power in non-sinusoidal
situation.

Lets consider:

V 2
t = V 2

1 + V 2
h & I2t = I21 + I2h ⇒ S2

t = V 2
t I

2
t

∴ S2
t = I21V

2
1 +V

2
1

∑
n=3

I2n+I
2
1

∑
m=3

V 2
m+

∑
m=n=3

V 2
mI

2
n+
∑
m6=n

V 2
mI

2
n

(1)

D2
I = V 2

1

∑
n=3

I2n (2)

D2
V = I21

∑
m=3

V 2
m (3)

D2
mn =

∑
m6=n

I2mV
2
n (4)

S2
h =

∑
m=n=3

I2mV
2
n =

∑
h=3

I2hV
2
h (5)

S2
t = S2

1 + S2
h +D2

I +D2
V +D2

mn (6)

S2
t = P 2

1 +Q2
1 + P 2

h +Q2
h +D2

I +D2
V +D2

mn (7)

This result shows that (St) can be represented either as a many-
dimensional vector, or as a two dimensional vector.

S2
t = S2

1 + S2
N (8)

S2
1 = P 2

1 +Q2
1 (9)

S2
N = P 2

h +D2
h (10)

D2
h = D2 +Q2

h (11)

D2 = D2
I +D2

V +D2
mn (12)

S2
h = P 2

h +Q2
h (13)

P 2
h =

∑
h=3

V 2
h I

2
h cos

2 θh (14)

Q2
h =

∑
h=3

V 2
h I

2
h sin

2 θh (15)



Budeanu’s distortion power (DB) definition represents (St) as
three dimensional vector: St = iP+jQB+kDB . This definition
creates different problems, one of them is the necessity to use a
new power unit for the distortion power (DB) [19].

However, the distortion power has the same physical nature as
reactive power, then the power unit of (D) has to be VAR [20].
This allows us to conclude that all the components of apparent
power (St) in frequency domain may contains active power (Pt)
and reactive power (Qt) components [9]. The orthogonality law
allows us to use only standard units, VA, W and VAR without
needing to invent extra units.

∵ S2
t = S2

1(cos
2 θ1 + sin2 θ1) + S2

N (cos2 θN + sin2 θN ) (16)

& ∵ S2
t = P 2

1 +Q2
1 + P 2

h +D2
h (17)

& ∵ S2
t = P 2

ef +Q2
ef = S2

ef (18)

∴ P 2
ef = P 2

1 + P 2
h (19)

& Q2
ef = Q2

1 +D2
h (20)

Owing to the dependence of the phase shift of current on
frequency domain, the sinusoidal association cannot be extended
by algebraic summation. At the same time, current and voltage
remain vectors in non-sinusoidal systems permitting a vector
summation of the harmonics.

IV. NEW DEFINITION OF THE APPARENT POWER IN
NON-SINUSOIDAL SYSTEM

The apparent power (S) in non-sinusoidal system has been
described in 1988 [21], as ”it is numerically equal to the max-
imum active power that exist at given points of entry with the
given effective value of the sinusoidal current and the potential
difference and hence is directly related to the size of the required
equipment and to the generation and transmission losses”.

Mathematically this can be described as: S = Pmax ,
I2rms= constant, V 2

rms= constant, S = IrmsVrms

Consider a nonlinear load supplied by a sinusoidal voltage
v(t) =

√
2V1 , and the current is i(t) =

∑√
2Ih sin(hwt+ θ).

The active power is equal to P = V1I1 cos θ1.
Its maximum value is equal to Pmax = V1I1 rather than

(VrmsIrms).
Postulate that (S) is equal to the maximum active power, in this

case, (S) is equivalent to the replacement of the actual load by
an equivalent resistive load, drawing a sinusoidal current rather
than non-sinusoidal current. The limitation of this definition, is
that its describes the power for equivalent load rather than the
actual load.

Filipski asserts in [10], that the non-sinusoidal apparent power
is an artificial quantity without any physical meaning and that
there is neither theoretical nor practical justification for the
electrical power application. The author has depended in his
claims on the current definitions of the apparent power.

However, even in the definition of apparent power for non-
sinusoidal system according to [17] in 2010, which define as:
”its the amount of active power that can be supplied to a load or
a cluster of loads under ideal conditions (the ideal condition may
assume sinusoidal supply voltage and current with linear loads)”
has got a serious limitation. This (ideal) condition constitute a
big limitation for the apparent power interpretation, because in
the practical life most of the loads are nonlinear and draw non-
sinusoidal current. In addition, this condition is mathematically
wrong because the inductive or capacitive loads are based on the
frequency, even the skin effect of resistors is dependent on the
frequency.

Obviously, there is no unanimously accepted Apparent power
definition until now, it’s useful to find a new definition covers the
general aspects for power systems and all practical (not just the
resistive) loads. Therefore, the apparent power can be defined as
the geometric sum of the active powers Pt (in all frequencies)
and the geometric sum of the non active powers Qt in all
(sinusoidal and non-sinusoidal) conditions.

The physical interpretation of the definition shows that the
apparent power (S) is an effective value (RMS); the effective
values are calculate using the magnitudes of harmonics terms.
The harmonic currents are mutually orthogonal, therefore the
geometric sum has been used to get the total apparent power
in non-sinusoidal conditions.

Six equations (9, 19, 20, 10, 8 and 18) respectively represent six
right-angled triangles will form the new diagram which illustrate
the relation between different power components, as it is shown
in Fig.(1).

Power triangle (S-P-Q) has been introduced first time for time
domain by Fryze [6] in 1931, when he defined iaF as the active
current and irF as the reactive current as a part of the time domain
description. However, the right-angled triangle power theory is
the first attempt to apply (Total-Fundamental-Harmonics) power
triangle in the frequency domain in combination with the (S-P-Q)
Power triangle.

Due to the non-active power Dh is the geometric sum of
DI , Dv, Dmn & Qh, then:

Q2
ef = Q2

1 +D2
h , (Dh is mutually orthogonal on Q1).

Simultaneously, (Ph) is orthogonal on (Dh) but not in-phase
with Q1 because they represent different frequencies.

In the same way, (P1) is orthogonal on (Q1) but not in-phase
with (Dh) because it is in different frequency. Consequently, (Ph)
is orthogonal on (P1).

V. THE EXPLANATION OF NEW POWER RAT DIAGRAM

The new power diagram can be form by gathering six equations
which are (9, 19, 20, 10, 8 and 18) respectively, these equations
represent six right-angled triangles as shown in Fig.(1).

These triangles are formed based on the notion of the orthog-
onality law. The distortion power component is always perpen-
dicular with the fundamental power component.

In sum, the aggregation of these six triangles produced a new
power diagram called right-angled triangle (RAT) diagram, this
diagram is shown in Fig.(2).



Fig. 1. Six right-angled triangles

Fig. 2. New power diagram

In the following, three steps explain and simplify the under-
standing of Right-angled triangle diagram formation.

• First step: The basis of the diagram is the first triangle which
is the fundamental power (S1, P1, Q1), and then the second
triangle is the active power triangle (Pef , P1, Ph) should be
placed and P1 is identical in both triangles. Then the third
triangle is the reactive power triangle (Qef , Q1, Dh) will
be placed in reverse and perpendicular way to the second
triangle. In order to simplify the proposed theory, the third

triangle should be placed twice and in symmetry with Q1.

• Second step: The fourth triangle, the distortion power trian-
gle (SN , Ph, Dh), should be in line above the third triangle
and Dh is identical in both triangles. the fifth triangle,the
apparent power triangle (Sef , S1, SN ), has been placed on
the S1 line of the first triangle and same SN of the fourth
triangle and thats will produce Sef component.

• Third step: Finally, the total power triangle (Sef , Pef , Qef ),
will be formed automatically by gathering (Sef ) line of the
fifth triangle with (Pef ) line of the second triangle and (Qef )
from the third triangle.

This diagram has the attribute of the simplicity in comparing
with the Budeanu’s 3-dimension diagram because it has only two
dimensions and that gives it the ability to be easily applicable
to find the relationships between the different components with
there angles (θt, θ1&θh) and even the calculation of the amplitude
value of the power parameters.

VI. THE MATHEMATICAL PROOF OF THE EFFECTIVE POWER
TERMS (Pef ) & (Qef )

This section submit the mathematical evidence to the validity
of the effective power terms (Pef ) & (Qef ) and shows the al-
gebraic relation between arithmetical and geometrical summation
of power components in non-sinusoidal systems.

A. For average power:

In algebra equations, Lagrange’s identity was described in [22]
and [23] as :

(

n∑
k=1

akbk)
2 = (

n∑
k=1

a2k)(

n∑
k=1

b2k)−
n−1∑
i=1

n∑
j=i+1

(aibj − ajbi)2 (21)

or :

(

n∑
k=1

akbk)
2 = (

n∑
k=1

a2k)(

n∑
k=1

b2k)−
1

2

n∑
i=1

n∑
j=1,j 6=i

(aibj − ajbi)2

(22)
when: Ph = VhIh cos θh & Ph = akbk

ak = Vh = (V 2
1 +

∑
n=1

V 2
n )

bk = Ih cos θh = (I21 cos
2 θ1 +

∑
n=1

I2n cos
2 θn)

∴ (
∑
h=1

VhIh cos θh)
2 = (

∑
h=1

V 2
h )(
∑
h=1

I2h cos
2 θh)−

1

2

∑
m=1

∑
n=1,n6=m

(VmIn cos θn − VnIm cos θm)2



∴ (
∑
h=1

VhIh cos θh)
2 = (V 2

1 +
∑
n=1

V 2
n )(I

2
1 cos

2 θ1

+
∑
n=1

I2n cos
2 θn)−

1

2

∑
m=1

∑
n=1,n6=m

(VmIn cos θn)
2

−(VnIm cos θm)2 − 2VmVnIm cos θmIn cos θn

When : h=1,2,3,4,5 , m=1,2,3,4,5 & n=1,2,3,4,5

(
∑
h=1

VhIh cos θh)
2 = (V 2

1 + V 2
2 + V 2

3 )(I
2
1 cos

2 θ1 + I22 cos
2 θ2

+I23 cos
2 θ3)−

1

2

∑
m=1

∑
n=1,n6=m

(VmIn cos θn)
2 − (VnIm cos θm)2

−2VmIm cos θmVnIn cos θn

After some steps of simplification, the above equation can be
represented as following:

(
∑
h=1

Ph)
2 =

∑
h=1

(Ph)
2 + 2(P1P2 + P1P3 + P1P4 + P1P5

+P2P3 + P2P4 + P2P5 + P3P4 + P3P5 + P4P5)

The algebraic relation between arithmetical and geometrical
sum is shown as:

(
∑
h=1

Ph)
2 =

∑
h=1

(Ph)
2 + 2

∑
m=1

∑
n=1,n6=m

PmPn (23)

When : Ph = VhIh cos θh

Pm = VmIm cos θm & Pn = VnIn cos θn

∴
∑
h=1

(Ph)
2 = (

∑
h=1

Ph)
2 − 2

∑
m=1

∑
n=1,n6=m

PmPn (24)

∑
h=1(Ph)

2 is the geometrical sum of power components

(
∑
h=1 Ph)

2 is the square of arithmetic sum of power compo-
nents

B. For instantaneous power:

For Single phase non-sinusoidal supply voltage with a nonlin-
ear RLC-load:

V (t) =

∞∑
k=1

√
2Vk sin(kwt)

Vk : The rms value of the kth harmonic of the source voltage.

I(t) =

∞∑
n=1

√
2In sin(nwt− θn)

In : The rms value of the nth harmonic of the source current.

P (t) = 2

∞∑
k=1

∞∑
n=1

VkIn sin(kwt) sin(nwt− θn) (25)

P (t) = 2
[
V1 sin(wt)+V2 sin(2wt)+V3 sin(3wt)

][
I1 sin(wt−

θ1) + I2 sin(2wt− θ2) + I3 sin(3wt− θ3)
]

For: k = 1,2,3 and n = 1,2,3

P (t) = 2
[
V1 sin(wt)I1 sin(wt− θ1) + V1 sin(wt)I2 sin(2wt−

θ2)+V1 sin(wt)I3 sin(3wt− θ3)+V2 sin(2wt)I1 sin(wt− θ1)+
V2 sin(2wt)I2 sin(2wt − θ2) + V2 sin(2wt)I3 sin(3wt − θ3) +
V3 sin(3wt)I1 sin(wt − θ1) + V3 sin(3wt)I2 sin(2wt − θ2) +
V3 sin(3wt)I3 sin(3wt− θ3)

]
When (k=n) :

P (t) = 2

∞∑
n=1

VnIn sin(nwt) sin(nwt− θn)

P (t) =

∞∑
n=1

VnIn[cos θn − cos(2nwt− θn)] (26)

The effective value of active power is the root mean square of
the active power for all harmonics (the geometric sum).

P 2
ef = P 2

rms =
1
T

∫ T
0
P 2(wt)dwt

P 2
ef =

1

2π

∫ 2π

0

∑
n=1

[
VnIn[cos θn − cos(2nwt− θn)]

]2
dwt

From (24):

P 2
ef =

1

2π

∫ 2π

0

∑
n=1

[
V 2
n I

2
n[cos

2 θn − cos2(2nwt− θn)

+2
∑
n=1

VnIn(cos θn − cos(2nwt− θn))

VmIm(cos θm − cos(2mwt− θm))]
]
dwt

P 2
ef =

1

2π

∫ 2π

0

∑
n=1

[
V 2
n I

2
n[cos

2 θn −
1

2
(1 + cos(4nwt− 2θn)

+2
∑
n=1

VnIn(cos θn − cos(2nwt− θn))

VmIm(cos θm − cos(2mwt− θm))]
]
dwt

P 2
ef =

1

2π

∫ 2π

0

∑
n=1

[
V 2
n I

2
n[cos

2 θn −
1

2
− cos(4nwt− 2θn)

2
+

2
∑
n=1

VnInVmIm(cos θn cos θm − cos θn cos(2mwt− θm)−

cos θm cos(2nwt− θn) + cos(2nwt− θn) cos(2mwt− θm))
]
dwt



P 2
ef =

1

2π

∑
n=1

[
V 2
n I

2
n[wt cos

2 θn −
wt

2
− sin(4nwt− 2θn)

8n
+

2
∑
n=1

VnInVmIm(wt cos θn cos θm − cos θn
cos(2mwt− θm)

2m

− cos θm
sin(2nwt− θn)

2n
+

sin(2nwt− θn + 2mwt− θm)

4(n+m)

+
sin(2nwt− θn − 2mwt+ θm)

4(n−m)
)
]∣∣∣2π

0

∴ Pef =

√
(
∑
h=1

Ph)2 − 2
∑
m=1

∑
n=1,n6=m

PmPn (27)

VII. EVIDENCE EXAMPLES

This section presents some examples of simple electrical cir-
cuits in order to investigate and prove the orthogonality law and
the validity of (RAT) diagram.

1) Example 1: In this example, randomly chosen values has
been applied in order to examine the validity of the new
proposed RAT power diagram:

Let: P1 = 10 & Q1 = 5⇒∴ S1 = 11.18 (equ. 9)

Let: Ph = 2,∵ P1 = 10⇒∴ Pt = 10.2 (equ. 19)

Let: Dh = 1,∵ Q1 = 5⇒∴ Qt = 5.1 (equ. 20)

∵ Ph = 2 & Dh = 1⇒∴ SN = 2.236 (equ. 10)

∵ S1 = 11.18 & SN = 2.236⇒∴ St = 11.4 (equ. 8)

∵ Pt = 10.2 & Qt = 5.1⇒∴ St = 11.4 (equ. 18)

This example shows the coherence of the equations and the
consistency of the values of power components through one
diagram and prove the validity of the new RAT diagram.

2) The arithmetic sum Qh can be equal to zero at nonzero
values of terms Qh despite the reciprocating energy trans-
mission between the source and the load.
Example 2: Suppose the circuit, shown in Fig.(3):

Fig. 3. LC - circuit

The load has impedance Z1 = j 20 in the fundamental
component and for the 3rd order harmonic Z3 = - j 1.25 ,
w = 1 rad / sec . If the supply voltage is :

v(t) = (200 sinwt+ 50 sin 3wt)V

Then the load current is equal to :

i(t) = [10 sin(wt− 90) + 40 sin(3wt+ 90)]A.

The arithmetic sum of reactive power is :

Qt = Q1 +Q3 = 2000 - 2000 = 0 VAr

However, there is energy oscillation in this circuit and the
total reactive power should be more than zero because
instantaneous power P(t) has a negative part in Fig. (3.4)
thats mean the energy flows back to the source when it is
negative and it causes losses in the transmission line.
While, the geometric sum is :

Qt =
√
(2000)2 + (2000)2 = 2825.4 VAr

By using the geometric sum in reactive power calculation,
its guaranteed to get a positive reactive power as long as
there is reciprocating energy in the circuit.

3) Example 3: This following example has been proposed
previously in [17] (pp. 36-38) : P1 = 8660 w, P3 = -13.94
w, P5 = -11.78 w and P7 = -1.74 w
In order to test equation (27):

7∑
h=1

P 2
h = P 2

1 + P 2
3 + P 2

5 + P 2
7 = 74995936.12W

∴ Pef =
√
P 2
h = 8660.02 watt

7∑
h=1

(Ph)
2 = (P1 + P3 + P5 + P7)

2 = 74520746.85

7∑
h=1

PmPn = 2(P1P3+P1P5+P1P7+P3P5+P3P7+P5P7)

= -237594.64

∴
7∑

h=1

(Ph)
2 = 74520746.85 + 475189.28 = P 2

ef

∴ Pef = 8660.02 watt

The total value of apparent power which has been calculated
in this example from this equation: S2

t = S2
1 + S2

N was
10517.55 VA.
By applying equation (18), the power triangle should give
the same result of S2

ef . The geometric sum of Pt which is
already Prms = Pef = 8660.02 W
In order to find Qef :

Qef =
√
Q2

1 +Q2
3 +Q2

5 +Q2
7 +D2

I +D2
v +D2

mn

Qt = 5968 VAr = Qef

From (18): S2
t = (5968)2 + (8660.02)2 = 10517.3 = S2

ef

However, the arithmetic sum of Pt is :

Pt = P1 + P3 + P5 + P7 = 8632.54 watt



If: St =
√
P 2
t +Q2

t = 10494.65 VA

This value is different from St resulted from S2
1 + S2

N in
the same example. Consequently, the arithmetic sum does
not investigate the power triangle.

VIII. CONCLUSION

This article presented two new power terms called effective
active (Pef ) and effective reactive (Qef ) power terms. These two
terms useful because they show the true relationship between all
power components (total, fundamental & distortion) in all power
categories (S, P & Q) in non-sinusoidal system.

These two terms are useful to investigate and prove the
ability to apply the principle of orthogonality law and the right-
angled power triangle theory. This theory shows the orthogonality
between fundamental and distorted components for all power
categories (S, P and Q).

The right-angled power triangle is a compulsory condition to
calculate the total apparent (St) in the non-sinusoidal system in
the right way and its compatible with the equations of IEEE-2010
standards.

A comprehensive literature review has been presented in sec-
tion II in order to justify the use of the geometric sum of power
components and deny the arithmetic sum of power components.
This section also, shows that Budeanu’s power definition has been
refuted by a big number of valuable researchers and its no longer
can be used.

This article also, offers a new definition for the apparent power
as (St or Sef ) in the non-sinusoidal situation and compares it
with the previous power definitions which have serious limitations
which has been shown in section IV.

Moreover, this article shows a new power diagram representing
all power components in a single diagram consisting of six right-
angled triangles called the right-angled triangle (RAT) diagram.

The notion of new power terms and new power right-angled
triangle (RAT) diagram defined above, have the following inter-
esting advantages:

1) The expressions and symbols which have been used in this
article, are the same symbols and units have been used in
IEEE standards-2010.

2) The vectors mentioned in the power diagram can be repre-
sented in phasor diagram.

3) The conventional units was used are the traditional units (W,
VAr and VA), then no new power units have been added.

4) Defining the power components in two dimensional di-
agram without the need of sophisticated mathematical
equations or three dimensional shapes as used before in
budeanu’s theory.

5) Finally, proving the (RAT) diagram, investigates the power
right-angled triangle (S-P-Q) which bases on the orthog-
onality principle between different fundamental and har-
monic components.
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